
CONCRETE-ML: A DATA-SCIENTIST-FRIENDLY TOOLKIT FOR
MACHINE LEARNING OVER ENCRYPTED DATA

Benoit Chevallier-Mames Jordan Frery Arthur Meyre Andrei Stoian
FHE.Org � 2022

Using Machine Learning services with FHE

Torus FHE Operations

8b

8b encrypted 

payload
noise

+

8b

8b

8b

8b

1. Homomorphic addition on encrypted values

2. Lookup encrypted values in a table, 

produces encrypted results

Encryption of 8b values produces 

high dimensional LWE vectors 

of 64b values

{ {
{ {{ {{ {

{ { { {

mask

Constraints of FHE as implemented in Concrete Numpy:
1 Process only integers, integers can have up to 8 bits
2 Operations allowed:

addition of two encrypted values
multiplication of encrypted with a clear constant: convolution, GEMM
arbitrary lookup-tables: activations, quantization, normalization

Converting float models to integer FHE models
Model quantization

Reduce the representation precision of model weights and
activations
Post Training Quantization: finds the best set of discrete
weights and activations starting with a float model
Quantization Aware Training: trains the best performing
model under the constraint that weights and activations
are discrete

Concrete-ML
A machine learning toolkit that data-scientists can use to
create machine learning models that operate on encrypted
data

1 scikit-learn, xgboost compatible
2 pytorch, ONNX converters available, keras/tf supported

through ONNX import

Concrete Stack
Concrete-ML is built upon the Concrete Stack:

Concrete-Framework: cryptographic primitives and
compilation of linear algebra programs to FHE
Concrete-Numpy : numpy to FHE converter through
compilation of numpy programs

Supported models in Concrete-ML
Tree-based models:

DecisionTree
RandomForest
XGBoost

Neural Networks
Convolutional
Fully Connected

Linear models
Linear Regression
Logistic Regression
Generalized Linear Model
Support Vector Classifier
Support Vector Regression

Usage
The Concrete-ML API has minimal differences with respect to
scikit-learn

Concrete-ML models are a drop-in replacement of
scikit-learn models
To compile and to execute in FHE requires just a single
function call for each

q_linreg = ConcreteLinearRegression(n_bits=3)
q_linreg.fit(x_train, y_train)
q_linreg.compile(X)
y_pred_q = q_linreg.predict(x_test)
y_pred_fhe = q_linreg.predict(x_test,

execute_in_fhe=True)

Experiments

Model Dataset Metric fp32 result Quantized result FHE result
Linear Regression Synthetic r2 score 88.5% 87.3% 87.3%

Logistic Regression Synthetic Accuracy 90% 85% 85%
Decision Tree spambase f1-score 87.7% 88.7% 88.7%

Fully Connected Neural Network IRIS Accuracy 100% 92.1% 92.1%
Fully Connected Neural Network MNIST Accuracy 98% 95% 95%

https://zama.ai


