{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
"\n",
"# Домашка №4: визуализация\n",
"\n",
"У всех нас есть датасет по контакту. В нём лежит информация про всех нас. Эту информацию надо как следует проанализировать. Именно этим мы сейчас продолжим заниматься. В этот раз с картинками! \n",
"\n",
"Для начала подгрузите все необходимые библиотеки: `pandas`, `matplotlib.pyplot`, `seaborn` и включите опцию, отвечающую за прорисовку картинок прямо в питонячей тетрадке."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Подгрузите данные профилей и данные по фотографиям"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# В этой табличке лежат данные по профилю человека\n",
"df_profile = pd.read_csv('../data/vk_download/vk_data_profile.csv',sep='\\t')\n",
"\n",
"# В этой табличке лежат данные по фотографиям человека\n",
"df_photo = pd.read_csv('../data/vk_download/vk_data_photo.csv',sep='\\t')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Склеим табличку по полю uid"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Unnamed: 0_x
\n",
"
uid
\n",
"
Unnamed: 0.1
\n",
"
first_name
\n",
"
last_name
\n",
"
is_closed
\n",
"
city
\n",
"
home_town
\n",
"
male_dummy
\n",
"
relation_cat
\n",
"
...
\n",
"
photo_repost_cnt
\n",
"
photo_repost_max
\n",
"
photo_repost_mean
\n",
"
photo_repost_median
\n",
"
photo_text
\n",
"
photo_text_len_cnt
\n",
"
photo_yer_mean
\n",
"
vk_photo_ava_change_cnt
\n",
"
vk_photo_text_url_len_cnt
\n",
"
vk_photo_wall_ph_post_cnt
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
182152789
\n",
"
0
\n",
"
Александра
\n",
"
Абашкова
\n",
"
False
\n",
"
Москва
\n",
"
Москва
\n",
"
0
\n",
"
не указано
\n",
"
...
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.0
\n",
"
\n",
"
0.0
\n",
"
1.333333
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
148020433
\n",
"
1
\n",
"
Анастасия
\n",
"
Чуфистова
\n",
"
False
\n",
"
Рязань
\n",
"
Рязань
\n",
"
0
\n",
"
не указано
\n",
"
...
\n",
"
2.0
\n",
"
1.0
\n",
"
0.105263
\n",
"
0.0
\n",
"
\n",
"
0.0
\n",
"
3.166667
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
2
\n",
"
2
\n",
"
138413935
\n",
"
2
\n",
"
Александр
\n",
"
Головачев
\n",
"
False
\n",
"
Москва
\n",
"
Омск
\n",
"
1
\n",
"
не женат/не замужем
\n",
"
...
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.0
\n",
"
\n",
"
0.0
\n",
"
2.333333
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
3
\n",
"
3
\n",
"
366261055
\n",
"
3
\n",
"
Анна
\n",
"
Лобанова
\n",
"
False
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
не указано
\n",
"
...
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.0
\n",
"
\n",
"
0.0
\n",
"
12.500000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
4
\n",
"
4
\n",
"
111252392
\n",
"
4
\n",
"
Алексей
\n",
"
Пузырный
\n",
"
False
\n",
"
NaN
\n",
"
NaN
\n",
"
1
\n",
"
NaN
\n",
"
...
\n",
"
0.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.0
\n",
"
\n",
"
0.0
\n",
"
8.750000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
" \n",
"
\n",
"
5 rows × 85 columns
\n",
"
"
],
"text/plain": [
" Unnamed: 0_x uid Unnamed: 0.1 first_name last_name is_closed \\\n",
"0 0 182152789 0 Александра Абашкова False \n",
"1 1 148020433 1 Анастасия Чуфистова False \n",
"2 2 138413935 2 Александр Головачев False \n",
"3 3 366261055 3 Анна Лобанова False \n",
"4 4 111252392 4 Алексей Пузырный False \n",
"\n",
" city home_town male_dummy relation_cat ... photo_repost_cnt \\\n",
"0 Москва Москва 0 не указано ... 0.0 \n",
"1 Рязань Рязань 0 не указано ... 2.0 \n",
"2 Москва Омск 1 не женат/не замужем ... 0.0 \n",
"3 NaN NaN 0 не указано ... 0.0 \n",
"4 NaN NaN 1 NaN ... 0.0 \n",
"\n",
" photo_repost_max photo_repost_mean photo_repost_median \\\n",
"0 0.0 0.000000 0.0 \n",
"1 1.0 0.105263 0.0 \n",
"2 0.0 0.000000 0.0 \n",
"3 0.0 0.000000 0.0 \n",
"4 0.0 0.000000 0.0 \n",
"\n",
" photo_text photo_text_len_cnt \\\n",
"0 0.0 \n",
"1 0.0 \n",
"2 0.0 \n",
"3 0.0 \n",
"4 0.0 \n",
"\n",
" photo_yer_mean vk_photo_ava_change_cnt vk_photo_text_url_len_cnt \\\n",
"0 1.333333 0.0 0.0 \n",
"1 3.166667 0.0 0.0 \n",
"2 2.333333 0.0 0.0 \n",
"3 12.500000 0.0 0.0 \n",
"4 8.750000 0.0 0.0 \n",
"\n",
" vk_photo_wall_ph_post_cnt \n",
"0 0.0 \n",
"1 0.0 \n",
"2 0.0 \n",
"3 0.0 \n",
"4 0.0 \n",
"\n",
"[5 rows x 85 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.merge(df_profile, df_photo, how='right', on='uid')\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Давайте посмотрим на все названия колонок, которые есть в таблице. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Unnamed: 0_x', 'uid', 'Unnamed: 0.1', 'first_name', 'last_name',\n",
" 'is_closed', 'city', 'home_town', 'male_dummy', 'relation_cat',\n",
" 'relation_partner', 'byear', 'bmonth', 'bday', 'country',\n",
" 'facebook_dummy', 'instagram_dummy', 'skype_dummy', 'twitter_dummy',\n",
" 'home_phone_dummy', 'mobile_phone_dummy', 'site_dummy', 'folowers_cnt',\n",
" 'university_str', 'faculty_str', 'about_str', 'activities_str',\n",
" 'books_str', 'interests_str', 'movies_str', 'music_str', 'quotes_str',\n",
" 'tv_str', 'games_str', 'can_post_dummy', 'can_see_all_posts_dummy',\n",
" 'can_see_audio_dummy', 'can_write_private_message_dummy',\n",
" 'has_mobile_dummy', 'has_ava_dummy', 'wall_comments_dummy',\n",
" 'albums_cnt', 'audio_cnt', 'followers_cnt', 'friends_cnt', 'gifts_cnt',\n",
" 'groups_cnt', 'mutual_friends_cnt', 'photos_cnt', 'subscriptions_cnt',\n",
" 'user_photos_cnt', 'videos_cnt', 'pages_cnt', 'alco_love_cat',\n",
" 'smoke_love_cat', 'religion_str', 'inspired_by_str', 'life_main_cat',\n",
" 'people_main_cat', 'political_cat', 'lang_cnt', 'english_dummy',\n",
" 'change_city_school_cnt', 'last_bukva_class_str', 'schools_cnt',\n",
" 'is_bmm', 'in_hse_memes_group', 'likes_memes', 'Unnamed: 0_y',\n",
" 'photo_cnt', 'photo_like_cnt', 'photo_like_max', 'photo_like_mean',\n",
" 'photo_like_median', 'photo_month_mean', 'photo_repost_cnt',\n",
" 'photo_repost_max', 'photo_repost_mean', 'photo_repost_median',\n",
" 'photo_text', 'photo_text_len_cnt', 'photo_yer_mean',\n",
" 'vk_photo_ava_change_cnt', 'vk_photo_text_url_len_cnt',\n",
" 'vk_photo_wall_ph_post_cnt'],\n",
" dtype='object')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Мы видим, что часть из них кончается на `cnt`. Это колонки-счётчики. В них лежат такие переменные как количество фоток, лайков, репостов и тд"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['folowers_cnt',\n",
" 'albums_cnt',\n",
" 'audio_cnt',\n",
" 'followers_cnt',\n",
" 'friends_cnt',\n",
" 'gifts_cnt',\n",
" 'groups_cnt',\n",
" 'mutual_friends_cnt',\n",
" 'photos_cnt',\n",
" 'subscriptions_cnt',\n",
" 'user_photos_cnt',\n",
" 'videos_cnt',\n",
" 'pages_cnt',\n",
" 'lang_cnt',\n",
" 'change_city_school_cnt',\n",
" 'schools_cnt',\n",
" 'photo_cnt',\n",
" 'photo_like_cnt',\n",
" 'photo_repost_cnt',\n",
" 'photo_text_len_cnt',\n",
" 'vk_photo_ava_change_cnt',\n",
" 'vk_photo_text_url_len_cnt',\n",
" 'vk_photo_wall_ph_post_cnt']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"variables_cnt = [item for item in df.columns if item[-3:] == 'cnt']\n",
"variables_cnt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Разбиритесь как работает и устроен этот цикл, если вы ещё не разбираетесь. Почитать об этом можно [вот тут.](https://habr.com/ru/post/30232/) Чуть ниже вам предстоит написать свой такой. \n",
"\n",
"Вытащите из переменных счётчиков только те, которые отвечают за фото. Постройте для них гистограммы (для удобства используйте логарифмическое скалирование). Как думаете, в каких переменных есть выбросы? Какие из переменных неинформативны? Почему?\n",
"\n",
"__Ответ:__ Выбросы есть везде, где длинные хвосты. То есть это почти каждая переменная. Неинформативная `photo_ava_change_cnt`. Она принимает только одно значение. Какой вообще в ней смысл?!"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAHiCAYAAACp2y62AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xu8bXVd7//XOxBBpA2K7SOX3OBGi6S8rETPqc42byBu8XTsCHFKDOFYWVZYgfor6uQRO5F5KyOhnUogUQlbMW+x4lBeEFMBidziVjYqCMiWjRZu/fz+GGPhdLHmWnOu25xjrtfz8RiPNee4fr5jzPlZ3++Y3zFGqgpJkiRJ0vj7nlEHIEmSJEkajA04SZIkSeoIG3CSJEmS1BE24CRJkiSpI2zASZIkSVJH2ICTJEmSpI6wAbeGJdmUZMeo45C09oxD/klycpKret7vSnJ4+3pLkt8fXXSSVts45CVpEDbgtCizKz4j2L5JVlqjVir/VNWDq+qm5V7vUiTZkKSS7DnqWCT1N+p60XJLMp3kRSu8je1JnraS25hUNuAkSZKkMeTJG83FBtwa0J7hODPJp5N8NclfJNm7Z/rpSW5L8qUkL+wZvy7JW5N8Jcnnk7wyyfck+UHgzcCT2y5Hd803/wDxnZrkhiR3tzE+vifulyX5VJKdSd6RZO8k+wLvAQ5qt78ryUHLvd8kLd24559ZsVaSjXOM3y/JFUlen8YDk/xhki8kuTXJm5PsM8D6j0/yiSRfS/LZJMe046eT/O8k/9TmwfclObBd7Mr2711teZ88TJkk3d8456U0v+T9U5LXJrkDOKsd//NtXemrSd6b5BE9y1SSX0lyU5Lbk/zfme208b2y3f5tbTzr2ml7J3l7kjuS3JXk6iTrk7wK+HHgjW153rhAzD+U5P1J7mxz4svb8Wclubjd5t1Jrk8y1U57G/D9wNZ2G7856PGTDbi15CTgmcAjgUcBr2zH/ydgHXAwcArwpiQHtNPe0E47HPivwM8BL6yqG4AXAx9quxztP9/88wWV5KdpktPPAd8LPAe4o2eW/wEcAxwG/DBwclXdAxwLfLHd/oOr6ovD7hBJq2Ys888gkjwU+CDwT1X1K1VVwNltOR4LbGzj/+0F1vNE4K3AbwD7Az8BbO+Z5WfaeL8P2At4WTv+J9q/+7fl/dBSyyQJGO+8dDRwE7AeeFWS44GXAz8FPAz4f8CFs5b5b8AU8HjgeODn2/Ent8NT2jgeDMw0yF7Qxnco8NC2DN+oqle023hJW56X9As0yX7AB4C/Bw6iyYkf7JnlOcBFNHnvspltV9XPAl8ANrfb+IMB9otmVJXDhA80lYQX97x/FvBZYBPwDWDPnmm3AU8C9gDuBY7smfa/gOn29cnAVT3T5p1/ntjeC7x0nrj/Z8/7PwDe3L7eBOwY9b51cHCYfxjz/DN7PQVsbF9vAc4HrgN+o2eeAPcAj+wZ92Tgcwts68+A1/aZNg28suf9LwJ/377e0Ma153zrd3BwGHzoQF76wqxx7wFO6Xn/PcDXgUe07ws4pmf6LwIfbF9/EPjFnmmPBr4J7EnTyPtn4IfniGMaeNEA+/JE4F/6TDsL+EDP+yNpGoi9x+Fpo/48dHHwF7i14+ae15+nOUsCcEdV7e6Z9nWaszMHAg9o5+1d7uA+6x92/hmH0iTNfr48R2ySumVc889CjgP2oekaNeNhwIOAa9ouR3fRnHl+2ALrMtdJ42Wc89LNs94/AnhdT865k+Zk0sF9luktz0FzxLAnza97b6M5kX5Rki8m+YMkDxggvl7D5ra943V9S2YDbu04tOf19wMLdTm8neYMzSN6xn0/cEv7uoacv5+babovDGv29iWNr3HNPwv5c5rG2eVprr2d2dY3gB+qqv3bYV1VLdTgMtdJ42Wc89Lsdd0M/K+enLN/Ve1TVf/cM0+/8nxxjhh2A7dW1Ter6ner6kjgPwPPpunmOVcM/dxM0zVzMcxvi2QDbu34pSSHJHkI8ArgHfPNXFXfAi6m6Xu9X3ux7K8Db29nuRU4JMleA87fz1uAlyV5QntzgI29F+bO41bgoTMX4koaa+OafwbxEuBGmgvt96mqb9M07F6b5PsAkhyc5JkLrOc84IVJntreVODgJD8wwPa/AnybxVeQJM2tS3npzcCZSX4I7rs5yk/Pmuc3khyQ5FDgpT3luRD4tSSHJXkw8H+Ad1TV7iRPSXJUkj2Ar9E0OL/dU55B8s67gIcn+dU0N3jaL8nRA5Zr0G1oFhtwa8dfAe+juSj2s8AgD6j9ZZprPW4CrmrXcX477R+A64EvJ7l9gPnnVFV/Dbyqnfdu4J3AQxYKrKr+lSYp3dR2KfAulNL4Gsv8M4hqLtQ4DdgBXJrmTnW/BWwDPpzkazQX8D96gfV8lObmBa8FdgL/yHefFe+33NdpcuQ/tbnuSUsojqTv6Exeqqq/A15D09XxazTX5h47a7ZLgWuATwDvpjlpRLu9t9Hc0fZzwL+3cUFzw5ZLaBpvN9Dkpbe1014HPK+96+Xr54ntbuDpwGaa7pKfoblhyiBeDbyyzW0vW3Bu3SftRYSaYEm201yI+oFRxyJpbTH/SBo3k5aXkhRwRFVtG3UsWh3+AidJkiRJHWEDTisuzUNud80xvHnhpSVp8VYz/yR5eZ9tvWe5tyWpu7pWL0ry433i3TXq2NYqu1BKkiRJUkf4C5wkSZIkdYQNOEmSJEnqiLF4EvqBBx5YGzZsWHC+e+65h3333XfB+SbBWimr5eyGa6655vaqetio4xgng+YtGK/jbyz9jVM8xtLfoPGYt75bks3A5v322+/URz3qUQvOP27HvZexLd44x2dsQ+Stqhr58IQnPKEGccUVVww03yRYK2W1nN0AfKzGIFeM0zBo3qoar+NvLP2NUzzG0t+g8Zi3lpa7xu249zK2xRvn+Ixt8LxlF0pJkiRJ6oiRNuCSbE5y7s6dO0cZhiRJkiR1wkgbcFW1tapOW7du3SjDkKSBeeJJUheZu6TJMRY3MRnGhjPevezr3H72ccu+TkmTqaq2AlunpqZOHXSZa2/ZycnLnLvMW5KGMWzuMm9J48tr4CRJkiSpI2zASZIkSVJH2ICTJEmSpI7wLpSSJEkTzjqXNDm8C6UkSdKEs84lTQ67UEqSJElSR9iAk6Qh2A1JkiSNkg04SRqC3ZAkSdIo2YCTJEmSpI6wASdJkiRJHeFjBCRJkiSpI3yMgCRJ0oTzpLk0OexCKUmSNOE8aS5NDhtwkiRJktQRNuAkSZIkqSNswEmSJElSR+w56gAkaRwkeS5wHPC9wHlV9b4RhyRJknQ//gInaWIlOT/JbUmumzX+mCQ3JtmW5AyAqnpnVZ0KvBh4/ijilSRJWogNOEmTbAtwTO+IJHsAbwKOBY4ETkxyZM8sr2ynS5IkjZ0VacAleW6SP0/yjiTPWIltSNJCqupK4M5Zo58IbKuqm6rqXuAi4Pg0XgO8p6o+vtqxSpIkDWLga+CSnA88G7itqh7TM/4Y4HXAHsBbqursqnon8M4kBwB/CHgtiaRxcTBwc8/7HcDRwC8DTwPWJdlYVW+evWCS04DTANavX8/09PRAG1y/D5x+1O4lhv3dBt32bLt27Vr0ssttnGKB8YrHWPobt3hGyWt3pbVpmJuYbAHeCLx1ZkRPV6Sn01SCrk5yWVV9up3FrkiSOqGqXg+8foF5zgXOBZiamqpNmzYNtO43XHAp51y7vPeM2n7SYNuebXp6mkHjXmnjFAuMVzzG0t+4xbPcPGEuaSEDd6G0K5KkCXELcGjP+0PacQNJsjnJuTt37lz2wCQJr92VtIClnhJe1a5Iu3bt4vSjvrXEkO9vHLtirJUuIpZTI3A1cESSw2gabicAPzPowlW1Fdg6NTV16grFJ2kNq6ork2yYNfq+E+YASWZOmN8AnI0nzKU1ZUWeA7dSXZGmp6c556p7liPE77LYrkgradK7iMywnFpJSS4ENgEHJtkB/E5VnZfkJcB7aboinV9V1w+xzs3A5o0bN65EyJI0l0WfMIfFnTQfp2t3Zxvnk6LjHBuMd3zGNrilNuCW3BUJK0KSVkhVndhn/OXA5Ytcp7/ASRoLg5wwb+c7N8mXgM377bffEwY5oThO1+7ONs4nRcc5Nhjv+IxtcEt9jMB9XZGS7EXTFemyQReuqq1Vddq6deuWGIYkSdLEWtIJc7DOJU2SgRtwbVekDwGPTrIjySlVtRuY6Yp0A3DxsF2RvBmApC4xb0kagSWdMJc0WYa5C+WJVfXwqnpAVR1SVee14y+vqkdV1SOr6lXDbNyzQZK6xrwlaSWtxAnzdr2efJImxIrcxESSJEnDW4lrd9vlvX5XmhBLvQZuSTwbJKlrzFuSusjcJU2OkTbg7IokqWvMW5K6yNwlTY6RNuAkSZIkSYOzC6UkDcG8JamLzF3S5LALpSQNwbwlqYvMXdLksAulJEmSJHWEXSglSZImnHUuaXKM9DlwPpNEUtck2Qxs3rhx40jj2HDGuxe13OlH7ebkPstuP/u4pYQkaYxZ55Imh10oJWkIXkciSZJGyQacJEmSJHWE18BJkiRJUkf4GAFJkqQJ50lzaXLYhVKSJGnCedJcmhw24CRpCJ7FliRJo2QDTpKG4FlsSZI0SjbgJEmSJKkjvAulJEnShLPOJU0O70IpSZI04axzSZNjz1EHIEkaDxvOePeyr3P72cct+zolSVrLvAZOkiRJkjrCBpwkSZIkdYQNOEkagjcCkCRJo2QDTpKG4I0AJEnSKPkYAUmSpAlnnUuaHD5GQJIkacJZ55Imh10oJUmSJKkjbMBJkiRJUkfYgJMkSZKkjrABJ0mSJEkdYQNOkiRJkjrCBpwkSZIkdcSeow5AksZBksOBVwDrqup5o45nUmw44919p51+1G5Onmd6P9vPPm4pIUmS1GnL/gtcksOTnJfkkuVetyQNI8n5SW5Lct2s8cckuTHJtiRnAFTVTVV1ymgilSRJGsxADTgrQZI6agtwTO+IJHsAbwKOBY4ETkxy5OqHJklL40lzaW0atAvlFuCNwFtnRvRUgp4O7ACuTnJZVX16uYOUpMWoqiuTbJg1+onAtqq6CSDJRcDxwIK5K8lpwGkA69evZ3p6eqA41u/TdBccB5MQy6D7fVi7du1asXUPy1j6G7d4lluS84FnA7dV1WN6xh8DvA7YA3hLVZ3d5rFTbMBJa8tADbjlrgRJ0ggdDNzc834HcHSShwKvAh6X5MyqevXsBavqXOBcgKmpqdq0adNAG3zDBZdyzrXjccnx6Uft7nws20/atPzB0DQMBz2mK81Y+hu3eFbAFjxpLmkeS/kvvuhKECzuTPauXbs4/ahvLSHkuY3jmbxJP8M4w3JqXFTVHcCLF5ovyWZg88aNG1c+KElrzkqcNF9MnWslfq1frv+D4/w/dZxjg/GOz9gGt+ynYQetBC3mTPb09DTnXHXPUkO8n5U6m7sUa+AMI2A5NRK3AIf2vD+kHTeQqtoKbJ2amjp1uQOTpD6WdNJ8MXWuleg5sFz1rXH+nzrOscF4x2dsg1vKN3NJlSAYnzPZ893merG8zbU0tq4GjkhyGE3OOgH4mdGGJEnDG/SkOYxPnUvS0i3lMQL3VYKS7EVTCbpsmBVU1daqOm3dunVLCEOS5pbkQuBDwKOT7EhySlXtBl4CvBe4Abi4qq4fYp2bk5y7c+fOlQlaku5vySfNrXNJk2PQxwgseyWoXa8VIUkrpqpOrKqHV9UDquqQqjqvHX95VT2qqh5ZVa8acp1WgiSttiWfNJc0OQa9C+WJfcZfDly+2I17LYmkrrEb0uitRLd3gC3H7Lsi65WG0Z403wQcmGQH8DtVdV6SmZPmewDnL+akOeYuaSIspQulJK05/gInaSWtRM+BdnlzlzQhRtqAswulJEnSyrPOJU2OkTbgPBskqWusBEnqIutc0uSwC6UkDcFKkCRJGqVlf5D3MLygVpIkaeWNQ51ruW5AdPpRuzm5XZfP3dVaZBdKSZKkCWedS5ocdqGUpCF4DZwkSRol70IpSUPwLLakLrLOJU0Ou1BKkiRNOOtc0uSwC6UkSZIkdYQNOEkagt2QJEnSKPkYgRWy1Fvl9t4id4a3ypVGr6q2AlunpqZOHXUskjSoSa5zSWuN18BJkiRNOOtc0uSwC6UkSZIkdYQNOEmSJEnqCBtwkiRJktQRI72JiSR1jTcCmFzX3rLzfjePWipvPiVJWm7ehVKShuBdKCV10aTWuZZ61+9+PPmiceZdKCVJkiacdS5pcngNnCRJkiR1hA04SZIkSeoIG3CSJEmS1BE24CRJkiSpI2zASZIkSVJH+BgBaZnNdUvj04/avaTnS3k74/Fh3tKorcRt01cix3QlzrXC3CVNDh8jIElDMG9J6iJzlzQ57EIpSZIkSR1hA06SJEmSOsIGnCRJkiR1hA04SZIkSeoIG3CSJEmS1BE24CRJkiSpI2zASZIkSVJHLPuDvJPsC/wJcC8wXVUXLPc2JGk5mbckdZG5S1qbBvoFLsn5SW5Lct2s8cckuTHJtiRntKN/Crikqk4FnrPM8UrSQMxbkrrI3CVpIYN2odwCHNM7IskewJuAY4EjgROTHAkcAtzczvat5QlTkoa2BfOWpO7ZgrlL0jwGasBV1ZXAnbNGPxHYVlU3VdW9wEXA8cAOmoQy8PolabmZtyR1kblL0kJSVYPNmGwA3lVVj2nfPw84pqpe1L7/WeBo4LeANwL/DlzVrz92ktOA0wDWr1//hIsuumjBGHbt2sXndq6NE0zr94Fbv/Hd4446eN1ogllBu3bt4sEPfvCow1hW196y837j5jqeozbM5+kpT3nKNVU1tYLhrIhxyFsAt925c2yO/zh9FscpFhiveIxlbkcdvG7g/xtdzVswHrlrnPLWbKvxmVxsnWu+z+dc9YOlGjbOca53jUNs/Y7RUj5zK1HfWvabmFTVPcALB5jvXOBcgKmpqdq0adOC656enuacq+5ZaoidcPpRuznn2u8+PNtP2jSaYFbQ9PQ0gxz7Ljn5jHffb9xcx3PUJvHztFgrmbcA3nDBpWNz/MfpszhOscB4xWMsc9t+0qaJ/L+xWCuZu8Ypb822Gp/Jxf6PnO/zOVf9YKmGjXOcvz/jEFu/Y7SUz9xK1LeW8nP7LcChPe8PaccNLMnmJOfu3Ln8ZyQkaQ7mLUldZO6SdJ+lNOCuBo5IcliSvYATgMuGWUFVba2q09atm7yugZLGknlLUheZuyTdZ9DHCFwIfAh4dJIdSU6pqt3AS4D3AjcAF1fV9cNs3LNBklbKSuUtSVpJ1rkkLWSgzpxVdWKf8ZcDly9241W1Fdg6NTV16mLXIUlzWam8lWQzsHnjxo2LXYUk9WWdS9JCBr4L5YoGkXwF+PwAsx4I3L7C4YyLtVJWy9kNj6iqh406iHEyRN6C8Tr+xtLfOMVjLP0NGo95aw4TUucytsUb5/iMbcC8NRYNuEEl+VhXbwk8rLVSVsuptWCcjr+x9DdO8RhLf+MWz6Qa5/1sbIs3zvEZ2+B86KMkSZIkdYQNOEmSJEnqiK414M4ddQCraK2U1XJqLRin428s/Y1TPMbS37jFM6nGeT8b2+KNc3zGNqBOXQMnSZIkSWtZ136BkyRJkqQ1qzMNuCTHJLkxybYkZ4w6nqVKsj3JtUk+keRj7biHJHl/ks+0fw9oxyfJ69uyfyrJ40cbfX9Jzk9yW5LresYNXa4kL2jn/0ySF4yiLPPpU86zktzSHtNPJHlWz7Qz23LemOSZPeMn6nOt77YaxzfJoUmuSPLpJNcneWk7fmTfuyR7JPmXJO9q3x+W5CPtNt+RZK92/APb99va6Rt61jHnd2YRseyf5JIk/5rkhiRPHtW+SfJr7TG6LsmFSfZezX2z0vk5yRPS/F/b1i6bIWP5v+1x+lSSv0uy/0Jl7vcd67dfNZh++3UcZI760whjGfg7NSax9a2nrHJsQ/3fGpPYxmLf3aeqxn4A9gA+CxwO7AV8Ejhy1HEtsUzbgQNnjfsD4Iz29RnAa9rXzwLeAwR4EvCRUcc/T7l+Ang8cN1iywU8BLip/XtA+/qAUZdtgHKeBbxsjnmPbD+zDwQOaz/Le0zi59rhu477qhxf4OHA49vX+wH/1n7mRva9A34d+CvgXe37i4ET2tdvBn6hff2LwJvb1ycA72hfz/mdWWQsfwm8qH29F7D/KPYNcDDwOWCfnn1y8mrumz55a9n2BfDRdt60yx47ZCzPAPZsX7+mJ5ahc2i//eow0OdkrP83MUf9aYSxDPydGpPYzmKOesoIYhvq/9aYxDYW+25m6MovcE8EtlXVTVV1L3ARcPyIY1oJx9NUNmj/Prdn/Fur8WFg/yQPH0WAC6mqK4E7Z40etlzPBN5fVXdW1VeB9wPHrHz0g+tTzn6OBy6qqv+oqs8B22g+02vlc71WrcrxraovVdXH29d3AzfQNBZG8r1LcghwHPCW9n2AnwQu6RPLTIyXAE9t5+/3nRk2lnU0lZjzAKrq3qq6i9HlpD2BfZLsCTwI+BKruG9WMj+30763qj5cTc3nrT3rGiiWqnpfVe1u334YOKQnloFz6AKfOS3M/00DGvI7taqGrKesqkX83xqH2MZKVxpwBwM397zfwRjuzCEV8L4k1yQ5rR23vqq+1L7+MrC+fd318g9bri6X9yVt95/ze376n8RyamGrfnzbbnaPAz7C6L53fwz8JvDt9v1Dgbt6Kua9671vm+30ne38yxXLYcBXgL9I06XzLUn2ZQT7pqpuAf4Q+AJNw20ncA2j2zczlmtfHNy+Xq64fp7mV7zFxDLfZ04LG/f/TXPVn8ZJv+/UuJirnjIyA/7fGolZscEY7buuNOAm0Y9V1eOBY4FfSvITvRPbM5gTd4vQSS1X60+BRwKPpamgnTPacLSWJHkw8DfAr1bV13qnrdb3Lsmzgduq6pqV3taA9qTpQvSnVfU44B6abjn3WcV9cwDN2eXDgIOAfRm/ngVjkZ+TvALYDVww6lg0luatP42TcflO9Rireso4/N/qZ47YxmrfdaUBdwtwaM/7Q9pxndWejaWqbgP+jqbLwq0zXSPbv7e1s3e9/MOWq5Plrapbq+pbVfVt4M/5TremiSqnBrZqxzfJA2j+0VxQVX/bjh7F9+6/AM9Jsp2m29VPAq+j6X635xzrvW+b7fR1wB3LFAs0vxzsqKqZs6eX0DToRrFvngZ8rqq+UlXfBP6WZn+Nat/MWK59cQvf6fK46LiSnAw8GziprcAtJpY76L9ftbCx/t/Up/40Tvp9p0ZunnrKqhvy/9bIYxunfQfdacBdDRzR3lVqL5oLui8bcUyLlmTfJPvNvKa5cPs6mjLN3NHrBcCl7evLgJ9L40nAzp6fmLtg2HK9F3hGkgPas9bPaMeNtVnXJf43mmMKTTlPSHNXucOAI2gu9p+oz7XuZ1WOb3u9z3nADVX1Rz2TVv17V1VnVtUhVbWBprz/UFUnAVcAz+sTy0yMz2vnL/p/Z4ZSVV8Gbk7y6HbUU4FPM5qc9AXgSUke1B6zmVhGsm96LMu+aKd9LcmT2vL9XM+6BpLkGJrut8+pqq/PinHgHNrup377VQsb2/9N89Sfxkm/79TIzVNPWe04hv2/NfLYxmXf3afG4E4qgww0d8T6N5o7I71i1PEssSyH09zV6ZPA9TPloem3/0HgM8AHgIe04wO8qS37tcDUqMswT9kupPlp+Zs0Z79PWUy5aK5/2NYOLxx1uQYs59vacnyKJgk9vGf+V7TlvJGeO7NN0ufaYc7PyYofX+DHaLqZfAr4RDs8a9TfO2AT37kL5eE0Fe5twF8DD2zH792+39ZOP7xn+Tm/M4uI47HAx9r9806aOyeOZN8Avwv8K80//rfR3FVx1fZNn7y1bPsCmGrL9lngjUCGjGUbzbVXM5/jNy9UZvp8x/rtV4eBPytj+b+JPvWnEcYz8HdqTGLrW09Z5diG+r81JrGNxb6bGdIGK0mSJEkac13pQilJkiRJa54NOEmSJEnqCBtwkiRJktQRNuAkSZIkqSNswI2ZJJuS7Bh1HKOQ5OQkV406DknjZS3nRUlrW5LtSZ426jg0XmzATZDlagAtZ0MqyYYk1fNA1U4ygUrdNM4nhswrklZSW//aOOo4ZktyVpK3jzqOLrMBJ0mSJK2Qrp/E1vixATci7ZnXM5N8OslXk/xFkr17pp+e5LYkX0rywp7x65K8NclXknw+ySuTfE+SHwTeDDw5ya4kd803/zxx9VvPA5P8YZIvJLk1yZuT7NNO+60kH5lJUEl+Icn1bXmubFd9V7u+Jw+xj34gyfuT3JnkxiT/o2faliRvSvLuJHe323/kAOv8oZ513prk5e34s5Jc3O6ru9v4p9ppbwO+H9jaluE3By2DpMGNQ15MsjHJPybZmeT2JO8YIG7zitRRs3+lausXv9++PjDJu5Lc1X6//19Prjgoyd+0eeRzSX6lZx1nJbkkyduTfA04eZ7tz8z7jjZPfDzJj8ya7bFJPtXmpXfMyounJtnWxndZkoPa8TP1r0+2Oeb5C8yfJK9tc+zXklyb5DEL7Lt9kpzT5tGdSa5qx830vnpBmnrj7Ule0S5zDPBy4PltXJ+c/whpTqN8ivhaHoDtwHXAocBDgH8Cfh/YBOwGfg94AM3T378OHNAu91bgUmA/YAPwb8Ap7bSTgatmbafv/PPENtd6Xkvz5PmHtOvaCry6nfY9NA21s4AjgK8Cj2unbaB5ov2eA+yT+7YL7AvcDLwQ2BN4HHA7cGQ7fQtwB/DEdvoFwEULrH8/4EvA6cDe7fuj22lnAf/e7u89gFcDH551vJ426s+Ng8MkD+OQF4ELgVe0eW1v4McWiNm84uDQ4aGto2zseb8F+P329atpTgI9oB1+HEibH64BfhvYCzgcuAl4ZrvcWcA3gee28+4zz/Zn5n1eu42XAZ8DHtBO3w58FDiozYs3AC9up/0kTd3o8cADgTcAV85Ttr7zA89sy7R/W8YfBB6+wL57EzANHNzmuP/crndDu+0/B/YBfgT4D+AHe8r89lEf+y4P/gI3Wm+sqpur6k7gVcCJ7fhvAr9XVd+duEsIAAAgAElEQVSsqsuBXcCjk+wBnACcWVV3V9V24BzgZ+da+bDz95MkwGnAr1XVnVV1N/B/2nVTVd8Gfg74FZpG3h9U1b8Ms405PBvYXlV/UVW72/X9DfDTPfP8XVV9tKp20zTgHjvAOr9cVedU1b+3++QjPdOvqqrLq+pbwNtoEo6k1TXqvPhN4BHAQW2eWOj6OfOKNLm+CTwceESbe/5fNS2QHwUeVlW/V1X3VtVNNI2VE3qW/VBVvbOqvl1V31hgO9dU1SVV9U3gj2hOBj2pZ/rrq+qLbV7cynfqOycB51fVx6vqP4AzaXocbOiznfnm/ybNCagfAFJVN1TVl/oF3P4S+fPAS6vqlqr6VlX9c7veGb9bVd+oqk8Cn8T8t2xswI3WzT2vP09zdgXgjrZRMuPrwIOBA2nOznx+1nIH91n/sPP38zDgQcA1bTeCu4C/b8cD0FaCrqA56/KmIdc/l0cAR89sr93mScB/6pnnyz2vZ/bRfA4FPjvP9Nnr2zv2W5dW26jz4m/SnH3+aNvl8ecXiNe8Ik2u/wtsA96X5KYkZ7TjHwEcNKuO8nJgfc+yNzO4++ZtT4rv4Du5D/rXdw6iJ5dV1S6a3kn98l/f+avqH4A30tThbktybpLvnSfmA2kamsPkv4XqaRqQDbjROrTn9fcDX1xg/tv5ztnh3uVuaV/XkPP3M9d6vgH8UFXt3w7rquq+L2KS44AnAx+kSXj91jWom4F/7Nne/lX14Kr6hUWub2adhy9y2cWWQ9JwRpoXq+rLVXVqVR0E/C/gTzL/XdzMK1K3fZ3mJPWM+04Ut7+on15VhwPPAX49yVNpvvefm1VH2a+qntWznmG+3/flvfaXrUNYOPfRznNfLkuyL/BQ+tfz5p2/ql5fVU8AjgQeBfzGPNu+naaL+IL3H5iDuW+JbMCN1i8lOSTJQ2iuuZj3Yvm2C87FwKuS7JfkEcCvAzO3Yr0VOCTJXgPO38/s9XybpmvAa5N8H0CSg5M8s319IPAW4EXAC4DNSWaS2FeAbzN8BeddwKOS/GySB7TDj6a5KcFivQt4eJJfTXNTlv2SHD3gsrey+EqapMGNNC8m+ekkh7TLfpWmovHteUIwr0jd9gngZ5Ls0d5g47/OTEjy7DQ3NgqwE/gWTT74KHB3mpu47dMu+5gkP7rIGJ6Q5KfaX+d/leZ6sQ8PsNyFwAuTPDbJA2kub/lI2ysK7p9j+s7f1rGOTvIA4B6axlnf3NfWDc8H/ijNDV32SPLkdr0LuRXYkHluqqf5ueNG66+A99Fc+PpZmov1F/LLNF+sm4Cr2nWc3077B+B64MtJbh9g/n7mWs9v0XQj+HCaOyp9AHh0O+1c4NL2Oo87gFOAtyR5aFV9neY6ln9quxk8iQG019k9g6Y/+RdpfoZ/Dc3FsYvSrvPpwOZ2fZ8BnjLg4q8GXtmW4WWLjUHSgkadF38U+EiSXTTX9L60vb5lTuYVqfNeSvP9nblU4509046gqe/sAj4E/ElVXdGeCHo2zbVon6P5NeotwLpFxnAp8Hyak0Y/C/xUez3cvKrqA8D/R3OPgC/R/BrWex3eWcBftjnmfyww//fSnKz/Kk03yzv47h5Vc3kZcC1wNXAnTT1tkLbFX7d/70jy8QHm1yxprsXUakuyHXhR+2WSpDXPvChprUlyFs2dIv/nqGNRd/gLnCRJkiR1hA24NSrNg7h3zTG8ucvbTfLjfda/aznWL2ntMa9IWook7+mTQ14+6tgWkuZuvHPFftKoY1vL7EIpSZIkSR3hL3CSJEmS1BE24CRJkiSpI/YcdQAABx54YG3YsGGgee+55x723XfflQ1oBXU9fuh+GboeP6x+Ga655prbq+phq7bBMZZkM7B5v/32O/VRj3rUQMtMwmduEJZzsnS9nGshbyV5LnAczS3gz6uq9y20zKB1rq4f/0FYxskwSWUcOG9V1ciHJzzhCTWoK664YuB5x1HX46/qfhm6Hn/V6pcB+FiNQa4Yp2Et5a1BWc7J0vVydjVv0TyT8DbgulnjjwFupHkm6xmzph1A04BbttzV9eM/CMs4GSapjIPmLbtQSpIkjY8tNI21+yTZA3gTcCxwJHBikiN7ZnllO13SGmADTpIkaUxU1ZXAnbNGPxHYVlU3VdW9wEXA8Wm8BnhPVX18tWOVNBojvQZu5lqSjRs3jjIMSRqYeUvSCBwM3NzzfgdwNPDLwNOAdUk2VtWcz1RNchpwGsD69euZnp5ecIO7du0aaL4us4yTYS2UcbaRNuCqaiuwdWpq6tRBl7n2lp2cfMa7lzWO7Wcft6zrkzS5zFuSxkVVvR54/QDznQucCzA1NVWbNm1acN1vuOBSzrnqnqWG+F3GLW9NT08zyL7oMss4mexCKUmSNN5uAQ7teX9IO07SGmQDTpIkabxdDRyR5LAkewEnAJcNs4Ikm5Ocu3PnzhUJUNLqsQEnSZI0JpJcCHwIeHSSHUlOqardwEuA9wI3ABdX1fXDrLeqtlbVaevWrVv+oCWtqrF4kLckdYU3MZG0kqrqxD7jLwcuX+VwJI2hkf4C58/5krrGs9iSusg6lzQ5RtqAsyIkSZK08qxzSZPDa+AkSZIkqSNswEmSJE04u1BKk8MGnCRJ0oSzC6U0OWzASZIkSVJH2ICTJEmSpI6wASdJQ/A6EkldZO6SJocNOEkagteRSOoic5c0OXyQtyRJkiR1hA/yliRJkqSOsAulJEnShLPXkzQ5bMBJkiRNOHs9SZPDBpwkSZIkdYQNOEmSJEnqCBtwkiRJktQRNuAkCUjy3CR/nuQdSZ4x6ngkaTl5ExNpctiAkzSxkpyf5LYk180af0ySG5NsS3IGQFW9s6pOBV4MPH8U8UrSSvEmJtLksAEnaZJtAY7pHZFkD+BNwLHAkcCJSY7smeWV7XRJkqSxsyINOLsiSRoHVXUlcOes0U8EtlXVTVV1L3ARcHwarwHeU1UfX+1YJUmSBrHnoDMmOR94NnBbVT2mZ/wxwOuAPYC3VNXZVfVO4J1JDgD+EHjf8oYtSYt2MHBzz/sdwNHALwNPA9Yl2VhVb569YJLTgNMA1q9fz/T09EAbXL8PnH7U7iWG/d0G3fZq2rVr11jGtdwspyRplAZuwNF0RXoj8NaZET1dkZ5OUwm6OsllVfXpdha7IknqhKp6PfD6BeY5FzgXYGpqqjZt2jTQut9wwaWcc+0w6XZh208abNuraXp6mkH3SZdZTknSKA3chdKuSJImxC3AoT3vD2nHDcQ7uUmSpFFa6ilhuyINaRK6pHS9DF2PHyajDCN0NXBEksNoGm4nAD8z6MJVtRXYOjU1deoKxSdJyy7JZmDzxo0bRx2KpCVa3j49Lbsi9TcJXVK6Xoauxw+TUYbVkORCYBNwYJIdwO9U1XlJXgK8l+ba3fOr6voh1mklSFLnePJJmhxLbQktuSsSVoQkrZCqOrHP+MuByxe5TitBkiRpZJb6GIH7uiIl2YumK9Jlgy7sQyUldY3XwEmSpFEauAHXdkX6EPDoJDuSnFJVu4GZrkg3ABcP0xVJkrrGE0+SJGmUBu5CuRJdkexCKUmSJEmDW2oXyiXxTLakrrELpSRJGqWRNuAkqWs88SRJkkZppA04z2RLkiRJ0uDsQilJkiRJHWEXSkkagj0HJHWRuUuaHHahlKQh2HNAUheZu6TJYRdKSZIkSeoIu1BKkiRJUkfYgJOkIdj1W5IkjZLXwEnSEOz6LUmSRslr4CRJkiSpI+xCKUmSJEkdYQNOkiRJkjrCa+AkaQjmLUmSNEpeAydJQzBvSZKkUbILpSRJkiR1hA04SZIkSeoIG3CSJEkdlOTwJOcluWTUsUhaPTbgJEmSxkSS85PcluS6WeOPSXJjkm1JzgCoqpuq6pTRRCppVLwLpSRJ0vjYAhzTOyLJHsCbgGOBI4ETkxy5+qFJGgfehVKSJGlMVNWVwJ2zRj8R2Nb+4nYvcBFw/KoHJ2ks7DnqACSpS5JsBjZv3Lhx1KFIWjsOBm7ueb8DODrJQ4FXAY9LcmZVvXquhZOcBpwGsH79eqanpxfc4Pp94PSjdi817u8yyHZX065du8YupuVmGSeTDThJGkJVbQW2Tk1NnTrqWCStbVV1B/DiAeY7FzgXYGpqqjZt2rTgut9wwaWcc+3yVhO3n7TwdlfT9PQ0g+yLLrOMk8mbmEiSJI23W4BDe94f0o4bmPcdkCaHDThJkqTxdjVwRJLDkuwFnABcNswKvO+ANDlswEmSJI2JJBcCHwIenWRHklOqajfwEuC9wA3AxVV1/SjjlDQ6XgMnSZI0JqrqxD7jLwcuX+x6vQGTNDn8BU6SJGnC2YVSmhw+yFuSJEmSOsIHeUuSJE04T5pLk8MulJIEJDk8yXlJLhl1LJK03DxpLk0OG3CSJlaS85PcluS6WeOPSXJjkm1JzgCoqpuq6pTRRCpJkjQYG3CSJtkW4JjeEUn2AN4EHAscCZyY5MjVD02SJGl4PkZA0sSqqiuTbJg1+onAtqq6CSDJRcDxwKcXWl+S04DTANavX8/09PRAcazfB04/avfAcQ9i0G2vpl27do1lXMvNcqqLfIyANDlswElaaw4Gbu55vwM4OslDgVcBj0tyZlW9evaCVXUucC7A1NRUbdq0aaANvuGCSznn2uVNt9tPGmzbq2l6eppB90mXWU51UVVtBbZOTU2dOupYJC2NDThJAqrqDuDFC803LmexN5zx7mVf5/azj1v2dUqSpOXlNXCS1ppbgEN73h/SjhuId3KTJEmjZANO0lpzNXBEksOS7AWcAFw24pgkaUX5HDhpctiAkzSxklwIfAh4dJIdSU6pqt3AS4D3AjcAF1fV9UOs00qQpM6x94A0OZb9GrgkhwOvANZV1fOWe/2SNKiqOrHP+MuByxe5Tm8EIEmSRmagX+B8GK4kNfwFTpIkjdKgXSi34MNwJcluSJIkaaQG6kK53A/Dbedfkw/EnYQHo3a9DF2PHyajDJIkSRreUq6BW/TDcGHtPhB3Eh6M2vUydD1+mIwydNW4PAdOkoZh7pImx7LfhbKq7qiqF1fVI/s13iSpq+xCKamLzF3S5FhKA25JD8MFbwYgSZIkScNYSgNuyQ/D9WyQpK7xxJMkSRqlQR8jsOwPw23Xa0VIUqd44kmSJI3SoHehXPaH4bbL+0BcSZIkSRrQst/ERJIkSZK0MkbagLMLpSRJ0sqzziVNjuV9oNqQ7EIpqWsm+VlKG85495KWP/2o3Zw8ax3bzz5uSeuUtDysc0mTwy6UkjQEb2IiSZJGyS6UkiRJktQRI23AeSZbkiRJkgZnF0pJkiRJ6ggbcJI0BLt+S5KkUfIaOEkagl2/JUnSKHkNnCRJkiR1hF0oJUmSJKkjbMBJkiRNOC9bkSaHDThJkqQJ52Ur0uTwJiaSJEmS1BF7jnLjVbUV2Do1NXXqKOOQpEEl2Qxs3rhx46hDkZbNhjPefb9xpx+1m5PnGD+o7Wcft5SQJEl92IVSkoZgNyRJkjRKNuAkSZIkqSNswEmSJElSR9iAkyRJkqSO8C6UkiRJktQRI23AeTMASZIkSRqcXSglSZIkqSNswEmSJElSR4z0Qd6SNA6S7Av8CXAvMF1VF4w4JElakLlLWpv8BU7SREpyfpLbklw3a/wxSW5Msi3JGe3onwIuqapTgeeserCS1DJ3SVqIDThJk2oLcEzviCR7AG8CjgWOBE5MciRwCHBzO9u3VjFGSZptC+YuSfOwASdpIlXVlcCds0Y/EdhWVTdV1b3ARcDxwA6aihCYFyWNkLlL0kJGeg1cks3A5o0bN44yDGnsbTjj3d/1/vSjdnPyrHHD2n72cUtavqMO5jtnq6Gp/BwNvB54Y5LjgK39Fk5yGnAawPr165menh5oo+v3aY7ZpJurnIPuoy7ZtWvXxJVrrs/nUj+3b7jg0qWENKejDl6zjx1a9dy1EnlrJT4TS7F+n/GLaVgLfSfGJV9de8vyP/N5puzLWcaVjHM5jbQBV1Vbga1TU1OnjjIOSWtbVd0DvHCA+c4FzgWYmpqqTZs2DbT+N1xwKedcO/n3jDr9qN33K+f2kzaNJpgVND09zaDHvivmOiE01/EctUn8PC3FSuautZC3xvEzPqyFvhPjkq+WetJ5LjNlX84yrmScy8mf2yWtJbcAh/a8P6QdN7Akm5Ocu3Pn8p+lk6Q+lpy7JE0OG3CS1pKrgSOSHJZkL+AE4LJhVlBVW6vqtHXr1mxXLkmrb8m5y5NP0uSwASdpIiW5EPgQ8OgkO5KcUlW7gZcA7wVuAC6uquuHXK+VIEkrZqVylyefpMnR7Y6/ktRHVZ3YZ/zlwOVLWK/X7kpaMSuVuyRNjlTVqGMgyVeAzw84+4HA7SsYzkrrevzQ/TJ0PX5Y/TI8oqoetorbG3trLG8NynJOlq6X07zVY+bO38Dzgc8MsEjXj/8gLONkmKQyDpS3xqIBN4wkH6uqqVHHsVhdjx+6X4auxw+TUYa1ZK0cL8s5WdZKOTW3tXD8LeNkWAtlnM1r4CRJkiSpI2zASZIkSVJHdLEBd+6oA1iirscP3S9D1+OHySjDWrJWjpflnCxrpZya21o4/pZxMqyFMn6Xzl0DJ0mSJElrVRd/gZMkSZKkNakzDbgkxyS5Mcm2JGeMOp5BJDk/yW1JrusZ95Ak70/ymfbvAaOMcT5JDk1yRZJPJ7k+yUvb8V0qw95JPprkk20Zfrcdf1iSj7Sfp3ck2WvUsc4nyR5J/iXJu9r3nYp/repi3ppPku1Jrk3yiSQfa8fNmQ/SeH1b9k8lefxoo+9vmFw9X7mSvKCd/zNJXjCKssynTznPSnJLe0w/keRZPdPObMt5Y5Jn9oyfqM+17m8Sj/Ek1GkGNel1hiT7J7kkyb8muSHJkyfxOM6nEw24JHsAbwKOBY4ETkxy5GijGsgW4JhZ484APlhVRwAfbN+Pq93A6VV1JPAk4Jfa/d6lMvwH8JNV9SPAY4FjkjwJeA3w2qraCHwVOGWEMQ7ipcANPe+7Fv+a0+G8tZCnVNVje27Z3C8fHAsc0Q6nAX+66pEObguD5+o5y5XkIcDvAEcDTwR+ZwwrEFu4fzmhySWPbYfLAdrP6gnAD7XL/ElbKZzUz7VaE3yMJ6FOM6hJrzO8Dvj7qvoB4EdoyjqJx7GvTjTgaP4Zbquqm6rqXuAi4PgRx7SgqroSuHPW6OOBv2xf/yXw3FUNaghV9aWq+nj7+m6aL8jBdKsMVVW72rcPaIcCfhK4pB0/1mVIcghwHPCW9n3oUPxrWCfz1iL0ywfHA29tv4MfBvZP8vBRBLiQIXN1v3I9E3h/Vd1ZVV8F3s/cjaWR6VPOfo4HLqqq/6iqzwHbaD7Ta+VzvZZN5DGehDrNICa9zpBkHfATwHkAVXVvVd3FhB3HhXSlAXcwcHPP+x3tuC5aX1Vfal9/GVg/ymAGlWQD8DjgI3SsDO1Z408At9FUqj4L3FVVu9tZxv3z9MfAbwLfbt8/lG7Fv1ZNUt6aUcD7klyT5LR2XL980PXyD1uuLpf3JW130PN7fjWcxHJqMBN/jLtcpxnApNcZDgO+AvxF2030LUn2ZfKO47y60oCbSNXcAnTsbwOa5MHA3wC/WlVf653WhTJU1beq6rHAITRnFn9gxCENLMmzgduq6ppRxyIBP1ZVj6fpWvVLSX6id2IX8sFiTGq5Wn8KPJKmi/mXgHNGG460srpep5nPGqkz7Ak8HvjTqnoccA+zukt2/TgOoisNuFuAQ3veH9KO66JbZ7oRtX9vG3E880ryAJpEd0FV/W07ulNlmNH+xH4F8GSabk97tpPG+fP0X4DnJNlO043lJ2n6fncl/rVskvIWAFV1S/v3NuDvaE6I9MsHXS//sOXqZHmr6tb2JNe3gT+nOaYwYeXUUCb2GE9SnaaPtVBn2AHsqKqPtO8voWnQTdJxXFBXGnBXA0e0d9HZi+bC6stGHNNiXQbM3J3sBcClI4xlXm2/6fOAG6rqj3omdakMD0uyf/t6H+DpNP3erwCe1842tmWoqjOr6pCq2kDzuf+HqjqJjsS/xk1S3iLJvkn2m3kNPAO4jv754DLg59J4ErCzp3tLFwxbrvcCz0hyQNsN8RntuLE267rE/0ZzTKEp5wlJHpjkMJqbtnyUCftca04TeYwnoU6zkLVQZ6iqLwM3J3l0O+qpwKeZoOM4kKrqxAA8C/g3muuXXjHqeAaM+UKaLinfpDljcApNX+QPAp8BPgA8ZNRxzhP/j9H8BP0p4BPt8KyOleGHgX9py3Ad8Nvt+MNpKiPbgL8GHjjqWAcoyybgXV2Nfy0OXcxb85TlcOCT7XD9THn65QMgNHey+yxwLTA16jLMU7aBc/V85QJ+vv1ObgNeOOpyDVjOt7Xl+BRNBejhPfO/oi3njcCxPeMn5nPt0PezMnHHeBLqNEOWd2LrDDRdvj/WHst3AgdM6nHsN6TdEZIkSZKkMdeVLpSSJEmStObZgJMkSZKkjrABJ0mSJEkdYQNOkiRJkjrCBtwiJZlO8qJlXN+GJNXznI41LcmWJL8/6jikSWPuGq1BcluSTUl2rFZM0jgyV/WXZHuSp7Wvz0ry9iWub8nr0OqyATcB/GffXcv9D0rqkuXKXcudA9tK3sblWt8kMWdpLbKetXpW4wT+JOQxG3CSJK2CJHuMOgZJUvfZgJtHkt9Kcsmsca9L8vpZ4x6e5FNJfmOB9U0neXWSjyb5WpJLkzxk1mwnJflCktuTvKJn2Qcm+eMkX2yHP27H7Qu8Bzgoya52OKjf/AvEd0CSdyX5SpKvtq8Paac9P8nHZs3/a0kua18fl+Rf2nLdnOSs+bbVs44fS/LPSe5qlzu5Z/IBSd6d5O4kH0nyyJ7lXtfO/7Uk1yT58Z5pZyW5OMlb22WvTzLVM/3xbax3J/nrJO/oPduT5NlJPtHG9M9JfniAchya5G/bfXdHkje2409OclWSP2z36eeSHNtOexXw48Ab2+P2xkH2mbSQtZS75lnP9yQ5I8ln2+/kxTMxt/nsc0m+t31/bJIvJ3lYkivbVX+yXdfz59n2yUmumjXuvl/v0pxJ/tMklye5B3jKfPt5nu0clORv2vzyuSS/0jNt3nw3zzrNWRq5tZSr2m38Y5L/3r7+L22+OK59/9Qkn2hfPzLJP7TfzduTXJBk/wV253zbnek+elob65eSvGzWbHstIo9sT3Jmkk+3+eIvkuzdM/3UJNuS3JnksiQHteOT5LVJbmuP07VJHpPkNOAk4Dfb/bx1ge2v3Tw26ieJj/MAPAL4OrBf+34P4EvAk4Bp4EXAYcC/AacNsL5p4BbgMcC+wN8Ab2+nbQAK+HNgH+BHgP8AfrCd/nvAh4HvAx4G/DPwv9tpm4Ads7bVd/554nso8N+BBwH7AX8NvLOd9iDgbuCInvmvBk7oieEompMCPwzcCjx3gP17N3Ai8IB2+49tp20B7gCeCOwJXABc1LPs/2zn3xM4HfgysHc77Szg34Fntcfs1cCH22l7AZ8HXtpu86eAe4Hfb6c/DrgNOLpd9gXAduCB85RjD+CTwGvb47o38GPttJOBbwKntvP9AvBFID2fiReN+rPuMFkDay93zbWel7brOQR4IPBnwIU90y9o88xD2+/ks3umFbBxgP1yMnDVrHH3LduufyfwX2hy497tuN8ftDztctcAv02Tvw4HbgKe2U4/iz75bp71m7McxmJYg7nq94A3tK9fDnwWeE3PtNe1rzcCT6fJXQ8DrgT+uGc924Gnta/PminjPNudKfuF7X45CvjKrHUMlUd64rgOOBR4CPBPfKc+9ZPA7cDj23K8AbiynfZMmry2PxDgB4GHt9O2sECO7PmsrNk8NvIAxn0ArgJ+rn39dOCzPQf/j9oP74kDrmsaOLvn/ZE0jYc9er5ch/RM/yjfaSB9FnhWz7RnAtvb15u4f2LpO/8QZX8s8NWe928Hfrt9fQRN4+tBfZb9Y+C1C6z/TODv+kzbAryl5/2zgH+dZ11fBX6kfX0W8IFZ+/kb7eufoEnumXWMZxLOnzIrAQM3Av91nm0/mSYR7jnHtJOBbT3vH9Qe5//U85nodBJxGM9hLeWuPuu5AXhqz/uH0/xD37N9vz/wBeBa4M9mLbucDbi3zpq+heEacEcDX5g1/UzgL9rXffPdPOs3ZzmMzbDGctVTgU+1r/+epoE6c4L5H4Gf6rPcc4F/6Xm/ncU14H6gZ9wfAOf1rGOoPNITx4t73j+r5/idB/xBz7QH0+TgDTSNu3+jaah/z6x1bmGwBtyazmN2oVzYX9H8QgTwM+37GSfRNAYumb3QPG7uef15ml+BDuwZ9+We11+n+cADHNTO37vsQfNsZ9j5SfKgJH+W5PNJvkZzxmf/fOe6jdn74p1V9fV22aOTXNH+jL0TePGscs3lUJoE2E+/fUGSlyW5IcnOJHcB65h/P+6d5s5TBwG3VPsNbvUek0cAp6fpPnlXu+5DmX/fHQp8vqp2L1SOmf3VWxZphayZ3NXHI4C/6/ke3wB8C/7/9u4/2rKyvu/4+1MQUYQxBdeYAjo0Q2hHaTXeYFJX6ljpWoNkwFqrsDQVS5lFDcZWutKJP1qbxhSbmPqLlE5F0ciPILXKCAbU5JbVtdAAxgpI1AkSZ0YUf4SpY2LMmG//2Hvkerk/9rn33LvPvvf9WmvW3LPvPs/+nHPufe7zPft59mEjQFU9TDPL4OnAW5fQfld7F99lQU+lmbo1s096He3jaM3X383HPkuTZD31VbcDP5lkI82b5O8HTk5yAs2Mo9sAkmxMcl2S/e147AMsPqbqYvZzMzPvqP3IYm3+yPNTVQdpZladWFW/D7wLuBx4KMmutFPaR7Cu+zELuMV9ENiaZi3YP+FHO5Y30ZwevibdF6efPOPrp9C8G/HNDvf7Ks0f8pn3/Wr7dT169wX3n8+lwGnAs6vqOJqzVYnl3uAAABZ2SURBVNCc3gb4OPCkJM+g6WxnPhfXADcCJ1fVBuCKGfebz17gJxbZ51HSrHf7ZeAlwI9V1RNppiktdjxopmacmGTmvjNfk73Am6vqiTP+Pb6qrl2gzb3AUzp2dLPN9dpJ47Ce+q652tkLnDXrd/noqtoP0PZj/4JmStE75rh/F9+leWeXts0nd8w2ir3Al2c9jmOr6gXLbNM+S5Ni3fRVbSFxF80U73uq6vs0Uy9fS3Pm6nDOX2+PeXo7Hns53cY4i5n93CzWty6nzR95ftq1hMfTFORU1Tuq6lk0Z/t+Eji8vrFrH7Ou+zELuEVU1TdoTrW+l+aP6H0zvv1XwD+jmXv7/iRdns+XJ9mS5PE0851vqKofdLjftcAb0iyyP4FmPcThz+z4OnB8kg0d95/PscBfAA+nWfT7H2Z+s6r+iqaj/Q2auc4fn3Xfb1fV95KcQfMu2mKuBs5M8pIkRyY5vh1ULeZY4BDtqfMk/x7o+s7N7TTvwl/SHvNcmne9DvsfwMXtGcUkOSbNBVqOXaDNP6QpDC9r9z86yXM65vk6zZoWaazWWd81VztXAG9O8lSAtr1z26+Pbtt8HfBKmjd1XjWrvS6/l/8XeFqSZ7RtvqnDfUb1h8B30lzs4XFJjmgX+//0Mtu0z9JEWGd9FTRTJS9p/4fmsc+8Dc045yBwIMmJPFLcLNcb29lWT6Pp+353DG3+YpKT2nHj62e0eS3wyrZ/fCxNUfrpqnogyU+346zH0LwR9j3gr9v7de1j1nU/ZgHXzTXAmfzou0IAtO+evIhmOst7OnQuv0Mzv/drNAsuf2nBvR/xa8CdwOdo1mx8pt1GVf0xzS/K/e0Um7+10P4LeBvNwt5v0izM/b059jn8XHxw1mnrVwG/muQ7NJ3Y9Ys9oKr6Cs186UuBbwOfpVlUvJhb2mxfpDk9/z06TlOa8XpdCDxM867WR2kWMlNVd9Isen0Xzbq6PTRzqRdq8wfAdppFx18B9gHzXrlulrcDL05zlaSlngWQ5rMu+q552nk7zayAW9t+6VM068mgWaC/t6r+W1X9JU0/8GtJTm2//ybgfW1bL1nguF+kGSB+AvgSzVqesWr7l5+nmW71ZZr++d0008aX06Z9libJuuirWv+bpkC7bZ7bAP+R5uIfB4CbgA91fAxdjr0H+CTwm1V16xjavAa4lebiSn/CI8/ZJ4A30lxI5kGaGVfntfc5juYN8z+jGcd9i+bkADRr57a0z/OH5zvoeu/HDl+NRasgyTTNQtN3951Fj0jyaeCKqnpv31mkSWTfJWkI7KvmlmQTzRtAj1lgzdhS2n2A5mIgnxhXm+rGM3Bad5I8N8mT2ymUr6D52IO5zjZKkiRJE8UCbszyyIc8zv73c4vfe+Uled08+T62Qsd72TzHu3cljtfRaTRrVx6mmb754qp6cKE7JHnKAq/tU1YjtLSS7LtW97gr/Xjss7RW2VfNe9yxj7f67kf6Pv4kcwqlJEmSJA2EZ+AkSZIkaSAs4CRJkiRpIJby4Xdjd8IJJ9SmTZt6O/53v/tdjjnmmN6O35U5x28oWfvOedddd32zqp7UW4AJNEq/1ffrtxxm74fZl89+a259jrkm5Weji6FkNed49Z2za781EQXcpk2buPPOO3s7/vT0NFu3bu3t+F2Zc/yGkrXvnEn+tLeDT6hR+q2+X7/lMHs/zL589ltz63PMNSk/G10MJas5x6vvnF37rbFPoUzyd5NckeSGJP9q3O1LkiTJMZe0XnUq4JK8J8lDSe6ZtX1bki8k2ZNkJ0BV3VdVFwMvAZ4z/siSJElrk2MuSYvpegbuKmDbzA1JjgAuB84CtgDnJ9nSfu8c4Cbg5rEllaQJkGR7kl0HDhzoO4qktekqHHNJWkCnNXBVdVuSTbM2nwHsqar7AZJcB5wLfL6qbgRuTHITcM1cbSbZAewA2LhxI9PT00vJPxYHDx7s9fhdmXP8hpJ1KDnXg6raDeyempq6qOt97t5/gAt23jTWHA9cdvZY25M0GdbymGtIf8uGktWc4zWUnMu5iMmJwN4Zt/cBz06yFXgR8FgWeDeoqnYBuwCmpqaqzwWDfS9Y7Mqc4zeUrEPJKUlaEWtizDWkv2VDyWrO8RpKzrFfhbKqpoHpcbcrSZKkRzjmktan5VyFcj9w8ozbJ7XbJEmSND6OuST90HIKuDuAU5OckuQo4DzgxvHEkqTJ5EVMJPXAMZekH+r6MQLXArcDpyXZl+TCqjoEXALcAtwHXF9V965cVEnqX1XtrqodGzZs6DuKpDXIMZekxXS9CuX582y/mWVctjbJdmD75s2bl9qEJEnSmuGYS9JiljOFctl8J1uSJGnlOeaS1o5eCzhJkiRJUncWcJIkSZI0EBZwkiRJkjQQvRZwXo5bkiRp5TnmktYOL2IiSSNwECRpiBxzSWuHUyglaQQOgiRJUp8s4CRJkiRpICzgJEmSJGkgLOAkSZIkaSAs4CRJkiRpIPwYAUmSpDXOMZe0dvgxApIkSWucYy5p7XAKpSRJkiQNxJF9B5CkSZDkhcDZwHHAlVV1a8+RJEmSHsUzcJLWrCTvSfJQkntmbd+W5AtJ9iTZCVBVH66qi4CLgZf2kVeSJGkxFnCS1rKrgG0zNyQ5ArgcOAvYApyfZMuMXd7Qfl+SJGniOIVS0ppVVbcl2TRr8xnAnqq6HyDJdcC5Se4DLgM+VlWfmau9JDuAHQAbN25kenq6U46Nj4NLTz+0lIcwr67HXq6DBw+u2rHGzez9GHJ2SRqCXgu4JNuB7Zs3b+4zhqT15URg74zb+4BnA68GzgQ2JNlcVVfMvmNV7QJ2AUxNTdXWrVs7HfCdV3+Et9493u72gZd1O/ZyTU9P0/VxThqz92PI2dcyx1zS2uHHCEgSUFXvqKpnVdXFcxVvh/lZSpKGyDGXtHa4Bk7SerMfOHnG7ZPabZ04CJIkSX2ygJO03twBnJrklCRHAecBN/acSZIkqRMLOElrVpJrgduB05LsS3JhVR0CLgFuAe4Drq+qe0do0ymUkiSpN16FUtKaVVXnz7P9ZuDmJba5G9g9NTV10XKySZIkLYVn4CRpBJ6BkyRJfbKAk6QReBETSZLUJws4SZIkSRqIXgs4pyJJGhr7LUlDZN8lrR1+kLckjcB+S9IQ2XdJa4dTKCVJkiRpICzgJGkETkOSJEl9soCTpBE4DUmSJPXJAk6SJEmSBsICTpIkSZIGwgJOkiRJkgbCAk6SRuBFTCRJUp8s4CRpBF7ERJIk9anXAs53siVJklaeYy5p7ei1gPOdbEmSpJXnmEtaO5xCKUmSJEkDcWTfAbT23L3/ABfsvGmsbT5w2dljbU9aqiTbge2bN2/uO4okaZ1zzLU+eQZOkkbgNCRJktQnCzhJkiRJGggLOEmSJEkaCAs4SZIkSRoICzhJkiRJGggLOEmSJEkaCAs4SRpBku1Jdh04cKDvKJIkaR2ygJOkEfgxApIkqU8WcJIkSZI0EBZwkiRJkjQQvRZwriWRJElaeY65pLWj1wLOtSSSJEkrzzGXtHY4hVKSJEmSBsICTpIkSZIGwgJOkiRJkgbCAk6SJEmSBsICTpKAJH87yZVJbug7iyRJ0nws4CStWUnek+ShJPfM2r4tyReS7EmyE6Cq7q+qC/tJKkmS1I0FnKS17Cpg28wNSY4ALgfOArYA5yfZsvrRJEmSRndk3wEkaaVU1W1JNs3afAawp6ruB0hyHXAu8PnF2kuyA9gBsHHjRqanpzvl2Pg4uPT0Q51zd9H12Mt18ODBVTvWuJm9H0POLklDYAEnab05Edg74/Y+4NlJjgfeDDwzya9U1X+efceq2gXsApiamqqtW7d2OuA7r/4Ib717vN3tAy/rduzlmp6epuvjnDRm78eQs0vSEFjASRJQVd8CLl5svyTbge2bN29e+VCSJEmzuAZO0nqzHzh5xu2T2m2dVNXuqtqxYcOGsQeTJElajAWcpPXmDuDUJKckOQo4D7ix50ySJEmdWMBJWrOSXAvcDpyWZF+SC6vqEHAJcAtwH3B9Vd07Qpvbk+w6cODAyoSWJElagGvgJK1ZVXX+PNtvBm5eYpu7gd1TU1MXLSebJEnSUngGTpJG4Bk4SZLUJws4SRqBFzGRJEl9soCTJEmSpIHodQ2cn6ckaWgmpd/atPOmsbf5wGVnj71NSZNhUvouScvX6xk4pyJJGhr7LUlDZN8lrR1OoZQkSZKkgbCAk6QReBVKSZLUJws4SRqB05AkSVKfLOAkSZIkaSAs4CRJkiRpICzgJGkEroGTJEl9soCTpBG4Bk6SJPXJAk6SJEmSBsICTpIkSZIGwgJOkiRJkgbCAk6SJEmSBsICTpJG4FUoJUlSnyzgJGkEXoVSkiT1yQJOkiRJkgbCAk6SJEmSBsICTpIkSZIGwgJOkiRJkgbCAk6SJEmSBuLIvgNI0pAk2Q5s37x5c99Rxm7Tzpsete3S0w9xwRzb+/TAZWevSLtzPf7lWqmskqT1yzNwkjQCP0ZAkiT1yQJOkiRJkgbCAk6SJEmSBsICTpIkSZIGwgJOkiRJkgbCAk6SJEmSBsICTpIkSZIGwgJOkiRJkgZiRT7IO8kLgbOB44Arq+rWlTiOJI1DkmOA3wa+D0xX1dU9R5KkRTnektanzmfgkrwnyUNJ7pm1fVuSLyTZk2QnQFV9uKouAi4GXjreyJK0uFH6LOBFwA1tv3XOqoeVpJbjLUmLGWUK5VXAtpkbkhwBXA6cBWwBzk+yZcYub2i/L0mr7Sq691knAXvb3X6wihklabarcLwlaQGdC7iqug349qzNZwB7qur+qvo+cB1wbhpvAT5WVZ8ZX1xJ6maUPgvYR1PEgWuDJfXI8ZakxaSquu+cbAI+WlVPb2+/GNhWVf+yvf0LwLOBLwKvAO4APltVV8zR1g5gB8DGjRufdd111y3rgSzHwYMHecITntDb8bsaSs6Hvn2Ar//FeNs8/cQN422wNZTntO+cz3ve8+6qqqneAizRCH3WvwPeBXwP+D/zrYFbar+1Er8Tq2Xj4zB7DxbKvlL94bgc7q/u3n9g7G2P8tiH2m/BeMdb7f4TMebq+2/ZKIaSdShjrqE8n33n7NpvrchFTKrqHcA7FtlnF7ALYGpqqrZu3boSUTqZnp6mz+N3NZSc77z6I7z17vH+aD3wsq1jbe+woTynQ8k5VFX1XeCVHfZbUr+1Er8Tq+XS0w+ZvQcLZV+p/nBcDvdXF+y8aextT/pjX21dxlvtfhMx5hrS37KhZB3KmGsoz+dQci53qtB+4OQZt09qt0nSJFp2n5Vke5JdBw6M/+yCJM3D8ZakH1puAXcHcGqSU5IcBZwH3Lj8WJK0IpbdZ1XV7qrasWHDZE9jk7SmON6S9EOjfIzAtcDtwGlJ9iW5sKoOAZcAtwD3AddX1b0rE1WSulupPsszcJJWkuMtSYvpPGm2qs6fZ/vNwM1LOXiS7cD2zZs3L+XukjSvleiz2vvvBnZPTU1dtNQ2JGk+K9V3OeaS1o6RrkK5YiGSbwB/2mOEE4Bv9nj8rsw5fkPJ2nfOp1bVk3o8/sQZsd/q+/VbDrP3w+zLZ781h57HXJPys9HFULKac7z6ztmp35qIAq5vSe4cwqWGzTl+Q8k6lJya25BfP7P3w+xai4b0szGUrOYcr6Hk9ANrJUmSJGkgLOAkSZIkaSAs4Bq7+g7QkTnHbyhZh5JTcxvy62f2fphda9GQfjaGktWc4zWInK6BkyRJkqSB8AycJEmSJA3EuizgkvzNJB9P8qX2/x9bYN/j2g/SfNdqZmyPvWjOJM9IcnuSe5N8LslLVzHftiRfSLInyc45vv/YJL/bfv/TSTatVrZZORbL+dokn2+fv08meWofOdssC2adsd8/TVJJJv5KSetZ19dz0iQ5OckftL8X9yZ5Td+ZRpXkiCR/lOSjfWcZRZInJrkhyR8nuS/Jz/adqask/6b9ebknybVJju47k/rleGusGR1zrWLOGftN5HhrXRZwwE7gk1V1KvDJ9vZ8/hNw26qkerQuOf8c+OdV9TRgG/C2JE9c6WBJjgAuB84CtgDnJ9kya7cLgT+rqs3AfwXestK5ZuuY84+Aqar6e8ANwH9Z3ZSNjllJcizwGuDTq5tQo+j6ek6oQ8ClVbUF+BngFweU/bDXAPf1HWIJ3g78XlX9HeDvM5DHkORE4Jdo+tKnA0cA5/WbShPA8dYYOOYar7Uw3lqvBdy5wPvar98HvHCunZI8C9gI3LpKuWZbNGdVfbGqvtR+/VXgIWA1Prj0DGBPVd1fVd8HrmvzzjQz/w3A85NkFbLNtGjOqvqDqvrz9uangJNWOeNhXZ5TaP7IvQX43mqG08i6vp4Tp6oerKrPtF9/h6aIOLHfVN0lOQk4G3h331lGkWQD8A+BKwGq6vtV9XC/qUZyJPC4JEcCjwe+2nMe9c/x1ng45hqvwY+31msBt7GqHmy//hpNp/EjkvwN4K3Av13NYLMsmnOmJGcARwF/stLBaAZze2fc3sejB3g/3KeqDgEHgONXIducGVpz5ZzpQuBjK5pofotmTfJTwMlVddNqBtOSjPqzN5HaaTjPZALfgVzA24BfBv667yAjOgX4BvDedvrnu5Mc03eoLqpqP/CbwFeAB4EDVdXXYFyTw/HWeDjmGq/Bj7eO7DvASknyCeDJc3zr9TNvVFUlmetSnK8Cbq6qfSv5BsYYch5u58eB3wFeUVVDG7RMhCQvB6aA5/adZS7tH7nfAi7oOYrWiSRPAP4n8K+r6v/1naeLJD8PPFRVdyXZ2neeER0J/BTw6qr6dJK300zlemO/sRbXrhk6l6YIfRj4YJKXV9UH+k2mleZ4S0sxyWOuIYy31mwBV1Vnzve9JF9P8uNV9WD7i/jQHLv9LPBzSV4FPAE4KsnBqhrrhQjGkJMkxwE3Aa+vqk+NM98C9gMnz7h9Urttrn32tVNqNgDfWp14j8pw2Fw5SXImTSf+3Kr6y1XKNttiWY8Fng5Mt3/kngzcmOScqrpz1VKqq04/e5MqyWNoirerq+pDfecZwXOAc5K8ADgaOC7JB6rq5T3n6mIfsK+qDp/tvIGF1wxNkjOBL1fVNwCSfAj4B4AF3BrneGtVOOYar8GPt9brFMobgVe0X78C+MjsHarqZVX1lKraRHNa//3j7kw6WDRnkqOA/0WT74ZVzHYHcGqSU9oM59HknWlm/hcDv1+r/8GDi+ZM8kzgvwPnVNWcnfYqWTBrVR2oqhOqalP7c/kpmswT0ZnoUbr8jkykdt3ElcB9VfVbfecZRVX9SlWd1P6OnEfT7wyheKOqvgbsTXJau+n5wOd7jDSKrwA/k+Tx7c/P8xnIBVi0ohxvjYdjrvEa/HhrvRZwlwH/OMmXaN41vAwgyVSSSVr03iXnS2gWvV+Q5LPtv2esdLB2fvUlwC00f6Svr6p7k/xqknPa3a4Ejk+yB3gtPbyT3DHnb9C86/fB9vnrZZDdMasGYr7Xs99UnT0H+AXgH83oV17Qd6h14tXA1Uk+BzwD+PWe83TSnjW8AfgMcDfN+GJXr6E0CRxvjYFjrl5yTrSsfnEuSZIkSVqK9XoGTpIkSZIGxwJOkiRJkgbCAk6SJEmSBsICTpIkSZIGwgJOkiRJkgbCAk6SJEmSBsICTpIkSZIGwgJOkiRJkgbi/wNdxvY+bnLNEwAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"photo_vars = [var_name for var_name in variables_cnt if 'photo' in var_name]\n",
"df[photo_vars].hist(figsize = (15,8), log=True);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Кто больше постит фотографий, девушки или парни? чьи фото собирают больше лайков? (общее количество лайков, медиана и среднее)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/site-packages/numpy/lib/histograms.py:839: RuntimeWarning: invalid value encountered in greater_equal\n",
" keep = (tmp_a >= first_edge)\n",
"/usr/local/lib/python3.7/site-packages/numpy/lib/histograms.py:840: RuntimeWarning: invalid value encountered in less_equal\n",
" keep &= (tmp_a <= last_edge)\n",
"/usr/local/lib/python3.7/site-packages/matplotlib/figure.py:445: UserWarning: Matplotlib is currently using module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.\n",
" % get_backend())\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAVICAYAAABWfkceAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X24ZmV9H/rvj9cJihuBNFUGnDGDvF1osFOU0KaKngDRkRyv2kK4GlHjHI6a0zZRD6jTztFqTUrbcyBarqEQisV3lJdKKtJCjY3KSxCDQcJARhiighB2YFJkJt7nj73APTczzN4zz55nz+zP57qea6/nftbLb631rD3fWftea1VrLQAAwE/tMe4CAABgvhGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjLAHKqqV1XV+nHXAcDsCMkA81RVnVVVXxvj8gV8YMESkgEAoCMkA4xAVa2rqnOr6k+r6i+r6veratG0z3+7qh6squ9X1VumtU9U1WVV9VBVfa+qPlBVe1TVUUkuTHJCVT1eVY8+2/gzqO/tVXVnVT021PjyaXW/u6q+XVWTVfWZqlpUVc9J8gdJXjgs//GqeuGotxvAfCUkA4zOmUlOTvLzSV6S5AND+99OMpHkkCRvS/Kxqnr+8NkFw2cvTvIPkvx6kre01u5McnaSr7fWnttaO+DZxn+2oqrqTUlWD+M+L8kbkjw8bZR/lOSUJEuTvDTJWa21DUlOTfIXw/Kf21r7i9luEIBdlZAMMDq/11q7v7X2SJIPJzljaN+Y5IOttY2ttWuTPJ7kiKraM8npSc5trT3WWluX5N8m+Sdbmvlsx5/mN5L8bmvt5jZlbWvte9M+P7+19hdD3dck+YXtWHeA3YqQDDA6908b/l6Sp7onPNxa2zTts79O8twkByfZexh3+nSHbGX+sx3/KYcmuedZPv/BFmoDWNCEZIDROXTa8GFJttU94UeZOsv8om66B4bhNsvxt+b+THUBma1++QALhpAMMDrvrKrFVXVgkvcn+cyzjdxa+5skn03y4arav6pelOS3kvznYZQfJllcVfvMcPyt+Y9J3l1Vf6emLBum3ZYfJjmoqiZmMC7AbkVIBhidTya5Lsm9mere8K9mMM1vJtkwTPO1YR6XDJ/99yTfSfKDqvrRDMbfotba5zLVR/qTSR5LcmWSA7dVWGvtu0k+leTeqnrU3S2AhaRa89c0gB1VVeuS/EZr7fpx1wLAjnMmGQAAOkIywG6gqi6c9tCP6a8Lx10bwK5IdwsAAOg4kwwAAB0hGQAAOnuNu4AkOfjgg9uSJUvGXQYAALu5W2+99UettZ/d1njzIiQvWbIkt9xyy7jLAABgN1dV35vJeLpbAABAR0gGAICOkAwAAJ150ScZAIDts3Hjxqxfvz5PPPHEuEuZVxYtWpTFixdn77333q7phWQAgF3Y+vXrs//++2fJkiWpqnGXMy+01vLwww9n/fr1Wbp06XbNQ3cLAIBd2BNPPJGDDjpIQJ6mqnLQQQft0Nl1IRkAYBcnID/Tjm4TIRkAgLG58cYb8/rXv37cZTyDPskAALuRJed8aaTzW/fR1410frsKZ5IBANgh69aty5FHHpmzzjorL3nJS3LmmWfm+uuvz4knnpjDDz88N910U2666aaccMIJOe644/KLv/iLueuuu54xnw0bNuStb31rjj/++Bx33HG56qqrxrA2U4RkAAB22Nq1a/Pbv/3b+e53v5vvfve7+eQnP5mvfe1rOe+88/KRj3wkRx55ZP7wD/8wt912Wz74wQ/mfe973zPm8eEPfzgnnXRSbrrpptxwww15z3vekw0bNoxhbcbc3aKqViRZsWzZsnGWMTurJ2Y5/uTc1AEAMI8sXbo0xx57bJLkmGOOyWte85pUVY499tisW7cuk5OTefOb35y77747VZWNGzc+Yx7XXXddrr766px33nlJpu7ccd999+Woo47aqeuSjDkkt9auSXLN8uXL3z7OOgAA2DH77rvv08N77LHH0+/32GOPbNq0KatWrcqrX/3qfPGLX8y6devyqle96hnzaK3liiuuyBFHHLGzyt4q3S0AAJhzk5OTOeSQQ5Ikl1566RbHOfnkk3PBBRektZYkue2223ZWec8gJAMAMOfe+9735txzz81xxx2XTZs2bXGcVatWZePGjXnpS1+aY445JqtWrdrJVf5UPZXUx2n58uXtlltuGXcZM6NPMgAwj9x5551j6bO7K9jStqmqW1try7c1rTPJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAO+T888/PUUcdlTPPPHNO5r969eqnH1W9s4z1sdQAAIzYbJ/psM35bfuZDx//+Mdz/fXXZ/HixaNd9hgt6JC85JwvzXqadYvmoBAAgF3U2WefnXvvvTennnpqTj/99Nxzzz254447snHjxqxevTqnnXZaLr300lx55ZXZsGFD7r777rz73e/Ok08+mU984hPZd999c+211+bAAw/MRRddlDVr1uTJJ5/MsmXL8olPfCL77bffZsu755578s53vjMPPfRQ9ttvv1x00UU58sgjR75eulsAALDdLrzwwrzwhS/MDTfckA0bNuSkk07KTTfdlBtuuCHvec97smHDhiTJHXfckS984Qu5+eab8/73vz/77bdfbrvttpxwwgm57LLLkiRvfOMbc/PNN+f222/PUUcdlYsvvvgZy1u5cmUuuOCC3HrrrTnvvPPyjne8Y07Wa0GfSQYAYHSuu+66XH311U/3H37iiSdy3333JUle/epXZ//998/++++fiYmJrFixIkly7LHH5tvf/naSqSD9gQ98II8++mgef/zxnHzyyZvN//HHH88f/dEf5U1vetPTbT/+8Y/nZF2EZAAARqK1liuuuCJHHHHEZu3f/OY3s++++z79fo899nj6/R577JFNmzYlSc4666xceeWVednLXpZLL700N95442bz+clPfpIDDjgg3/rWt+Z2RaK7BQAAI3LyySfnggsuSGstSXLbbbfNavrHHnssL3jBC7Jx48Zcfvnlz/j8ec97XpYuXZrPfe5zSaZC+e23377jhW+BkAwAwEisWrUqGzduzEtf+tIcc8wxWbVq1aym/9CHPpRXvOIVOfHEE7d6Md7ll1+eiy++OC972ctyzDHH5KqrrhpF6c9QTyX9cVq+fHm75ZZbdvpyt+/uFr82uwlmcNsUAIDtdeedd+aoo44adxnz0pa2TVXd2lpbvq1pnUkGAICOkAwAAB0hGQAAOkIyAMAubj5cYzbf7Og2EZIBAHZhixYtysMPPywoT9Nay8MPP5xFixZt9zw8TAQAYBe2ePHirF+/Pg899NC4S5lXFi1alMWLF2/39EIyAMAubO+9987SpUvHXcZuR3cLAADoCMkAANCZk+4WVfWrSV6X5HlJLm6tXTcXywEAgLkw4zPJVXVJVT1YVXd07adU1V1VtbaqzkmS1tqVrbW3Jzk7yT8ebckAADC3ZtPd4tIkp0xvqKo9k3wsyalJjk5yRlUdPW2UDwyfAwDALmPGIbm19tUkj3TNxydZ21q7t7X2ZJJPJzmtpvxOkj9orf3x6MoFAIC5t6MX7h2S5P5p79cPbb+Z5LVJ/mFVnb2lCatqZVXdUlW3uK8fAADzyZxcuNdaOz/J+dsYZ02SNUmyfPlyj4gBAGDe2NEzyQ8kOXTa+8VDGwAA7LJ2NCTfnOTwqlpaVfskOT3J1TteFgAAjM9sbgH3qSRfT3JEVa2vqre11jYleVeSLye5M8lnW2vfmZtSAQBg55hxn+TW2hlbab82ybXbs/CqWpFkxbJly7ZncgAAmBNjfSx1a+2a1trKiYmJcZYBAACbGWtIBgCA+UhIBgCAjpAMAAAdIRkAADpjDclVtaKq1kxOTo6zDAAA2Iy7WwAAQEd3CwAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjlvAAQBAxy3gAACgo7sFAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEDHLeAAAKDjFnAAANDR3QIAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOh4kAAEDHw0QAAKCjuwUAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdDyWGgAAOh5LDQAAHd0tAACgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAACdsYbkqlpRVWsmJyfHWQYAAGxmrCG5tXZNa23lxMTEOMsAAIDN6G4BAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6Yw3JVbWiqtZMTk6OswwAANjMWENya+2a1trKiYmJcZYBAACb0d0CAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQGXlIrqoXV9XFVfX5Uc8bAAB2hhmF5Kq6pKoerKo7uvZTququqlpbVeckSWvt3tba2+aiWAAA2Blmeib50iSnTG+oqj2TfCzJqUmOTnJGVR090uoAAGAMZhSSW2tfTfJI13x8krXDmeMnk3w6yWkjrg8AAHa6HemTfEiS+6e9X5/kkKo6qKouTHJcVZ27tYmramVV3VJVtzz00EM7UAYAAIzWXqOeYWvt4SRnz2C8NUnWJMny5cvbqOsAAIDttSNnkh9Icui094uHNgAA2KXtSEi+OcnhVbW0qvZJcnqSq0dTFgAAjM9MbwH3qSRfT3JEVa2vqre11jYleVeSLye5M8lnW2vfmbtSAQBg55hRn+TW2hlbab82ybXbu/CqWpFkxbJly7Z3FgAAMHJjfSx1a+2a1trKiYmJcZYBAACbGWtIBgCA+UhIBgCAjpAMAAAdIRkAADpjDclVtaKq1kxOTo6zDAAA2Iy7WwAAQEd3CwAA6AjJAADQEZIBAKAjJAMAQMfdLQAAoOPuFgAA0NHdAgAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEDHfZIBAKDjPskAANDR3QIAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAZ69xLryqViRZsWzZsnGWMRZLzvnSrKdZ99HXzUElAAD03CcZAAA6ulsAAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQMdjqXclq2f5ZMLVk1tsnu0jsT0OGwBYaDyWGgAAOrpbAABAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6Yw3JVbWiqtZMTk6OswwAANjMWENya+2a1trKiYmJcZYBAACb0d0CAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB09hrnwqtqRZIVy5YtG2cZbMvqie2YZnKLzUvO+dKsZrPuo6+b/bJHZbbrvZV1BgB2PWM9k9xau6a1tnJiYjtCGAAAzBHdLQAAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAJ29Rj3DqnpOko8neTLJja21y0e9DAAAmEszOpNcVZdU1YNVdUfXfkpV3VVVa6vqnKH5jUk+31p7e5I3jLheAACYczPtbnFpklOmN1TVnkk+luTUJEcnOaOqjk6yOMn9w2h/M5oyAQBg55lRSG6tfTXJI13z8UnWttbuba09meTTSU5Lsj5TQXnG8wcAgPlkR/okH5KfnjFOpsLxK5Kcn+T3qup1Sa7Z2sRVtTLJyiQ57LDDdqAMdmurJ2Y5/uQWm5ec86VZL3rdollPMpJlr/vo60azYICFbEz/fizY3+Ej2t7zycgv3GutbUjylhmMtybJmiRZvnx5G3UdAACwvXakO8QDSQ6d9n7x0AYAALu0HQnJNyc5vKqWVtU+SU5PcvVoygIAgPGZ6S3gPpXk60mOqKr1VfW21tqmJO9K8uUkdyb5bGvtO3NXKgAA7Bwz6pPcWjtjK+3XJrl2exdeVSuSrFi2bNn2zgIAAEZurLdoa61d01pbOTExyysiAQBgDrmPMQAAdIRkAADoCMkAANARkgEAoDPWkFxVK6pqzeTk/H80IQAAC4e7WwAAQKdaa+OuIVX1UJLv7aTFHZzkRztpWQuB7Tl6tulo2Z6jZ5uOlu05erbpaO1u2/NFrbWf3dZI8yIk70xVdUtrbfm469hd2J6jZ5uOlu05erbpaNmeo2ebjtZC3Z4u3AMAgI6QDAAAnYUYkteMu4DdjO05erbpaNmeo2ebjpbtOXq26WgtyO254PokAwDAtizEM8kAAPCsFlRIrqpTququqlpbVeeMu55dQVUdWlU3VNWfVtV3quqfDu2rq+qBqvrW8PqVadOcO2zju6rq5PFVPz9V1bqq+pNhu90ytB1YVV+pqruHn88f2quqzh+257er6uXjrX7+qaojpn0Pv1VVf1VV/8x3dOaq6pKqerCq7pjWNuvvZFW9eRj/7qp68zjWZb7Yyjb9N1X13WG7fbGqDhjal1TV/5r2Xb1w2jR/Z/h9sXbY7jWO9Rm3rWzPWR/jcsCUrWzPz0zbluuq6ltD+8L9frbWFsQryZ5J7kny4iT7JLk9ydHjrmu+v5K8IMnLh+H9k/xZkqOTrE7y7i2Mf/SwbfdNsnTY5nuOez3m0yvJuiQHd22/m+ScYficJL8zDP9Kkj9IUklemeSb465/Pr+G4/wHSV7kOzqr7fZLSV6e5I5pbbP6TiY5MMm9w8/nD8PPH/e6zbNt+stJ9hqGf2faNl0yfbxuPjcN27mG7X7quNdtHm3PWR3jcsCzb8/u83+b5F8Mwwv2+7mQziQfn2Rta+3e1tqTST6d5LQx1zTvtda+31r742H4sSR3JjnkWSY5LcmnW2s/bq39eZK1mdr2PLvTkvynYfg/JfnVae2XtSnfSHJAVb1gHAXuIl6T5J7W2rM9nMh3tNNa+2qSR7rm2X4nT07yldbaI621v0zylSSnzH3189OWtmlr7brW2qbh7TeSLH62eQzb9XmttW+0qURyWX66HxaUrXxHt2Zrx7gcMHi27TmcDf5HST71bPNYCN/PhRSSD0ly/7T36/PsYY9OVS1JclySbw5N7xr+bHjJU3+Kje08Ey3JdVV1a1WtHNp+rrX2/WH4B0l+bhi2PWfn9Gz+i913dPvN9jtpu87OWzN15u0pS6vqtqr6H1X194e2QzK1HZ9imz7TbI5x39GZ+ftJfthau3ta24L8fi6kkMwOqKrnJrkiyT9rrf1Vkv+Q5OeT/EKS72fqTzPMzN9rrb08yalJ3llVvzT9w+F/5G47M0tVtU+SNyT53NDkOzoivpOjVVXvT7IpyeVD0/eTHNZaOy7JbyX5ZFU9b1z17UIc43PjjGx+smHBfj8XUkh+IMmh094vHtrYhqraO1MB+fLW2heSpLX2w9ba37TWfpLkovz0z9W28za01h4Yfj6Y5IuZ2nY/fKobxfDzwWF023PmTk3yx621Hya+oyMw2++k7ToDVXVWktcnOXP4z0eGbgEPD8O3Zqrf7Esytf2md8mwTafZjmPcd3QbqmqvJG9M8pmn2hby93MhheSbkxxeVUuHM06nJ7l6zDXNe0PfpIuT3Nla+3fT2qf3i/3fkzx1hezVSU6vqn2rammSwzPVsZ8kVfWcqtr/qeFMXchzR6a221N3A3hzkquG4auT/PpwR4FXJpmc9idwNrfZ2Q/f0R022+/kl5P8clU9f/iz9y8PbQyq6pQk703yhtbaX09r/9mq2nMYfnGmvpP3Dtv1r6rqlcPv4l/PT/fDgrcdx7gcsG2vTfLd1trT3SgW8vdzr3EXsLO01jZV1bsy9Ut7zySXtNa+M+aydgUnJvknSf7kqdvBJHlfkjOq6hcy9SfYdUn+jyRprX2nqj6b5E8z9efEd7bW/manVz1//VySLw53ydkrySdba/+1qm5O8tmqeluS72XqookkuTZTdxNYm+Svk7xl55c8/w3/4fjfMnwPB7/rOzozVfWpJK9KcnBVrU/yL5N8NLP4TrbWHqmqD2UqiCTJB1trM73QarezlW16bqbuuPCV4XfAN1prZ2fqTgMfrKqNSX6S5Oxp2+4dSS5N8jOZ6sM8vR/zgrGV7fmq2R7jcsCULW3P1trFeeZ1HckC/n564h4AAHQWUncLAACYESEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZYIaq6lVVtX7MNZxVVV+b9v7xqnrxMHxpVf2r8VUHsPsQkgF2gj7cjkpr7bmttXtHPd8dUVVLqqpV1V7jrgVgewnJAADQEZIBOlW1rqrOrao/raq/rKrfr6pF0z7/7ap6sKq+X1VvmdY+UVWXVdVDVfW9qvpAVe1RVUcluTDJCUP3iEefbfxZ1tqqatkW2vevqhuq6vyasm9VnVdV91XVD6vqwqr6mRnM/7Sq+lZV/VVV3VNVpwztN1bVh6rqf1bVY1V1XVUdPEz21eHno8P6njCbdQKYD4RkgC07M8nJSX4+yUuSfGBo/9tJJpIckuRtST5WVc8fPrtg+OzFSf5Bkl9P8pbW2p1Jzk7y9aF7xAHPNv6OFl5VByX5b0n+Z2vt/2qttSQfHdbjF5IsG+r/F9uYz/FJLkvyniQHJPmlJOumjfJrQ71/K8k+Sd49tP/S8POAYX2/vqPrBLCzCckAW/Z7rbX7W2uPJPlwkjOG9o1JPtha29hauzbJ40mOqKo9k5ye5NzW2mOttXVJ/m2Sf7Klmc92/Fl4YZL/keRzrbUPDMuqJCuT/PPW2iOttceSfGRY/rN5W5JLWmtfaa39pLX2QGvtu9M+//3W2p+11v5Xks9mKoAD7BZcVAGwZfdPG/5epsJnkjzcWts07bO/TvLcJAcn2XsYd/p0h2xl/rMdf6Zel6ngfuG0tp9Nsl+SW6fycpKkkuy5jXkdmuTaZ/n8B9OGn9oOALsFZ5IBtuzQacOHJfmLbYz/o0ydZX5RN90Dw3Cb5fjb66Ik/zXJtVX1nGnL+l9JjmmtHTC8Jlpr2wq192equ8ls9esKsMsRkgG27J1VtbiqDkzy/iSfebaRW2t/k6kuBx8eLpp7UZLfSvKfh1F+mGRxVe0zw/F3xLuS3JXkmqr6mdbaTzIVnv99Vf2tJKmqQ6rq5G3M5+Ikb6mq1wwXIB5SVUfOYPkPJflJpvpaA+yShGSALftkkuuS3JvkniQzeUjHbybZMEzztWEelwyf/fck30nyg6r60QzG327DhXork6xPctVwZ47/O8naJN+oqr9Kcn2SI7Yxn5sydWHev08ymam+zi96tmmG6f46U/24/2dVPVpVr9yB1QEYi5r6XQrAU6pqXZLfaK1dP+5aABgPZ5IBAKAjJAPMM8ODPh7fwuvCbU8962W9byvL+oNRLwtgV6K7BQAAdJxJBgCAjpAMAACdefHEvYMPPrgtWbJk3GUAALCbu/XWW3/UWvvZbY03L0LykiVLcsstt4y7DAAAdnNV9b2ZjKe7BQAAdIRkAADoCMkAANCZF32SAQDYPhs3bsz69evzxBNPjLuUeWXRokVZvHhx9t577+2aXkgGANiFrV+/Pvvvv3+WLFmSqhp3OfNCay0PP/xw1q9fn6VLl27XPHS3AADYhT3xxBM56KCDBORpqioHHXTQDp1dF5IBAHZxAvIz7eg2EZIBABibG2+8Ma9//evHXcYz6JMMALAbWXLOl0Y6v3Uffd1I57ercCYZAIAdsm7duhx55JE566yz8pKXvCRnnnlmrr/++px44ok5/PDDc9NNN+Wmm27KCSeckOOOOy6/+Iu/mLvuuusZ89mwYUPe+ta35vjjj89xxx2Xq666agxrM2VBn0nenv9pLdT/TQEAPJu1a9fmc5/7XC655JL83b/7d/PJT34yX/va13L11VfnIx/5SC677LL84R/+Yfbaa69cf/31ed/73pcrrrhis3l8+MMfzkknnZRLLrkkjz76aI4//vi89rWvzXOe85ydvj4LOiQDADAaS5cuzbHHHpskOeaYY/Ka17wmVZVjjz0269aty+TkZN785jfn7rvvTlVl48aNz5jHddddl6uvvjrnnXdekqk7d9x333056qijduq6JEIyAAAjsO+++z49vMceezz9fo899simTZuyatWqvPrVr84Xv/jFrFu3Lq961aueMY/WWq644oocccQRO6vsrdInGQCAOTc5OZlDDjkkSXLppZducZyTTz45F1xwQVprSZLbbrttZ5X3DEIyAABz7r3vfW/OPffcHHfccdm0adMWx1m1alU2btyYl770pTnmmGOyatWqnVzlT9VTSX2cli9f3m655ZadvtztunBv0a/NboLVk7NeBgDATN15551j6bO7K9jStqmqW1try7c1rTPJAADQEZIBAKAjJAMAQGdObgFXVb+a5HVJnpfk4tbadXOxHAAAmAszPpNcVZdU1YNVdUfXfkpV3VVVa6vqnCRprV3ZWnt7krOT/OPRlgwAAHNrNt0tLk1yyvSGqtozyceSnJrk6CRnVNXR00b5wPA5AACCrJ4LAAAgAElEQVTsMmYckltrX03ySNd8fJK1rbV7W2tPJvl0ktNqyu8k+YPW2h+PrlwAAOab888/P0cddVTOPPPMOZn/6tWrn35U9c6yo32SD0ly/7T365O8IslvJnltkomqWtZau7CfsKpWJlmZJIcddtgOlgEAQJJk9cSI57ftZz58/OMfz/XXX5/FixePdtljNCcX7rXWzk9y/jbGWZNkTTL1MJG5qAMAgLl19tln5957782pp56a008/Pffcc0/uuOOObNy4MatXr85pp52WSy+9NFdeeWU2bNiQu+++O+9+97vz5JNP5hOf+ET23XffXHvttTnwwANz0UUXZc2aNXnyySezbNmyfOITn8h+++232fLuueeevPOd78xDDz2U/fbbLxdddFGOPPLIka/Xjt4C7oEkh057v3hoAwBgAbjwwgvzwhe+MDfccEM2bNiQk046KTfddFNuuOGGvOc978mGDRuSJHfccUe+8IUv5Oabb8773//+7Lfffrnttttywgkn5LLLLkuSvPGNb8zNN9+c22+/PUcddVQuvvjiZyxv5cqVueCCC3LrrbfmvPPOyzve8Y45Wa8dPZN8c5LDq2pppsLx6Ulm+dxmAAB2B9ddd12uvvrqp/sPP/HEE7nvvvuSJK9+9auz//77Z//998/ExERWrFiRJDn22GPz7W9/O8lUkP7ABz6QRx99NI8//nhOPvnkzeb/+OOP54/+6I/ypje96em2H//4x3OyLjMOyVX1qSSvSnJwVa1P8i9baxdX1buSfDnJnkkuaa19Z04qBQBgXmut5YorrsgRRxyxWfs3v/nN7Lvvvk+/32OPPZ5+v8cee2TTpk1JkrPOOitXXnllXvayl+XSSy/NjTfeuNl8fvKTn+SAAw7It771rbldkczu7hZntNZe0Frbu7W2uLV28dB+bWvtJa21n2+tfXg2C6+qFVW1ZnJy2x3CAQCY304++eRccMEFaW3qcrPbbrttVtM/9thjecELXpCNGzfm8ssvf8bnz3ve87J06dJ87nOfSzIVym+//fYdL3wLxvpY6tbaNa21lRMTI74KEwCAnW7VqlXZuHFjXvrSl+aYY47JqlWrZjX9hz70obziFa/IiSeeuNWL8S6//PJcfPHFednLXpZjjjkmV1111ShKf4Z6KumP0/Lly9stt9yy05e75JwvzXqadYtm2eV6BrdNAQDYXnfeeWeOOuqocZcxL21p21TVra215duadqxnkgEAYD4SkgEAoCMkAwBAR0gGANjFzYdrzOabHd0mYw3JbgEHALBjFi1alIcfflhQnqa1locffjiLFi3a7nns6BP3dkhr7Zok1yxfvvzt46wDAGBXtXjx4qxfvz4PPfTQuEuZVxYtWpTFixdv9/RjDckAAOyYvffeO0uXLh13GbsdfZIBAKAjJAMAQEdIBgCAjpAMAAAdt4ADAIDOWENya+2a1trKiYmJcZYBAACb0d0CAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQMd9kgEAoOM+yQAA0NHdAgAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHU/cAwCAjifuAQBAR3cLAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BlrSK6qFVW1ZnJycpxlAADAZsYakltr17TWVk5MTIyzDAAA2IzuFgAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAACdvca58KpakWTFsmXLxlnGrmP1xCzHn5ybOgAAdnNjPZPcWrumtbZyYmKW4Q8AAOaQ7hYAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAzlhDclWtqKo1k5OT4ywDAAA2M9aQ3Fq7prW2cmJiYpxlAADAZnS3AACAjpAMAAAdIRkAADp7jbsAdgGrt6PP+GoXYwIAuy5nkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADp7jbuAhWrJOV+a9TTrFs1BIQAAPIMzyQAA0BGSAQCgIyQDAEBHn+QFaLb9ofWFBgAWmpGfSa6qF1fVxVX1+VHPGwAAdoYZheSquqSqHqyqO7r2U6rqrqpaW1XnJElr7d7W2tvmolgAANgZZnom+dIkp0xvqKo9k3wsyalJjk5yRlUdPdLqAABgDGYUkltrX03ySNd8fJK1w5njJ5N8OslpI64PAAB2uh25cO+QJPdPe78+ySuq6qAkH05yXFWd21r711uauKpWJlmZJIcddtgOlAFzZPXELMefnJs6AICdbuR3t2itPZzk7BmMtybJmiRZvnx5G3UdAACwvXbk7hYPJDl02vvFQxsAAOzSdiQk35zk8KpaWlX7JDk9ydWjKQsAAMZnpreA+1SSryc5oqrWV9XbWmubkrwryZeT3Jnks62178xdqQAAsHPMqE9ya+2MrbRfm+TakVYEAABjNvIn7s1GVa2oqjWTk+4KAADA/DHWkNxau6a1tnJiYpa32gIAgDk01pAMAADzkZAMAAAdIRkAADpCMgAAdEb+WOrZqKoVSVYsW7ZsnGUwn62e5UWdq3eDO6XMdp2T3WO9AWAecXcLAADo6G4BAAAdIRkAADpCMgAAdIRkAADoCMkAANAZa0iuqhVVtWZy0u2rAACYP9wCDgAAOrpbAABAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0NlrnAuvqhVJVixbtmycZQBPWb0d9yxf7WFAAOx+PEwEAAA6ulsAAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQ8TARdqol53xpVuOvWzSe5Y5y2QDArsfDRAAAoKO7BQAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOiMNSRX1YqqWjM5OTnOMgAAYDNjDcmttWtaaysnJibGWQYAAGxGdwsAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAACdvca58KpakWTFsmXLxlkGMB+snpjl+JO7x7IBmJfGeia5tXZNa23lxMQs/4ECAIA5pLsFAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANDZa5wLr6oVSVYsW7ZsnGUAc2DJOV+a1fjrFo1nuaNcNjO0emKW40/OTR0Az2KsZ5Jba9e01lZOTMzyFyYAAMwh3S0AAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADo7DXqGVbVc5J8PMmTSW5srV0+6mUAAMBcmtGZ5Kq6pKoerKo7uvZTququqlpbVecMzW9M8vnW2tuTvGHE9QIAwJybaXeLS5OcMr2hqvZM8rEkpyY5OskZVXV0ksVJ7h9G+5vRlAkAADvPjEJya+2rSR7pmo9Psra1dm9r7ckkn05yWpL1mQrKM54/AADMJzvSJ/mQ/PSMcTIVjl+R5Pwkv1dVr0tyzdYmrqqVSVYmyWGHHbYDZQBbs+ScL81q/HWL5qiQBWL22/vXZr+Q1ZOzn2aL85kYz3LHbTdY7zn/ns3Ddd6lzPY7lszLbe57NgcX7rXWNiR5ywzGW5NkTZIsX768jboOAADYXjvSHeKBJIdOe794aAMAgF3ajoTkm5McXlVLq2qfJKcnuXo0ZQEAwPjM9BZwn0ry9SRHVNX6qnpba21Tkncl+XKSO5N8trX2nbkrFQAAdo4Z9UlurZ2xlfZrk1w70ooAAGDMxnqLtqpaUVVrJifn/xWOAAAsHGMNya21a1prKycmtuN2KQAAMEc87AMAADpCMgAAdIRkAADoCMkAANBxdwsAAOhUa23cNaSqHkryvZ20uIOT/GgnLYvZsW/mL/tmfrJf5i/7Zv6yb+annblfXtRa+9ltjTQvQvLOVFW3tNaWj7sOnsm+mb/sm/nJfpm/7Jv5y76Zn+bjftEnGQAAOkIyAAB0FmJIXjPuAtgq+2b+sm/mJ/tl/rJv5i/7Zn6ad/tlwfVJBgCAbVmIZ5IBAOBZLaiQXFWnVNVdVbW2qs4Zdz27u6o6tKpuqKo/rarvVNU/HdoPrKqvVNXdw8/nD+1VVecP++fbVfXyafN68zD+3VX15nGt0+6mqvasqtuq6r8M75dW1TeHffCZqtpnaN93eL92+HzJtHmcO7TfVVUnj2dNdh9VdUBVfb6qvltVd1bVCY6Z+aGq/vnwu+yOqvpUVS1yzIxHVV1SVQ9W1R3T2kZ2nFTV36mqPxmmOb+qaueu4a5rK/vm3wy/075dVV+sqgOmfbbF42FrmW1rx9ycaK0tiFeSPZPck+TFSfZJcnuSo8dd1+78SvKCJC8fhvdP8mdJjk7yu0nOGdrPSfI7w/CvJPmDJJXklUm+ObQfmOTe4efzh+Hnj3v9dodXkt9K8skk/2V4/9kkpw/DFyb5P4fhdyS5cBg+PclnhuGjh2Np3yRLh2Nsz3Gv1678SvKfkvzGMLxPkgMcM+N/JTkkyZ8n+Znh/WeTnOWYGdv++KUkL09yx7S2kR0nSW4axq1h2lPHvc67ymsr++aXk+w1DP/OtH2zxeMhz5LZtnbMzcVrIZ1JPj7J2tbava21J5N8OslpY65pt9Za+35r7Y+H4ceS3Jmpf2hOy1QQyPDzV4fh05Jc1qZ8I8kBVfWCJCcn+Upr7ZHW2l8m+UqSU3biquyWqmpxktcl+Y/D+0pyUpLPD6P0++apffb5JK8Zxj8tyadbaz9urf15krWZOtbYDlU1kal/YC5Oktbak621R+OYmS/2SvIzVbVXkv2SfD+OmbForX01ySNd80iOk+Gz57XWvtGmkthl0+bFNmxp37TWrmutbRrefiPJ4mF4a8fDFjPbNv6dGrmFFJIPSXL/tPfrhzZ2guFPjccl+WaSn2utfX/46AdJfm4Y3to+su/mxv+b5L1JfjK8PyjJo9N+kU3fzk/vg+HzyWF8+2a0liZ5KMnvD91g/mNVPSeOmbFrrT2Q5Lwk92UqHE8muTWOmflkVMfJIcNw385ovDVTZ+eT2e+bZ/t3auQWUkhmTKrquUmuSPLPWmt/Nf2z4X/pbrGyk1XV65M82Fq7ddy1sJm9MvVnyv/QWjsuyYZM/dn4aY6Z8Rj6t56Wqf/IvDDJc+Ls/LzlOJmfqur9STYluXzctczEQgrJDyQ5dNr7xUMbc6iq9s5UQL68tfaFofmHw5+zMvx8cGjf2j6y70bvxCRvqKp1mfoz1klJ/r9M/Rlyr2Gc6dv56X0wfD6R5OHYN6O2Psn61to3h/efz1RodsyM32uT/Hlr7aHW2sYkX8jUceSYmT9GdZw8kJ92B5jezg6oqrOSvD7JmcN/YpLZ75uHs/VjbuQWUki+Ocnhw1WR+2TqQoqrx1zTbm3oO3Rxkjtba/9u2kdXJ3nqKuI3J7lqWvuvD1civzLJ5PCnsy8n+eWqev5wNueXhza2U2vt3Nba4tbakkwdC/+9tXZmkhuS/MNhtH7fPLXP/uEwfhvaTx+u5F+a5PBMXfDCdmit/SDJ/VV1xND0miR/GsfMfHBfkldW1X7D77an9o1jZv4YyXEyfPZXVfXKYV//+rR5sR2q6pRMde97Q2vtr6d9tLXjYYuZbTiGtnbMjd5cXRE4H1+ZusL1zzJ1xeT7x13P7v5K8vcy9eeubyf51vD6lUz1KfpvSe5Ocn2SA4fxK8nHhv3zJ0mWT5vXWzPVoX9tkreMe912p1eSV+Wnd7d4caZ+Qa1N8rkk+w7ti4b3a4fPXzxt+vcP++yuuAJ8FPvjF5LcMhw3V2bqqnvHzDx4Jfl/knw3yR1JPpGpK/IdM+PZF5/KVN/wjZn6C8zbRnmcJFk+7Od7kvxehoeveW33vvn/27v/aL2qOj/8708AiY54UXAcJWLiBCFkQUyNKDKuAo4LGMzA8ke/OkxH1E6Wy3E6ba02oGkZLdauRbXyw2HFgTK0qIOiQganw6Chav0RYKJWBSqwIsaqaNA7EAUT2d8/7gNedhK4N7n3Pjfc12utu/KcffY553MeNuTNufucc3vG5hg/lAUuHtd/p/8+ZBeZbVf/zk3HjzfuAQBAZy5NtwAAgAkRkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkoE5qaqOr6rNQ67hzKr64rjl+6rquYPPl1XVfxxedZNTVZuq6ncHn8+uqr8cdk0Ae2LfYRcAsLepqjOT/IvW2u9M5X5ba0+eyv0NS2vtvcOuAWBPuZIMAAAdIRl4XBtMAzirqr5dVT+tqv9WVfPHrX9bVd1dVT+oqjeMax+pqsur6sdV9d2qeldVzauqJUkuTnLsYHrEzx6t/yRrbVW1eCftB1TV+qo6v8bsX1XnVdVdVfWjqrq4qp74GPs+vqo2V9U7xp3v6VX1e1X1f6vqnqo6e1z/eVW1uqruqKotVXVlVT1t3Pp/PjjPLVX1zu5Y51TV/xi3/PGq+mFVjVbV56tq6bh1l1XVRVV1bVXdW1Vfrarfnsz3BjAdhGRgLjgjyUlJfjvJ85K8a9D+W0lGkhyS5E1JLqqqpw7WXTBY99wk/zTJHyV5Q2vtliRvTvLl1tqTW2sHPlr/PS28qg5K8tkk/7u19i9bay3J+wbn8fwkiwf1//sJ7O63kswf1//DSf4wyQuSvDTJmqpaNOj7p0lOH5zLs5L8NMlFg5qOTPIXSf75YN1BSRY8ynH/NslhSX4zyT8kuaJb/9okf57kqUluT3LuBM4FYFoJycBccGFr7XuttXsyFsBeN2jfluTdrbVtrbXPJLkvyeFVtU/GgttZrbV7W2ubkvyXjIXCHUy2/yQ8K8n/SvLx1tq7BseqJKuS/OvW2j2ttXuTvHdw/MeyLcm5rbVtST6W5OAkHxzU/K0k306ybND3zUne2Vrb3Fp7IMk5SV5dVfsmeXWSv2mtfX6wbk2SB3d10NbapYNjPLSfZVU1Mq7Lp1prG1pr2zMWoJ8/gXMBmFZu3APmgu+N+/zdjIXPJNkyCGYP+XmSJ2csPO436Dt+u0N2sf/J9p+oUzMW3C8e1/b0JE9KcvNYXk6SVJJ9JrC/La21Xw0+/2Lw54/Grf9Fxs4/SZ6T5FNVNT78/irJMzL2/T38nbbWtlbVlp0dcPA/EOcmec2g9of2d3CS0cHnH47b5KF/BgBD5UoyMBc8e9znQ5P8v8fo/5OMXXV9Trfd9wef2yT7764PJ/mfST5TVb8x7li/SLK0tXbg4GdkGp6M8b0kp4w7xoGttfmtte8n+UHGfadV9aSMTbnYmT9IclqS383YdJSFD202xfUCTCkhGZgL/qSqFgxuPHtnkr9+tM6Dq61XJjl3cNPcc5L8myQP3Yz2oyQLquoJE+y/J96a5LYk66rqia21BzMWnj9QVb+ZJFV1SFWdNAXHGu/ijJ3PcwbHeHpVnTZY94kkr6iq3xl8B+/Orv8+OSDJA0m2ZOwKuMfDAXsFIRmYCz6S5Lokdya5I8lEXtLxp0m2Drb54mAflw7WfS7Jt5L8sKp+MoH+u21wo96qJJuTXD14Mse/y9gNbl+pqn9Mcn2Sw/f0WJ0PJrkmyXVVdW+SryR50aCmbyX5k4yd4w8ydlPfrl7McnnGpp58P2Nznr8yxXUCTIsa++8vwONTVW3K2Is/rh92LQDsPVxJBgCAjpAMMI0GL/q4byc/Fz/21pM+1tm7ONbfTvWxAB7vTLcAAICOK8kAANARkgEAoDMr3rh38MEHt4ULFw67DAAAHuduvvnmn7TWnv5Y/WZFSF64cGFuuummYZcBAMDjXFV9dyL9TLcAAICOkAwAAJ2hhuSqWllVa0dHR4dZBgAAPMJQ5yS31tYlWbdixYo/HmYdAAB7q23btmXz5s25//77h13KrDJ//vwsWLAg++23325tPytu3AMAYPds3rw5BxxwQBYuXJiqGnY5s0JrLVu2bMnmzZuzaNGi3dqHOckAAHux+++/PwcddJCAPE5V5aCDDtqjq+tCMgDAXk5A3tGefidCMgAAQ3PDDTfkFa94xbDL2IE5yQAAjyMLV187pfvb9L5Tp3R/ewuPgAMAYI9s2rQpRxxxRM4888w873nPyxlnnJHrr78+xx13XA477LBs2LAhGzZsyLHHHpvly5fnJS95SW677bYd9rN169a88Y1vzDHHHJPly5fn6quvHsLZjBlqSG6trWutrRoZGRlmGQAA7KHbb789b3vb23Lrrbfm1ltvzUc+8pF88YtfzHnnnZf3vve9OeKII/KFL3whGzduzLvf/e6cffbZO+zj3HPPzYknnpgNGzZk/fr1efvb356tW7cO4Wzm+HSL3fl1xFz9lQMAwKNZtGhRjjrqqCTJ0qVL87KXvSxVlaOOOiqbNm3K6OhoXv/61+c73/lOqirbtm3bYR/XXXddrrnmmpx33nlJxp7ccdddd2XJkiUzei7JHA/JAABMjf333//hz/PmzXt4ed68edm+fXvWrFmTE044IZ/61KeyadOmHH/88Tvso7WWq666KocffvhMlb1Lnm4BAMC0Gx0dzSGHHJIkueyyy3ba56STTsoFF1yQ1lqSZOPGjTNV3g6EZAAApt073vGOnHXWWVm+fHm2b9++0z5r1qzJtm3bcvTRR2fp0qVZs2bNDFf5a/VQUh+mFStWtJtuumnGj2tOMgCwt7vllluGMmd3b7Cz76aqbm6trXisbV1JBgCAjuckAwBAx3OSAQCgY7oFAAB0hGQAAOgIyQAA0BGSAQDYI+eff36WLFmSM844Y1r2f8455zz8quqZ4rXUAACPJ+dM8QMRznnsp5B96EMfyvXXX58FCxZM7bGHyJVkAAB225vf/ObceeedOeWUU3LuuefmjW98Y4455pgsX748V199dZKx11CffvrpefnLX56FCxfmwgsvzPvf//4sX748L37xi3PPPfckST784Q/nhS98YZYtW5ZXvepV+fnPf77D8e64446cfPLJecELXpCXvvSlufXWW6flvIRkAAB228UXX5xnPetZWb9+fbZu3ZoTTzwxGzZsyPr16/P2t789W7duTZJ885vfzCc/+cnceOONeec735knPelJ2bhxY4499thcfvnlSZJXvvKVufHGG/P1r389S5YsySWXXLLD8VatWpULLrggN998c84777y85S1vmZbzGup0i6pamWTl4sWLh1kGAABT4Lrrrss111zz8Pzh+++/P3fddVeS5IQTTsgBBxyQAw44ICMjI1m5cmWS5Kijjso3vvGNJGNB+l3veld+9rOf5b777stJJ530iP3fd999+dKXvpTXvOY1D7c98MAD03IuQw3JrbV1SdatWLHij4dZBwAAe661lquuuiqHH374I9q/+tWvZv/99394ed68eQ8vz5s3L9u3b0+SnHnmmfn0pz+dZcuW5bLLLssNN9zwiP08+OCDOfDAA/O1r31tek8kbtzbu0x2Iv4EJtoDAEyVk046KRdccEEuuOCCVFU2btyY5cuXT3j7e++9N8985jOzbdu2XHHFFTnkkEMesf4pT3lKFi1alI9//ON5zWtek9ZavvGNb2TZsmVTfSrmJAMAMDXWrFmTbdu25eijj87SpUuzZs2aSW3/nve8Jy960Yty3HHH5YgjjthpnyuuuCKXXHJJli1blqVLlz58c+BUq9batOx4MlasWNFuuummGT/uwtXXTnqbTe87dRoqmSBXkgGAzi233JIlS5YMu4xZaWffTVXd3Fpb8VjbupIMAAAdIRkAADpCMgAAdIRkAIC93Gy4x2y22dPvxCPgJsvNcwDALDJ//vxs2bIlBx10UKpq2OXMCq21bNmyJfPnz9/tfQjJAAB7sQULFmTz5s358Y9/POxSZpX58+dnwYIFu72911IDAOzF9ttvvyxatGjYZTzuDHVOcmttXWtt1cjIJKcwAADANHLjHgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOl4nw2Cb7lsHEmwYBgL2akDwkC1dfO+ltNu3+mxUBAJgE0y0AAKAjJAMAQEdIBgCAzlBDclWtrKq1o6Nu8gIAYPYYakhura1rra0aGdmNpycAAMA0Md0CAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAIDOUENyVa2sqrWjo6PDLAMAAB5hqCG5tbautbZqZGRkmGUAAMAjmG4BAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOjcjS5MAACAASURBVEIyAAB0hGQAAOgIyQAA0BGSAQCgs++wC4BHdc7IJPuPTk8dAMCc4koyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAnaGG5KpaWVVrR0c92xYAgNljqCG5tbautbZqZGSSL4wAAIBpZLoFAAB0vJZ6Dlq4+tpJ9d80f5oKme28EhsA5ixXkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgM+UhuaqeW1WXVNUnpnrfAAAwEyYUkqvq0qq6u6q+2bWfXFW3VdXtVbU6SVprd7bW3jQdxQIAwEyY6JXky5KcPL6hqvZJclGSU5IcmeR1VXXklFYHAABDMKGQ3Fr7fJJ7uuZjktw+uHL8yyQfS3LaFNcHAAAzbt892PaQJN8bt7w5yYuq6qAk5yZZXlVntdb+0842rqpVSVYlyaGHHroHZbA3Wbj62kn13zR/mgoBAHgUexKSd6q1tiXJmyfQb22StUmyYsWKNtV1AADA7tqTp1t8P8mzxy0vGLQBAMBebU9C8o1JDquqRVX1hCSvTXLN1JQFAADDM9FHwH00yZeTHF5Vm6vqTa217UnemuTvktyS5MrW2remr1QAAJgZE5qT3Fp73S7aP5PkM1NaEQAADJnXUgMAQGeoIbmqVlbV2tHR0WGWAQAAjzDUkNxaW9daWzUyMjLMMgAA4BFMtwAAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6HgEHAAAdDwCDgAAOqZbAABAR0gGAICOkAwAAB0hGQAAOkIyAAB0PAIOAAA6HgEHAAAd0y0AAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANDxxj0AAOh44x4AAHRMtwAAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQGffYR68qlYmWbl48eJhlsEcsHD1tZPeZtP8aSgEANgreOMeAAB0TLcAAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHT2HebBq2plkpWLFy8eZhkwrRauvnZS/Te979ThHXv+H0z+IOeMTn6bne5nZDjHBYCdGOqV5NbautbaqpGRSf7lCAAA08h0CwAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOvsO8+BVtTLJysWLFw+zDJhdzhnZjW1Gp74OAJjDhnolubW2rrW2amRkN0IBAABME9MtAACgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hhqSq2plVa0dHR0dZhkAAPAIQw3JrbV1rbVVIyMjwywDAAAewXQLAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgs+9U77CqfiPJh5L8MskNrbUrpvoYAAAwnSZ0JbmqLq2qu6vqm137yVV1W1XdXlWrB82vTPKJ1tofJ/n9Ka4XAACm3USnW1yW5OTxDVW1T5KLkpyS5Mgkr6uqI5MsSPK9QbdfTU2ZAAAwcyYUkltrn09yT9d8TJLbW2t3ttZ+meRjSU5LsjljQXnC+wcAgNlkT+YkH5JfXzFOxsLxi5Kcn+TCqjo1ybpdbVxVq5KsSpJDDz10D8oAZqOFq6+dVP9N86epkIk4Z2SS/Ud32jzpc37fqZM7LgzZXjXGp+jf67lqr/pnPU2m/Ma91trWJG+YQL+1SdYmyYoVK9pU1wEAALtrT6ZDfD/Js8ctLxi0AQDAXm1PQvKNSQ6rqkVV9YQkr01yzdSUBQAAwzPRR8B9NMmXkxxeVZur6k2tte1J3prk75LckuTK1tq3pq9UAACYGROak9xae90u2j+T5DNTWhEAAAzZUB/RVlUrq2rt6Kg7SgEAmD2GGpJba+taa6tGRib5mBYAAJhGXvYBAAAdIRkAADpCMgAAdIRkAADoVGvDfyN0Vf04yXdn6HAHJ/nJDB2LxwdjhskyZpgsY4bJMmZ233Naa09/rE5DDclVtTLJyiTrWmvrZuiYN7XWVszEsXh8MGaYLGOGyTJmmCxjZvpN6GUi02UQjGckHAMAwESZkwwAAJ25GJLXDrsA9jrGDJNlzDBZxgyTZcxMs1lx4x4AAMwmc/FKMgAAPKo5FZKr6uSquq2qbq+q1cOuh9mhqi6tqrur6pvj2p5WVX9fVd8Z/PnUQXtV1fmDMfSNqvonw6ucYamqZ1fV+qr6dlV9q6r+bNBu3LBTVTW/qjZU1dcHY+bPB+2Lquqrg7Hx11X1hEH7/oPl2wfrFw6zfoanqvapqo1V9TeDZWNmhsyZkFxV+yS5KMkpSY5M8rqqOnK4VTFLXJbk5K5tdZLPttYOS/LZwXIyNn4OG/ysSvIXM1Qjs8v2JG9rrR2Z5MVJ/mTw3xPjhl15IMmJrbVlSZ6f5OSqenGS/5zkA621xUl+muRNg/5vSvLTQfsHBv2Ym/4syS3jlo2ZGTJnQnKSY5Lc3lq7s7X2yyQfS3LakGtiFmitfT7JPV3zaUn+avD5r5KcPq798jbmK0kOrKpnzkylzBattR+01v5h8PnejP0FdkiMG3Zh8M/+vsHifoOfluTEJJ8YtPdj5qGx9IkkL6uqmqFymSWqakGSU5P85WC5YszMmLkUkg9J8r1xy5sHbbAzz2it/WDw+YdJnjH4bBzxCINfaS5P8tUYNzyKwa/Nv5bk7iR/n+SOJD9rrW0fdBk/Lh4eM4P1o0kOmtmKmQX+a5J3JHlwsHxQjJkZM5dCMuyWNvYIGI+BYQdV9eQkVyX5V621fxy/zrih11r7VWvt+UkWZOy3m0cMuSRmsap6RZK7W2s3D7uWuWouheTvJ3n2uOUFgzbYmR899OvwwZ93D9qNI5IkVbVfxgLyFa21Tw6ajRseU2vtZ0nWJzk2Y1NvHnr77fhx8fCYGawfSbJlhktluI5L8vtVtSljU0RPTPLBGDMzZi6F5BuTHDa4K/QJSV6b5Joh18TsdU2S1w8+vz7J1ePa/2jwtIIXJxkd9+t15ojBPL9LktzSWnv/uFXGDTtVVU+vqgMHn5+Y5OUZm8u+PsmrB936MfPQWHp1ks81LzaYU1prZ7XWFrTWFmYss3yutXZGjJkZM6deJlJVv5ex+T37JLm0tXbukEtiFqiqjyY5PsnBSX6U5D8k+XSSK5McmuS7Sf5Za+2eQTi6MGNPw/h5kje01m4aRt0MT1X9TpIvJPk/+fVcwbMzNi/ZuGEHVXV0xm6q2idjF6iubK29u6qem7GrhE9LsjHJH7bWHqiq+Un+e8bmu9+T5LWttTuHUz3DVlXHJ/m3rbVXGDMzZ06FZAAAmIi5NN0CAAAmREgGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGGKiq46tq85BrOLOqvjhu+b6qeu7g82VV9R+HVx3A3CEkA0yBPtxOldbak1trd071fgF4dEIyAAB0hGRgzqmqTVV1VlV9u6p+WlX/rarmj1v/tqq6u6p+UFVvGNc+UlWXV9WPq+q7VfWuqppXVUuSXJzk2MH0iJ89Wv9J1tqqavFO2g+oqvVVdX6N2b+qzququ6rqR1V1cVU98TH2fXxVba6qd4w739Or6veq6v9W1T1Vdfa4/vOqanVV3VFVW6rqyqp62rj1H6+qH1bVaFV9vqqWjlt3WVVdVFXXVtW9VfXVqvrtyXwXADNJSAbmqjOSnJTkt5M8L8m7Bu2/lWQkySFJ3pTkoqp66mDdBYN1z03yT5P8UZI3tNZuSfLmJF8eTI848NH672nhVXVQks8m+d+ttX/ZWmtJ3jc4j+cnWTyo/99PYHe/lWT+uP4fTvKHSV6Q5KVJ1lTVokHfP01y+uBcnpXkp0kuGrevv01yWJLfTPIPSa7ojvXaJH+e5KlJbk9y7oRPGmCGCcnAXHVha+17rbV7MhbWXjdo35bk3a21ba21zyS5L8nhVbVPxkLeWa21e1trm5L8lyT/fGc7n2z/SXhWkv+V5OOttXcNjlVJViX51621e1pr9yZ57+D4j2VbknNba9uSfCzJwUk+OKj5W0m+nWTZoO+bk7yztba5tfZAknOSvLqq9k2S1tqlg+0eWresqkbGHetTrbUNrbXtGQvQz9/9rwFgeu077AIAhuR74z5/N2PhM0m2DELcQ36e5MkZC4/7DfqO3+6QXex/sv0n6tSMBfeLx7U9PcmTktw8lpeTJJVknwnsb0tr7VeDz78Y/Pmjcet/kbHzT5LnJPlUVT04bv2vkjyjqn6Ysf/ZeM2gnof6HJxkdPD5h+O2e+h7BZiVXEkG5qpnj/t8aJL/9xj9f5Kxq67P6bb7/uBzm2T/3fXhJP8zyWeq6jfGHesXSZa21g4c/Iy01qY6hH4vySnjjnFga21+a+37Sf4gyWlJfjdjU0wWDrapne8KYHYTkoG56k+qasHgxrN3JvnrR+s8uNp6ZZJzBzfNPSfJv0nyPwZdfpRkQVU9YYL998Rbk9yWZF1VPbG19mDGwvMHquo3k6SqDqmqk6bgWONdnLHzec7gGE+vqtMG6w5I8kCSLRm7qv3eKT42wIwSkoG56iNJrktyZ5I7kkzkJR1/mmTrYJsvDvZx6WDd55J8K8kPq+onE+i/2wY36q1KsjnJ1YMnc/y7jN0M95Wq+sck1yc5fE+P1flgkmuSXFdV9yb5SpIXDdZdnrHpJN/P2Dzmr0zxsQFmVI39txZg7qiqTUn+RWvt+mHXAsDs5EoyAAB0hGSAGTZ40cd9O/m5+LG3nvSxzt7Fsf52qo8F8HhiugUAAHRcSQYAgI6QDAAAnVnxxr2DDz64LVy4cNhlAADwOHfzzTf/pLX29MfqN9SQXFUrk6xcvHhxbrrppmGWAgDAHFBV351Iv6FOt2itrWutrRoZGRlmGQAA8AjmJAMAQEdIBgCAzqy4cQ8AgN2zbdu2bN68Offff/+wS5lV5s+fnwULFmS//fbbre2FZACAvdjmzZtzwAEHZOHChamqYZczK7TWsmXLlmzevDmLFi3arX2YbgEAsBe7//77c9BBBwnI41RVDjrooD26uj7UkFxVK6tq7ejo6DDLAADYqwnIO9rT78Qj4AAAGJobbrghr3jFK4Zdxg7MSQYAeBxZuPraKd3fpvedOqX721uYkwwAwB7ZtGlTjjjiiJx55pl53vOelzPOOCPXX399jjvuuBx22GHZsGFDNmzYkGOPPTbLly/PS17yktx222077Gfr1q154xvfmGOOOSbLly/P1VdfPYSzGSMkAwCwx26//fa87W1vy6233ppbb701H/nIR/LFL34x5513Xt773vfmiCOOyBe+8IVs3Lgx7373u3P22WfvsI9zzz03J554YjZs2JD169fn7W9/e7Zu3TqEs5nj0y1259cRc/VXDgAAj2bRokU56qijkiRLly7Ny172slRVjjrqqGzatCmjo6N5/etfn+985zupqmzbtm2HfVx33XW55pprct555yUZe3LHXXfdlSVLlszouSRzPCQDADA19t9//4c/z5s37+HlefPmZfv27VmzZk1OOOGEfOpTn8qmTZty/PHH77CP1lquuuqqHH744TNV9i6ZbgEAwLQbHR3NIYcckiS57LLLdtrnpJNOygUXXJDWWpJk48aNM1XeDjwnGQCAafeOd7wjZ511VpYvX57t27fvtM+aNWuybdu2HH300Vm6dGnWrFkzw1X+Wj2U1IdpxYoV7aabbprx45qTDADs7W655ZahzNndG+zsu6mqm1trKx5rW9MtAACgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA9sj555+fJUuW5IwzzpiW/Z9zzjkPv6p6pngtNQDA48k5I1O8v8d+6duHPvShXH/99VmwYMHUHnuIvHEPAIDd9uY3vzl33nlnTjnllJx77rl54xvfmGOOOSbLly/P1VdfnWTsNdSnn356Xv7yl2fhwoW58MIL8/73vz/Lly/Pi1/84txzzz1Jkg9/+MN54QtfmGXLluVVr3pVfv7zn+9wvDvuuCMnn3xyXvCCF+SlL31pbr311mk5r6GG5NbautbaqpGRKf4/nserc0Ym9wMAMM0uvvjiPOtZz8r69euzdevWnHjiidmwYUPWr1+ft7/97dm6dWuS5Jvf/GY++clP5sYbb8w73/nOPOlJT8rGjRtz7LHH5vLLL0+SvPKVr8yNN96Yr3/961myZEkuueSSHY63atWqXHDBBbn55ptz3nnn5S1vecu0nJfpFgAATInrrrsu11xzzcPzh++///7cddddSZITTjghBxxwQA444ICMjIxk5cqVSZKjjjoq3/jGN5KMBel3vetd+dnPfpb77rsvJ5100iP2f9999+VLX/pSXvOa1zzc9sADD0zLuQjJAABMidZarrrqqhx++OGPaP/qV7+a/fff/+HlefPmPbw8b968bN++PUly5pln5tOf/nSWLVuWyy67LDfccMMj9vPggw/mwAMPzNe+9rXpPZF4ugUAAFPkpJNOygUXXJDWWpJk48aNk9r+3nvvzTOf+cxs27YtV1xxxQ7rn/KUp2TRokX5+Mc/nmQslH/961/f88J3QkgGAGBKrFmzJtu2bcvRRx+dpUuXZs2aNZPa/j3veU9e9KIX5bjjjssRRxyx0z5XXHFFLrnkkixbtixLly59+ObAqVYPJf1hWrFiRbvppptm/LgLV1876W02ve/UaahkgiZ7M94EHtkCAOzdbrnllixZsmTYZcxKO/tuqurm1tqKx9rWlWQAAOgIyQAA0BGSAQCgIyQDAOzlZsM9ZrPNnn4nXksNALAXmz9/frZs2SIoj9Nay5YtWzJ//vzd3sdQXybSWluXZN2KFSv+eJh1AADsrRYsWJDNmzfnxz/+8bBLmVXmz5+fBQsW7Pb23rgHALAX22+//bJo0aJhl/G4IyTz2Cb7fObEM5oBgL2aG/cAAKDjSvJkeesdAMDjnivJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIYakqtqZVWtHR31LGEAAGaPoYbk1tq61tqqkZHdeO0xAABME9MtAACg47XUQ7Jw9bWT3mbT/GkoBACAHbiSDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANAZakiuqpVVtXZ0dHSYZQAAwCMMNSS31ta11laNjIwMswwAAHgE0y0AAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAJ19h10AM2/h6msn1X/T/GkqBABglnIlGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI7nJDO7nTMyyf6j01MHADCnuJIMAACdoYbkqlpZVWtHR139AwBg9hhqSG6trWutrRoZmeSv1AEAYBqZbgEAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0PEyEdgVLzIBgDnLlWQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANDZd9gFMLcsXH3tpPpvmj9NhQAAPApXkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgM6Uh+Sqem5VXVJVn5jqfQMAwEyYUEiuqkur6u6q+mbXfnJV3VZVt1fV6iRprd3ZWnvTdBQLAAAzYaJXki9LcvL4hqraJ8lFSU5JcmSS11XVkVNaHQAADMGEQnJr7fNJ7umaj0ly++DK8S+TfCzJaVNcHwAAzLg9mZN8SJLvjVvenOSQqjqoqi5OsryqztrVxlW1qqpuqqqbfvzjH+9BGQAAMLX2neodtta2JHnzBPqtTbI2SVasWNGmug4AANhde3Il+ftJnj1uecGgDQAA9mp7EpJvTHJYVS2qqickeW2Sa6amLAAAGJ6JPgLuo0m+nOTwqtpcVW9qrW1P8tYkf5fkliRXtta+NX2lAgDAzJjQnOTW2ut20f6ZJJ+Z0ooAAGDIpvzGvcmoqpVJVi5evHiYZcDscs7IbmwzOvV1AMAcNuWvpZ6M1tq61tqqkZHdCAUAADBNhhqSAQBgNhKSAQCgIyQDAEBHSAYAgI6QDAAAnaGG5KpaWVVrR0c9vgoAgNnDI+AAAKBjugUAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjuckAwBAx3OSAQCgY7oFAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6+w7z4FW1MsnKxYsXD7MMmFYLV187qf6b5k9TIQDAhHnjHgAAdEy3AACAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAZ6ghuapWVtXa0dHRYZYBAACP4I17AADQMd0CAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANAZakiuqpVVtXZ0dHSYZQAAwCMMNSS31ta11laNjIwMswwAAHgE0y0AAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOjsO8yDV9XKJCsXL148zDLgcWvh6msn1X/T/D+Y/EHOGR3OsXdxXACYCkO9ktxaW9daWzUyMjLMMgAA4BFMtwAAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0Nl3mAevqpVJVi5evHiYZTAHLFx97aS32TR/GgphdjpnZJL9R6enDgBmjaFeSW6trWutrRoZmeRfUAAAMI1MtwAAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdIRkAADoCMkAANARkgEAoCMkAwBAR0gGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCgIyQDAEBHSAYAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6AjJAADQEZIBAKAjJAMAQEdIBgCAjpAMAAAdIRkAADpCMgAAdPad6h1W1W8k+VCSXya5obV2xVQfAwAAptOEriRX1aVVdXdVfbNrP7mqbquq26tq9aD5lUk+0Vr74yS/P8X1AgDAtJvodIvLkpw8vqGq9klyUZJTkhyZ5HVVdWSSBUm+N+j2q6kpEwAAZs6EQnJr7fNJ7umaj0lye2vtztbaL5N8LMlpSTZnLChPeP8AADCb7Mmc5EPy6yvGyVg4flGS85NcWFWnJlm3q42ralWSVUly6KGH7kEZALPDwtXXTqr/pved+rg4NnPHXjXOzhmZZP/R6aljL7VX/bOeJlN+415rbWuSN0yg39oka5NkxYoVbarrAACA3bUn0yG+n+TZ45YXDNoAAGCvtich+cYkh1XVoqp6QpLXJrlmasoCAIDhmegj4D6a5MtJDq+qzVX1ptba9iRvTfJ3SW5JcmVr7VvTVyoAAMyMCc1Jbq29bhftn0nymSmtCAAAhmyoj2irqpVVtXZ01B2lAADMHkMNya21da21VSMjk3xMCwAATCMv+wAAgI6QDAAAHSEZAAA6QjIAAHSEZAAA6FRrbXgHr1qZZGWS/y/Jd2bgkAcn+ckMHIfHD2OG3WHcMFnGDJNlzOy+57TWnv5YnYYakmdaVd3UWlsx7DrYexgz7A7jhskyZpgsY2b6mW4BAAAdIRkAADpzLSSvHXYB7HWMGXaHccNkGTNMljEzzebUnGQAAJiIuXYlGQAAHtOcCMlVdXJV3VZVt1fV6mHXw+xRVZdW1d1V9c1xbU+rqr+vqu8M/nzqoL2q6vzBOPpGVf2T4VXOsFTVs6tqfVV9u6q+VVV/Nmg3btipqppfVRuq6uuDMfPng/ZFVfXVwdj466p6wqB9/8Hy7YP1C4dZP8NTVftU1caq+pvBsjEzgx73Ibmq9klyUZJTkhyZ5HVVdeRwq2IWuSzJyV3b6iSfba0dluSzg+VkbAwdNvhZleQvZqhGZpftSd7WWjsyyYuTlKJXPgAAAu9JREFU/MngvynGDbvyQJITW2vLkjw/yclV9eIk/znJB1pri5P8NMmbBv3flOSng/YPDPoxN/1ZklvGLRszM+hxH5KTHJPk9tbana21Xyb5WJLThlwTs0Rr7fNJ7umaT0vyV4PPf5Xk9HHtl7cxX0lyYFU9c2YqZbZorf2gtfYPg8/3ZuwvsENi3LALg3/29w0W9xv8tCQnJvnEoL0fMw+NpU8keVlV1QyVyyxRVQuSnJrkLwfLFWNmRs2FkHxIku+NW948aINdeUZr7QeDzz9M8ozBZ2OJRxj8SnN5kq/GuOFRDH5t/rUkdyf5+yR3JPlZa237oMv4cfHwmBmsH01y0MxWzCzwX5O8I8mDg+WDYszMqLkQkmG3tbHHv3gEDDuoqicnuSrJv2qt/eP4dcYNvdbar1prz0+yIGO/4TxiyCUxi1XVK5Lc3Vq7edi1zGVzISR/P8mzxy0vGLTBrvzooV+HD/68e9BuLJEkqar9MhaQr2itfXLQbNzwmFprP0uyPsmxGZt6s+9g1fhx8fCYGawfSbJlhktluI5L8vtVtSlj00RPTPLBGDMzai6E5BuTHDa4I/QJSV6b5Joh18Tsdk2S1w8+vz7J1ePa/2jwtIIXJxkd9+t15ojBPL9LktzSWnv/uFXGDTtVVU+vqgMHn5+Y5OUZm8u+PsmrB936MfPQWHp1ks81LzWYU1prZ7XWFrTWFmYst3yutXZGjJkZNSdeJlJVv5exuT37JLm0tXbukEtilqiqjyY5PsnBSX6U5D8k+XSSK5McmuS7Sf5Za+2eQTi6MGNPw/h5kje01m4aRt0MT1X9TpIvJPk/+fVcwbMzNi/ZuGEHVXV0xm6q2idjF6eubK29u6qem7GrhE9LsjHJH7bWHqiq+Un+e8bmu9+T5LWttTuHUz3DVlXHJ/m3rbVXGDMza06EZAAAmIy5MN0CAAAmRUgGAICOkAwAAB0hGQAAOkIyAAB0hGQAAOgIyQAA0BGSAQCg8/8DBrYqnepC3iIAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(8, 8))\n",
"sns.heatmap(df_na_zero.corr( ), square=True,\n",
" annot=True, fmt=\".1f\", linewidths=0.1, cmap=\"RdBu\");"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.subplots(figsize=(8, 8))\n",
"sns.heatmap(df_na_drop.corr( ), square=True,\n",
" annot=True, fmt=\".1f\", linewidths=0.1, cmap=\"RdBu\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__[2]__ Между какими переменными корреляция самая высокая? Почему? Она отрицательная или положительная. Прокомментируйте все клетки, где она оказалась $\\ge 0.3$ либо $\\le -0.2$. \n",
"\n",
"__Ответ:__ "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__[1]__ Дамми-переменная это переменная, которая принмает два значения. Либо $1$, если человек обладает закодированным в ней свойством, либо $0$, если не обладает. В нашей таблице все дамми-переменные оканчиваются на суффикc `dummy`. \n",
"\n",
"Возьмите переменную `instagram_dummy`. Она принимает значение $1$, если у пользователя на страничке есть ссылка на инстаграм. Возьмите переменную `male_dummy`. Она примает значение $1$, если пользователь парень. Постройте картинку, на которой будет видно как между собой соотносятся владельцы инстаграмма по полу. "
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"dff.plot(kind='bar', stacked=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Правда ли, что девушки чаще указыают наличие инстаграмма на своей страничке?\n",
"\n",
"__Ответ:__ Да. Во втором столбике синяя фигня толще. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__[1]__ Категориальная переменная обычно принимает значения из какого-то фиксированного множества. Например, переменная `political_cat` описывает к какой категории относятся политические взгляды юзера. Постройте для этой переменной столбиковую диаграмму. Разбиритесь по [документации](http://seaborn.pydata.org/generated/seaborn.countplot.html#seaborn.countplot) как сделать у столбиков горизонтальное расположение. Можно ли сделать исходя из картинки вывод, что в вышке одни либералы? Почему? "
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFuCAYAAAC/a8I8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucVWXd9/HPFwRFwErRVMoGDQ+JCjmYeShM49YixTvJysPjITUPPPoUdrg1xbK673ysnrJSNMW01DR73UbdoikokiIjJ/GUWmSkhUgeBg8o/J4/1jW22G5m9oY9XMPM9/16zWvWutZa1/qtQb/72tfee21FBGZmtv71yl2AmVlP5QA2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYOPvjgAPzjH/807qcmDmBj6dKluUsw65EcwGZmmTiAzcwycQCbmWUi347S+m89JHY+5oLcZZh1eQ9cdGytu6qWnTwCNjPLxAFsZpaJA9jMLBMHsJlZJg5gM7NMHMBmZpk4gM3MMnEAm5ll4gA2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYzy8QBbGaWiQPYzCyTHh/Akr4u6azS+jclnSkpJB2c2t4h6RVJE9P6DpJulfSApBmSdk7tkyVdKqlF0h8ljUntvSVdJGm2pAWSTkntoyRNKZ17Qukc0yU1l7a1VjsmtQ2StKi9c5lZ19PjAxi4EjgWQFIv4NPAYmBOWzvwWWB+6ZhJwPiI2BOYAPy4tK0J2Av4OHCppE2AE4EXImIkMBI4SdKQTrqems4l6eT0QNHyxssvdVIpZtaejXIXkFtELJL0nKQRwDuBucBzwDPAxpI2Bw4FbgH6ShoA7APcKL35xacbl7r8ZUSsAh6X9CdgZ2A0sLukI9I+bwOGAiuA/SXNS+1bApeX+vq5pFfScr9Se9sxAfww1dZmTef6c8V1T6J4IKH/1kP81dhmGfT4AE6uAI4DtqYYEbf5BfBfwGMUYdmX4lnD8xExfA19VYZZUHxF9fiImFreIGkUMCMi2qYqJgADSrscFREtaVtrqX1GRIyRNAh4FPh9udtq5zKzrsdTEIVfAwdTPGUvB9dvgBGUQjkiXgT+LGkcgAp7lI4ZJ6mXpB2A7SnCeypwqqQ+6ZgdJfVvQN0vAW8AvUttnXUuM2swj4CBiFghaRrFyHZl29RCRKwAmgEkHVQ65CjgJ5LOBfoA1/OvOeKngPuBzYDPR8Srkq6gmBueo6LzZ4Gx61DyPpLuAfoD36MI4jaNPpeZdRJFePovvfg2BxgXEY+vQz+TgSkRcVOjalsf+m89JHY+5oLcZZh1eQ9cdGzHOxXU8S6egkDS+4AngDvWJXzNzOrV46cgIuJhirnaRvR1XCP6MbOeocePgM3McnEAm5ll4gA2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYzy8QBbGaWiQPYzCwTB7CZWSa+IbvR3NwcLS0tucsw6058Q3Yzs67MAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYzy2Sj3AVYfiueeYinvr5b7jLatd15D+YuwazhPAI2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYzy8QBbGaWiQPYzCwTB7CZWSYOYDOzTBzAZmaZOIDNzDJxAJuZZeIANjPLxAFsZpaJA9jMLJNODWBJTZIWpuVdJM2X9G5JX5C0MP2cVdo3JH0+rfeW9DdJk9P6ZEmLJfVO66em/Zskfb2tn7Ttm5LOlDRK0pRS+wRJE9PydEnNaflCSa2l/b4s6cFU739K2l/SPEkPS3olLc9L+y6SNCgtX1u63omSJlT5O/SWdJGk2ZIWSDplTect15mOu0XS8TXUf3ap/wsa8W9pZo23Xr6UU9Jg4Drgs8BWwPHABwABsyTdBfwTeAIYC1wKHAz8taKrvwH/BvwOOCztD3AlcDPwfUm9gE8DewEdftOkpK2AA0vrh6S+PxARL0vaPCKWAcMlNQFTImJ4lX52A4aVmlal66t0IvBCRIyUtDEwU9JtwM6V56047jLgvoi4qoP6RwND0/ULuEXShyLi7orjTgZOBhj8tj7V/zhm1qnWxxTEAOBW4K6IeAjYD/h1RCyPiFaK4Nw/7fsa8ISkXYFjgGsq+roGOEbSMODxtD8RsQh4TtIIYDQwNyKeS8e0jV7nAf+nSn1fA75VWj8IuCoiXk59L6vxOi8Ezi+tLwZGVNlvNHBsqmcWsAVFYLZ33onAocDFNdQ/Ov3MBeZQBPvQyoMiYlJENEdE8+b9e9dyfWbWYOsjgN9NERAHSNqlhv2vAr5EMTr/R8W2vwN9gLPTfmVXAMdRjK6vLLXPiIjhadT6vYpjmoBhEfGbGupqzz5AKzC/1HYD0C9NPfyu1C5gfFtNETEkIm7roP/XKEbA51S0N/HW+gV8u9T/eyPip2txTWbWydZHAD8SEdcB4ylC5B5grKRNJfUHDgdmtO0cEQ9QTFNUBmybq4CtImJORfuvKaYtRgJTa6ztfFYftQLcDhwvaVOAKlMB1UwEzis3pBH+4RExDPhYadNU4FRJfVL/O6a/Q3vn/TbFCPuw9OygvfqnAidIGpD6GZymKcysi1kvc8AAEXGXpEcp5n4nA/enTVdExNw0v9q27yEAko6o0s9vgd9WaV8haRrwfESsrLGsxZVzoxFxq6ThQIukFRSj1//ooJ9ZEfFk+RracQXFyHWOJAHPAmM7Om9EvCbpNGCSpLYpm2r135aeadxbdE8rcDSwpIbazGw9UkTkrqEh0otvc4BxEfF47no2JLsP7hdTTnlv7jLatd15D+Yuwawe1V6Af4tu8T5gSe+jeEfEHQ5fM9tQrLcpiM4UEQ8D2+euw8ysHt1iBGxmtiFyAJuZZeIANjPLxAFsZpaJA9jMLBMHsJlZJg5gM7NMHMBmZpk4gM3MMnEAm5ll4gA2M8vEAWxmlokD2MwsEwewmVkm3eJ2lLZu+m6zK9ud15K7DLMexyNgM7NMHMBmZpk4gM3MMnEAm5ll4gA2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wUEblrsMwGbDcg9jh7j9xltGvm+Jm5SzCrh2rZySNgM7NMHMBmZpk4gM3MMnEAm5ll4gA2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYzy8QBbGaWiQPYzCwTB7CZWSYOYDOzTDaoAJa0m6RfSbpf0mxJvXPXZGa2tjbKXUCtJG0FXA58PiLm5a7HzGxdZR0BS2qS9IqkeZKeknSJpOmSmtP2CyW1pt2PAFYB10laKOmsUj9Hp1HxPEmXtY2MJbVK+p6khyTdIWlLSfun/R4unXte2v+8NLJeKGmSJKX26ZL+X9p3oaS9UvtESRPS8kGSolT7TyS1pHNfUKp1kaRBaXmQpEVpubek/5v6XyBpfHl/SQMkzZQ0uko/10paWOrnonQdCySd0hn/dma27moOYEln1tJWp97A4xExHDivou+tgANLTVsCmwHNwN7ASZJGSNoFOBLYN/WzEjgqHdMfaImIXYG7gPMjYkba72PAkxExPK0DXBIRIyNiGNAPGFM6/6Zpv9OAK6tcy3nAE6X1cyKiGdgd+LCk3Tv4W5wMNAHDI2J34OelbX2AG4EfR8Rt5YMk7QYMKzWdCLwQESOBkenvNKTyZJJOTg8QLa+3vt5BaWbWGeoZAf+vKm3HreP5+wGvrmHb14BvldYF3BwRyyOiFbgZ2J8ipPcEZqeR7IHA9umYVcANaflaYL8O6jlA0ixJDwIfAXYtbbsOICLuBjaT9PY3C5M+CcwG/lba/1OS5gBzUz/vK22blmqdVmo7CLgsIt5I51lW2nY5sE1ElEO5zYXA+aX10cCxqf9ZwBbA0MqDImJSRDRHRHOfAX2qdGtmna3DOWBJnwE+CwyRdEtp00BgWfWjarYt8HSV9iZgWESMT7MAAC8Cb6+yr4CrI+KrNZwv1rRB0ibAj4HmiPirpInAJu0c27beGzibYrR8U+prCDABGBkR/5Q0uaKvAyJiaZpCaKmh7seB5ySdEBHl0fc+QCswv3wpwPiImFpDv2aWUS0j4D8AFwOPpt9tP18E/m0dzz8OmFml/XxWH9VBMZo7XNKmkvoDhwMzgDuAI9KUBZI2l/SedEwvirljKB5E7mmnlraAXCppQOm4Nkem/vejeIr/Qmo/GvhdRCwt7bsZsBx4QdI7gUPaOW+b24FTJG3Udh2lbd8EvgB8KfXXZiIVUzfAVOBUSX1SPzumv5eZdTEdjoAj4i/AX4APNvLEkr5DMUf7oyqbF6en+uU6Zkq6EXiAYp738oiYm/o6F7hNUi/gdeD0VPNyYK+0fQkpRKuJiOclXQ4sBP5OMaVQ9qqkuRTzsSeU2t8JfLeir/lp30eBv1L9QabSFcCOwAJJr1NMO1xS6vM5SV8Hfgh8KjXPiognJTVV9NMEzEkvIj4LjK3h/Ga2nilijc/KV99R2pvif/5dgL4UT72XR8RmnVfeupHUGhEDGtDPdGBCRNQyXbDBGbDdgNjj7D1yl9GumeNreQwz6zLU8S71vQh3CfAZivnIfsDnqD56NTOzGtT1PuCIeALoHRErI+Iq4ODOKasxGjH6Tf2M6q6jXzPLp55Pwr0sqS8wL83fPsMG9lFmM7OupJ4APSbtfwbFi1vvBj7ZGUWZmfUE9YyAlwIrIuJV4IL0cd+NO6csM7Pur54R8B3ApqX1fsDvG1uOmVnPUU8Ab5I+AgxAWt60nf3NzKwd9QTwcknvb1uRtCfwSuNLMjPrGeqZAz4LuFHS0xRvMt6adj5ZZmZm7as5gCNitqSdgZ1S02MR8eZ9DCV9NCJub3SBZmbdVb0fxHg9Ihamn8qbyP5XA+syM+v2GvlBipo++2xmZoVGBnBtd/UxMzPAHyU2M8umkQG8qIF9mZl1e7V8JdG/t7c9Im5Ov9vdz8zMVlfL29A+0c62oPhyTNuA7bzVzr7huVkGtXwl0fHroxAzs56mnk/CIenjFF+x/uY3/EbE1xtdlJlZT1Dzi3CSLqX46PF4ivf8jgPe0+5BZma2RvW8C2KfiDgW+GdEXEDxLck7dk5ZZmbdXz0B3Hbns5clbUvx9e/bNL4kM7OeoZ454CmS3g5cBMyheAfEFZ1SlZlZD1DP3dC+kRZ/JWkKxQ3aX+icsszMur96XoQ7PY2AiYjXgF6STuu0yszMurl65oBPiojn21Yi4p/ASY0vycysZ6hnDri3JEVEAKRvRe7bOWXZ+vTSY49x14c+nLuMdn347rtyl2DWcPUE8K3ADZIuS+unpDYzM1sL9QTwlylC99S0fjt+F4SZ2Vqr510Qq4CfpB8zM1tHtdyO8pcR8SlJD1LlWy8iYvdOqczMrJurZQR8Zvo9pjMLMTPraTp8G1pEPJMWT4uIv5R/AL8P2MxsLdXzPuCPVmk7pFGFmJn1NLXMAZ9KMdLdXtKC0qaBgL9GwcxsLdUyB/wL4H+AbwNfKbW/FBHLOqUqM7MeoJYAjohYJOn0yg2SNncIm5mtnVpHwGOAByjehqbStgC274S6zMy6vVq+lHNM+j2k88sxM+s5ankR7v3tbY+IOY0rx8ys56hlCuLidrYF8JEG1WJm1qPUMgVxwPooxMysp6n5ZjyS+lDcCe1DqWk6cFlEvN4JdZmZdXv13I7yJ0Af4Mdp/ZjU9rlGF2Vm1hPUE8AjI2KP0vqdkuY3uiAzs56inntBrJS0Q9uKpO2BlY0vycysZ6hnBHw2ME3Sn9J6E3B8wysyM+sh6hkBzwQuA1YBy9LyvbUeLOlYSQskzZd0jaQmSXemtjskbZf2myzpiNJxCyU1peXpkprT8oWSWtPygNTHHEkPSjqsdHyTpFckzZP0lKRL2usrrX859TNf0n9K2j8d/3Cpr3lp30WSBqXlayUtTMsTJU0o1dDW3lvSRZJmp2s/ZU3nLdeZjrtF0vE11H92qf8L1vDvcbKkFkktL7zu11HNcqhnBPwz4EXgG2n9s8A1wLiODpS0K3AusE9ELJW0OXA1cHVEXC3pBOAHwNhaCpG0FXBgqelV4PCIeDGF4X2Sbknf4NwbeDwihks6Dmhury9JhwCHAR+IiJdL97sYnh4IpkTE8Co17QYMKzWtYvWPbbc5EXghIkZK2hiYKek2YOfK81YcdxlwX0Rc1UH9o4GhwF7p/LdI+lBE3F0+LiImAZMAdho48C3fdGJmna+eEfCwiPhcRExLPycBu9Z47EeAGyNiKUAKtA9S3GcCiiDfr45avgZ8q7Qu4Fvpdpm/BwYD70zb+lEEdK19HQRcFREvl2qtxYXA+aX1xcCIKvuNBo5NI+hZwBYUgdneeScCh1L9QzGV9Y9OP3OBORTBPrTGazCz9aieAJ4jae+2FUkfAFoaX1KHmigeDH5TajsK2BLYM41O/wFskrZtCzxdR19rYx+gFSi/K+QGoF+aevhdqV3A+IgYnn6GRMRtHfT/GsUI+JyK9ibeWr+Ab5f6f29E/HQtrsnMOlk9Abwn8Ic057mIYv53ZJqzXND+odwJjJO0BRS3sQT+AHw6bT8KmFFjHeez+kgT4G3Akoh4XdIBwHtK28ax5hvHV+vrduB4SZuWau3IROC8ckNELI+IwyNiGPCx0qapwKnpgy1I2lFS/w7O+22KEfZhaTqnvfqnAidIGpD6GZymKcysi6lnDvjgtT1JRDwk6ZvAXZJWUjw9Hg9cJels4FlWf0fFNySdlZaHAD8EPpHWF1fOZwI/B36j4pubW4BHASR9B+gP/GgNpb2lr4i4VdJwoEXSCorR6390cImzIuLJthcLO3AFxch1jiRRXPvYjs4bEa9JOg2YJGn/duq/TdIuwL1F97QCRwNLaqjNzNYjFa9TdW2SpkfEqNx1dFc7DRwYk0a0e9O77D589125SzCrR7UX4N+inimInDyHaWbdzgYRwBFxTe4azMwabYMIYDOz7sgBbGaWiQPYzCwTB7CZWSYOYDOzTBzAZmaZOIDNzDJxAJuZZeIANjPLxAFsZpaJA9jMLBMHsJlZJg5gM7NM6rkhu3VTA3fayffbNcvAI2Azs0wcwGZmmTiAzcwycQCbmWXiADYzy8QBbGaWiQPYzCwTB7CZWSYOYDOzTPxJOGPJ4he45Iu/yV3GBu2Miz+RuwTbAHkEbGaWiQPYzCwTB7CZWSYOYDOzTBzAZmaZOIDNzDJxAJuZZeIANjPLxAFsZpaJA9jMLBMHsJlZJg5gM7NMHMBmZpk4gM3MMnEAm5ll4gA2M8vEAWxmlokDGJC0m6RfSbpf0mxJvXPXZGbdX4//SiJJWwGXA5+PiHm56zGznqNbjoAlNUl6RdI8SU9JukTSdEnNafuFklrT7kcAq4DrJC2UdFapn6PTqHiepMvaRsaSWiV9T9JDku6QtGVqPymNoOenEfWmpb4mS/pz6muFpEGSRkmaUqX+4yRdUlq/RNJxaXmRpEEV+0+RNCotj5Z0r6Q5km6UNKAhf1Qza7huGcBAb+DxiBgOnFfekEa8B5aatgQ2A5qBvYGTJI2QtAtwJLBv6mclcFQ6pj/QEhG7AncB56f2myNiZETsATwCnFhR0xdTX0837lJXu7ZBwLnAQRHxfqAF+MIa9j1ZUoukltaXX+iMcsysA911CqIf8Ooatn0N+BZwXVoXRXAuB5B0M7A/xah4T2C2pLY+l6RjVgE3pOVrgZvT8jBJFwJvBwYAU2uoaX9J84AAfhgRV6b2IyXtl5YHU4Rpm2mSVgEPAieV2vcG3gfMTDX3Be6t9keIiEnAJIDtth4a1fYxs87VXQN4W6qPMpuAYRExPgUUwIsUgVlJwNUR8dUaztcWYJOBsRExP00ZjKqhphkRMSaNXh+VdH1qvyEizoBiCqLimAOA54CfAcdU1Hx7RHymhprNLLPuOgUxDphZpf18/jVd0GYWcLikTSX1Bw4HZgB3AEekKQskbS7pPemYXhRzxwCfBe5JywOBZyT14V/TFUh6L0X4P9xOzS8Bb1BMVXQoIgJYRjHKbXMfsG86H5L6S9qxlv7MbP3rdiNgSd+hmKP9UZXNiyPi7nJDRMyUdCPwAMU87+URMTf1dS5wm6RewOvA6cBfgOXAXmn7Eoq5YiimN2YBz6bfAyVtC/w3cHJErKhS0z6S7kk1fy8iXiqNztdkSpqCaKWY4z44XcuzaeR9naSN077nAn/sqEMzW/9UDKSsHpJaI6LbvLtgu62HxpeO+m7uMjZoZ1z8idwlWNfS4SgKuu8UhJlZl+cAXgvdafRrZvk4gM3MMnEAm5ll4gA2M8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwycQCbmWXiADYzy8QBbGaWiQPYzCwTB7CZWSa+IbvR3NwcLS0tHe9oZrXyDdnNzLoyB7CZWSYOYDOzTBzAZmaZOIDNzDJxAJuZZeIANjPLxAFsZpaJA9jMLBN/Es4YvMU74rRDDsxdxgbtnGtvyl2CdS3+JJyZWVfmADYzy8QBbGaWiQPYzCwTB7CZWSYOYDOzTBzAZmaZOIDNzDJxAJuZZeIANjPLxAFsZpaJA9jMLBMHsJlZJg5gM7NMHMBmZpk4gM3MMnEAm5ll0iMCWNIiSYPa2X6cpEvWZ01mZj0igM3MuqL1HsCSmiQtTMt9JP1J0iWSJks6orTfQklNaXmQpBWS5kl6QtKU1D6qtLy5pOclTUjrB0n6o6SbgL7AxZIekXR66dy/lDQXOBwYJuk+STMlbZn22UHSrZIekDRD0s6pfbKkSyW1pHOMSe29JV0kabakBZJOqawzrU+QNFHS/umaHpb0Slqel/Z5c9Sern9RWn7LaF1Ss6Tpabm/pCsl3S9prqTDGvVvZ2aNlXsEfDLQWsN+vYHFETEc+Nwa9vkq8FRp/UfAx4EzgQHA1UAzcFYK2COBVyNiBPAkEMA+wA3AV1Ifk4DxEbEnMAH4can/JmCvdI5LJW0CnAi8EBEjgZHASZKGrOmiImJGuqaPAU9GxPC0vi7OAe6MiL2AA4CLJPWv3EnSyekBpGX5q6+t4ynNbG1slOvEKRSOpwi1Yan5IknnpuUdSrsPAJa109dgYG/g12n9HUCfiHg8rS8DFkTE8jTC3IMiIH+fulgA9I2IVZLuAC6TNIAikG+U3vyC041Lp/1lRKwCHpf0J2BnYDSwe2kk/zZgKLAC2L9tdAtsCVze0d8ImCZpJcUDUNmRkvYDXgcuAP5e2jYaOLTtmQCwCbAd8Ei5g4iYRPEAw+At3uGvxjbLIFsAU4xMJ1GEU5uzI+ImKKYgSu1DgMXt9HU+8A2KwISOvxJaHewjimcHz7czIq0MrUjHjY+Iqat1Jo0CZkRE21TFBIoHlY4cEBFL01RES6n9hog4Q9JQYDpQnmYQ8MmIeKyG/s0so1xTEG8DxgJX1rj/OGDKGrbtADRFxG1tDRGxDFgp6b1pdLw5xci0PzCCYsTbAhyUDtkd2FVSL+BAYHZEvAj8WdI4ABX2KNckqZekHYDtgceAqcCpkvqkY3as9vS/gZbx1gfRqcB4pWG7pBGdeH4zWwe5RsDvAiZExBulp/dVSTqNYq74w5LOoBg5binpUOBFiqf+x1c5dDzwP8A8innmYymmO34YEf+QdD0wNk0LLErH/IFiJHt4Wj8K+EmaFukDXA/MT9ueAu4HNgM+HxGvSrqCYm54TgrAZykeaBrt3yUNp/hbnF2x7RvA94EF6QHlz8CYTqjBzNaRIrr29J+kicD0iJheahsDDIqIyTX2sQhojoila9h+XNp+Ro39TQamtE2XbOgGb/GOOO2QA3OXsUE759pu8Z+CNU5H06BA3jngWt0ELKlom8PqL4iZmW1wunwAR8TCKm1P19lHUwfbJwOT6+jvuHrOb2ZWTe73AZuZ9VgOYDOzTBzAZmaZOIDNzDJxAJuZZeIANjPLxAFsZpaJA9jMLBMHsJlZJg5gM7NMHMBmZpk4gM3MMnEAm5ll4gA2M8uky9+Q3Tpfc3NztLS0dLyjmdWqphuyewRsZpaJA9jMLBMHsJlZJg5gM7NM/CKcIekl4LHcdXRgEFD1W627iK5eH3T9Grt6fVB7jUsj4uCOduryX8pp68VjEdGcu4j2SGrpyjV29fqg69fY1euDxtfoKQgzs0wcwGZmmTiADWBS7gJq0NVr7Or1QdevsavXBw2u0S/CmZll4hGwmVkmDmAzs0wcwD2cpIMlPSbpCUlfyV1PJUlXSloiaWHuWqqR9G5J0yQ9LOkhSWfmrqlM0iaS7pc0P9V3Qe6a1kRSb0lzJU3JXUs1khZJelDSPEkNuXuV54B7MEm9gT8CHwUWA7OBz0TEw1kLK5H0IaAV+FlEDMtdTyVJ2wDbRMQcSQOBB4CxXeVvKElA/4holdQHuAc4MyLuy1zaW0j6AtAMbBYRY3LXU0nSIqA5Ihr2YRGPgHu2vYAnIuJPEbECuB44LHNNq4mIu4FluetYk4h4JiLmpOWXgEeAwXmr+pcotKbVPumny426JL0L+DhwRe5a1icHcM82GPhraX0xXSg8NjSSmoARwKy8lawuPbWfBywBbo+ILlVf8n3gS8Cq3IW0I4DbJD0g6eRGdOgANmsASQOAXwFnRcSLuespi4iVETEceBewl6QuNZUjaQywJCIeyF1LB/aLiPcDhwCnp+mxdeIA7tn+Bry7tP6u1GZ1SHOrvwJ+HhE3565nTSLieWAa0OFNYtazfYFD0xzr9cBHJF2bt6S3ioi/pd9LgF9TTOGtEwdwzzYbGCppiKS+wKeBWzLXtEFJL3L9FHgkIr6bu55KkraU9Pa03I/iBddH81a1uoj4akS8KyKaKP4bvDMijs5c1mok9U8vsiKpPzAaWOd35jiAe7CIeAM4A5hK8eLRLyPiobxVrU7SdcC9wE6SFks6MXdNFfYFjqEYtc1LPx/LXVTJNsA0SQsoHnBvj4gu+TavLu6dwD2S5gP3A7+NiFvXtVO/Dc3MLBOPgM3MMnEAm5ll4gA2M8vEAWxmloltmRmVAAABXUlEQVQD2MwsEwewWTck6SxJm+auw9rnt6GZdUOdcecuazyPgM0ykXSspAXpXr3XSGqSdGdqu0PSdmm/yZKOKB3Xmn6PkjRd0k2SHpX0cxX+N7AtxQcwpuW5OqvFRrkLMOuJJO0KnAvsExFLJW0OXA1cHRFXSzoB+AEwtoOuRgC7Ak8DM4F9I+IH6d66B3gE3LV5BGyWx0eAG9sCMiKWAR8EfpG2XwPsV0M/90fE4ohYBcwDmjqhVuskDmCzru8N0v+rknoBfUvbXistr8TPajcoDmCzPO4ExknaAiBNQfyB4m5gAEcBM9LyImDPtHwoxbdadOQlYGCjirXO4UdLswwi4iFJ3wTukrQSmAuMB66SdDbwLHB82v1y4L/TnbhuBZbXcIpJwK2Sno6IAxp/BdYIfhuamVkmnoIwM8vEAWxmlokD2MwsEwewmVkmDmAzs0wcwGZmmTiAzcwy+f+M+j0I08w/zwAAAABJRU5ErkJggg==\n",
"text/plain": [
"