PARCIAL 2

16/05/17

Nombre y Apellido:

1	2	3	4	Total

- Enviar un solo archivo, que deberá llamarse apellido_nombre.py
- El mismo deberá contener las funciones de los Ejercicios 2 y 4 (ejercicios marcados con ▶).
- Está permitido usar los códigos desarrollados en los prácticos.

1. Una variable aleatoria X tiene una función de probabilidad de masa $p_i = P(X = i)$ dada por:

$$p_0 = 0.15,$$
 $p_1 = 0.20,$ $p_2 = 0.10,$ $p_3 = 0.35,$ $p_4 = 0.20.$

- a) Describir mediante un pseudocódigo un algoritmo que simule X utilizando el método de la transformada inversa y que minimice el número esperado de búsquedas.
- b) Describir mediante un pseudocódigo un algoritmo que simule X utilizando el método de aceptación y rechazo con una variable Y de distribución binomial, B(4, 0.45).
- c) Determine cuál de los dos métodos desarrollados en (1a) y (1b) es más eficiente en cuanto al número esperado de ciclos para generar un valor de X.
- ▶ 2. a) Implementar un algoritmo que simule un proceso de Poisson no homogéneo con intensidad $\lambda(t) = t$, en un período [0, T], con T = 8.
 - b) Explicar cómo se puede el algoritmo anterior para reducir el número de comparaciones.

3. Considerar X_1 , X_2 , X_3 variables aleatorias independientes con distribución exponencial de media $\frac{1}{\lambda}$. Explicar y desarrollar dos algoritmos que permitan simular una variable aleatoria X cuya función de distribución acumulada es:

$$F(x) = 1 - \prod_{i=1}^{3} (1 - F_i(x)),$$

donde
$$F_i(x) = P(X_i \le x), 1 \le i \le 3$$
.

▶ 4. Describir e implementar un algoritmo para generar una variable aleatoria con la siguiente función de densidad, aplicando el método de la transformada inversa.

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - x & 1 < x \le 2 \\ 0 & \text{en cualquier otro caso} \end{cases}.$$