Redes y Sistemas Distribuidos 2018 – Recuperatorio Parcial 2

1	2	3	4	5	Total
2pt	2pts	2pts	2pts	2pts	

Nombre:	
Número de Hojas:	

Ejercicio 1: Suponiendo que el round-trip time, RTT estimado actual para una conexión TCP es de 23 msec y que llegan dos nuevos ACKs luego de 15 msec y 19 msec; calcule la expiración del temporizador usando el algoritmo original de Jacobson con $\alpha = 0.9$ (sin uso de varianza).

Ejercicio 2: Indicar las diferencias entre las redes orientadas a la conexión (circuitos virtuales) y las no orientadas a la conexión (datagramas) completando la siguiente tabla:

	Orientada a Conexión	No Orientada a Conexión
Proceso necesario para la inicialización de la comunicación		
Información necesaria en cada paquete de red para su envío		
Información necesaria en la tabla de enrutamiento de cada enrutador		
Efecto de fallas en los enrutadores		
Desafíos para la gestión/mitigación de la congestión		

Ejercicio 3: Para cada una de las siguientes afirmaciones, indique y justifique claramente si las mismas se aplican a protocolos de enrutamiento de estado de enlace, inundación o a ambos:

- 1. Se ejecuta el algoritmo de camino más corto Dijkstra.
- 2. Siempre se sigue el camino más corto al destino.
- 3. Enrutadores vecinos comparten información respecto a sus rutas.
- 4. Se mantiene un registro del número de secuencia de los paquetes.

Ejercicio 4: Indique si las siguientes afirmaciones respecto al algoritmo de detección temprana aleatoria (RED) son verdaderas o falsas y justifique claramente:

- 1. Envía señales explícitas de congestión a los hosts de donde proviene la información..
- 2. Es tolerante a ráfagas de tráfico ya que nunca descarta paquetes consecutivos.
- 3. Descarta paquetes con probabilidad 1 cuando la ocupación de la cola es superior a cierto umbral.
- 4. Tiene como objetivo disminuir las tasas de transmisiones TCP más altas.

Ejercicio 5: Asumiendo un direccionamiento IP basado en clases (ver tabla provista), un router recibe un paquete con el destino 190.240.7.91. Se pide:

- 1. Muestre el proceso que debe hacer el enrutador para encontrar la dirección de red destino de este paquete.
- 2. Complete las dos últimas columnas de la tabla.

Clase de	Bits de	Intervalo de	Numero de	Número de	Número de
dirección	mayor peso	dirección	bits en la	redes	hosts por red
		del primer	dirección de		
		octeto	red		
Clase A	0	0-127	8		
Clase B	10	128-191	16		
Clase C	110	192-223	24		