## PARCIAL 3 - 15/06/2023

- Enviar un único archivo con el código utilizado para la resolución de los ejercicios, que deberá llamarse de la forma apellido\_nombre\_parcial3.py o apellido\_nombre\_parcial3.ipynb.
- El código deberá contener las funciones ejercicio1(), ejercicio2(), etc., con las resoluciones correspondientes a los ejercicios considerados, y la ejecución del programa deberá mostrar en pantalla las respuestas solicitadas.
- Está permitido usar los códigos desarrollados en los prácticos.

**Ejercicio 1:** Una industria de pinturas ha hecho una investigación sobre el color de automóviles a nivel global. Se ha tomado una muestra aleatoria de colores de automóviles en una región particular y se desea conocer si sigue la distribución global. Los datos obtenidos se resumen en la siguiente tabla:

| Color    | Región | Proporciones globales |
|----------|--------|-----------------------|
| Blanco   | 120    | 0.22                  |
| Plateado | 114    | 0.20                  |
| Negro    | 92     | 0.19                  |
| Gris     | 85     | 0.12                  |
| Rojo     | 34     | 0.09                  |
| Marrón   | 33     | 0.08                  |
| Azul     | 45     | 0.07                  |
| Verde    | 11     | 0.02                  |
| Otros    | 5      | 0.01                  |

- a) Plantear el test de hipótesis pertinente y realizar el cálculo en papel del estadístico.
- b) Dar el p-valor de la prueba y la conclusión que este provee para un nivel de rechazo  $\alpha=0.05$ :
  - i) utilizando una aproximación con la distribución  $\chi^2$ ,
  - ii) ▶ realizando 10000 simulaciones.

Ejercicio 2: Dado el proceso de Poisson no homogéneo con función de intensidad

$$\lambda(t) = (t-3)^2 \qquad 0 \le t \le 6,$$

- a) Explicar en qué consiste el método de refinamiento con un proceso de Poisson homogéneo para generar este proceso. Determinar la tasa del proceso homogéneo utilizado.
- b) ► Determinar al menos 4 intervalos para la mejora del algoritmo dado en a). Implementar en código un programa que simule el proceso con el método de refinamiento mejorado y devuelva una lista de los tiempos de eventos en el intervalo [0, 6].

**Ejercicio 3:** Considerar la cadena de Markov con espacio de estados  $S = \{0, 1, 2, 3, 4\}$  y la siguiente matriz de transición:

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
\frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{4} & \frac{3}{4} \\
0 & 0 & 0 & \frac{3}{4} & \frac{1}{4}
\end{pmatrix}$$

5

- a) Realizar el diagrama de transición de la cadena.
- b) Decidir si la cadena es irreducible.
- c) Determinar las clases comunicantes, los estados recurrentes y los transitorios.
- d) Calcular las probabilidades de alcance desde cada estado al conjunto  $A = \{3, 4\}$ .

## Ejercicio 4:

Se desea estimar el área de una elipse con ecuación

$$\left(\frac{x}{2}\right)^2 + y^2 = 1.$$

sorteando puntos dentro de un rectángulo que contiene a la figura, y determinando la proporción de puntos que caen dentro de la elipse.



- a) Explicar qué estimador se utiliza para la proporción y cuál es la varianza de este estimador.
- b)  $\blacktriangleright$  Utilizar el rectángulo con vértices en (-2,1), (2,1), (2,-1) y (-2,-1), y desarrollar un algoritmo que calcule la proporción de puntos que caen en la elipse.
- c) Detener mediante simulación un intervalo de ancho menor que 0.1 el cual contenga al área de la elipse con el 95 % de confianza. Indicar el número de simulaciones necesarias.