
Private Smart Contracts Using
Homomorphic Encryption

 
Morten Dahl, Levent Demir, Louis Tremblay Thibault

Encrypted blockchain state and transaction inputs
Smart contracts compute on encrypted data
Programmatic privacy via smart contract functions
Contract composition and data sharing straight
forward
Private decryption key kept secret by threshold MPC
Smart contracts expressed in e.g. unmodified Solidity

Summary:

Exact operations → exact results
Deterministic operations → support consensus
Programmable bootstrapping → apply any
function
Fast bootstrapping → unlimited computation

Why TFHE?

Given as input from user along with PoK
Received from another contract
Computed using TFHE-rs

Programmatic Privacy:

Smart contracts decide what users can decrypt using
normal functions, with full flexibility to implement custom
access control.

Misuse is prevented since contracts can only approve
de-cryption of ciphertexts they obtained honestly:

ERC20 Tokens With Encrypted Balance:

Encrypted Blockchain:

Blind Auctions:

Validators:

Key generation
Decryption
Re-encryption

Threshold Oracle:

Threshold MPC protocols optimized for TFHE:

RESOURCES
zama.ai/blog
github.com/zama-ai/tfhe-rs


