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Forecast Linear Augmented Projection

(FLAP)

A model-independent post-forecast adjustment
method that can reduce forecast error variance.

Averaging indirect forecasts from linear
combinations (components)
Projecting forecasts of augmented series
Free lunch: no additional data or information
needed
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What to expect

Intuition with data

Literature

Method formulation

Properties

Empirical applications and simulation
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Australian tourism data

The data include tourism information on
seven states and territories which can be
divided into 77 regions

▶ For example, Melbourne, Sydney, East Coast

Visitor nights

The total number of nights spent by Australians
away from home recorded monthly
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Intuition

Observation
1. Similar patterns are shared by different series.
2. Better signal-noise ratio in the linear
combination.

One step further

Finding components that
1. are easy to forecast;
2. can capture the common signals;
3. can improve forecast of original series.
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Literature

Forecast reconciliation

Wickramasuriya, Athanasopoulos, and
Hyndman (2019): Projecting forecasts to be
consistent with the hierarchical structure

Forecast combination

Combining forecasts of the target series
Hollyman, Petropoulos, and Tipping (2021):
Combining direct and indirect forecasts
Petropoulos and Spiliotis (2021): Combining
forecasts of selections and transformations
of the target series (“wisdom of data”)
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Literature

Bagging

Bergmeir, Hyndman, and Benítez (2016):
Bagging ETS models to forecast
Petropoulos, Hyndman, and Bergmeir
(2018): The benefits of bagging originate
from the model uncertainty

Dynamic factor model (DFM)

Stock and Watson (2002a), Stock and
Watson (2002b)

De Stefani et al. (2019): Machine learning
extension 9



Series yt ∈ Rm
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Components ct = Φyt ∈ Rp
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FLAP

zt =

yt

ct

 z̃t+h = Mẑt+h

ỹt+h = Jz̃t+h = JMẑt+h

M = Im+p − WhC
′(CWhC

′)−1C

J = Jm,p =
[
Im Om×p

]
C =

[
− Φ Ip

]
Wh = Var(zt+h − ẑt+h)
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Forecasts and FLAP of series
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Unbiasedness

Unbiasedness
If the base forecasts are unbiased, then the FLAP
forecasts are also unbiased.

Projection matrix

1 The matrix M is a projection onto the space
where the constraint Czt = 0 is satisfied.

2 The projected forecast z̃t+h satisfies the
constraint Cz̃t+h = 0.

3 For zt+h that already satisfies the constraint,
the projection does not change its value:
Mzt+h = zt+h
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Nonnegative variance reduction

Under unbiasedness, the variance reduction is
positive semi-definite:

Var(yt+h − ŷt+h) − Var(yt+h − ỹt+h)

= JWhC
′(CWhC

′)−1CWhJ
′
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Example Wh = Im+p

Var(yt+h − ŷt+h) − Var(yt+h − ỹt+h)

= JC′(CC′)−1CJ′

= Φ′(ΦΦ′ + I)−1Φ

Let Φ consist of orthogonal unit vectors:

ΦΦ′ = Ip when p ≤ m

Φ′Φ = Im when p = m.

tr(Var(yt+h − ŷt+h) − Var(yt+h − ỹt+h))

=
1

2
tr(Φ′Φ) =

1

2
p
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Positive condition

For the first component to have a guaranteed
reduction of forecast error variance, the
following condition must be satisfied:

ϕ1Wy,h ̸= wc1y,h,

ϕ1 is the weight vector of the first
component
Wy,h = Var(yt+h − ŷt+h)
wc1y,h is the forecast covariance between
the first component and the original series.
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Monotonicity

The forecast error variance reductions, i.e. the
diagonal elements of

Var(yt+h − ŷt+h) − Var(yt+h − ỹt+h)

= JWhC
′(CWhC

′)−1CWhJ
′

is non-decreasing as p increases.
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Minimum variance of individual series

The projection is equivalent to the mapping

ỹt+h = Gẑt+h,

where G =
[
g1 g2 . . . gm

]′ ∈ Rm×(m+p) is the
solution to

argmin
G

GWhG
′ s.t. GS = I

or

argmin
gi

g′
iWhgi s.t. g′

isj = 1(i = j),

where S =

Im
Φ

 =
[
s1 · · · sm

]
.
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Key results

1 The forecast error variance is reduced with
FLAP

2 The forecast error variance monotonically
decreases with increasing number of
components

3 The forecast projection is optimal to
achieve minimum forecast error variance of
each series
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Estimation

ỹt+h = Jz̃t+h = JMẑt+h

M = Im+p − WhC
′(CWhC

′)−1C

Wh = Var(zt+h − ẑt+h)

C =
[
− Φ Ip

]
Estimation of Wh

Construction of Φ
21



Estimation of Wh

Shrinking variance towards their median
(Opgen-Rhein and Strimmer 2007) and
shrinking covariance towards zero (Schäfer
and Strimmer 2005).

The shrinkage estimator is

Positive definite, and
Numerically stable.

In empirical applications, we assume

Ŵ
shr
h = ηhŴ

shr
1 .
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Construction of Φ

Principal component analysis (PCA)

Finding the weights matrix so that the resulting
components maximise variance

Simulation

Generating values from a random distribution
and normalising them to unit vectors

Normal distribution
Uniform distribution
Orthonormal matrix (Borchers 2023)
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Tourism (ETS)
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FRED-MD (DFM)
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Simulation

Data generating process (DGP): VAR(3) with
m = 70 variables
Sample size: T = 400
Number of repeated samples: 220
Base model: ARIMA and DFM
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Simulation
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Future research directions

Investigate why PCA performs better than
random weights
Find other components that are better than
PCA
Find optimal components by minimising
forecast error variance with respect to Φ
Use forecast projection and forecast
reconciliation together
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R Package flap

You can install the stable version from CRAN

## CRAN.R-project.org/package=flap
install.packages("flap")

or the development version from Github

## github.com/FinYang/flap
# install.packages("remotes")
remotes::install_github("FinYang/flap")
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Contact

Email: Fin.Yang@monash.edu
https://yangzhuoranyang.com
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