
A free lunch to reduce forecast error variance
Implementation
Let yt ∈ Rm be a vector of m observed time series we are interested in forecasting.
The FLAP method involves three steps:
1. Form components. Form ct = Φyt ∈ Rp, a vector of p linear combinations

of yt at time t, where Φ ∈ Rp×m. We call ct the components of yt and the
component weights Φ are known in the sense that they are chosen by the user
of FLAP. Let zt =

[
y′t, c

′
t

]′ be the concatenation of series yt and components
ct. zt will be constrained in the sense that Czt = ct −Φyt = 0 for any t where
C =

[
−Φ Ip

]
is referred to as the constraint matrix.

2. Generate forecasts. Denote as ẑt+h the h-step-ahead base forecast of zt.
The method used to generate forecasts is again selected by the user, and any
prediction method can be used.
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3. Project the base forecasts. Let z̃t+h be a set of projected forecasts such
that,

z̃t+h = Mẑt+h (1)
with projection matrix

M = Im+p −WhC
′(CWhC

′)−1C, (2)
where Var(zt+h− ẑt+h) = Wh is the forecast error covariance matrix. In practice
a plug-in estimate can be used.
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Theoretical Properties
Key results
1. The forecast error variance is reduced with
FLAP. The variance reduction matrix is positive
semi-definite:

Var(yt+h − ŷt+h)− Var(yt+h − ỹt+h)

= JWhC
′(CWhC

′)−1CWhJ
′ (3)

2. The forecast error variance monotonically de-
creases with increasing number of components. The
value of each of the diagonal elements of

Var(yt+h − ŷt+h)− Var(yt+h − ỹt+h)

is non-decreasing as p increases.
3. The forecast projection is optimal to achieve
minimum forecast error variance of each series. The
projection is equivalent to the mapping

ỹt+h = Gẑt+h,

where G =
[
g1 g2 . . . gm

]′ ∈ Rm×(m+p) is the
solution to

argmin
G

GWhG
′ s.t. GS = I

or

argmin
gi

g′iWhgi s.t. g′isj = 1(i = j),

where S =

[
Im
Φ

]
=
[
s1 · · · sm

]
.

Positive condition
For the first component to have a guaranteed
reduction of forecast error variance, the fol-
lowing condition must be satisfied:

φ1Wy,h 6= wc1y,h,

where φ1 is the weight vector of the first component,
Wy,h = Var(yt+h − ŷt+h), and wc1y,h is the forecast
error covariance between the first component and
the original series.
A new component reduces the error variance as
long as the its forecast covariance with the origi-
nal series cannot be expressed as a linear com-
bination of the forecast covariance between the
already existing time series, in which case it adds
no information.
Example Wh = Im+p

Var(yt+h − ŷt+h)− Var(yt+h − ỹt+h)

= JC ′(CC ′)−1CJ ′

= Φ′(ΦΦ′ + I)−1Φ

Let Φ consist of orthogonal unit vectors:
ΦΦ′ = Ip when p ≤ m

Φ′Φ = Im when p = m.

tr(Var(yt+h − ŷt+h)− Var(yt+h − ỹt+h))

=
1

2
tr(Φ′Φ) =

1

2
p
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We have multivariate time series:

• which share similar patterns;
• with a better signal-noise ratio in the

linear combination

Can we find components that:
1. are easier to forecast;
2. can capture possible common signals;
3. can improve forecast of origi-

nal series.

Applications
We estimate Wh using a shrinkage estimator to ensure positive definitness and numerical stability.
We construct Φ using principal component analysis (PCA) and simulations from random distributions.
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## R package availabe on CRAN!
## CRAN.R-project.org/package=flap
install.packages("flap")

I am looking for a job! �

Projection matrix The matrix M is a projection onto the space where the constraint Czt = 0 is satisfied.
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