A free lunch to reduce forecast error variance

Implementation

Let $y_t \in \mathbb{R}^m$ be a vector of m observed time series we are interested in forecasting. The FLAP method involves three steps:

- 1. **Form components.** Form $c_t = \Phi y_t \in \mathbb{R}^p$, a vector of p linear combinations of y_t at time t, where $\Phi \in \mathbb{R}^{p \times m}$. We call c_t the components of y_t and the component weights Φ are known in the sense that they are chosen by the user of FLAP. Let $\boldsymbol{z}_t = \begin{bmatrix} \boldsymbol{y}'_t \end{bmatrix}$ $_t^{\prime},c_t^{\prime}$ t \int' be the concatenation of series y_t and components c_t . z_t will be constrained in the sense that $Cz_t = c_t - \Phi y_t = 0$ for any t where $\mathbf{C} = \begin{bmatrix} -\mathbf{\Phi} & \mathbf{I}_p \end{bmatrix}$ is referred to as the constraint matrix.
- 2. **Generate forecasts.** Denote as $\hat{\mathbf{z}}_{t+h}$ the *h*-step-ahead base forecast of \mathbf{z}_t . The method used to generate forecasts is again selected by the user, and **any** prediction method can be used.

3. **Project the base forecasts.** Let \tilde{z}_{t+h} be a set of projected forecasts such that,

where $Var(z_{t+h} - \hat{z}_{t+h}) = W_h$ is the forecast error covariance matrix. In practice a plug-in estimate can be used.

THEORETICAL PROPERTIES

LEFT: Visitor nights; RIGHT: Principal Components

History and Base Forecast

$$
\tilde{\boldsymbol{z}}_{t+h} = \boldsymbol{M} \hat{\boldsymbol{z}}_{t+h} \tag{1}
$$

with projection matrix

$$
\boldsymbol{M} = \boldsymbol{I}_{m+p} - \boldsymbol{W}_h \boldsymbol{C}' (\boldsymbol{C} \boldsymbol{W}_h \boldsymbol{C}')^{-1} \boldsymbol{C}, \qquad (2)
$$

2. The forecast error variance **monotonically** de- $W_{y,h} = \text{Var}(\bm{y}_{t+h} - \hat{\bm{y}}_{t+h})$, and $\bm{w}_{c_1y,h}$ is the forecast creases with increasing number of components. The error covariance between the first component and value of each of the diagonal elements of the original series.

FLAP forecasts with number of components p

Key results

$$
\begin{aligned} \text{Var}(\boldsymbol{y}_{t+h} - \hat{\boldsymbol{y}}_{t+h}) - \text{Var}(\boldsymbol{y}_{t+h} - \tilde{\boldsymbol{y}}_{t+h}) \\ &= \boldsymbol{J} \boldsymbol{W}_h \boldsymbol{C}' (\boldsymbol{C} \boldsymbol{W}_h \boldsymbol{C}')^{-1} \boldsymbol{C} \boldsymbol{W}_h \boldsymbol{J}' \end{aligned}
$$

 $\boldsymbol{\phi}_1 \boldsymbol{W}_{y,h} \neq \boldsymbol{w}_{c_1y,h},$

where ϕ_1 is the weight vector of the first component,

We have multivariate time series: • which share similar patterns;

(3)

 $Var(\boldsymbol{y}_{t+h} - \hat{\boldsymbol{y}}_{t+h}) - Var(\boldsymbol{y}_{t+h} - \tilde{\boldsymbol{y}}_{t+h}))$

is non-decreasing as p increases.

1. The forecast error variance is **reduced** with For the first component to have a **guaranteed** FLAP. The variance reduction matrix is positive **reduction of forecast error variance**, the folsemi-definite: lowing condition must be satisfied:

or

Positive condition

3. The forecast projection is **optimal** to achieve *bination of the forecast covariance between the* minimum forecast error variance of each series. The *already existing time series, in which case it adds* projection is equivalent to the mapping *no information.*

 $\tilde{\boldsymbol{y}}_{t+h} = \boldsymbol{G}\hat{\boldsymbol{z}}_{t+h},$

Example $W_h = I_{m+p}$

where
$$
G = [g_1 \ g_2 \ \dots \ g_m]' \in \mathbb{R}^{m \times (m+p)}
$$
 is the solution to
\nsolution to
\n
$$
\begin{aligned}\n\arg \min_{\mathbf{G}} G \mathbf{W}_h G' & \text{s.t. } G S = I \\
G & \text{for } \mathbf{\Phi} \Phi' = I_p \text{ when } p \le m \\
\arg \min_{g_i} g'_i \mathbf{W}_h g_i & \text{s.t. } g'_i s_j = 1 (i = j), \\
\text{where } S = \begin{bmatrix} I_m \\ \Phi \end{bmatrix} = [s_1 \cdots s_m].\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{where } S = \begin{bmatrix} I_m \\ \Phi \end{bmatrix} = [s_1 \cdots s_m].\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{where } S = \begin{bmatrix} I_m \\ \Phi \end{bmatrix} = [s_1 \cdots s_m].\n\end{aligned}
$$

A new component reduces the error variance as long as the its forecast covariance with the original series cannot be expressed as a linear com-

We estimate W_h using a shrinkage estimator to ensure positive definitness and numerical stability. We construct Φ using principal component analysis (PCA) and simulations from random distributions.

FORECAST LINEAR. AUGMENTED ROJEC'ILOP

50000 Australia Australia 30000 20000 Nights 3000 Regions 2000 Region Melbourne **Sydney** 1000 2000 Jan 2005 Jan 2010 Jan 2015 Jan 2020 Jan Month

Total number of nights spent by Australians away from home

• with a better signal-noise ratio in the linear combination

Can we find components that: 1. are easier to forecast;

2. can capture possible common signals; 3. **can improve forecast of original series**.

Applications

solu

Projection matrix The matrix M is a projection onto the space where the constraint $Cz_t = 0$ is satisfied.

Yangzhuoran Fin Yang • George Athanasopoulos • Rob J Hyndman • Anastasios Panagiotelis