
� Getting Started On
Windows

Welcome to ACME! This guide will help you get set up for ACME.

Installing or Updating WSL
Windows Subsystem for Linux (WSL) is a compatibility layer for running Linux natively on Windows
10 and 11. Specifically, we’ll install Ubuntu on Windows using WSL, and this is how you will run all
your code in ACME. You may have already developed your own workflow on Windows that you’re
familiar with, but we highly recommend that you use WSL, as not doing so will most certainly give
you extensive grief when trying to install different items for many ACME labs.
Don’t worry if you have zero Linux experience. Even with very little or no Linux experience, you
will soon become comfortable enough to help your peers and coworkers with it in the future.

1. Installing WSL and Ubuntu

(a) Open the command prompt in administrator mode. To do so, press the Windows key,
type “command prompt”, right-click the Command Prompt program, and select “Run as
administrator”.

(b) In the command prompt, type wsl --install.

(c) Restart your computer.

2. Updating WSL (if you’ve installed it before)

(a) If you’ve installed WSL before, make sure it’s updated by running in the Command Prompt
wsl --update.

3. Updating Ubuntu

(a) Open Ubuntu. Again, you may press the Windows key and type “Ubuntu”. Ubuntu may
take a few minutes to set up the first time. This is normal.

(b) Create a new user account with a username and password when prompted. This does not
need to correspond to your Windows username. Make sure to remember your password,
or skip setting one by just pressing the Enter key instead of entering a password.

(c) Run the command sudo apt update to update the package list.

(d) Run the command sudo apt upgrade to install any necessary updates.

�

� Lab �. Getting Started On Windows

Navigating the WSL File System
When WSL installs a Linux distribution (meaning any Linux-based operating system; in our case
it’s Ubuntu), it creates a home and file system separate from Windows. While you can still access
your files in Windows from WSL by navigating through the /mnt/ directory, we recommend keeping
your code in the Linux file system. This is because in WSL 2 (the version of WSL you should now
have), accessing files on the Windows file system is much slower than accessing files on the Linux file
system. (In WSL 1 this was not the case, but WSL 2 made changes that sacrificed speed in accessing
Windows to improve performance in other areas.)

When the Ubuntu terminal first starts up, the “current working directory” is your user folder.
Its absolute path is /home/<username>, but it is abbreviated by the tilde, �. At any time you may
navigate back here with the command cd �, or even just cd for short.

If you’d like to create a new directory in your user folder—say, a “documents” folder in which
to keep your ACME code—you can navigate to your user folder, then execute the command mkdir
documents.

You can configure Ubuntu to automatically navigate to a folder of your choice instead of your
user directory �. You may follow these steps:

1. Open your Ubuntu terminal.

2. Type cd � to go to your home directory.

3. Type nano .profile to open your profile file.

4. Add the path of the desired default directory to the end of the file. For example, if you wanted
to change the default “boot” directory to be your documents folder, you would add the following
line of code to the end of the file:

cd �/documents

5. Save and exit the file by pressing Ctrl+X, then Y, and finally Enter.

6. Close your terminal and reopen it.

Ubuntu should now immediately start in your documents folder.

Git
Git is a version control system that helps you manage changes to your code over time. This section
will serve as a guide for the later steps, so do not worry about learning everything right now. It will
come with time. Git allows you to keep track of different versions of your code, collaborate with
others, and revert changes if necessary.

To install Git on WSL or another Linux system, run the following command in Ubuntu:

sudo apt install git

�

Application in ACME
In ACME, Git is not only used to save and organize your work, but also to turn in assignments.
The most current version of your code will be pulled by the instructor at a predesignated time and
graded. If you always push your code when you’re done working on it, you will never miss turning
in an assignment. Explanations of these Git terms are provided later in this document.

Downloading Course Materials
The lab manuals can be found at https://foundations-of-applied-mathematics.github.io/.
You can also download the zip folders that contain the lab materials from this page. You should
then unzip these in a folder you are familiar with, such as your Documents or Desktop folder.

Achtung!

Make absolutely sure your unzipped lab folders are not nested! When you open each lab folder,
you should NOT have to open another folder to access all the lab materials! If your folder is
nested, move the inner folder out so that there’s only “one layer” to access your lab materials.

Online Setup
1. Sign up for GitHub. If you already have a GitHub account, sign into your account and proceed

to the next step. Otherwise, create a GitHub account at https://github.com/. This is where
you will store your files online for grading.

2. Create an ssh key. This step only needs to be done once on each computer you want to use
to access your repository. If you have multiple repositories on the same computer, you do not
need to repeat this step for each one. To create an ssh key, enter the following command in
Ubuntu:

ssh-keygen -t ecdsa -b 256

Press the Enter or Return key to accept the default file location. It will then prompt you
to enter a Password, but you can press Enter or Return again to skip this step if you don’t
want a Password. The key will then be created. The file for the key will be placed in the
/home/<username>/.ssh (or �/.ssh) directory.

Now that the key is created, you need to add it to your GitHub account. From GitHub, click
on your profile icon in the upper right corner, and click on Settings towards the bottom of
the menu. Now click on SSH and GPG keys on the left, and click the green New SSH key
button. Make a Title for this key (it doesn’t matter what you put, but you may wish to specify
which machine this key will be used for). Make sure the Key type is set to Authentication
Key.

Now, using the file explorer, navigate to the .ssh folder, and open the public key file. This file
should be called id_ecdsa.pub; do NOT use id_ecdsa (without the .pub extension). Copy
the contents of this file and paste it into the Key field on GitHub.

� Lab �. Getting Started On Windows

If you’re having trouble navigating to the .ssh folder, you can try to print the contents of the
folder by running this code in your terminal:

cat �/.ssh/id_ecdsa.pub

Once you’ve pasted the contents of id_ecdsa.pub into GitHub, press the green Add SSH key
button. Then, in your terminal run

ssh-add �/.ssh/id_ecdsa

If you get an error that says “Could not open a connection to your authentication agent,” then
run

eval $(ssh-agent)
ssh-add �/.ssh/id_ecdsa

To verify that this worked, when you make your first commit the new ssh key should be added
to the file �/.ssh/known_hosts.

3. Make a new repository. You will need to create a new repository for each lab folder you
downloaded. Note: you must follow these instructions exactly. If you do not complete each
step exactly as specified below, delete the repository and start over.

• On your GitHub Home page, click the green Create repository button to the upper left
of the screen; or, if you have already used GitHub before and already have repositories set
up, click on the green New button next to Top Repositories.

• First you will need to provide a Repository name; this can be anything you want, but
please make it relevant to the lab folder it will represent; you may also provide a repository
description if you like.

• Mark the repository as Private.

• Leave the box next to Add a README file unchecked (if you accidentally include a
README, delete the repository and start over).

• Under Add .gitignore, select None for .gitignore template (if you accidentally in-
clude a .gitignore, delete the repository and start over).

• Under Choose a license, select None for License.

• Finally, click the green Create repository button.

Repeat this process for each lab folder you downloaded.

4. Give the instructor access to your repository (First Day of Class). If you are doing this before
the first day of class, skip to the next step. In your newly created repository, click the Settings
tab along the top of the page and click on Collaborators on the left. Then click on the green
Add people button. Type your instructor’s GitHub username, select them, then click the big
green Add <username> to this repository button.

5. Connect your folder to the new repository. In Ubuntu enter the following commands.

�

Navigate to your folder.
$ cd /path/to/folder # cd means 'change directory'.

Make sure you are in the right place.
$ pwd # pwd means 'print working directory'.
/path/to/folder
$ ls *.md # ls means 'list files'.
README.md # This means README.md is in the working directory.

Connect this folder to the online repository.
$ git init
$ git remote add origin git@github.com:<username>/<repo>.git
Make sure the link has this form. If it starts with https, select the -

ssh option on GitHub instead.

Record your credentials. user.name should be your name, and user.email -
must be the email associated with your GitHub account.

$ git config --global user.name "your name"
$ git config --global user.email "your email"

Add the contents of this folder to Git and update the repository.
$ git add --all
$ git commit -m "initial commit"
$ git branch -M main # Update branch name.
$ git push origin main

For example, if your GitHub username is greek314, the repository is called acmev1, and the
folder is called Student-Materials/ and is located in Desktop, you would enter the following
commands:

Navigate to the folder.
$ cd �/Desktop/Student-Materials

Make sure this is the right place.
$ pwd
/Users/Archimedes/Desktop/Student-Materials
$ ls *.md
README.md

$ git init
$ git remote add origin git@github.com:greek314/acmev1.git

$ git config --global user.name "archimedes"
$ git config --global user.email "greek314@example.com"

$ git add --all
$ git commit -m "initial commit"
$ git branch -M main

6 Lab �. Getting Started On Windows

$ git push origin main

At this point you should be able to see the same files on your GitHub repository that are also
found on your machine in your course directory. If you enter the repository URL incorrectly in
the git remote add origin step, you can reset it with the following line:

$ git remote set-url origin git@github.com:<username>/<repo>.git

Note

You may get an error like the following when you run git push:

...
fatal: Authentication failed for 'https://github.com/<username>/<repo -

>.git/'

If this error occurs, your repository URL is in the wrong format; most likely, you used
the https format instead of the ssh format shown above. You can use the git remote
set-url origin command to fix this issue as well.

6. Download data files. Many labs have accompanying data files. To download these files, navigate
into each of your course directories and run the download_data.sh bash script, which down-
loads the files and places them in the correct lab folders for you. You can also find individual
data files through Student-Materials/wiki/Lab-Index.

Navigate to your folder and run the script
$ cd /path/to/folder
$ bash download_data.sh

Repeat this process for each of your lab folders.

Installing Python and Dependencies
To install Python, navigate into one of your course directories (e.g. Volume1) and run

bash install_python.sh

Now restart your terminal.
The next step is to set up a “virtual environment.” Using a separate virtual environment for

separate Python projects makes it possible to isolate sets of dependencies from each other. This
prevents packages for one project from inadvertently interfering with those of another project—for
example, your ACME labs will need one set of packages, while another project you do in Python
may require different versions of the same packages. Environments are considered good practice in
industry, if not essential; for the small amount of extra effort, they can save a lot of headache.

�

We’ll be using Python’s native virtual environment system, venv, and we’ll be setting up just
one environment for all our ACME code (since there’s just one set of dependencies). In the terminal,
navigate to the folder where you’d like to keep your ACME lab folder(s), for example, �/documents.
Then to create an environment in a folder named .venv, write the command

python -m venv .venv

To “activate” the environment—that is, to switch to the environment’s version of Python together
with its associated dependences—use the source command:

source .venv/bin/activate

Note

If you accidentally create the virtual environment folder in the wrong location or with a name
you don’t like, no worries! Just delete the folder and create a new one with the instructions
above. Do not just move or rename the folder, as the environment contains scripts that will
not get properly updated, and the environment will simply not work.

You should see your activated environment (.venv) appear at the beginning of the current line in
the terminal, like (.venv) <username>@<computer_name>:. To deactivate the environment, simply
write deactivate. You should see (.venv) disappear.

We’re finally ready to install some Python packages to our environment. First, make sure
you’ve activated your new environment and verify that (.venv) appears at the start of the
current line of the terminal. Now run

bash install_dependencies.sh

The last line of the output should say “Python dependencies successfully installed!” If it doesn’t,
double-check that you’ve activated your virtual environment.

You have now installed Python and all necessary dependencies you will need in ACME!

Using VS Code
VS Code is the recommended code editor in ACME, though it is not required. We recommend it
because it’s free and open source, and it can use WSL very easily. You can download it at https:
//code.visualstudio.com/. Once you have it installed, you can search for it on your machine
under: Visual Studio Code. You can also open it from the terminal by typing code.

1. Installing the Remote WSL Extension: The Remote WSL extension allows you to use VS Code
to edit files in WSL. You can install it by opening VS Code and clicking on the Extensions
tab on the left (little building blocks). Search for WSL. Then click install.

You will need to restart VS Code for the extension to take effect.

2. Opening a Folder in WSL: In order to open a folder in WSL, press Ctrl+Shift+P, then search
“Remote: Show Remote Menu” and press Enter. Click Connect to WSL. Now click on the

8 Lab �. Getting Started On Windows

File menu in the upper left, and click Open Folder. Type in the complete file path to one of
your lab folders, such as /home/<username>/documents/Volume1. Click OK to save this path.
Repeat these steps for the other lab folders.

3. Installing the Python Extension: Search in the Extensions tab for “Python”, then click install.
This will enable VS Code’s support for Python.

It will also make it possible for VS Code to use your virtual environment. Press Ctrl+Shift
+P, then search “Python: Select Interpreter” and press Enter. If the path to your virtual
environment doesn’t come up, click “Enter interpreter path...”, then “Find...”, then start by
typing the path to your virtual environment folder. Select the Python file inside this folder,
located at <virtual_environment_folder>/bin/python.

If All Else Fails. . .

If, while working on a lab, you can’t get something to work on your computer, your last resort is
Google Colab. It should be reserved as a last resort, because Google Colab is formatted in a notebook
style, which is fundamentally different than a .py file. However, if you are ever stuck, keep in mind
that it’s still an option. See the Using Google Colab guide in the Appendix for more information on
using Colab for ACME labs.

Additional Git Help
Here are some key concepts and terminology you’ll need to understand and use Git effectively. You
may need to refer back to this multiple times.

• Repositories. A Git repository is a collection of files and folders that Git is tracking. By
creating a repository, you are simply telling the software that it should back up certain files
that you tell it to. When you create a repository, Git creates a hidden directory called .git
inside your project folder that tells it to track those files.

• Adding Files. Git will only track the files that you specifically add. You can add files indi-
vidually, or you can add all the files in a folder at once. To add a file, you’ll typically use the
command:

git add <filename>

• Commits. A commit is a snapshot of your code at a specific point in time. When you make
changes to your code, you can create a new commit to record those changes. Each commit has
a unique identifier, which allows you to reference it later if you need to revert your code to a
previous state. If you are collaborating with others, it gives you an “undo” button specific to
each user, allowing you to be more organized. It is good practice to commit every time you
leave your computer to keep track of your work.

To create a commit, you’ll typically use the command:

git commit -m "Commit message"

�

• Branches. A branch is a separate line of development that diverges from the main line of
development. By creating a new branch, you can work on a feature or bug fix without affecting
the main codebase. Once you’re done with your changes, you can merge the branch back into
the main codebase.
You probably won’t branch your code off the main branch in the ACME courses, but this term
is still useful to know.

• Cloning. Cloning a repository is simply downloading a codebase. Just like downloading a zip
folder, all the files are present, but the original author does not have access to your files unless
you push them back.
To clone a repository, you’ll typically use the command:

git clone <url>

• Pushing and Pulling. Among the most frequent operations you’ll use with Git are pushing and
pulling.
When you push changes to a remote repository, you’re sending your commits to a central server
where others can access them. This will be where the grader accesses your code in order to
give you a grade. To push your changes, you’ll typically use the command:

git push <remote> <branch>

Here, “remote” refers to the remote repository where you want to push your changes (e.g.,
“origin”), and “branch” refers to the name of the branch you’re pushing (e.g., “main”). Good
practice is to push every few hours of working, and absolutely every time you’re done with a
lab. Pushing saves your work on a secure server, meaning if something catastrophic happens
to your computer, none of your work will be lost and you can continue where you left off on a
different machine. Do not assume you’re different and that computer issues will never happen
to you. Doing a lab from scratch twice in a week is guaranteed to take more time than just
once!

Online Repository

Computer

git push origin main git pull origin main

Exchanging Git commits between the repository and a local clone.

When you pull changes from a remote repository, you’re downloading changes that others have
made and incorporating them into your local codebase. This will be used to pull your grading
feedback back from the grader. To pull changes, you’ll typically use the command:

git pull <remote> <branch>

�� Lab �. Getting Started On Windows

Here, “remote” and “branch” have the same meanings as in the git push command. Good
practice is to pull just before any time you push.

• Origin and Main. “Origin” and “main” are two terms you’ll often see when working with Git.

“Origin” refers to the default remote repository where your code is stored. When you clone a
repository, Git sets up a remote called “origin” that points to the URL of the original repository.
You can push/pull changes to/from “origin” to collaborate with others.

“Main” is the name of the default branch in a Git repository. This is the branch where the
main line of development occurs, and it’s typically the branch you’ll be working on most of the
time. However, depending on the repository, the default branch may be named something else
(e.g., “master”).

Command Explanation
git status Display the staging area and untracked changes.
git pull origin main Pull changes from the online repository.
git push origin main Push changes to the online repository.
git add <filename(s)> Add a file or files to the staging area.
git add -u Add all modified, tracked files to the staging area.
git commit -m "<message>" Save the changes in the staging area with a given message.
git checkout -- <filename> Revert changes to an unstaged file since the last commit.
git reset HEAD -- <filename> Remove a file from the staging area.
git diff <filename> See the changes to an unstaged file since the last commit.
git diff --cached <filename> See the changes to a staged file since the last commit.
git config --local <option> Record your credentials (user.name, user.email, etc.).

Common Git commands.

Now that you’ve learned about some of Git’s features, it’s time to implement them in your first
ACME Lab, Intro to GitHub!

A Using Google Colab

Lab Objective: Google Colab is an environment similar to Jupyter Notebooks that is run remotely
on Google’s servers. It has some advantages over other environments, including easy package man-
agement and installation and the ability to run on a machine that doesn’t have python installed. This
appendix details how Colab can be used for ACME labs, as well as some issues to be aware of and
relevant workarounds.

Setup
Google Colab can be started by going to the Colab website https://colab.research.google.com/
or by opening a .ipynb file from your Google Drive. When Colab starts, you can upload a .ipynb
file by selecting the Upload tab and choosing the .ipynb file you wish to upload. Colab can also be
used with .py files, but the process is somewhat more involved and is detailed below.

Once your file is open in Colab, it can be run and edited like a normal Jupyter notebook.
To submit your lab for grading, you will need to download the file by selecting File > Download
and then either Download .ipynb or Download .py. You will then need to move your file into the
repository clone on your machine in the correct lab folder, where you can then add, commit, and
push it like normal.

Achtung!

Remember to keep the name of the file IDENTICAL to the original name of the lab spec!
Failure to do this will cause the test driver to skip over your file and give you an automatic
zero for the lab!

Using .py Files with Colab

Google Colab only works with .ipynb files, but many ACME labs use .py files. Since the former
filetype has additional formatting, there isn’t a way to directly import a .py file into Colab. The
simplest way around this is to create a new file in Colab and copy-paste the lab file’s contents into
it. This way, it can be edited and used as a normal Jupyter notebook. Then, when you’re finished,
download the notebook as a .py file instead of a .ipynb file.

��

�� Appendix A. Google Colab

However, under these circumstances some care must be taken in order for your work to be
graded properly. In particular, before you download your file, make sure that the following are
satisfied:

• All Colab-specific code to upload files is commented out; as the packages used do not exist
outside of Google Colab, the test driver will raise an error when it attempts to import them.

• There are no calls to the lab’s functions, for testing purposes or otherwise, outside of a typical
if __name__=="__main__" statement; otherwise, they will be run when the file is imported by
the test driver, which will certainly cause issues.

Using Data Files
To use a data file in Colab, you must first upload it by running the following in a code cell in Colab:

from google.colab import files
files.upload()

When run, this will create a prompt for you to upload your files. After doing so, the data files can
be accessed from the notebook as normal.

The best way to upload an entire folder is to first zip it, then upload the zipped folder to Colab,
and then unzip it in the Colab notebook:

To upload a folder called 'data', first zip it, and then upload 'data.zip'
files.upload()
Then, it can be unzipped
!unzip data.zip

If the files do not need to be in the same folder, you can always simply upload multiple files at once
with the usual files.upload() code.

Installing Packages
One advantage of Google Colab is that a very large percentage of the python packages used in the
ACME labs are already pre-installed. However, there are a few packages that are not installed, and
must be installed each session. Packages can be installed by running pip in a code cell, which is done
by putting an exclamation point before the usual command. For example, to install the GeoPandas
package, you would run:

!pip install geopandas

