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Preface

This lab manual is designed to accompany the textbook Foundations of Applied Mathematics
by Humpherys and Jarvis. While the Volume 3 text focuses on statistics and rigorous data analysis,
these labs aim to introduce experienced Python programmers to common tools for obtaining, cleaning,
organizing, and presenting data. The reader should be familiar with Python [VD10] and its NumPy
[Oli06, ADH+01, Oli07] and Matplotlib [Hun07] packages before attempting these labs. See the
Python Essentials manual for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.
You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.
All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as
well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs
as the original source of this work.
To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.
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1 Unix Shell 1:
Introduction

Lab Objective: Unix is a popular operating system that is commonly used for servers and the basis
for most open source software. Using Unix for writing and submitting labs will develop a foundation
for future software development. In this lab we explore the basics of the Unix shell, including how
to navigate and manipulate files, access remote machines with Secure Shell, and use Git for basic
version control.

Unix was first developed by AT&T Bell Labs in the 1970s. In the 1990s, Unix became the
foundation of the Linux and MacOSX operating systems. Most servers are Linux-based, so knowing
how to use Unix shells allows us to interact with servers and other Unix-based machines.

A Unix shell is a program that takes commands from a user and executes those commands on
the operating system. We interact with the shell through a terminal (also called a command line), a
program that lets you type in commands and gives those commands to the shell for execution.

Note

Windows is not built off of Unix, but it does come with a terminal called PowerShell. This
terminal uses a different command syntax. We will not cover the equivalent commands in the
Windows terminal, but you could download a Unix-based terminal such as Git Bash or Cygwin
to complete this lab on a Windows machine (you will still lose out on certain commands).
Alternatively, Windows 10 now offers a Windows Subsystem for Linux, WSL, which is a Linux
operating system downloaded onto Windows.

Note

For this lab we will be working in the UnixShell1 directory provided with the lab materials.
If you have not yet downloaded the code repository, follow steps 1 through 6 in the Getting
Started guide found at https://foundations-of-applied-mathematics.github.io/ before
proceeding with this lab. Make sure to run the download_data.sh script as described in step
5 of Getting Started; otherwise you will not have the necessary files to complete this lab.

3
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4 Lab 1. Introduction to the Unix Shell

Basic Unix Shell
Shell Scripting

The following sections of the lab will explore several shell commands. You can execute these com-
mands by typing these commands directly into a terminal. Sometimes, though, you will want to
execute a more complicated sequence of commands, or make it easy to execute the same set of com-
mands over and over again. In those cases, it is useful to create a script, which is a sequence of shell
commands saved in a file. Then, instead of typing the commands in individually, you simply have to
run the script, and it takes care of running all the commands.

In this lab we will be running and editing a bash script. Bash is the most commonly used Unix
shell and is the default shell installed on most Unix-based systems.

The following is a very simple bash script. The command echo <string> prints <string> in
the terminal.

#!/bin/bash
echo "Hello World!"

The first line, #!bin/bash, tells the computer to use the bash interpreter to run the script, and
where this interpreter is located. The #! is called the shebang or hashbang character sequence. It is
followed by the absolute path to the bash interpreter.

To run a bash script, type bash <script name> into the terminal. Alternatively, you can
execute any script by typing ./<script name>, but note that the script must contain executable
permissions for this to work. (We will learn more about permissions later in the lab.)

$ bash hello_world.sh
Hello World!

Navigation

Typically, people navigate computers by clicking on icons to open folders and programs. In the
terminal, instead of point and click we use typed commands to move from folder to folder. In the
Unix shell, we call folders directories. The file system is a set of nested directories containing files
and other directories.

You can picture the file system as an tree, with directories as branches. Smaller branches stem
from bigger branches, and all bigger branches eventually stem from the root of the tree. Similarly, in
the Unix file system we have a "root directory", where all other directories are nested in. We denote
it by using a single slash (/). All absolute paths originate at the root directory, which means all
absolute path strings begin with the / character.

Begin by opening a terminal. The text you see in the upper left of the terminal is called the
prompt. Before you start creating or deleting files, you’ll want to know where you are. To see what
directory you are currently working in, type pwd into the prompt. This command stands for print
working directory, and it prints out a string telling you your current location.

~$ pwd
/home/username

To see the all the contents of your current directory, type the command ls to "list" the files.
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~$ ls
Desktop Downloads Public Videos
Documents Pictures

The command cd, change directory, allows you to navigate directories. To change to a new
directory, type the cd command followed by the name of the directory to which you want to move
(if you cd into a file, you will get an error). You can move up one directory by typing cd ...

Two important directories are the root directory and the home directory. You can navigate to
the home directory by typing cd ∼ or just cd. You can navigate to root by typing cd /.

Problem 1. To begin, open a terminal and navigate to the UnixShell1/ directory provided
with this lab. Use ls to list the contents. There should be a file called Shell1.zip and a script
called unixshell1.sh.a

Run unixshell1.sh. This script will do the following:

1. Unzip Shell1.zip, creating a directory called Shell1/

2. Remove any previously unzipped copies of Shell1/

3. Execute various shell commands, to be added in the next few problems in this lab

4. Create a compressed version of Shell1/ called UnixShell1.tar.gz.

5. Remove any old copies of UnixShell1.tar.gz

Now, open the unixshell1.sh script in a text editor. Add commands to the script, within
the section for Problem 1, to do the following:

• Change into the Shell1/ directory.

• Print a string (without using echo) telling you the directory you are currently working
in.

Test your commands by running the script again and checking that it prints a string
ending in the location Shell1/.

aIf the necessary data files are not in your directory, cd one directory up by typing cd .. and type bash
download_data.sh to download the data files for each lab.

Documentation and Help

When you encounter an unfamiliar command, the terminal has several tools that can help you under-
stand what it does and how to use it. Most commands have manual pages, which give information
about what the command does, the syntax required to use it, and different options to modify the
command. To open the manual page for a command, type man <command>. Some commands also
have an option called ––help, which will print out information similar to what is contained in the
manual page. To use this option, type <command> ––help.

$ man ls
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LS(1) User Commands LS(1)

NAME
ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default).

-a, --all
do not ignore entries starting with .

The apropos <keyword> command will list all Unix commands that have <keyword> contained
somewhere in their manual page names and descriptions. For example, if you forget how to copy
files, you can type in apropos copy and you’ll get a list of all commands that have copy in their
description.

Flags

When you use man, you will see a list of options such as -a, -A, --author, etc. that modify how a
command functions. These are called flags. You can use one flag on a command by typing <command
> -<flag>, like ls -a, or combine multiple flags by typing <command> -<flag1><flag2>, etc. as in
ls -alt.

For example, sometimes directories contain hidden files, which are files whose names begin with
a dot character like .bash. The ls command, by default, does not list hidden files. Using the -a
flag specifies that ls should not ignore hidden files. Find more common flags for ls in Table 1.1.

Flags Description
-a Do not ignore hidden files and folders
-l List files and folders in long format
-r Reverse order while sorting
-R Print files and subdirectories recursively
-s Print item name and size
-S Sort by size
-t Sort output by date modified

Table 1.1: Common flags of the ls command.

$ ls
file1.py file2.py

$ ls -a
. .. file1.py file2.py .hiddenfile.py

$ ls -alt # Multiple flags can be combined into one flag
total 8
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drwxr-xr-x 2 c c 4096 Aug 14 10:08 .
-rw-r--r-- 1 c c 0 Aug 14 10:08 .hiddenfile.py
-rw-r--r-- 1 c c 0 Aug 14 10:08 file2.py
-rw-r--r-- 1 c c 0 Aug 14 10:08 file1.py
drwxr-xr-x 38 c c 4096 Aug 14 10:08 ..

Problem 2. Within the script, add a command using ls to print one list of the contents of
Shell1/ with the following criteria:

• Include hidden files and folders

• List the files and folders in long format (include the permissions, date last modified, etc.)

• Sort the output by file size (largest files first)

Test your command by entering it into the terminal within Shell1/ or by running the script
and checking for the desired output.

Manipulating Files and Directories

In this section we will learn how to create, copy, move, and delete files and folders. To create a text
file, use touch <filename>. To create a new directory, use mkdir <dir_name>.

~$ cd Test/ # navigate to test directory

~/Test$ ls # list contents of directory
file1.py

~/Test$ mkdir NewDirectory # create a new empty directory

~/Test$ touch newfile.py # create a new empty file

~/Test$ ls
file1.py NewDirectory newfile.py

To copy a file into a directory, use cp <filename> <dir_name>. When making a copy of a
directory, use the -r flag to recursively copy files contained in the directory. If you try to copy a
directory without the -r, the command will return an error.

Moving files and directories follows a similar format, except no -r flag is used when moving one
directory into another. The command mv <filename> <dir_name> will move a file to a folder and
mv <dir1> <dir2> will move the first directory into the second.

If you want to rename a file, use mv <file_old> <file_new>; the same goes for directories.

~/Test$ ls
file1.py NewDirectory newfile.py

~/Test$ mv newfile.py NewDirectory/ # move file into directory
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~/Test$ cp file1.py NewDirectory/ # make a copy of file1 in directory
~/Test$ cd NewDirectory/
~/Test/NewDirectory$ mv file1.py newname.py # rename file1.py
~/Test/NewDirectory$ ls
newfile.py newname.py

When deleting files, use rm <filename>, and when deleting a directory, use rm -r <dir_name
>. The -r flag tells the terminal to recursively remove all the files and subfolders within the targeted
directory.

If you want to make sure your command is doing what you intend, the -v flag tells rm, cp, or
mkdir to print strings in the terminal describing what it is doing.

When your terminal gets too cluttered, use clear to clean it up.

~/Test/NewDirectory$ cd .. # move one directory up
~/Test$ rm -rv NewDirectory/ # remove a directory and its contents
removed 'NewDirectory/newname.py'
removed 'NewDirectory/newfile.py'
removed directory 'NewDirectory/'

~/Test$ rm file1.py # remove a file
~/Test$ ls # directory is now empty
~/Test$

Commands Description
clear Clear the terminal screen
cp file1 dir1 Create a copy of file1 and move it to dir1/
cp file1 file2 Create a copy of file1 and name it file2
cp -r dir1 dir2 Create a copy of dir1/ and all its contents into dir2/
mkdir dir1 Create a new directory named dir1/
mkdir -p path/to/new/dir1 Create dir1/ and all intermediate directories
mv file1 dir1 Move file1 to dir1/
mv file1 file2 Rename file1 as file2
rm file1 Delete file1 [-i, -v]
rm -r dir1 Delete dir1/ and all items within dir1/ [-i, -v]
touch file1 Create an empty file named file1

Table 1.2: File Manipulation Commands

Table 1.2 contains all the commands we have discussed so far. Commonly used flags for some
commands are contained in square brackets; use man or ––help to see what these mean.

Problem 3. Add commands to the unixshell1.sh script to make the following changes in
Shell1/:

• Delete the Audio/ directory along with all its contents

• Create Documents/, Photos/, and Python/ directories
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• Change the name of the Random/ directory to Files/

Test your commands by running the script and then using ls within Shell1/ to check that
each directory was deleted, created, or changed correctly.

Wildcards

As we are working in the file system, there will be times that we want to perform the same command
to a group of similar files. For example, you may need to move all text files within a directory to a
new directory. Rather than copy each file one at a time, we can apply one command to several files
using wildcards. We will use the * and ? wildcards. The * wildcard represents any string and the ?
wildcard represents any single character. Though these wildcards can be used in almost every Unix
command, they are particularly useful when dealing with files.

$ ls
File1.txt File2.txt File3.jpg text_files

$ mv -v *.txt text_files/
File1.txt -> text_files/File1.txt
File2.txt -> text_files/File2.txt

$ ls
File3.jpg text_files

See Table 1.3 for examples of common wildcard usage.

Command Description
*.txt All files that end with .txt.
image* All files that have image as the first 5 characters.
*py* All files that contain py in the name.
doc*.txt All files of the form doc1.txt, doc2.txt, docA.txt, etc.

Table 1.3: Common uses for wildcards.

Problem 4. Within the Shell1/ directory, there are many files. Add commands to the script
to organize these files into directories using wildcards. Organize by completing the following:

• Move all the .jpg files to the Photos/ directory

• Move all the .txt files to the Documents/ directory

• Move all the .py files to the Python/ directory
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Working With Files

Searching the File System

There are two commands we can use for searching through our directories. The find command is
used to find files or directories with a certain name; the grep command is used to find lines within
files matching a certain string. When searching for a specific string, both commands allow wildcards
within the string. You can use wildcards so that your search string matches a broader set of strings.

# Find all files or directories in Shell1/ called "final"
# -type f,d specifies to look for files and directories
# . specifies to look in the current directory

$ find . -name "final" -type f,d
$ # There are no files with the exact name "final" in Shell1/

$ find . -name "*final*" -type f,d
./Files/May/finals
./Files/May/finals/finalproject.py

# Find all files within Documents/ containing "Mary"
# -r tells grep to search all files within Documents/
# -n tells grep to print out the line number (2)

$ Shell1$ grep -nr "Mary" Documents/
Documents/people.txt:2:female,Mary,31

Command Description
find dir1 -type f -name "word" Find all files in dir1/ (and its subdirectories) called word

(-type f is for files; -type d is for directories)
grep "word" filename Find all occurrences of word within filename
grep -nr "word" dir1 Find all occurrences of word within the files inside dir1/

(-n lists the line number; -r performs a recursive search)

Table 1.4: Commands using find and grep.

Table 1.4 contains basic syntax for using these two commands. There are many more variations
of syntax for grep and find, however. You can use man grep and man find to explore other options
for using these commands.

File Security and Permissions

A file has three levels of permissions associated with it: the permission to read the file, to write
(modify) the file, and to execute the file. There are also three categories of people who are assigned
permissions: the user (the owner), the group, and others.

You can check the permissions for file1 using the command ls -l <file1>. Note that your
output will differ from that printed below; this is purely an example.
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$ ls -l
-rw-rw-r-- 1 username groupname 194 Aug 5 20:20 calc.py
drw-rw-r-- 1 username groupname 373 Aug 5 21:16 Documents
-rwxr-x--x 1 username groupname 27 Aug 5 20:22 mult.py
-rw-rw-r-- 1 username groupname 721 Aug 5 20:23 project.py

The first character of each line denotes the type of the item whether it be a normal file, a
directory, a symbolic link, etc. The next nine characters denote the permissions associated with that
file.

For example, look at the output for mult.py. The first character - denotes that mult.py is a
normal file. The next three characters, rwx, tell us the owner can read, write, and execute the file.
The next three characters, r-x, tell us members of the same group can read and execute the file, but
not edit it. The final three characters, --x, tell us other users can execute the file and nothing more.

Permissions can be modified using the chmod command. There are multiple notations used
to modify permissions, but the easiest to use when we want to make small modifications to a file’s
permissions is symbolic permissions notation. See Table 1.5 for more examples of using symbolic
permissions notation, as well as other useful commands for working with permissions.

$ ls -l script1.sh
total 0
-rw-r--r-- 1 c c 0 Aug 21 13:06 script1.sh

$ chmod u+x script1.sh # add permission for user to execute
$ chmod o-r script1.sh # remove permission for others to read
$ ls -l script1.sh
total 0
-rwxr----- 1 c c 0 Aug 21 13:06 script1.sh

Command Description
chmod u+x file1 Add executing (x) permissions to user (u)
chmod g-w file1 Remove writing (w) permissions from group (g)
chmod o-r file1 Remove reading (r) permissions from other other users (o)
chmod a+w file1 Add writing permissions to everyone (a)
chown change owner
chgrp change group
getfacl view all permissions of a file in a readable format.

Table 1.5: Symbolic permissions notation and other useful commands

Running Files

To run a file for which you have execution permissions, type the file name preceded by ./.

$ ./hello.sh
bash: ./hello.sh: Permission denied

$ ls -l hello.sh
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-rw-r--r-- 1 username groupname 31 Jul 30 14:34 hello.sh

$ chmod u+x hello.sh # You can now execute the file

$ ./hello.sh
Hello World!

Problem 5. Within Shell1/, there is a script called organize_photos.sh. First, use find
to locate the script. Once you know the file location, add commands to your script so that it
completes the following tasks:

• Moves organize_photos.sh to Scripts/

• Adds executable permissions to the script for the user

• Runs the script

Test that the script has been executed by checking that additional files have been moved into
the Photos/ directory. Check that permissions have been updated on the script by using ls -l.

Accessing Remote Machines
At times you will find it useful to perform tasks on a remote computer or server, such as running a
script that requires a large amount of computing power on a supercomputer or accessing a data file
stored on another machine.

Secure Shell

Secure Shell (SSH) allows you to remotely access other computers or servers securely. SSH is a net-
work protocol encrypted using public-key cryptography. It ensures that all communication between
your computer and the remote server is secure and encrypted.

The system you are connecting to is called the host, and the system you are connecting from
is called the client. The first time you connect to a host, you will receive a warning saying the
authenticity of the host can’t be established. This warning is a default, and appears when you are
connecting to a host you have not connected to before. When asked if you would like to continue
connecting, select yes if you are confident in the authenticity of the host.

When prompted for your password, type your password as normal and press enter. No charac-
ters will appear on the screen, but they are still being logged. Once the connection is established,
there is a secure tunnel through which commands and files can be exchanged between the client and
host. To end a secure connection, type exit.

alice@mycomputer:~$ ssh alice27@acme01.byu.edu

alice27@acme01.byu.edu password:# Type password as normal
last login 7 Sept 11
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[alice27@byu.local@acme01 ~]$ ls # Commands are executed on the host
myacmeshare/

[alice27@byu.local@acme01 ~]$ exit # End a secure connection
logout
Connection to acme01.byu.edu closed.

alice@mycomputer:~$ # Commands are executed on the client

Secure Copy

To copy files from one computer to another, you can use the Unix command scp, which stands for
secure copy protocol. The syntax for scp is essentially the same as the syntax for cp.

To copy a file from your computer to a specific location on on a remote machine, use the
syntax scp <file1> <user@remote_host:file_path>. As with cp, to copy a directory and all of
its contents, use the -r flag.

# Make copies of file1 and dir2 in the home directory on acme01.byu.edu
alice@mycomputer:~$ scp file1 alice27@acme01.byu.edu:~/
alice@mycomputer:~$ scp -r dir1/dir2 alice27@acme01.byu.edu:~/

Use the syntax scp -r <user@remote_host:file_path/dir1> <file_path> to copy dir1
from a remote machine to the location specified by file_path on your current machine.

# Make a local copy of dir1 (from acme01.byu.edu) in the home directory
alice@mycomputer:~$ scp -r alice27@acme01.byu.edu:~/dir1 ~

Commands Description
ssh username@remote_host Establish a secure connection with remote_host
scp file1 user@remote_host:file_path/ Create a copy of file1 on host
scp -r dir1 user@remote_host:file_path/ Create a copy of dir1 and its contents on host
scp user@remote_host:file_path/file1 file_path2 Create a local copy of file on client

Table 1.6: Basic syntax for ssh and scp.

Problem 6. The computer with host name acme20.byu.edu contains a file that is called
img_649.jpg. Secure copy this file to your UnixShell1/ directory. (Do not add the scp
command to the script).

To ssh or scp to this computer, your username is your Net ID, and your password is your
typical Net ID password. To use scp or ssh to access this computer, you will have to be on
campus using BYU Wifi (or eduroam), or you can install a BYU specific VPN as explained at
https://it.byu.edu/it?id=kb_article&sys_id=32da18c2877ad110df3c635d0ebb3551.

https://it.byu.edu/it?id=kb_article&sys_id=32da18c2877ad110df3c635d0ebb3551
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After secure copying, add a command to your script to copy the file from UnixShell1/
into the directory Shell1/Photos/. (Make sure to leave a copy of the file in UnixShell1/,
otherwise the file will be deleted when you run the script again.)
Hint: To use scp, you will need to know the location of the file on the remote computer.
Consider using ssh to access the machine and using find. The file is located somewhere in the
directory /sshlab. Sometimes after logging onto the machine with ssh, there will appear to
not be any directories you can access. Using the command cd / will fix this. When logging on
initially, you also may get a message about not having a myacmeshare; this is not needed for
this lab and the message may be ignored safely.

Git
Git is a version control system, meaning that it keeps a record of changes in a file. Git also facilitates
collaboration between people working on the same code. It does both these things by managing
updates between an online code repository and copies of the repository, called clones, stored locally
on computers.

We will be using git to submit labs and return feedback on those labs. If git is not already
installed on your computer, download it at http://git-scm.com/downloads.

Using Git

Git manages the history of a file system through commits, or checkpoints. Each time a new commit
is added to the online repository, a checkpoint is created so that if need be, you can use or look back
at an older version of the repository. You can use git log to see a list of previous commits. You
can also use git status to see the files that have been changed in your local repository since the
last commit.

Before making your own changes, you’ll want to add any commits from other clones into your
local repository. To do this, use the command git pull origin master.

Once you have made changes and want to make a new commit, there are normally three steps.
To save these changes to the online repository, first add the changed files to the staging area, a list of
files to save during the next commit, with git add <filename(s)>. If you want to add all changes
that you have made to tracked files (files that are already included in the online repository), use
git add -u.

Next, save the changes in the staging area with git commit -m "<A brief message describing
the changes>".

Finally, add the changes in this commit to the online repository with git push origin master.

$ cd MyDirectory/ # Navigate into a cloned repository
$ git pull origin master # Pull new commits from online repository

### Make changes to file1.py ###

$ git add file1.py # Add file to staging area
$ git commit -m "Made changes" # Commit changes in staging area
$ git push origin master # Push changes to online repository

http://git-scm.com/downloads
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Online Repository

Computer

git push origin master git pull origin master

Figure 1.1: Exchanging git commits between the repository and a local clone.

Merge Conflicts

Git maintains order by raising an alert when changes are made to the same file in different clones and
neither clone contains the changes made in the other. This is called a merge conflict, which happens
when someone else has pushed a commit that you do not yet have, while you have also made one or
more commits locally that they do not have.

Achtung!

When pulling updates with git pull origin master, your terminal may sometimes display
the following merge conflict message.

Merge branch 'master' of https://github.com/<name>/<repo> into master
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
~
~

This screen, displayed in vim for this example (https://en.wikipedia.org/wiki/Vim_
(text_editor)), is asking you to enter a message to create a merge commit that will reconcile
both changes. If you do not enter a message, a default message is used. To close this screen
and create the merge commit with the default message, type :wq (the characters will appear in
the bottom left corner of the terminal) and press enter.

Note

Vim is a terminal text editor available on essentially any computer you will use. When working
with remote machines through ssh, vim is often the only text editor available to use. To
exit vim, press esc:wq To learn more about vim, visit the official documentation at https:
//vimhelp.org.

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Vim_(text_editor)
https://vimhelp.org
https://vimhelp.org
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Command Explanation
git status Display the staging area and untracked changes.
git pull origin master Pull changes from the online repository.
git push origin master Push changes to the online repository.
git add <filename(s)> Add a file or files to the staging area.
git add -u Add all modified, tracked files to the staging area.
git commit -m "<message>" Save the changes in the staging area with a given message.
git checkout <filename> Revert changes to an unstaged file since the last commit.
git reset HEAD <filename> Remove a file from the staging area, but keep changes.
git diff <filename> See the changes to an unstaged file since the last commit.
git diff --cached <filename> See the changes to a staged file since the last commit.
git config --local <option> Record your credentials (user.name, user.email, etc.).

Table 1.7: Common git commands.

Problem 7. Using git commands, push unixshell1.sh and UnixShell1.tar.gz to your on-
line git repository. Do not add anything else in the UnixShell1/ directory to the online
repository.



2 Unix Shell 2

Lab Objective: Introduce system management, calling Unix Shell commands within Python, and
other advanced topics. As in the last Unix lab, the majority of learning will not be had in finishing
the problems, but in following the examples.

Archiving and Compression
In file management, the terms archiving and compressing are commonly used interchangeably. How-
ever, these are quite different. Archiving is combining a certain number of files into one file. The
resulting file will be the same size as the group of files that were archived. Compressing takes a file
or group of files and shrinks the file size as much as possible. The resulting compressed file will need
to be extracted before being used.

The ZIP file format is common for archiving and compressing files. If the zip Unix command
is not installed on your system, you can download it by running

>>> sudo apt-get install zip

Note that you will need to have administrative rights to download this package. To unzip a file, use
unzip.

Note

To begin this lab, unzip the Shell2.zip file into your UnixShell2/ directory using a terminal
command.

# Unzip a zipped file using the unzip command.
$ unzip Shell2.zip
Archive Shell2.zip

creating: Shell2/
creating: Shell2/Test/

inflating: Shell2/.DS_Store
creating: Shell2/Scripts/

17
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extracting: Shell2/Scripts/fiteen_secs
extracting: Shell2/Scripts/script3
extracting: Shell2/Scripts/hello.sh...

While the zip file format is more popular on the Windows platform, the tar utility is more
common in the Unix environment.

Note

When submitting this lab, you will need to archive and compress your entire Shell2/ directory
into a file called Shell2.tar.gz and push Shell2.tar.gz as well as shell2.py to your online
repository.

If you are doing multiple submissions, make sure to delete your previous Shell2.tar.gz
file before creating a new one from your modified Shell2/ directory. Refer to Unix1 for more
information on deleting files.

As a final note, please do not push the entire directory to your online repository. Only
push Shell2.tar.gz and shell2.py.

The example below demonstrates how to archive and compress our Shell2/ directory. The -z
flag calls for the gzip compression tool, the -v flag calls for a verbose output, the -p flag tells the
tool to preserve file permission, and the -f flag indicates the next parameter will be the name of the
archive file. Note that the -f flag must always come last.

# Remove your archive tar.gz file if you already have one.
$ rm -v Shell2.tar.gz
removed 'Shell2.tar.gz'

# Create a new one from your update Shell2 directory content.
# Remember that the * is the wildcard that represents all strings.
$ tar -zcpf Shell2.tar.gz Shell2/*

Working with Files

Displaying File Contents

The unix file system presents many opportunities for the manipulation, viewing, and editing of files.
Before moving on to more complex commands, we will look at some of the commands available to
view the content of a file.

The cat command, followed by the filename, will display all the contents of a file on the
terminal screen. This can be problematic if you are dealing with a large file. There are a few
available commands to control the output of cat in the terminal. See Table 2.1.

As an example, use less <filename> to restrict the number of lines that are shown. With this
command, use the arrow keys to navigate up and down and press q to exit.
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Command Description
cat Print all of the file contents
more Print the file contents one page at a time, navigating forwards
less Like more, but you navigate forward and backwards
head Print the first 10 lines of a file
head -nk Print the first k lines of a file
tail Print the last 10 lines of a file
tail -nk Print the last k lines of a file

Table 2.1: Commands for printing file contents

Pipes and redirects

To combine terminal commands, we can use pipes. When we combine or pipe commands, the output
of one command is passed to the other. We pipe commands together using the | (bar) operator. In
the example directly below, the cat command output is piped to wc -l (wc stands for word count,
and the -l flag tells the wc command to count lines).

In the second part of the example, ls -s is piped to sort -nr. Refer to the Unix 1 lab for
explanations of ls and sort. Recall that the man command followed by an additional command will
output details on the additional command’s possible flags and what they mean (for example man
sort).

$ cd Shell2/Files/Feb
# Output the number of lines in assignments.txt.
$ cat assignments.txt | wc -l
9
# Sort the files by file size and output file names and their size.
$ls -s | sort -nr
4 project3.py
4 project2.py
4 assignments.txt
4 pics
total 16

In addition to piping commands together, when working with files specifically, we can use
redirects. A redirect, represented as < in the terminal, passes the file to a terminal command.

To save a command’s output to a file, we can use > or >>. The > operator will overwrite anything
that may exist in the output file whereas >> will append the output to the end of the output file.
Examples of redirects and writing to a file are given below.

# Gets the same result as the first command in the above example.
$ wc -l < assignments.txt
9
# Writes the number of lines in the assignments.txt file to word_count.txt.
$ wc -l < assignments.txt >> word_count.txt
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Problem 1. The words.txt file in the Documents/ directory contains a list of words that are
not in alphabetical order. Write an alphabetically sorted list of words in words.txt to a new
file in your Documents/ called sortedwords.txt using pipes and redirects. After you write the
alphabetized words to the designated file, also write the number of words in words.txt to the
end of sortedwords.txt. Save this file in the Documents/ directory. Try to accomplish this
with a total of two commands or fewer.

Resource Management
To be able to optimize performance, it is valuable to be aware of the resources, specifically hard drive
space and computer memory, being used.

Job Control

One way to monitor and optimize performance is in job control. Any time you start a program in
the terminal (you could be running a script, opening ipython, etc.,) that program is called a job.
You can run a job in the foreground and also in the background. When we run a program in the
foreground, we see and interact with it. Running a script in the foreground means that we will not
be able to enter any other commands in the terminal while the script is running. However, if we
choose to run it in the background, we can enter other commands and continue interacting with other
programs while the script runs.

Consider the scenario where we have multiple scripts that we want to run. If we know that these
scripts will take awhile, we can run them all in the background while we are working on something
else. Table 2.2 lists some common commands that are used in job control. We strongly encourage
you to experiment with some of these commands.

Command Description
COMMAND & Adding an ampersand to the end of a command

runs the command in the background
bg %N Restarts the Nth interrupted job in the background
fg %N Brings the Nth job into the foreground
jobs Lists all the jobs currently running
kill %N Terminates the Nth job
ps Lists all the current processes
Ctrl-C Terminates current job
Ctrl-Z Interrupts current job
nohup Run a command that will not be killed if the user logs out

Table 2.2: Job control commands

The fifteen_secs and five_secs scripts in the Scripts/ directory take fifteen seconds and
five seconds to execute respectively. The python file fifteen_secs.py in the Python/ directory
takes fifteen seconds to execute, this file counts to fifteen and then outputs "Success!". These will
be particularly useful as you are experimenting with these commands.

Remember, that when you use the ./ command in place of other commands you will probably
need to change permissions. For more information on changing permissions, review Unix 1. Run the
following command sequence from the Shell2 directory.
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# Remember to add executing permissions to the user.
$ ./Scripts/fifteen_secs &
$ python Python/fifteen_secs.py &
$ jobs
[1]+ Running ./Scripts/fifteen_secs &
[2]- Running python Python/fifteen_secs.py &
$ kill %1
[1]- Terminated ./Scripts/fifteen_secs &
$ jobs
[1]+ Running python Python/fifteen_secs.py &
# After the python script finishes it outputs the results.
$ Success!
# To move on, click enter after "Success!" appears in the terminal.

# List all current processes
$ ps

PID TTY TIME CMD
6 tty1 00:00:00 bash

44 tty1 00:00:00 ps

$ ./Scripts/fifteen_secs &
$ ps

PID TTY TIME CMD
6 tty1 00:00:00 bash

59 tty1 00:00:00 fifteen_secs
60 tty1 00:00:00 sleep
61 tty1 00:00:00 ps

# Stop fifteen_secs
$ kill 59
$ ps

PID TTY TIME CMD
6 tty1 00:00:00 bash

60 tty1 00:00:00 sleep
61 tty1 00:00:00 ps

[1]+ Terminated ./fifteen_secs

Problem 2. In addition to the five_secs and fifteen_secs scripts, the Scripts/ folder
contains three scripts (named script1, script2, and script3) that each take about forty-
five seconds to execute. From the Scripts directory, execute each of these commands in the
background in the following order; script1, script2, and script3. Do this so all three are
running at the same time. While they are all running, write the output of jobs to a new file
log.txt saved in the Scripts/ directory.
(Hint: In order to get the same output as the solutions file, you need to run the ./ command
and not the bash command.)
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Using Python for File Management

OS and Glob

Bash has control flow tools like if-else blocks and loops, but most of the syntax is highly unintuitive.
Python, on the other hand, has extremely intuitive syntax for these control flow tools, so using
Python to do shell-like tasks can result in some powerful but specific file management programs.
Table 2.3 relates some of the common shell commands to Python functions, most of which come
from the os module in the standard library.

Shell Command Python Function
ls os.listdir()
cd os.chdir()
pwd os.getcwd()

mkdir os.mkdir(), os.mkdirs()
cp shutil.copy()
mv os.rename(), os.replace()
rm os.remove(), shutil.rmtree()
du os.path.getsize()

chmod os.chmod()

Table 2.3: Shell-Python compatibility

In addition to these, Python has a few extra functions that are useful for file management and
shell commands. See Table 2.4. The two functions os.walk() and glob.glob() are especially useful
for doing searches like find and grep. Look at the example below and then try out a few things on
your own to try to get a feel for them.

Function Description
os.walk() Iterate through the subfolders and subfolder files of a given directory.

os.path.isdir() Return True if the input is a directory.
os.path.isfile() Return True if the input is a file.

os.path.join() Join several folder names or file names into one path.
glob.glob() Return a list of file names that match a pattern.

subprocess.call() Execute a shell command.
subprocess.check_output() Execute a shell command and return its output as a string.

Table 2.4: Other useful Python functions for shell operations.

# Your output may differ from the example's output.
>>> import os
>>> from glob import glob

# Get the names of all Python files in the Python/ directory.
>>> glob("Python/*.py")
['Python/calc.py',
'Python/count_files.py',
'Python/fifteen_secs.py
'Python/mult.py',
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'Python/project.py']

# Get the names of all .jpg files in any subdirectory.
# The recursive parameter lets '**' match more than one directory.
>> glob("**/*.jpg", recursive=True)
['Photos/IMG_1501.jpg',
'Photos/img_1879.jpg',
'Photos/IMG_2164.jpg',
'Photos/IMG_2379.jpg',
'Photos/IMG_2182.jpg',
'Photos/IMG_1510.jpg',
'Photos/IMG_2746.jpg',
'Photos/IMG_2679.jpg',
'Photos/IMG_1595.jpg',
'Photos/IMG_2044.jpg',
'Photos/img_1796.jpg',
'Photos/IMG_2464.jpg',
'Photos/img_1987.jpg',
'Photos/img_1842.jpg']

# Walk through the directory, looking for .sh files.
>>> for directory, subdirectories, files in os.walk('.'):
... for filename in files:
... if filename.endswith(".sh"):
... print(os.path.join(directory, filename))
...
./Scripts/hello.sh
./Scripts/organize_photos.sh

Problem 3. Write a Python function grep() that accepts the name of a target string and
a file pattern. Find all files in the current directory or its subdirectories that match the file
pattern. Next, check within the contents of the matched file for the target string. For example,
grep("range", "*.py") should search Python files for the command range. Return a list of
the file paths that matched the file pattern and the target string. For example, if you’re in
the Shell2/ directory and your grep function matches the ‘calc.py’ file then your grep should
return ‘Python/calc.py’

The Subprocess module

The subprocess module allows Python to execute actual shell commands in the current working
directory. Some important commands for executing shell commands from the subprocess module
are listed in Table 2.5.

$ cd Shell2/Scripts
$ python
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Function Description
subprocess.call() run a Unix command

subprocess.check_output() run a Unix command and record its output
subprocess.check_output.decode() this translates Unix command output to a string

subprocess.Popen() use this to pipe togethether Unix commands

Table 2.5: Python subprocess module important commands

>>> import subprocess
>>> subprocess.call(["ls", "-l"])
total 40
-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3
-rw-r--r-- 1 username groupname 21 Aug 26 2016 fiften_secs
0
# Decode() translates the result to a string.
>>> file_info = subprocess.check_output(["ls", "-l"]).decode()
>>> file_info.split('\n')
['total 40',
'-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 fiften_secs',
'']

Popen is a class of the subprocess module, with its own atrributes and commands. It pipes
together a few commands, similar to we did at the beginning of the lab. This allows for more
versatility in the shell input commands. If you wish to know more about the Popen class, go to the
subprocess documentation on the internet.

$ cd Shell2
$ python
>>> import subprocess
>>> args = ["cat Files/Feb/assignments.txt | wc -l"]
# shell = True indicates to open a new shell process
# note that task is now an object of the Popen class
>>> task = subprocess.Popen(args, shell=True)
>>> 9

Achtung!

https://docs.python.org/3/library/subprocess.html
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If shell commands depend on user input, the program is vulnerable to a shell injection attack.
This applies to Unix Shell commands as well as other situations like web browser interaction
with web servers. Be extremely careful when creating a shell process from Python. There are
specific functions, like shlex.quote(), that quote specific strings that are used to construct shell
commands. But, when possible, it is often better to avoid user input altogether. For example,
consider the following function.

>>> def inspect_file(filename):
... """Return information about the specified file from the shell."""
... return subprocess.check_output(["ls", "-l", filename]).decode()

If inspect_file() is given the input ".; rm -rf /", then ls -l . is executed innocently,
and then rm -rf / destroys the computer by force deleting everything in the root directory.a

Be careful not to execute a shell command from within Python in a way that a malicious user
could potentially take advantage of.

aSee https://en.wikipedia.org/wiki/Code_injection#Shell_injection for more example attacks.

Problem 4. Using os.path and Glob, write a Python function that accepts an integer n. Search
the current directory and all subdirectories for the n largest files. Then sort the list of filenames
from the largest to the smallest files. Next, write the line count of the smallest file to a file
called smallest.txt into the current directory. Finally, return the list of filenames, including
the file path, in order from largest to smallest.
(Hint: the shell commands ls -s shows the file size.)

As a note, same as in problem 3, to get this problem correct, you need to return the entire
file path starting from the directory that was searched and continuing to the name
of the file. Do not return just the filenames, or the complete file path. For example, if you
are currently in the UnixShell2/ directory, meaning the next directory down to be searched will
be Shell2, then Shell2/ should be the first part in the names of largest files returned by your
function. More concretely, if ‘data.txt’ is one files your function will return then instead of
returning just ‘data.txt’ or all of
‘YourComputerSpecificFilePath/UnixShell2/Shell2/Files/Mar/docs/data.txt’ as part
of your list, you would return only ‘Shell2/Files/Mar/docs/data.txt’. Notice the paths
returned will vary based on both the current working directory you’re in and what directories
were searched. However, also make sure that your file paths do not begin with ‘./’ (Hint: To
avoid the additional ‘./’ in your file path, use Glob instead of os.walk.)

Downloading Files
The Unix shell has tools for downloading files from the internet. The most popular are wget and
curl. At its most basic, curl is the more robust of the two while wget can download recursively.
This means that wget is capable of following links and directory structure when downloading content.

When we want to download a single file, we just need the URL for the file we want to download.
This works for PDF files, HTML files, and other content simply by providing the right URL.

https://en.wikipedia.org/wiki/Code_injection#Shell_injection
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$ wget https://github.com/Foundations-of-Applied-Mathematics/Data/blob/master/←↩
Volume1/dream.png

The following are also useful commands using wget.

# Download files from URLs listed in urls.txt.
$ wget -i list_of_urls.txt

# Download in the background.
$ wget -b URL

# Download something recursively.
$ wget -r --no-parent URL

Achtung!

If you’re using Git Bash for Windows, wget is not automatically included. In order to use it,
you have to find a download for wget.exe online. After installing it, you need to include it in
the correct directory for git. If git is installed in the default location, you’ll need to add it to
C:\Program Files\Git\mingw64\bin.

Problem 5. The file urls.txt in the Documents/ directory contains a list of URLs. Download
the files in this list using wget and move them to the Photos/ directory.

sed and awk
sed and awk are two different scripting languages in their own right. sed is a stream editor; it
performs basic transformations on input text. Awk is a text processing language that manipulates
and reports data. Like Unix, these languages are easy to learn but difficult to master. It is very
common to combine Unix commands and sed and awk commands.

Printing Specific Lines Using sed

We have already used the head and tail commands to print the beginning and end of a file respec-
tively. What if we wanted to print lines 30 to 40, for example? We can accomplish this using sed.
In the Documents/ folder, you will find the lines.txt file. We will use this file for the following
examples.

# Same output as head -n3.
$ sed -n 1,3p lines.txt
line 1
line 2
line 3
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# Same output as tail -n3.
$ sed -n 3,5p lines.txt
line 3
line 4
line 5

# Print lines 1,3,5.
$ sed -n -e 1p -e 3p -e 5p lines.txt
line 1
line 3
line 5

Find and Replace Using sed

Using sed, we can also find and replace. We can perform this function on the output of another
command, or we can perform this function in place on other files. The basic syntax of this sed
command is the following.

sed s/str1/str2/g

This command will replace every instance of str1 with str2. More specific examples follow.

$ sed s/line/LINE/g lines.txt
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

# Notice the file didn't change at all
$ cat lines.txt
line 1
line 2
line 3
line 4
line 5

# To save the changes, add the -i flag
$ sed -i s/line/LINE/g lines.txt
$ cat lines.txt
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
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Formatting output using awk

Earlier in this lab we mentioned ls -l, and as we have seen, this outputs lots of information. Using
awk, we can select which fields we wish to print. Suppose we only cared about the file name and the
permissions. We can get this output by running the following command.

$ cd Shell2/Documents
$ ls -l | awk ' {print $1, $9} '
total
-rw-r--r--. assignments.txt
-rw-r--r--. doc1.txt
-rw-r--r--. doc2.txt
-rw-r--r--. doc3.txt
-rw-r--r--. doc4.txt
-rw-r--r--. files.txt
-rw-r--r--. lines.txt
-rw-r--r--. newfiles.txt
-rw-r--r--. people.txt
-rw-r--r--. review.txt
-rw-r--r--. urls.txt
-rw-r--r--. words.txt

Notice we pipe the output of ls -l to awk. When calling a command using awk, we have to
use quotation marks. It is a common mistake to forget to add these quotation marks. Inside these
quotation marks, commands always take the same format.

awk ' <options> {<actions>} '

In the remaining examples we will not be using any of the options, but we will address various
actions.

In the Documents/ directory, you will find a people.txt file that we will use for the following
examples. In our first example, we use the print action. The $1 and $9 mean that we are going to
print the first and ninth fields.

Beyond specifying which fields we wish to print, we can also choose how many characters to
allocate for each field. This is done using the % command within the printf command, which allows
us to edit how the relevant data is printed. Look at the last part of the example below to see how it
is done.

# contents of people.txt
$ cat people.txt
male,John,23
female,Mary,31
female,Sally,37
male,Ted,19
male,Jeff,41
female,Cindy,25

# Change the field separator (FS) to space at the beginning of run using BEGIN
# Printing each field individually proves we have successfully separated the ←↩

fields
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$ awk ' BEGIN{ FS = "," }; {print $1,$2,$3} ' < people.txt
male John 23
female Mary 31
female Sally 37
male Ted 19
male Jeff 41
female Cindy 25

# Format columns using printf so everything is in neat columns in different ←↩
order

$ awk ' BEGIN{ FS = "," }; {printf "%-6s %2s %s\n", $1,$3,$2} ' < people.txt
male 23 John
female 31 Mary
female 37 Sally
male 19 Ted
male 41 Jeff
female 25 Cindy

The statement "%-6s %2s %s\n" formats the columns of the output. This says to set aside six
characters left justified, then two characters right justified, then print the last field to its full length.

Problem 6. Inside the Documents/ directory, you should find a file named files.txt. This
file contains details on approximately one hundred files. The different fields in the file are
separated by tabs. Using awk, sort, pipes, and redirects, write it to a new file in the current
directory named date_modified.txt with the following specifications:

• in the first column, print the date the file was modified

• in the second column, print the name of the file

• sort the file from newest to oldest based on the date last modified

All of this can be accomplished using one command.
(Hint: change the field separator to account for tab-delimited files by setting FS = "\t" in the
BEGIN command)

We have barely scratched the surface of what awk can do. Performing an internet search for
awk one-liners will give you many additional examples of useful commands you can run using awk.

Note

Remember to archive and compress your Shell2 directory before pushing it to your online
repository for grading.

https://www.google.com/search?q=awk+one-liners&oq=awk+one-liners&aqs=chrome..69i57j0l7.3924j0j7&sourceid=chrome&ie=UTF-8


30 Lab 2. Unix Shell 2

Additional Material
Customizing the Shell

Though there are multiple Unix shells, one of the most popular is the bash shell. The bash shell
is highly customizable. In your home directory, you will find a hidden file named .bashrc. All
customization changes are saved in this file. If you are interested in customizing your shell, you can
customize the prompt using the PS1 environment variable. As you become more and more familiar
with the Unix shell, you will come to find there are commands you run over and over again. You
can save commands you use frequently with alias. If you would like more information on these and
other ways to customize the shell, you can find many quality reference guides and tutorials on the
internet.

System Management

In this section, we will address some of the basics of system management. As an introduction, the
commands in Table 2.6 are used to learn more about the computer system.

Command Description
passwd Change user password
uname View operating system name
uname -a Print all system information
uname -m Print machine hardware
w Show who is logged in and what they are doing
whoami Print userID of current user

Table 2.6: Commands for system administration.
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Lab Objective: Being able to store and manipulate large data sets quickly is a fundamental part of
data science. The SQL language is the classic database management system for working with tabular
data. In this lab we introduce the basics of SQL, including creating, reading, updating, and deleting
SQL tables, all via Python’s standard SQL interaction modules.

Relational Databases
A relational database is a collection of tables called relations. A single row in a table, called a tuple,
corresponds to an individual instance of data. The columns, called attributes or features, are data
values of a particular category. The collection of column headings is called the schema of the table,
which describes the kind of information stored in each entry of the tuples.

For example, suppose a database contains demographic information for M individuals. If a table
had the schema (Name, Gender, Age), then each row of the table would be a 3-tuple corresponding
to a single individual, such as (Jane Doe, F, 20) or (Samuel Clemens, M, 74.4). The table
would therefore be M × 3 in shape. Note that including a person’s age in a database means that
the data would quickly be outdated since people get older every year. A better choice would be to
use birth year. Another table with the schema (Name, Income) would be M × 2 if it included all M
individuals.

Tuple

Relation

Attribute

Figure 3.1: See https://en.wikipedia.org/wiki/Relational_database.
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SQLite

The most common database management systems (DBMS) for relational databases are based on
Structured Query Language, commonly called SQL (pronounced1 “sequel”). Though SQL is a language
in and of itself, most programming languages have tools for executing SQL routines. In Python, the
most common variant of SQL is SQLite, implemented as the sqlite3 module in the standard library,
which we use in this lab.

Achtung!

The goal of this lab is to introduce the language SQL, not to teach a specific implementation
of SQL. In this lab, we will use the sqlite3 library, which allows us to interact with a SQLite
database file. SQLite is lightweight, and does not require additional setup, making it great
for small projects like this lab and databases which will only be used by a single program at
once. For example, Android applications frequently use SQLite databases for local storage.
However, it is not suitable for many data science applications, since it is difficult to scale across
computers and programs. There are a variety of databases that use SQL-like languages designed
for different purposes, including MySQL, which scales much better and manages concurrent
connections efficiently but requires a server and a significant amount of overhead to run.

Although these databases have minor differences in SQL syntax, the concepts taught in
this lab are extremely transferrable across all SQL-like derivatives. Remember that you will
need to change the Python library you use based on which database type you are connecting
to.

A SQL database is stored in an external file, usually marked with the file extension db or mdf.
These files should not be opened in Python with open() like text files; instead, any interactions with
the database—creating, reading, updating, or deleting data—should occur as follows.

1. Create a connection to the database with sqlite3.connect(). This creates a database file if
one does not already exist.

2. Get a cursor, an object that manages the actual traversal of the database, with the connection’s
cursor() method.

3. Alter or read data with the cursor’s execute() method, which accepts an actual SQL command
as a string.

4. Save any changes with the cursor’s commit() method, or revert changes with rollback().

5. Close the connection.

>>> import sqlite3 as sql

# Establish a connection to a database file or create one if it doesn't exist.
>>> conn = sql.connect("my_database.db")
>>> try:
... cur = conn.cursor() # Get a cursor object.

1See https://english.stackexchange.com/questions/7231/how-is-sql-pronounced for a brief history of the
somewhat controversial pronunciation of SQL.

https://english.stackexchange.com/questions/7231/how-is-sql-pronounced
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... cur.execute("SELECT * FROM MyTable") # Execute a SQL command.

... except sql.Error: # If there is an error,

... conn.rollback() # revert the changes

... raise # and raise the error.

... else: # If there are no errors,

... conn.commit() # save the changes.

... finally:

... conn.close() # Close the connection.

Achtung!

Some changes, such as creating and deleting tables, are automatically committed to the database
as part of the cursor’s execute() method. Be extremely cautious when deleting tables, as
the action is immediate and permanent. Most changes, however, do not take effect in the
database file until the connection’s commit() method is called. Be careful not to close the
connection before committing desired changes, or those changes will not be recorded.

The with statement can be used with open() so that file streams are automatically closed, even
in the event of an error. Likewise, combining the with statement with sql.connect() automatically
rolls back changes if there is an error and commits them otherwise. However, the actual database
connection is not closed automatically. With this strategy, the previous code block can be reduced
to the following.

>>> try:
... with sql.connect("my_database.db") as conn:
... cur = conn.cursor() # Get the cursor.
... cur.execute("SELECT * FROM MyTable") # Execute a SQL command.
... finally: # Commit or revert, then
... conn.close() # close the connection.

Managing Database Tables

SQLite uses five native data types (relatively few compared to other SQL systems) that correspond
neatly to native Python data types.

Python Type SQLite Type
None NULL
int INTEGER

float REAL
str TEXT

bytes BLOB



34 Lab 3. SQL 1: Introduction

The CREATE TABLE command, together with a table name and a schema, adds a new table to
a database. The schema is a comma-separated list where each entry specifies the column name, the
column data type,2 and other optional parameters. For example, the following code adds a table
called MyTable with the schema (Name, ID, Age) with appropriate data types.

>>> with sql.connect("my_database.db") as conn:
... cur = conn.cursor()
... cur.execute("CREATE TABLE MyTable (Name TEXT, ID INTEGER, Age REAL)")
...
>>> conn.close()

The DROP TABLE command deletes a table. However, using CREATE TABLE to try to create a
table that already exists or using DROP TABLE to remove a nonexistent table raises an error. Use
DROP TABLE IF EXISTS to remove a table without raising an error if the table doesn’t exist. See
Table 3.1 for more table management commands.

Operation SQLite Command
Create a new table CREATE TABLE <table> (<schema>);

Delete a table DROP TABLE <table>;
Delete a table if it exists DROP TABLE IF EXISTS <table>;

Add a new column to a table ALTER TABLE <table> ADD <column> <dtype>
Remove an existing column ALTER TABLE <table> DROP COLUMN <column>;
Rename an existing column ALTER TABLE <table> ALTER COLUMN <column> <dtype>;

Table 3.1: SQLite commands for managing tables and columns.

Note

SQL commands like CREATE TABLE are often written in all caps to distinguish them from other
parts of the query, like the table name. This is only a matter of style: SQLite, along with most
other versions of SQL, is case insensitive. In Python’s SQLite interface, the trailing semicolon
is also unnecessary. However, most other database systems require it, so it’s good practice to
include the semicolon in Python.

Problem 1. Write a function that accepts the name of a database file. Connect to the database
(and create it if it doesn’t exist). Drop the tables MajorInfo, CourseInfo, StudentInfo, and
StudentGrades from the database if they exist. Next, add the following tables to the database
with the specified column names and types.

• MajorInfo: MajorID (integers) and MajorName (strings).

• CourseInfo: CourseID (integers) and CourseName (strings).

2Though SQLite does not force the data in a single column to be of the same type, most other SQL systems enforce
uniform column types, so it is good practice to specify data types in the schema.
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• StudentInfo: StudentID (integers), StudentName (strings), and MajorID (integers).

• StudentGrades: StudentID (integers), CourseID (integers), and Grade (strings).

Remember to commit and close the database. You should be able to execute your function
more than once with the same input without raising an error.

To check the database, use the following commands to get the column names of a specified
table. Assume here that the database file is called students.db.

>>> with sql.connect("students.db") as conn:
... cur = conn.cursor()
... cur.execute("SELECT * FROM StudentInfo;")
... print([d[0] for d in cur.description])
...
['StudentID', 'StudentName', 'MajorID']

Inserting, Removing, and Altering Data
Tuples are added to SQLite database tables with the INSERT INTO command.

# Add the tuple (Samuel Clemens, 1910421, 74.4) to MyTable in my_database.db.
>>> with sql.connect("my_database.db") as conn:
... cur = conn.cursor()
... cur.execute("INSERT INTO MyTable "
... "VALUES("Samuel Clemens", 1910421, 74.4);")

With this syntax, SQLite assumes that values match sequentially with the schema of the table.
The schema of the table can also be written explicitly for clarity.

>>> with sql.connect("my_database.db") as conn:
... cur = conn.cursor()
... cur.execute("INSERT INTO MyTable(Name, ID, Age) "
... "VALUES("Samuel Clemens", 1910421, 74.4);")

Achtung!

Never use Python’s string operations to construct a SQL query from variables. Doing so
makes the program susceptible to a SQL injection attack.a Instead, use parameter substitution
to construct dynamic commands: use a ? character within the command, then provide the
sequence of values as a second argument to execute().

>>> with sql.connect("my_database.db") as conn:
... cur = conn.cursor()
... values = ("Samuel Clemens", 1910421, 74.4)
... # Don't piece the command together with string operations!
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... # cur.execute("INSERT INTO MyTable VALUES " + str(values)) # BAD!

... # Instead, use parameter substitution.

... cur.execute("INSERT INTO MyTable VALUES(?,?,?);", values) # Good.

aSee https://xkcd.com/327/ for an example.

To insert several rows at a time to the same table, use the cursor object’s executemany()
method and parameter substitution with a list of tuples. This is typically much faster than using
execute() repeatedly.

# Insert (Samuel Clemens, 1910421, 74.4) and (Jane Doe, 123, 20) to MyTable.
>>> with sql.connect("my_database.db") as conn:
... cur = conn.cursor()
... rows = [("John Smith", 456, 40.5), ("Jane Doe", 123, 20)]
... cur.executemany("INSERT INTO MyTable VALUES(?,?,?);", rows)

Problem 2. Expand your function from Problem 1 so that it populates the tables with the
data given in Tables 3.2a–3.2d.

MajorID MajorName
1 Math
2 Science
3 Writing
4 Art

(a) MajorInfo

CourseID CourseName
1 Calculus
2 English
3 Pottery
4 History

(b) CourseInfo

StudentID StudentName MajorID
401767594 Michelle Fernandez 1
678665086 Gilbert Chapman NULL
553725811 Roberta Cook 2
886308195 Rene Cross 3
103066521 Cameron Kim 4
821568627 Mercedes Hall NULL
206208438 Kristopher Tran 2
341324754 Cassandra Holland 1
262019426 Alfonso Phelps NULL
622665098 Sammy Burke 2

(c) StudentInfo

StudentID CourseID Grade
401767594 4 C
401767594 3 B–
678665086 4 A+
678665086 3 A+
553725811 2 C
678665086 1 B
886308195 1 A
103066521 2 C
103066521 3 C–
821568627 4 D
821568627 2 A+
821568627 1 B
206208438 2 A
206208438 1 C+
341324754 2 D–
341324754 1 A–
103066521 4 A
262019426 2 B
262019426 3 C
622665098 1 A
622665098 2 A–

(d) StudentGrades

Table 3.2: Student database.

The StudentInfo and StudentGrades tables are also recorded in student_info.csv and
student_grades.csv, respectively, with NULL values represented as −1 (we’ll leave them as −1
for now). A CSV (comma-separated values) file can be read like a normal text file or with the
csv module.

https://xkcd.com/327/
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>>> import csv
>>> with open("student_info.csv", 'r') as infile:
... rows = list(csv.reader(infile))

To validate your database, use the following command to retrieve the rows from a table.

>>> with sql.connect("students.db") as conn:
... cur = conn.cursor()
... for row in cur.execute("SELECT * FROM MajorInfo;"):
... print(row)
(1, 'Math')
(2, 'Science')
(3, 'Writing')
(4, 'Art')

Problem 3. The data file us_earthquakes.csva contains data from about 3,500 earthquakes
in the United States since the 1769. Each row records the year, month, day, hour, minute,
second, latitude, longitude, and magnitude of a single earthquake (in that order). Note that
latitude, longitude, and magnitude are floats, while the remaining columns are integers.

Write a function that accepts the name of a database file. Drop the table USEarthquakes
if it already exists, then create a new USEarthquakes table with schema (Year, Month, Day,
Hour, Minute, Second, Latitude, Longitude, Magnitude). Populate the table with the

data from us_earthquakes.csv. Remember to commit the changes and close the connection.
(Hint: using executemany() is much faster than using execute() in a loop.)

aRetrieved from https://datarepository.wolframcloud.com/resources/Sample-Data-US-Earthquakes.

The WHERE Clause

Deleting or altering existing data in a database requires some searching for the desired row or rows.
The WHERE clause is a predicate that filters the rows based on a boolean condition. The operators
==, !=, <, >, <=, >=, AND, OR, and NOT all work as expected to create search conditions.

>>> with sql.connect("my_database.db") as conn:
... cur = conn.cursor()
... # Delete any rows where the Age column has a value less than 30.
... cur.execute("DELETE FROM MyTable WHERE Age < 30;")
... # Change the Name of "Samuel Clemens" to "Mark Twain".
... cur.execute("UPDATE MyTable SET Name="Mark Twain" WHERE ID==1910421;")

If the WHERE clause were omitted from either of the previous commands, every record in MyTable
would be affected. Always use a very specific WHERE clause when removing or updating data.

https://datarepository.wolframcloud.com/resources/Sample-Data-US-Earthquakes
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Operation SQLite Command
Add a new row to a table INSERT INTO table VALUES(<values>);
Remove rows from a table DELETE FROM <table> WHERE <condition>;

Change values in existing rows UPDATE <table> SET <column1>=<value1>, ... WHERE <condition>;

Table 3.3: SQLite commands for inserting, removing, and updating rows.

Note

SQLite treats = and == as equivalent operators. For clarity, in this lab we will always use
== when comparing two values, such as in a WHERE clause. The only time we use = is in SET
statements. Be aware that some flavors of SQL (such as MySQL) have no concept of ==, and
typing it in a query will return an error.

Problem 4. Modify your function from Problems 1 and 2 so that in the StudentInfo table,
values of −1 in the MajorID column are replaced with NULL values.

Also modify your function from Problem 3 in the following ways.

1. Remove rows from USEarthquakes that have a value of 0 for the Magnitude.

2. Replace 0 values in the Day, Hour, Minute, and Second columns with NULL values.

Reading and Analyzing Data
Constructing and managing databases is fundamental, but most time in SQL is spent analyzing
existing data. A query is a SQL command that reads all or part of a database without actually
modifying the data. Queries start with the SELECT command, followed by column and table names
and additional (optional) conditions. The results of a query, called the result set, are accessed
through the cursor object. After calling execute() with a SQL query, use fetchall() or another
cursor method from Table 3.4 to get the list of matching tuples.

Method Description
execute() Execute a single SQL command

executemany() Execute a single SQL command over different values
executescript() Execute a SQL script (multiple SQL commands)

fetchone() Return a single tuple from the result set
fetchmany(n) Return the next n rows from the result set as a list of tuples

fetchall() Return the entire result set as a list of tuples

Table 3.4: Methods of database cursor objects.

>>> conn = sql.connect("students.db")
>>> cur = conn.cursor()
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# Get tuples of the form (StudentID, StudentName) from the StudentInfo table.
>>> cur.execute("SELECT StudentID, StudentName FROM StudentInfo;")
>>> cur.fetchone() # List the first match (a tuple).
(401767594, 'Michelle Fernandez')

>>> cur.fetchmany(3) # List the next three matches (a list of tuples).
[(678665086, 'Gilbert Chapman'),
(553725811, 'Roberta Cook'),
(886308195, 'Rene Cross')]

>>> cur.fetchall() # List the remaining matches.
[(103066521, 'Cameron Kim'),
(821568627, 'Mercedes Hall'),
(206208438, 'Kristopher Tran'),
(341324754, 'Cassandra Holland'),
(262019426, 'Alfonso Phelps'),
(622665098, 'Sammy Burke')]

# Use * in place of column names to get all of the columns.
>>> cur.execute("SELECT * FROM MajorInfo;").fetchall()
[(1, 'Math'), (2, 'Science'), (3, 'Writing'), (4, 'Art')]

>>> conn.close()

The WHERE predicate can also refine a SELECT command. If the condition depends on a column
in a different table from the data that is being a selected, create a table alias with the AS command
to specify columns in the form table.column.

>>> conn = sql.connect("students.db")
>>> cur = conn.cursor()

# Get the names of all math majors.
>>> cur.execute("SELECT SI.StudentName "
... "FROM StudentInfo AS SI, MajorInfo AS MI "
... "WHERE SI.MajorID == MI.MajorID AND MI.MajorName == 'Math'")
# The result set is a list of 1-tuples; extract the entry from each tuple.
>>> [t[0] for t in cur.fetchall()]
['Cassandra Holland', 'Michelle Fernandez']

# Get the names and grades of everyone in English class.
>>> cur.execute("SELECT SI.StudentName, SG.Grade "

"FROM StudentInfo AS SI, StudentGrades AS SG "
"WHERE SI.StudentID == SG.StudentID AND CourseID == 2;")

>>> cur.fetchall()
[('Roberta Cook', 'C'),
('Cameron Kim', 'C'),
('Mercedes Hall', 'A+'),
('Kristopher Tran', 'A'),
('Cassandra Holland', 'D-'),
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('Alfonso Phelps', 'B'),
('Sammy Burke', 'A-')]

>>> conn.close()

Problem 5. Write a function that accepts the name of a database file. Assuming the database
to be in the format of the one created in Problems 1 and 2, query the database for all tuples
of the form (StudentName, CourseName) where that student has an “A” or “A+” grade in that
course. Return the list of tuples.

Aggregate Functions

A result set can be analyzed in Python using tools like NumPy, but SQL itself provides a few tools
for computing a few very basic statistics: AVG(), MIN(), MAX(), SUM(), and COUNT() are aggregate
functions that compress the columns of a result set into the desired quantity.

>>> conn = sql.connect("students.db")
>>> cur = conn.cursor()

# Get the number of students and the lowest ID number in StudentInfo.
>>> cur.execute("SELECT COUNT(StudentName), MIN(StudentID) FROM StudentInfo;")
>>> cur.fetchall()
[(10, 103066521)]

Problem 6. Write a function that accepts the name of a database file. Assuming the database
to be in the format of the one created in Problem 3, query the USEarthquakes table for the
following information.

• The magnitudes of the earthquakes during the 19th century (1800–1899).

• The magnitudes of the earthquakes during the 20th century (1900–1999).

• The average magnitude of all earthquakes in the database.

Create a single figure with two subplots: a histogram of the magnitudes of the earthquakes in
the 19th century, and a histogram of the magnitudes of the earthquakes in the 20th century.
Show the figure, then return the average magnitude of all of the earthquakes in the database.
Be sure to return an actual number, not a list or a tuple.
(Hint: use np.ravel() to convert a result set of 1-tuples to a 1-D array.)

Note
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Problem 6 raises an interesting question: are the number of earthquakes in the United States
increasing with time, and if so, how drastically? A closer look shows that only 3 earthquakes
were recorded (in this data set) from 1700–1799, 208 from 1800–1899, and a whopping 3049

from 1900–1999. Is the increase in earthquakes due to there actually being more earthquakes, or
to the improvement of earthquake detection technology? The best answer without conducting
additional research is “probably both.” Be careful to question the nature of your data—how it
was gathered, what it may be lacking, what biases or lurking variables might be present—before
jumping to strong conclusions.

See the following for more info on the sqlite3 and SQL in general.

• https://docs.python.org/3/library/sqlite3.html

• https://www.w3schools.com/sql/

• https://en.wikipedia.org/wiki/SQL_injection

https://docs.python.org/3/library/sqlite3.html
https://www.w3schools.com/sql/
https://en.wikipedia.org/wiki/SQL_injection
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Additional Material
Shortcuts for WHERE Conditions

Complicated WHERE conditions can be simplified with the following commands.

• IN: check for equality to one of several values quickly, similar to Python’s in operator. In other
words, the following SQL commands are equivalent.

SELECT * FROM StudentInfo WHERE MajorID == 1 OR MajorID == 2;
SELECT * FROM StudentInfo WHERE MajorID IN (1,2);

• BETWEEN: check two (inclusive) inequalities quickly. The following are equivalent.

SELECT * FROM MyTable WHERE AGE >= 20 AND AGE <= 60;
SELECT * FROM MyTable WHERE AGE BETWEEN 20 AND 60;
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Lab Objective: Since SQL databases contain multiple tables, retrieving information about the
data can be complicated. In this lab we discuss joins, grouping, and other advanced SQL query
concepts to facilitate rapid data retrieval.

We will use the following database as an example throughout this lab, found in students.db.

MajorID MajorName
1 Math
2 Science
3 Writing
4 Art

(a) MajorInfo

CourseID CourseName
1 Calculus
2 English
3 Pottery
4 History

(b) CourseInfo

StudentID StudentName MajorID
401767594 Michelle Fernandez 1
678665086 Gilbert Chapman NULL
553725811 Roberta Cook 2
886308195 Rene Cross 3
103066521 Cameron Kim 4
821568627 Mercedes Hall NULL
206208438 Kristopher Tran 2
341324754 Cassandra Holland 1
262019426 Alfonso Phelps NULL
622665098 Sammy Burke 2

(c) StudentInfo

StudentID CourseID Grade
401767594 4 C
401767594 3 B–
678665086 4 A+
678665086 3 A+
553725811 2 C
678665086 1 B
886308195 1 A
103066521 2 C
103066521 3 C–
821568627 4 D
821568627 2 A+
821568627 1 B
206208438 2 A
206208438 1 C+
341324754 2 D–
341324754 1 A–
103066521 4 A
262019426 2 B
262019426 3 C
622665098 1 A
622665098 2 A–

(d) StudentGrades

Table 4.1: Student database.

Joining Tables
A join combines rows from different tables in a database based on common attributes. In other
words, a join operation creates a new, temporary table containing data from 2 or more existing
tables. Join commands in SQLite have the following general syntax.

43
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SELECT <alias.column, ...>
FROM <table> AS <alias> JOIN <table> AS <alias>, ...
ON <alias.column> == <alias.column>, ...
WHERE <condition>;

The ON clause tells the query how to join tables together. Typically if there are N tables being
joined together, there should be N − 1 conditions in the ON clause.

Inner Joins

An inner join creates a temporary table with the rows that have exact matches on the attribute(s)
specified in the ON clause. Inner joins intersect two or more tables, as in Figure 4.1a.

A B

C

(a) An inner join of A, B, and C.

A B

C

(b) A left outer join of A with B and C.

Figure 4.1

For example, Table 4.1c (StudentInfo) and Table 4.1a (MajorInfo) both have a MajorID
column, so the tables can be joined by pairing rows that have the same MajorID. Such a join

temporarily creates the following table.

StudentID StudentName MajorID MajorID MajorName
401767594 Michelle Fernandez 1 1 Math
553725811 Roberta Cook 2 2 Science
886308195 Rene Cross 3 3 Writing
103066521 Cameron Kim 4 4 Art
206208438 Kristopher Tran 2 2 Science
341324754 Cassandra Holland 1 1 Math
622665098 Sammy Burke 2 2 Science

Table 4.2: An inner join of StudentInfo and MajorInfo on MajorID.

Notice that this table is missing the rows where MajorID was NULL in the StudentInfo table.
This is because there was no match for NULL in the MajorID column of the MajorInfo table, so the
inner join throws those rows away.
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Because joins deal with multiple tables at once, it is important to assign table aliases with the
AS command. Join statements can also be supplemented with WHERE clauses like regular queries.

>>> import sqlite3 as sql
>>> conn = sql.connect("students.db")
>>> cur = conn.cursor()

>>> cur.execute("SELECT * "
... "FROM StudentInfo AS SI INNER JOIN MajorInfo AS MI "
... "ON SI.MajorID == MI.MajorID;").fetchall()
[(401767594, 'Michelle Fernandez', 1, 1, 'Math'),
(553725811, 'Roberta Cook', 2, 2, 'Science'),
(886308195, 'Rene Cross', 3, 3, 'Writing'),
(103066521, 'Cameron Kim', 4, 4, 'Art'),
(206208438, 'Kristopher Tran', 2, 2, 'Science'),
(341324754, 'Cassandra Holland', 1, 1, 'Math'),
(622665098, 'Sammy Burke', 2, 2, 'Science')]

# Select the names and ID numbers of the math majors.
>>> cur.execute("SELECT SI.StudentName, SI.StudentID "
... "FROM StudentInfo AS SI INNER JOIN MajorInfo AS MI "
... "ON SI.MajorID == MI.MajorID "
... "WHERE MI.MajorName == 'Math';").fetchall()
[('Cassandra Holland', 341324754), ('Michelle Fernandez', 401767594)]

Problem 1. Write a function that accepts the name of a database file. Assuming the database
to be in the format of Tables 4.1a–4.1d, query the database for the list of the names of students
who have a B grade in any course (not a B– or a B+). Be sure to return a list of strings, not a
list of tuples of strings.

Outer Joins

A left outer join, sometimes called a left join, creates a temporary table with all of the rows from the
first (left-most) table, and all the “matched” rows on the given attribute(s) from the other relations.
Rows from the left table that don’t match up with the columns from the other tables are supplemented
with NULL values to fill extra columns. Compare the following table and code to Table 4.2.
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StudentID StudentName MajorID MajorID MajorName
401767594 Michelle Fernandez 1 1 Math
678665086 Gilbert Chapman NULL NULL NULL
553725811 Roberta Cook 2 2 Science
886308195 Rene Cross 3 3 Writing
103066521 Cameron Kim 4 4 Art
821568627 Mercedes Hall NULL NULL NULL
206208438 Kristopher Tran 2 2 Science
341324754 Cassandra Holland 1 1 Math
262019426 Alfonso Phelps NULL NULL NULL
622665098 Sammy Burke 2 2 Science

Table 4.3: A left outer join of StudentInfo and MajorInfo on MajorID.

>>> cur.execute("SELECT * "
... "FROM StudentInfo AS SI LEFT OUTER JOIN MajorInfo AS MI "
... "ON SI.MajorID == MI.MajorID;").fetchall()
[(401767594, 'Michelle Fernandez', 1, 1, 'Math'),
(678665086, 'Gilbert Chapman', None, None, None),
(553725811, 'Roberta Cook', 2, 2, 'Science'),
(886308195, 'Rene Cross', 3, 3, 'Writing'),
(103066521, 'Cameron Kim', 4, 4, 'Art'),
(821568627, 'Mercedes Hall', None, None, None),
(206208438, 'Kristopher Tran', 2, 2, 'Science'),
(341324754, 'Cassandra Holland', 1, 1, 'Math'),
(262019426, 'Alfonso Phelps', None, None, None),
(622665098, 'Sammy Burke', 2, 2, 'Science')]

Some flavors of SQL also support the RIGHT OUTER JOIN command, but sqlite3 does not
recognize the command since T1 RIGHT OUTER JOIN T2 is equivalent to T2 LEFT OUTER JOIN T1.

Joining Multiple Tables

Complicated queries often join several different relations. If the same kind of join is being used, the
relations and conditional statements can be put in list form. For example, the following code selects
courses that Kristopher Tran has taken, and the grades that he got in those courses, by joining three
tables together. Note that 2 conditions are required in the ON clause in this case.

>>> cur.execute("SELECT CI.CourseName, SG.Grade "
... "FROM StudentInfo AS SI " # Join 3 tables.
... "INNER JOIN CourseInfo AS CI, StudentGrades SG "
... "ON SI.StudentID==SG.StudentID AND CI.CourseID==SG.CourseID "
... "WHERE SI.StudentName == 'Kristopher Tran';").fetchall()
[('Calculus', 'C+'), ('English', 'A')]

To use different kinds of joins in a single query, append one join statement after another. The
join closest to the beginning of the statement is executed first, creating a temporary table, and the
next join attempts to operate on that table. The following example performs an additional join on
Table 4.3 to find the name and major of every student who got a C in a class.
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# Do an inner join on the results of the left outer join.
>>> cur.execute("SELECT SI.StudentName, MI.MajorName "
... "FROM StudentInfo AS SI LEFT OUTER JOIN MajorInfo AS MI "
... "ON SI.MajorID == MI.MajorID "
... "INNER JOIN StudentGrades AS SG "
... "ON SI.StudentID == SG.StudentID "
... "WHERE SG.Grade == 'C';").fetchall()
[('Michelle Fernandez', 'Math'),
('Roberta Cook', 'Science'),
('Cameron Kim', 'Art'),
('Alfonso Phelps', None)]

In this last example, note carefully that Alfonso Phelps would have been excluded from the
result set if an inner join was performed first instead of an outer join (since he lacks a major).

Problem 2. Write a function that accepts the name of a database file. Query the database for
all tuples of the form (Name, MajorName, Grade) where Name is a student’s name and Grade
is their grade in Calculus. Only include results for students that are actually taking Calculus,
but be careful not to exclude students who haven’t declared a major.

Grouping Data
Many data sets can be naturally sorted into groups. The GROUP BY command gathers rows from a
table and groups them by a certain attribute. The groups are then combined by one of the aggregate
functions AVG(), MIN(), MAX(), SUM(), or COUNT(). Each of these functions accepts the name of the
column to be operated on. Note that the first four of these require the column to hold numerical
data. Since our database has no such data, we will delay examples of using the functions other than
COUNT() until later.

The following code groups the rows in Table 4.1d by studentID and counts the number of
entries in each group.

>>> cur.execute("SELECT StudentID, COUNT(*) " # * means "all of the rows".
... "FROM StudentGrades "
... "GROUP BY StudentID;").fetchall()
[(103066521, 3),
(206208438, 2),
(262019426, 2),
(341324754, 2),
(401767594, 2),
(553725811, 1),
(622665098, 2),
(678665086, 3),
(821568627, 3),
(886308195, 1)]
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GROUP BY can also be used in conjunction with joins. The join creates a temporary table like
Tables 4.2 or 4.3, the results of which can then be grouped.

>>> cur.execute("SELECT SI.StudentName, COUNT(*) "
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID;").fetchall()
[('Cameron Kim', 3),
('Kristopher Tran', 2),
('Alfonso Phelps', 2),
('Cassandra Holland', 2),
('Michelle Fernandez', 2),
('Roberta Cook', 1),
('Sammy Burke', 2),
('Gilbert Chapman', 3),
('Mercedes Hall', 3),
('Rene Cross', 1)]

Just like the WHERE clause chooses rows in a relation, the HAVING clause chooses groups from the
result of a GROUP BY based on some criteria related to the groupings. For this particular command,
it is often useful (but not always necessary) to create an alias for the columns of the result set with
the AS operator. For instance, the result set of the previous example can be filtered down to only
contain students who are taking 3 courses.

>>> cur.execute("SELECT SI.StudentName, COUNT(*) as num_courses " # Alias.
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID "
... "HAVING num_courses == 3;").fetchall() # Refer to alias later←↩

.
[('Cameron Kim', 3), ('Gilbert Chapman', 3), ('Mercedes Hall', 3)]

# Alternatively, get just the student names.
>>> cur.execute("SELECT SI.StudentName " # No alias.
... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID "
... "HAVING COUNT(*) == 3;").fetchall()
[('Cameron Kim',), ('Gilbert Chapman',), ('Mercedes Hall',)]

Other Miscellaneous Commands

Ordering Result Sets

The ORDER BY command sorts a result set by one or more attributes. Sorting can be done in ascending
or descending order with ASC or DESC, respectively. This is always the very last statement in a query.

>>> cur.execute("SELECT SI.StudentName, COUNT(*) AS num_courses " # Alias.
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... "FROM StudentGrades AS SG INNER JOIN StudentInfo AS SI "

... "ON SG.StudentID == SI.StudentID "

... "GROUP BY SG.StudentID "

... "ORDER BY num_courses DESC, SI.StudentName ASC;").fetchall()
[('Cameron Kim', 3), # The results are now ordered by the
('Gilbert Chapman', 3), # number of courses each student is in,
('Mercedes Hall', 3), # then alphabetically by student name.
('Alfonso Phelps', 2),
('Cassandra Holland', 2),
('Kristopher Tran', 2),
('Michelle Fernandez', 2),
('Sammy Burke', 2),
('Rene Cross', 1),
('Roberta Cook', 1)]

Problem 3. Write a function that accepts a database file. Query the given database for tuples
of the form (MajorName, N) where N is the number of students in the specified major. Sort
the results in descending order by the count N, and then in alphabetic order by MajorName.
Include Null majors.

Searching Text with Wildcards

The LIKE operator within a WHERE clause matches patterns in a TEXT column. The special characters
% and _ and called wildcards that match any number of characters or a single character, respectively.
For instance, %Z_ matches any string of characters ending in a Z then another character, and %i%
matches any string containing the letter i.

>>> results = cur.execute("SELECT StudentName FROM StudentInfo "
... "WHERE StudentName LIKE '%i%';").fetchall()
>>> [r[0] for r in results]
['Michelle Fernandez', 'Gilbert Chapman', 'Cameron Kim', 'Kristopher Tran']

Case Expressions

A case expression maps the values in a column using boolean logic. There are two forms of a case
expression: simple and searched. A simple case expression matches and replaces specified attributes.

# Replace the values MajorID with new custom values.
>>> cur.execute("SELECT StudentName, CASE MajorID "
... "WHEN 1 THEN 'Mathematics' "
... "WHEN 2 THEN 'Soft Science' "
... "WHEN 3 THEN 'Writing and Editing' "
... "WHEN 4 THEN 'Fine Arts' "
... "ELSE 'Undeclared' END "
... "FROM StudentInfo "
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... "ORDER BY StudentName ASC;").fetchall()
[('Alfonso Phelps', 'Undeclared'),
('Cameron Kim', 'Fine Arts'),
('Cassandra Holland', 'Mathematics'),
('Gilbert Chapman', 'Undeclared'),
('Kristopher Tran', 'Soft Science'),
('Mercedes Hall', 'Undeclared'),
('Michelle Fernandez', 'Mathematics'),
('Rene Cross', 'Writing and Editing'),
('Roberta Cook', 'Soft Science'),
('Sammy Burke', 'Soft Science')]

A searched case expression involves using a boolean expression at each step, instead of listing
all of the possible values for an attribute.

# Change NULL values in MajorID to 'Undeclared' and non-NULL to 'Declared'.
>>> cur.execute("SELECT StudentName, CASE "
... "WHEN MajorID IS NULL THEN 'Undeclared' "
... "ELSE 'Declared' END "
... "FROM StudentInfo "
... "ORDER BY StudentName ASC;").fetchall()
[('Alfonso Phelps', 'Undeclared'),
('Cameron Kim', 'Declared'),
('Cassandra Holland', 'Declared'),
('Gilbert Chapman', 'Undeclared'),
('Kristopher Tran', 'Declared'),
('Mercedes Hall', 'Undeclared'),
('Michelle Fernandez', 'Declared'),
('Rene Cross', 'Declared'),
('Roberta Cook', 'Declared'),
('Sammy Burke', 'Declared')]

Chaining Queries
The result set of any SQL query is really just another table with data from the original database.
Separate queries can be made from result sets by enclosing the entire query in parentheses. For these
sorts of operations, it is very important to carefully label the columns resulting from a subquery.

# Count how many declared and undeclared majors there are
# The subquery changes NULL values in MajorID to 'Undeclared' and
# non-NULL to 'Declared'.
>>> cur.execute("SELECT majorstatus, COUNT(*) AS majorcount "
... "FROM ( " # Begin subquery.
... "SELECT StudentName, CASE "
... "WHEN MajorID IS NULL THEN 'Undeclared' "
... "ELSE 'Declared' END AS majorstatus "
... "FROM StudentInfo) " # End subquery.
... "GROUP BY majorstatus "
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... "ORDER BY majorcount DESC;").fetchall()
[('Declared', 7), ('Undeclared', 3)]

Subqueries can also be joined with other tables, as in the following example. Note also that a
subquery can be used to create numerical data out of non-numerical data, which can then be passed
into any of the aggregate functions.

# Find the proportion of classes each student has an A+, A, or A- in.
# The inner query creates a column 'gradeisa' which is 1 if the student's grade
# is A+, A, or A-, and 0 otherwise.
>>> cur.execute("SELECT SI.StudentName, AVG(SG.gradeisa) "
... "FROM ("
... "SELECT StudentID, CASE Grade "
... "WHEN 'A+' THEN 1 "
... "WHEN 'A' THEN 1 "
... "WHEN 'A-' THEN 1 "
... "ELSE 0 END AS gradeisa "
... "FROM StudentGrades) AS SG "
... "INNER JOIN StudentInfo AS SI "
... "ON SG.StudentID == SI.StudentID "
... "GROUP BY SG.StudentID;").fetchall()
[('Cameron Kim', 0.3333333333333333),
('Kristopher Tran', 0.5),
('Alfonso Phelps', 0.0),
('Cassandra Holland', 0.5),
('Michelle Fernandez', 0.0),
('Roberta Cook', 0.0),
('Sammy Burke', 1.0),
('Gilbert Chapman', 0.6666666666666666),
('Mercedes Hall', 0.3333333333333333),
('Rene Cross', 1.0)]

Problem 4. Write a function that accepts the name of a database file. Query the database for
tuples of the form (StudentName, N, GPA) where N is the number of courses that the specified
student is enrolled in and GPA is their grade point average based on the following point system:

A+, A = 4.0 B = 3.0 C = 2.0 D = 1.0
A– = 3.7 B– = 2.7 C– = 1.7 D– = 0.7
B+ = 3.4 C+ = 2.4 D+ = 1.4

Order the results from greatest GPA to least.
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Problem 5. The file mystery_database.db contains 4 tables called table_1, table_2,
table_3, and table_4 which contain information on over 5000 subjects. Hidden within these
subjects is an obvious outlier. Use what you’ve learned about SQL to identify the outlier in
this database. Return the outlier’s name, ID number, eye color, and height as strings in a list.
Hint: you may find that joining the tables is more difficult than it’s worth; instead, try finding
one clue at a time. Most of these subjects lived a long time ago in a galaxy far, far away... so
a good place to start might be to find a subject who doesn’t meet that criteria. Interesting
information about subjects is often included in the description column. Also, recall that the
following commands can be used to get the column names of a specified table:

>>> with sql.connect("database.db") as conn:
... cur = conn.cursor()
... cur.execute("SELECT * FROM specified_table;")
... print([d[0] for d in cur.description])
...
['column_1', 'column_2', 'column_3']

The following command might be of use: cur.execute("PRAGMA case_sensitive_like
= TRUE;"). This command will make the LIKE operator case sensitive from the point of

execution, until the case sensitivity is turned off.

>>> with sql.connect("database.db") as conn:
... cur = conn.cursor()
... # Make the LIKE operator hereafter case sensitive
... cur.execute("PRAGMA case_sensitive_like = TRUE;")
... cur.execute("SELECT * FROM specified_table "
... "WHERE column_1 LIKE 'value';")

Achtung!

The goal of this lab is to introduce the language SQL, not to teach a specific implementation
of SQL. In this lab, we will use the sqlite3 library, which allows us to interact with a SQLite
database file. SQLite is lightweight, and does not require additional setup, making it great
for small projects like this lab and databases which will only be used by a single program at
once. For example, Android applications frequently use SQLite databases for local storage.
However, it is not suitable for many data science applications, since it is difficult to scale across
computers and programs. There are a variety of databases that use SQL-like languages designed
for different purposes, including MySQL, which scales much better and manages concurrent
connections efficiently but requires a server and a significant amount of overhead to run.

Although these databases have minor differences in SQL syntax, the concepts taught in
this lab are extremely transferrable across all SQL-like derivatives. Remember that you will
need to change the Python library you use based on which database type you are connecting
to.



5 Regular Expressions

Lab Objective: Cleaning and formatting data are fundamental problems in data science. Regular
expressions are an important tool for working with text carefully and efficiently, and are useful for
both gathering and cleaning data. This lab introduces regular expression syntax and common prac-
tices, including an application to a data cleaning problem. This link may be helpful as a reference:
https://docs.python.org/3/library/re.html

A regular expression or regex is a string of characters that follows a certain syntax to specify a
pattern, like generalized shorthand for strings. Strings that follow the pattern are said to match the
expression (and vice versa). A single regular expression can match a large set of strings, such as the
set of all valid email addresses.

Achtung!

There are some universal standards for regular expression syntax, but the exact syntax varies
slightly depending on the program or language. However, the syntax presented in this lab
(for Python) is sufficiently similar to any other regex system. Consider learning to use regular
expressions in Vim or your favorite text editor, keeping in mind that there will be slight syntactic
differences from what is presented here.

Regular Expression Syntax in Python
The re module implements regular expressions in Python. The function re.compile() takes in a
regular expression string and returns a corresponding pattern object, which has methods for deter-
mining if and how other strings match the pattern. You can think of the re.compile object as a box
with a certain shape cut out of the bottom. When a lot of differently shaped objects are put into
the box and shaken around only the objects with the same exact shape as the one cut out of the box
will fall out. One method that re.compile() uses is the search() method, which returns None for
a string that doesn’t match, and a match object for a string that does match.

The match() method is different than the match object mentioned previously. The match
method only matches strings that satisfy the pattern at the beginning of the string. To answer the
question “does any part of my target string match this regular expression?” always use the search()
method.

53
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>>> import re
>>> pattern = re.compile("cat") # Make a pattern object for finding 'cat'.
>>> bool(pattern.search("cat")) # 'cat' matches 'cat', of course.
True
>>> bool(pattern.match("catfish")) # 'catfish' starts with 'cat'.
True
>>> bool(pattern.match("fishcat")) # 'fishcat' doesn't start with 'cat'.
False
>>> bool(pattern.search("fishcat")) # but it does contain 'cat'.
True
>>> bool(pattern.search("hat")) # 'hat' does not contain 'cat'.
False

Most of the functions in the re module are shortcuts for compiling a pattern object and calling
one of its methods. Using re.compile() is good practice because the resulting object (analagously,
the box you made) is reusable, while each call to re.search() compiles a new (but redundant)
pattern object. For example, the following lines of code are equivalent.

>>> bool(re.compile("cat").search("catfish"))
True
>>> bool(re.search("cat", "catfish"))
True

Assigning re.compile("cat").search("catfish") or re.search("cat","catfish") without the bool()
around them to variables will create match objects.

Problem 1. Write a function that compiles and returns a regular expression pattern object
with the pattern string "python".

Literal Characters and Metacharacters

The following string characters (separated by spaces) are metacharacters in Python’s regular
expressions, meaning they have special significance in a pattern string:
. ^ $ * + ? { } [ ] \ | ( ).
A regular expression that matches strings with one or more metacharacters requires two things.

1. Use raw strings instead of regular Python strings by prefacing the string with an r, such as
r"cat". The resulting string interprets backslashes as actual backslash characters, rather
than the start of an escape sequence like \n or \t.

2. Preface any metacharacters with a backslash to indicate a literal character. For example, to
match the string "$3.99? Thanks.", use r"\$3\.99\? Thanks\.".

Without raw strings, every backslash has to be written as a double backslash, which makes many
regular expression patterns hard to read ("\\$3\\.99\\? Thanks\\.").
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Problem 2. Write a function that compiles and returns a regular expression pattern object
that matches the string "^{@}(?)[%]{.}(*)[_]{&}$".
Hint: There are online sites like https://regex101.com/ that can help check answers. Con-
sider building regex expressions one character at a time at this website.

The regular expressions of Problems 1 and 2 only match strings that are or include the exact
pattern. The metacharacters allow regular expressions to have much more flexibility and control so
that a single pattern can match a wide variety of strings, or a very specific set of strings. The line
anchor metacharacters ^ and $ are used to match the start and the end of a line of text,
respectively. This shrinks the matching set, even when using the search() method instead of the
match() method. For example, the only single-line string that the expression '^x$' matches is 'x',
whereas the expression 'x' can match any string with an 'x' in it.
The pipe character | is a logical OR in a regular expression: A|B matches A or B. The parentheses ()
create a group in a regular expression. A group establishes an order of operations in an expression.
For example, in the regex "^one|two fish$", precedence is given to the invisible string
concatenation between "two" and "fish", while "^(one|two) fish$" gives precedence to the '|'
metacharacter. Notice that the pipe is inside the group.

>>> fish = re.compile(r"^(one|two) fish$")
>>> for test in ["one fish", "two fish", "red fish", "one two fish"]:
... print(test + ':', bool(fish.search(test)))
...
one fish: True
two fish: True
red fish: False
one two fish: False

Problem 3. Write a function that compiles and returns a regular expression pattern object
that matches the following strings, and no other strings, even with re.search().

"Book store" "Mattress store" "Grocery store"
"Book supplier" "Mattress supplier" "Grocery supplier"

Hint: The naive way to do this is create a very long chain of or operators with the exact
phrases as options. Instead, think about dividing it into two groups of or operators where the
first group picks the first word and the second groups picks the second word.
There is a file called test_regular_expressions.py that contains some prewritten unit tests
to help you test your function for this problem.

Character Classes

The hard bracket metacharacters [ and ] are used to create character classes, a part of a regular
expression that can match a variety of characters. For example, the pattern [abc] matches any of
the characters a, b, or c. This is different than a group delimited by parentheses: a group can
match multiple characters, while a character class matches only one character. For instance, [abc]
does not match ab or abc, and (abc) matches abc but not ab or even a.

https://regex101.com/
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Within character classes, there are two additional metacharacters. When ^ appears as the first
character in a character class, right after the opening bracket [, the character class matches
anything not specified instead. In other words, ^ is the set complement operation on the character
class. Additionally, the dash - specifies a range of values. For instance, [0-9] matches any digit,
and [a-z] matches any lowercase letter. Thus [^0-9] matches any character except for a digit,
and [^a-z] matches any character except for lowercase letters. Keep in mind that the dash -,
when at the beginning or end of the character class, will match the literal '-'. Note that [0-27-9]
acts like [(0-2)|(7-9)].

>>> p1, p2 = re.compile(r"^[a-z][^0-7]$"), re.compile(r"^[^abcA-C][0-27-9]$")
>>> for test in ["d8", "aa", "E9", "EE", "d88"]:
... print(test + ':', bool(p1.search(test)), bool(p2.search(test)))
...
d8: True True
aa: True False # a is not in [^abcA-C] or [0-27-9].
E9: False True # E is not in [a-z].
EE: False False # E is not in [a-z] or [0-27-9].
d88: False False # Too many characters.

There are also a variety of shortcuts that represent common character classes, listed in Table 5.1.
Familiarity with these shortcuts makes some regular expressions significantly more readable.

Character Description
\b Matches the empty string, but only at the start or end of a word.
\s Matches any whitespace character; equivalent to [ \t\n\r\f\v].
\S Matches any non-whitespace character; equivalent to [^\s].
\d Matches any decimal digit; equivalent to [0-9].
\D Matches any non-digit character; equivalent to [^\d].
\w Matches any alphanumeric character; equivalent to [a-zA-Z0-9_].
\W Matches any non-alphanumeric character; equivalent to [^\w].

Table 5.1: Character class shortcuts.

Any of the character class shortcuts can be used within other custom character classes. For
example, [_A-Z\s] matches an underscore, capital letter, or whitespace character.
Finally, a period . matches any character except for a line break. This is a very powerful
metacharacter; be careful to only use it when part of the regular expression really should match
any character.

# Match any three-character string with a digit in the middle.
>>> pattern = re.compile(r"^.\d.$")
>>> for test in ["a0b", "888", "n2%", "abc", "cat"]:
... print(test + ':', bool(pattern.search(test)))
...
a0b: True
888: True
n2%: True
abc: False
cat: False
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# Match two letters followed by a number and two non-newline characters.
>>> pattern = re.compile(r"^[a-zA-Z][a-zA-Z]\d..$")
>>> for test in ["tk421", "bb8!?", "JB007", "Boba?"]:
... print(test + ':', bool(pattern.search(test)))
..
tk421: True
bb8!?: True
JB007: True
Boba?: False

The following table is a useful recap of some common regular expression metacharacters.

Character Description
. Matches any character except a newline.
^ Matches the start of the string.
$ Matches the end of the string or just before the newline at the end of the string.
| A|B creates an regular expression that will match either A or B.

[...] Indicates a set of characters. A ^ as the first character indicates a complementing set.
(...) Matches the regular expression inside the parentheses.

The contents can be retrieved or matched later in the string.

Table 5.2: Standard regular expression metacharacters in Python.

Repetition

The remaining metacharacters are for matching a specified number of characters. This allows a
single regular expression to match strings of varying lengths.

Character Description
* Matches 0 or more repetitions of the preceding regular expression.
+ Matches 1 or more repetitions of the preceding regular expression.
? Matches 0 or 1 of the preceding regular expression.

{m,n} Matches from m to n repetitions of the preceding regular expression.
*?, +?, ??, {m,n}? Non-greedy versions of the previous four special characters.

Table 5.3: Repetition metacharacters for regular expressions in Python.

Each of the repetition operators acts on the expression immediately preceding it. This could be a
single character, a group, or a character class. For instance, (abc)+ matches abc, abcabc,
abcabcabc, and so on, but not aba or cba. On the other hand, [abc]* matches any sequence of a,
b, and c, including abcabc and aabbcc.
The curly braces {} specify a custom number of repetitions allowed. {,n} matches up to n

instances, {m,} matches at least m instances, {k} matches exactly k instances, and {m,n}
matches from m to n instances. Thus the ? operator is equivalent to {,1} and + is equivalent to
{1,}.

# Match exactly 3 'a' characters.
>>> pattern = re.compile(r"^a{3}$")
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>>> for test in ["aa", "aaa", "aaaa", "aba"]:
... print(test + ':', bool(pattern.search(test)))
...
aa: False # Too few.
aaa: True
aaaa: False # Too many.
aba: False

Be aware that line anchors are especially important when using repetition operators. Consider the
following (bad) example and compare it to the previous example.

# Match exactly 3 'a' characters, hopefully.
>>> pattern = re.compile(r"a{3}")
>>> for test in ["aaa", "aaaa", "aaaaa", "aaaab"]:
... print(test + ':', bool(pattern.search(test)))
...
aaa: True
aaaa: True # Should be too many!
aaaaa: True # Should be too many!
aaaab: True # Too many, and even with the 'b'?

The unexpected matches occur because "aaa" is at the beginning of each of the test strings. With
the line anchors ^ and $, the search truly only matches the exact string "aaa".

Problem 4. A valid Python identifier (a valid variable name) is any string starting with an
alphabetic character or an underscore, followed by any (possibly empty) sequence of alphanu-
meric characters and underscores.
A valid python parameter definition is defined as the concatenation of the following strings:

• any valid python identifier

• any number of spaces

• (optional) an equals sign followed by any number of spaces and ending with one of the
following three things: any real number, a single quote followed by any number of non-
single-quote characters followed by a single quote (ex: ’example’), or any valid python
identifier

Define a function that compiles and returns a regular expression pattern object that matches
any valid Python parameter definition.
(Hint: Use the \w character class shortcut to keep your regular expression clean.)
To help in debugging, the following examples may be useful. These test cases are a good start,
but are not exhaustive. The first table should match valid Python identifiers. The second
should match a valid python parameter definition, as defined in this problem. Note that some
strings which would be valid in python will not be for this problem.

Matches: "Mouse" "_num = 2.3" "arg_ = 'hey'" "__x__" "var24"
Non-matches: "3rats" "_num = 2.3.2" "arg_ = 'one'two" "sq(x)" " x"
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Matches: "max=total" "string= ''" "num_guesses"
Non-matches: "max=2total" "is_4=(value==4)" "pattern = r'^one|two fish$'"

Hint: It may seem more efficient to keep the equals sign part of the expression outisde of
your or group (parentheses with pipelines) but that is a really tricky way to do it. It is easier
to include the equals sign and space in each case individually. For example,
(= \s∗...| = \s∗...|...) instead of (= \s∗(...|...|...)).
Note: The equals sign is not a special character, but is matching the character ’=’ exactly.
The example above matches an equal sign followed by any number of whitespace.

Unit Test

There is a file called test_regular_expressions.py that contains prewritten unit tests for
Problem 3. There is a place for you to add your own unit tests for your function in Problem 4
which will be graded.

Manipulating Text with Regular Expressions
So far we have been solely concerned with whether or not a regular expression and a string match,
but the power of regular expressions comes with what can be done with a match. In addition to the
search() method, regular expression pattern objects have the following useful methods.

Method Description
match() Match a regular expression pattern to the beginning of a string.

fullmatch() Match a regular expression pattern to all of a string.
search() Search a string for the presence of a pattern.

sub() Substitute occurrences of a pattern found in a string.
subn() Same as sub, but also return the number of substitutions made.

split() Split a string by the occurrences of a pattern.
findall() Find all occurrences of a pattern in a string.

finditer() Return an iterator yielding a match object for each match.

Table 5.4: Methods of regular expression pattern objects.

Some substitutions require remembering part of the text that the regular expression matches.
Groups are useful here: each group in the regular expression can be represented in the substitution
string by \n, where n is an integer (starting at 1) specifying which group to use.

# Find words that start with 'cat', remembering what comes after the 'cat'.
>>> pig_latin = re.compile(r"\bcat(\w*)")
>>> target = "Let's catch some catfish for the cat"

>>> pig_latin.sub(r"at\1clay", target) # \1 = (\w*) from the expression.
"Let's atchclay some atfishclay for the atclay"
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The repetition operators ?, +, *, and {m,n} are greedy, meaning that they match the largest string
possible. On the other hand, the operators ??, +?, *?, and {m,n}? are non-greedy, meaning they
match the smallest strings possible. This is very often the desired behavior for a regular expression.

>>> target = "<abc> <def> <ghi>"

# Match angle brackets and anything in between.
>>> greedy = re.compile(r"^<.*>$") # Greedy *
>>> greedy.findall(target)
['<abc> <def> <ghi>'] # The entire string matched!

# Try again, using the non-greedy version.
>>> nongreedy = re.compile(r"<.*?>")# Non-greedy *?
>>> nongreedy.findall(target)
['<abc>', '<def>', '<ghi>'] # Each <> set is an individual match.

Finally, there are a few customizations that make searching larger texts manageable. Each of these
flags can be used as keyword arguments to re.compile().

Flag Description
re.DOTALL . matches any character at all, including the newline.

re.IGNORECASE Perform case-insensitive matching.
re.MULTILINE ^ matches the beginning of lines (after a newline) as well as the string;

$ matches the end of lines (before a newline) as well as the end of the string.

Table 5.5: Regular expression flags.

A benefit of using '^' and '$' is that they allow you to search across multiple lines. For example,
how would we match "World" in the string "Hello\nWorld"? Using re.MULTILINE in the
re.search function will allow us to match at the beginning of each new line, instead of just the
beginning of the string. The following shows how to implement multiline searching:

>>>pattern1 = re.compile("^W")
>>>pattern2 = re.compile("^W", re.MULTILINE)
>>>bool(pattern1.search("Hello\nWorld"))
False
>>>bool(pattern2.search("Hello\nWorld"))
True

Problem 5. A Python block is composed of several lines of code with the same indentation
level. Blocks are delimited by key words and expressions, followed by a colon. Possible key
words are if, elif, else, for, while, try, except, finally, with, def, and class. Some of
these keywords require an expression to precede the colon (if, elif, for, etc.). Some require
no expressions to precede the colon (else, finally), and except may or may not have an
expression before the colon.
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Write a function that accepts a string of Python code and uses regular expressions to place
colons in the appropriate spots. Assume that every colon is missing in the input string and
that any keyword that should have an expression after it does. (Note that this will simplify
your regex expression since you won’t have to design it to handle cases where some colons are
present or to detect the key words that need expressions versus ones that don’t.) Return the
string of code with colons in the correct places.

"""
k, i, p = 999, 1, 0
while k > i

i *= 2
p += 1
if k != 999

print("k should not have changed")
else

pass
print(p)
"""

# The string given above should become this string.
"""
k, i, p = 999, 1, 0
while k > i:

i *= 2
p += 1
if k != 999:

print("k should not have changed")
else:

pass
print(p)
"""

Extracting Text with Regular Expressions
Regular expressions are useful for locating and extracting information that matches a certain
format. The method pattern.findall(string) returns a list containing all non-overlapping
matches of pattern found in string. The method scans the string from left to right and returns
the matches in that order. If two matches overlap, the match that begins first is returned.
When at least one group, indicated by (), is present in the pattern, then only information
contained in a group is returned. Each match is returned as a tuple containing the part of the
string that matches each group in the pattern.

>>> pattern = re.compile("\w* fish")

# Without any groups, the entirety of each match is returned.
>>> pattern.findall("red fish, blue fish, one fish, two fish")
['red fish', 'blue fish', 'one fish', 'two fish']
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# When a group is present, only information contained in a group is returned.
>>> pattern2 = re.compile("(\w*) (fish|dish)")
>>> pattern2.findall("red dish, blue dish, one fish, two fish")
[('red', 'dish'), ('blue', 'dish'), ('one', 'fish'), ('two', 'fish')]

If you wish to extract the characters that match some groups, but not others, you can choose to
exclude a group from being returned using the syntax (?:)

>>> pattern = re.compile("(\w*) (?:fish|dish)")
>>> pattern.findall("red dish, blue dish, one fish, two fish")
['red', 'blue', 'one', 'two']

Problem 6. The file fake_contacts.txt contains poorly formatted contact data for 2000
fictitious individuals. Each line of the file contains data for one person, including their name
and possibly their birthday, email address, and/or phone number. The formatting of the data
is not consistent, and much of it is missing. Each contact name includes a first and last name.
Some names have middle initials, in the form Jane C. Doe. Each birthday lists the month, then
the day, and then the year, though the format varies from 1/1/11, 1/01/2011, etc. If century
is not specified for birth year, as in 1/01/XX, birth year is assumed to be 20XX. Remember, not
all information is listed for each contact.
Use regular expressions to extract the necessary data and format it uniformly, writing birthdays
as mm/dd/yyyy and phone numbers as (xxx)xxx-xxxx. Return a dictionary where the key is
the name of an individual and the value is another dictionary containing their information.
Each of these inner dictionaries should have the keys "birthday", "email", and "phone". In
the case of missing data, map the key to None.
The first two entries of the completed dictionary are given below.

{
"John Doe": {

"birthday": "01/01/2099",
"email": "john_doe90@hopefullynotarealaddress.com",
"phone": "(123)456-7890"
},

"Jane Smith": {
"birthday": None,
"email": None,
"phone": "(222)111-3333"
},

# ...
}
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Hint: Think about creating a separate re.compile() object to ‘catch’ each piece of identifying
information. Extract and clean each picece individually and build your dictionary
incrementally. If the piece of information exists for a specific person, reformat and assign it to
that pesron’s dictionary. If the information doesn’t exist assign it to be None.
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Additional Material

Regular Expressions in the Unix Shell
As we have seen„ regular expressions are very useful when we want to match patterns. Regular
expressions can be used when matching patterns in the Unix Shell. Though there are many Unix
commands that take advantage of regular expressions, we will focus on grep and awk.

Regular Expressions and grep

Recall from Lab 1 that grep is used to match patterns in files or output. It turns out we can use
regular expressions to define the pattern we wish to match.
In general, we use the following syntax:

$ grep 'regexp' filename

We can also use regular expressions when piping output to grep.

# List details of directories within current directory.
$ ls -l | grep ^d

Regular Expressions and awk

By incorporating regular expressions, the awk command becomes much more robust. Before GUI
spreedsheet programs like Microsoft Excel, awk was commonly used to visualize and query data
from a file.
Including if statements inside awk commands gives us the ability to perform actions on lines that
match a given pattern. The following example prints the filenames of all files that are owned by
freddy.

$ ls -l | awk ' {if ($3 ~ /freddy/) print $9} '

Because there is a lot going on in this command, we will break it down piece-by-piece. The output
of ls -l is getting piped to awk. Then we have an if statement. The syntax here means if the
condition inside the parenthesis holds, print field 9 (the field with the filename). The condition is
where we use regular expressions. The ~ checks to see if the contents of field 3 (the field with the
username) matches the regular expression found inside the forward slashes. To clarify, freddy is
the regular expression in this example and the expression must be surrounded by forward slashes.
Consider a similar example. In this example, we will list the names of the directories inside the
current directory. (This replicates the behavior of the Unix command ls -d */)

$ ls -l | awk ' {if ($1 ~ /^d/) print $9} '

Notice in this example, we printed the names of the directories, whereas in one of the example
using grep, we printed all the details of the directories as well.
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Achtung!

Some of the definitions for character classes we used earlier in this lab will not work in the Unix
Shell. For example, \w and \d are not defined. Instead of \w, use [[:alnum:]]. Instead of
\d, use [[:digit:]]. For a complete list of similar character classes, search the internet for
POSIX Character Classes or Bracket Character Classes.
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6 Web Scraping

Lab Objective: Web Scraping is the process of gathering data from websites on the internet.
Since almost everything rendered by an internet browser as a web page uses HTML, the first step in
web scraping is being able to extract information from HTML. In this lab, we introduce the requests
library for scraping web pages, BeautifulSoup: Python’s canonical tool for efficiently and cleanly
navigating and parsing HTML, and how to use Pandas to extract data from HTML tables.

HTTP and Requests
HTTP stands for Hypertext Transfer Protocol, which is an application layer networking protocol.
It is a higher level protocol than TCP, which we used to build a server in the Web Technologies lab,
but uses TCP protocols to manage connections and provide network capabilities. The HTTP
protocol is centered around a request and response paradigm, in which a client makes a request to a
server and the server replies with a response. There are several methods, or requests, defined for
HTTP servers, the three most common of which are GET, POST, and PUT. A GET request asks
for information from the server, a POST request modifies the state of the server, and a PUT
request adds new pieces of data to the server.
The standard way to get the source code of a website using Python is via the requests library.1

Calling requests.get() sends an HTTP GET request to a specified website. The website returns
a response code, which indicates whether or not the request was received, understood, and
accepted. If the response code is good, typically 2002, then the response will also include the
website source code as an HTML file.

>>> import requests

# Make a request and check the result. A status code of 200 is good.
>>> response = requests.get("http://www.byu.edu")
>>> print(response.status_code, response.ok, response.reason)
200 True OK

1Though requests is not part of the standard library, it is recognized as a standard tool in the data science
community. See http://docs.python-requests.org/.

2See https://en.wikipedia.org/wiki/List_of_HTTP_status_codes for explanation of specific response codes.

67

http://docs.python-requests.org/
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# The HTML of the website is stored in the "text" attribute.
>>> print(response.text)
<!DOCTYPE html>
<html lang="en" dir="ltr" prefix="content: http://purl.org/rss/1.0/modules/←↩

content/ dc: http://purl.org/dc/terms/ foaf: http://xmlns.com/foaf/0.1/ ←↩
og: http://ogp.me/ns# rdfs: http://www.w3.org/2000/01/rdf-schema# schema:←↩
http://schema.org/ sioc: http://rdfs.org/sioc/ns# sioct: http://rdfs.org←↩

/sioc/types# skos: http://www.w3.org/2004/02/skos/core# xsd: http://www.←↩
w3.org/2001/XMLSchema# " class=" ">

<head>
<meta charset="utf-8" />

# ...

Attribute Description
text Content of the response, in unicode

content Content of the response, in bytes
encoding Encoding used to decode response.content

raw Raw socket response, which allows applications to send and obtain packets of information
status_code Numeric code that shows how the action was successful

ok Boolean that is True if the status_code is less than 400, or False if not
reason Text corresponding to the status code

Table 6.1: Different content attributes of the request class.

Note that some websites aren’t built to handle large amounts of traffic or many repeated requests.
Most are built to identify web scrapers or crawlers that initiate many consecutive GET requests
without pauses, and retaliate or block them. When web scraping, always make sure to store the
data that you receive in a file and include error checks to prevent retrieving the same data
unnecessarily. We won’t spend much time on that in this lab, but it’s especially important in larger
applications.

Problem 1. Use the requests library to get the HTML source for the website http://www.
example.com. Save the source as a file called "example.html". If the file already exists, make
sure not to scrape the website or overwrite the file. You will use this file later in the lab.
Hint: When writing responses to file you need to use the use the open() function with the
appropriate file write mode ((either mode='w' for plain write mode, or mode="wb" for binary
write mode). Python interpreters will write the example file the same way whether you use
response.text or response.content.

Achtung!

http://www.example.com
http://www.example.com
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Scraping copyrighted information without the consent of the copyright owner can have severe
legal consequences. Many websites, in their terms and conditions, prohibit scraping parts or all
of the site. Websites that do allow scraping usually have a file called robots.txt (for example,
www.google.com/robots.txt) that specifies which parts of the website are off-limits and how
often requests can be made according to the robots exclusion standard.a

Be careful and considerate when doing any sort of scraping, and take care when writing and
testing code to avoid unintended behavior. It is up to the programmer to create a scraper that
respects the rules found in the terms and conditions and in robots.txt.b

We will cover this more in the next lab.
aSee www.robotstxt.org/orig.html and en.wikipedia.org/wiki/Robots_exclusion_standard.
bPython provides a parsing library called urllib.robotparser for reading robot.txt files. For more infor-

mation, see https://docs.python.org/3/library/urllib.robotparser.html.

HTML
Hyper Text Markup Language, or HTML, is the standard markup language—a language designed
for the processing, definition, and presentation of text—for creating webpages. It structures a
document using pairs of tags that surround and define content. Opening tags have a tag name
surrounded by angle brackets (<tag-name>). The companion closing tag looks the same, but with a
forward slash before the tag name (</tag-name>). A list of all current HTML tags can be found at
http://htmldog.com/reference/htmltags.
Most tags can be combined with attributes to include more data about the content, help identify
individual tags, and make navigating the document much simpler. In the following example, the
<a> tag has id and href attributes.

<html> <!-- Opening tags -->
<body>

<p>
Click <a id='info' href='http://www.example.com'>here</a>
for more information.

</p> <!-- Closing tags -->
</body>

</html>

In HTML, href stands for hypertext reference, a link to another website. Thus the above example
would be rendered by a browser as a single line of text, with here being a clickable link to
http://www.example.com:

Click here for more information.

Unlike Python, HTML does not enforce indentation (or any whitespace rules), though indentation
generally makes HTML more readable. The previous example can be written in a single line.

<html><body><p>Click <a id='info' href='http://www.example.com/info'>here</a>
for more information.</p></body></html>

www.google.com/robots.txt
http://www.robotstxt.org/orig.html
https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://docs.python.org/3/library/urllib.robotparser.html
http://htmldog.com/reference/htmltags
http://www.example.com
http://www.example.com
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Special tags, which don’t contain any text or other tags, are written without a closing tag and in a
single pair of brackets. A forward slash is included between the name and the closing bracket.
Examples of these include <hr/>, which describes a horizontal line, and <img/>, the tag for
representing an image.

Note

You can open .html files using a text editor or any web browser. In a browser, you can inspect
the source code associated with specific elements. Right click the element and select Inspect.
If you are using Safari, you may first need to enable “Show Develop menu” in “Preferences”
under the “Advanced” tab.

BeautifulSoup
BeautifulSoup (bs4) is a package3 that makes it simple to navigate and extract data from HTML
documents. See http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html for the
full documentation.
The bs4.BeautifulSoup class accepts two parameters to its constructor: a string of HTML code
and an HTML parser to use under the hood. The HTML parser is technically a keyword argument,
but the constructor prints a warning if one is not specified. The standard choice for the parser is
"html.parser", which means the object uses the standard library’s html.parser module as the
engine behind the scenes.

Note

Depending on project demands, a parser other than "html.parser" may be useful. A couple of
other options are "lxml", an extremely fast parser written in C, and "html5lib", a slower parser
that treats HTML in much the same way a web browser does, allowing for irregularities. Both
must be installed independently; see https://www.crummy.com/software/BeautifulSoup/
bs4/doc/#installing-a-parser for more information.

A BeautifulSoup object represents an HTML document as a tree. In the tree, each tag is a node
with nested tags and strings as its children. The prettify() method returns a string that can be
printed to represent the BeautifulSoup object in a readable format that reflects the tree structure.

>>> from bs4 import BeautifulSoup

>>> small_example_html = """
<html><body><p>

Click <a id='info' href='http://www.example.com'>here</a>
for more information.

</p></body></html>
"""

3BeautifulSoup is not part of the standard library; install it with pip install beautifulsoup4.

http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a- parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a- parser
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>>> small_soup = BeautifulSoup(small_example_html, "html.parser")
>>> print(small_soup.prettify())
<html>

<body>
<p>

Click
<a href="http://www.example.com" id="info">

here
</a>
for more information.

</p>
</body>

</html>

Each tag in a BeautifulSoup object’s HTML code is stored as a bs4.element.Tag object, with
actual text stored as a bs4.element.NavigableString object. Tags are accessible directly through
the BeautifulSoup object.

# Get the <p> tag (and everything inside of it).
>>> small_soup.p
<p>

Click <a href="http://www.example.com" id="info">here</a>
for more information.

</p>

# Get the <a> sub-tag of the <p> tag.
>>> a_tag = small_soup.p.a
>>> print(a_tag, type(a_tag), sep='\n')
<a href="http://www.example.com" id="info">here</a>
<class 'bs4.element.Tag'>

# Get just the name, attributes, and text of the <a> tag.
>>> print(a_tag.name, a_tag.attrs, a_tag.string, sep="\n")
a
{'id': 'info', 'href': 'http://www.example.com'}
here

Attribute Description
name The name of the tag
attrs A dictionary of the attributes
string The single string contained in the tag
strings Generator for strings of children tags

stripped_strings Generator for strings of children tags, stripping whitespace
text Concatenation of strings from all children tags

Table 6.2: Data attributes of the bs4.element.Tag class.
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Problem 2. The BeautifulSoup class has a find_all() method that, when called with True
as the only argument, returns a list of all tags in the HTML source code.
Write a function that accepts a string of HTML code as an argument. Use BeautifulSoup to
return a list of the names of the tags in the code.

Navigating the Tree Structure

Not all tags are easily accessible from a BeautifulSoup object. Consider the following example.

>>> pig_html = """
<html><head><title>Three Little Pigs</title></head>
<body>
<p class="title"><b>The Three Little Pigs</b></p>
<p class="story">Once upon a time, there were three little pigs named
<a href="http://example.com/larry" class="pig" id="link1">Larry,</a>
<a href="http://example.com/mo" class="pig" id="link2">Mo</a>, and
<a href="http://example.com/curly" class="pig" id="link3">Curly.</a>
<p>The three pigs had an odd fascination with experimental construction.</p>
<p>...</p>
</body></html>
"""

>>> pig_soup = BeautifulSoup(pig_html, "html.parser")
>>> pig_soup.p
<p class="title"><b>The Three Little Pigs</b></p>

>>> pig_soup.a
<a class="pig" href="http://example.com/larry" id="link1">Larry,</a>

Since the HTML in this example has several <p> and <a> tags, only the first tag of each name is
accessible directly from pig_soup. The other tags can be accessed by manually navigating through
the HTML tree.

Every HTML tag (except for the topmost tag, which is usually <html>) has a parent tag. Each tag
also has zero or more sibling and children tags or text. Following a true tree structure, every
bs4.element.Tag in a soup has multiple attributes for accessing or iterating through parent,
sibling, or child tags.
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Attribute Description
parent The parent tag
parents Generator for the parent tags up to the top level

next_sibling The tag immediately after to the current tag
next_siblings Generator for sibling tags after the current tag

previous_sibling The tag immediately before the current tag
previous_siblings Generator for sibling tags before the current tag

contents A list of the immediate children tags
children Generator for immediate children tags

descendants Generator for all children tags (recursively)

Table 6.3: Navigation attributes of the bs4.element.Tag class.

# Start at the first <a> tag in the soup.
>>> a_tag = pig_soup.a
>>> a_tag
<a class="pig" href="http://example.com/larry" id="link1">Larry,</a>

# Get the names of all of <a>'s parent tags, traveling up to the top.
# The name "[document]" means it is the top of the HTML code.
>>> [par.name for par in a_tag.parents] # <a>'s parent is <p>, whose
['p', 'body', 'html', '[document]'] # parent is <body>, and so on.

# Get the next siblings of <a>.
>>> a_tag.next_sibling
'\n' # The first sibling is just text.
>>> a_tag.next_sibling.next_sibling # The second sibling is a tag.
<a class="pig" href="http://example.com/mo" id="link2">Mo</a>

Note carefully that newline characters are considered to be children of a parent tag. Therefore
iterating through children or siblings often requires checking which entries are tags and which are
just text. In the next example, we use a tag’s attrs attribute to access specific attributes within
the tag (see Table 6.2).

# Get to the <p> tag that has class="story" using these commands.
>>> p_tag = pig_soup.body.p.next_sibling.next_sibling
>>> p_tag.attrs["class"] # Make sure it's the right tag.
['story']

# Iterate through the child tags of <p> and print hrefs whenever they exist.
>>> for child in p_tag.children:
... # Skip the children that are not bs4.element.Tag objects
... # These don't have the attribute "attrs"
... if hasattr(child, "attrs") and "href" in child.attrs:
... print(child.attrs["href"])
http://example.com/larry
http://example.com/mo
http://example.com/curly
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Note that the "class" attribute of the <p> tag is a list. This is because the "class" attribute can
take on several values at once; for example, the tag <p class="story book"> is of class "story"
and of class "book".

The behavior of the string attribute of a bs4.element.Tag object depends on the structure of the
corresponding HTML tag.

1. If the tag has a string of text and no other child elements, then string is just that text.

2. If the tag has exactly one child tag and the child tag has only a string of text, then the tag
has the same string as its child tag.

3. If the tag has more than one child, then string is None. In this case, use strings to iterate
through the child strings. Alternatively, the get_text() method returns all text belonging to
a tag and to all of its descendants. In other words, it returns anything inside a tag that isn’t
another tag.

>>> pig_soup.head
<head><title>Three Little Pigs</title></head>

# Case 1: the <title> tag's only child is a string.
>>> pig_soup.head.title.string
'Three Little Pigs'

# Case 2: The <head> tag's only child is the <title> tag.
>>> pig_soup.head.string
'Three Little Pigs'

# Case 3: the <body> tag has several children.
>>> pig_soup.body.string is None
True
>>> print(pig_soup.body.get_text().strip())
The Three Little Pigs
Once upon a time, there were three little pigs named
Larry,
Mo, and
Curly.
The three pigs had an odd fascination with experimental construction.
...

Problem 3. Write a function that reads a file of the same format as the file generated from
Problem 1 and load it into BeautifulSoup. Find the first <a> tag, and return its text along with
a boolean value indicating whether or not it has a hyperlink (href attribute).
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Searching for Tags

Navigating the HTML tree manually can be helpful for gathering data out of lists or tables, but
these kinds of structures are usually buried deep in the tree. The find() and find_all() methods
of the BeautifulSoup class identify tags that have distinctive characteristics, making it much easier
to jump straight to a desired location in the HTML code. The find() method only returns the
first tag that matches a given criteria, while find_all() returns a list of all matching tags. Tags
can be matched by name, attributes, and/or text.

# Find the first <b> tag in the soup.
>>> pig_soup.find(name='b')
<b>The Three Little Pigs</b>

# Find all tags with a class attribute of "pig".
# Since "class" is a Python keyword, use "class_" as the argument.
>>> pig_soup.find_all(class_="pig")
[<a class="pig" href="http://example.com/larry" id="link1">Larry,</a>,
<a class="pig" href="http://example.com/mo" id="link2">Mo</a>,
<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>]

# Find the first tag that matches several attributes.
>>> pig_soup.find(attrs={"class": "pig", "href": "http://example.com/mo"})
<a class="pig" href="http://example.com/mo" id="link2">Mo</a>

# Find the first tag whose text is "Mo".
>>> pig_soup.find(string="Mo")
'Mo' # The result is the actual string,
>>> pig_soup.find(string="Mo").parent # so go up one level to get the tag.
<a class="pig" href="http://example.com/mo" id="link2">Mo</a>

Problem 4. The file san_diego_weather.html contains the HTML source for an old page
from Weather Underground.a Write a function that reads the file and loads it into Beautiful-
Soup.
Return a list of the following tags:

1. The tag containing the date “Thursday, January 1, 2015”.

2. The tags which contain the links “Previous Day” and “Next Day”.

Hint: the tags that contain the links do not explicitly have “Previous Day" or “Next Day,"
so you cannot find the tags based on a string. Instead, open the HTML file manually and
look at the attributes of the tags that contain the links. Then inspect them to see if there
is a better attribute with which to conduct a search.

3. The tag which contains the number associated with the Max Actual Temperature.
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Hint: Manually inspect the HTML document in both a browser and in a text editor. Look
for a good attribute shared by the Actual Temperatures with which you can conduct a
search. Note that the Max Actual Temperature tag will not be the first tag found. Make
sure you return the correct tag.

aSee http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+
Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1

Advanced Search Techniques: Regular Expressions

Consider the problem of finding the tag that is a link to the URL http://example.com/curly.

>>> pig_soup.find(href="http://example.com/curly")
<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>

This approach works, but it requires entering in the entire URL. To perform generalized searches,
the find() and find_all() method also accept compiled regular expressions from the re module.
This way, the methods locate tags whose name, attributes, and/or string matches a pattern.

>>> import re

# Find the first tag with an href attribute containing "curly".
>>> pig_soup.find(href=re.compile(r"curly"))
<a class="pig" href="http://example.com/curly" id="link3">Curly.</a

# Find the first tag with a string that starts with "Cu".
>>> pig_soup.find(string=re.compile(r"^Cu")).parent
<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>

# Find all tags with text containing "Three".
>>> [tag.parent for tag in pig_soup.find_all(string=re.compile(r"Three"))]
[<title>Three Little Pigs</title>, <b>The Three Little Pigs</b>]

Finally, to find a tag that has a particular attribute, regardless of the actual value of the attribute,
use True in place of search values.

# Find all tags with an "id" attribute.
>>> pig_soup.find_all(id=True)
[<a class="pig" href="http://example.com/larry" id="link1">Larry,</a>,
<a class="pig" href="http://example.com/mo" id="link2">Mo</a>,
<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>]

# Find the names all tags WITHOUT an "id" attribute.
>>> [tag.name for tag in pig_soup.find_all(id=False)]
['html', 'head', 'title', 'body', 'p', 'b', 'p', 'p', 'p']

http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://example.com/curly
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It is important to note that using Regular Expressions to locate tags will only find tags whose
name, attributes, and/or string match exactly. If searching through an HTML file with a Regular
expression to find all the tags with an "id" attribute with labels that you specify, it will only
return the tags found with those labels, not all instances of the labels. Sometimes that is very
useful in simplifying Regular Expression searches.

Advanced Search Techniques: CSS Selectors

BeautifulSoup also supports the use of CSS selectors. CSS (Cascading Style Sheet) describes the
style and layout of a webpage, and CSS selectors provide a useful way to navigate HTML code. Use
the method soup.select() to find all elements matching an argument. The general format for an
argument is tag-name[attribute-name = 'attribute value']. The table below lists symbols
you can use to more precisely locate various elements.

Symbol Meaning
= Matches an attribute value exactly
*= Partially matches an attribute value
^= Matches the beginning of an attribute value
$= Matches the end of an attribute value
+ Next sibling of matching element
> Search an element’s children

Table 6.4: CSS symbols for use with Selenium

You can do many other useful things with CSS selectors. A helpful guide can be found at
https://www.w3schools.com/cssref/css_selectors.asp. The code below gives an example
using arguments described above.

# Find all <a> tags with id="link1"
>>> pig_soup.select("[id='link1']")
[<a class="pig" href="http://example.com/larry" id="link1">Larry,</a>]

# Find all tags with an href attribute containing "curly".
>>> pig_soup.select("[href*='curly']")
[<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>]

# Find all <a> tags with an href attribute
>>> pig_soup.select("a[href]")
[<a class="pig" href="http://example.com/larry" id="link1">Larry,</a>,
<a class="pig" href="http://example.com/mo" id="link2">Mo</a>,
<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>]

# Find all <b> tags within a <p> tag with class="title"
>>> pig_soup.select("p[class='title'] b")
[<b>The Three Little Pigs</b>]

# Use a comma to find elements matching one of two arguments
>>> pig_soup.select("a[href$='mo'],[id='link3']")

[<a class="pig" href="http://example.com/mo" id="link2">Mo</a>,

https://www.w3schools.com/cssref/css_selectors.asp
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<a class="pig" href="http://example.com/curly" id="link3">Curly.</a>]

Problem 5. The file large_banks_index.html is an index of data about large banks, as
recorded by the Federal Reserve.a Write a function that reads the file and loads the source into
BeautifulSoup. Return a list of the <a> tags containing the links to bank data from September
30, 2003 to December 31, 2014, where the dates are in reverse chronological order.

aSee https://www.federalreserve.gov/releases/lbr/.

Incorporating Pandas with HTML Tables

The Pandas pd.read_html method is a neat way to automatically read tables into DataFrames. It
works similarly to BeautifulSoup, but is streamlined to only scrape all the tables from HTML
pages.

>>> import pandas as pd
#Read in "file.html"
>>> tables = pd.read_html("file.html")
# Choose the correct table that pd.read_html found as a DataFrame
>>> df = tables[0]
# The DataFrame is now like any other Pandas DataFrame that needs a bit of data←↩

cleaning
>>> df["column_1"]
0 0
1 2
2 .
3 6
4 8

..
15 30
16 32
17 .
18 .
19 38

Like any other DataFrame table, if there are non-numerical values in a column, the column type
will default to strings, so make sure when sorting values by number, set the column data type to
numeric with pd.to_numeric.
For more help with pd.read_html see
https://pandas.pydata.org/docs/reference/api/pandas.read_html.html.

Problem 6. The file large_banks_data.html is one of the pages from the index in Problem
5.a Read the specified file and load it into Pandas.
Create a single figure with two subplots:

https://www.federalreserve.gov/releases/lbr/
https://pandas.pydata.org/docs/reference/api/pandas.read_html.html
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1. A sorted bar chart of the seven banks with the most domestic branches.

2. A sorted bar chart of the seven banks with the most foreign branches.
aSee http://www.federalreserve.gov/releases/lbr/20030930/default.htm.

http://www.federalreserve.gov/releases/lbr/20030930/default.htm
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7 Pandas 1: Introduction

Lab Objective: Though NumPy and SciPy are powerful tools for numerical computing, they lack
some of the high-level functionality necessary for many data science applications. Python’s pandas
library, built on NumPy, is designed specifically for data management and analysis. In this lab we
introduce pandas data structures and syntax, and we explore the capabilities of pandas for quickly
analyzing and presenting data.

Pandas Basics
Pandas is a python library used primarily to analyze data. It combines functionality of NumPy,
MatPlotLib, and SQL to create an easy to understand library that allows for the manipulation of
data in various ways. In this lab we focus on the use of Pandas to analyze and manipulate data in
ways similar to NumPy and SQL.

Pandas Data Structures

Series

The first pandas data structure is a Series. A Series is a one-dimensional array that can hold any
datatype, similar to an ndarray. However, a Series has an explicitly defined index that gives a
label to each entry. An index generally is used to label the data.
Typically a Series contains information about one feature of the data. For example, the data in a
Series might show a class’s grades on a test and the Index would indicate each student in the
class. To initialize a Series, the first parameter is the data and the second is the index.

>>> import pandas as pd
>>> import numpy as np
# Initialize Series of student grades
>>> math = pd.Series(np.random.randint(0, 100, 4), ["Mark", "Barbara",
... "Eleanor", "David"])
>>> english = pd.Series(np.random.randint(0, 100, 5), ["Mark", "Barbara",
... "David", "Greg", "Lauren"])

81
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DataFrame

The second key pandas data structure is a DataFrame. A DataFrame is a collection of multiple
Series. It can be thought of as a 2-dimensional array, where each row is a separate datapoint and
each column is a feature of the data. The rows are labeled with an index (as in a Series) and the
columns are labeled in the attribute columns.

There are many different ways to initialize a DataFrame. One way to initialize a DataFrame is by
passing in a dictionary as the data of the DataFrame. The keys of the dictionary will become the
labels in columns and the values are the Series associated with the label.

# Create a DataFrame of student grades
>>> grades = pd.DataFrame({"Math": math, "English": english})
>>> grades

Math English
Barbara 52.0 73.0
David 10.0 39.0
Eleanor 35.0 NaN
Greg NaN 26.0
Lauren NaN 99.0
Mark 81.0 68.0

Notice that pd.DataFrame automatically lines up data from both Series that have the same index.
If the data only appears in one of the Series, the corresponding entry for the other Series is NaN.

We can also initialize a DataFrame with a NumPy array. With this method, the data is passed in as
a 2-dimensional NumPy array, while the column labels and the index are passed in as parameters.
The first column label goes with the first column of the array, the second with the second, and so
forth. The index works similarly.

# Initialize DataFrame with NumPy array. This is identical to the grades ←↩
DataFrame above.

>>> data = np.array([[52.0, 73.0], [10.0, 39.0], [35.0, np.nan],
... [np.nan, 26.0], [np.nan, 99.0], [81.0, 68.0]])
>>> grades = pd.DataFrame(data, columns = ["Math", "English"], index =
... ["Barbara", "David", "Eleanor", "Greg", "Lauren", "Mark"])

# View the columns
>>> grades.columns
Index(["Math", "English"], dtype="object")

# View the Index
>>> grades.index
Index(["Barbara", "David", "Eleanor", "Greg", "Lauren", "Mark"], dtype="object"←↩

)
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A DataFrame can also be viewed as a NumPy array using the attribute values.

# View the DataFrame as a NumPy array
>>> grades.values
array([[ 52., 73.],

[ 10., 39.],
[ 35., nan],
[ nan, 26.],
[ nan, 99.],
[ 81., 68.]])

Data I/O

The pandas library has functions that make importing and exporting data simple. The functions
allow for a variety of file formats to be imported and exported, including CSV, Excel, HDF5, SQL,
JSON, HTML, and pickle files.

Method Description
to_csv() Write the index and entries to a CSV file

read_csv() Read a csv and convert into a DataFrame
to_json() Convert the object to a JSON string

to_pickle() Serialize the object and store it in an external file
to_sql() Write the object data to an open SQL database

read_html() Read a table in an html page and convert to a DataFrame

Table 7.1: Methods for exporting data in a pandas Series or DataFrame.

The CSV (comma separated values) format is a simple way of storing tabular data in plain text.
Because CSV files are one of the most popular file formats for exchanging data, we will explore the
read_csv() function in more detail. Some frequently-used keyword arguments include the
following:

• delimiter: The character that separates data fields. It is often a comma or a whitespace
character.

• header: The row number (0 indexed) in the CSV file that contains the column names.

• index_col: The column (0 indexed) in the CSV file that is the index for the DataFrame.

• skiprows: If an integer n, skip the first n rows of the file, and then start reading in the data.
If a list of integers, skip the specified rows.

• names: If the CSV file does not contain the column names, or you wish to use other column
names, specify them in a list.

Another particularly useful function is read_html(), which is useful when scraping data. It takes
in a url or html file and an optional argument match, a string or regex, and returns a list of the
tables that match the match in a DataFrame.
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Data Manipulation

Accessing Data

In general, the best way to access data in a Series or DataFrame is through the indexers loc and
iloc. While array slicing can be used, it is more efficient to use these indexers. Accessing Series
and DataFrame objects using these indexing operations is more efficient than slicing because the
bracket indexing has to check many cases before it can determine how to slice the data structure.
Using loc or iloc explicitly bypasses these extra checks. The loc index selects rows and columns
based on their labels, while iloc selects them based on their integer position. With these indexers,
the first and second arguments refer to the rows and columns, respectively, just as array slicing.

# Use loc to select the Math scores of David and Greg
>>> grades.loc[["David", "Greg"], "Math"]
David 10.0
Greg NaN
Name: Math, dtype: float64

# Use iloc to select the Math scores of David and Greg
>>> grades.iloc[[1,3], 0]
David 10.0
Greg NaN

To access an entire column of a DataFrame, the most efficient method is to use only square brackets
and the name of the column, without the indexer. This syntax can also be used to create a new
column or reset the values of an entire column.

# Create a new History column with array of random values
>>> grades["History"] = np.random.randint(0, 100, 6)
>>> grades["History"]
Barbara 4
David 92
Eleanor 25
Greg 79
Lauren 82
Mark 27
Name: History, dtype: int64

# Reset the column such that everyone has a 100
>>> grades["History"] = 100.0
>>> grades

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0
Eleanor 35.0 NaN 100.0
Greg NaN 26.0 100.0
Lauren NaN 99.0 100.0
Mark 81.0 68.0 100.0
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Datasets can often be very large and thus difficult to visualize. Pandas has various methods to
make this easier. The methods head and tail will show the first or last n data points, respectively,
where n defaults to 5. The method sample will draw n random entries of the dataset, where n

defaults to 1.

# Use head to see the first n rows
>>> grades.head(n=2)

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0

# Use sample to sample a random entry
>>> grades.sample()

Math English History
Lauren NaN 99.0 100.0

It may also be useful to re-order the columns or rows or sort according to a given column.

# Re-order columns
>>> grades.reindex(columns=["English", "Math", "History"])

English Math History
Barbara 73.0 52.0 100.0
David 39.0 10.0 100.0
Eleanor NaN 35.0 100.0
Greg 26.0 NaN 100.0
Lauren 99.0 NaN 100.0
Mark 68.0 81.0 100.0

# Sort descending according to Math grades
>>> grades.sort_values("Math", ascending=False)

Math English History
Mark 81.0 68.0 100.0
Barbara 52.0 73.0 100.0
Eleanor 35.0 NaN 100.0
David 10.0 39.0 100.0
Greg NaN 26.0 100.0
Lauren NaN 99.0 100.0

Other methods used for manipulating DataFrame and Series panda structures can be found in
Table 7.2.
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Method Description
append() Concatenate two or more Series.

drop() Remove the entries with the specified label or labels
drop_duplicates() Remove duplicate values

dropna() Drop null entries
fillna() Replace null entries with a specified value or strategy

reindex() Replace the index
sample() Draw a random entry
shift() Shift the index

unique() Return unique values

Table 7.2: Methods for managing or modifying data in a pandas Series or DataFrame.

Problem 1. The file budget.csv contains the budget of a college student over the course of 4
years. Write a function that performs the following operations in this order:

1. Read in budget.csv as a DataFrame with the index as column 0. Hint: Use index_col=0
to set the first column as the index when reading in the csv.

2. Reindex the columns such that amount spent on groceries is the first column and all other
columns maintain the same ordering.

3. Sort the DataFrame in descending order by how much money was spent on Groceries.

4. Reset all values in the "Rent" column to 800.0.

5. Reset all values in the first 5 data points to 0.0.

Return the values of the updated DataFrame as a NumPy array.

Basic Data Manipulation

Because the primary pandas data structures are based off of ndarray, most NumPy functions work
with pandas structures. For example, basic vector operations work as would be expected:

# Sum history and english grades of all students
>>> grades["English"] + grades["History"]
Barbara 173.0
David 139.0
Eleanor NaN
Greg 126.0
Lauren 199.0
Mark 168.0
dtype: float64

# Double all Math grades
>>> grades["Math"]*2
Barbara 104.0
David 20.0
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Eleanor 70.0
Greg NaN
Lauren NaN
Mark 162.0
Name: Math, dtype: float64

In addition to arithmetic, Series has a variety of other methods similar to NumPy arrays. A
collection of these methods is found in Table 7.3.

Method Returns
abs() Object with absolute values taken (of numerical data)

idxmax() The index label of the maximum value
idxmin() The index label of the minimum value
count() The number of non-null entries

cumprod() The cumulative product over an axis
cumsum() The cumulative sum over an axis

max() The maximum of the entries
mean() The average of the entries

median() The median of the entries
min() The minimum of the entries

mode() The most common element(s)
prod() The product of the elements
sum() The sum of the elements
var() The variance of the elements

Table 7.3: Numerical methods of the Series and DataFrame pandas classes.

Basic Statistical Functions

The pandas library allows us to easily calculate basic summary statistics of our data, which can be
useful when we want a quick description of the data. The describe() function outputs several
such summary statistics for each column in a DataFrame:

# Use describe to better understand the data
>>> grades.describe()

Math English History
count 4.000000 5.00000 6.0
mean 44.500000 61.00000 100.0
std 29.827281 28.92231 0.0
min 10.000000 26.00000 100.0
25% 28.750000 39.00000 100.0
50% 43.500000 68.00000 100.0
75% 59.250000 73.00000 100.0
max 81.000000 99.00000 100.0

Functions for calculating means and variances, the covariance and correlation matrices, and other
basic statistics are also available.

# Find the average grade for each student
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>>> grades.mean(axis=1)
Barbara 75.000000
David 49.666667
Eleanor 67.500000
Greg 63.000000
Lauren 99.500000
Mark 83.000000
dtype: float64

# Give correlation matrix between subjects
>>> grades.corr()

Math English History
Math 1.00000 0.84996 NaN
English 0.84996 1.00000 NaN
History NaN NaN NaN

The method rank() can be used to rank the values in a data set, either within each entry or with
each column. This function defaults ranking in ascending order: the least will be ranked 1 and the
greatest will be ranked the highest number.

# Rank each student's performance in their classes in descending order
# (best to worst)
# The method keyword specifies what rank to use when ties occur.
>>> grades.rank(axis=1, method="max", ascending=False)

Math English History
Barbara 3.0 2.0 1.0
David 3.0 2.0 1.0
Eleanor 2.0 NaN 1.0
Greg NaN 2.0 1.0
Lauren NaN 2.0 1.0
Mark 2.0 3.0 1.0

These methods can be very effective in interpreting data. For example, the rank() example above
shows use that Barbara does best in History, then English, and then Math.

Dealing with Missing Data

Missing data is a ubiquitous problem in data science. Fortunately, pandas is particularly well-suited
to handling missing or anomalous data. As we have already seen, the pandas default for a missing
value is NaN. In basic arithmetic operations, if one of the operands is NaN, then the output is also
NaN. If we are not interested in the missing values, we can simply drop them from the data
altogether, or we can fill them with some other value, such as the mean. NaN might also mean
something specific, such as some default value, which should inform what to do with NaN values.

# Grades with all NaN values dropped
>>> grades.dropna()

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0
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Mark 81.0 68.0 100.0

# fill missing data with 50.0
>>> grades.fillna(50.0)

Math English History
Barbara 52.0 73.0 100.0
David 10.0 39.0 100.0
Eleanor 35.0 50.0 100.0
Greg 50.0 26.0 100.0
Lauren 50.0 99.0 100.0
Mark 81.0 68.0 100.0

When dealing with missing data, make sure you are aware of the behavior of the pandas functions
you are using. For example, sum() and mean() ignore NaN values in the computation.

Achtung!

Always consider missing data carefully when analyzing a dataset. It may not always be helpful
to drop the data or fill it in with a random number. Consider filling the data with the mean
of surrounding data or the mean of the feature in question. Overall, the choice for how to fill
missing data should make sense with the dataset.

Problem 2. Write a function which uses budget.csv to answer the questions "Which category
affects living expenses the most? Which affects other expenses the most?" Perform the following
manipulations:

1. Fill all NaN values with 0.0.

2. Create two new columns, "Living Expenses" and "Other". Set the value of "Living
Expenses" to be the sum of the columns "Rent", "Groceries", "Gas" and "Utilities
". Set the value of "Other" to be the sum of the columns "Dining Out", "Out With
Friends" and "Netflix".

3. Identify which column, other than "Living Expenses", correlates most with "Living
Expenses" and which column, other than "Other", correlates most with "Other". This
can indicate which columns in the budget affect the overarching categories the most.

Return the names of each of those columns as a tuple. The first should be of the column
corresponding to "Living Expenses" and the second to "Other".

Complex Operations in Pandas
Often times, the data that we have is not exactly the data we want to analyze. In cases like this we
use more complex data manipulation tools to access only the data that we need.
For the examples below, we will use the following data:
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>>> name = ["Mylan", "Regan", "Justin", "Jess", "Jason", "Remi", "Matt",
... "Alexander", "JeanMarie"]
>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]
>>> rank = ["Sp", "Se", "Fr", "Se", "Sp", 'J', 'J', 'J', "Se"]
>>> ID = range(9)
>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]
>>> mathID = [0, 1, 5, 6, 3]
>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]
>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({"ID": ID, "Name": name, "Sex": sex, "Age": age,
... "Class": rank})
>>> otherInfo = pd.DataFrame({"ID": ID, "GPA": GPA, "Financial_Aid": aid})
>>> mathInfo = pd.DataFrame({"ID": mathID, "Grade": mathGd, "Math_Major":
... major})

Before querying our data, it is helpful to know some of its basic properties, such as number of
columns, number of rows, and the datatypes of the columns. This can be done by simply calling the
info() method on the desired DataFrame:

>>> mathInfo.info()
<class "pandas.core.frame.DataFrame">
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 ID 5 non-null int64
1 Grade 5 non-null float64
2 Math_Major 5 non-null object

dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes

Masks

Sometimes, we only want to access data from a single column. For example if we want to only access
the ID of the students in the studentInfo DataFrame, then we would use the following syntax.

# Get the ID column from studentInfo
>>> studentInfo.ID
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
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8 8
Name: ID, dtype: int64

If we want to access multiple columns at once we can use a list of column names.

# Get the ID and Age columns.
>>> studentInfo[["ID", "Age"]]

ID Age
0 0 20
1 1 21
2 2 18
3 3 22
4 4 19
5 5 20
6 6 20
7 7 19
8 8 20

Now we can access the specific columns that we want. However, some of these columns may still
contain data points that we don’t want to consider. In this case we can build a mask. Each mask
that we build will return a pandas Series object with a bool value at each index indicating if the
condition is satisfied.

# Create a mask for all student receiving financial aid.
>>> mask = otherInfo["Financial_Aid"] == 'y'
# Access other info where the mask is true and display the ID and GPA columns.
>>> otherInfo[mask][["ID", "GPA"]]

ID GPA
0 0 3.8
3 3 3.9
7 7 3.4

We can also create compound masks with multiple statements. We do this using the same syntax
you would use for a compound mask in a normal NumPy array. Useful operators are &, the AND
operator; |, the OR operator; and ∼, the NOT operator.

# Get all student names where Class = 'J' OR Class = "Sp".
>>> mask = (studentInfo.Class == 'J') | (studentInfo.Class == "Sp")
>>> studentInfo[mask].Name
0 Mylan
4 Jason
5 Remi
6 Matt
7 Alexander
Name: Name, dtype: object
# This can also be acomplished with the following command:
# studentInfo[studentInfo["Class"].isin(['J', "Sp"])]["Name"]
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Problem 3. Read in the file crime_data.csv as a pandas object. The file contains data on
types of crimes in the U.S. from 1960 to 2016. Set the index as the column "Year". Answer
the following questions using the pandas methods learned in this lab. The answer of each
question should be saved as indicated. Return the answers to all three questions as a tuple (i.e.
(answer_1,answer_2,answer_3)).

1. Identify the three crimes that have a mean yearly number of occurences over 1,500,000.
Of these three crimes, which two are very correlated? Which of these two crimes has
a greater maximum value? Save the title of this column as a variable to return as the
answer. Hint: Consider using idxmax() to extract the title.

2. Examine the data from 2000 and later. Sort this data (in ascending order) according
to number of murders. Find the years where aggravated assault is greater than 850,000.
Save the indices (the years) of the masked and reordered DataFrame as a NumPy array
to return as the answer.

3. What year had the highest crime rate? In this year, which crime was committed the
most? What percentage of the total crime that year was it? Return this percentage as
the answer in decimal form (e.g. 50% would be returned as 0.5). Note that the crime rate
is #crimes/population.

Working with Dates and Times

The datetime module in the standard library provides a few tools for representing and operating
on dates and times. The datetime.datetime object represents a time stamp: a specific time of day
on a certain day. Its constructor accepts a four-digit year, a month (starting at 1 for January), a
day, and, optionally, an hour, minute, second, and microsecond. Each of these arguments must be
an integer, with the hour ranging from 0 to 23.

>>> from datetime import datetime

# Represent November 18th, 1991, at 2:01 PM.
>>> bday = datetime(1991, 11, 18, 14, 1)
>>> print(bday)
1991-11-18 14:01:00

# Find the number of days between 11/18/1991 and 11/9/2017.
>>> dt = datetime(2017, 11, 9) - bday
>>> dt.days
9487

The datetime.datetime object has a parser method, strptime(), that converts a string into a
new datetime.datetime object. The parser is flexible so the user must specify the format that the
dates are in. For example, if the dates are in the format "Month/Day//Year::Hour", specify
format"=%m/%d//%Y::%H" to parse the string appropriately. See Table 7.4 for formatting options.
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Pattern Description
%Y 4-digit year
%y 2-digit year
%m 1- or 2-digit month
%d 1- or 2-digit day
%H Hour (24-hour)
%I Hour (12-hour)
%M 2-digit minute
%S 2-digit second

Table 7.4: Formats recognized by datetime.strptime()

>>> print(datetime.strptime("1991-11-18 / 14:01", "%Y-%m-%d / %H:%M"),
... datetime.strptime("1/22/1996", "%m/%d/%Y"),
... datetime.strptime("19-8, 1998", "%d-%m, %Y"), sep='\n')
1991-11-18 14:01:00 # The date formats are now standardized.
1996-01-22 00:00:00 # If no hour/minute/seconds data is given,
1998-08-19 00:00:00 # the default is midnight.

Converting Dates to an Index

The TimeStamp class is the pandas equivalent to a datetime.datetime object. A pandas index
composed of TimeStamp objects is a DatetimeIndex, and a Series or DataFrame with a
DatetimeIndex is called a time series. The function pd.to_datetime() converts a collection of
dates in a parsable format to a DatetimeIndex. The format of the dates is inferred if possible, but
it can be specified explicitly with the same syntax as datetime.strptime().

>>> import pandas as pd

# Convert some dates (as strings) into a DatetimeIndex.
>>> dates = ["2010-1-1", "2010-2-1", "2012-1-1", "2012-1-2"]
>>> pd.to_datetime(dates)
DatetimeIndex(['2010-01-01', '2010-02-01', '2012-01-01', '2012-01-02'],

dtype='datetime64[ns]', freq=None)

# Create a time series, specifying the format for the DatetimeIndex.
>>> dates = ["1/1, 2010", "1/2, 2010", "1/1, 2012", "1/2, 2012"]
>>> date_index = pd.to_datetime(dates, format="%m/%d, %Y")
>>> pd.Series([x**2 for x in range(4)], index=date_index)
2010-01-01 0
2010-01-02 1
2012-01-01 4
2012-01-02 9
dtype: int64
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Problem 4. The file DJIA.csv contains daily closing values of the Dow Jones Industrial Av-
erage from 2006–2016. Read the data into a Series or DataFrame with a DatetimeIndex as
the index. Drop any rows without numerical values, cast the "VALUE" column to floats, then
return the updated DataFrame.
Hint: You can change the column type the same way you’d change a numpy array type.

Generating Time-based Indices

Some time series datasets come without explicit labels but have instructions for deriving
timestamps. For example, a list of bank account balances might have records from the beginning of
every month, or heart rate readings could be recorded by an app every 10 minutes. Use
pd.date_range() to generate a DatetimeIndex where the timestamps are equally spaced. The
function is analogous to np.arange() and has the following parameters:

Parameter Description
start Starting date

end End date
periods Number of dates to include

freq Amount of time between consecutive dates
normalize Normalizes the start and end times to midnight

Table 7.5: Parameters for pd.date_range().

Exactly three of the parameters start, end, periods, and freq must be specified to generate a
range of dates. The freq parameter accepts a variety of string representations, referred to as offset
aliases. See Table 7.6 for a sampling of some of the options. For a complete list of the options, see
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#
timeseries-offset-aliases.

Parameter Description
'D' calendar daily (default)
'B' business daily (every business day)
'H' hourly
'T' minutely
'S' secondly

"MS" first day of the month (Month Start)
"BMS" first business day of the month (Business Month Start)

"W-MON" every Monday (Week-Monday)
"WOM-3FRI" every 3rd Friday of the month (Week of the Month - 3rd Friday)

Table 7.6: Options for the freq parameter to pd.date_range().

# Create a DatetimeIndex for 5 consecutive days starting on September 28, 2016.
>>> pd.date_range(start="9/28/2016 16:00", periods=5)
DatetimeIndex(['2016-09-28 16:00:00', '2016-09-29 16:00:00',

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
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'2016-09-30 16:00:00', '2016-10-01 16:00:00',
'2016-10-02 16:00:00'],

dtype='datetime64[ns]', freq='D')

# Create a DatetimeIndex with the first weekday of every other month in 2016.
>>> pd.date_range(start="1/1/2016", end="1/1/2017", freq="2BMS" )
DatetimeIndex(['2016-01-01', '2016-03-01', '2016-05-02', '2016-07-01',

'2016-09-01', '2016-11-01'],
dtype='datetime64[ns]', freq='2BMS')

# Create a DatetimeIndex for 10 minute intervals between 4:00 PM and 4:30 PM on←↩
September 9, 2016.

>>> pd.date_range(start="9/28/2016 16:00",
end="9/28/2016 16:30", freq="10T")

DatetimeIndex(['2016-09-28 16:00:00', '2016-09-28 16:10:00',
'2016-09-28 16:20:00', '2016-09-28 16:30:00'],

dtype='datetime64[ns]', freq='10T')

# Create a DatetimeIndex for 2 hour 30 minute intervals between 4:30 PM and ←↩
2:30 AM on September 29, 2016.

>>> pd.date_range(start="9/28/2016 16:30", periods=5, freq="2h30min")
DatetimeIndex(['2016-09-28 16:30:00', '2016-09-28 19:00:00',

'2016-09-28 21:30:00', '2016-09-29 00:00:00',
'2016-09-29 02:30:00'],

dtype='datetime64[ns]', freq='150T')

Problem 5. The file paychecks.csv contains values of an hourly employee’s last 93 paychecks.
Paychecks are given every other Friday, starting on March 14, 2008, and the employee started
working on March 13, 2008.
Read in the data, using pd.date_range() to generate the DatetimeIndex. Set this as the new
index of the DataFrame and return the DataFrame.

Elementary Time Series Analysis

Shifting

DataFrame and Series objects have a shift() method that allows you to move data up or down
relative to the index. When dealing with time series data, we can also shift the DatetimeIndex
relative to a time offset.

>>> df = pd.DataFrame(dict(VALUE=np.random.rand(5)),
index=pd.date_range("2016-10-7", periods=5, freq='D'))

>>> df
VALUE

2016-10-07 0.127895
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2016-10-08 0.811226
2016-10-09 0.656711
2016-10-10 0.351431
2016-10-11 0.608767

>>> df.shift(1)
VALUE

2016-10-07 NaN
2016-10-08 0.127895
2016-10-09 0.811226
2016-10-10 0.656711
2016-10-11 0.351431

>>> df.shift(-2)
VALUE

2016-10-07 0.656711
2016-10-08 0.351431
2016-10-09 0.608767
2016-10-10 NaN
2016-10-11 NaN

>>> df.shift(14, freq='D')
VALUE

2016-10-21 0.127895
2016-10-22 0.811226
2016-10-23 0.656711
2016-10-24 0.351431
2016-10-25 0.608767

Shifting data makes it easy to gather statistics about changes from one timestamp or period to the
next.

# Find the changes from one period/timestamp to the next
>>> df - df.shift(1) # Equivalent to df.diff().

VALUE
2016-10-07 NaN
2016-10-08 0.683331
2016-10-09 -0.154516
2016-10-10 -0.305279
2016-10-11 0.257336

Problem 6. Compute the following information about the DJIA dataset from Problem 4 that
has a DateTimeIndex.

• The single day with the largest gain.

• The single day with the largest loss.
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Return the DateTimeIndex of the day with the largest gain and the day with the largest loss
as a tuple.
(Hint: Call your function from Problem 4 to get the DataFrame already cleaned and with
DatetimeIndex).

More information on how to use datetime with Pandas is in the additional material section. This
includes working with Periods and more analysis with time series.
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Additional Material
SQL Operations in pandas

DataFrames are tabular data structures bearing an obvious resemblance to a typical relational
database table. SQL is the standard for working with relational databases; however, pandas can
accomplish many of the same tasks as SQL. The SQL-like functionality of pandas is one of its
biggest advantages, eliminating the need to switch between programming languages for different
tasks. Within pandas, we can handle both the querying and data analysis.
For the examples below, we will use the following data:

>>> name = ["Mylan", "Regan", "Justin", "Jess", "Jason", "Remi", "Matt",
... "Alexander", "JeanMarie"]
>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]
>>> rank = ["Sp", "Se", "Fr", "Se", "Sp", 'J', 'J', 'J', "Se"]
>>> ID = range(9)
>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]
>>> mathID = [0, 1, 5, 6, 3]
>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]
>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({"ID": ID, "Name": name, "Sex": sex, "Age": age,
... "Class": rank})
>>> otherInfo = pd.DataFrame({"ID": ID, "GPA": GPA, "Financial_Aid": aid})
>>> mathInfo = pd.DataFrame({"ID": mathID, "Grade": mathGd, "Math_Major":
... major})

SQL SELECT statements can be done by column indexing. WHERE statements can be included
by adding masks (just like in a NumPy array). The method isin() can also provide a useful
WHERE statement. This method accepts a list, dictionary, or Series containing possible values of
the DataFrame or Series. When called upon, it returns a Series of booleans, indicating whether
an entry contained a value in the parameter passed into isin().

# SELECT ID, Age FROM studentInfo
>>> studentInfo[["ID", "Age"]]

ID Age
0 0 20
1 1 21
2 2 18
3 3 22
4 4 19
5 5 20
6 6 20
7 7 19
8 8 20

# SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'
>>> mask = otherInfo["Financial_Aid"] == 'y'
>>> otherInfo[mask][["ID", "GPA"]]
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ID GPA
0 0 3.8
3 3 3.9
7 7 3.4

# SELECT Name FROM studentInfo WHERE Class = 'J' OR Class = "Sp"
>>> studentInfo[studentInfo["Class"].isin(['J', "Sp"])]["Name"]
0 Mylan
4 Jason
5 Remi
6 Matt
7 Alexander
Name: Name, dtype: object

Next, let’s look at JOIN statements. In pandas, this is done with the merge function. merge takes
the two DataFrame objects to join as parameters, as well as keyword arguments specifying the
column on which to join, along with the type (left, right, inner, outer).

# SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = mathInfo.ID
>>> pd.merge(studentInfo, mathInfo, on="ID")

ID Name Sex Age Class Grade Math_Major
0 0 Mylan M 20 Sp 4.0 y
1 1 Regan F 21 Se 3.0 n
2 3 Jess F 22 Se 4.0 n
3 5 Remi F 20 J 3.5 y
4 6 Matt M 20 J 3.0 n

# SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo ON otherInfo.
# ID = mathInfo.ID
>>> pd.merge(otherInfo, mathInfo, on="ID", how="outer")[["GPA", "Grade"]]

GPA Grade
0 3.8 4.0
1 3.5 3.0
2 3.0 NaN
3 3.9 4.0
4 2.8 NaN
5 2.9 3.5
6 3.8 3.0
7 3.4 NaN
8 3.7 NaN
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More Datetime with Pandas

Periods

A pandas Timestamp object represents a precise moment in time on a given day. Some data,
however, is recorded over a time interval, and it wouldn’t make sense to place an exact timestamp
on any of the measurements. For example, a record of the number of steps walked in a day, box
office earnings per week, quarterly earnings, and so on. This kind of data is better represented with
the pandas Period object and the corresponding PeriodIndex.
The Period class accepts a value and a freq. The value parameter indicates the label for a given
Period. This label is tied to the end of the defined Period. The freq indicates the length of the
Period and in some cases can also indicate the offset of the Period. The default value for freq is
’M’ for months. The freq parameter accepts the majority, but not all, of frequencies listed in Table
7.6.

# Creates a period for month of Oct, 2016.
>>> p1 = pd.Period("2016-10")
>>> p1.start_time # The start and end times of the period
Timestamp('2016-10-01 00:00:00') # are recorded as Timestamps.
>>> p1.end_time
Timestamp('2016-10-31 23:59:59.999999999')

# Represent the annual period ending in December that includes 10/03/2016.
>>> p2 = pd.Period("2016-10-03", freq="A-DEC")
>>> p2.start_time
Timestamp('2016-01-01 00:00:00')
> p2.end_time
Timestamp('2016-12-31 23:59:59.999999999')

# Get the weekly period ending on a Saturday that includes 10/03/2016.
>>> print(pd.Period("2016-10-03", freq="W-SAT"))
2016-10-02/2016-10-08

Like the pd.date_range() method, the pd.period_range() method is useful for generating a
PeriodIndex for unindexed data. The syntax is essentially identical to that of pd.date_range().
When using pd.period_range(), remember that the freq parameter marks the end of the period.
After creating a PeriodIndex, the freq parameter can be changed via the asfreq() method.

# Represent quarters from 2008 to 2010, with Q4 ending in December.
>>> pd.period_range(start="2008", end="2010-12", freq="Q-DEC")
PeriodIndex(['2008Q1', '2008Q2', '2008Q3', '2008Q4', '2009Q1', '2009Q2',

'2009Q3', '2009Q4', '2010Q1', '2010Q2', '2010Q3', '2010Q4'],
dtype='period[Q-DEC]')

# Get every three months form March 2010 to the start of 2011.
>>> p = pd.period_range("2010-03", "2011", freq="3M")
>>> p
PeriodIndex(['2010-03', '2010-06', '2010-09', '2010-12'], dtype='period[3M]')

# Change frequency to be quarterly.
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>>> q = p.asfreq("Q-DEC")
>>> q
PeriodIndex(['2010Q2', '2010Q3', '2010Q4', '2011Q1'], dtype='period[Q-DEC]')

The bounds of a PeriodIndex object can be shifted by adding or subtracting an integer.
PeriodIndex will be shifted by n × freq.

# Shift index by 1
>>> q -= 1
>>> q
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'], dtype='period[Q-DEC]')

If for any reason you need to switch from periods to timestamps, pandas provides a very simple
method to do so. The how parameter can be start or end and determines if the timestamp is the
beginning or the end of the period. Similarly, you can switch from timestamps to periods.

# Convert to timestamp (last day of each quarter)
>>> q = q.to_timestamp(how="end")
>>> q
DatetimeIndex(['2010-03-31', '2010-06-30', '2010-09-30', '2010-12-31'],

dtype='datetime64[ns]', freq='Q-DEC')

>>> q.to_period("Q-DEC")
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

Operations on Time Series

There are certain operations only available to Series and DataFrames that have a DatetimeIndex.
A sampling of this functionality is described throughout the remainder of this lab.

Slicing

Slicing is much more flexible in pandas for time series. We can slice by year, by month, or even use
traditional slicing syntax to select a range of dates.

# Select all rows in a given year
>>> df["2010"]

0 1
2010-01-01 0.566694 1.093125
2010-02-01 -0.219856 0.852917
2010-03-01 1.511347 -1.324036

# Select all rows in a given month of a given year
>>> df["2012-01"]

0 1
2012-01-01 0.212141 0.859555
2012-01-02 1.483123 -0.520873
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2012-01-03 1.436843 0.596143

# Select a range of dates using traditional slicing syntax
>>> df["2010-1-2": "2011-12-31"]

0 1
2010-02-01 -0.219856 0.852917
2010-03-01 1.511347 -1.324036
2011-01-01 0.300766 0.934895

Resampling

Some datasets do not have datapoints at a fixed frequency. For example, a dataset of website traffic
has datapoints that occur at irregular intervals. In situations like these, resampling can help
provide insight on the data.
The two main forms of resampling are downsampling, aggregating data into fewer intervals, and
upsampling, adding more intervals.
To downsample, use the resample() method of the Series or DataFrame. This method is similar
to groupby() in that it groups different entries together. Then aggregation produces a new data
set. The first parameter to resample() is an offset string from Table 7.6: 'D' for daily, 'H' for
hourly, and so on.

>>> import numpy as np

# Get random data for every day from 2000 to 2010.
>>> dates = pd.date_range(start="2000-1-1", end="2009-12-31", freq='D')
>>> df = pd.Series(np.random.random(len(dates)), index=dates)
>>> df
2000-01-01 0.559
2000-01-02 0.874
2000-01-03 0.774

...
2009-12-29 0.837
2009-12-30 0.472
2009-12-31 0.211
Freq: D, Length: 3653, dtype: float64

# Group the data by year.
>>> years = df.resample('A') # 'A' for "annual".
>>> years.agg(len) # Number of entries per year.
2000-12-31 366.0
2001-12-31 365.0
2002-12-31 365.0

...
2007-12-31 365.0
2008-12-31 366.0
2009-12-31 365.0
Freq: A-DEC, dtype: float64
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>>> years.mean() # Average entry by year.
2000-12-31 0.491
2001-12-31 0.514
2002-12-31 0.484

...
2007-12-31 0.508
2008-12-31 0.521
2009-12-31 0.523
Freq: A-DEC, dtype: float64

# Group the data by month.
>>> months = df.resample('M')
>>> len(months.mean()) # 12 months x 10 years = 120 months.
120

Elementary Time Series Analysis

Rolling Functions and Exponentially-Weighted Moving Functions

Many time series are inherently noisy. To analyze general trends in data, we use rolling functions
and exponentally-weighted moving (EWM) functions. Rolling functions, or moving window
functions, perform a calculation on a window of data. There are a few rolling functions that come
standard with pandas.

Rolling Functions (Moving Window Functions)

One of the most commonly used rolling functions is the rolling average, which takes the average
value over a window of data.

import matplotlib.pyplot as plt

# Generate a time series using random walk from a uniform distribution.
seed = 42
N = 10000
bias = 0.01

rng = np.random.default_rng(seed)
s = np.zeros(N)
s[1:] = rng.uniform(low=-1, high=1, size=N-1) + bias
s = pd.Series(s.cumsum(),

index=pd.date_range("2015-10-20", freq='H', periods=N))

# Plot the original data together with a rolling average.
ax1 = plt.subplot(121)
s.plot(color="gray", lw=0.3, ax=ax1)
s.rolling(window=200).mean().plot(color='r', lw=1, ax=ax1)
ax1.legend(["Actual", "Rolling"], loc="lower right")
ax1.set_title("Rolling Average")
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The function call s.rolling(window=200) creates a pd.core.rolling.Window object that can be
aggregated with a function like mean(), std(), var(), min(), max(), and so on.

Exponentially-Weighted Moving (EWM) Functions

Whereas a moving window function gives equal weight to the whole window, an
exponentially-weighted moving function gives more weight to the most recent data points.
In the case of a exponentially-weighted moving average (EWMA), each data point is calculated as
follows.

zi = αx̄i + (1− α)zi−1,

where zi is the value of the EWMA at time i, x̄i is the average for the i-th window, and α is the
decay factor that controls the importance of previous data points. Notice that α = 1 reduces to the
rolling average.
More commonly, the decay is expressed as a function of the window size. In fact, the span for an
EWMA is nearly analogous to window size for a rolling average.
Notice the syntax for EWM functions is very similar to that of rolling functions.
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Figure 7.1: Rolling average and EWMA.

ax2 = plt.subplot(122)
s.plot(color="gray", lw=0.3, ax=ax2)
s.ewm(span=200).mean().plot(color='g', lw=1, ax=ax2)
ax2.legend(["Actual", "EWMA"], loc="lower right")
ax2.set_title("EWMA")
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Lab Objective: Clear, insightful visualizations are a crucial part of data analysis. To facilitate
quick data visualization, pandas includes several tools that wrap around matplotlib. These tools
make it easy to compare different parts of a data set, explore the data as a whole, and spot patterns
and correlations in the data.

Note

This lab is designed to be more flexible than other labs. You will be asked to make visualizations
customized to your liking. As long as your plots clearly visualize the data, are properly labeled,
etc., you will be graded generously.

Overview of Plotting Tools
The main tool for visualization in pandas is the plot() method for Series and DataFrames. The
method has a keyword argument kind that specifies the type of plot to draw. The valid options for
kind are detailed below.

Plot Type plot() ID Uses and Advantages
Line plot "line" Show trends ordered in data; easy to compare multiple data sets

Scatter plot "scatter" Compare exactly two data sets, independent of ordering
Bar plot "bar", "barh" Compare categorical or sequential data

Histogram "hist" Show frequencies of one set of values, independent of ordering
Box plot "box" Display min, median, max, and quartiles; compare data distributions

Hexbin plot "hexbin" 2D histogram; reveal density of cluttered scatter plots

Table 8.1: Types of plots in pandas. The plot ID is the value of the keyword argument kind. That
is, df.plot(kind="scatter") creates a scatter plot. The default kind is "line".

The plot() method calls plt.plot(), plt.hist(), plt.scatter(), and other matplotlib plotting
functions, but it also assigns axis labels, tick marks, legends, and a few other things based on the
index and the data. Most calls to plot() specify the kind of plot and which Series to use as the x
and y axes. By default, the index of the Series or DataFrame is used for the x axis.

105
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>>> import pandas as pd
>>> from matplotlib import pyplot as plt

>>> budget = pd.read_csv("budget.csv", index_col="Date")
>>> budget.plot(y="Rent") # Plot rent against the index (date).
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In this case, the call to the plot() method is essentially equivalent to the following code.

>>> plt.plot(budget.index, budget["Rent"], label="Rent")
>>> plt.xlabel(budget.index.name)
>>> plt.xlim(min(budget.index), max(budget.index))
>>> plt.legend(loc="best")

The plot() method also takes in many keyword arguments for matplotlib plotting and annotation
functions. For example, setting legend=False disables the legend, providing a value for title sets
the figure title, grid=True turns a grid on, and so on. For more customizations, see
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html.

Visualizing an Entire Data Set

A good way to start analyzing an unfamiliar data set is to visualize as much of the data as possible
to determine which parts are most important or interesting. For example, since the columns in a
DataFrame share the same index, the columns can all be graphed together using the index as the
x-axis. By default, the plot() method attempts to plot every Series (column) in a DataFrame.
This is especially useful with sequential data, like the budget data set.

# Plot all columns together against the index.
>>> budget.plot(title="All Budgets", linewidth=1)
>>> budget.drop(["Rent", "Living Expenses"], axis=1).plot(linewidth=1, title="←↩

All Budgets Except Rent & Living Expenses")

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html
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(a) All columns of the budget data set on the same
figure, using the index as the x-axis.
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(b) All columns of the budget data set except
"Living Expenses" and "Rent".

Figure 8.1

While plotting every Series at once can give an overview of all the data, the resulting plot is often
difficult for the reader to understand. For example, the budget data set has 9 columns, so the
resulting figure, Figure 8.1a, is fairly cluttered.

One way to declutter a visualization is to examine less data. For example, the columns
"Living Expenses" and "Rent" have values that are much larger than the other columns.
Dropping these columns gives a better overview of the remaining data, as shown in Figure 8.1b.

Achtung!

Often plotting all data at once is unwise because columns have different units of measure.
Be careful not to plot parts of a data set together if those parts do not have the same units or
are otherwise incomparable.

Another way to declutter a plot is to use subplots. To quickly plot several columns in separate
subplots, use subplots=True and specify a shape tuple as the layout for the plots. Subplots
automatically share the same x-axis. Set sharey=True to force them to share the same y-axis as
well.

>>> budget.plot(y=["Dining Out", "Gas", "Out With Friends", "Netflix"],
... subplots=True, layout=(2, 2), sharey=True,
... style=['-', "--", "-.", ':'], title="Plots of Dollars Spent for ←↩

Different Budgets")
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As mentioned previously, the plot() method can be used to plot different kinds of plots. One
possible kind of plot is a histogram. Since plots made by the plot() method share an x-axis by
default, histograms turn out poorly whenever there are columns with very different data ranges or
when more than one column is plotted at once.

# Plot three histograms together.
>>> budget.plot(kind="hist", y=["Gas", "Dining Out", "Out With Friends"],
... alpha=0.7, bins=10, title="Frequency of Amount (in dollars) Spent")

# Plot three histograms, stacking one on top of the other.
>>> budget.plot(kind="hist", y=["Gas", "Dining Out", "Out With Friends"],
... bins=10, stacked=True, title="Frequency of Amount (in dollars) Spent")
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Figure 8.2: Two examples of histograms that are difficult to understand because multiple columns
are plotted.

Thus, histograms are good for examining the distribution of a single column in a data set. For
histograms, use the hist() method of the DataFrame instead of the plot() method. Specify the
number of bins with the bins parameter. Choose a number of bins that accurately represents the
data; the wrong number of bins can create a misleading or uninformative visualization.

>>> budget[["Dining Out", "Gas"]].hist(grid=False, bins=10)
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Figure 8.3: Histograms of "Dining Out" and "Gas".

Problem 1. Create 3 visualizations for the data in crime_data.csv. Make one of the visual-
izations a histogram. The visualizations should be well labeled and easy to understand.
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Patterns and Correlations
After visualizing the entire data set initially, a good next step is to closely compare related parts of
the data. This can be done with different types of visualizations. For example, Figure 8.1b suggests
that the "Dining Out" and "Out With Friends" columns are roughly on the same scale. Since
this data is sequential (indexed by time), start by plotting these two columns against the index.
Next, create a scatter plot of one of the columns versus the other to investigate correlations that
are independent of the index. Unlike other types of plots, using kind="scatter" requires both x
and y columns as arguments.

# Plot "Dining Out" and "Out With Friends" as lines against the index.
>>> budget.plot(y=["Dining Out", "Out With Friends"], title="Amount Spent on ←↩

Dining Out and Out with Friends per Day")

# Make a scatter plot of "Dining Out" against "Out With Friends"
>>> budget.plot(kind="scatter", x="Dining Out", y="Out With Friends",
... alpha=0.8, xlim=(0, max(budget["Dining Out"]) + 1),
... ylim=(0, max(budget["Out With Friends"]) + 1),
... title="Correlation between Dining Out and Out with Friends")
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Figure 8.4: Correlations between "Dining Out" and "Out With Friends".

The first plot shows us that more money is spent on dining out than being out with friends overall.
However, both categories stay in the same range for most of the data. This is confirmed in the
scatter plot by the block in the upper right corner, indicating the common range spent on dining
out and being out with friends.

Achtung!

When analyzing data, especially while searching for patterns and correlations, always ask
yourself if the data makes sense and is trustworthy. What lurking variables could have influenced
the data measurements as they were being gathered?



111

The crime data set from Problem 1 is somewhat suspect in this regard. The number of murders
is likely accurate across the board, since murder is conspicuous and highly reported. However,
the increase of rape incidents is probably caused both by the general rise in crime as well
as an increase in the percentage of rape incidents being reported. Be careful about drawing
conclusions for sensitive or questionable data.

Another useful visualization used to understand correlations in a data set is a scatter matrix. The
function pd.plotting.scatter_matrix() produces a table of plots where each column is plotted
against each other column in separate scatter plots. The plots on the diagonal, instead of plotting a
column against itself, displays a histogram of that column. This provides a very quick method for
an initial analysis of the correlation between different columns.

>>> pd.plotting.scatter_matrix(budget[["Living Expenses", "Other"]])
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Figure 8.5: Scatter matrix comparing "Living Expenses" and "Other".

Bar Graphs

Different types of graphs help to identify different patterns. Note that the data set budget gives
monthly expenses. It may be beneficial to look at one specific month. Bar graphs are a good way to
compare small portions of the data set.
As a general rule, horizontal bar charts (kind="barh") are better than the default vertical bar
charts (kind="bar") because most humans can detect horizontal differences more easily than
vertical differences. If the labels are too long to fit on a normal figure, use plt.tight_layout() to
adjust the plot boundaries to fit the labels in.

# Plot all data for the last month in the budget
>>> budget.iloc[-1, :].plot(kind="barh")
>>> plt.tight_layout()
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# Plot all data for the last month without "Rent" and "Living Expenses"
>>> budget.drop(["Rent", "Living Expenses"], axis=1).iloc[-1, :].plot(kind="←↩

barh")
>>> plt.tight_layout()
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Figure 8.6: Bar graphs showing expenses paid in the last month of budget.

Problem 2. Using crime_data.csv, plot the trends between Larceny and the following vari-
ables:

1. Violent

2. Burglary

3. Aggravated Assault

Make sure each graph is clearly labeled and readable. One of these variables does not have a
linear trend with Larceny. Return a string identifying this variable (You’re welcome to hard-
code this value after observing the data).

Distributional Visualizations
While histograms are good at displaying the distributions for one column, a different visualization
is needed to show the distribution of an entire set. A box plot, sometimes called a “cat-and-whisker”
plot, shows the five number summary: the minimum, first quartile, median, third quartile, and
maximum of the data. Box plots are useful for comparing the distributions of relatable data.
However, box plots are a basic summary, meaning that they are susceptible to miss important
information such as how many points were in each distribution.

# Compare the distributions of four columns.
>>> budget.plot(kind="box", y=["Gas", "Dining Out", "Out With Friends", "Other"←↩

])

# Compare the distributions of all columns but "Rent" and "Living Expenses".
>>> budget.drop(["Rent", "Living Expenses"], axis=1).plot(kind="box",
... vert=False)
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Figure 8.7: Vertical and horizontal box plots of budget dataset.

Hexbin Plots

A scatter plot is essentially a plot of samples from the joint distribution of two columns. However,
scatter plots can be uninformative for large data sets when the points in a scatter plot are closely
clustered. Hexbin plots solve this problem by plotting point density in hexagonal bins—essentially
creating a 2-dimensional histogram.

The file sat_act.csv contains 700 self reported scores on the SAT Verbal, SAT Quantitative and
ACT, collected as part of the Synthetic Aperture Personality Assessment (SAPA) web based
personality assessment project. The obvious question with this data set is “how correlated are ACT
and SAT scores?” The scatter plot of ACT scores versus SAT Quantitative scores, Figure 8.8a, is
highly cluttered, even though the points have some transparency. A hexbin plot of the same data,
Figure 8.8b, reveals the frequency of points in binned regions.

>>> satact = pd.read_csv("sat_act.csv", index_col="ID")
>>> list(satact.columns)
['gender', 'education', 'age', 'ACT', 'SATV', 'SATQ']

# Plot the ACT scores against the SAT Quant scores in a regular scatter plot.
>>> satact.plot(kind="scatter", x="ACT", y="SATQ", alpha=.8)

# Plot the densities of the ACT vs. SATQ scores with a hexbin plot.
>>> satact.plot(kind="hexbin", x="ACT", y="SATQ", gridsize=20)
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Figure 8.8: Scatter plots and hexbin plot of SAT and ACT scores.

Just as choosing a good number of bins is important for a good histogram, choosing a good
gridsize is crucial for an informative hexbin plot. A large gridsize creates many small bins and
a small gridsize creates fewer, larger bins.

Note

Since hexbins are based on frequencies, they are prone to being misleading if the dataset is not
understood well. For example, when plotting information that deals with geographic position,
increases in frequency may be results in higher populations rather than the actual information
being plotted.

See http://pandas.pydata.org/pandas-docs/stable/visualization.html for more types of
plots available in Pandas and further examples.

Problem 3. Use crime_data.csv to display the following distributions.

1. The distributions of Burglary, Violent, and Vehicle Theft as box plots,

2. The distribution of Vehicle Thefts against Robbery as a hexbin plot.

As usual, all plots should be labeled and easy to read.
Hint: To get the x-axis label to display, you might need to set the sharex parameter of plot()
to False.

Principles of Good Data Visualization
Data visualization is a powerful tool for analysis and communication. When writing a paper or
report, the author must make many decisions about how to use graphics effectively to convey useful
information to the reader. Here we will go over a simple process for making deliberate, effective,
and efficient design decisions.

http://pandas.pydata.org/pandas-docs/stable/visualization.html
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Attention to Detail

Consider the plot in Figure 8.9. It is a scatter plot of positively correlated data of some kind, with
temp–likely temperature–on the x axis and cons on the y axis. However, the picture is not really
communicating anything about the dataset. It has not specified the units for the x or the y axis,
nor does it tell what cons is. There is no title, and the source of the data is unknown.
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Figure 8.9: Non-specific data.

Labels and Citations

In a homework or lab setting, we sometimes (mistakenly) think that it is acceptable to leave off
appropriate labels, legends, titles, and sourcing. In a published report or presentation, this kind of
carelessness is confusing at best and, when the source is not included, even plagiaristic. Data needs
to be explained in a useful manner that includes all of the vital information.
Consider again Figure 8.9. This figure comes from the Icecream dataset within the pydataset
package, which we store here in a dataframe and then plot:

>>> from pydataset import data
>>> icecream = data("Icecream")
>>> icecream.plot(kind="scatter", x="temp", y="cons")

This code produces the rather substandard plot in Figure 8.9. Examining the source of the dataset
can give important details to create better plots. When plotting data, make sure to understand
what the variable names represent and where the data was taken from. Use this information to
create a more effective plot.
The ice cream data used in Figure 8.9 is better understood with the following information:

1. The dataset details ice cream consumption via 30 four-week periods from March 1951 to July
1953 in the United States.

2. cons corresponds to “consumption of ice cream per capita” and is measured in pints.

3. income is the family’s weekly income in dollars.
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4. price is the price of a pint of ice cream.

5. temp corresponds to temperature, degrees Fahrenheit.

6. The listed source is: “Hildreth, C. and J. Lu (1960) Demand relations with autocorrelated
disturbances, Technical Bulletin No 2765, Michigan State University.”

This information gives important details that can be used in the following code. As seen in previous
examples, pandas automatically generates legends when appropriate. Pandas also automatically
labels the x and y axes, however our data frame column titles may be insufficient. Appropriate
titles for the x and y axes must also list appropriate units. For example, the y axis should specify
that the consumption is in units of pints per capita, in place of the ambiguous label cons.

>>> icecream = data("Icecream")
# Set title via the title keyword argument
>>> icecream.plot(kind="scatter", x="temp", y="cons",
... title="Ice Cream Consumption in the U.S., 1951-1953")
# Override pandas automatic labeling using xlabel and ylabel
>>> plt.xlabel("Temp (Fahrenheit)")
>>> plt.ylabel("Consumption per capita (pints)")

To add the necessary text to the figure, use either plt.annotate() or plt.text(). Alternatively,
add text immediately below wherever the figure is displayed. The first two parameters of plt.text
are the x and y coordinates to place the text. The third parameter is the text to write. For instance,
using plt.text(0.5, 0.5, "Hello World") will center the Hello World string in the axes.

>>> plt.text(20, .1, r"Source: Hildreth, C. and J. Lu (1960) \emph{Demand"
... "relations with autocorrelated disturbances}\nTechnical Bulletin No"
... "2765, Michigan State University.", fontsize=7)

Both of these methods are imperfect but can normally be easily replaced by a caption attached to
the figure. Again, we reiterate how important it is that you source any data you use; failing to do
so is plagiarism.

Finally, we have a clear and demonstrative graphic in Figure 8.10.
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Figure 8.10: Source: Hildreth, C. and J. Lu (1960) Demand relations with autocorrelated disturbances,
Technical Bulletin No 2765, Michigan State University.

Achtung!

Visualizing data can inherit many biases of the visualizer and as a result can be intentionally
misleading. Examples of this include, but are not limited to, visualizing subsets of data that
do not represent the whole of the data and having purposely misconstrued axes. Every data
visualizer has the responsibility to avoid including biases in their visualizations to ensure data
is being represented informatively and accurately.

Problem 4. The dataset college.csv contains information from 1995 on universities in the
United States. To access information on variable names, go to https://cran.r-project.org/
web/packages/ISLR/ISLR.pdf. Create 3 plots that compare variables or universities. These
plots should answer questions about the data (e.g. What is the distribution of graduation rates?
Do schools with lower student to faculty ratios have higher tuition costs? etc.). These three
plots should be easy to understand and have clear titles and variable names. In addition, the
dataset should be cited in your first plot as follows:
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013) An Introduction to Statistical
Learning with applications in R, www.StatLearning.com, Springer-Verlag, New York
This problem is intended to give you flexibility to create your own visualizations that answer
your own questions. As long as your plots are clear and include all the information listed above,
you will be graded generously!

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
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9 Pandas 3: Grouping

Lab Objective: Many data sets contain categorical values that naturally sort the data into
groups. Analyzing and comparing such groups is an important part of data analysis. In this lab we
explore pandas tools for grouping data and presenting tabular data more compactly, primarily
through groupby and pivot tables.

Groupby
The file mammal_sleep.csv1 contains data on the sleep cycles of different mammals, classified by
order, genus, species, and diet (carnivore, herbivore, omnivore, or insectivore). The "sleep_total"
column gives the total number of hours that each animal sleeps (on average) every 24 hours. To get
an idea of how many animals sleep for how long, we start off with a histogram of the
"sleep_total" column.

>>> import pandas as pd
>>> from matplotlib import pyplot as plt

# Read in the data and print a few random entries.
>>> msleep = pd.read_csv("mammal_sleep.csv")
>>> msleep.sample(5)

name genus vore order sleep_total sleep_rem sleep_cycle
51 Jaguar Panthera carni Carnivora 10.4 NaN NaN
77 Tenrec Tenrec omni Afrosoricida 15.6 2.3 NaN
10 Goat Capri herbi Artiodactyla 5.3 0.6 NaN
80 Genet Genetta carni Carnivora 6.3 1.3 NaN
33 Human Homo omni Primates 8.0 1.9 1.5

# Plot the distribution of the sleep_total variable.
>>> msleep.plot(kind="hist", y="sleep_total", title="Mammalian Sleep Data")
>>> plt.xlabel("Hours")

1Proceedings of the National Academy of Sciences, 104 (3):1051–1056, 2007. Updates from V. M. Savage and G. B.
West, with additional variables supplemented by Wikipedia. Available in pydataset (with a few more columns) under
the key "msleep".
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Figure 9.1: "sleep_total" frequencies from the mammalian sleep data set.

While this visualization is a good start, it doesn’t provide any information about how different
kinds of animals have different sleeping habits. How long do carnivores sleep compared to
herbivores? Do mammals of the same genus have similar sleep patterns?
A powerful tool for answering these kinds of questions is the groupby() method of the pandas
DataFrame class, which partitions the original DataFrame into groups based on the values in one or
more columns. The groupby() method does not return a new DataFrame; it returns a pandas
GroupBy object, an interface for analyzing the original DataFrame by groups.
For example, the columns "genus", "vore", and "order" in the mammal sleep data all have a
discrete number of categorical values that could be used to group the data. Since the "vore"
column has only a few unique values, we start by grouping the animals by diet.

# List all of the unique values in the "vore" column.
>>> set(msleep["vore"])
{nan, 'herbi', 'omni', 'carni', 'insecti'}

# Group the data by the "vore" column.
>>> vores = msleep.groupby("vore")
>>> list(vores.groups)
['carni', 'herbi', 'insecti', 'omni'] # NaN values for vore were dropped.

# Get a single group and sample a few rows. Note vore="carni" in each entry.
>>> vores.get_group("carni").sample(5)

name genus vore order sleep_total sleep_rem sleep_cycle
80 Genet Genetta carni Carnivora 6.3 1.3 NaN
50 Tiger Panthera carni Carnivora 15.8 NaN NaN
8 Dog Canis carni Carnivora 10.1 2.9 0.333
0 Cheetah Acinonyx carni Carnivora 12.1 NaN NaN
82 Red fox Vulpes carni Carnivora 9.8 2.4 0.350
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As shown above, groupby() is useful for filtering a DataFrame by column values; the command
df.groupby(col).get_group(value) returns the rows of df where the entry of the col column is
value. The real advantage of groupby(), however, is how easily it compares groups of data.
Standard DataFrame methods like describe(), mean(), std(), min(), and max() all work on
GroupBy objects to produce a new data frame that describes the statistics of each group.

# Get averages of the numerical columns for each group.
>>> vores.mean(numeric_only=True)

sleep_total sleep_rem sleep_cycle
vore
carni 10.379 2.290 0.373
herbi 9.509 1.367 0.418
insecti 14.940 3.525 0.161
omni 10.925 1.956 0.592

# Get more detailed statistics for "sleep_total" by group.
>>> vores["sleep_total"].describe()

count mean std min 25% 50% 75% max
vore
carni 19.0 10.379 4.669 2.7 6.25 10.4 13.000 19.4
herbi 32.0 9.509 4.879 1.9 4.30 10.3 14.225 16.6
insecti 5.0 14.940 5.921 8.4 8.60 18.1 19.700 19.9
omni 20.0 10.925 2.949 8.0 9.10 9.9 10.925 18.0

Multiple columns can be used simultaneously for grouping. In this case, the get_group() method
of the GroupBy object requires a tuple specifying the values for each of the grouping columns.

>>> msleep_small = msleep.drop(["sleep_rem", "sleep_cycle"], axis=1)
>>> vores_orders = msleep_small.groupby(["vore", "order"])
>>> vores_orders.get_group(("carni", "Cetacea"))

name genus vore order sleep_total
30 Pilot whale Globicephalus carni Cetacea 2.7
59 Common porpoise Phocoena carni Cetacea 5.6
79 Bottle-nosed dolphin Tursiops carni Cetacea 5.2

Problem 1. Read in the data college.csv containing information on various United States
universities in 1995. To access information on variable names, go to https://cran.r-project.
org/web/packages/ISLR/ISLR.pdf. Use a groupby object to group the colleges by private and
public universities. Read in the data as a DataFrame object and use groupby and describe to
examine the following columns by group:

1. Student to faculty ratio

2. Percent of students from the top 10% of their high school class

3. Percent of students from the top 25% of their high school class

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
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Determine whether private or public universities have a higher mean for each of these columns.
For the type of university with the higher mean, save the values of the describe function on
said column as an array using .values. Return a tuple with these arrays in the order described
above.
For example, if we were comparing whether the average number of professors with PhDs was
higher at private or public universities, we would find that public universities have a higher
average, and we would return the following array:

array([212., 76.83490566, 12.31752531, 33., 71., 78.5 , 86., 103.])

Visualizing Groups

There are a few ways that groupby() can simplify the process of visualizing groups of data. First
of all, groupby() makes it easy to visualize one group at a time using the plot method. The
following visualization improves on Figure 9.1 by grouping mammals by their diets.

# Plot histograms of "sleep_total" for two separate groups.
>>> vores.get_group("carni").plot(kind="hist", y="sleep_total", legend="False",

title="Carnivore Sleep Data")
>>> plt.xlabel("Hours")
>>> vores.get_group("herbi").plot(kind="hist", y="sleep_total", legend="False",

title="Herbivore Sleep Data")
>>> plt.xlabel("Hours")
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Figure 9.2: "sleep_total" histograms for two groups in the mammalian sleep data set.

The statistical summaries from the GroupBy object’s mean(), std(), or describe() methods also
lend themselves well to certain visualizations for comparing groups.

>>> cols = ["sleep_total", "sleep_rem", "sleep_cycle"]
>>> vores[cols].mean().plot(kind="barh", xerr=vores[cols].std(),
... title="Mammalian Sleep, $\mu\pm\sigma$")
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>>> plt.xlabel("Hours")
>>> plt.ylabel("Mammal Diet Classification (vore)")
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Box plots are well suited for comparing similar distributions. The boxplot() method of the
GroupBy class creates one subplot per group, plotting each of the columns as a box plot.

# Use GroupBy.boxplot() to generate one box plot per group.
>>> vores.boxplot(grid=False)
>>> plt.tight_layout()
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Alternatively, the boxplot() method of the DataFrame class creates one subplot per column,
plotting each of the columns as a box plot. Specify the by keyword to group the data appropriately.

# Use DataFrame.boxplot() to generate one box plot per column.
>>> msleep.boxplot(["sleep_total", "sleep_rem"], by="vore", grid=False)
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Like groupby(), the by argument can be a single column label or a list of column labels. Similar
methods exist for creating histograms (GroupBy.hist() and DataFrame.hist() with by keyword),
but generally box plots are better for comparing multiple distributions.
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Problem 2. Create visualizations that give relevant information answering the following ques-
tions (using college.csv):

1. How do the number of applicants, number of accepted students, and number of enrolled
students compare between private and public universities?

2. How does the range of money spent on room and board compare between private and
public universities?

Pivot Tables
One of the downfalls of groupby() is that a typical GroupBy object has too much information to
display coherently. A pivot table intelligently summarizes the results of a groupby() operation by
aggregating the data in a specified way. The standard tool for making a pivot table is the
pivot_table() method of the DataFrame class. As an example, consider the "HairEyeColor" data
set from pydataset.

>>> from pydataset import data
>>> hec = data("HairEyeColor") # Load and preview the data.
>>> hec.sample(5)

Hair Eye Sex Freq
3 Red Brown Male 10
1 Black Brown Male 32
14 Brown Green Male 15
31 Red Green Female 7
21 Black Blue Female 9

>>> for col in ["Hair", "Eye", "Sex"]: # Get unique values per column.
... print(f"{col}: {", ".join(set(str(x) for x in hec[col])})")
...
Hair: Brown, Black, Blond, Red
Eye: Brown, Blue, Hazel, Green
Sex: Male, Female

There are several ways to group this data with groupby(). However, since there is only one entry
per unique hair-eye-sex combination, the data can be completely presented in a pivot table.

>>> hec.pivot_table(values="Freq", index=["Hair", "Eye"], columns="Sex")
Sex Female Male
Hair Eye
Black Blue 9 11

Brown 36 32
Green 2 3
Hazel 5 10

Blond Blue 64 30
Brown 4 3
Green 8 8
Hazel 5 5
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Brown Blue 34 50
Brown 66 53
Green 14 15
Hazel 29 25

Red Blue 7 10
Brown 16 10
Green 7 7
Hazel 7 7

Listing the data in this way makes it easy to locate data and compare the female and male groups.
For example, it is easy to see that brown hair is more common than red hair and that about twice
as many females have blond hair and blue eyes as males.
Unlike "HairEyeColor", many data sets have more than one entry in the data for each grouping.
An example in the previous dataset would be if there were two or more rows in the original data for
females with blond hair and blue eyes. To construct a pivot table, data of similar groups must be
aggregated together in some way.
By default entries are aggregated by averaging the non-null values. You can use the keyword
argument aggfunc to choose among different ways to aggregate the data. For example, if you use
aggfunc="min", the value displayed will be the minimum of all the values. Other arguments
include "max", "std" for standard deviation, "sum", or "count" to count the number of
occurrences. You also may pass in any function that reduces to a single float, like np.argmax or
even np.linalg.norm if you wish. A list of functions can also be passed into the aggfunc keyword
argument.
Consider the Titanic data set found in titanic.csv2. For this analysis, take only the "Survived",
"Pclass", "Sex", "Age", "Fare", and "Embarked" columns, replace null age values with the
average age, then drop any rows that are missing data. To begin, we examine the average survival
rate grouped by sex and passenger class.

>>> titanic = pd.read_csv("titanic.csv")
>>> titanic = titanic[["Survived", "Pclass", "Sex", "Age", "Fare", "Embarked"]]
>>> titanic["Age"] = titanic["Age"].fillna(titanic["Age"].mean(),)

>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass")
Pclass 1.0 2.0 3.0
Sex
female 0.965 0.887 0.491
male 0.341 0.146 0.152

Note

The pivot_table() method is a convenient way of performing a potentially complicated
groupby() operation with aggregation and some reshaping. The following code is equivalent
to the previous example.

>>> titanic.groupby(["Sex", "Pclass"])["Survived"].mean().unstack()

2There is a "Titanic" data set in pydataset, but it does not contain as much information as the data in titanic.csv.
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Pclass 1.0 2.0 3.0
Sex
female 0.965 0.887 0.491
male 0.341 0.146 0.152

The stack(), unstack(), and pivot() methods provide more advanced shaping options.

Among other things, this pivot table clearly shows how much more likely females were to survive
than males. To see how many entries fall into each category, or how many survived in each
category, aggregate by counting or summing instead of taking the mean.

# See how many entries are in each category.
>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass",
... aggfunc="count")
Pclass 1.0 2.0 3.0
Sex
female 144 106 216
male 179 171 493

# See how many people from each category survived.
>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass",
... aggfunc="sum")
Pclass 1.0 2.0 3.0
Sex
female 139.0 94.0 106.0
male 61.0 25.0 75.0

Problem 3. The file Ohio_1999.csv contains data on workers in Ohio in the year 1999. Use
pivot tables to answer the following questions:

1. Which race/sex combination has the highest Usual Weekly Earnings in total?

2. Which race/sex combination has the lowest cumulative Usual Hours Worked?

3. What race/sex combination has the highest average Usual Hours Worked?

Return a tuple for each question (in order of the questions) where the first entry is the numerical
code corresponding to the race and the second entry is corresponding to the sex. You may hard
code each tuple as long as you also provide the working code that gave you the solutions.
Some useful keys in understanding the data are as follows:

1. In column Sex, {1: male, 2: female}.

2. In column Race, {1: White, 2: African-American, 3: Native American/Eskimo, 4:
Asian}.
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Discretizing Continuous Data

In the Titanic data, we examined survival rates based on sex and passenger class. Another factor
that could have played into survival is age. Were male children as likely to die as females in
general? We can investigate this question by multi-indexing, or pivoting, on more than just two
variables, by adding in another index.
In the original dataset, the "Age" column has a floating point value for the age of each passenger. If
we add "Age" as another pivot, then the table would create a new row for each age present.
Instead, we partition the "Age" column into intervals with pd.cut(), thus creating a categorical
that can be used for grouping. Notice that when creating the pivot table, the index uses the
categorical age instead of the column name "Age".

# pd.cut() maps continuous entries to discrete intervals.
>>> pd.cut([1, 2, 3, 4, 5, 6, 7], [0, 4, 8])
[(0, 4], (0, 4], (0, 4], (0, 4], (4, 8], (4, 8], (4, 8]]
Categories (2, interval[int64, right]): [(0, 4] < (4, 8]]

# Partition the passengers into 3 categories based on age.
>>> age = pd.cut(titanic["Age"], [0, 12, 18, 80])

>>> titanic.pivot_table(values="Survived", index=["Sex", age],
columns="Pclass", aggfunc="mean")

Pclass 1.0 2.0 3.0
Sex Age
female (0, 12] 0.000 1.000 0.467

(12, 18] 1.000 0.875 0.607
(18, 80] 0.969 0.871 0.475

male (0, 12] 1.000 1.000 0.343
(12, 18] 0.500 0.000 0.081
(18, 80] 0.322 0.093 0.143

From this table, it appears that male children (ages 0 to 12) in the 1st and 2nd class were very
likely to survive, whereas those in 3rd class were much less likely to. This clarifies the claim that
males were less likely to survive than females. However, there are a few oddities in this table: zero
percent of the female children in 1st class survived, and zero percent of teenage males in second
class survived. To further investigate, count the number of entries in each group.

>>> titanic.pivot_table(values="Survived", index=["Sex", age],
columns="Pclass", aggfunc="count")

Pclass 1.0 2.0 3.0
Sex Age
female (0, 12] 1 13 30

(12, 18] 12 8 28
(18, 80] 131 85 158

male (0, 12] 4 11 35
(12, 18] 4 10 37
(18, 80] 171 150 421

This table shows that there was only 1 female child in first class and only 10 male teenagers in
second class, which sheds light on the previous table.
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Achtung!

The previous pivot table brings up an important point about partitioning datasets. The Titanic
dataset includes data for about 1300 passengers, which is a somewhat reasonable sample size,
but half of the groupings include less than 30 entries, which is not a healthy sample size for
statistical analysis. Always carefully question the numbers from pivot tables before making any
conclusions.

Pandas also supports multi-indexing on the columns. As an example, consider the price of a
passenger tickets. This is another continuous feature that can be discretized with pd.cut().
Instead, we use pd.qcut() to split the prices into 2 equal quantiles. Some of the resulting groups
are empty; to improve readability, specify fill_value as the empty string or a dash.

# pd.qcut() partitions entries into equally populated intervals.
>>> pd.qcut([1, 2, 5, 6, 8, 3], 2)
[(0.999, 4.0], (0.999, 4.0], (4.0, 8.0], (4.0, 8.0], (4.0, 8.0], (0.999, 4.0]]
Categories (2, interval[float64]): [(0.999, 4.0] < (4.0, 8.0]]

# Cut the ticket price into two intervals (cheap vs expensive).
>>> fare = pd.qcut(titanic["Fare"], 2)
>>> titanic.pivot_table(values="Survived",

index=["Sex", age], columns=[fare, "Pclass"],
aggfunc="count", fill_value='-')

Fare (-0.001, 14.454] (14.454, 512.329]
Pclass 1.0 2.0 3.0 1.0 2.0 3.0
Sex Age
female (0, 12] - - 7 1 13 23

(12, 18] - 4 23 12 4 5
(18, 80] - 31 101 131 54 57

male (0, 12] - - 8 4 11 27
(12, 18] - 5 26 4 5 11
(18, 80] 8 94 350 163 56 70

Not surprisingly, most of the cheap tickets went to passengers in 3rd class.

Problem 4. Use the employment data from Ohio in 1999 to answer the following questions:

1. The column Educational Attainment contains numbers 0-46. Any number less than 39
means the person did not get any form of degree. 39-42 refers to either a high-school or
associate’s degree. A number greater than or equal to 43 means the person got at least a
bachelor’s degree. Out of these categories, which degree type is the most common among
the workers in this dataset?

2. Partition the Age column into 6 equally-sized groups using pd.qcut(). Which interval
has the highest average Usual Hours Worked?
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3. Using the partitions from the first two parts, what age/degree combination has the lowest
yearly salary on average?

Return the answer to each question (in order) as an Interval. For part three, the answer should
be a tuple where the first entry is the Interval of the age and the second is the Interval of
the degree.
An Interval is the object returned by pd.cut() and pd.qcut(). These can also be obtained
from a pivot table, as in the example below.

>>> # Create pivot table used in last example with titanic dataset
>>> table = titanic.pivot_table(values="Survived",

index=[age], columns=[fare, "Pclass"],
aggfunc="count")

>>> # Get index of maximum interval
>>> table.sum(axis=1).idxmax()
Interval(0, 12, closed='right')

Problem 5. Examine the college dataset using pivot tables and groupby objects. Deter-
mine the answer to the following questions. If the answer is yes, save the answer as True. If
the answer the no, save the answer as False. For the last question, save the answer as a string
giving your explanation. Return a tuple containing your answers to the questions in order.

1. Partition perc.alumni into evenly spaced intervals of 20% using pd.cut(). Does the
number of both private and public universities decrease as the percentage of alumni that
donate increases, as expected?

2. Partition Grad.Rate into evenly spaced intervals of 20% using pd.cut(). Is the partition
with the greatest number of schools the same for private and public universities?

3. Create a column that gives the acceptance rate of each university (using columns Accept
and Apps). Partition this column into evenly spaced intervals of 25% using pd.cut().
Is it true that the partition with the least average number of students from the top 10
percent of their high school class is the same for both private and public universities?

4. Use the same partition as part 3. The average percentage of students admitted from the
top 10 percent of their high school class is very high in private universities with the lowest
acceptance rates (< 25% acceptance rate). Why is this not a good conclusion to draw
solely from this dataset? Use only the data to explain why; do not extrapolate.



10 GeoPandas

Lab Objective: GeoPandas is a package designed to organize and manipulate geographic data. It
combines the data manipulation tools of pandas with the geometric capabilities of the Shapely
package. In this lab, we explore the basic data structures of GeoSeries and GeoDataFrames and
their functionalities.

Installation
GeoPandas is a new package designed to combine the functionality of pandas with Shapely, a
package used for geometric manipulation. Using GeoPandas with geographic data is very useful as
it allows the user to not only compare numerical data, but also geometric attributes. GeoPandas
can be installed via pip:

>>> pip install geopandas

GeoSeries
A GeoSeries is a pandas Series where each entry is a set of geometric objects. There are three
classes of geometric objects inherited from the Shapely package:

1. Points / Multi-Points

2. Lines / Multi-Lines

3. Polygons / Multi-Polygons

A point is used to identify objects like coordinates, where there is one small instance of the object.
A line could be used to describe objects such as roads. A polygon could be used to identify regions,
such as a country. Multipoints, multilines, and multipolygons contain lists of points, lines, and
polygons, respectively.
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Since each object in the GeoSeries is also a Shapely object, the GeoSeries inherits many methods
and attributes of Shapely objects. Some of the key attributes and methods are listed in Table 10.1.
These attributes and methods can be used to calculate distances, find the sizes of countries, and
determine whether coordinates are within country’s boundaries. The example below uses the
attribute bounds to find the maximum and minimum coordinates of Egypt in the GeoDataFrame
worldmap.gpkg.

Method/Attribute Description
distance(other) returns minimum distance from GeoSeries to other
contains(other) returns True if shape contains other

intersects(other) returns True if shape intersects other
area returns shape area

convex_hull returns convex shape around all points in the object
bounds returns the bounding x- and y-coordinates of the object

Table 10.1: Attributes and Methods for GeoSeries

>>> import geopandas as gpd
>>> world = gpd.read_file(worldmap.gpkg)
# Get GeoSeries for Egypt
>>> egypt = world[world["SOVEREIGNT"]=="Egypt"]

# Find bounds of Egypt
>>> egypt.bounds

minx miny maxx maxy
163 24.70007 22.0 36.86623 31.58568

Creating GeoDataFrames
The main structure used in GeoPandas is a GeoDataFrame, which is similar to a pandas
DataFrame. A GeoDataFrame has one special column called geometry, which must be a GeoSeries.
This GeoSeries column is used when a spatial method, like distance(), is used on the
GeoDataFrame. Therefore all attributes and methods used for GeoSeries can also be used on
GeoDataFrame objects.
A GeoDataFrame can be made from a pandas DataFrame. One of the columns in the DataFrame
should contain geometric information. That column can be converted to a GeoSeries using the
apply() method. At this point, the Pandas DataFrame can be cast as a GeoDataFrame. Assign
which column will be the geometry using either the geometry keyword in the constructor or the
set_geometry() method afterwards.

>>> import pandas as pd
>>> import geopandas as gpd
>>> from shapely.geometry import Point, Polygon

# Create a Pandas DataFrame
>>> df = pd.DataFrame({"City": ["Seoul", "Lima", "Johannesburg"],
... "Country": ["South Korea", "Peru", "South Africa"],
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... "Latitude": [37.57, -12.05, -26.20],

... "Longitude": [126.98, -77.04, 28.04]})

# Create geometry column
>>> df["Coordinates"] = list(zip(df.Longitude, df.Latitude))

# Make geometry column Shapely objects
>>> df["Coordinates"] = df["Coordinates"].apply(Point)

# Cast as GeoDataFrame
>>> gdf = gpd.GeoDataFrame(df, geometry="Coordinates")

# Equivalently, specify the geometry after construction
# Note that set_geometry() returns a new GeoDataFrame
>>> gdf = gpd.GeoDataFrame(df)
>>> gdf = gdf.set_geometry("Coordinates")

# Display the GeoDataFrame
>>> gdf

City Country Latitude Longitude Coordinates
0 Seoul South Korea 37.57 126.98 POINT (126.98000 37.57000)
1 Lima Peru -12.05 -77.04 POINT (-77.04000 -12.05000)
2 Johannesburg South Africa -26.20 28.04 POINT (28.04000 -26.20000)

# Create a polygon with all three cities as points
>>> city_polygon = Polygon(list(zip(df.Longitude, df.Latitude)))

A GeoDataFrame can also be made directly from a dictionary. If the dictionary already contains
geometric objects, the corresponding column can be directly set as the geometry in the constructor.
Otherwise, a column containing geometry data can be created as in the above example and then set
as the geometry with the set_geometry() method.

# Both of these methods create the same GeoDataFrame as above
# Directly create the GeoDataFrame from the dictionary
>>> gdf = gpd.GeoDataFrame({"City": ["Seoul", "Lima", "Johannesburg"],
... "Country": ["South Korea", "Peru", "South Africa"],
... "Latitude": [37.57, -12.05, -26.20],
... "Longitude": [126.98, -77.04, 28.04]})
# Create geometry column and set as the geometry
>>> gdf["Coordinates"] = list(zip(gdf.Longitude, gdf.Latitude))
>>> gdf["Coordinates"] = gdf["Coordinates"].apply(Point)
# inplace=True modifies gdf itself rather than returning a copy
>>> gdf.set_geometry("Coordinates", inplace=True)

# Equivalently, using a dictionary that already contains geometry objects
>>> gdf = gpd.GeoDataFrame({"City": ["Seoul", "Lima", "Johannesburg"],
... "Country": ["South Korea", "Peru", "South Africa"],
... "Coordinates": [Point(126.98, 37.57),
... Point(-77.04, -12.05), Point(28.04, -12.05)]},
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... geometry="Coordinates")

Method/Attribute Description
abs() returns series/dataframe with absolute numeric value of each element

add(other) returns addition of dataframe and other element-wise
affine_transform(matrix) returns GeoSeries with translated geometries

append(other) returns new object with appended rows of other to the end of caller
dot(other) returns dataframe of matrix multiplication with other

equals(other) tests if the two objects contain the same elements

Table 10.2: Attributes and Methods for GeoDataFrame

Note

Longitude is the angular measurement starting at the Prime Meridian, 0°, and going to 180°
to the east and −180° to the west. Latitude is the angle between the equatorial plane and
the normal line at a given point; a point along the Equator has latitude 0, the North Pole has
latitude +90° or 90°N , and the South Pole has latitude −90° or 90°S.

Plotting GeoDataFrames
Information from a GeoDataFrame is plotted based on the geometry column. Data points are
displayed as geometry objects. The following example plots the shapes in the world GeoDataFrame.

# Plot world GeoDataFrame
>>> world.plot()
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Figure 10.1: World map



135

Multiple GeoDataFrames can be plotted at once. This can be done by by setting one
GeoDataFrame as the base of the plot and ensuring that each layer uses the same axes. In the
following example, the file airports.csv, containing the coordinates of world airports, is loaded
into a GeoDataFrame and plotted on top of the boundary of the world GeoDataFrame.

# Set outline of world countries as base
>>> fig, ax = plt.subplots(1, figsize=(10, 4))
>>> base = world.boundary.plot(edgecolor="black", ax=ax, linewidth=1)

# Load airport data and convert to a GeoDataFrame
>>> airports = pd.read_csv("airports.csv")
>>> airports["Coordinates"] = list(zip(airports.Longitude, airports.Latitude))
>>> airports["Coordinates"] = airports.Coordinates.apply(Point)
>>> airports = gpd.GeoDataFrame(airports, geometry="Coordinates")

# Plot airports on top of world map
>>> airports.plot(ax=base, marker='o', color="green", markersize=1)
>>> ax.set_xlabel("Longitude")
>>> ax.set_ylabel("Latitude")
>>> ax.set_title("World Airports")
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Figure 10.2: Airport map

Problem 1. The file worldmap.gpkg.zip contains data of the worldmap used in above exam-
ples.a After unzipping, use the command geopandas.read_file("worldmap.gpkg") to create
a GeoDataFrame of this information.
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Then, read in the file airports.csv as a pandas DataFrame. Create three convex hulls around
the three sets of airports listed below. This can be done by passing in lists of the airports’
coordinates (Longitude and Latitude zipped together) to a shapely.geometry.Polygon object.
Finally, create a new GeoDataFrame using a dictionary with key "geometry" and with a list of
these three Polygons as the value. Plot this GeoDataFrame, and then plot the outlined world
map on top of it.

• Maio Airport, Scatsta Airport, Stokmarknes Skagen Airport, Bekily Airport, K. D.
Matanzima Airport, RAF Ascension Island

• Oiapoque Airport, Maio Airport, Zhezkazgan Airport, Walton Airport, RAF Ascension
Island, Usiminas Airport, Piloto Osvaldo Marques Dias Airport

• Zhezkazgan Airport, Khanty Mansiysk Airport, Novy Urengoy Airport, Kalay Airport,
Biju Patnaik Airport, Walton Airport

aSource: https://www.naturalearthdata.com/downloads/110m-cultural-vectors/

Note

.gpkg files are actually structured as a directory that contains several files that each contain
parts of the data. For instance, worldmap.gpkg consists of the files worldmap.cpg, worldmap
.dbf, worldmap.prj, worldmap.shp, and worldmap.shx. Be sure that these files are placed
directly in the first level of worldmap.gpkg, and not in further subdirectories.

Working with GeoDataFrames
As previously mentioned, GeoDataFrames contain many of the functionalities of pandas
DataFrames. For example, to create a new column, define a new column name in the
GeoDataFrame with the needed information for each GeoSeries.

# Create column in the world GeoDataFrame for GDP_PER_CAPITA
>>> world["GDP_PER_CAP"] = world.GDP_MD / world.POP_EST

GeoDataFrames can utilize many pandas functionalities, and they can also be parsed by geometric
manipulations. For example, a useful way to index GeoDataFrames is with the cx indexer. This
splits the GeoDataFrame by the coordinates of each geometric object. It is used by calling the
method cx on a GeoDataFrame, followed by a slicing argument, where the first element refers to
the longitude and the second refers to latitude.

# Create a GeoDataFrame containing the northern hemisphere
>>> north = world.cx[:, 0:]

# Create a GeoDataFrame containing the southeastern hemisphere
>>> south_east = world.cx[0:, :0]

https://www.naturalearthdata.com/downloads/110m-cultural-vectors/
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GeoSeries objects in a GeoDataFrame can also be dissolved, or merged, together into one GeoSeries
based on their geometry data. For example, all countries on one continent could be merged to
create a GeoSeries containing the information of that continent. The method designed for this is
called dissolve. It receives two parameters, by and aggfunc. by indicates which column to
dissolve along, and aggfunc tells how to combine the information in all other columns. The default
aggfunc is first, which returns the first application entry. In the following example, we use sum as
the aggfunc so that each continent is the combination of its countries.

>>> world = world[["CONTINENT", "geometry", "GDP_PER_CAP"]]

# Dissolve world GeoDataFrame by continent
>>> continent = world.dissolve(by="CONTINENT", aggfunc="sum")

Projections and Coloring
When plotting, GeoPandas uses the CRS (coordinate reference system) of a GeoDataFrame. This
reference system indicates how coordinates should be spaced on a plot. Two of the most commonly
used CRSs are EPSG:4326 and EPSG:3395. EPSG:4326 is the standard latitude-longitude
projection used by GPS. EPSG:3395, also known as the Mercator projection, is the standard
navigational projection.
When creating a new GeoDataFrame, it is important to set the crs attribute of the
GeoDataFrame. This allows any plots to be shown correctly. Furthermore, GeoDataFrames being
layered need to have the same CRS. To change the CRS, use the method to_crs().

# Check CRS of world GeoDataFrame
>>> print(world.crs)
EPSG:4326

# Change CRS of world to Mercator
# inplace=True ensures that we modify world instead of returning a copy
>>> world.to_crs(3395, inplace=True)
>>> print(world.crs)
EPSG:3395

GeoPandas accepts many different CRSs; a reference can be found at www.spatialreference.org.
Additionally, inspecting a given CRS object in the terminal without using print() or str() can be
used to get additional information about a specific CRS:1

>>> world.crs
<Projected CRS: EPSG:3395>
Name: WGS 84 / World Mercator
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: World between 80◦S and 84◦N.

1This can also be accomplished using print(repr(crs)).

www.spatialreference.org
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- bounds: (-180.0, -80.0, 180.0, 84.0)
Coordinate Operation:
- name: World Mercator
- method: Mercator (variant A)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

GeoDataFrames can also be plotted using the values in the other attributes of the GeoSeries. The
map plots the color of each geometry object according to the value of the column selected. This is
done by passing in the parameter column into the plot() method.

>>> fig, ax = plt.subplots(1, figsize=(10, 4))
# Plot world based on gdp
>>> world.plot(column="GDP_MD", cmap="OrRd", legend=True, ax=ax)
>>> ax.set_title("World Map based on GDP")
>>> ax.set_xlabel("Longitude")
>>> ax.set_ylabel("Latitude")
>>> plt.show()
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Figure 10.3: World Map Based on GDP

Problem 2. The file county_data.gpkg.zip contains information about US counties.a After
unzipping, use the command geopandas.read_file("county_data.gpkg") to create a Geo-
DataFrame of this information. Each county’s shape is stored in the geometry column. Use
this to plot the boundaries of all US counties two times, first using the default CRS and then
using EPSG:5071.
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Next, create a new GeoDataFrame that combines (dissolve) all counties within each state
(by="STATEFP"). Drop regions with the following STATEFP codes: 02, 15, 60, 66, 69, 72, 78.
Plot the boundary of this GeoDataFrame to see an outline of all 48 contiguous states. Ensure
a CRS of EPSG:5071.

aSource: http://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_county_5m.zip

Merging GeoDataFrames
Just as multiple pandas DataFrames can be merged, multiple GeoDataFrames can be merged with
attribute joins or spatial joins. An attribute join is similar to a merge in pandas. It combines two
GeoDataFrames on a column (not the geometry column) and then combines the rest of the data
into one GeoDataFrame.

>>> world = gpd.read_file(worldmap.gpkg)
>>> cities = gpd.read_file(cities.gpkg)

# Create subsets of the world and cities GeoDataFrames
>>> world = world[["CONTINENT", "SOVEREIGNT", "SOV_A3"]]
>>> cities = cities[["NAME", "SOV_A3"]]

# Merge the GeoDataFrames on their SOV_A3 code
>>> countries = world.merge(cities, on="SOV_A3")

A spatial join merges two GeoDataFrames based on their geometry data. The function used for this
is sjoin. sjoin accepts two GeoDataFrames and then direction on how to merge. It is imperative
that two GeoDataFrames have the same CRS. In the example below, we merge using an inner join
with the option intersects. The inner join means that we will only use keys in the intersection of
both geometry columns, and we will retain only the left geometry column. intersects tells the
GeoDataFrames to merge on GeoSeries that intersect each other. Other options include contains
and within.

# Combine countries and cities on their geographic location
>>> countries = gpd.sjoin(world, cities, how="inner", predicate="intersects")

Problem 3. Load in the file nytimes.csva as a Pandas DataFrame. This file includes county-
level data for the cumulative cases and deaths of Covid-19 in the US, starting with the first
case in Snohomish County, Washington, on January 21, 2020.
Merge the county GeoDataFrame from county_data.gpkg with the nytimes DataFrame on
the county fips codes (a FIPS code is a 5-digit unique identifier for geographic locations).
Note that the fips column of the nytimes DataFrame stores entries as floats, but the county
GeoDataFrame stores FIPS codes as strings, with the first two digits in the STATEFP column
and the last three digits in the COUNTYFP column. Thus, you will need to add these two columns
together and then convert them into floats so they can be merged with the fips column in the
nytimes DataFrame.

http://www2.census.gov/geo/tiger/GENZ2016/shp/cb_2016_us_county_5m.zip
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Drop the regions from the county GeoDataFrame with the same STATEFP codes as in Problem
2. Also, make sure to change the CRS of the county GeoDataFrame to EPSG:5071 before you
merge the two DataFrames (this will make the code run much faster).
Plot the cases from March 21, 2020, and then plot your state outline map from Problem 2 on
top of that (with a CRS of EPSG:5071). Include a colorbar using the arguments legend=True
and cmap="plasma_r" in the plot function. Finally, print out the name of the county with the
most cases on March 21, 2020, along with its case count.
Hint: every state should have multiple covid cases.

aSource: https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv

Logarithmic Plotting Techniques
The color scheme of a graph can also help to communicate information clearly. A good list of
available colormaps can be found at
https://matplotlib.org/3.2.1/gallery/color/colormap_reference.html. Note also that you
can reverse any colormap by adding _r to the end. The following example demonstrates some
plotting features, using country GDP as in Figure 10.3.

>>> fig, ax = plt.subplots(1, figsize=(10, 4))
>>> world.plot(column="GDP_MD", cmap="plasma_r",
... ax=ax, legend=True, edgecolor="gray")

# Add title and remove axis tick marks
>>> ax.set_title("GDP on Linear Scale")
>>> ax.set_yticks([])
>>> ax.set_xticks([])
>>> plt.show()
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Figure 10.4: World map showing country GDP

https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv
https://matplotlib.org/3.2.1/gallery/color/colormap_reference.html
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Sometimes data can be much more informative when plotted on a logarithmic scale. See how the
world map changes when we add a norm argument in the code below. Depending on the purpose of
the graph, Figure 10.5 may be more informative than Figure 10.4.

>>> from matplotlib.colors import LogNorm
>>> from matplotlib.cm import ScalarMappable
>>> fig, ax = plt.subplots(1, figsize=(10, 7))

# Set the norm using data bounds
>>> data = world.GDP_MD
>>> norm = LogNorm(vmin=min(data), vmax=max(data))

# Plot the graph using the norm
>>> world.plot(column="GDP_MD", cmap="plasma_r", ax=ax,
... edgecolor="gray", norm=norm)

# Create a custom colorbar
>>> cbar = fig.colorbar(ScalarMappable(norm=norm, cmap="plasma_r"),
... ax=ax, orientation="horizontal", pad=0, label="GDP")

>>> ax.set_title("GDP on a Log Scale")
>>> ax.set_yticks([])
>>> ax.set_xticks([])
>>> plt.show()

GDP on a Log Scale

102 103 104 105 106 107

GDP

Figure 10.5: World map showing country GDP using a log scale
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Problem 4. As in Problem 3, plot your state outline map from Problem 2 on top of a map
of Covid-19 cases from March 21, 2020 (each with a CRS of EPSG:5071). This time, however,
use a log scale. Pick a good colormap (the counties with the most cases should generally be
darkest) and be sure to display a colorbar.

Problem 5. In this problem, you will create an animation of the spread of Covid-19 through US
counties from January 21, 2020, through June 21, 2020. You will use the same GeoDataFrame
you used in Problems 3 and 4 (with a CRS of EPSG:5071). Use a log scale and a good colormap,
and be sure that you’re using the same norm and colorbar for the whole animation.
As a reminder, below is a summary of what you will need in order to animate this map. You
may also find it helpful to refer to the animation section included with the Volume 4 lab manual.

1. Set up your figure and norm. Be sure to use the highest case count for your vmax so that
the scale remains uniform.

2. Write your update function. This should plot the cases from a given day as well as the
state boundaries.

3. Set up your colorbar. Do this outside the update function to avoid adding a new colorbar
each day.

4. Create a FuncAnimation object. Check to make sure everything displays properly before
you save it.

5. Save the animation to a file, and embed it into the notebook.
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Lab Objective: The quality of a data analysis or model is limited by the quality of the data used.
In this lab we learn techniques for cleaning data, creating features, and determining feature
importance.

Data cleaning is the process of identifying and correcting bad data. This could be data that is
missing, duplicated, irrelevant, inconsistent, incorrect, in the wrong format, or otherwise does not
make sense. Though it can be tedious, data cleaning is the most important step of data analysis.
Without accurate and legitimate data, any results or conclusions are suspect and may be incorrect.
We will demonstrate common issues with data and how to correct them using the following dataset.
It consists of family members and some basic details.

# Example dataset
>>> df = pd.read_csv('toy_dataset.csv')

>>> df
Name Age name DOB Marital_Status

0 John Doe 30 john 01/01/2010 Divorcee
1 Jane Doe 29 jane 12/02/1990 Divorced
2 Jill smith 40 NaN 03/04/1980 married
3 Jill smith 40 jill 03/04/1980 married
4 jack smith 100 jack 4/4/1980 marrieed
5 Jenny Smith 5 NaN 05/05/2015 NaN
6 JAmes Smith 2 NaN 20/06/2018 single
7 Rover 2 NaN 05/05/2018 NaN

Height Weight Marriage_Len Spouse
0 72.0 175 5 NaN
1 5.5 125 5 John Doe
2 64.0 120 10 Jack Smith
3 64.0 120 NaN jack smith
4 1.8 220 10 jill smith
5 105.0 40 NaN NaN
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6 27.0 25 Not Applicable NaN
7 36.0 50 NaN NaN

Data Type

We can check the data type in Pandas using dtype. A dytpe of object means that the data in
that column contains either strings or mixed dtypes. These fields should be investigated to
determine if they contain mixed datatypes. In our toy example, we would expect that
Marriage_Len is numerical, so an object dtype is suspicious. Looking at the data, we see that
James has Not Applicable, which is a string.

# Check validity of data
# Check Data Types
>>> df.dtypes
Name object
Age int64
name object
DOB object
Marital_Status object
Height float64
Weight int64
Marriage_Len object
Spouse object
dtype: object

Duplicates

Duplicates can be easily identified in Pandas using the duplicated() function. When no
parameters are passed, it returns a DataFrame of the first duplicates. We can identify rows that are
duplicated in only some columns by passing in the column names. The keep parameter has three
possible values, first, last, and False. False keeps all duplicated values, while first and last keep only
the first and last instances, respectively.

# Display duplicated rows
>>> df[df.duplicated()]
Empty DataFrame
Columns: [Name, Age, name, DOB, Marital_Status, Height, Weight, Marriage_Len, ←↩

Spouse]
Index: []

# Display rows that have duplicates in some columns
>>> df[df.duplicated(['Name', 'DOB', 'Marital_Status'], keep=False)]

Name Age name DOB Marital_Status Height Weight ←↩
Marriage_Len Spouse

2 Jill smith 40 NaN 03/04/1980 married 64.0 120 ←↩
10 Jack Smith
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3 Jill smith 40 jill 03/04/1980 married 64.0 120 ←↩
NaN jack smith

Range

We can check the range of values in a numeric column using the min and max attributes. If a
column corresponds to the temperature in Salt Lake City, measured in degrees Farenheit, then a
value over 110 or below 0 should make you suspicious, since those would be extreme values for Salt
Lake City. In fact, checking the all-time temperature records for Salt Lake shows that the values in
this column should never be more than 107 and never less than −30. Any values outside that range
are almost certainly errors and should probably be reset to NaN , unless you have special
information that allows you to impute more accurate values.
Other options for looking at the values include line plots, histograms, and boxplots. Some other
useful Pandas commands for evaluating the breadth of a dataset include df.nunique() (which
returns a series giving the name of each column and the number of unique values in each column),
pd.unique() (which returns an array of the unique values in a series), and value_counts() (which
counts the number of instances of each unique value in a column, like a histogram).

# Count the number of unique values in each column
>>> df.nunique()
Name 7
Age 6
name 4
DOB 7
Marital_Status 5
Height 7
Weight 7
Marriage_Len 3
Spouse 4
dtype: int64

# Print the unique Marital_Status values
>>> pd.unique(df['Marital_Status'])
array(['Divorcee', 'Divorced', 'married', 'marrieed', nan, 'single'],

dtype=object)

# Count the number of each Marital_Status values
>>> df['Marital_Status'].value_counts()
Marital_Status
married 2
Divorcee 1
Divorced 1
marrieed 1
single 1
Name: count, dtype: int64



146 Lab 11. Data Cleaning

Missing Data

The percentage of missing data is the completeness of the data. All uncleaned data will have
missing values, but datasets with large amounts of missing data, or lots of missing data in key
columns, are not going to be as useful. Pandas has several functions to help identify and count
missing values. In Pandas, all missing data is considered a NaN and does not affect the dtype of a
column. df.isna() returns a boolean DataFrame indicating whether each value is missing.
df.notnull() returns a boolean DataFrame with True where a value is not missing. Information
on how to deal with missing data is described in later sections.

# Count number of missing data points in each column
>>> df.isna().sum()
Name 0
Age 0
name 4
DOB 0
Marital_Status 2
Height 0
Weight 0
Marriage_Len 3
Spouse 4
dtype: int64

Consistency

Consistency measures how cohesive the data is, both within the dataset and across multiple
datasets. For example, in our toy dataset Jack Smith is 100 years old, but his birth year is 1980.
Data is inconsistent across datasets when the data points should be the same and are different.
This could be due to incorrect entries or syntax errors.
It is also important to be consistent in units of measure. Looking at the Height column in our
dataset, we see values ranging from 1.8 to 105. This is likely the result of different units of measure.
It is also important to be consistent across multiple datasets.
All features should also have a consistent type and standard formatting (like capitalization).
Syntax errors should be fixed, and white space at the beginning and ends of strings should be
removed. Some data might need to be padded so that it’s all the same length.

Method Description
series.str.lower() Convert to all lower case
series.str.upper() Convert to all upper case
series.str.strip() Remove all leading and trailing white space
series.str.lstrip() Remove leading white space

series.str.replace(" ","") Remove all spaces
series.str.pad() Pad strings

Table 11.1: Pandas String Formatting Methods
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Problem 1. The g_t_results.csv file is a set of parent-reported scores on their child’s Gifted
and Talented tests. The two tests, OLSAT and NNAT, are used by NYC to determine if children
are qualified for gifted programs. The OLSAT Verbal has 16 questions for Kindergarteners and
30 questions for first, second, and third graders. The NNAT has 48 questions. Each test assigns
1 point to each question asked (so there are no non integer scores). Using this dataset, answer
the following questions.

1. What column has the highest number of null values and what percent of its values are
null? Print the answer as a tuple with (column name, percentage). Make sure the second
value is a percent.

2. List the columns that should be numeric that aren’t. Print the answer as a tuple.

3. How many third graders have scores outside the valid range for the OLSAT Verbal Score?
Print the answer

4. How many data values are missing (NaN)? Print the number.

Cleaning

There are many aspects and methods of cleaning; here are a few ways of doing so.

Unwanted Data

Removing unwanted data typically falls into two categories, duplicated data and irrelevant data.
Irrelevant data consists of observations that don’t fit the specific problem you are trying to solve or
don’t have enough variation to affect the model. We can drop duplicated data using the
duplicated() function described above with drop() or drop_duplicates().

Missing Data

Some commonly suggested methods for handling data are removing the missing data and setting
the missing values to some value based on other observations. However, missing data can be
informative and removing or replacing missing data erases that information. Removing missing
values from a dataset might result in losing significant amounts of data or even in a less accurate
model. Retaining the missing values can help increase accuracy.
We have several options to deal with missing data:

• Dropping missing data is the easiest method. Dropping rows or columns should only be done
if there is less than 90%− 95% of the data available. If dropping missing data is
inappropriate, you may instead choose to estimate the missing values which can be done by
solving the mean, mode, median, randomly choosing from a distribution, linear regression, or
hot-decking, to name a few.

• Hot-decking is when you fill in the data based on similar observations. It can be applied to
numerical and categorical data, unlike many of the other options listed above. Sequential
hot-decking sorts the column with missing data based on an auxiliary column and then fills in
the data with the value from the next available data point. K-Nearest Neighbors can also be
used to identify similar data points.
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• The last option is to flag the data as missing. This retains the information from missing data
and removes the missing data (by replacing it). For categorical data, simply replace the data
with a new category. For numerical data, we can fill the missing data with 0, or some value
that makes sense, and add an indicator variable for missing data.

## Replace missing data
import numpy as np

# Add an indicator column based on missing Marriage_Len
>>> df['missing_ML'] = df['Marriage_Len'].isna()

# Fill in all missing data with 0
>>> df['Marriage_Len'] = df['Marriage_Len'].fillna(0)

# Change all other NaNs to missing
>>> df = df.fillna('missing')

# Change Not Applicable row to NaNs
>>> df = df.replace('Not Applicable', np.nan)

# Drop rows with NaNs
>>> df = df.dropna()

>>> df
Name Age name DOB Marital_Status

0 John Doe 30 john 01/01/2010 Divorcee
1 Jane Doe 29 jane 12/02/1990 Divorced
2 Jill smith 40 missing 03/04/1980 married
3 Jill smith 40 jill 03/04/1980 married
4 jack smith 100 jack 4/4/1980 marrieed
5 Jenny Smith 5 missing 05/05/2015 missing
7 Rover 2 missing 05/05/2018 missing

Height Weight Marriage_Len Spouse missing_ML
0 72.0 175 5 missing False
1 5.5 125 5 John Doe False
2 64.0 120 10 Jack Smith False
3 64.0 120 0 jack smith True
4 1.8 220 10 jill smith False
5 105.0 40 0 missing True
7 36.0 50 0 missing True
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Nonnumerical Values Misencoded as Numbers

Missing data should always be stored in a form that cannot accidentally be incorporated into the
model. This is typically done by storing missing values as NaN. Some algorithms will not run on
data with NaN values, in which case you may choose to fill missing data with a string 'missing'.
Many datasets have recorded missing values with a 0 or some other number. You should verify that
this does not occur in your dataset.

Categorical data are also often encoded as numerical values. These values should not be left as
numbers that can be computed with. For example, postal codes are shorthand for locations, and
there is no numerical meaning to the code. It makes no sense to add, subtract, or multiply postal
codes, so it is important to not do so. It is good practice to convert this kind of non-numeric data
into strings or other data types that cannot be computed with.

Ordinal Data

Ordinal data is data that has a meaningful order but the differences between the values aren’t
consistent or meaningful. For example, a survey question might ask about your level of education,
with 1 being high-school graduate, 2 bachelor’s degree, 3 master’s degree, and 4 doctoral degree.
These values are called ordinal data because it is meaningful to talk about an answer of 1 being less
than an answer of 2, but the difference between 1 and 2 is not necessarily the same as the difference
between 3 and 4. Subtracting, taking the average, and other algebraic methods do not make a lot
of sense with ordinal data.

Problem 2. imdb.csv contains a small set of information about 99 movies. Valid movies for
this dataset should be longer than 30 minutes long, should have a positive imdb_score, and
have a title_year after 2000.

Clean the data set by doing the following in order:

1. Remove duplicate rows by dropping the first or last. Print the shape of the dataframe
after removing the rows.

2. Drop all rows that contain missing data. Print the shape of the dataframe after removing
the rows.

3. Remove rows that have data outside of the valid data ranges described above and explain
briefly how you determined your ranges for each column.

4. Identify and drop columns with three or fewer different values. Print a tuple with the
names of the columns dropped.

5. Convert the titles to all lower case.

Print the first five rows of your dataframe.
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Feature Engineering
Constructing new features is called feature engineering. Once new features are created, we can
analyze how much a model depends on each feature. Features with low importance probably do not
contribute much and could potentially be removed.
Discrete Fourier transforms and wavelet decomposition often reveal important properties of data
collected over time (called time-series), like sound, video, economic indicators, etc. In many such
settings it is useful to engineer new features from a wavelet decomposition, the DFT, or some other
function of the data.

Engineering for Categorical Variables

Categorical features are those that take only a finite number of values, and usually no categorical
value has a numerical meaning, even if it happens to be number. For example in an election
dataset, the names of the candidates in the race are categorical, and there is no numerical meaning
(neither ordering nor size) to numbers assigned to candidates based soley on their names.
Consider the following election data.

Ballot number For Governor For President
001 Herbert Romney
002 Cooke Romney
003 Cooke Obama
004 Herbert Romney
005 Herbert Romney
006 Cooke Stein

A common mistake occurs when someone assigns a number to each categorical entry (say 1 for
Cooke, 2 for Herbert, 3 for Romney, etc.). While this assignment is not, in itself, inherently
incorrect, it is incorrect to use the value of this number in a statistical model. Whenever you
encounter categorical data that is encoded numerically like this, immediately change it to
non-numerical form (“Cooke,” “Herbert,” “Romney,”. . . ) or apply one-hot encoding or dummy
variable encoding. 1 To do this construct a new feature for every possible value of the categorical
variable, and assign the value 1 to that feature if the variable takes that value and zero otherwise.
Pandas makes one-hot encoding simple:

# one-hot encoding
df = pd.get_dummies(df, columns=['For President'])

The previous dataset, when the presidential race is one-hot encoded, becomes

Ballot number Governor Romney Obama Stein
001 Herbert 1 0 0
002 Cooke 1 0 0
003 Cooke 0 1 0
004 Herbert 1 0 0
005 Herbert 1 0 0
006 Cooke 0 0 1

1Yes, these are silly names, but they are the most common names for it. Unfortunately, it is probably too late to
change these now.
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Note that the sum of the terms of the one-hot encoding in each row is 1, corresponding to the fact
that every ballot had exactly one presidential candidate.
When the gubernatorial race is also one-hot encoded, this becomes

Ballot number Cooke Herbert Romney Obama Stein
001 0 1 1 0 0
002 1 0 1 0 0
003 1 0 0 1 0
004 0 1 1 0 0
005 0 1 1 0 0
006 1 0 0 0 1

Now the sum of the terms of the one-hot encodings in each row is 2, corresponding to the fact that
every ballot had two names—one gubernatorial candidate and one presidential candidate.
Summing the columns of the one-hot-encoded data gives the total number of votes for the
candidate of that column. So the numerical values in the one-hot encodings are actually
numerically meaningful, and summing the entries gives meaningful information. One-hot encoding
also avoids the pitfalls of incorrectly using numerical proxies for categorical data.
The main disadvantage of one-hot encoding is that it is an inefficient representation of the data. If
there are C categories and n datapoints, a one-hot encoding takes an n× 1-dimensional feature and
turns it into an n× C sparse matrix. But there are ways to store these data efficiently and still
maintain the benefits of the one-hot encoding.

Achtung!

When performing linear regression, it is good practice to add a constant column to your dataset
and to remove one column of the one-hot encoding of each categorical variable. This is done
because the constant column is a linear combination of the one-hot encoded columns causing
the matrix to fail to be invertible and can cause identifiability problems.
The standard way to deal with this is to remove one column of the one-hot embedding for
each categorical variable. For example, with the elections dataset above, we could remove the
Cooke (governor variable) and Romney (presidential variable) columns. Doing that means that
in the new dataset a row sum of 0 corresponds to a ballot with a vote for Cooke and a vote
for Romney, while a 1 in any column indicates how the ballot differed from the base choice of
Cooke and Romney.
When using pandas, you can drop the first column of a one-hot encoding by passing in
drop_first=True.

Problem 3. Load housing.csv into a dataframe with index_col=0. Descriptions of the fea-
tures are in housing_data_description.txt for your convenience. The goal is to construct
a regression model that predicts SalePrice using the other features of the dataset. Do this as
follows:

1. Identify and handle the missing data. Hint: Dropping every row with some missing data
is not a good choice because it gives you an empty dataframe. What can you do instead?
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2. Create two new features:

(a) Remodeled: Whether or not a house has been remodeled with a Y if it has been
remodeled, or a N if it has not.

(b) TotalPorch: Using the 5 different porch/deck columns, create a new column that
provides the total square footage of all the decks and porches for each house.

3. Identify the variable with nonnumerical values that are misencoded as numbers. One-hot
encode it. (Hint: don’t forget to remove one of the encoded columns to prevent collinearity
with the constant column).

4. Add a constant column to the dataframe.

5. Save a copy of the dataframe.

6. Choose four categorical features that seem very important in predicting SalePrice. One-
hot encode these features, and remove all other categorical features.

7. Run an OLS (Ordinary Least Squares) regression on your model.

Print a list of the ten features that have the highest coefficients in your model. Print the sum-
mary for the dataset as well.

To run an OLS model in python, use the following code.

import statsmodels.api as sm

# In our case, y is SalesPrice, and X is the rest of the dataset.
>>> results = sm.OLS(y, X).fit()

# Print the summary
>>> results.summary()

# Convert the summary table to a dataframe
>>> results_as_html = results.summary().tables[1].as_html()
>>> result_df = pd.read_html(results_as_html, header=0, index_col=0)[0]

Problem 4. Using the copy of the dataframe you created in Problem 3, one-hot encode all the
categorical variables. Print the shape of your database, and Run OLS.
Print the ten features that have the highest coefficient in your model and the summary. Write
a couple of sentences discussing which model is better and why.



12 Introduction to Parallel
Computing

Lab Objective: Many modern problems involve so many computations that running them on a
single processor is impractical or even impossible. There has been a consistent push in the past few
decades to solve such problems with parallel computing, meaning computations are distributed to
multiple processors. In this lab, we explore the basic principles of parallel computing by introducing
the cluster setup, standard parallel commands, and code designs that fully utilize available resources.

Parallel Architectures
Imagine that you are in charge of constructing a very large building. You could, in theory, do all of
the work yourself, but that would take so long that it simply would be impractical. Instead, you
hire workers, who collectively can work on many parts of the building at once. Managing who does
what task takes some effort, but the overall effect is that the building will be constructed many
times faster than if only one person was working on it. This is the essential idea behind parallel
computing.
A serial program is executed one line at a time in a single process. This is analogous to a single
person creating a building. Since modern computers have multiple processor cores, serial programs
only use a fraction of the computer’s available resources. This is beneficial for smooth multitasking
on a personal computer because multiple programs can run at once without interrupting each other.
For smaller computations, running serially is fine. However, some tasks are large enough that
running serially could take days, months, or in some cases years. In these cases it is beneficial to
devote all of a computer’s resources (or the resources of many computers) to a single program by
running it in parallel. Each processor can run part of the program on some of the inputs, and the
results can be combined together afterwards. In theory, using N processors at once can allow the
computation to run N times faster. Even though communication and coordination overhead
prevents the improvement from being quite that good, the difference is still substantial.
A computer cluster or supercomputer is essentially a group of regular computers that share their
processors and memory. There are several common architectures that are used for parallel
computing, and each architecture has a different protocol for sharing memory, processors, and tasks
between computing nodes, the different simultaneous processing areas. Each architecture offers
unique advantages and disadvantages, but the general commands used with each are very similar.
In this lab, we will explore the usage and capabilities of parallel computing using Python’s
iPyParallel package. iPyParallel can be installed using pip:
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$ pip install ipyparallel==8.6.1

Use version 8.6.1.

The iPyParallel Architecture

There are three main parts of the iPyParallel architecture:

• Client : The main program that is being run.

• Controller : Receives directions from the client and distributes instructions and data to the
computing nodes. Consists of a hub to manage communications and schedulers to assign
processes to the engines.

• Engines: The individual processors. Each engine is like a separate Python terminal, each
with its own namespace and computing resources.

Essentially, a Python program using iPyParallel creates a Client object connected to the cluster
that allows it to send tasks to the cluster and retreive their results. The engines run the tasks, and
the controller manages which engines run which tasks.

Figure 12.1: An outline of the iPyParallel architecture.

Setting up an iPyParallel Cluster

Before being able to use iPyParallel in a script or interpreter, it is necessarty to start an iPyParallel
cluster. We demonstrate here how to use a single machine with multiple processor cores as a
cluster. Establishing a cluster on multiple machines requires additional setup, which is detailed in
the Additional Material section. The following commands initialize parts or all of a cluster when
run in a terminal window:
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Command Description
ipcontroller start Initialize a controller process.

ipengine start Initialize an engine process.
ipcluster start Initialize a controller process and several engines simultaneously.

Each of these processes can be stopped with a keyboard interrupt (Ctrl+C). By default, the
controller uses JSON files in UserDirectory/.ipython/profile-default/security/ to
determine its settings. Once a controller is running, it acts like a server, listening connections from
clients and engines. Engines will connect automatically to the controller when they start running.
There is no limit to the number of engines that can be started in their own terminal windows and
connected to the controller, but it is recommended to only use as many engines as there are cores to
maximize efficiency.

Achtung!

The directory that the controller and engines are started from matters. To facilitate connections,
navigate to the same folder as your source code before using ipcontroller, ipengine, or
ipcluster. Otherwise, the engines may not connect to the controller or may not be able to
find auxiliary code as directed by the client.

Starting a controller and engines in individual terminal windows with ipcontroller and ipengine
is a little inconvenient, but having separate terminal windows for the engines allows the user to see
individual errors in detail. It is also actually more convenient when starting a cluster of multiple
computers. For now, we use ipcluster to get the entire cluster started quickly.

$ ipcluster start # Assign an engine to each processor core.
$ ipcluster start --n 4 # Or, start a cluster with 4 engines.

Note

Jupyter notebooks also have a Clusters tab in which clusters can be initialized using an
interactive GUI. To enable the tab, run the following command. This operation may require
root permissions.

$ ipcluster nbextension enable

The iPyParallel Interface
Once a controller and its engines have been started and are connected, a cluster has successfully
been established. The controller will then be able to distribute messages to each of the engines,
which will compute with their own processor and memory space and return their results to the
controller. The client uses the ipyparallel module to send instructions to the controller via a
Client object.
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>>> from ipyparallel import Client

>>> client = Client() # Only works if a cluster is running.
>>> client.ids
[0, 1, 2, 3] # Indicates that there are four engines running.

Once the client object has been created, it can be used to create one of two classes: a DirectView
or a LoadBalancedView. These views allow for messages to be sent to collections of engines
simultaneously. A DirectView allows for total control of task distribution while a
LoadBalancedView automatically tries to spread out the tasks equally on all engines. The
remainder of the lab will be focused on the DirectView class.

>>> dview = client[:] # Group all engines into a DirectView.
>>> dview2 = client[:2] # Group engines 0,1, and 2 into a DirectView.
>>> dview2.targets # See which engines are connected.
[0, 1, 2]

Since each engine has its own namespace, modules must be imported in every engine. There is
more than one way to do this, but the easiest way is to use the DirectView object’s execute()
method, which accepts a string of code and executes it in each engine.

# Import NumPy in each engine.
>>> dview.execute("import numpy as np")

# Make sure to include client.close() after each function or else the test ←↩
driver will time out

client.close()

Before continuing, set the DirectView you are using to use blocking:

>>> dview.block = True

This affects the way that functions called using the DirectView return their values. Using blocking
makes the process simpler, so we will use it initially. What blocking is will be explained later.

Problem 1. Write a function that initializes a Client object, creates a DirectView (with
blocking) with all available engines, and imports scipy.sparse as sparse on all engines. Re-
turn the DirectView. Note: Make sure to include client.close() after EVERY function or else
the test driver will time out.

Managing Engine Namespaces

We now discuss how to handle namespaces within each engine, beginning with setting and
retrieving variables.
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Push and Pull

The push() and pull() methods of a DirectView object manage variable values in the engines.
Use push() to set variable values and pull() to get variables. Each method also has a shortcut via
indexing.

# Initialize the variables 'a' and 'b' on each engine.
>>> dview.push({'a': 10, 'b': 5}) # OR dview['a'] = 10; dview['b'] = 5
[None, None, None, None] # Output from each engine

# Check the value of 'a' on each engine.
>>> dview.pull('a') # OR dview['a']
[10, 10, 10, 10]

# Put a new variable 'c' only on engines 0 and 2.
>>> dview.push({'c': 12}, targets=[0, 2])
[None, None]

Scatter and Gather

Parallelization almost always involves splitting up collections and sending different pieces to each
engine for processing. The process is called scattering and is usually used for dividing up arrays or
lists. The inverse process of pasting a collection back together is called gathering and is usually
used on the results of processing. This method of distributing a dataset and collecting the results is
common for processing large data sets using parallelization.

>>> import numpy as np

# Send parts of an array of 8 elements to each of the 4 engines.
>>> x = np.arange(1, 9)
>>> dview.scatter("nums", x)
>>> dview["nums"]
[array([1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]

# Scatter the array to only the first two engines.
>>> dview.scatter("nums_big", x, targets=[0,1])
>>> dview.pull("nums_big", targets=[0,1])
[array([1, 2, 3, 4]), array([5, 6, 7, 8])]

# Gather the array again.
>>> dview.gather("nums")
array([1, 2, 3, 4, 5, 6, 7, 8])

>>> dview.gather("nums_big", targets=[0,1])
array([1, 2, 3, 4, 5, 6, 7, 8])
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Executing Code on Engines

Execute

The execute() method is the simplest way to run commands on parallel engines. It accepts a string
of code (with exact syntax) to be executed. Though simple, this method works well for small tasks.

# "nums" is the scattered version of np.arange(1, 9).
>>> dview.execute("c = np.sum(nums)") # Sum each scattered component.
<AsyncResult: execute:finished>
>>> dview['c']
[3, 7, 11, 15]

Apply

The apply() method accepts a function and arguments to plug into it, and distributes them to the
engines. Unlike execute(), apply() returns the output from the engines directly.

>>> dview.apply(lambda x: x**2, 3)
[9, 9, 9, 9]
>>> dview.apply(lambda x, y: 2*x + 3*y, 5, 2)
[16, 16, 16, 16]

Note that the engines can access their local variables in either of the execution methods.

Map

The built-in map() function applies a function to each element of an iterable. The iPyParallel
equivalent, the map() method of the DirectView class, combines apply() with scatter() and
gather(). Simply put, it accepts a dataset, splits it between the engines, executes a function on
the given elements, returns the results, and combines them into one object.

>>> num_list = [1, 2, 3, 4, 5, 6, 7, 8]
>>> def triple(x): # Map a function with a single input.
... return 3*x
...
>>> dview.map(triple, num_list)
[3, 6, 9, 12, 15, 18, 21, 24]

>>> def add_three(x, y, z): # Map a function with multiple inputs.
... return x+y+z
...
>>> x_list = [1, 2, 3, 4]
>>> y_list = [2, 3, 4, 5]
>>> z_list = [3, 4, 5, 6]
>>> dview.map(add_three, x_list, y_list, z_list)
[6, 9, 12, 15]
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Blocking vs. Non-Blocking

Parallel commands can be implemented two ways. The difference is subtle but extremely important.

• Blocking : The main program sends tasks to the controller, and then waits for all of the engines
to finish their tasks before continuing (the controller "blocks" the program’s execution). This
mode is usually best for problems in which each node is performing the same task.

• Non-Blocking : The main program sends tasks to the controller, and then continues without
waiting for responses. Instead of the results, functions return an AsyncResult object that can
be used to check the execution status and eventually retrieve the actual result.

Whether a function uses blocking is determined by default by the block attribute of the
DirectView The execution methods execute(), apply(), and map(), as well as push(), pull(),
scatter(), and gather(), each have a keyword argument block that can instead be used to
specify whether or not to using blocking. Alternatively, the methods apply_sync() and
map_sync() always use blocking, and apply_async() and map_async() always use non-blocking.

>>> f = lambda n: np.sum(np.random.random(n))

# Evaluate f(n) for n=0,1,...,999 with blocking.
>>> %time block_results = [dview.apply_sync(f, n) for n in range(1000)]
CPU times: user 9.64 s, sys: 879 ms, total: 10.5 s
Wall time: 13.9 s

# Evaluate f(n) for n=0,1,...,999 with non-blocking.
>>> %time responses = [dview.apply_async(f, n) for n in range(1000)]
CPU times: user 4.19 s, sys: 294 ms, total: 4.48 s
Wall time: 7.08 s

# The non-blocking method is faster, but we still need to get its results.
# Both methods produced a list, although the contents are different
>>> block_results[10] # This list holds actual result values from each engine.
[3.833061790352166,
4.8943956129713335,
4.268791758626886,
4.73533677711277]

>>> responses[10] # This list holds AsyncResult objects.
<AsyncResult: <lambda>:finished>
# We can get the actual results by using the get() method of each AsyncResult
>>> %time nonblock_results = [r.get() for r in responses]
CPU times: user 3.52 ms, sys: 11 mms, total: 3.53 ms
Wall time: 3.54 ms # Getting the responses takes little time.

>>> nonblock_results[10] # This list also holds actual result values
[5.652608204341693,
4.984164642641558,
4.686288406810953,
5.275735658763963]
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When non-blocking is used, commands can be continuously sent to engines before they have
finished their previous task. This allows them to begin their next task without waiting to send their
calculated answer and receive a new command. However, this requires a design that incorporates
checkpoints to retrieve answers and enough memory to store response objects.

Class Method Description
wait(timeout) Wait until the result is available or until timeout seconds pass.
ready() Return whether the call has completed.
successful() Return whether the call completed without raising an exception.

Will raise AssertionError if the result is not ready.
get(timeout) Return the result when it arrives. If timeout is not None and the

result does not arrive within timeout seconds then TimeoutError
is raised.

Table 12.1: All information from https://ipyparallel.readthedocs.io/en/latest/details.
html#AsyncResult.

Table 12.1 details the methods of the AsyncResult object.
There are additional magic methods supplied by iPyParallel that make some of these operations
easier. These methods are explained in the Additional Material section. More information on
iPyParallel architecture, interface, and methods can also be found at
https://ipyparallel.readthedocs.io/en/latest/index.html.

Problem 2. Write a function that accepts an integer n. Instruct each engine to make n draws
from the standard normal distribution, then hand back the mean, minimum, and maximum
draws to the client. Return the results in three lists.
If you have four engines running, your results should resemble the following:

>>> means, mins, maxs = problem3(1000000)
>>> means
[0.0031776784, -0.0058112042, 0.0012574772, -0.0059655951]
>>> mins
[-4.1508589, -4.3848019, -4.1313324, -4.2826519]
>>> maxs
[4.0388107, 4.3664958, 4.2060184, 4.3391623]

Problem 3. Use your function from Problem 2 to compare serial and parallel execution times.
For n = 1000000, 5000000, 10000000, 15000000,

1. Time how long it takes to run your function.

2. Time how long it takes to do the same process serially. Make n draws and then calculate
and record the statistics, but use a for loop with N iterations, where N is the number
of engines running.

https://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://ipyparallel.readthedocs.io/en/latest/index.html
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Plot the execution times against n. You should notice an increase in efficiency in the parallel
version as the problem size increases.

Applications

Parallel computing, when used correctly, is one of the best ways to speed up the run time of an
algorithm. As a result, it is very commonly used today and has many applications, such as the
following:

• Graphic rendering

• Facial recognition with large databases

• Numerical integration

• Calculating discrete Fourier transforms

• Simulation of various natural processes (weather, genetics, etc.)

• Natural language processing

In fact, there are many problems that are only feasible to solve through parallel computing because
solving them serially would take too long. With some of these problems, even the parallel solution
could take years. Some brute-force algorithms, like those used to crack simple encryptions, are
examples of this type of problem.
The problems mentioned above are well suited to parallel computing because they can be
manipulated in such a way that running them on multiple processors results in a significant run
time improvement. Manipulating an algorithm to be run with parallel computing is called
parallelizing the algorithm. When a problem only requires very minor manipulations to parallelize,
it is often called embarrassingly parallel. Typically, an algorithm is embarrassingly parallel when
there is little to no dependency between results. Algorithms that do not meet this criteria can still
be parallelized, but there is not always a significant enough improvement in run time to make it
worthwhile. For example, calculating the Fibonacci sequence using the usual formula, F(n) =
F(n− 1) + F(n− 2), is poorly suited to parallel computing because each element of the sequence is
dependent on the previous two elements.

Problem 4. The trapezoid rule is a simple technique for numerical integration:∫ b

a

f(x)dx ≈ h

2

N−1∑
k=1

(f(xk) + f(xk+1)),

where a = x1 < x2 < . . . < xN = b and h = xn+1 − xn for each n. See Figure 12.2.
Note that estimation of the area of each interval is independent of all other intervals. As a
result, this problem is considered embarrassingly parallel.
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Write a function that accepts a function handle to integrate, bounds of integration, and the
number of points to use for the approximation. Parallelize the trapezoid rule in order to
estimate the integral of f . That is, divide the points among all available processors and run
the trapezoid rule on each portion simultaneously. Be sure that the intervals for each processor
share endpoints so that the subintervals are not skipped, resulting in rather large amounts of
error. The sum of the results of all the processors will be the estimation of the integral over the
entire interval of integration. Return this sum (consider coding the problem in serial to test
your function).

x1 x2 x3 x4 x5

y

x

y = f(x)

h

Figure 12.2: A depiction of the trapezoid rule with uniform partitioning.

Intercommunication

The phrase parallel computing refers to designing an architecture and code that makes the best use
of computing resources for a problem. Occasionally, this will require nodes to be interdependent on
each other for previous results. This contributes to a slower result because it requires a great deal
of communication latency, but is sometimes the only method to parallelize a function. Although
important, the ability to effectively communicate between engines has not been added to
iPyParallel. It is, however, possible in an MPI framework and will be covered in the MPI lab.
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Additional Material
Clusters of Multiple Machines

Though setting up a computing cluster with iPyParallel on multiple machines is similar to a
cluster on a single computer, there are a couple of extra considerations to make. The majority of
these considerations have to do with the network setup of your machines, which is unique to each
situation. However, some basic steps have been taken from
https://ipyparallel.readthedocs.io/en/latest/process.html and are outlined below.

SSH Connection

When using engines and controllers that are on separate machines, their communication will most
likely be using an SSH tunnel. This Secure Shell allows messages to be passed over the network.
In order to enable this, an SSH user and IP address must be established when starting the
controller. An example of this follows.

$ ipcontroller --ip=<controller IP> --user=<user of controller> --enginessh=<←↩
user of controller>@<controller IP>

Engines started on remote machines then follow a similar format.

$ ipengine --location=<controller IP> --ssh=<user of controller>@<controller IP←↩
>

Another way of affecting this is to alter the configuration file in
UserDirectory/.ipython/profile-default/security/ipcontroller-engine.json. This can
be modified to contain the controller IP address and SSH information.
All of this is dependent on the network feasibility of SSH connections. If there are a great deal of
remote engines, this method will also require the SSH password to be entered many times. In order
to avoid this, the use of SSH Keys from computer to computer is recommended.

Magic Methods & Decorators

To be more easily usable, the iPyParallel module has incorporated a few magic methods and
decorators for use in an interactive iPython or Python terminal.

Magic Methods

The iPyParallel module has a few magic methods that are very useful for quick commands in
iPython or in a Jupyter Notebook. The most important are as follows. Additional methods are
found at https://ipyparallel.readthedocs.io/en/latest/magics.html.

%px - This magic method runs the corresponding Python command on the engines specified
in dview.targets.

%autopx - This magic method enables a boolean that runs any code run on every engine
until %autopx is run again.

Examples of these magic methods with a client and four engines are as follows.

https://ipyparallel.readthedocs.io/en/latest/process.html
https://ipyparallel.readthedocs.io/en/latest/magics.html
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# %px
In [4]: with dview.sync_imports():

...: import numpy

...:
importing numpy on engine(s)
In [5]: \%px a = numpy.random.random(2)

In [6]: dview['a']
Out[6]:
[array([ 0.30390162, 0.14667075]),
array([ 0.95797678, 0.59487915]),
array([ 0.20123566, 0.57919846]),
array([ 0.87991814, 0.31579495])]

# %autopx
In [7]: %autopx
%autopx enabled
In [8]: max_draw = numpy.max(a)

In [9]: print("Max_Draw: {}".format(max_draw))
[stdout:0] Max_Draw: 0.30390161663280246
[stdout:1] Max_Draw: 0.957976784975849
[stdout:2] Max_Draw: 0.5791984571339429
[stdout:3] Max_Draw: 0.8799181411958089

In [10]: %autopx
%autopx disabled

Decorators

The iPyParallel module also has a few decorators that are very useful for quick commands. The
two most important are as follows:

@remote - This decorator creates methods on the remote engines.

@parallel - This decorator creates methods on remote engines that break up element wise
operations and recombine results.

Examples of these decorators are as follows.

# Remote decorator
>>> @dview.remote(block=True)
>>> def plusone():
... return a+1
>>> dview['a'] = 5
>>> plusone()
[6, 6, 6, 6,]
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# Parallel decorator
>>> import numpy as np

>>> @dview.parallel(block=True)
>>> def combine(A, B):
... return A+B
>>> ex1 = np.random.random((3, 3))
>>> ex2 = np.random.random((3, 3))
>>> print(ex1+ex2)
[[ 0.87361929 1.41110357 0.77616724]
[ 1.32206426 1.48864976 1.07324298]
[ 0.6510846 0.45323311 0.71139272]]

>>> print(combine(ex1, ex2))
[[ 0.87361929 1.41110357 0.77616724]
[ 1.32206426 1.48864976 1.07324298]
[ 0.6510846 0.45323311 0.71139272]]
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13 Parallel Programming
with MPI

Lab Objective: In the world of parallel computing, MPI is the most widespread and standardized
message passing library. As such, it is used in the majority of parallel computing programs. In this
lab, we explore and practice the basic principles and commands of MPI to further recognize when
and how parallelization can occur.

MPI: the Message Passing Interface
At its most basic, the Message Passing Interface (MPI) provides functions for sending and receiving
messages between different processes. MPI was developed to provide a standard framework for
parallel computing in any language. It specifies a library of functions — the syntax and semantics of
message passing routines — that can be called from programming languages such as Fortran and C.
MPI can be thought of as “the assembly language of parallel computing,” because of this
generality.1 MPI is important because it was the first portable and universally available standard
for programming parallel systems and continues to be the de facto standard today.

Note

Most modern personal computers now have multicore processors. Programs that are designed
for these multicore processors are “parallel” programs and are typically written using OpenMP
or POSIX threads. MPI, on the other hand, is designed for any general architecture.

Why MPI for Python?
In general, programming in parallel is more difficult than programming in serial because it requires
managing multiple processors and their interactions. Python, however, is an excellent language for
simplifying algorithm design because it allows for problem solving without too much detail.
Unfortunately, Python is not designed for high performance computing and is a notably slower
scripted language. It is best practice to prototype in Python and then to write production code in
fast compiled languages such as C or Fortran.

1Parallel Programming with MPI, by Peter S. Pacheco, pg. 7.
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In this lab, we will explore the Python library mpi4py which retains most of the functionality of C
implementations of MPI and is a good learning tool. There are three main differences to keep in
mind between mpi4py and MPI in C:

• Python is array-based while C is not.

• mpi4py is object oriented but MPI in C is not.

• mpi4py supports two methods of communication to implement each of the basic MPI
commands. They are the upper and lower case commands (e.g. Bcast(...) and
bcast(...)). The uppercase implementations use traditional MPI datatypes while the lower
case use Python’s pickling method. Pickling offers extra convenience to using mpi4py, but the
traditional method is faster. In these labs, we will only use the uppercase functions.

To install mpi4py on a Linux (or WSL) machine, you will need to execute the following commands:

$ sudo apt-get install libopenmpi-dev
$ pip install mpi4py

And to install mpi4py on a Mac, you will need to execute the following commands:

$ brew install openmpi
$ brew install mpi4py

Using MPI
We will start with a Hello World program.

1 #hello.py
2 from mpi4py import MPI

4 COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

6

print(f"Hello world! I'm process number {RANK}.")

examplecode/hello.py

Save this program as hello.py and execute it from the command line as follows:

$ mpiexec -n 5 python hello.py

Achtung!

Note that some systems may require python3, py, or a specific version like python3.10 instead
of python as shown above. Check the python environment that your IDE uses to ensure your
code runs correctly.
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Achtung!

Some systems may not have enough slots to run the desired number of processes. In this case,
the --oversubscribe flag must be used to ignore the number of availalbe slots when running
multiple processes. Therefore, the command will look like

$ mpiexec --oversubscribe -n 5 python hello.py

The program should output something like this:

Hello world! I'm process number 3.
Hello world! I'm process number 2.
Hello world! I'm process number 0.
Hello world! I'm process number 4.
Hello world! I'm process number 1.

Notice that when you try this on your own, the lines will not necessarily print in order. This is
because there will be five separate processes running autonomously, and we cannot know
beforehand which one will execute its print() statement first.

Achtung!

It is usually bad practice to perform I/O (e.g., call print()) from any process besides the root
process (rank 0), though it can be a useful tool for debugging.

How does this program work? First, the mpiexec program is launched. This is the program which
starts MPI, a wrapper around whatever program you to pass into it. The -n 5 option specifies the
desired number of processes. In our case, 5 processes are run, with each one being an instance of
the program “python”. To each of the 5 instances of python, we pass the argument hello.py which
is the name of our program’s text file, located in the current directory. Each of the five instances of
python then opens the hello.py file and runs the same program. The difference in each process’s
execution environment is that the processes are given different ranks in the communicator. Because
of this, each process prints a different number when it executes.
MPI and Python combine to make succinct source code. In the above program, the line
from mpi4py import MPI loads the MPI module from the mpi4py package. The line
COMM = MPI.COMM_WORLD accesses a static communicator object, which represents a group of
processes which can communicate with each other via MPI commands. The next line,
RANK = COMM.Get_rank(), accesses the processes rank number. A rank is the process’s unique ID
within a communicator, and they are essential to learning about other processes. When the
program mpiexec is first executed, it creates a global communicator and stores it in the variable
MPI.COMM_WORLD. One of the main purposes of this communicator is to give each of the five
processes a unique identifier, or rank. When each process calls COMM.Get_rank(), the
communicator returns the rank of that process. RANK points to a local variable, which is unique for
every calling process because each process has its own separate copy of local variables. This gives
us a way to distinguish different processes while writing all of the source code for the five processes
in a single file.
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Here is the syntax for Get_size() and Get_rank(), where Comm is a communicator object:

Comm.Get_size() Returns the number of processes in the communicator. It will return the
same number to every process. Parameters:

Return value - the number of processes in the communicator

Return type - integer

Example:

1 #Get_size_example.py
2 from mpi4py import MPI
SIZE = MPI.COMM_WORLD.Get_size()

4 print(f"The number of processes is {SIZE}.")

examplecode/Get_size_example.py

Comm.Get_rank() Determines the rank of the calling process in the communicator. Parameters:

Return value - rank of the calling process in the communicator

Return type - integer

Example:

1 #Get_rank_example.py
2 from mpi4py import MPI
RANK = MPI.COMM_WORLD.Get_rank()

4 print(f"My rank is {RANK}.")

examplecode/Get_rank_example.py

The Communicator
A communicator is a logical unit that defines which processes are allowed to send and receive
messages. In most of our programs we will only deal with the MPI.COMM_WORLD communicator,
which contains all of the running processes. In more advanced MPI programs, you can create
custom communicators to group only a small subset of the processes together. This allows
processes to be part of multiple communicators at any given time. By organizing processes this
way, MPI can physically rearrange which processes are assigned to which CPUs and optimize your
program for speed. Note that within two different communicators, the same process will most likely
have a different rank.
Note that one of the main differences between mpi4py and MPI in C or Fortran, besides being
array-based, is that mpi4py is largely object oriented. Because of this, there are some minor
changes between the mpi4py implementation of MPI and the official MPI specification.
For instance, the MPI Communicator in mpi4py is a Python class and MPI functions like
Get_size() or Get_rank() are instance methods of the communicator class. Throughout these
MPI labs, you will see functions like Get_rank() presented as Comm.Get_rank() where it is implied
that Comm is a communicator object.
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Separate Codes in One File
When an MPI program is run, each process receives the same code. However, each process is
assigned a different rank, allowing us to specify separate behaviors for each process. In the
following code, the three processes perform different operations on the same pair of numbers.

1 #separateCode.py
2 from mpi4py import MPI
RANK = MPI.COMM_WORLD.Get_rank()

4

a = 2
6 b = 3
if RANK == 0:

8 print(a + b)
elif RANK == 1:

10 print(a * b)
elif RANK == 2:

12 print(max(a, b))

examplecode/separateCode.py

Problem 1. Write a program which determines the rank n of the calling process and prints
“Hello from process n” if n is even and “Goodbye from process n” if n is odd.

Message Passing between Processes
Let us begin by demonstrating a program designed for two processes. One will draw a random
number and then send it to the other. We will do this using the routines Comm.Send() and
Comm.Recv().

1 #passValue.py
2 import numpy as np
from mpi4py import MPI

4

COMM = MPI.COMM_WORLD
6 RANK = COMM.Get_rank()

8 if RANK == 1: # This process chooses and sends a random value
num_buffer = np.random.rand(1)

10 print(f"Process 1: Sending: {num_buffer} to process 0.")
COMM.Send(num_buffer, dest=0)

12 print("Process 1: Message sent.")
if RANK == 0: # This process receives a value from process 1

14 num_buffer = np.zeros(1)
print(f"Process 0: Waiting for the message... current {num_buffer=}.")

16 COMM.Recv(num_buffer, source=1)
print(f"Process 0: Message received! {num_buffer=}.")
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examplecode/passValue.py

To illustrate simple message passing, we have one process choose a random number and then pass it
to the other. Inside the receiving process, we have it print out the value of the variable num_buffer
before it calls Recv() to prove that it really is receiving the variable through the message passing
interface.
Here is the syntax for Send() and Recv(), where Comm is a communicator object:

Comm.Send(buf, dest=0, tag=0) Performs a basic send from one process to another.
Parameters:

buf (array-like) : data to send

dest (integer) : rank of destination

tag (integer) : message tag

The buf object is not as simple as it appears. It must contain a pointer to a Numpy array. For
example, a string must be packaged inside an array before it can be passed. The tag object can help
distinguish between data if multiple pieces of data are being sent/received by the same processes.

Comm.Recv(buf, source=0, tag=0, Status status=None) Basic point-to-point receive of
data. Parameters:

buf (array-like) : initial address of receive buffer (choose receipt location)

source (integer) : rank of source

tag (integer) : message tag

status (Status) : status of object

Example:

1 #Send_example.py
2 from mpi4py import MPI
import numpy as np

4

RANK = MPI.COMM_WORLD.Get_rank()
6

a = np.zeros(1, dtype=int) # This must be an array.
8 if RANK == 0:

a[0] = 10110100
10 MPI.COMM_WORLD.Send(a, dest=1)

elif RANK == 1:
12 MPI.COMM_WORLD.Recv(a, source=0)

print(a[0])

examplecode/Send_example.py
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Problem 2. Write a script that runs on two (and only two!) processes and passes a random
numpy array of length n from the root process to process 1. Write it so that the user passes
in the value of n as a command-line argument. The following code demonstrates how to access
command-line arguments.

from sys import argv

# The first command line argument is saved as n.
n = int(argv[1])

In process 1, instantiate a zero array of length n, then print this array clearly labeled under
process 1. Then have the root process generate a random array, and print this array clearly
labeled under the root process. Then send the randomly generated array in the root process
to process 1, and print the array clearly labeled under process 1. The output should reflect the
following for n = 4 (make sure to follow the output formatting exactly).

$ mpiexec -n 2 python problem2.py 4

Process 1: Before checking mailbox: vec=[ 0. 0. 0. 0.]
Process 0: Sent: vec=[ 0.03162613 0.38340242 0.27480538 0.56390755]
Process 1: Received: vec=[ 0.03162613 0.38340242 0.27480538 0.56390755]

Hint: if the number of processes is not 2, you can abort the program with COMM.Abort().

Note

Send() and Recv() are referred to as blocking functions. That is, if a process calls Recv(), it
will sit idle until it has received a message from a corresponding Send() before it will proceed.
(However, in Python the process that calls Comm.Send will not necessarily block until the
message is received, though in C, MPI_Send does block) There are corresponding non-blocking
functions Isend() and Irecv() (The I stands for immediate). In essence, Irecv() will return
immediately. If a process calls Irecv() and doesn’t find a message ready to be picked up, it
will indicate to the system that it is expecting a message, proceed beyond the Irecv() to do
other useful work, and then check back later to see if the message has arrived. This can be used
to dramatically improve performance.

Note

When calling Comm.Recv, you can allow the calling process to accept a message from any
process that happened to be sending to the receiving process. This is done by setting source
to a predefined MPI constant, source=ANY_SOURCE (note that you would first need to import
this with from mpi4py.MPI import ANY_SOURCE or use the syntax source=MPI.ANY_SOURCE).
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Problem 3. Write a script in which the process with rank i sends a random value to the
process with rank i + 1 in the global communicator. The process with the highest rank will
send its random value to the root process. Notice that we are communicating in a ring. For
communication, only use Send() and Recv(). The script should work with any number of
processes. Does the order in which Send() and Recv() are called matter?
Generate an initial random value in each process. Print each initial value clearly labeled under
its process (match the formatting given below). Then send the values to the next process as
explained above, and print the value each process ends with clearly labeled. The output should
reflect the following (note that both the values and order will vary).

$ mpiexec -n 2 python problem3.py

Process 1 started with [ 0.79711384]
Process 1 received [ 0.54029085]
Process 0 started with [ 0.54029085]
Process 0 received [ 0.79711384]

$ mpiexec -n 3 python problem3.py

Process 2 started with [ 0.99893055]
Process 0 started with [ 0.6304739]
Process 1 started with [ 0.28834079]
Process 1 received [ 0.6304739]
Process 2 received [ 0.28834079]
Process 0 received [ 0.99893055]

Application: Monte Carlo Integration
Monte Carlo integration uses random sampling to approximate volumes (whereas most numerical
integration methods employ some sort of regular grid). It is a useful technique, especially when
working with higher-dimensional integrals. It is also well-suited to parallelization because it
involves a large number of independent operations. In fact, Monte Carlo algorithms can be made
“embarassingly parallel” — the processes don’t need to communicate with one another during
execution, simply reporting results to the root process upon completion.
In a simple example, the following code calculates the value of π by sampling random points inside
the square [−1, 1]× [−1, 1]. Since the volume of the unit circle is π and the volume of the square is
4, the probability of a given point landing inside the unit circle is π/4, so the proportion of samples
that fall within the unit circle should also be π/4. The program samples N = 2000 points,
determines which samples are within the unit circle (say M are), and estimates π ≈ 4M/N .

1 # pi.py
import numpy as np

3 from scipy import linalg as la

5

# Get 2000 random points in the 2-D domain [-1,1]x[-1,1].
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7 points = np.random.uniform(-1, 1, (2, 2000))

9 # Determine how many points are within the unit circle.
lengths = la.norm(points, axis=0)

11 num_within = np.count_nonzero(lengths < 1)

13 # Estimate the circle's area.
print(4 * (num_within / 2000))

examplecode/pi.py

$ python pi.py
3.166

Problem 4. The n-dimensional open unit ball is the set Un = {x ∈ Rn | ∥x∥2 < 1}. Write
a script that accepts integers n and N on the command line. Estimate the volume of Un

by drawing N points over the n-dimensional domain [−1, 1] × [−1, 1] × · · · × [−1, 1] on each
available process except the root process (for a total of (r− 1)N draws, where r is the number
of processes). The root process should finally print the volume estimate given by the entire set
of (r − 1)N points, with the dimension of the unit ball clearly labeled.
Hint: the volume of [−1, 1]× [−1, 1]× · · · × [−1, 1] is 2n.
When n = 2, this is the same experiment outlined above so your function should return an
approximation of π. The volume of U3 is 4

3π ≈ 4.18879, and the volume of U4 is π2

2 ≈ 4.9348.
Try increasing the number of sample points N or processes r to see if your estimates improve.
The output of a 4 process estimate of U2 with 2000 draws should reflect the following.

$ mpiexec -n 4 python problem4.py 2 2000

Volume of 2-D unit ball: 3.13266666667

Note

Good parallel code should pass as little data as possible between processes. Sending large or
frequent messages requires a level of synchronization and causes some processes to pause as they
wait to receive or send messages, negating the advantages of parallelism. It is also important
to divide work evenly between simultaneous processes, as a program can only be as fast as its
slowest process. This is called load balancing, and can be difficult in more complex algorithms.
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14 Apache Spark

Lab Objective: Dealing with massive amounts of data often requires parallelization and cluster
computing; Apache Spark is an industry standard for doing just that. In this lab we introduce the
basics of PySpark, Spark’s Python API, including data structures, syntax, and use cases. Finally,
we conclude with a brief introduction to the Spark Machine Learning Package.

Apache Spark
Apache Spark is an open-source, general-purpose distributed computing system used for big data
analytics. Spark is able to complete jobs substantially faster than previous big data tools (i.e.
Apache Hadoop) because of its in-memory caching, and optimized query execution. Spark provides
development APIs in Python, Java, Scala, and R. On top of the main computing framework, Spark
provides machine learning, SQL, graph analysis, and streaming libraries.
Spark’s Python API can be accessed through the PySpark package. You must install Spark, along
with the supporting tools like Java, on your local machine for PySpark to work. This will include
ensuring that both Java and Spark are included in the environment variable PATH.1 Installation of
PySpark for local execution or remote connection to an existing cluster can be accomplished by
running

$ pip install pyspark <= 3.4.1

To install Java on WSL or another Linux system, run the following commands in the terminal:

$ sudo apt-get install openjdk-8-jdk

For Mac M1 users, installing Java will be a little trickier.2 With Homebrew installed, you’ll need to
install Maven by running

$ brew install maven

You will then navigate to this link to download the JDK 8 .dmg file. Enter the following details if
the link doesn’t automatically populate them for you:

1See the Apache Spark configuration instructions for detailed installation instructions
2Full instructions can be found at https://dev.to/shane/configure-m1-mac-to-use-jdk8-with-maven-4b4g
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https://www.azul.com/downloads/?version=java-8-lts&os=macos&architecture=arm-64-bit&package=jdk
https://spark.apache.org/docs/latest/
https://dev.to/shane/configure-m1-mac-to-use-jdk8-with-maven-4b4g
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Java Version - Java 8 (LTS)
Operating System - macOS
Architecture - ARM 64-bit
Java Package - JDK

Then install the .dmg file. Now, add the JAVA_Home environment variable to the ~/.zshrc file
(with vim or some other file editor) by adding the following line to the file:

export JAVA_HOME=/Library/Java/JavaVirtualMachines/zulu-8.jdk/Contents/Home/jre

Restart your terminal, and you should be all set. If this process takes longer than a few minutes,
you should stop and finish this lab on one of the lab machines.

PySpark
One major benefit of using PySpark is the ability to run it in an interactive environment. One such
option is the interactive Spark shell that comes prepackaged with PySpark. To use the shell, simply
run pyspark in the terminal. In the Spark shell you can run code one line at a time without the
need to have a fully written program. This is a great way to get a feel for Spark. To get help with a
function use help(function); to exit the shell simply run quit().
In the interactive shell, the SparkSession object - the main entrypoint to all Spark functionality -
is available by default as spark. When running Spark in a standard Python script (or in IPython)
you need to define this object explicitly. The code box below outlines how to do this. It is standard
practice to name your SparkSession object spark.

Achtung!

It is important that when you are finished with a SparkSession you should end it by calling
spark.stop(). For this lab, in each problem you will need to instantiate a new SparkSession
in each problem and then end the session at the end of the function using spark.stop().

Note

While the interactive shell is very robust, it may be easier to learn Spark in an environment that
you are more familiar with (like IPython). To do so, just use the code given below. Help can be
accessed in the usual way for your environment. Just remember to stop() the SparkSession!

>>> from pyspark.sql import SparkSession

# instantiate your SparkSession object
>>> spark = SparkSession\
... .builder\
... .appName("app_name")\
... .getOrCreate()
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# stop your SparkSession
>>> spark.stop()

Note

The syntax

>>> spark = SparkSession\
... .builder\
... .appName("app_name")\
... .getOrCreate()

is somewhat unusual. While this code can be written on a single line, it is often more readable
to break it up when dealing with many chained operations; this is standard styling for Spark.
Note that you cannot write a comment after a line continuation character '\'.

Resilient Distributed Datasets
The most fundamental data structure used in Apache Spark is the Resilient Distributed Dataset
(RDD). RDDs are immutable distributed collections of objects. They are resilient because
performing an operation on one RDD produces a new RDD without altering the original; if
something goes wrong, you can always go back to your original RDD and restart. They are
distributed because the data resides in logical partitions across multiple machines. While RDDs can
be difficult to work with, they offer the most granular control of all the Spark data structures.
There are two main ways of creating RDDs. The first is reading a file directly into Spark and the
second is parallelizing an existing collection (list, numpy array, pandas dataframe, etc.). We will
use the Titanic dataset3 in most of the examples throughout this lab. The example below shows
various ways to load the Titanic dataset as an RDD.

# initialize your SparkSession object
>>> spark = SparkSession\
... .builder\
... .appName("app_name")\
... .getOrCreate()

# load the data directly into an RDD
>>> titanic = spark.sparkContext.textFile("titanic.csv")

# the file is of the format
# Pclass,Survived,Name,Sex,Age,Sibsp,Parch,Ticket,Fare
# Survived | Class | Name | Sex | Age | Siblings/Spouses Aboard | Parents/←↩

Children Aboard | Fare

3https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
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>>> titanic.take(2)
['0,3,Mr. Owen Harris Braund,male,22,1,0,7.25',
'1,1,Mrs. John Bradley (Florence Briggs Thayer) Cumings,female,38,1,0,71.283']

# note that each element is a single string - not particularly useful
# one option is to first load the data into a numpy array
>>> np_titanic = np.loadtxt("titanic.csv", delimiter=',', dtype=list)

# use sparkContext to parallelize the data into 4 partitions
>>> titanic_parallelize = spark.sparkContext.parallelize(np_titanic, 4)

>>> titanic_parallelize.take(2)
[array(['0', '3', ..., 'male', '22', '1', '0', '7.25'], dtype=object),
array(['1', '1', ..., 'female', '38', '1', '0', '71.2833'], dtype=object)]

# end SparkSession
>>> spark.stop()

Achtung!

Because Apache Spark partitions and distributes data, calling for the first n objects using the
same code (such as take(n)) may yield different results on different computers (or even each
time you run it on one computer). This is not something you should worry about; it is the
result of variation in partitioning and will not affect data analysis.

RDD Operations

Transformations

There are two types of operations you can perform on RDDs: transformations and actions.
Transformations are functions that produce new RDDs from existing ones. Transformations are
also lazy; they are not executed until an action is performed. This allows Spark to boost
performance by optimizing how a sequence of transformations is executed at runtime.
One of the most commonly used transformations is the map(func), which creates a new RDD by
applying func to each element of the current RDD. This function, func, can be any callable python
function, though it is often implemented as a lambda function. Similarly, flatMap(func) creates an
RDD with the flattened results of map(func).

# initialize your SparkSession object
>>> spark = SparkSession\
... .builder\
... .appName("app_name")\
... .getOrCreate()

# use map() to format the data
>>> titanic = spark.sparkContext.textFile("titanic.csv")
>>> titanic.take(2)
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['0,3,Mr. Owen Harris Braund,male,22,1,0,7.25',
'1,1,Mrs. John Bradley (Florence Briggs Thayer) Cumings,female,38,1,0,71.283']

# apply split(',') to each element of the RDD with map()
>>> titanic.map(lambda row: row.split(','))\
... .take(2)
[['0', '3', 'Mr. Owen Harris Braund', 'male', '22', '1', '0', '7.25'],
['1', '1', ..., 'female', '38', '1', '0', '71.283']]

# compare to flatMap(), which flattens the results of each row
>>> titanic.flatMap(lambda row: row.split(','))\
... .take(2)
['0', '3']

The filter(func) transformation returns a new RDD containing only the elements that satisfy
func. In this case, func should be a callable python function that returns a Boolean. The elements
of the RDD that evaluate to True are included in the new RDD while those that evaluate to False
are excluded.

# create a new RDD containing only the female passengers
>>> titanic = titanic.map(lambda row: row.split(','))
>>> titanic_f = titanic.filter(lambda row: row[3] == "female")
>>> titanic_f.take(3)
[['1', '1', ..., 'female', '38', '1', '0', '71.2833'],
['1', '3', ..., 'female', '26', '0', '0', '7.925'],
['1', '1', ..., 'female', '35', '1', '0', '53.1']]

Note

A great transformation to help validate or explore your dataset is distinct(). This will return
a new RDD containing only the distinct elements of the original. In the case of the Titanic
dataset, if you did not know how many classes there were, you could do the following:

>>> titanic.map(lambda row: row[1])\
... .distinct()\
... .collect()
['1', '3', '2']
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Spark Command Transformation
map(f) Returns a new RDD by applying f to each element of this RDD

flatMap(f) Same as map(f), except the results are flattened
filter(f) Returns a new RDD containing only the elements that satisfy f

distinct()
Returns a new RDD containing the distinct elements of the

original

reduceByKey(f)
Takes an RDD of (key, val) pairs and merges the values for

each key using an associative and commutative reduce function f
sortBy(f) Sorts this RDD by the given function f

sortByKey(f)
Sorts an RDD assumed to consist of (key, val) pairs by the

given function f
groupBy(f) Returns a new RDD of groups of items based on f

groupByKey()
Takes an RDD of (key, val) pairs and returns a new RDD

with (key, (val1, val2, ...)) pairs

# the following counts the number of passengers in each class
# note that this isn't necessarily the best way to do this

# create a new RDD of (pclass, 1) elements to count occurances
>>> pclass = titanic.map(lambda row: (row[1], 1))
>>> pclass.take(5)
[('3', 1), ('1', 1), ('3', 1), ('1', 1), ('3', 1)]

# count the members of each class
>>> pclass = pclass.reduceByKey(lambda x, y: x + y)
>>> pclass.collect()
[('3', 487), ('1', 216), ('2', 184)]

# sort by number of passengers in each class, ascending order
>>> pclass.sortBy(lambda row: row[1]).collect()
[('2', 184), ('1', 216), ('3', 487)]

# end SparkSession
>>> spark.stop()

Achtung!

Note that you must use .collect() to extract data from an RDD. Using .collect() will
return an array.
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Problem 1. Write a function that accepts the name of a text file with default filename=
huck_finn.txt.a Load the file as a PySpark RDD, and count the number of occurrences of
each word. Sort the words by count, in descending order, and return a list of the (word, count
) pairs for the 20 most used words. The data does not need to be cleaned.
Hint: to ensure that your function doesn’t consider an empty string "" to be a word, make sure
to split each line with .split() instead of on a space with .split(' ').

ahttps://www.gutenberg.org/files/76/76-0.txt

Actions

Actions are operations that return non-RDD objects. Two of the most common actions, take(n)
and collect(), have already been seen above. The key difference between the two is that take(n)
returns the first n elements from one (or more) partition(s) while collect() returns the contents of
the entire RDD. When working with small datasets this may not be an issue, but for larger
datasets running collect() can be very expensive.

Another important action is reduce(func). Generally, reduce() combines (reduces) the data in
each row of the RDD using func to produce some useful output. Note that func must be an
associative and commutative binary operation; otherwise the results will vary depending on
partitioning.

# create an RDD with the first million integers in 4 partitions
>>> ints = spark.sparkContext.parallelize(range(1, 1000001), 4)
# [1, 2, 3, 4, 5, ..., 1000000]
# sum the first one million integers
>>> ints.reduce(lambda x, y: x + y)
500000500000

# create a new RDD containing only survival data
>>> survived = titanic.map(lambda row: int(row[0]))
>>> survived.take(5)
[0, 1, 1, 1, 0]

# find total number of survivors
>>> survived.reduce(lambda x, y: x + y)
500



184 Lab 14. Apache Spark

Spark Command Action
take(n) returns the first n elements of an RDD

collect() returns the entire contents of an RDD

reduce(f)
merges the values of an RDD using an associative and

commutative operator f
count() returns the number of elements in the RDD

min(); max(); mean()
returns the minimum, maximum, or mean of the RDD,

respectively
sum() adds the elements in the RDD and returns the result

saveAsTextFile(path)
saves the RDD as a collection of text files (one for each

partition) in the directory specified

foreach(f)
immediately applies f to each element of the RDD; not to be

confused with map(), foreach() is useful for saving data
somewhere not natively supported by PySpark

Problem 2. Since the area of a circle of radius r is A = πr2, one way to estimate π is to
estimate the area of the unit circle. A Monte Carlo approach to this problem is to uniformly
sample points in the square [−1, 1]× [−1, 1] and then count the percentage of points that land
within the unit circle. The percentage of points within the circle approximates the percentage
of the area occupied by the circle. Multiplying this percentage by 4 (the area of the square
[−1, 1]× [−1, 1]) gives an estimate for the area of the circle. a

Write a function that uses Monte Carlo methods to estimate the value of π. Your function
should accept two keyword arguments: n=10**5 and parts=6. Use n*parts sample points and
partition your RDD with parts partitions. Return your estimate.

aSee Example 7.1.1 in the Volume 2 textbook

DataFrames

While RDDs offer granular control, they can be slower than their Scala and Java counterparts when
implemented in Python. The solution to this was the creation of a new data structure: Spark
DataFrames. Just like RDDs, DataFrames are immutable distributed collections of objects;
however, unlike RDDs, DataFrames are organized into named (and typed) columns. In this way
they are conceptually similar to a relational database (or a pandas DataFrame).

The most important difference between a relational database and Spark DataFrames is in the
execution of transformations and actions. When working with DataFrames, Spark’s Catalyst
Optimizer creates and optimizes a logical execution plan before sending any instructions to the
drivers. After the logical plan has been formed, an optimal physical plan is created and executed.
This provides significant performance boosts, especially when working with massive amounts of
data. Since the Catalyst Optimizer functions the same across all language APIs, DataFrames bring
performance parity to all of Spark’s APIs.
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Spark SQL and DataFrames

Creating a DataFrame from an existing text, csv, or JSON file is generally easier than creating an
RDD. The DataFrame API also has arguments to deal with file headers or to automatically infer
the schema.

# note that you should initialize your spark object first
# load the titanic dataset using default settings
>>> titanic = spark.read.csv("titanic.csv")
>>> titanic.show(2)
+---+---+--------------------+------+---+---+---+-------+
|_c0|_c1| _c2| _c3|_c4|_c5|_c6| _c7|
+---+---+--------------------+------+---+---+---+-------+
| 0| 3|Mr. Owen Harris B...| male| 22| 1| 0| 7.25|
| 1| 1|Mrs. John Bradley...|female| 38| 1| 0|71.2833|
+---+---+--------------------+------+---+---+---+-------+
only showing top 2 rows

# spark.read.csv("titanic.csv", inferSchema=True) will try to infer
# data types for each column

# load the titanic dataset specifying the schema
>>> schema = ("survived INT, pclass INT, name STRING, sex STRING, "
... "age FLOAT, sibsp INT, parch INT, fare FLOAT"
... )
>>> titanic = spark.read.csv("titanic.csv", schema=schema)
>>> titanic.show(2)
+--------+------+--------------------+------+---+-----+-----+-------+
|survived|pclass| name| sex|age|sibsp|parch| fare|
+--------+------+--------------------+------+---+-----+-----+-------+
| 0| 3|Mr. Owen Harris B...| male| 22| 1| 0| 7.25|
| 1| 1|Mrs. John Bradley...|female| 38| 1| 0|71.2833|
+--------+------+--------------------+------+---+-----+-----+-------+
only showing top 2 rows

# for files with headers, the following is convenient
>>> spark.read.csv("my_file.csv", header=True, inferSchema=True)

Note

To convert a DataFrame to an RDD use my_df.rdd; to convert an RDD to a DataFrame use
spark.createDataFrame(my_rdd). You can also use spark.createDataFrame() on numpy
arrays and pandas DataFrames.
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DataFrames can be easily updated, queried, and analyzed using SQL operations. Spark allows you
to run queries directly on DataFrames similar to how you perform transformations on RDDs.
Additionally, the pyspark.sql.functions module contains many additional functions to further
analysis. Below are many examples of basic DataFrame operations; further examples involving the
pyspark.sql.functions module can be found in the additional materials section. Full
documentation can be found at
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/index.html.

# select data from the survived column
>>> titanic.select(titanic.survived).show(3) # or titanic.select("survived")
+--------+
|survived|
+--------+
| 0|
| 1|
| 1|
+--------+
only showing top 3 rows

# find all distinct ages of passengers (great for data exploration)
>>> titanic.select("age")\
... .distinct()\
... .show(3)
+----+
| age|
+----+
|18.0|
|64.0|
|0.42|
+----+
only showing top 3 rows

# filter the DataFrame for passengers between 20-30 years old (inclusive)
>>> titanic.filter(titanic.age.between(20, 30)).show(3)
+--------+------+--------------------+------+----+-----+-----+------+
|survived|pclass| name| sex| age|sibsp|parch| fare|
+--------+------+--------------------+------+----+-----+-----+------+
| 0| 3|Mr. Owen Harris B...| male|22.0| 1| 0| 7.25|
| 1| 3|Miss. Laina Heikk...|female|26.0| 0| 0| 7.925|
| 0| 3| Mr. James Moran| male|27.0| 0| 0|8.4583|
+--------+------+--------------------+------+----+-----+-----+------+
only showing top 3 rows

# find total fare by pclass (or use .avg("fare") for an average)
>>> titanic.groupBy("pclass")\
... .sum("fare")\
... .show()
+------+---------+
|pclass|sum(fare)|
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+------+---------+
| 1| 18177.41|
| 3| 6675.65|
| 2| 3801.84|
+------+---------+

# group and count by age and survival; order age/survival descending
>>> titanic.groupBy("age", "survived").count()\
... .sort("age", "survived", ascending=False)\
... .show(2)
+---+--------+-----+
|age|survived|count|
+---+--------+-----+
| 80| 1| 1|
| 74| 0| 1|
+---+--------+-----+
only showing top 2 rows

# join two DataFrames on a specified column (or list of columns)
>>> titanic_cabins.show(3)
+--------------------+-------+
| name| cabin|
+--------------------+-------+
|Miss. Elisabeth W...| B5|
|Master. Hudsen Tr...|C22 C26|
|Miss. Helen Lorai...|C22 C26|
+--------------------+-------+
only showing top 3 rows

>>> titanic.join(titanic_cabins, on="name").show(3)
+--------------------+--------+------+------+----+-----+-----+------+-------+
| name|survived|pclass| sex| age|sibsp|parch| fare| cabin|
+--------------------+--------+------+------+----+-----+-----+------+-------+
|Miss. Elisabeth W...| 0| 3| male|22.0| 1| 0| 7.25| B5|
|Master. Hudsen Tr...| 1| 3|female|26.0| 0| 0| 7.925|C22 C26|
|Miss. Helen Lorai...| 0| 3| male|27.0| 0| 0|8.4583|C22 C26|
+--------------------+--------+------+------+----+-----+-----+------+-------+
only showing top 3 rows

Note

If you prefer to use traditional SQL syntax you can use spark.sql("SQL QUERY"). Note that
this requires you to first create a temporary view of the DataFrame.

# create the temporary view so we can access the table through SQL
>>> titanic.createOrReplaceTempView("titanic")
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# query using SQL syntax
>>> spark.sql("SELECT age, COUNT(*) AS count\
... FROM titanic\
... GROUP BY age\
... ORDER BY age DESC").show(3)
+---+-----+
|age|count|
+---+-----+
| 80| 1|
| 74| 1|
| 71| 2|
+---+-----+
only showing top 3 rows

Spark SQL Command SQLite Command
select(*cols) SELECT
groupBy(*cols) GROUP BY

sort(*cols, **kwargs) ORDER BY
filter(condition) WHERE

when(condition, value) WHEN
between(lowerBound, upperBound) BETWEEN

drop(*cols) DROP
join(other, on=None, how=None) JOIN (join type specified by how)

count() COUNT()
sum(*cols) SUM()

avg(*cols) or mean(*cols) AVG()
collect() fetchall()

Problem 3. Write a function with keyword argument filename="titanic.csv". Load the
file into a PySpark DataFrame and find (1) the number of women on-board, (2) the number of
men on-board, (3) the survival rate of women, and (4) the survival rate of men. Return these
four values in the order given as a tuple of floats.
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Problem 4. In this problem, you will be using the london_income_by_borough.csv and the
london_crime_by_lsoa.csv files to visualize the relationship between income and the fre-
quency of crime.a The former contains estimated mean and median income data for each
London borough, averaged over 2008-2016; the first line of the file is a header with columns
borough, mean-08-16, and median-08-16. The latter contains over 13 million lines of crime
data, organized by borough and LSOA (Lower Super Output Area) code, for London between
2008 and 2016; the first line of the file is a header, containing the following seven columns:

lsoa_code: LSOA code (think area code) where the crime was committed
borough: London borough were the crime was committed
major_category: major or general category of the crime
minor_category: minor or specific category of the crime
value: number of occurrences of this crime in the given lsoa_code, month, and year
year: year the crime was committed
month: month the crime was committed

Write a function that accepts three keyword arguments:
crimefile="london_crime_by_lsoa.csv", incomefile="london_income_by_borough.csv",
and major_cat="Robbery". Load the two files as PySpark DataFrames. Use them to create a
new DataFrame. The new DataFrame will contain a row for each borough and have columns
for borough, total number of crimes for the given major category (major_cat), and median
income. Order the DataFrame by the total number of crimes for major_cat, descending. The
final DataFrame should have three columns: borough, major_cat_total_crime, and median
-08-16 (column names may be different).
Convert the DataFrame to a numpy array using np.array(df.collect()), and create a scatter
plot of the number of major_cat= crimes by the median income for each borough. Return the
numpy array.

adata.london.gov.uk

Machine Learning with Apache Spark
Apache Spark includes a vast and expanding ecosystem to perform machine learning. PySpark’s
primary machine learning API, pyspark.ml, is DataFrame-based.
Here we give a start to finish example using Spark ML to tackle the classic Titanic classification
problem.

# prepare data
# convert the "sex" column to binary categorical variable
>>> from pyspark.ml.feature import StringIndexer, OneHotEncoder
>>> sex_binary = StringIndexer(inputCol="sex", outputCol="sex_binary")

# one-hot-encode pclass (Spark automatically drops a column)
>>> onehot = OneHotEncoder(inputCols=["pclass"],
... outputCols=["pclass_onehot"])

# create single features column
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>>> from pyspark.ml.feature import VectorAssembler
>>> features = ["sex_binary", "pclass_onehot", "age", "sibsp", "parch", "fare"]
>>> features_col = VectorAssembler(inputCols=features, outputCol="features")

# now we create a transformation pipeline to apply the operations above
# this is very similar to the pipeline ecosystem in sklearn
>>> from pyspark.ml import Pipeline
>>> pipeline = Pipeline(stages=[sex_binary, onehot, features_col])
>>> titanic = pipeline.fit(titanic).transform(titanic)

# drop unnecessary columns for cleaner display (note the new columns)
>>> titanic = titanic.drop("pclass", "name", "sex")
>>> titanic.show(2)
+--------+----+-----+-----+----+----------+-------------+----------+
|survived| age|sibsp|parch|fare|sex_binary|pclass_onehot| features|
+--------+----+-----+-----+----+----------+-------------+----------+
| 0|22.0| 1| 0|7.25| 0.0| (3,[],[])|(8,[4,5...|
| 1|38.0| 1| 0|71.3| 1.0| (3,[1],...|[0.0,1....|
+--------+----+-----+-----+----+----------+-------------+----------+

# split into train/test sets (75/25)
>>> train, test = titanic.randomSplit([0.75, 0.25], seed=11)

# initialize logistic regression
>>> from pyspark.ml.classification import LogisticRegression
>>> lr = LogisticRegression(labelCol="survived", featuresCol="features")

# run a train-validation-split to fit best elastic net param
# ParamGridBuilder constructs a grid of parameters to search over.
>>> from pyspark.ml.tuning import ParamGridBuilder, TrainValidationSplit
>>> from pyspark.ml.evaluation import MulticlassClassificationEvaluator as MCE
>>> paramGrid = ParamGridBuilder()\
... .addGrid(lr.elasticNetParam, [0, 0.5, 1]).build()
# TrainValidationSplit will try all combinations and determine best model using
# the evaluator (see also CrossValidator)
>>> tvs = TrainValidationSplit(estimator=lr,
... estimatorParamMaps=paramGrid,
... evaluator=MCE(labelCol="survived"),
... trainRatio=0.75,
... seed=11)

# we train the classifier by fitting our tvs object to the training data
>>> clf = tvs.fit(train)

# use the best fit model to evaluate the test data
>>> results = clf.bestModel.evaluate(test)
>>> results.predictions.select(["survived", "prediction"]).show(5)
+--------+----------+
|survived|prediction|
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+--------+----------+
| 0| 1.0|
| 0| 1.0|
| 0| 1.0|
| 0| 1.0|
| 0| 0.0|
+--------+----------+

# performance information is stored in various attributes of "results"
>>> results.accuracy
0.7527272727272727

>>> results.weightedRecall
0.7527272727272727

>>> results.weightedPrecision
0.751035147726004

# many classifiers do not have this object-oriented interface (yet)
# it isn't much more effort to generate the same statistics for a ←↩

DecisionTreeClassifier, for example
>>> dt_clf = dt_tvs.fit(train) # same process, except for a different paramGrid

# generate predictions - this returns a new DataFrame
>>> preds = clf.bestModel.transform(test)
>>> preds.select("survived", "probability", "prediction").show(5)
+--------+-----------+----------+
|survived|probability|prediction|
+--------+-----------+----------+
| 0| [1.0,0.0]| 0.0|
| 0| [1.0,0.0]| 0.0|
| 0| [1.0,0.0]| 0.0|
| 0| [0.0,1.0]| 1.0|
+--------+-----------+----------+

# initialize evaluator object
>>> dt_eval = MCE(labelCol="survived")
>>> dt_eval.evaluate(preds, {dt_eval.metricName: "accuracy"})
0.8433179723502304

Below is a broad overview of the pyspark.ml ecosystem. It should help give you a starting point
when looking for a specific functionality.
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PySpark ML Module Module Purpose
pyspark.ml.feature provides functions to transform data into feature vectors
pyspark.ml.tuning grid search, cross validation, and train/validation split functions
pyspark.ml.evaluation tools to compute prediction metrics (accuracy, f1, etc.)
pyspark.ml.classification classification models (logistic regression, SVM, etc.)
pyspark.ml.clustering clustering models (k-means, Gaussian mixture, etc.)
pyspark.ml.regression regression models (linear regression, decision tree regressor, etc.)

Problem 5. Write a function with keyword argument filename="titanic.csv". Load the
file into a PySpark DataFrame, and use the pyspark.ml package to train a classifier that
outperforms the logistic regression each of the three metrics from the example above (accuracy
, weightedRecall, weightedPrecision).
Some of Spark’s available classifiers are listed below. For complete documentation, visit https://spark.apache.org/docs/latest/api/python/reference/pyspark.ml.html.

# from pyspark.ml.classification import LinearSVC
# DecisionTreeClassifier
# GBTClassifier
# MultilayerPerceptronClassifier
# NaiveBayes
# RandomForestClassifier

Use randomSplit([0.75, 0.25], seed=11) to split your data into train and test sets before
fitting the model. Return the accuracy, weightedRecall, and weightedPrecision for your
model, in the given order as a tuple.
Hint: to calculate the accuracy of a classifer in PySpark, use results.accuracy where results
= (classifier name).bestModel.evaluate(test).
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Additional Material

Further DataFrame Operations

There are a few other functions built directly on top of DataFrames to further analysis.
Additionally, the pyspark.sql.functions module expands the available functions significantly.4

# some immediately accessible functions
# covariance between pclass and fare
>>> titanic.cov("pclass", "fare")
-22.86289824115662

# summary of statistics for selected columns
>>> titanic.select("pclass", "age", "fare")\
... .summary().show()
+-------+------------------+------------------+------------------+
|summary| pclass| age| fare|
+-------+------------------+------------------+------------------+
| count| 887| 887| 887|
| mean| 2.305524239007892|29.471443066501564|32.305420253026846|
| stddev|0.8366620036697728|14.121908405492908| 49.78204096767521|
| min| 1| 0.42| 0.0|
| 25%| 2| 20.0| 7.925|
| 50%| 3| 28.0| 14.4542|
| 75%| 3| 38.0| 31.275|
| max| 3| 80.0| 512.3292|
+-------+------------------+------------------+------------------+

# additional functions from the functions module
>>> from pyspark.sql import functions as sqlf

# finding the mean of a column without grouping requires sqlf.avg()
# alias(new_name) allows us to rename the column on the fly
>>> titanic.select(sqlf.avg("age").alias("Average Age")).show()
+------------------+
| Average Age|
+------------------+
|29.471443066516347|
+------------------+

# use .agg([dict]) on GroupedData to specify [multiple] aggregate
# functions, including those from pyspark.sql.functions
>>> titanic.groupBy("pclass")\
... .agg({"fare": "var_samp", "age": "stddev"})\
... .show(3)
+------+------------------+------------------+
|pclass| var_samp(fare)| stddev(age)|
+------+------------------+------------------+

4https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/index.html
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| 1| 6143.483042924841|14.183632587264817|
| 3|139.64879027298073|12.095083834183779|
| 2|180.02658999396826|13.756191206499766|
+------+------------------+------------------+

# perform multiple aggregate actions on the same column
>>> titanic.groupBy("pclass")\
... .agg(sqlf.sum("fare"), sqlf.stddev("fare"))\
... .show()
+------+------------------+------------------+
|pclass| sum(fare)| stddev_samp(fare)|
+------+------------------+------------------+
| 1|18177.412506103516| 78.38037409278448|
| 3| 6675.653553009033| 11.81730892686574|
| 2|3801.8417053222656|13.417398778972332|
+------+------------------+------------------+

pyspark.sql.functions Operation
ceil(col) computes the ceiling of each element in col
floor(col) computes the floor of each element in col

min(col), max(col) returns the minimum/maximum value of col
mean(col) returns the average of the values of col

stddev(col) returns the unbiased sample standard deviation of col
var_samp(col) returns the unbiased variance of the values in col

rand(seed=None) generates a random column with i.i.d. samples from [0, 1]

randn(seed=None)
generates a random column with i.i.d. samples from the

standard normal distribution
exp(col) computes the exponential of col

log(arg1, arg2=None)
returns arg1-based logarithm of arg2; if there is only one

argument, then it returns the natural logarithm

cos(col), sin(col), etc.
computes the given trigonometric or inverse trigonometric

(asin(col), etc.) function of col
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A NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are
straightforward. This appendix provides visual demonstrations of how NumPy arrays are used with
slicing syntax, stacking, broadcasting, and axis-specific operations. Though these visualizations are
for 1- or 2-dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter
the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as
“the ath entry up to (but not including) the bth entry.” Similarly, [a:] means “the ath entry to the
end” and [:b] means “everything up to (but not including) the bth entry.”

A[1] = A[1,:] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



A[1:,:2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×
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Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays
vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗



np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×



np.vstack((A,B,A)) =



× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×


Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them
vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =


× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×


The functions np.concatenate() and np.stack() are more general versions of np.hstack() and
np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth
examples and broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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A =

 1 2 3

1 2 3

1 2 3

 x =
[
10 20 30

]

A + x =

 1 2 3

1 2 3

1 2 3

+[ ]
10 20 30

=

 11 22 33

11 22 33

11 22 33



A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33



Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.
To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4



A.sum(axis=0) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
4 8 12 16

]

A.sum(axis=1) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
10 10 10 10

]
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B Matplotlib Syntax and
Customization Guide

Lab Objective: The documentation for Matplotlib can be a little difficult to maneuver and basic
information is sometimes difficult to find. This appendix condenses and demonstrates some of the
more applicable and useful information on plot customizations. It is not intended to be read all at
once, but rather to be used as a reference when needed. For an interative introduction to Matplotlib,
see the Introduction to Matplotlib lab in Python Essentials. For more details on any specific
function, refer to the Matplotlib documentation at https: // matplotlib. org/ .

Matplotlib Interface
Matplotlib plots are made in a Figure object that contains one or more Axes, which themselves
contain the graphical plotting data. Matplotlib provides two ways to create plots:

1. Call plotting functions directly from the module, such as plt.plot(). This will create the
plot on whichever Axes is currently active.

2. Call plotting functions from an Axes object, such as ax.plot(). This is particularly useful for
complicated plots and for animations.

Table B.1 contains a summary of functions that are used for managing Figure and Axes objects.

Function Description
add_subplot() Add a single subplot to the current figure

axes() Add an axes to the current figure
clf() Clear the current figure

figure() Create a new figure or grab an existing figure
gca() Get the current axes
gcf() Get the current figure

subplot() Add a single subplot to the current figure
subplots() Create a figure and add several subplots to it

Table B.1: Basic functions for managing plots.

201

https://matplotlib.org/


202 Appendix B. Matplotlib Customization

Axes objects are usually managed through the functions plt.subplot() and plt.subplots().
The function subplot() is used as plt.subplot(nrows, ncols, plot_number). Note that if the
inputs for plt.subplot() are all integers, the commas between the entries can be omitted. For
example, plt.subplot(3,2,2) can be shortened to plt.subplot(322).
The function subplots() is used as plt.subplots(nrows, ncols), and returns a Figure object
and an array of Axes. This array has the shape (nrows, ncols), and can be accessed as any other
array. Figure B.1 demonstrates the layout and indexing of subplots.

1 2 3

4 5 6
Figure B.1: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the
index pictured above. The outer border is the figure that the axes belong to.

The following example demonstrates three equivalent ways of producing a figure with two subplots,
arranged next to each other in one row:

>>> x = np.linspace(-5, 5, 100)

# 1. Use plt.subplot() to switch the current axes.
>>> plt.subplot(121)
>>> plt.plot(x, 2*x)
>>> plt.subplot(122)
>>> plt.plot(x, x**2)

# 2. Use plt.subplot() to explicitly grab the two subplot axes.
>>> ax1 = plt.subplot(121)
>>> ax1.plot(x, 2*x)
>>> ax2 = plt.subplot(122)
>>> ax2.plot(x, x**2)

# 3. Use plt.subplots() to get the figure and all subplots simultaneously.
>>> fig, axes = plt.subplots(1, 2)
>>> axes[0].plot(x, 2*x)
>>> axes[1].plot(x, x**2)
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Achtung!

Be careful not to mix up the following similarly-named functions:

1. plt.axes() creates a new place to draw on the figure, while plt.axis() or ax.axis()
sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current figure, while
plt.subplots() (plural) creates a new figure and adds a collection of subplots to it.

Plot Customization
Styles

Matplotlib has a number of built-in styles that can be used to set the default appearance of plots.
These can be used via the function plt.style.use(); for instance, plt.style.use("seaborn")
will have Matplotlib use the "seaborn" style for all plots created afterwards. A list of built-in styles
can be found at
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html.
The style can also be changed only temporarily using plt.style.context() along with a with
block:

with plt.style.context('dark_background'):
# Any plots created here use the new style
plt.subplot(1,2,1)
plt.plot(x, y)
# ...

# Plots created here are unaffected
plt.subplot(1,2,2)
plt.plot(x, y)

Plot layout

Axis properties

Table B.2 gives an overview of some of the functions that may be used to configure the axes of a
plot.
The functions xlim(), ylim(), and axis() are used to set one or both of the x and y ranges of the
plot. xlim() and ylim() each accept two arguments, the lower and upper bounds, or a single list
of those two numbers. axis() accepts a single list consisting, in order, of
xmin, xmax, ymin, ymax. Passing None instead of one of the numbers to any of these functions
will make it not change the corresponding value from what it was. Each of these functions can also
be called without any arguments, in which case it will return the current bounds. Note that axis()
can also be called directly on an Axes object, while xlim() and ylim() cannot.
axis() also can be called with a string as its argument, which has several options. The most
common is axis('equal'), which makes the scale of the x- and y-scales equal (i.e. makes circles
circular).

https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
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Function Description
axis() set the x- and y-limits of the plot
grid() add gridlines
xlim() set the limits of the x-axis
ylim() set the limits of the y-axis

xticks() set the location of the tick marks on the x-axis
yticks() set the location of the tick marks on the y-axis
xscale() set the scale type to use on the x-axis
yscale() set the scale type to use on the y-axis

ax.spines[side].set_position() set the location of the given spine
ax.spines[side].set_color() set the color of the given spine

ax.spines[side].set_visible() set whether a spine is visible

Table B.2: Some functions for changing axis properties. ax is an Axes object.

To use a logarithmic scale on an axis, the functions xscale("log") and yscale("log") can be
used.
The functions xticks() and yticks() accept a list of tick positions, which the ticks on the
corresponding axis are set to. Generally, this works the best when used with np.linspace(). This
function also optionally accepts a second argument of a list of labels for the ticks. If called with no
arguments, the function returns a list of the current tick positions and labels instead.
The spines of a Matplotlib plot are the black border lines around the plot, with the left and bottom
ones also being used as the axis lines. To access the spines of a plot, call ax.spines[side], where
ax is an Axes object and side is 'top', 'bottom', 'left', or 'right'. Then, functions can be
called on the Spine object to configure it.
The function spine.set_position() has several ways to specify the position. The two simplest
are with the arguments 'center' and 'zero', which place the spine in the center of the subplot or
at an x- or y-coordinate of zero, respectively. The others are a passed as a tuple
(position_type, amount):

• 'data': place the spine at an x- or y-coordinate equal to amount.

• 'axes': place the spine at the specified Axes coordinate, where 0 corresponds to the bottom
or left of the subplot, and 1 corresponds to the top or right edge of the subplot.

• 'outward': places the spine amount pixels outward from the edge of the plot area. A negative
value can be used to move it inwards instead.

spine.set_color() accepts any of the color formats Matplotlib supports. Alternately, using
set_color('none') will make the spine not be visible. spine.set_visible() can also be used for
this purpose.
The following example adjusts the ticks and spine positions to improve the readability of a plot of
sin(x). The result is shown in Figure B.2.

>>> x = np.linspace(0,2*np.pi,150)
>>> plt.plot(x, np.sin(x))
>>> plt.title(r"$y=\sin(x)$")

#Set the ticks to multiples of pi/2, make nice labels
>>> ticks = np.pi / 2 * np.array([0,1,2,3,4])
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>>> tick_labels = ["$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$",
... r"$2\pi$"]
>>> plt.xticks(ticks, tick_labels)

#Move the bottom spine to zero, remove the top and right ones
>>> ax = plt.gca()
>>> ax.spines['bottom'].set_position('zero')
>>> ax.spines['right'].set_color('none')
>>> ax.spines['top'].set_color('none')

>>> plt.show()

0 2
3
2

2

1.0

0.5

0.0

0.5

1.0

y = sin(x)

Figure B.2: Plot of y = sin(x) with axes modified for clarity

Plot Layout

The position and spacing of all subplots within a figure can be modified using the function
plt.subplots_adjust(). This function accepts up to six keyword arguments that change different
aspects of the spacing. left, right, top, and bottom are used to adjust the rectangle around all of
the subplots. In the coordinates used, 0 corresponds to the bottom or left edge of the figure, and 1
corresponds to the top or right edge of the figure. hspace and wspace set the vertical and
horizontal spacing, respectively, between subplots. The units for these are in fractions of the
average height and width of all subplots in the figure. If more fine control is desired, the position of
individual Axes objects can also be changed using ax.get_position() and ax.set_position().
The size of the figure can be configured using the figsize argument when creating a figure:

>>> plt.figure(figsize=(12,8))

Note that many environments will scale the figure to fill the available space. Even so, changing the
figure size can still be used to change the aspect ratio as well as the relative size of plot elements.
The following example uses subplots_adjust() to create space for a legend outside of the plotting
space. The result is shown in Figure B.3.
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#Generate data
>>> x1 = np.random.normal(-1, 1.0, size=60)
>>> y1 = np.random.normal(-1, 1.5, size=60)
>>> x2 = np.random.normal(2.0, 1.0, size=60)
>>> y2 = np.random.normal(-1.5, 1.5, size=60)
>>> x3 = np.random.normal(0.5, 1.5, size=60)
>>> y3 = np.random.normal(2.5, 1.5, size=60)

#Make the figure wider
>>> fig = plt.figure(figsize=(5,3))

#Plot the data
>>> plt.plot(x1, y1, 'r.', label="Dataset 1")
>>> plt.plot(x2, y2, 'g.', label="Dataset 2")
>>> plt.plot(x3, y3, 'b.', label="Dataset 3")

#Create a legend to the left of the plot
>>> lspace = 0.35
>>> plt.subplots_adjust(left=lspace)
#Put the legend at the left edge of the figure
>>> plt.legend(loc=(-lspace/(1-lspace),0.6))
>>> plt.show()

2 0 2 4

4

2

0

2

4Dataset 1
Dataset 2
Dataset 3

Figure B.3: Example of repositioning axes.
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Colors

The color that a plotting function uses is specified by either the c or color keyword arguments; for
most functions, these can be used interchangeably. There are many ways to specific colors. The
most simple is to use one of the basic colors, listed in Table B.3. Colors can also be specified using
an RGB tuple such as (0.0, 0.4, 1.0), a hex string such as "0000FF", or a CSS color name like
"DarkOliveGreen" or "FireBrick". A full list of named colors that Matplotlib supports can be
found at https://matplotlib.org/stable/gallery/color/named_colors.html. If no color is
specified for a plot, Matplotlib automatically assigns it one from the default color cycle.

Code Color
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta

Code Color
'y' yellow
'k' black
'w' white

'C0' - 'C9' Default colors

Table B.3: Basic colors available in Matplotlib

Plotting functions also accept an alpha keyword argument, which can be used to set the
transparency. A value of 1.0 corresponds to fully opaque, and 0.0 corresponds to fully transparent.
The following example demonstrates different ways of specifying colors:

#Using a basic color
>>> plt.plot(x, y, 'r')
#Using a hexadecimal string
>>> plt.plot(x, y, color='FF0080')
#Using an RGB tuple
>>> plt.plot(x, y, color=(1, 0.5, 0))
#Using a named color
>>> plt.plot(x, y, color='navy')

Colormaps

Certain plotting functions, such as heatmaps and contour plots, accept a colormap rather than a
single color. A full list of colormaps available in Matplotlib can be found at
https://matplotlib.org/stable/gallery/color/colormap_reference.html. Some of the more
commonly used ones are "viridis", "magma", and "coolwarm". A colorbar can be added by calling
plt.colorbar() after creating the plot.
Sometimes, using a logarithmic scale for the coloring is more informative. To do this, pass a
matplotlib.colors.LogNorm object as the norm keyword argument:

# Create a heatmap with logarithmic color scaling
>>> from matplotlib.colors import LogNorm
>>> plt.pcolormesh(X, Y, Z, cmap='viridis', norm=LogNorm())

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html
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Function Description Usage
annotate() adds a commentary at a given point on the plot annotate(’text’,(x,y))

arrow() draws an arrow from a given point on the plot arrow(x,y,dx,dy)
colorbar() Create a colorbar colorbar()

legend() Place a legend in the plot legend(loc=’best’)
text() Add text at a given position on the plot text(x,y,’text’)

title() Add a title to the plot title(’text’)
suptitle() Add a title to the figure suptitle(’text’)

xlabel() Add a label to the x-axis xlabel(’text’)
ylabel() Add a label to the y-axis ylabel(’text’)

Table B.4: Text and annotation functions in Matplotlib

Text and Annotations

Matplotlib has several ways to add text and other annotations to a plot, some of which are listed in
Table B.4. The color and size of the text in most of these functions can be adjusted with the color
and fontsize keyword arguments.
Matplotlib also supports formatting text with LATEX, a system for creating technical documents.1

To do so, use an r before the string quotation mark and surround the text with dollar signs. This is
particularly useful when the text contains a mathematical expression. For example, the following
line of code will make the title of the plot be 1

2 sin(x
2):

>>> plt.title(r"$\frac{1}{2}\sin(x^2)$")

The function legend() can be used to add a legend to a plot. Its optional loc keyword argument
specifies where to place the legend within the subplot. It defaults to 'best', which will cause
Matplotlib to place it in whichever location overlaps with the fewest drawn objects. The other
locations this function accepts are 'upper right', 'upper left', 'lower left', 'lower right',
'center left', 'center right', 'lower center', 'upper center', and 'center'. Alternately,
a tuple of (x,y) can be passed as this argument, and the bottom-left corner of the legend will be
placed at that location. The point (0,0) corresponds to the bottom-left of the current subplot, and
(1,1) corresponds to the top-right. This can be used to place the legend outside of the subplot,
although care should be taken that it does not go outside the figure, which may require manually
repositioning the subplots.
The labels the legend uses for each curve or scatterplot are specified with the label keyword
argument when plotting the object. Note that legend() can also be called with non-keyword
arguments to set the labels, although it is less confusing to set them when plotting.
The following example demonstrates creating a legend:

>>> x = np.linspace(0,2*np.pi,250)

# Plot sin(x), cos(x), and -sin(x)
# The label argument will be used as its label in the legend.
>>> plt.plot(x, np.sin(x), 'r', label=r'$\sin(x)$')
>>> plt.plot(x, np.cos(x), 'g', label=r'$\cos(x)$')
>>> plt.plot(x, -np.sin(x), 'b', label=r'$-\sin(x)$')

1See http://www.latex-project.org/ for more information.

http://www.latex-project.org/
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# Create the legend
>>> plt.legend()

Line and marker styles

Matplotlib supports a large number of line and marker styles for line and scatter plots, which are
listed in Table B.5.

character description
- solid line style
-- dashed line style
-. dash-dot line style
: dotted line style
. point marker
, pixel marker
o circle marker
v triangle_down marker
ˆ triangle_up marker
< triangle_left marker
> triangle_right marker
1 tri_down marker
2 tri_up marker

character description
3 tri_left marker
4 tri_right marker
s square marker
p pentagon marker
* star marker
h hexagon1 marker
H hexagon2 marker
+ plus marker
x x marker
D diamond marker
d thin_diamond marker
| vline marker
_ hline marker

Table B.5: Available line and marker styles in Maplotlib.

The function plot() has several ways to specify this argument; the simplest is to pass it as the
third positional argument. The marker and linestyle keyword arguments can also be used. The
size of these can be modified using markersize and linewidth. Note that by specifying a marker
style but no line style, plot() can be used to make a scatter plot. It is also possible to use both a
marker style and a line style. To set the marker using scatter(), use the marker keyword
argument, with s being used to change the size.
The following code demonstrates specifying marker and line styles. The results are shown in Figure
B.4.

#Use dashed lines:
>>> plt.plot(x, y, '--')
#Use only dots:
>>> plt.plot(x, y, '.')
#Use dots with a normal line:
>>> plt.plot(x, y, '.-')
#scatter() uses the marker keyword:
>>> plt.scatter(x, y, marker='+')

#With plot(), the color to use can also be specified in the same string.
#Order usually doesn't matter.
#Use red dots:
>>> plt.plot(x, y, '.r')
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#Equivalent:
>>> plt.plot(x, y, 'r.')

#To change the size:
>>> plt.plot(x, y, 'v-', linewidth=1, markersize=15)
>>> plt.scatter(x, y, marker='+', s=12)

plt.plot(x, y, '--') plt.plot(x, y, '.') plt.plot(x, y, '.-') plt.scatter(x, y, marker='+')

plt.plot(x, y, '.r') plt.plot(x, y, 'r.') plt.plot(x, y, 'v-',
linewidth=1, markersize=15)

plt.scatter(x, y,
marker='+', s=12)

Figure B.4: Examples of setting line and marker styles.

Plot Types

Matplotlib has functions for creaing many different types of plots, many of which are listed in Table
B.6. This section gives details on using certain groups of these functions.
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Function Description Usage
bar makes a bar graph bar(x,height)
barh makes a horizontal bar graph barh(y,width)
boxplots makes one or more boxplots boxplots(data)
contour makes a contour plot contour(X,Y,Z)
contourf makes a filled contour plot contourf(X,Y,Z)
imshow shows an image imshow(image)
fill plots lines with shading under the curve fill(x,y)
fill_between plots lines with shading between two given y values fill_between(x,y1, y2=0)
hexbin creates a hexbin plot hexbin(x,y)
hist plots a histogram from data hist(data)
pcolormesh makes a heatmap pcolormesh(X,Y,Z)
pie makes a pie chart pie(x)
plot plots lines and data on standard axes plot(x,y)
plot_surface plot a surface in 3-D space plot_surface(X,Y,Z)
polar plots lines and data on polar axes polar(theta,r)
loglog plots lines and data on logarithmic x and y axes loglog(x,y)
scatter plots data in a scatterplot scatter(x,y)
semilogx plots lines and data with a log scaled x axis semilogx(x,y)
semilogy plots lines and data with a log scaled y axis semilogy(x,y)
specgram makes a spectogram from data specgram(x)
spy plots the sparsity pattern of a 2D array spy(Z)
triplot plots triangulation between given points triplot(x,y)

Table B.6: Some basic plotting functions in Matplotlib.

Line plots

Line plots, the most basic type of plot, are created with the plot() function. It accepts two lists of
x- and y-values to plot, and optionally a third argument of a string of any combination of the color,
line style, and marker style. Note that this method only works with the single-character color
codes; to use other colors, use the color argument. By specifying only a marker style, this function
can also be used to create scatterplots.

There are a number of functions that do essentially the same thing as plot() but also change the
axis scaling, including loglog(), semilogx(), semilogy(), and polar. Each of these functions is
used in the same manner as plot(), and has identical syntax.
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Bar Plots

Bar plots are a way to graph categorical data in an effective way. They are made using the bar()
function. The most important arguments are the first two that provide the data, x and height.
The first argument is a list of values for each bar, either categorical or numerical; the second
argument is a list of numerical values corresponding to the height of each bar. There are other
parameters that may be included as well. The width argument adjusts the bar widths; this can be
done by choosing a single value for all of the bars, or an array to give each bar a unique width.
Further, the argument bottom allows one to specify where each bar begins on the y-axis. Lastly,
the align argument can be set to ’center’ or ’edge’ to align as desired on the x-axis. As with all
plots, you can use the color keyword to specify any color of your choice. If you desire to make a
horizontal bar graph, the syntax follows similarly using the function barh(), but with argument
names y, width, height and align.

Box Plots

A box plot is a way to visualize some simple statistics of a dataset. It plots the minimum,
maximum, and median along with the first and third quartiles of the data. This is done by using
boxplot() with an array of data as the argument. Matplotlib allows you to enter either a one
dimensional array for a single box plot, or a 2-dimensional array where it will plot a box plot for
each column of the data in the array. Box plots default to having a vertical orientation but can be
easily laid out horizontally by setting vert=False.

Scatter and hexbin plots

Scatterplots can be created using either plot() or scatter(). Generally, it is simpler to use
plot(), although there are some cases where scatter() is better. In particular, scatter() allows
changing the color and size of individual points within a single call to the function. This is done by
passing a list of colors or sizes to the c or s arguments, respectively.
Hexbin plots are an alternative to scatterplots that show the concentration of data in regions rather
than the individual points. They can be created with the function hexbin(). Like plot() and
scatter(), this function accepts two lists of x- and y-coordinates.

Heatmaps and contour plots

Heatmaps and contour plots are used to visualize 3-D surfaces and complex-valued functions on a
flat space. Heatmaps are created using the pcolormesh() function. Contour plots are created using
contour() or contourf(), with the latter creating a filled contour plot.
Each of these functions accepts the x-, y-, and z-coordinates as a mesh grid, or 2-D array. To create
these, use the function np.meshgrid():

>>> x = np.linspace(0,1,100)
>>> y = np.linspace(0,1,80)
>>> X, Y = np.meshgrid(x, y)

The z-coordinate can then be computed using the x and y mesh grids.
Note that each of these functions can accept a colormap, using the cmap parameter. These plots are
sometimes more informative with a logarithmic color scale, which can be used by passing a
matplotlib.colors.LogNorm object in the norm parameter of these functions.
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With pcolormesh(), it is also necessary to pass shading='auto' or shading='nearest' to avoid a
deprecation error.

The following example demonstrates creating heatmaps and contour plots, using a graph of
z = (x2 + y) sin(y). The results is shown in Figure B.5

>>> from matplotlib.colors import LogNorm

>>> x = np.linspace(-3,3,100)
>>> y = np.linspace(-3,3,100)
>>> X, Y = np.meshgrid(x, y)
>>> Z = (X**2+Y)*np.sin(Y)

#Heatmap
>>> plt.subplot(1,3,1)
>>> plt.pcolormesh(X, Y, Z, cmap='viridis', shading='nearest')
>>> plt.title("Heatmap")

#Contour
>>> plt.subplot(1,3,2)
>>> plt.contour(X, Y, Z, cmap='magma')
>>> plt.title("Contour plot")

#Filled contour
>>> plt.subplot(1,3,3)
>>> plt.contourf(X, Y, Z, cmap='coolwarm')
>>> plt.title("Filled contour plot")
>>> plt.colorbar()

>>> plt.show()

Figure B.5: Example of heatmaps and contour plots.
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Showing images

The function imshow() is used for showing an image in a plot, and can be used on either grayscale
or color images. This function accepts a 2-D n×m array for a grayscale image, or a 3-D n×m× 3

array for a color image. If using a grayscale image, you also need to specify cmap='gray', or it will
be colored incorrectly.
It is best to also use axis('equal') alongside imshow(), or the image will most likely be stretched.
This function also works best if the images values are in the range [0, 1]. Some ways to load images
will format their values as integers from 0 to 255, in which case the values in the image array
should be scaled before using imshow().

3-D Plotting

Matplotlib can be used to plot curves and surfaces in 3-D space. In order to use 3-D plotting, you
need to run the following line:

>>> from mpl_toolkits.plot3d import Axes3D

The argument projection='3d' also must be specified when creating the subplot for the 3-D
object:

>>> plt.subplot(1,1,1, projection='3d')

Curves can be plotted in 3-D space using plot(), by passing in three lists of x-, y-, and
z-coordinates. Surfaces can be plotted using ax.plot_surface(). This function can be used
similar to creating contour plots and heatmaps, by obtaining meshes of x- and y- coordinates from
np.meshgrid() and using those to produce the z-axis. More generally, any three 2-D arrays of
meshes corresponding to x-, y-, and z-coordinates can be used. Note that it is necessary to call this
function from an Axes object.
The following example demonstrates creating 3-D plots. The results are shown in Figure B.6.

#Create a plot of a parametric curve
ax = plt.subplot(1,3,1, projection='3d')
t = np.linspace(0, 4*np.pi, 160)
x = np.cos(t)
y = np.sin(t)
z = t / np.pi
plt.plot(x, y, z, color='b')
plt.title("Helix curve")

#Create a surface plot from np.meshgrid
ax = plt.subplot(1,3,2, projection='3d')
x = np.linspace(-1,1,80)
y = np.linspace(-1,1,80)
X, Y = np.meshgrid(x, y)
Z = X**2 - Y**2
ax.plot_surface(X, Y, Z, color='g')
plt.title(r"Hyperboloid")
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#Create a surface plot less directly
ax = plt.subplot(1,3,3, projection='3d')
theta = np.linspace(-np.pi,np.pi,80)
rho = np.linspace(-np.pi/2,np.pi/2,40)
Theta, Rho = np.meshgrid(theta, rho)
X = np.cos(Theta) * np.cos(Rho)
Y = np.sin(Theta) * np.cos(Rho)
Z = np.sin(Rho)
ax.plot_surface(X, Y, Z, color='r')
plt.title(r"Sphere")

plt.show()
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Figure B.6: Examples of 3-D plotting.

Additional Resources
rcParams

The default plotting parameters of Matplotlib can be set individually and with more fine control
than styles by using rcParams. rcParams is a dictionary that can be accessed as either
plt.rcParams or matplotlib.rcParams.
For instance, the resolution of plots can be changed via the "figure.dpi" parameter:

>>> plt.rcParams["figure.dpi"] = 600

A list of parameters that can set via rcParams can be found at https:
//matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams.

Animations

Matplotlib has capabilities for creating animated plots. The Animations lab in Volume 4 has
detailed instructions on how to do so.

https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.RcParams
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Matplotlib gallery and tutorials

The Matplotlib documentation has a number of tutorials, found at
https://matplotlib.org/stable/tutorials/index.html. It also has a large gallery of examples,
found at https://matplotlib.org/stable/gallery/index.html. Both of these are excellent
sources of additional information about ways to use and customize Matplotlib.

https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/gallery/index.html
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