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We have multivariate time series: Can we find components that:
« which share similar patterns; L. are easier to forecast;

A free lunch to reduce forecast error variance

Yangzhuoran Fin Yang « George Athanasopoulos « Rob J

IMPLEMENTATION

Let y; € R be a vector of m observed time series we are interested in forecasting.

The FLAP method involves three steps:

1. Form components. Form c¢; = ®y; € RP. a vector of p linear combinations
of y; at time ¢, where ® € RP*™. We call ¢; the components of y; and the
component weights ® are known in the sense that they are chosen by the user
of FLAP. Let z; = [yg, cg]/ be the concatenation of series y; and components
c:. z¢ will be constrained in the sense that Cz; = ¢; — ®y; = 0 for any t where
C=|—-® I, is referred to as the constraint matrix.

2. Generate forecasts. Denote as z; ), the h-step-ahead base forecast of z;.
The method used to generate forecasts is again selected by the user, and any
prediction method can be used.

History and Base Forecast
LEFT: Visitor nights; RIGHT: Principal Components
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3. Project the base forecasts. Let 2, be a set of projected forecasts such
that,

Zipn = Mzpp (1)
with projection matrix
M =I,.,—W,C'(Cw,C’)"'C, (2)

where Var(z;,;, — 2;15,) = W), is the forecast error covariance matrix. In practice
a plug-in estimate can be used.

~-LLAP forecasts with number of components p
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 with a better signal-noise ratio in the 2. can capture possible common signals;

linear combination 3. can improve forecast of origi-
nal series.

Hyndman ¢ Anastasios Panagiotelis

THEORETICAL PROPERTIES

Key results Positive condition
1. The forecast error variance is reduced with For the first component to have a guaranteed

FLAP. The variance reduction matrix is positive reduction of forecast error variance, the fol-
semi-definite: lowing condition must be satisfied:

Var(yp, — Yitn) — Var(Yppn — Yitn) (3) ¢1Wy,h 7 Weyy,h

/ N—1 /
= JW,C'(CW,C")" CW,J where ¢ is the weight vector of the first component,

2. The forecast error variance monotonically de- Wy, j, = Var(yep, — 9¢yp), and w3, is the forecast
creases with increasing number of components. The error covariance between the first component and
value of each of the diagonal elements of the original series.

A new component reduces the error variance as
long as the its forecast covariance with the origi-
is non-decreasing as p increases. nal series cannot be expressed as a linear com-
3. The forecast projection is optimal to achieve bination of the forecast covariance between the
minimum forecast error variance of each series. The already existing time series, in which case it adds
projection is equivalent to the mapping no information.

Var(th — Qt+h) — Var(th — gt+h>

5 . Example W; =1
Yirh = G2, p h = Sm+p

where G = [gl go ... gm]/ e Rmx(m+p) ig the Var(ygn — Yrn) — Var(Yirn — Yevn)
solution to —Jc'icc)h ey’
Y Y / —1
aromin GW, G st. GS =T =o(2® +1I) @
G Let ® consist of orthogonal unit vectors:
o &P’ = I, when p <m
arg min g, Wj,g; S.t. g;;sj =1 =J), ®'® = I, when p = m.
gi
tr(Var(ysrp — Ypon) — Var(Yern — Ypan))
where S = I :[31---3 ] 1 1
P ml = 5ir(®®) = op
APPLICATIONS

We estimate Wj, using a shrinkage estimator to ensure positive definitness and numerical stability.
We construct ® using principal component analysis (PCA) and simulations from random distributions.
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## R package availabe on CRAN! A yangzhuoranyang.com
## CRAN.R-project.org/package=flap €) @FinYang
install.packages("flap") % oyangzhuoranyang.bsky.social
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Projection matrix The matrix M is a projection onto the space where the constraint Cz; = 0 is satisfied.
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