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Forecast Linear Augmented Projection

(FLAP)

A model-independent post-forecast adjustment
method that can reduce forecast error variance.

m Averaging indirect forecasts from linear
combinations (components)
m Projecting forecasts of augmented series

m Free lunch: no additional data or information
needed



What to expect

Intuition with data
Literature

Properties

|
|

m Method formulation

|

m Empirical applications and simulation



Australian tourism data

m The data include tourism information on
seven states and territories which can be
divided into 77 regions

» For example, Melbourne, Sydney, East Coast

Visitor nights

The total number of nights spent by Australians
away from home recorded monthly




Melbourne and Sydney
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Total and Region
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Observation

1. Similar patterns are shared by different series.
2. Better signal-noise ratio in the linear
combination.



Observation

1. Similar patterns are shared by different series.
2. Better signal-noise ratio in the linear
combination.

One step further

Finding components that

1. are easy to forecast;

2. can capture the common signals;

3. can improve forecast of original series.



Forecast reconciliation

m Wickramasuriya, Athanasopoulos, and
Hyndman (2019): Projecting forecasts to be
consistent with the hierarchical structure

Forecast combination

m Combining forecasts of the target series

m Hollyman, Petropoulos, and Tipping (2021):
Combining direct and indirect forecasts

m Petropoulos and Spiliotis (2021): Combining
forecasts of selections and transformations
of the target series (“wisdom of data”)




m Bergmeir, Hyndman, and Benitez (2016):
Bagging ETS models to forecast

m Petropoulos, Hyndman, and Bergmeir
(2018): The benefits of bagging originate
from the model uncertainty

Dynamic factor model (DFM)

m Stock and Watson (2002a), Stock and
Watson (2002b)

m De Stefani et al. (2019): Machine learning
extension 9
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Components ¢; = dy, € RP
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Forecasts and FLAP of series
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If the base forecasts are unbiased, then the FLAP
forecasts are also unbiased.

Projection matrix

The matrix M is a projection onto the space
where the constraint Cz; = 0 is satisfied.

The projected forecast z;,, satisfies the
constraint Cz;,, = 0.

For z;,, that already satisfies the constraint,
the projection does not change its value:
Mz; ., =z



Nonnegative variance reduction

Under unbiasedness, the variance reduction is
positive semi-definite:

Var(yt+h — )7t+h) — Var(y trh— Y t+h)
— JW,C (CW,C)‘cw,
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Example W, =I,,,,

Var(¥en — Vern) — Var(YVeon — Yern)
=Jc'(cc) ¢y
= @' (®P' + 1) 1P
Let @ consist of orthogonal unit vectors:
&P’ =1, whenp <m
®'® =1, when p =m.

tr(var(Yt+h - yt+h) — Var(¥ep — Yern))

1 1
= —tr(®'®) = =
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Positive condition

For the first component to have a guaranteed
reduction of forecast error variance, the
following condition must be satisfied:

P1Wy h # Weyyp,

m ¢; is the weight vector of the first
component

m Wy, =Var(yep — Yein)
® W,y is the forecast covariance between
the first component and the original series.
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Monotonicity

The forecast error variance reductions, i.e. the
diagonal elements of

V&I’(yH_h - yH_h) - Var(yt—i—h _ yt—i—h)
:_’WhC/(CWhC/)_lcwhl/

is non-decreasing as p increases.
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Minimum variance of individual series

The projection is equivalent to the mapping
yt—|—h = Gét-}-ha

whereG=[g; g, ... @] € R™(MP) s the
solution to

argmin GW,G'  s.t. GS =1
G
or
argmin g;Wpg;, s.t. gis; = 1(i =),
gi

—[s1-+Sm).

where § = [<I>




Key results

The forecast error variance is reduced with
FLAP

The forecast error variance monotonically
decreases with increasing number of
components

The forecast projection is optimal to
achieve minimum forecast error variance of
each series
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yt+h :.’Et+h :.’M2t+h

M=, ,— W, (CwW,C)'C

Wh = Var(Zt_|_h — 2t+h)
C=[-2 I

m Estimation of W,
m Construction of &
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Estimation of W,

Shrinking variance towards their median
(Opgen-Rhein and Strimmer 2007) and
shrinking covariance towards zero (Schafer
and Strimmer 2005).

The shrinkage estimator is

m Positive definite, and
m Numerically stable.

In empirical applications, we assume
—=shr —=shr
w," =W, .
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Construction of ¢

Principal component analysis (PCA)

Finding the weights matrix so that the resulting
components maximise variance

Generating values from a random distribution
and normalising them to unit vectors

m Normal distribution
m Uniform distribution
m Orthonormal matrix (Borchers 2023)
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Tourism (ETS)
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m Data generating process (DGP): VAR(3) with
m = 70 variables

m Sample size: T = 400

m Number of repeated samples: 220

m Base model: ARIMA and DFM
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Future research directions

m Investigate why PCA performs better than
random weights

m Find other components that are better than
PCA

m Find optimal components by minimising
forecast error variance with respect to ®

m Use forecast projection and forecast
reconciliation together
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R Package flap

You can install the stable version from CRAN

## CRAN.R-project.org/package=flap
install.packages("flap")

or the development version from Github
## github.com/FinYang/flap
# install.packages("remotes")

remotes::install_github("FinYang/flap")
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m Email: Fin.Yang@monash.edu
m https://yangzhuoranyang.com
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