
Performance of Hierarchical Transforms in Homomorphic Encryption:
A case study on Logistic Regression inference

Pedro Geraldo M. R. Alves, Jheyne N. Ortiz, Diego F. Aranha
Zama, University of Campinas, Aarhus University

Objectives and Contributions

This work brings some light to the dis-
cussion about the suitability of the Dis-
crete Galois Transform (DGT) to re-
place the Number-Theoretic Transform
(NTT) to accelerate polynomial mul-
tiplications on RLWE-based homomor-
phic encryption schemes.
We developed similar CUDA implemen-
tations of the CKKS cryptosystem, dif-
fering only in the underlying transform
and related data structure. Also, we ran
experiments to collect performance met-
rics in three different contexts:
• Direct comparison between DGT and

NTT;
• Impact on CKKS’ homomorphic

multiplication; and
• Impact on the inference phase of

Logistic Regression.

Introduction

Modern homomorphic encryption schemes
rely on polynomial arithmetic. In this con-
text, developers need to find efficient han-
dling of costly operations such as polynomial
multiplication. The literature has estab-
lished the suitability of the NTT, a variant of
the Discrete Fourier Transform (DFT) that
operates over integers, to compute the poly-
nomial multiplication with linear complexity
within the transform domain. Nonetheless,
some recent works suggest that the DGT
may be a better candidate when the target
hardware is a CUDA-enabled GPU [1].

CKKS Scheme

CKKS is a leveled homomorphic encryption
scheme in which the plaintext domain is
composed of complex numbers.
Consider that C = {q0, q1, . . . , qℓ} is a set
of coprime integers, called a RNS basis, q =∏ℓ

i=0 qi, and Rq = Zq[x]/(xN + 1) for N an
integer. If s ∈ RC, then ∃S ∈ Rq such that
s := {[S]q0, [S]q1, . . . , [S]qℓ

}.
A CKKS ciphertext is a pair of elements in
RC. Its relinearization procedure switches
the ciphertext representation between R2

C
and R2

C+D, for a secondary basis D coprime
to C. These basis conversion steps are done
through approximate modulus switching
functions called ModUp and ModDown.

Performance Evaluation of
Hierarchical Transforms

We conceived two CUDA-based implemen-
tations of CKKS using the hierarchical ver-
sions of both DGT and NTT. Both imple-
mentations follow the same design decisions,
except for their basic data type. We also ex-
plore an optimization on NTT’s version of
ModUp which increases arithmetic density
per thread. We executed our experiments on
a Google cloud instance featuring either an
NVIDIA Tesla V100 or Tesla A100 GPUs.

Figure 1:Ratio of DGT and NTT execution times for
different polynomial degrees and RNS basis’ sizes.

Figure 2:Comparison of CKKS’ homomorphic multi-
plication running with DGT and two implementations
of NTT: a schoolbook and an optimized implementa-
tion. We consider the ring Rq for log q = 323.

Homomorphic Logistic
Regression

Logistic Regression is a learning algorithm
widely used to solve classification problemss.
We follow the approach of similar works in
the literature and apply learning algorithms
to the MNIST dataset. The images on the
MNIST dataset represent handwritten digits
(0 – 9) that were split into a training and
a test set with 60 000 and 10 000 records,
respectively. We trained a model using a
Python script applying the scikit-learn
library’s LR implementation.

Data Structure

We evaluated two ciphertext designs:
• Direct: Each ciphertext stores all the

columns related to a particular digit. In
this case, we have as many ciphertexts as
images.

• Transposed: A ciphertext stores one
pixel of each image in the dataset. More
ciphertext slots may be needed compared
to the direct approach.

The direct version requires smaller CKKS
parameters and consumes less memory.
However, it depends on more expensive oper-
ations to compute the inner product within
the inference phase.

Result

Figure 3:Comparison of the Logistic Regression infer-
ence performing using the DGT, the NTT, and the
optimized NTT. We consider the encrypted and not
encrypted model for both data structures.

Conclusion

The data structure related to the DGT
naturally benefits the performance of the
homomorphic multiplication over the NTT
since it increases the arithmetic density of
ModUp. However, the NTT may be opti-
mized to achieve similar performance. This
result goes toward Badawi et al.’s claim
that the DGT better fits CUDA’s process-
ing paradigm.

References

[1] Badawi et al.
High-performance FV somewhat homomorphic
encryption on gpus: An implementation using
CUDA.
IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(2):70–95, 2018.


