{"cells":[{"cell_type":"markdown","source":"# Escalas de medicion\n","metadata":{"id":"Gg_mKXTZ0oqx","cell_id":"1849a88712c04a9394679509f34c8eff","deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"**Nominal:** Consiste en clasificar objetos o fenómenos, según ciertas características, tipologías o nombres, dándoles una denominación o símbolo, sin que implique ninguna relación de orden, distancia o proporción entre los objetos o fenómeno.\n\n**Ejemplo** Cuando un producto se rotula de acuerdo al cumplimiento de las especificaciones de diseño como \"conforme y no conforme\". o \"crítico, grave, y menor\". No se obtienen valores numéricos y no se puede realizar un orden de las observaciones con sentido.\n\n**Ordinal** Llamada también escala de orden jerárquico, con ella se establecen posiciones relativas de los objetos o fenómenos en estudio, respecto a alguna característica de interés, sin que se reflejen distancias entre ellos. Puede suceder que los objetos de una categoría de las escala no sean precisamente diferentes a los objetos de otra categoría de la escala, sino que están relacionados entre si.\n\n**Ejemplo** Suponga que a los clientes en un almacen se les hace unas preguntas para valorar la calidad del servicio. Los clientes valoran la calidad de acuerdo a las siguientes respuestas: 1 (excelente), 2 (bueno), 3 (regular), 3 (malo) 4 (pésimo).\n\n**Intervalo** Representa un nivel de medición más preciso, matemáticamente hablando, que las anteriores; no solo se establece un orden en las posiciones relativas de los objetos o individuos, sino que se mide también la distancia entre los intervalos o las diferentes categorías o clases.\n\n**Ejemplo** Suponga que se está interesado en la temperatura del fundido de acero. Se toman cuatro lecturas cada dos horas: 2050, 2100, 2150, 2200 y 2250 F. Obviamente los datos pueden ser ordenados (semejante a los datos ordinales) en orden ascendente de temperatura indicando temperatura más fria, menos fria, y asi sucesivamente.\n\n**Razon** Cuando una escala tiene todas las características de una escala de intervalo y además un punto cero real en su origen, se llama escala de razón. Además de distinción, orden y distancia, ésta es una escala que permite establecer en que proporción es mayor una categoría de una escala que otra. El cero absoluto o natural representa la nulidad de lo que se estudia.\n\n**Ejemplo** Suponga que el peso de cuatro piezas fundidas de metal son 2.0, 2.1, 2.3 y 2.5 kg. El orden(ordinal) y la diferencia (intervalo) en los pesos puede ser comparado. Así, el incremento de peso de 2.0 a 2.1 es de 0.1 kg, el cual es el mismo que el que existe entre 2.3 y 2.4 kg","metadata":{"id":"bndj1KVa0tME","cell_id":"f313c38466d548dbaf58977e557bc9d9","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"from google.colab import drive\nimport os\ndrive.mount('/content/gdrive')\n# Establecer ruta de acceso en drive\nimport os\nprint(os.getcwd())\nos.chdir(\"/content/gdrive/My Drive\")","metadata":{"id":"A2vwLVGR0cf_","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"056f15a9fbf04be4aae4e4f6d4baa4bc","outputId":"bfeeda6d-6f0e-4ad1-e054-9737ad3ba03a","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":2604,"user_tz":180,"timestamp":1647184350115},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount(\"/content/gdrive\", force_remount=True).\n/content/gdrive/My Drive\n"}],"execution_count":9},{"cell_type":"markdown","source":"# Histograma\n\nEl histograma es una técnica gráfica utilizada para presentar gran cantidad de datos. Se le atribuye a Karl Pearson en 1895. El histograma puede ser: de **frecuencias absolutas, de frecuencias relativas, de frecuencias absolutas acumuladas y de frecuencias relativas acumuladas**. Para la construcción del histograma se requiere elaborar una tabla de distribución de frecuencias, lo cual se desarrollará a continuación.\n\nEl gráfico de la distribución de frecuencias, se llama histograma. El histograma de frecuencias es una representación visual de los datos en donde se evidencian fundamentalmente tres características: **forma, acumulación o tendencia posicional y dispersión o variabilidad**.\n\nEl histograma (de frecuencias) en si es una sucesión de rectángulos construidos sobre un sistema de coordenadas de la siguiente manera:\n\n1. Las bases de los rectángulos se localizan en el eje horizontal. La longitud de la base es igual al ancho del intervalo.\n2. Las alturas de los rectángulos se registran sobre el eje vertical y corresponden a las frecuencias de los intervalos.\n3. Las áreas de los rectángulos son proporcionales a las frecuencias de las clases.\n\n$$k= 1 + 3.3 log_{10} (n)$$\n","metadata":{"id":"2kG9_qWu8v5w","cell_id":"68ea5cde436049b4ae8923a6040edee0","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"import seaborn as sns\nimport matplotlib.pyplot as plt\ntips = sns.load_dataset('tips')\ntips.head()","metadata":{"id":"YVsxX5sj7s5R","colab":{"height":206,"base_uri":"https://localhost:8080/"},"cell_id":"2c21876bc3a7440f9d3cfc4acae98258","outputId":"1b7ab514-5dad-47ba-9b5c-138bf07883d8","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":21,"user_tz":180,"timestamp":1647184297830},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" total_bill tip sex smoker day time size\n0 16.99 1.01 Female No Sun Dinner 2\n1 10.34 1.66 Male No Sun Dinner 3\n2 21.01 3.50 Male No Sun Dinner 3\n3 23.68 3.31 Male No Sun Dinner 2\n4 24.59 3.61 Female No Sun Dinner 4","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
total_bill
\n
tip
\n
sex
\n
smoker
\n
day
\n
time
\n
size
\n
\n \n \n
\n
0
\n
16.99
\n
1.01
\n
Female
\n
No
\n
Sun
\n
Dinner
\n
2
\n
\n
\n
1
\n
10.34
\n
1.66
\n
Male
\n
No
\n
Sun
\n
Dinner
\n
3
\n
\n
\n
2
\n
21.01
\n
3.50
\n
Male
\n
No
\n
Sun
\n
Dinner
\n
3
\n
\n
\n
3
\n
23.68
\n
3.31
\n
Male
\n
No
\n
Sun
\n
Dinner
\n
2
\n
\n
\n
4
\n
24.59
\n
3.61
\n
Female
\n
No
\n
Sun
\n
Dinner
\n
4
\n
\n \n
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":4}],"execution_count":4},{"cell_type":"code","source":"sns.distplot(tips['total_bill'], kde=False) \nplt.show()","metadata":{"id":"Ed4SXTKO9mcZ","colab":{"height":338,"base_uri":"https://localhost:8080/"},"cell_id":"162556c826b9430eb0282ac75236d63a","outputId":"277f9f14-4c72-48ec-dc34-c10a163f4094","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":590,"user_tz":180,"timestamp":1647184298405},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stderr","text":"/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n warnings.warn(msg, FutureWarning)\n"},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXAAAAEKCAYAAAALoA6YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOp0lEQVR4nO3df6zddX3H8edrBaNTM0SuDaF0l02mIWbU5A5wsgVxOBaJsMyg1rkuIWmWuQSdxqH/GJctkSzxR+KWrBFjk1mEoAzinLOpMJ1bikVAQTQgA0ZTaEWIsEWX4nt/nG/D3eW297T3nHt59z4fyc35fj/f7/me9yc5vPrhc873c1JVSJL6+YXVLkCSdGwMcElqygCXpKYMcElqygCXpKYMcElq6oRxTkryIPAU8AxwsKrmkpwMXAfMAg8Cl1fVE9MpU5K00NGMwN9QVZuqam7YvwrYVVVnAruGfUnSCsk4N/IMI/C5qvrRvLYfABdU1b4kpwK3VtWrjnSdU045pWZnZ5dXsSStMbfffvuPqmpmYftYUyhAAV9NUsDfV9U2YH1V7RuOPwqsX+ois7Oz7NmzZ9yaJUlAkocWax83wM+vqr1JXgHsTPL9+QerqoZwX+yFtwJbATZu3HgUJUuSjmSsOfCq2js87gduBM4BHhumThge9x/muduqaq6q5mZmnvN/AJKkY7RkgCd5cZKXHtoG3gTcDdwMbBlO2wLcNK0iJUnPNc4UynrgxiSHzt9RVV9J8i3g+iRXAA8Bl0+vTEnSQksGeFU9AJy9SPvjwBunUZQkaWneiSlJTRngktSUAS5JTRngktTUuDfy6Hlgx+6Hp3Ldzed6g5XUkSNwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekplzMakqmtfCUJB3iCFySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJampsQM8ybokdyT50rB/RpLdSe5Pcl2SF0yvTEnSQkczAr8SuHfe/tXAx6vqlcATwBWTLEySdGRjBXiSDcCbgU8P+wEuBG4YTtkOXDaNAiVJixt3BP4J4APAz4f9lwNPVtXBYf8R4LQJ1yZJOoIlAzzJJcD+qrr9WF4gydYke5LsOXDgwLFcQpK0iHFG4K8H3pLkQeDzjKZOPgmclOTQr9pvAPYu9uSq2lZVc1U1NzMzM4GSJUkwRoBX1QerakNVzQJvB75WVe8EbgHeOpy2BbhpalVKkp5jOd8D/wvgz5Pcz2hO/JrJlCRJGscJS5/yrKq6Fbh12H4AOGfyJUmSxnFUAa7j047dD0/lupvP3TiV60oa8VZ6SWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWrKAJekpgxwSWpqyQBP8sIktyW5K8k9ST4ytJ+RZHeS+5Ncl+QF0y9XknTIOCPwnwEXVtXZwCbg4iTnAVcDH6+qVwJPAFdMr0xJ0kJLBniNPD3snjj8FXAhcMPQvh24bCoVSpIWNdYceJJ1Se4E9gM7gR8CT1bVweGUR4DTplOiJGkxJ4xzUlU9A2xKchJwI/DqcV8gyVZgK8DGjRuPpUY1tWP3wxO/5uZzfQ9JhxzVt1Cq6kngFuB1wElJDv0DsAHYe5jnbKuquaqam5mZWVaxkqRnjfMtlJlh5E2SFwEXAfcyCvK3DqdtAW6aVpGSpOcaZwrlVGB7knWMAv/6qvpSku8Bn0/yV8AdwDVTrFOStMCSAV5V3wFeu0j7A8A50yhKkrQ078SUpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElqygCXpKYMcElq6oTVLkA6Gjt2PzyV624+d+NUritN05Ij8CSnJ7klyfeS3JPkyqH95CQ7k9w3PL5s+uVKkg4ZZwrlIPC+qjoLOA94d5KzgKuAXVV1JrBr2JckrZAlA7yq9lXVt4ftp4B7gdOAS4Htw2nbgcumVaQk6bmO6kPMJLPAa4HdwPqq2jccehRYP9HKJElHNHaAJ3kJ8AXgPVX1k/nHqqqAOszztibZk2TPgQMHllWsJOlZYwV4khMZhffnquqLQ/NjSU4djp8K7F/suVW1rarmqmpuZmZmEjVLkhjvWygBrgHuraqPzTt0M7Bl2N4C3DT58iRJhzPO98BfD7wL+G6SO4e2DwEfBa5PcgXwEHD5dEqUJC1myQCvqn8DcpjDb5xsOZKkcXkrvSQ1ZYBLUlMGuCQ1ZYBLUlMGuCQ1ZYBLUlMGuCQ1ZYBLUlMGuCQ1ZYBLUlMGuCQ1ZYBLUlMGuCQ1ZYBLUlMGuCQ1ZYBLUlPj/CKPdNzbsfvhqVx387kbp3JdCRyBS1JbBrgkNWWAS1JTa34OfFpzn5I0bY7AJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJakpA1ySmjLAJampJQM8yWeS7E9y97y2k5PsTHLf8Piy6ZYpSVponBH4Z4GLF7RdBeyqqjOBXcO+JGkFLRngVfV14McLmi8Ftg/b24HLJlyXJGkJxzoHvr6q9g3bjwLrJ1SPJGlMy/4Qs6oKqMMdT7I1yZ4kew4cOLDcl5MkDY41wB9LcirA8Lj/cCdW1baqmququZmZmWN8OUnSQsca4DcDW4btLcBNkylHkjSucb5GeC3wH8CrkjyS5Argo8BFSe4DfmfYlyStoCV/lb6q3nGYQ2+ccC3ScWfH7oenct3N526cynXVi3diSlJTBrgkNWWAS1JTBrgkNWWAS1JTBrgkNWWAS1JTBrgkNbXkjTySnn+mcYOQNwf14whckpoywCWpKQNckppyDlwS4MJbHTkCl6SmDHBJasoAl6SmDHBJasoAl6SmDHBJasoAl6SmDHBJasobeSRpnk4LhTkCl6SmDHBJasoAl6SmDHBJasoAl6SmDHBJasoAl6Sm2nwPfFqLzUuaLv/bnR5H4JLUlAEuSU0Z4JLUlAEuSU0tK8CTXJzkB0nuT3LVpIqSJC3tmAM8yTrgb4HfA84C3pHkrEkVJkk6suWMwM8B7q+qB6rqf4HPA5dOpixJ0lKWE+CnAf81b/+RoU2StAKmfiNPkq3A1mH36SQ/mPZrPk+cAvxotYtYRfZ/7fZ/LfcdFun/O5d/zV9erHE5Ab4XOH3e/oah7f+pqm3AtmW8TktJ9lTV3GrXsVrs/9rt/1ruO6xs/5czhfIt4MwkZyR5AfB24ObJlCVJWsoxj8Cr6mCSPwP+BVgHfKaq7plYZZKkI1rWHHhVfRn48oRqOd6suWmjBez/2rWW+w4r2P9U1Uq9liRpgryVXpKaMsAnIMlnkuxPcve8tpOT7Exy3/D4stWscVqSnJ7kliTfS3JPkiuH9rXS/xcmuS3JXUP/PzK0n5Fk97DMxHXDB/3HrSTrktyR5EvD/prpf5IHk3w3yZ1J9gxtK/L+N8An47PAxQvargJ2VdWZwK5h/3h0EHhfVZ0FnAe8e1hSYa30/2fAhVV1NrAJuDjJecDVwMer6pXAE8AVq1jjSrgSuHfe/lrr/xuqatO8rw+uyPvfAJ+Aqvo68OMFzZcC24ft7cBlK1rUCqmqfVX17WH7KUb/EZ/G2ul/VdXTw+6Jw18BFwI3DO3Hbf8BkmwA3gx8etgPa6j/h7Ei738DfHrWV9W+YftRYP1qFrMSkswCrwV2s4b6P0wf3AnsB3YCPwSerKqDwynH+zITnwA+APx82H85a6v/BXw1ye3DneewQu//Nr+J2VlVVZLj+us+SV4CfAF4T1X9ZDQIGzne+19VzwCbkpwE3Ai8epVLWjFJLgH2V9XtSS5Y7XpWyflVtTfJK4CdSb4//+A03/+OwKfnsSSnAgyP+1e5nqlJciKj8P5cVX1xaF4z/T+kqp4EbgFeB5yU5NAAadFlJo4TrwfekuRBRiuSXgh8krXTf6pq7/C4n9E/4OewQu9/A3x6bga2DNtbgJtWsZapGeY7rwHuraqPzTu0Vvo/M4y8SfIi4CJGnwPcArx1OO247X9VfbCqNlTVLKPlNL5WVe9kjfQ/yYuTvPTQNvAm4G5W6P3vjTwTkORa4AJGq5A9BnwY+EfgemAj8BBweVUt/KCzvSTnA98Avsuzc6AfYjQPvhb6/+uMPqRax2hAdH1V/WWSX2E0Ij0ZuAP4w6r62epVOn3DFMr7q+qStdL/oZ83DrsnADuq6q+TvJwVeP8b4JLUlFMoktSUAS5JTRngktSUAS5JTRngktSUAS5JTRngaifJSUn+dIlzZpNsHuNas/OXAV7k+B8n+dRhjv37wmskueDQkqrStBng6ugk4IgBDswCSwb4clTVb07z+tJSDHB19FHgV4cF9P9m+Lt7WFT/bfPO+a3hnPcOo+RvJPn28Hc04Xt6kluHxfk/fKgxydNHepI0ba5GqI6uAl5TVZuS/AHwJ8DZjJYy+FaSrw/nvL+qLgFI8ovARVX10yRnAtcCc4tf/jnOAV4D/M9w/X+qqj2T7ZJ09AxwdXc+cO2wpOtjSf4V+A3gJwvOOxH4VJJNwDPArx3Fa+ysqscBknxxeE0DXKvOANda8V5GC42dzWjq8KdH8dyFCwa5gJCeF5wDV0dPAS8dtr8BvG34VZwZ4LeB2xacA/BLwL6q+jnwLkarB47rouFHal/E6KexvrncDkiT4Ahc7VTV40m+OXx175+B7wB3MRoZf6CqHk3yOPBMkrsY/ej03wFfSPJHwFeA/z6Kl7yN0Q9WbAD+wflvPV+4nKwkNeUUiiQ15RSKBCT5XeDqBc3/WVW/vxr1SONwCkWSmnIKRZKaMsAlqSkDXJKaMsAlqSkDXJKa+j9goK0GGa3hkwAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"execution_count":5},{"cell_type":"code","source":"sns.histplot(data=tips,x='total_bill',hue='sex') \nplt.title('Histograma de gasto por sexo')\nplt.show()","metadata":{"id":"5uuTFo6--STa","colab":{"height":296,"base_uri":"https://localhost:8080/"},"cell_id":"b9e247956be44f1aa68df2d43bc0dbe3","outputId":"87f67bf6-5300-4ae7-f911-2d3da536e375","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":15,"user_tz":180,"timestamp":1647184301613},"deepnote_cell_type":"code"},"outputs":[{"output_type":"display_data","data":{"text/plain":"
\n\n"},"metadata":{}}],"execution_count":7},{"cell_type":"markdown","source":"# Series de tiempo (Lineplot)","metadata":{"id":"z4wOGOrFEO5K","cell_id":"1d7533cab0bc4528b1eeacb18b8c91d8","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"import pandas as pd\ndf=pd.read_csv('accidents.csv',delimiter=\";\")\ntype(df)","metadata":{"id":"o8XIFxAmERvU","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"801a80ab80d24535b2d800f30099f17e","outputId":"2902bd7d-eddf-427a-918a-3f1091dbe89b","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":1076,"user_tz":180,"timestamp":1647184351921},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"pandas.core.frame.DataFrame"},"metadata":{},"execution_count":10}],"execution_count":10},{"cell_type":"code","source":"print(df.shape)\ndf.head()","metadata":{"id":"XMx7qE2JEhtT","colab":{"height":439,"base_uri":"https://localhost:8080/"},"cell_id":"3cb013162f514bd0b215352c202b7ebd","outputId":"dc59361f-19e8-4b4c-89e0-1646de3669b6","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":418,"user_tz":180,"timestamp":1647184354674},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"(238522, 24)\n"},{"output_type":"execute_result","data":{"text/plain":" DATE TIME BOROUGH ZIP CODE LATITUDE LONGITUDE \\\n0 09/26/2018 12:12 BRONX 10454.0 40.808987 -73.911316 \n1 09/25/2018 16:30 BROOKLYN 11236.0 40.636005 -73.912510 \n2 08/22/2019 19:30 QUEENS 11101.0 40.755490 -73.939530 \n3 09/23/2018 13:10 QUEENS 11367.0 NaN NaN \n4 08/20/2019 22:40 BRONX 10468.0 40.868336 -73.901270 \n\n ON STREET NAME NUMBER OF PEDESTRIANS INJURED \\\n0 NaN 0 \n1 FLATLANDS AVENUE 1 \n2 NaN 0 \n3 MAIN STREET 0 \n4 NaN 0 \n\n NUMBER OF PEDESTRIANS KILLED NUMBER OF CYCLIST INJURED ... \\\n0 0 0 ... \n1 0 0 ... \n2 0 0 ... \n3 0 1 ... \n4 0 0 ... \n\n CONTRIBUTING FACTOR VEHICLE 2 CONTRIBUTING FACTOR VEHICLE 3 \\\n0 NaN NaN \n1 NaN NaN \n2 NaN NaN \n3 Unspecified NaN \n4 Unspecified NaN \n\n CONTRIBUTING FACTOR VEHICLE 4 CONTRIBUTING FACTOR VEHICLE 5 COLLISION_ID \\\n0 NaN NaN 3988123 \n1 NaN NaN 3987962 \n2 NaN NaN 4193132 \n3 NaN NaN 3985962 \n4 NaN NaN 4192111 \n\n VEHICLE TYPE CODE 1 VEHICLE TYPE CODE 2 \\\n0 Sedan NaN \n1 Sedan NaN \n2 Sedan NaN \n3 Bike Station Wagon/Sport Utility Vehicle \n4 Sedan Sedan \n\n VEHICLE TYPE CODE 3 VEHICLE TYPE CODE 4 VEHICLE TYPE CODE 5 \n0 NaN NaN NaN \n1 NaN NaN NaN \n2 NaN NaN NaN \n3 NaN NaN NaN \n4 NaN NaN NaN \n\n[5 rows x 24 columns]","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
DATE
\n
TIME
\n
BOROUGH
\n
ZIP CODE
\n
LATITUDE
\n
LONGITUDE
\n
ON STREET NAME
\n
NUMBER OF PEDESTRIANS INJURED
\n
NUMBER OF PEDESTRIANS KILLED
\n
NUMBER OF CYCLIST INJURED
\n
...
\n
CONTRIBUTING FACTOR VEHICLE 2
\n
CONTRIBUTING FACTOR VEHICLE 3
\n
CONTRIBUTING FACTOR VEHICLE 4
\n
CONTRIBUTING FACTOR VEHICLE 5
\n
COLLISION_ID
\n
VEHICLE TYPE CODE 1
\n
VEHICLE TYPE CODE 2
\n
VEHICLE TYPE CODE 3
\n
VEHICLE TYPE CODE 4
\n
VEHICLE TYPE CODE 5
\n
\n \n \n
\n
0
\n
09/26/2018
\n
12:12
\n
BRONX
\n
10454.0
\n
40.808987
\n
-73.911316
\n
NaN
\n
0
\n
0
\n
0
\n
...
\n
NaN
\n
NaN
\n
NaN
\n
NaN
\n
3988123
\n
Sedan
\n
NaN
\n
NaN
\n
NaN
\n
NaN
\n
\n
\n
1
\n
09/25/2018
\n
16:30
\n
BROOKLYN
\n
11236.0
\n
40.636005
\n
-73.912510
\n
FLATLANDS AVENUE
\n
1
\n
0
\n
0
\n
...
\n
NaN
\n
NaN
\n
NaN
\n
NaN
\n
3987962
\n
Sedan
\n
NaN
\n
NaN
\n
NaN
\n
NaN
\n
\n
\n
2
\n
08/22/2019
\n
19:30
\n
QUEENS
\n
11101.0
\n
40.755490
\n
-73.939530
\n
NaN
\n
0
\n
0
\n
0
\n
...
\n
NaN
\n
NaN
\n
NaN
\n
NaN
\n
4193132
\n
Sedan
\n
NaN
\n
NaN
\n
NaN
\n
NaN
\n
\n
\n
3
\n
09/23/2018
\n
13:10
\n
QUEENS
\n
11367.0
\n
NaN
\n
NaN
\n
MAIN STREET
\n
0
\n
0
\n
1
\n
...
\n
Unspecified
\n
NaN
\n
NaN
\n
NaN
\n
3985962
\n
Bike
\n
Station Wagon/Sport Utility Vehicle
\n
NaN
\n
NaN
\n
NaN
\n
\n
\n
4
\n
08/20/2019
\n
22:40
\n
BRONX
\n
10468.0
\n
40.868336
\n
-73.901270
\n
NaN
\n
0
\n
0
\n
0
\n
...
\n
Unspecified
\n
NaN
\n
NaN
\n
NaN
\n
4192111
\n
Sedan
\n
Sedan
\n
NaN
\n
NaN
\n
NaN
\n
\n \n
\n
5 rows × 24 columns
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":11}],"execution_count":11},{"cell_type":"code","source":"#Agrupe los datos disponibles mensualmente y genere un line plot de accidentes a lo largo del tiempo. ¿Ha aumentado el número de accidentes durante el último año y medio?\ndf['DATE']=pd.to_datetime(df['DATE'])\nmonthly_accidents =df.groupby(df['DATE'].dt.to_period('M')).size()\nmonthly_accidents.plot.line()","metadata":{"id":"sc-R1gyNEn4E","colab":{"height":308,"base_uri":"https://localhost:8080/"},"cell_id":"c5ced4b72cee40ceb8246a6df5538d24","outputId":"f701cd77-dda4-4b5e-9713-eed5d458ab80","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":585,"user_tz":180,"timestamp":1647184356536},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":""},"metadata":{},"execution_count":12},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAYMAAAESCAYAAAAfXrn0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhV1bn48e+beZ4gE0kgAQIEwiBEwBkNVVBbtGpbb/uTWq21jq0dtL299d5r7b22t5PayVlbq3Wsto6IOEMUlDBDQgIkAUJmMpB5/f44O3CMGc/ZJ2fI+3mePDlZZ5+914HsvGcN71pijEEppdT4FuTtCiillPI+DQZKKaU0GCillNJgoJRSCg0GSiml0GCglFIKCPF2BVw1ceJEk52d7e1qKKWUX9m0aVOtMSa5f7nfBoPs7Gw2btzo7WoopZRfEZH9A5VrN5FSSikNBkoppTQYKKWUQoOBUkopNBgopZRCg4FSSik0GAQUYwztXT3eroZSyg/5bZ6B+qzfvlHCvetKWZCVwFkzkjlzRjJzM+IJDhJvV00p5eM0GASQNTuqSY+PoLunl9+8sYdfr9lDYlQoZ+Q6AsOZMyaSEhvh7WoqpXyQBoMA0djWyc7DR/nu8hncVJhLXUsH75XW8vaeGt7ZU8uLxQcBmJ0ex5kzkjlrRjKLpiQSFqI9hUopDQYBo6i8HmNg6dQJAEyICWfVggxWLcigt9ew49BR3imp4e3dNTzwbhl/ensv0WHBnDJtImfNTOas3GQmT4jy8rtQSnmLBoMAsaGsjojQIOZnxX/muaAgIT8jnvyMeK5bNp3m9i7W763j7T01vL2nhjd2VgOQMzGaM3MdweGM3GRCg7XV4OwvG/bz2zV7WHPLWSRFh3m7OkrZSoNBgFi/t45FUxIJDwke9tjYiFDOnZPGuXPSMMZQXttqdSfV8PeNFTy6fj/LZibzwBUFhGhAAKC9q4ffvVFCXWsn979bxq0rZnm7SkrZSu/0ANDQ2smuw82cYnURjYaIMDU5hitPy+HhKxez+afn8pML8nhrdw13vrzTA7X1T09+eIDalg5mpcXy2Af7qG/t9HaVlLKVBoMAUFReB5wYL3BHRGgwV58xlW+clsPD7+/jrxsGXO12XOno7uHP75SxODuJey4/ibauHh54t8zb1VLKVhoMAsCGsnoiQ4OZl5lg2zn//YI8zp6ZzO0vbue9klrbzuuPnt1UxaGmdm44Zzq5qbFcMDedRz/YR4O2DlQA0WAQANbvraMg295posFBwt2Xn8T05Bi+/fgmSo+02HZuf9LV08sf3iplflYCZ+ROBOCmwlxH6+A9bR2owKHBwM/VtXSwu7rZli6i/mIjQnlgdQFhwUFc9ehH4/KT8AubD1LZcIwbz56OiCOTe0ZqLOfPTeeR97V1oAKHBgM/V1ReD8Ap0+wPBgBZSVHcd8UiDjW2c+1fN9HZ3euR6/iinl7DH9aVMjs9jsK8lE89d9M52jpQgUWDgZ/bUFZHVFgwczM+m19gl0VTkvjFpfMoKq/nJ//YijHGY9fyJS9tPURZbSs3nnOiVdBnZlos5+en8+gH+7V1oAKCBgM/t35vHSdnJ3k8QeyikzK48ZzpPLWxkvvHwUya3l7DvW+WkJsSw3lz0gY85qbCXFo6unnwvfIxrp1S9hv2L4iIPCQiR0Rkm1PZHSKyRUQ2i8jrIjLJKhcRuVtESq3nFzq9ZrWIlFhfq53KF4nIVus1d0v/j2BqULUtHZQcafHIeMFAvrt8BufPTeN/XtnFmh3VY3JNb3l9RzV7qlu44ZzpBA2y6uvMNMfMokc+2Edjm7YOlH8bycfJR4AV/cp+aYyZZ4xZAPwL+KlVvhLItb6uAf4IICJJwO3AEmAxcLuIJFqv+SPwTafX9b+WGsSGMkd+gafGC/oLChJ+ddkC5mbEc/OTn7Dj4NExue5YM8Zwz5slZE+I4oK56UMee2PhdG0dqIAwbDAwxrwD1Pcrc/4rEA30dSKvAh4zDhuABBFJB84D1hhj6o0xDcAaYIX1XJwxZoNxdEQ/Blzk9rsaJzaU1RETHkL+pLgxu2ZkWDD3X1FAXEQoVz/6EUea28fs2mPlrd01bD94lOvOnj7schyz0uI4f24aD7+vrQPl31zuaBaRO0WkAvgqJ1oGGUCF02GVVtlQ5ZUDlKsRcIwXJI75+kGpcRE8sLqAhrYuvvnYpoDaXc0Yw91vlpCREMnFJ43sV7Fv7OAhbR0oP+byXxFjzL8bY7KAx4Eb7KvS4ETkGhHZKCIba2pqxuKSPutIczt7a1rHbLygv/yMeH7z5QUUVzTyg2e2BMwMow/21vHJgUa+vWzaiAflZ6XFsTJfWwfKv9nxkfJx4BLrcRWQ5fRcplU2VHnmAOUDMsbcZ4wpMMYUJCcn21B1/7WhzLP5BSOxIj+NW1fM4p/FB/nd2hKv1cNOd68tITUunEsXZQ5/sJObCnNp1taB8mMuBQMRyXX6cRWwy3r8InCFNatoKdBkjDkEvAacKyKJ1sDxucBr1nNHRWSpNYvoCuAFV9/MeLKhrI7Y8BBmp4/deMFArj1rKpcszOS3b5Qc303NX31YXk9ReT3fOnMaEaHDLwXuLC89jhVzHK2DprYuD9VQKc8ZydTSJ4D1wEwRqRSRq4D/FZFtIrIFxx/2m63DXwbKgFLgfuA6AGNMPXAH8JH19d9WGdYxD1iv2Qu8YtN7C2gb9taxOCfJ6/sNiAg//2I+i7OT+P7TxXxyoMGr9XHHPW+WMDEmjMsXT3bp9X2tgwff19aB8j/Dbm5jjLl8gOIHBznWANcP8txDwEMDlG8E8oerhzqh+mg7ZbWtLv/Rslt4SDB/+n+LuOj37/PNxzbxwg2nkZEQ6e1qjcrmikbeLanltpWziAwbXaugz+xJVuvgvXKuOi2H+KhQm2uplOdoBrIfGuv8gpFIig7jwdUFdHT1cNUjH9HS0e3tKo3KvW+WkBAVyteWTnHrPMfHDrR1oPyMBgM/tH5vHXERIeR5ebygv9zUWO796kL2VDfznSc/oafXP2YYbT/YxBs7j/CN03KICXdvJ9jZk+I4b04qD71fTtMxHTtQ/kODgR/aUFbH4pwJBA+yTII3nTUjmds/P4c3dh7hf17e6RcB4ffrSokND2H1qdm2nO+mwlya23VmkfIvGgz8zKGmY+yra2Pp1CRvV2VQq0/N5opTpvDAe+Us+fkb/Oi5rbyzp4auHt9b/rqkuplXth1m9anZxEfa08c/Z1I8587W1oHyL+61idWY88XxgoHc/vk5LMmZwMvbDvHC5iqe+PAAcREhLJ+dysr8dM7InTjq6Zue8Pt1pUSGBvON03NsPe9Nhbm8vqOah98v5zvLZ9h6bqU8QYOBn1m/t474yFDy0nxrvKC/4CDhgnnpXDAvnfauHt4tqeXVbYd5Y2c1z31cRVRYMGfPSmHFnDTOnpXidl+9K8prW3mx+CBXnzGVpOgwW8+dnxHP52an8uB75Vx5Wo5trQ6lPEWDgZ/ZUFbPkpykQZdV9kURocF8bnYqn5udSldPL+v31vHq9sO8vv0wL205RFhIEGfmJrMiP43P5aWO2ZTMP75VSmhwEFefYW+roM/Nhbms2VHNI+/v4+blucO/QCkv0mDgR6oaj3Ggvo2v2zTQ6Q2hwUGcOSOZM2ckc8eqfDbtb+CVbYd4zWo1hAQJp0ybwIr8NM6dnUZybLhH6lFR38ZzH1fxtaVTSImN8Mg1TrQOyrjy9GziIrR1oHyXBgM/smGvf4wXjFRwkLA4J4nFOUn89MLZbKls4pVth3l12yH+/flt/OQf2zh5ShIXL8zgiwszCA+xb4zhz+/sRQS+ddZU2845kJsLc7nQah3cVKitA39hjOEfm6sIDgoiZ0I02ROjiA3wYK7BwI+sL6sjMSqUmamx3q6K7USE+VkJzM9K4NYVM9ld3cyr2w7zytbD/Oi5rdyztoRvL5vGZQVZbg88H25q56mPKrl0URbp8Z7NlM7PiGd5XioPvFvG10/T1oG/2Hmome/+vfhTZRNjwpk6MZqcidFkW99zJkYzZUKUT0yGcJcGAz+yoayOJTkT/Gq8wBUiwqy0OGalxXFzYS7vldbyuzdK+I8XtnPvulK+fdY0vrJ4sss34H3vlNFjDNctm2ZzzQd2c2Eun79XWwf+pG/W3uNXL6G5vYuy2lbKa1rZV9fK2l3V1LacWKpcBCbFRx4PDtkTo5lqfc9MjPT4/uR20WDgJyrq26hsOMbVNk+B9HUiwhm5yZw+fSLr99bx27Ul/Oc/d/D7t/Zy7VnT+LfFk0e1llBtSwd/+3A/Fy3IICspyoM1P2FuZjzL81J48L1ybR34iaLyOrKSIjlt+sQBnz/a3sW+2lbKra++x//YXEVz+4mlWEKChIVTErn/igKfn1GmwcBPnMgvGPiXM9CJCKdOn8ip0yeyoayO371Rwh3/2sEf39rLt86cyleXTiYqbPhf5/vfLaOju5frzx6bVkGfmwtn8Pl73+PR9/dxo7YOfJoxhg/L6ynMSx30mLiIUOZlJjAvM+Ezr61v7TweJEprWnjw3XJu+ftm7r+iwKdb9f7RfvFha3dWs94a2PWk9WV1JEWHkZsS4/Fr+bqlUyfwxDVLeepbpzArLZY7X97JGXet409v76V1iAXyGlo7+ev6/Vw4bxJTk8f233FuZjyFs1J44L1ymts1K9mXlRxpoaGti8U5o8/yFxEmxIRTkJ3EZQVZ/GhlHv9x4WzW7jrCPW+WeqC29tFg4KYfP7+VG/728ZB/hNxljKGorJ6lU/0rv8DTFuck8derl/Dst09hTkY8//vKLk6/601+v650wD+4D79fTmtnDzecPd0LtYWbl+fSdKyLRz/Y55Xrq5EpslrhS3PsmbV3xSlTuPikDH67dg/rdh2x5ZyeoN1Ebjjc1E710Q4AHnqv3GPN/4r6Y1Q1HvP4NEh/tWhKEo99YzGfHGjg7rUl/PK13dz3ThlXnZ5zvI/+aHsXD3+wj/PmpDIzzTuzseZlJlA4K4X73y1n9anZx6cqGmM41tVDQ1sXjW2dNLZ1Ob6O9T3utJ6znj/m+N7Z3csT1yxlzqR4r7yfQLWhvJ70+AiykuyZaSYi/Pziuew63MzNT37CP288nSkTom05t500GLihuLIRgOwJUdz3ThlfWzqFRJuXNQCn8YKpgZFf4CknTU7k4SsXs6WykbvXlvDrNXu4/90yvnFaDh3dvTS3d3PjOd7tr795eS5fuPd9Lv7DBwQJx//wdw6xiF9kaDAJUaEkRIWREBnKjNQY4iPDeHpjBf8sPqTBwEZ94wWnTpuAYydee0SGBfPnry3i8/e+x7f+sonnrzvN5U2UPEWDgRu2VDYSEiTcfflJrPr9+/zp7b386Pw826+zvqyOiTFhTNfxghGZl5nAA6tPZltVE3evLeF3a0sAOHtmMvkZ3v3DOS8zgWvOnMrmikYSo0JJiAwjIdrxPTEq9MQf/ahQEqPCiI8MHXQK7f66VtburOa2lbPG+F0ErvLaVmqaO1hiUxeRs8kTovjdVxZw5SMfcdtzW/jtlxfYGnDcpcHADcUVTcxMi2VeZgIXn5TBIx/s48rTckiLt295A2OMI79gqr2fVMaD/Ix47ruigB0Hj/L3jw5whY8s4/Fjmz4wFOalcse/dnCgro3JE8ZmmmygKyp3bM2+xENLxC+bmcIty2fwqzV7WJCVwJWn+c5UcR1AdlFvr2FLZePxqWXfXT6DXmOOfwq1y/66Ng41tbNUu4hcNntSHP+1Kp9pYzyDyNOW56UA8MbOai/XJHB8WF5/PNPYU64/ezrL81K486WdfGgFH1+gwcBF++paOdrezYIsR7dDVlIU/7Z4Mk9trKC8ttW26+h4gRrMlAnRTEuO5k0fnqHiTxyz9upYkpPk0VZ4UJDw6y8vICspiuse/5jqo+0eu9ZoaDBw0ZbKJoBPJZ3ccE4uYcFB/HrNHtuus76sjuTYcKYl+97sA+V9y/NSKSqv09wFG1Q2HONgU7vHuoicxUWE8qevLaK1o5vrHv+Yzm7v7wKowcBFxZWNRIYGfyoJLDk2nG+cns0/iw+y/WCT29foGy9YquMFahCFeal09Rje2VPr7ar4vb5WuCcGjwcyMy2WX1w6j037G/jZSzvG5JpD0WDgouKKRvIz4gjptwjVNWdOIz4ylP97bbfb1yivbaX6aIdP73esvGvh5ATiI0NZu0vHDdz1YXk9CVGhY5rl//n5k7j69BweW7+fZzdVjtl1B6LBwAVdPb1sP3j0M+uSAMRHhnLtWdNYt7uGj/a5Nzi0oczxeh0vUIMJCQ7i7JnJvLW7hp5e4+3q+LWi8noWZ499lv9tK2exdGoSP35+K9uq3O9RcJUGAxfsPtxMR3cv87M+GwwAvn5qNimx4fzi1V0Y4/oNur6sjpTYcHI8OLNB+b/CvFTqWzv55ECDt6vitw41OXYRXOKFD14hwUHc+28LSYwK49q/bqKxrXP4F3mABgMX9A0ez88cOIEpMiyYGwtz+WhfA2/trnHpGn3jBafYnAmpAs+ZM5IJCRLe2KmzilxVZLXCl7iwOJ0dJsaE88evLeTI0Q5uenKzV1p5GgxcsKWykYSoUCYPsR7+lwuymJwUxS9e202vC/+xe2scmZCaX6CGEx8ZysnZSbyp4wYuKyqvJzYihLz0OK/V4aTJifznF+bwzp4afvuGfTMSR0qDgQs2VziSzYb6xB4WEsQtn5vBzkNH+dfWQ6O+huYXqNEozEthT3ULFfVt3q6KXyoqr+Pk7CSCvbwq8OWLs/hSQSb3vFnK69sPj+m1NRiMUltnNyVHWlgwSBeRsy/Mn8SstFh+/fpuuoZYiGwg68vqSIuLYIouM6BGYLm1EYtmI4/ekeZ2ympavdZF5ExE+O9V+czLjOd7TxVTVtMyZtfWYDBK2w8epafXDDiTqL+gIOH7585kX10bT28c+bSxvkxIHS9QI5U9MZqpmo3sko/KHQPvrmxm4wkRocH84asLCQkWvvWXTR7dK8XZsMFARB4SkSMiss2p7JcisktEtojI8yKS4PTcj0SkVER2i8h5TuUrrLJSEbnNqTxHRIqs8r+LiP1rQNuouMKxbPW8rJGtflmYl8LCyQn8bu0e2rt6RvSa0iMt1LZ0an6BGpXlealsKNNs5NEqKq8jKizY6yvaOstMjOKeyxeyt6aFHz6zxa1ZiSM1kpbBI8CKfmVrgHxjzDxgD/AjABGZDXwFmGO95g8iEiwiwcDvgZXAbOBy61iAu4DfGGOmAw3AVW69Iw8rrmxiUnwEKbEjW5lURLh1xSyqj3aMeIerE+MF43O/Y+WawlkpdPUY3i3RbOTRKCqrZ9GUREKDfauj5PTcifzgvFm8tPUQD7xb7vHrDfvujTHvAPX9yl43xvS1XTYAmdbjVcCTxpgOY0w5UAostr5KjTFlxphO4ElglTj6QM4BnrFe/yhwkZvvyaOcVyodqSVTJ3DWjGT++PZejo7gU9v6sjom2bjTkhofFk1JdGQj6xTTEatv7WR3dbPPztq79qyprMxP439e2Xn8Q6Kn2BEKvwG8Yj3OACqcnqu0ygYrnwA0OgWWvnKf1NjWyf66tkGTzYbyg/Nm0tjWxf3vlA15nCO/oJ6lOl6gRikkOIhlM5NZt/uIZiOPUN8qAb4yXtCfiPDLy+YzISacv6zf79FruRUMROTfgW7gcXuqM+z1rhGRjSKysabGtWQudxQPk2w2lPyMeC6Yl86D75VT09wx6HF7qluob+302U8qyrf1ZSNvrtBs5JEoKqsnPCSIeS7c02MlJjyEWWmxVDZ4dtqwy8FARL4OXAh81ZwY3agCspwOy7TKBiuvAxJEJKRf+YCMMfcZYwqMMQXJycmuVt1lW6zB43wXf3G+97kZdHT38vt1pYMeo/kFyh1naTbyqBSV17FwciLhIb61H3F/mYlRVDYc8+g1XAoGIrIC+CHwBWOMc7h6EfiKiISLSA6QC3wIfATkWjOHwnAMMr9oBZF1wKXW61cDL7j2VjyvuLKRacnRxEWEuvT6qckxXLYok78VHRg0yq/fW0dGQiRZQ2Q3KzWY49nIGgyG1XSsix2Hjo7J/gXuykyMpK61k7ZOz00zHcnU0ieA9cBMEakUkauAe4FYYI2IbBaRPwEYY7YDTwE7gFeB640xPdaYwA3Aa8BO4CnrWIBbgVtEpBTHGMKDtr5Dmxhj2FzRxPxRDh73d/PyXBD47Ruf3R6zt9dQVO7IL1DKVYV5KeyubtZs5GFs2l+PMb47XuAsM9ExmaTKg62DkcwmutwYk26MCTXGZBpjHjTGTDfGZBljFlhf1zodf6cxZpoxZqYx5hWn8peNMTOs5+50Ki8zxiy2znmZMWbwDnUvOtTUTm1Lh0uDx87S4yO5YukUnvu4kpLq5k89t7u6mYa2Lh0vUG4ptLKR12o28pCKyuoJCw5i4eREb1dlWJmJjp4CT3YV+dbEWh+2pdJKNrNhoOm6s6cTFRbCr17/9GJUfeMFmmym3JFjZSOv1WzkIW0or2d+VjwRob49XgAnWgaeHETWYDBCxZVNhAaLLasaJkWHcfUZOby6/fDxjGZwjBdkJUUe/xSglKsKZ6VQVFZPyxgtZeBvWju62VbV5BddRADJMeGEBQdpy8AXFFc0MistzrZPEVefMZWk6DB+aW2P6RgvqNdZRMoWhXmpdPb08u6esZ+C7Q827W+gp9eM2X7H7goKEjISIzUYeFtvr2FrZZOtc5FjwkO4btk03iut5YPSWnYePkrTMR0vUPYosLKRdYrpwIrK6wgOEhZN8f3xgj6ZiZHaTTSQju7RLQntjrLaVpo7ut0ePO7va0unMCk+grte2836vX3jBRoMlPv6spHf0mzkARWV1TM3I57o8JDhD/YRmdoyGFhD69jtE9o3eOzutNL+IkKDuXl5LsUVjfzp7TKmTIhiUoKuR6Tscc6sFOpaO9nsNC6loL2rh+LKRp/Yv2A0MhOjPJpr4LfBoOlY15gs6wqOPY+jwoKZnhJj+7kvWZjJ1ORoals6dLxA2WrZjBSCg0SnmPbz8YEGunqMXySbOfN0roHfBoPOnl62VR0dk2ttrmgkPyPeI1vihQQH8f1zZwJw6nRdslrZJz4qlJOzE3XDm36KyuoRgYJs/wwGnuoq8ttgIMBLLuwtPFqd3b3sOHTUpcXpRmplfhrPXXcqF85N99g11PhUOCuVXYebPb7ImT8pKq9jdnqcy8vKeMuJxDPP/F/6bTCIDg/hlW2HPN5VtPtwM53dvbYPHjsTERZOTiTIy5txq8BTmJcCoHscWDq6e/jkQKPfTCl15ulcA78NBvGRoeyva2P7Qc92FRV7aPBYqbEwNTmGqROjeUPHDQDH+F9Hd6/fjReA53MN/DYYxEWGEhwkvOzhrqLiikaSosOO99cp5W8K8zQbuU+RteTLYj8bL+jjyVwDvw0GIUHCqdMm8PJWz3YVbbGSzXTXMeWvzpnlyEZ+r0SzkYvK65mZGktidJi3q+IST+Ya+G0wAFiZn86+ujZ2Hmoe/mAXtHZ0U3KkWbuIlF8ryE4kLiJk3Gcjd/X0sml/g192EfXxZK6BXweD8+akerSraFtVE70G5mf57pZ4Sg0nNDiIZTNTWLfrCL0+nI3c1dPLh+X1Hmvpb6tqoq2zxy8Hj/t4MtfAr4PBhJhwlk5N8lhX0RZrz+N52jJQfq4wz8pGrvTdbORHP9jHl/68nuc+HnTnW7cUldcDcHKO/6xH1J8ncw38OhiAo6uorLaV3dX2dxVtrmwkIyGSiTHhtp9bqbHk69nIxhie3lgJwH++uJ2Djfb/sfuwvJ6pydGkxEbYfu6x4slcA78PBivy0wgSeHmL/V1FWyobtYtIBYT4qFAKpiT6bL7B1qomdlc3860zp9JjDD98ZoutXVo9vYaPyuv9uosIPJtr4PfBYGJMOEtyJvCSzV1FdS0dVNQf08FjFTCW5/luNvLTGysJDwniurOn8+Pz83ivtJa/Fu237fw7Dx2luaPb73cR9GSugd8HA4Dz56axt6aVkiMttp1zS5WOF6jAco6VjexraxW1d/XwwuYqzpuTRnxkKF9dMpkzZyTzPy/vory21ZZr9G0p6y87mw3FU7kGAREMzstPQwResrGraEtFEyIw14NrEik1lqYlx5AzMdrnppi+sbOao+3dXFaQCTiWZ/nFJfMIDRa+/3SxLfsxfFhez+SkKNLj/T951FO5BgERDFJiI1icnWTrFNPiykamJ8cQ40ebXyg1nMJZKWzYW0erD2UjP72xkknxEZw67cSqvWnxEfzXqjls2t/Afe+UuXX+3l7Dh/vq/W7/gsF4KtcgIIIBwPlz0yk50kKJDbOKjDFsqWzULiIVcI7vjVxS6+2qAHC4qZ13S2q4ZFHmZ5aIv2hBBivmpPGbNXvYddj1Ncj2HGmmsa0rILqIwHO5BgETDFZaXUUvbz3s9rmqGo9R29LJAp1JpAJMQXYisREhPjPF9NmPK+k1jk2e+hMR7rw4n7jIEL7792I6XdzqtqjMkV8QKFvKeirXIGCCQUpcBCdPsaerSJPNVKA6no282/vZyMYYntlUyeLsJLInRg94zISYcH5+8Vx2HjrKPW+WuHSdD8vrmRQfETCLTXoq1yBgggHAyrlp7K5uptTNWUXFlY2EBQcxKz3Wppop5TuW56VQ29J5fHl2b/n4QAPlta1cWvDZVoGzc+ekccnCTP7w1t5R7+dsjKGovI4lUycEzGKTnso1CKxgkO/YKewVN1sHxRWN5KXHEh4SbEe1lPIpZ81ItrKRvTur6OmNlUSFBXPBCHb4u/0Ls0mNDeeWpzbT3tUz4mvsrWmltqUzYMYLwCnXwOYs7YAKBmnxERRMSXRrO8yeXsO2qqPaRaQCVkJUGIumJHp1w5u2zm7+teUQ589NJ3oEM/biIkL5xaXzKatp5a5Xd434Oh9a6xEFykyiPp6YXhpQwQBg5dx0dh1upqzGta6ispoWWjq6PbrNpVLetjwvhV2Hm6nywBpAI/HqtsO0dHRz6aKhu4icnZ47kStOmcLD7+/jg70jmw1VVF5Hcmw4OYOMSfirzMRIqsedTDIAABfaSURBVHTMYGjnz00D4JVtrs0qKrYGj+drspkKYIV5qQC86aXWwdMbK5mcFDXqT+y3rZxF9oQofvD0Fprbu4Y81hhDUVk9i3OSAma8oE9mYhS1LZ0c6xx5l9lwAi4YpMdHsnBygsvZyMUVjcSEhzA1OcbmminlO6ZOjCZ7QpRXspEr6ttYX1bHpYsyR/1HOioshF99aQGHmo7xs3/tHPLYA/VtHD7aztIA6yICp1yDRvtaB8MGAxF5SESOiMg2p7LLRGS7iPSKSEG/438kIqUisltEznMqX2GVlYrIbU7lOSJSZJX/XUTc3o/u/Lnp7Dh0lH0urGuypbKR/Iy4zyTAKBVIRITCvFTWeyEb+dmPKxGBS0bRReRs0ZREvnXWNP6+sYI3dw3esunbv2BJgOQXOOsLBhU2jhuMpGXwCLCiX9k24IvAO86FIjIb+Aowx3rNH0QkWESCgd8DK4HZwOXWsQB3Ab8xxkwHGoCrXHsrJ6y0Zie8vG10rYOO7h52HmrW8QI1LhTmpTj2Ri4du2zk3l5HbsFp0yaSkeD6vP/vLM9lVlostz67lYbWzgGPKSqrJyk6jNyUwGvln8g1GMNgYIx5B6jvV7bTGLN7gMNXAU8aYzqMMeVAKbDY+io1xpQZYzqBJ4FV4mgjngM8Y73+UeAil9+NJSMhkgVZCaNOQNt1qJnOnl5dtlqNCydnJ415NvKG8joqG46NauB4IOEhwfzqS/NpbOvkJy9sG/CYovI6Ts5ODLjxAnDONRjDbqJRygAqnH6utMoGK58ANBpjuvuVu+2CuelsqzrKgbqR/2NtsZJw5ungsRoH+rKRX9teTV1Lx5hc85mNlcSGh3DenDS3zzVnUjw3F+by0pZDvFh88FPPVTUeo7LhmN9vZjMYT+xr4FcDyCJyjYhsFJGNNTU1Qx67It/xyzaarqLNFU1MjAlzq/mqlD+58ZzptHV2c8e/dnj8Ws3tXby87RAXzp9EZJg9CZ3XnjWNBVkJ/Mc/tnHkaPvx8g/LHfsXLPHzzWyGYneugd3BoArIcvo50yobrLwOSBCRkH7lAzLG3GeMKTDGFCQnJw9ZkaykKOZnxo+qq6hvpdJAbFYqNZAZqbFct2w6/9h8kHW7PTuz6OWth2jv6j2+b4EdQoKD+NWX5tPR3cOtz245vtthUVk9sREhzEqLs+1avsbuXAO7g8GLwFdEJFxEcoBc4EPgIyDXmjkUhmOQ+UXj+J9bB1xqvX418IJdlTl/bjpbKpuoqB/+H6ylo5vSmhYdL1DjznVnT2N6Sgw/eX6bR2cWPb2xkmnJ0Zxk8wSNackx3LpiFut21/D3jxy90UXl9SzOTgroWYF25xqMZGrpE8B6YKaIVIrIVSJysYhUAqcAL4nIawDGmO3AU8AO4FXgemNMjzUmcAPwGrATeMo6FuBW4BYRKcUxhvCgLe8MRzAAeGUEXUVbK5swBubpstVqnAkPCeauS+ZxsOkYv3xtoHkh7iuraWHj/gYuXZTlkZb36lOyOWXqBO741w427a+nvLY1oLuIwP5cg5HMJrrcGJNujAk1xmQaYx40xjxvPQ43xqQaY85zOv5OY8w0Y8xMY8wrTuUvG2NmWM/d6VReZoxZbIyZboy5zBhj20hWVlIUczPieWkEexz0DR5ry0CNR4umJHLF0ik8un4fHx9osP38z2yqJEjgiwttmR/yGUFBwi8vm4eI8I1HNgIE7OBxH7tzDfxqANkV589Np7iicdgpWMWVjWQlRZIU7XbOm1J+6QcrZpEeF8Ftz25xeSOZgfT0Gp77uIqzZiSTGhdh23n7y0yM4qcXzqbpWBfRYcHMmRS44wVgf67BOAgGjllFrw6zVlFxRZOuVKrGtZjwEH52cT57qlv441t7bTvvuyU1HD7azmUFWcMf7KbLCjK5+KQMLjopg5DgwP7zZneuQWD/awFTJkQzZ1LckMta17Z0UNV4jAUaDNQ4d86sVL4wfxL3riuxZT9xcHQRJUSFUpiXYsv5hiIi/ObLC7jz4rkev5a32Z1rEPDBABxdRZ8caOTgIMv1arKZUifc/vnZxISHcOuzW9zeGrOprYvXd1Szav4k3SzKA+zMNRg3wQAGX9a6uKKJIIH8DA0GSk2ICec/LpzNxwca+WvRfrfO9WJxFZ3dvWPSRTQe2ZlrMC6CQc7EaPLS4wZNQCuubCQ3JXZEOy4pNR5cfFIGZ85I5q5Xdrm1Ac7TmyqZlRYb8IO53mJnrsG4CAYAF8xNY9P+Bg41ffoX2xjDlsom7SJSyomIcOdF+RjgJ89vPZ7ZOxq7DzezpbKJywo8k1ug7M01GDfBoG9Z6/6ziiobjlHf2qnLVivVT1ZSFN8/dybrdtd8ZiG4kXhmUwUhQcJFCyZ5oHYKOL6Omh25BuMmGExLjmFWWuxnuoqKNdlMqUGtPjWb+VkJ/Nc/d1A/yL4BA+nq6eX5T6o4Z1YKE2LCPVjD8c3OXINxEwzAMZC8cX8D1U6rGxZXNBIWEsTMtFgv1kwp3xQcJNx1yVyOHuviZ6NY2fSt3TXUtnTqwLGHpcSGExostuQajLNgkIYxn+4qKq5sYnZ6HGEh4+qfQqkRm5UWx3XLpvHcJ1W8vWfopeP7PL2xgokxYSybOfTqwso9QUFCRoI900vH1V/A6SmxzEiNOZ6A1tNr2FbVxHwdPFZqSNefM51pydH8+Lmtw65sWtvSwZu7jnDxSRmEBngWsC/ITIzSYOCK8+em89G+eo4cbaf0SAttnT06eKzUMPpWNq1qPMavXt8z5LH/+KSK7l7DpYu0i2gs2JVrMC6DgTHw2vbDxwePdU0ipYZXkJ3E/1s6hYc/KOeTQVY2Ncax4f28zHgdhxsjmYmRtuQajLtgMCM1lukpjq6i4opGYsNDmDox2tvVUsov/HDFTNLiIrjt2a0Drmy6/eBRdh1u5jI3N7xXI9c3o8jdXINxFwzA0Tr4sLyed0pqmJsZT1AA74aklJ1iI0L52UX57K5u5s9vf3Zl06c3VhAWEsQX5ntm3wL1WXbtazBOg0EavQYq6o/peIFSo1SYl8qF89K5581SSo+cWNm0o7uHF4oPcu7sVOKjQr1Yw/HFrlyDcRkMZqbGMjXZ0TWkM4mUGr3//MIcosKDue3ZrcdXNn1jxxEa27q4VLuIxpRduQbjMhiICBfOTUcEbRko5YKJMeH85ILZbNzfwOPWyqbPbKogLS6CM3I1t2As2ZVrMG6X6fz2sumcnptMenykt6uilF+6ZGEGL2yu4q5XdzM3M4G399Rw7VnTCNYxuDFnR67BuGwZAESGBbM4J8nb1VDKb4kIP794Lj29hv/3QBG9Bu0i8hI7cg3GbTBQSrkvKymK7507g+aObgqmJDI1OcbbVRqX7Mg1GLfdREope1x5Wg7lta2szE/3dlXGLedcg+kpriX7aTBQSrklOEjGxQb0vsw518DVYKDdREop5efsyDXQYKCUUn7OjlwDDQZKKeXn7Mg10GCglFIBIDMxiioNBkopNb5lJmrLQCmlxj1HrkEH7V2u5RpoMFBKqQDg7oyiYYOBiDwkIkdEZJtTWZKIrBGREut7olUuInK3iJSKyBYRWej0mtXW8SUistqpfJGIbLVec7eI6MImSik1Sn25Bq7OKBpJy+ARYEW/stuAtcaYXGCt9TPASiDX+roG+CM4ggdwO7AEWAzc3hdArGO+6fS6/tdSSik1DI+3DIwx7wD1/YpXAY9ajx8FLnIqf8w4bAASRCQdOA9YY4ypN8Y0AGuAFdZzccaYDcYYAzzmdC6llFIjdCLXwEPBYBCpxphD1uPDQKr1OAOocDqu0iobqrxygPIBicg1IrJRRDbW1NS4WHWllAo8J3INPNdNNCTrE71x9zwjvNZ9xpgCY0xBcrJuoKGUUs7c2dfA1WBQbXXxYH0/YpVXAVnOdbPKhirPHKBcKaXUKLmTa+BqMHgR6JsRtBp4wan8CmtW0VKgyepOeg04V0QSrYHjc4HXrOeOishSaxbRFU7nUkopNQru5BoMu4S1iDwBLAMmikgljllB/ws8JSJXAfuBL1mHvwycD5QCbcCVAMaYehG5A/jIOu6/jTF9g9LX4ZixFAm8Yn0ppZQaJecZRdNTRrfR0LDBwBhz+SBPFQ5wrAGuH+Q8DwEPDVC+Ecgfrh5KKaWG5pxrMNpgoBnISikVINzJNdBgoJRSAcKdXAMNBkopFSDcyTXQYKCUUgHE1VwDDQZKKRVAXM010GCglFIBxNVcAw0GSikVQFydUaTBQCmlAoir+xpoMFBKqQCiLQOllFIu5xpoMFBKqQDiaq6BBgOllAowruQaaDBQSqkA40qugQYDpZQKMK7kGmgwUEqpAJNxfHrpyFsHGgyUUirAnJheOvJBZA0GSikVYDK1ZaCUUiolNmLUuQYaDJRSKsAEBwmTRplroMFAKaUC0Ginl2owUEqpAJSZMLrEMw0GSikVgEaba6DBQCmlAlBm0uhmFGkwUEqpADTaXAMNBkopFYBGm2ugwUAppQLQaHMNNBgopVQAGm2ugQYDpZQKUKPJNdBgoJRSASozIYqqRg0GSik1rmUmRlLTPLJcAw0GSikVoPpyDUbSOnArGIjIzSKyTUS2i8h3rLIkEVkjIiXW90SrXETkbhEpFZEtIrLQ6TyrreNLRGS1O3VSSinlcCLXwIPBQETygW8Ci4H5wIUiMh24DVhrjMkF1lo/A6wEcq2va4A/WudJAm4Hlljnur0vgCillHLdiVyD4WcUudMyyAOKjDFtxphu4G3gi8Aq4FHrmEeBi6zHq4DHjMMGIEFE0oHzgDXGmHpjTAOwBljhRr2UUkoxulwDd4LBNuAMEZkgIlHA+UAWkGqMOWQdcxhItR5nABVOr6+0ygYr/wwRuUZENorIxpqaGjeqrpRSge9EroEHg4ExZidwF/A68CqwGejpd4wBjKvXGOCa9xljCowxBcnJyXadVimlApYj18Cz3UQYYx40xiwyxpwJNAB7gGqr+wfr+xHr8CocLYfjdbTKBitXSinlppHua+DubKIU6/tkHOMFfwNeBPpmBK0GXrAevwhcYc0qWgo0Wd1JrwHnikiiNXB8rlWmlFLKTSPNNQhx8zrPisgEoAu43hjTKCL/CzwlIlcB+4EvWce+jGNcoRRoA64EMMbUi8gdwEfWcf9tjKl3s15KKaX4dK7BtOSYQY9zKxgYY84YoKwOKByg3ADXD3Keh4CH3KmLUkqpz3LONRgqGGgGslJKBbCR5hpoMFBKqQA20lwDDQZKKRXARpproMFAKaUC3EhyDTQYKKVUgBtJroEGA6WUCnAjyTXQYKCUUgFuJPsaaDBQSqkAN5J9DTQYKKVUgBtJroEGA6WUCnAjyTXQYKCUUgFuJLkGGgyUUmocGC7XQIOBUkqNA8PlGmgwUEqpcaAv12AwGgyUUmoc6Ms1GIwGA6WUGgf6cg0Go8FAKaXGgfmZCWz+6ecGfd7dbS+VUkr5gbCQIMJCwgZ9XlsGSimlNBgopZTSYKCUUgoNBkoppdBgoJRSCg0GSiml0GCglFIKEGOMt+vgEhFpBna7eZp4oMmG6vjSebQunj2PL9XFrvNMBGp9pC6+9O9i13l8qS4AucaY+M+UGmP88gvYaMM57rOpLj5zHq2LvicXzuH2vaT/vv5Rl6HOM967if4ZgOfRunj2PL5UFzvPYwf99/XcOTx+Hn/uJtpojCnwdj2U8nd6Lynw7wHk+7xdAaUChN5Lyn9bBkoppezjzy0DvyQiF4mIEZFZ3q6L3USkZZjn3xIRn++OEJFMEXlBREpEZK+I/E5EBl3uUUS+IyJDLxavbKf3kr33kgaDsXc58J71fcREJNgz1VHORESA54B/GGNygRlADHDnEC/7DqDBYOzpvWQjnw8Gw0VIfyIiMcDpwFXAV6yyZSLyjoi8JCK7ReRPIhJkPdciIr8SkWLgFO/VfOSs9/Mvp5/vFZGve7FKo3UO0G6MeRjAGNMDfBf4hohEi8j/icg2EdkiIjeKyE3AJGCdiKzzYr2HpfeS3ktD0c1txtYq4FVjzB4RqRORRVb5YmA2sB94Ffgi8AwQDRQZY77nldqOT3OATc4FxpijInIAuBrIBhYYY7pFJMkYUy8itwBnG2PsSNxSI6P3ks18vmUAjk8BIrJWRD4Wka0issoqzxaRnSJyv4hsF5HXRWToXZ+963LgSevxk5xo3n5ojCmzPoU+geMTD0AP8OzYVlENYRnwZ2NMN4Axpt671Rk9vZfUYPylZdAOXGx9QpsIbBCRF63ncoHLjTHfFJGngEuAv3qrooMRkSQcXRBzRcQAwYABXrK+O+v7ud36pfYn3Xz6Q0aEtyrioh3Apc4FIhIHTAb2eaNCNtN7yX+M6b3kFy0DQICfi8gW4A0gA0i1nis3xmy2Hm/C0Yz3RZcCfzHGTDHGZBtjsoBy4AxgsYjkWP2bX8YxKOav9gOzRSRcRBKAQm9XaJTWAlEicgUcH2z8FfAI8BrwLREJsZ5Lsl7TDMSOfVVdoveS/xjTe8lfgsFXgWRgkTFmAVDNiSjZ4XRcD77b2rkceL5f2bNW+UfAvcBOHL/U/Y/zedYfyA5jTAXwFLDN+v6JVys2SsaReHMxcJmIlAB7cHya/jHwAHAA2GINRP6b9bL7gFd9fQDZoveSj/PWveSr/9n9xQNHjDFdInI2MMXbFRotY8zZA5TdbX1C+74x5sIBno8Zk8rZYw6wF8AY80Pgh/0PMMYsG+M6ucS6CT8/yNO3WF/Ox98D3OPpetlE7yXf55V7yaeDQV+EBB4H/ikiW4GNwC6vVkx9iohcC9yEY7698kF6L/kHb95LPr0chYjMB+43xiz2dl2U8md6L6nh+OyYgRUhnwB+4u26KOXP9F5SI+HTLQOllFJjw2daBiKSJSLrRGSHlfRys1WeJCJrxLFo2BoRSbTKZ4nIehHpEJHv9zvXd61zbBORJ0TE3+a6K+Uym++lm637aLuI6JhQAPOZYIAjweJ7xpjZwFLgehGZDdwGrLUWDVtr/QxQj2Og5f+cTyIiGVZ5gTEmH0dCylfG5i0o5RPsupfygW/iWOJhPnChiEwfm7egxprPBANjzCFjzMfW42Yc84QzcKxB8qh12KPARdYxR4wxHwFdA5wuBIi0ZlBEAQc9XH2lfIaN91IejvV82qwlON7GsdaPCkA+EwyciUg2cBJQBKQaYw5ZTx3mRLbkgIwxVTg+4RwADgFNxpjXPVZZpXyYO/cSjmSnM0Rkgjj2azgfyPJQVZWX+VwwEMfStM8C3zHGHHV+zsoOHXLE2+oHXQXk4FhaOFpEvuah6irls9y9l4wxO4G7gNdxrAC6GUdmsgpAPhUMRCQUxy/v48aY56ziahFJt55PB44Mc5rlONZYqTHGdOHYqORUT9VZKV9k072EMeZBY8wiY8yZQAOO5TlUAPKZYCAiAjwI7DTG/NrpqReB1dbj1cALw5zqALBURKKscxbi6DNValyw8V5CRFKs75NxjBf8zd7aKl/hM3kGInI68C6wFei1in+Mo6/zKRxLCO8HvmRtKJKGI50+zjq+BZhtLc37XzhWLOzGsbjT1cYY50W4lApYNt9L7wITcAwu32KMWTumb0aNGZ8JBkoppbzHZ7qJlFJKeY8GA6WUUhoMlFJKaTBQSimFBgOllFJoMFBqWCLSIyKbrZU7i0Xke9aG687H/ENENliPz7OO3ywiLSKy23r8mIgsE5Emp+c3i8hy77wzpU7QqaVKDUNEWvr20LWSsP4GvG+Mud0qS8Axp78FuMAYU+b02rdw7Mu70fp5GYPs06uUN2nLQKlRMMYcAa4BbrAyfcGRmftP4El0uXTlpzQYKDVK1if/YCDFKrocx7aST1iPh3NGv26iaR6qqlIjFuLtCijlz0QkFcgF3jPGGBHpEpF8Y8y2IV72rnYTKV+jLQOlRklEpuJYyvkI8CUgESgXkX1ANiNrHSjlUzQYKDUKIpIM/Am419oT4HJghTEm2xiTDSxCxw2UH9JuIqWGFykim4FQHCvh/gX4tbWL2BRgQ9+Bxphya+roEmNM0SDnO8M6X5+fGWOe8UzVlRoZnVqqlFJKu4mUUkppMFBKKYUGA6WUUmgwUEophQYDpZRSaDBQSimFBgOllFJoMFBKKQX8f7oxlH9zgqGDAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}],"execution_count":12},{"cell_type":"markdown","source":"# Facetgrid","metadata":{"id":"iS664EXkFZEM","cell_id":"baffba237a3f4c02bc7f87149e4eaeac","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"df['TIME']=pd.to_datetime(df['TIME'])\ndf['HOUR'] = df['TIME'].dt.hour\n\ndf1 = pd.DataFrame({'count': df.groupby(['BOROUGH', 'HOUR']).size()})\ndf1\ndf1 = df1.reset_index()\ndf1.head(10)\n\ndf1 = pd.DataFrame({'count': df.groupby(['BOROUGH', 'HOUR']).size()})\ndf1 = df1.reset_index()\nchart = sns.FacetGrid(df1, col='BOROUGH', margin_titles=True, col_wrap=3, aspect=2, row_order=df['BOROUGH'].unique)\nchart.map(sns.barplot, 'HOUR', 'count',)","metadata":{"id":"ko4TMNxfE0yg","colab":{"height":528,"base_uri":"https://localhost:8080/"},"cell_id":"d240c2a35f1d40c0a8fa35ea7612b009","outputId":"131957f0-dae5-4d4b-cd35-f80d99df3ac7","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4239,"user_tz":180,"timestamp":1647184364615},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stderr","text":"/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:670: UserWarning:\n\nUsing the barplot function without specifying `order` is likely to produce an incorrect plot.\n\n"},{"output_type":"execute_result","data":{"text/plain":""},"metadata":{},"execution_count":13},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAABQgAAAGoCAYAAAAKMwiTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZhsVX3v//cHEEFFGUUEDERRL6gQOT8kShIVg0c0okYRogKG/NAE45BIBDVX4hAHNIgTCQrCMSIQh3jiVZSgOFwnDojMyBExcoLMDohDwO/9Y6+Goumhqk9Vn+6u9+t5+um9195r7e+uU/SmvrWGVBWSJEmSJEmSxtN66zoASZIkSZIkSeuOCUJJkiRJkiRpjJkglCRJkiRJksaYCUJJkiRJkiRpjJkglCRJkiRJksaYCUJJkiRJkiRpjJkglPqU5I4kFyT5bpLzkzy+59heSb6d5PL2c1jPsaOTrGl1L01yYM+xJHl9kiuTfC/Jl5Ls0nP81kkxHJLkfT37L0xyYZJLWlwfSrJpO3ZOkmU95+6Q5OIhvA4nJ/lBu5/Lk7yh59g5Sa5osZybZLeeYw9IsiLJ6iTfb9sP6Imtkvx1z/nvS3JI216Z5KCeYx9McsTa3oskrUs+V+5sZ+jPlXZ8lyRfbPWvTPL3STL5vpOsl+SUJCe11+/qJFu2Y29J8vaeNn8nyVVJNm2xreo5tizJOWv7ekjSMPiMubOdk5PclmSTnrJ3p/vssWVP2bNa2SMnxTDTZ5STkzx30vUmvwavTPKr9szaor2uFyT5cc/rfEd7rS9IcnPPM/E/Wxu7tTiWT2q7kryrZ//VSY5e29dM48sEodS/X1bVblW1K3AU8FaAJA8CTgVeWlWPBPYCXpLk6T11j62q3YD9gH9Jcq9WfjjweGDXqnp4a3Nlko1mC6Y9IF4FPK2qdgEeC3wd2HoI9zqbI9r97AYcnGTHnmMvaK/RB4BjespPBK6qqodV1UOBHwAf6jl+PfCKJBtOcb2XA//QPpA9HngccOwQ70eS1gWfK3cZ6nMlycbASuBtVfUIYFe61+Wvei/aEob/DNwL+IuqqklxvRl4VpL/1faPA/6+qn7S9h+Y5Glrc+OSNCI+Y+6ymu5eSLIe8GRgzaRzDgS+1n73mukzSj8OBM4FnlNVN7V/k93onj3Htv31q2rnVr6S9kysqqfMEtuvgef0JjqltWGCUJqb+wO3tO3DgZOr6nyAqroR+DvgyMmVqupK4DZgs1b0GuBlVXVbO/4FugflC/qI4XXAq6tqTat7R1WdVFVXzPmuBjfxPwO/mOLYN4BtAZI8DNgdeFPP8TcCy5I8tO3fAJwNHDy5oaq6GjgBeAdwPN1rdvsQ4pekhcLnSmdYz5U/A/5vu3/a6/Ey7vkavgfYAjioqn47+YJV9Uu6D7TvT7IvsElVfbTnlGPoXjdJWsjG/RlzGvD8tv1E4P8Cd36WSHI/ukTpocABk+pO+xllNu15dD/g9dwzuddvGwGeBxwC/PGkZOztdJ+RXjWXtqXJNljXAUiLyMZJLqD78LIN3TdPALsAp0w6d1Urv5skjwWurKrrk9wfuG9VXdVP3SnsApw/yzkfTfLLtr0hcI8PP627/Venqf9nVXXpFOXHJHk98DDgPVV1/RTnLAf+vW3vDFxQVXdMHKyqO9rruQtwYSt+O/C5JCdN0d47ge8DX62qr0wTryQtJj5X7jLs58ouwHm9lavq+0nu114n6JKIlwFPnOlLp6r6bJJD6f5N9pp0+BvAs5M8Cfj5dG1I0jrgM+Yu3wOemWQzukTdvwK9vb/3A86squ8luSnJ7lXV+wyZ6TPKxPNrKgfQJSe/CjwiydZVdd00507n8cAP2jPsHODpwCd6jr8fuDDJOwZsV7oHE4RS/37Zun2T5PeBFUke1WfdVyV5MfBw4E/WMo7Jw59I8mjgI8AmwGur6vR26AVVtaqdswPwmXs0VvVzuiFdgziiqj7evm07O8njq+rr7dhHWxf8+w3ablVdleRbdB/aJnsMXa/nRyZZb6qeHpK0yPhcuctIniuzOB94JLAHXW+Smbwf2Hiani5vpusd8pohxiZJa8tnzN19ki5h9zjgJZOOHUg3hQR0Cb0D6fmSaZbPKEdU1ccndibNQXgg8Oyq+m2ST9D1BHzf5AZmcWCLaSK2g+hJEFbVz5KsoJuS6Zf3rC71zyHG0hxU1TeALYGtgEvphjn12h24pGf/2DbXxp8CJybZqKp+Bvwiye/OUPeXk+a72By4sW1fQjd3B1V1UfsfgM8BGw9yL0k26Zksd/LPzjPVrapbgXO4e4+KFwC/S/fN5Htb2aXAbm3Oj4nrrkf3cJ/8Ld8/0n3IyqRzPwC8ELgS+MtB7lGSFjqfK50hPlfu8Rq21+XW9joBXA7sD5yenkn2p/FbpujJ0mL+It1rtOcsbUjSOuEzBoDT6aalOKu3o0GSzel6V34oydXAEcD+bWhvr3t8RpklzkcDOwFntXYPYMBhxknWp/s3+N+tjfcCy9Oz4Erzbrrh0fcdpH1pMhOE0hykW91qfeAmul4Fh6StrJhkC7pu6Pfo5l1VK+m64U/MYXEM8J50k6mT5Cl0H4pObce/TJcUm5hwfX/gS+3YW4F3Jtmu5xIDPWBbTD+fmCx3ip+puujfKckGdN/CfX9SmwX8PbBnkkdW1WrgO3Q9LCa8Hji/Heuteznd/7j0flv5ErrhDecAfwO8JslWg96rJC1UPlc6Q3yufBTYq93/xL2+h0mvYeul+JfAZ5I8ZNB77fFmujm8JGnB8RkDVfVDunkQPzDp0HOBj1TV71TVDlW1Pd2iV38wqf5Un1FmciBwdGtzh6p6MPDgJL/TZ32AvYELq2r71sbv0PUefPak2G4GzqBLEkpz5hBjqX8T83hA983RwW3uo2uTvBD4YPs2J8C7q+o/pmnnjcCpST5I9y3QZsBFSe4AfgzsV92k6ACvoFs57OWt3RUT8++1OZG2opsPY33gJ8DFwOeHfN9TmZhrY0O6SXs/OfmEqvplknfRfQt3aPt5b5KJD33fYPqH2FvoPviR5IF039bt2dr97yTvpvufmBcP7Y4kaf75XLnLUJ8r7dz92vH3030w/ghTDO2qqv9ItwLkmUkmPhBemGSih8kZdKtKTqu9djcMdMeSNFo+Yyapqn+ZovhAugRpr09MU37nZ5Q+HADsO6nsU618crvTObDVmRzbXwIrJpW/i24xLmnO0n0hK0mSJEmSJGkcOcRYkiRJkiRJGmMmCCVJkiRJkqQxZoJQkiRJkiRJGmMmCCVJkiRJkqQxtiRXMV6+fHmdeeaZ6zoMSdLik7lW9NkjSZoDnzuSpPk25bNnSfYgvPHGG9d1CJKkMeOzR5I0n3zuSJKGaUkmCCVJkiRJkiT1xwShJEmSJEmSNMZMEEqSJEmSJEljzAShJEmSJEmSNMZMEEqSJEmSJEljzAShJEmSJEmSNMY2WNcBSJIkSeNk9yNWDFznvGMOGkEkkiRJHXsQSpIkSZIkSWPMHoSSJEnSIjKXHohgL0RJkjQ9exBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8w5CCVJkjQWnLtPkiRpavYglCRJkiRJksaYCUJJkiRJkiRpjJkglCRJkiRJksaYCUJJkiRJkiRpjJkglCRJkiRJksaYCUJJkiRJkiRpjG2wrgOQJEmSFovdj1gxcJ3zjjloBJFIkiQNjz0IJUmSJEmSpDFmglCSJEmSJEkaYyNNECa5OslFSS5IsqqVbZ7krCRXtt+btfIkeU+S1UkuTPLYnnYObudfmeTgUcYsSZIkSZIkjZP56EH4pKraraqWtf0jgbOraifg7LYP8DRgp/ZzGHA8dAlF4A3A44A9gDdMJBUlSZIkSZIkrZ11McR4P+CUtn0K8Kye8hXV+SawaZJtgKcCZ1XVzVV1C3AWsHy+g5YkSZIkSZKWolEnCAv4QpLzkhzWyrauqmvb9o+Brdv2tsCPeupe08qmK7+bJIclWZVk1Q033DDMe5AkaUo+eyRJ88nnjiRpVEadINyrqh5LN3z48CR/2HuwqoouibjWquqEqlpWVcu22mqrYTQpSdKMfPZIkuaTzx1J0qiMNEFYVWva7+uBT9HNIXhdGzpM+319O30NsH1P9e1a2XTlkiRJkiRJktbSyBKESe6bZJOJbWAf4GJgJTCxEvHBwKfb9krgoLaa8Z7AT9tQ5M8D+yTZrC1Osk8rkyRJkiRJkrSWNhhh21sDn0oycZ1Tq+rMJOcCZyQ5FPghsH87/7PAvsBq4DbgxQBVdXOSNwHntvPeWFU3jzBuSZIkaUnb/YgVA9c575iDRhCJJElaCEaWIKyqq4Bdpyi/Cdh7ivICDp+mrZOAk4YdoyRJkiRJkjTuRr1IiSRJkiRJkqQFzAShJEmSJEmSNMZMEEqSJEmSJEljzAShJEmSJEmSNMZGuYqxJEmSNDSuvCtJkjQa9iCUJEmSJEmSxpgJQkmSJEmSJGmMmSCUJEmSJEmSxpgJQkmSJEmSJGmMuUiJJEmSRs4FRiRJkhYuexBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGNljXAUiSJC1Vux+xYk71zjvmoCFHsnaWyn1IkiRpaiYIJUmSFrC5JOdMzEmSJGkQIx9inGT9JN9J8pm2v2OSbyVZneT0JBu28nu3/dXt+A49bRzVyq9I8tRRxyxJkiRJkiSNi/mYg/AVwGU9+28Hjq2qhwG3AIe28kOBW1r5se08kuwMHADsAiwHPpBk/XmIW5IkSZIkSVryRpogTLId8HTgQ20/wJOBj7dTTgGe1bb3a/u043u38/cDTquqX1fVD4DVwB6jjFuSJEmSJEkaF6PuQfhu4O+A37b9LYCfVNXtbf8aYNu2vS3wI4B2/Kft/DvLp6hzpySHJVmVZNUNN9ww7PuQJOkefPZIkuaTzx1J0qiMLEGY5BnA9VV13qiu0auqTqiqZVW1bKuttpqPS0qSxpzPHknSfPK5I0kalVGuYvwE4JlJ9gU2Au4PHAdsmmSD1ktwO2BNO38NsD1wTZINgAcAN/WUT+itI0mSJEmSJGktjCxBWFVHAUcBJHki8OqqekGSfwOeC5wGHAx8ulVZ2fa/0Y5/saoqyUrg1CT/BDwY2An49qjiliRJWmp2P2LFwHXOO+agEUQiSZKkhWiUPQin8xrgtCRvBr4DnNjKTwQ+kmQ1cDPdysVU1SVJzgAuBW4HDq+qO+Y/bEmSJEmSJGnpmZcEYVWdA5zTtq9iilWIq+pXwPOmqf8W4C2ji1CSJEmSJEkaT+uiB6EkSZKkRc6h65IkLR0jW8VYkiRJkiRJ0sJnglCSJEmSJEkaYyYIJUmSJEmSpDFmglCSJEmSJEkaYyYIJUmSJEmSpDFmglCSJEmSJEkaYyYIJUmSJEmSpDFmglCSJEmSJEkaYyYIJUmSJEmSpDHWV4Iwydn9lEmSJEmSJElaXDaY6WCSjYD7AFsm2QxIO3R/YNsRxyZJkiRJkrRo7X7EioHrnHfMQSOIRJrZjAlC4CXAK4EHA+dxV4LwZ8D7RhiXJEmSJEmSpHkwY4Kwqo4Djkvy11X13nmKSZIkSZIkSdI8ma0HIQBV9d4kjwd26K1TVYP3lZUkSZIkSZK0YPSVIEzyEeChwAXAHa24ABOEkiRJkiRJC5TzIKoffSUIgWXAzlVVowxGkiRJkiRJ0vxar8/zLgYeNMpAJEmSJEmSJM2/fnsQbglcmuTbwK8nCqvqmdNVSLIR8BXg3u06H6+qNyTZETgN2IJuZeQXVdVvktybbsjy7sBNwPOr6urW1lHAoXTDm19eVZ8f6C4lSZIkLShzGfIGDnuTJGkU+k0QHj2Htn8NPLmqbk1yL+BrST4H/A1wbFWdluSf6RJ/x7fft1TVw5IcALwdeH6SnYEDgF2ABwP/meThVXXHVBeVJEmSJEnS8DiP4dLX7yrGXx604TZf4a1t917tp4AnA3/Wyk+hSz4eD+zHXYnIjwPvS5JWflpV/Rr4QZLVwB7ANwaNSZIkSZIkabGwt7XmS19zECb5eZKftZ9fJbkjyc/6qLd+kguA64GzgO8DP6mq29sp1wDbtu1tgR8BtOM/pRuGfGf5FHV6r3VYklVJVt1www393JYkSWvFZ48kaT753JEkjUq/PQg3mdju6dW3Zx/17gB2S7Ip8CngkXOMs58YTwBOAFi2bJmrLUvqm93lNVc+eyRJ88nnjjS//JygcdLvKsZ3qs6/A08doM5PgC8Bvw9smmQiMbkdsKZtrwG2B2jHH0C3WMmd5VPUkSRJkiRJkrQW+upBmOQ5PbvrAcuAX81SZyvgf6rqJ0k2Bv6YbuGRLwHPpVvJ+GDg063Kyrb/jXb8i1VVSVYCpyb5J7pFSnYCvt3f7UmSJEmSpHHj3H3SYPpdxfhPerZvB66mG2Y8k22AU5KsT5dUPKOqPpPkUuC0JG8GvgOc2M4/EfhIW4TkZrqVi6mqS5KcAVzarn24KxhLkiRJkrR0ObxXml/9zkH44kEbrqoLgd+bovwqulWIJ5f/CnjeNG29BXjLoDFIkiRJkiRJmlm/Q4y3A94LPKEVfRV4RVVdM6rAJEmSJEmStPg55Hvh63eI8YeBU7mrh98LW9kfjyIoSZIkSZK0ODk8WFp8+k0QblVVH+7ZPznJK0cRkCQtNn4bJkmSJElazPpNEN6U5IXAx9r+gcBNowlJkiRJkmZnLyVp+PzyWxpP/SYI/5xuDsJjgQK+DhwyopgkqW9+MNBC4v9QS5IkSVqM+k0QvhE4uKpuAUiyOfBOusShJEmSJEmSpEWq3wThYyaSgwBVdXOS3xtRTJLGhL2tJEmSJEla99br97wkm03stB6E/SYXJUmSJEmSJC1Q/Sb53gV8I8m/tf3nAW8ZTUiSJEmSJEmS5ktfCcKqWpFkFfDkVvScqrp0dGFJkiRJkiRJmg99DxNuCUGTgpIkSZIkSdIS0u8chJIkSZIkSZKWIBca0Vhx1VwtVHN5b/q+lCRJkjQu/Mw0WiYIJUmSJElaIkyiSJoLE4SSJEnT8EOWtPT537kkSc5BKEmSJEmSJI01E4SSJEmSJEnSGHOIsTQgh6HcxddCkiRJkqTFb2QJwiTbAyuArYECTqiq45JsDpwO7ABcDexfVbckCXAcsC9wG3BIVZ3f2joYeH1r+s1Vdcqo4pbGhck9SZIkSZIEox1ifDvwt1W1M7AncHiSnYEjgbOraifg7LYP8DRgp/ZzGHA8QEsovgF4HLAH8IYkm40wbkmSJEmSJGlsjCxBWFXXTvQArKqfA5cB2wL7ARM9AE8BntW29wNWVOebwKZJtgGeCpxVVTdX1S3AWcDyUcUtSZIkSZIkjZN5WaQkyQ7A7wHfArauqmvboR/TDUGGLnn4o55q17Sy6conX+OwJKuSrLrhhhuGGr8kSVPx2SNJmk8+dyRJozLyRUqS3A/4BPDKqvpZN9Vgp6oqSQ3jOlV1AnACwLJly4bSpiRJM5n87PHhI0kapcnPnbnMKQ3OKy1pfDkX//RG2oMwyb3okoMfrapPtuLr2tBh2u/rW/kaYPue6tu1sunKJUmSJEmSJK2lUa5iHOBE4LKq+qeeQyuBg4G3td+f7il/WZLT6BYk+WlVXZvk88A/9ixMsg9w1KjilhYDvy2WJEmSJEnDMsohxk8AXgRclOSCVvZausTgGUkOBX4I7N+OfRbYF1gN3Aa8GKCqbk7yJuDcdt4bq+rmEcYtSZIkSZIkjY2RJQir6mtApjm89xTnF3D4NG2dBJw0vOgkaelxPg1JkiRJ0lyMfJESSZIkSVqqnPpFksbHUv6bb4JQWgfs6SVJkiRJkhYKE4SSJEmSJEnSPFioHYbWG/kVJEmSJEmSJC1YJgglSZIkSZKkMWaCUJIkSZIkSRpjJgglSZIkSZKkMWaCUJIkSZIkSRpjrmIsSZIkSZIkLRKjWAnZBKEkCZjbQwZmf9BIkiRJkhY2E4RaVEaRJZckSZIkSRpnJgglSdKS5JdKkiRJUn+WdILQDwaSJEmSJEnSzFzFWJIkSZIkSRpjS7oHoSRJkiRJi4Wj4CStK/YglCRJkiRJksaYPQglSUPjt96SJEmStPjYg1CSJEmSJEkaYyNLECY5Kcn1SS7uKds8yVlJrmy/N2vlSfKeJKuTXJjksT11Dm7nX5nk4FHFK0mSJEmSJI2jUfYgPBlYPqnsSODsqtoJOLvtAzwN2Kn9HAYcD11CEXgD8DhgD+ANE0lFSZIkSZIkSWtvZHMQVtVXkuwwqXg/4Ilt+xTgHOA1rXxFVRXwzSSbJtmmnXtWVd0MkOQsuqTjx0YVtyRp3XIeQ0mSJEmaX/O9SMnWVXVt2/4xsHXb3hb4Uc9517Sy6crvIclhdL0PechDHjLEkCVJmtrkZ8+WQ2jTBKkkaTqjeO5IkgTrcBXjqqokNcT2TgBOAFi2bNnQ2pUkaTqTnz0+fCRJozSK545fTEmSYP4ThNcl2aaqrm1DiK9v5WuA7XvO266VreGuIckT5efMQ5ySJEmSJPVtLslWMOEqaWEY5SIlU1kJTKxEfDDw6Z7yg9pqxnsCP21DkT8P7JNks7Y4yT6tTJIkSZIkSdIQjKwHYZKP0fX+2zLJNXSrEb8NOCPJocAPgf3b6Z8F9gVWA7cBLwaoqpuTvAk4t533xokFSyRJ0tJlLwxJkiRp/oxyFeMDpzm09xTnFnD4NO2cBJw0xNC0jji/iaT5YGJJkiRJkgYz30OMJUmSJEmSJC0g62wVY0mSNBr22JYkSZI0CBOEkiRp6ExSSpIkSYuHCUJJknQ3JvckSYPwuSFJi59zEEqSJEmSJEljzB6EkiRJkqR1Zi49EMFeiJI0TCYIJUmSJEmL2jCGOTtUWtI4M0E4Cx8SHb/VkyRJkiRJWpqcg1CSJEmSJEkaYyYIJUmSJEmSpDHmEOMRWyhDcx0qLUmSJEmSpKmYIFwETO5JkiRJkiRpVBxiLEmSJEmSJI0xE4SSJEmSJEnSGDNBKEmSJEmSJI0xE4SSJEmSJEnSGDNBKEmSJEmSJI0xE4SSJEmSJEnSGFs0CcIky5NckWR1kiPXdTySJEmSJEnSUrAoEoRJ1gfeDzwN2Bk4MMnO6zYqSZIkSZIkafFbFAlCYA9gdVVdVVW/AU4D9lvHMUmSJEmSJEmLXqpqXccwqyTPBZZX1V+0/RcBj6uql/WccxhwWNt9BHDFLM1uCdy4FmGtbf2F0sZCiGEYbSyEGIbRxkKIYRhtLIQYhtHGQohhGG0shBiG0cZ8xHBjVS3vt7EBnz3j8houhhiG0cZCiGEYbSyEGIbRxkKIYRhtLIQYhtHGQohhGG343Fkcr+F8tLEQYhhGGwshhmG0sRBiGEYbCyGGYbSxEGIYRhsLIYZhtNFP/amfPVW14H+A5wIf6tl/EfC+tWxz1bqsv1DaWAgxeB8LKwbvY2HF4H0srBjW9bWXwmu4EGLwPhZWDN7HworB+1hYMazray+V19D7WDgxeB8LKwbvY2HFsK7vY7EMMV4DbN+zv10rkyRJkiRJkrQWFkuC8FxgpyQ7JtkQOABYuY5jkiRJkiRJkha9DdZ1AP2oqtuTvAz4PLA+cFJVXbKWzZ6wjusvlDYWQgzDaGMhxDCMNhZCDMNoYyHEMIw2FkIMw2hjIcQwjDYWQgzr+tpL4TVcCDEMo42FEMMw2lgIMQyjjYUQwzDaWAgxDKONhRDDMNpYCDGs62svldfQ+1g4MQyjjYUQwzDaWAgxDKONhRDDMNpYCDEMo405118Ui5RIkiRJkiRJGo3FMsRYkiRJkiRJ0giYIJQkSZIkSZLGmAlCSZIkSVpCkixPckWS1UmOnEP9k5Jcn+TiOV5/+yRfSnJpkkuSvGIObWyU5NtJvtva+Ic5xrJ+ku8k+cwc61+d5KIkFyRZNcc2Nk3y8SSXJ7ksye8PUPcR7doTPz9L8so5xPCq9jpenORjSTYasP4rWt1L+r3+VO+jJJsnOSvJle33ZnNo43ktjt8mWTbHOI5p/x4XJvlUkk0HrP+mVveCJF9I8uBBY+g59rdJKsmWc7iPo5Os6Xl/7DtoDEn+ur0WlyR5xxxiOL3n+lcnuWAObeyW5JsT/50l2WPA+rsm+Ub7b/U/ktx/lhim/BvV7/tzhvp9vzdnaGOQ9+Z0bQz0/pxgglCSJEmSlogk6wPvB54G7AwcmGTnAZs5GVi+FmHcDvxtVe0M7AkcPocYfg08uap2BXYDlifZcw6xvAK4bA71ej2pqnarqlmTUdM4Djizqh4J7DpIPFV1Rbv2bsDuwG3Apwa5eJJtgZcDy6rqUXQLfx4wQP1HAf8/sAdd/M9I8rA+qp7MPd9HRwJnV9VOwNltf9A2LgaeA3yljxima+Ms4FFV9Rjge8BRA9Y/pqoe0/5dPgP87znEQJLtgX2A/5ql/rRtAMdOvEeq6rOD1E/yJGA/YNeq2gV456AxVNXze96jnwA+OWgbwDuAf2ht/O+2P0j9DwFHVtWj6f77OGKWGKb7G9Xv+3O6+oO8N6drY5D35nRtDPr+BEwQSpIkSdJSsgewuqquqqrfAKfRJQD6VlVfAW6eawBVdW1Vnd+2f06XENt2wDaqqm5tu/dqPwOtsJlkO+DpdMmDdSLJA4A/BE4EqKrfVNVP5tjc3sD3q+qHc6i7AbBxkg2A+wD/PUDd/wV8q6puq6rbgS/TJUFmNM37aD/glLZ9CvCsQduoqsuq6oo+Y5+ujS+0ewH4JrDdgPV/1rN7X2Z5b87w39SxwN/NVn+WNvoyTf2/BN5WVb9u51w/1xiSBNgf+Ngc2ihgotffA5jh/TlN/YdzV1LuLOBPZ4lhur9Rfb0/p6s/yHtzhjYGeW9O18ZA788JJgglSZIkaenYFvhRz/41DJicG6YkOwC/B3xrDnXXb8MVrwfOqqpB23g3XfLlt4Neu0cBX0hyXpLD5lB/R+AG4MPphjp/KMl95xjLAcySfJlKVa2h6xn2X8C1wE+r6gsDNHEx8AdJtkhyH2BfYPtB42i2rqpr2/aPga3n2M4w/TnwuUErJZx6zpIAACAASURBVHlLkh8BL6DPHlqT6u8HrKmq7w5ad5KXteGkJ003JHYGD6f7t/1Wki8n+f/WIo4/AK6rqivnUPeVwDHt9XwnM/eam8ol3PVFyPMY4P056W/UwO/Ptfkb10cbfb83J7cxl/enCUJJkiRJ0tAluR/dkMNXTurR0pequqMNkdsO2KMNde332s8Arq+q8wa97iR7VdVj6YZsH57kDwesvwHwWOD4qvo94BfMPqz2HpJsCDwT+Lc51N2MLnmyI/Bg4L5JXthv/aq6DHg78AXgTOAC4I5B45ii3WLAXqHDluR1dMM0Pzpo3ap6XVVt3+q+bMDr3gd4LXNILE5yPPBQumH41wLvGrD+BsDmdMNTjwDOaD0B5+JA5pDAbv4SeFV7PV9F63E7gD8H/irJecAmwG/6qTTT36h+3p9r+zdupjYGeW9O1cZc3p8mCCVJkiRp6VjD3XvPbNfK5lWSe9F9YP1oVc02J9mM2pDcLzHYvIhPAJ6Z5Gq6YdZPTvKvc7j2mvb7erq5zaZdPGEa1wDX9PR+/DhdwnBQTwPOr6rr5lD3KcAPquqGqvofujniHj9IA1V1YlXtXlV/CNxCNzfaXFyXZBuA9nvGIa2jlOQQ4BnAC1oyaK4+yixDWqfwULqE7Xfbe3Q74PwkDxqkkaq6riXSfwt8kLm9Pz/ZhvR/m6637YyLpUylDV1/DnD6oHWbg7lr7sJ/Y8D7qKrLq2qfqtqdLkn5/dnqTPM3qu/35zD+xk3XxiDvzT7i6Pv9aYJQkiRJkpaOc4GdkuzYep0dAKyczwBaD6QTgcuq6p/m2MZWE6t3JtkY+GPg8n7rV9VRVbVdVe1A9xp8sar67jXXrnvfJJtMbNMtJjHQys5V9WPgR0ke0Yr2Bi4dpI1mbXpn/RewZ5L7tH+bvRlw4ZYkD2y/H0KXCDp1jrGspEsG0X5/eo7trJUky+mGnz+zqm6bQ/2denb3Y4D3JkBVXVRVD6yqHdp79Brgse39Mkgc2/TsPpsB35/AvwNPam09HNgQuHHANqBLQl9eVdfMoS50cw7+Udt+MjDQMOWe9+d6wOuBf57l/On+RvX1/hzS37gp2xjkvTlDG3N6f2btEuWSJEmSpIUkyb508++tD5xUVW8ZsP7HgCfS9SS6DnhDVfU95C/JXsBXgYu4a/6/19bMK6xObuMxdIsErE/XseWMqnpjv/UntfVE4NVV9YwB6/0ud60YvAFw6qCvZWtnN7qFUjYErgJeXFW3DFD/vnRJvt+tqp8Oev3Wxj8Az6cbsvgd4C8mFqbos/5XgS2A/wH+pqrO7qPOPd5HdAmpM4CHAD8E9q+qaRfemKaNm4H3AlsBPwEuqKqnDtjGUcC9gZvaad+sqpcOUH9f4BF07+8fAi+d6G3abxu9/021XoTLqmra5Nw0cTyRbnhxAVcDL+mZQ6+f+h8BTmpt/Ibuv5MvDnofSU6mew1nTMzNEMcVdKt9bwD8Cvir6aYHmKb+/YDD2ymfBI6aqefddH+j6Obvm/X9OUP9e9Pne3OGNt5D/+/N6do4lAHen3e2Z4JQkiRJkiRJGl8OMZYkSZIkSZLGmAlCSZIkSZIkaYyZIJQkSZIkSZLGmAlCSZIkSZIkaYyZIJQkSZIkSZLGmAlCSZIkSZK04CS5ddL+IUne17N/WJLL28+3k+zVc+zqJFv27D8xyWd62rkhyQWt7qvm436khcwEoSRJkiRJWlSSPAN4CbBXVT0SeClwapIH9dnE6VW1G/AE4HVJth9RqNKiYIJQkiRJkiQtNq8BjqiqGwGq6nzgFODwQRqpqpuA1cA2Q49QWkQ2WNcBSJIkSZIkTWHjJBf07G8OrGzbuwDnTTp/FXDwIBdI8hBgI+DCuQYpLQUmCCVJkiRJ0kL0yzYMGOjmDgSW9Vm3Zil7fpI/BB4JvKyqfjXnKKUlwCHGkiRJkiRpsbkU2H1S2e7AJW37JmCznmObAzf27J9eVY8BHg+8bYC5C6UlyQShJEmSJElabN4BvD3JFgBJdgMOAT7Qjp8DvKgdWx94IfClyY1U1SrgI8ArRh6xtICZIJRmkOSOJBck+W6S85M8vufYXkm+neTy9nNYz7Gjk6xpdS9NcmDPsSR5fZIrk3wvyZeS7NJz/NZJMRyS5H09+y9McmGSS1pcH0qyaTt2TpJlPefukOTiIbwOk2P+cpLH9BPzpNdi4mfTJE9M8tNJ5U9pdSrJu3rae3WSo9v2I9p9XpDksiQnrO39SdIw+My4s509k3yr5+/00Ule3PO3/jdJLmrbb2t1XpnkV0kekGSLnnN/POkZsmHP6zzxc2TP/azqiWNZknOmiO/O+0xynyQfbfFcnORrSe431Ws7qY13t7jW6yk7JMlvJz0fL06yQ9u+ul3novbv/OYkG63lyy1JY6uqVgInAV9PcjnwQeCFVXVtO+VNwMOSfBf4Dt1CJP86TXNvB16cZJMRhy0tWM5BKM3szjkvkjwVeCvwR+m6n58KPKuqzk+yJfD5JGuq6v+0usdW1TuT7AScl+TjVfU/dKtqPR7YtapuS7IPsDLJLrPNe5FkOfAq4GlVtSbdN2EHA1sDPxn+7d9ppph/0Uf9Y6vqnb0FSQC+WlXPmOL8XwPPSfLWiVXJeryntffp1s6jB70ZSRoRnxmdU4D9q+q77ZqPqKpLgQ+3uK4GnjTp7/uBwLnAc6rqw8DE63g0cGvvMyTJ3eajmuSBSZ5WVZ/rM9ZXANdV1aNb248A/memCi0p+GzgR8AfcffeKNcArwOeP031J1XVjS0JeQLwLww4mb4kjZOqut+k/ZOBk3v2jweOn6buT4E/m+bY5Hb+G3CIscaaPQil/t0fuKVtHw6cXFXnA7QPOX8HHDm5UlVdCdzGXfNfvIZuEtzb2vEvAF8HXtBHDK8DXl1Va1rdO6rqpKq6Ys531Z+pYv4q/cU8F7fTfXB61RTHtqH7AEaL5aIRxSBJa2OcnxkPBK7tuealM52c5KHA/YDX0yUK18YxdPfdr22ANRM7VXVFVf16ljpPpJvf6njuGe9ngF1aonFaVXUr8FLgWUk2HyBeSZKkkbAHoTSzjZNcQLfs/TbAk1v5LnQ9JHqtauV3k+SxwJVVdX2S+wP3raqr+qk7hV2A82c556NJftm2NwR+O0VMm9Al+KbyZ70f5maJeec+YgZ4VZIXtu1bqupJbfsP2us74U+r6vtt+/3AhUneMamtY4EvJvk68AXgw1U1yp4wktSvsX9mNMcCV7ThvWcCp8zS2/EA4LR2jUck2bqqrpvh/I0nPTveWlWnt+1vAM9O8iTg5zO0MeEk4AtJnguc3WK9cpY6BwIfAz4N/GOSe7XentC9fu8AXsssPQOr6mdJfgDsBHyrj1glSZJGxgShNLPe4WK/D6xI8qg+674qyYuBhwN/spZx1OSCNrT2I8AmwGt7Phy9oE20S5v36DP3aKzq57ThWyPUG/M9hhg30w0xnvjgtAJ4OfDLnvIPJ/k8sBzYD3hJkl376PEhSaPmM6M7/41JPgrsQze060C6XnfTORB4dlX9NskngOcB75vh/JmGGAO8ma434mv6iPWCJL/bYn0KcG6S36+qy6Y6P8mGwL7A31TVz5N8C3gqd3/dTgVel2TH2a4PpI9zJEmSRs4hxlKfquobwJbAVsClwO6TTtmdbsjRhGOrahfgT4ETk2xUVT8DftE+jExX95ftA8iEzYGJeZouAR7b4rmofUD6HLDxIPeSZJNJE7z3/tytV+AsMU9MBj9TzGvj3cChwH0nxfTfbZjcfnTDkfv9AC5J82JcnxkTqur7bV6ovYFd01aYnKLtR9P1oDurzU14AGs5zLiqvkh3j3v2ef6tVfXJqvorusnr953h9KcCmwIXtXj3mhxvVd0OvItZEpStZ+YOwPf6iVOSJGmUTBBKfUrySGB94Ca64a+HJJnoKbIF3cpXk4fDTqyutYq7hhodA7wnycat7lPoPmCc2o5/GXhhO7YxsD93TYD+VuCdSbbrucRAH/RaTD+vqt2m+ZlqrqipYt4F+HgfMc9ZVd0MnEGXJKS1vzzJvdr2g4At6Jk/SpIWgnF+ZiR5etpKVHTJvzuYflGUA4Gjq2qH9vNg4MFJfmfQOCd5M908jzNK8oQkm7XtDemmzvjhDFUOBP5iIl5gR+CPk9xn0nkn0/VI3Gqa694P+ADw71V1y1TnSJIkzSeHGEsz653nKMDBVXUHcG2bU++DrQdAgHdX1X9M084bgVOTfBB4L93k8xcluQP4MbBfVU0Mo30F8C9JXt7aXVFVXwGoqs8m2Qr4XFsZ8ifAxcDnh3zfk72XrsfEhS05tyHwqJ45paaNuemdgxDgWe335DkI31xVH+fu3gW8rGd/H+C4JBPXPqKqfjznO5Ok4fGZ0XkRcGyS2+h6eb+gvQ5TOYB79tj7VCt/+zR1Js9BeGZV3W3Bl3bvN/QR60OB41tCcz3g/wCfaMfuk+SannM/QDe9xUt7rvOLJF9j0rDwqvpNkvcAx0263pd6rvUp4E19xChJkjRyqbrHNDWSNK3W6+FTwLlV9dp1HY8kSZIkSVo7JgglSZIkSZKkMeYchJIkSZIkSdIYM0EoSZIkSZIkjTEThJIkSZIkSdIYW5KrGC9fvrzOPPPMdR2GJGnxyVwr+uyRJM3BnJ87kiQN05LsQXjjjTeu6xAkSWPGZ48kSZKkxWpJJgglSZIkSZIk9ccEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY8wEoSRJkiRJkjTGTBBKkiRJkiRJY2ykCcIkVye5KMkFSVa1ss2TnJXkyvZ7s1aeJO9JsjrJhUke29POwe38K5McPMqYJUmSJEmSpHGywTxc40lVdWPP/pHA2VX1tiRHtv3XAE8Ddmo/jwOOBx6XZHPgDcAyoIDzkqysqlvmIXZJmtXuR6yYU73zjjloyJFIkiRJkjS4dTHEeD/glLZ9CvCsnvIV1fkmsGmSbYCnAmdV1c0tKXgWsHy+g5YkSZIkSZKWolEnCAv4QpLzkhzWyrauqmvb9o+Brdv2tsCPeupe08qmK5ckSZIkSZK0lkY9xHivqlqT5IHAWUku7z1YVZWkhnGhloA8DOAhD3nIMJqUJGlGPnskSZIkLQUj7UFYVWva7+uBTwF7ANe1ocO039e309cA2/dU366VTVc++VonVNWyqlq21VZbDftWJEm6B589kiRJkpaCkSUIk9w3ySYT28A+wMXASmBiJeKDgU+37ZXAQW014z2Bn7ahyJ8H9kmyWVvxeJ9WJkmSJEmSJGktjXKI8dbAp5JMXOfUqjozybnAGUkOBX4I7N/O/yywL7AauA14MUBV3ZzkTcC57bw3VtXNI4xb0piZyyrErkAsSZIkSVoqRpYgrKqrgF2nKL8J2HuK8gIOn6atk4CThh2jJEmSJEmSNO5GvYqxJEmSJEmSpAXMBKEkSZIkSZI0xkY5B6EkzWguc/+B8/9JkiRJkjRM9iCUJEmSJEmSxpgJQkmSJEmSJGmMmSCUJEmSJEmSxpgJQkmSJEmSJGmMmSCUJEmSJEmSxpgJQkmSJEmSJGmMmSCUJEmSJEmSxtgG6zoASVobux+xYuA65x1z0AgikSRJkiRpcbIHoSRJkiRJkjTG7EEoSQuAPSElSZIkSeuKPQglSZIkSZKkMWaCUJIkSZIkSRpjJgglSZIkSZKkMWaCUJIkSZIkSRpjJgglSZIkSZKkMTbyBGGS9ZN8J8ln2v6OSb6VZHWS05Ns2Mrv3fZXt+M79LRxVCu/IslTRx2zJEmSJEmSNC42mIdrvAK4DLh/2387cGxVnZbkn4FDgePb71uq6mFJDmjnPT/JzsABwC7Ag4H/TPLwqrpjHmLXErP7ESvmVO+8Yw4aciSSJEmSJEkLw0h7ECbZDng68KG2H+DJwMfbKacAz2rb+7V92vG92/n7AadV1a+r6gfAamCPUcYtSZIkSZIkjYtRDzF+N/B3wG/b/hbAT6rq9rZ/DbBt294W+BFAO/7Tdv6d5VPUkSRJkiRJkrQWRpYgTPIM4PqqOm9U15h0vcOSrEqy6oYbbpiPS0qSxpzPHkmSJElLwSh7ED4BeGaSq4HT6IYWHwdsmmRi7sPtgDVtew2wPUA7/gDgpt7yKercqapOqKplVbVsq622Gv7dSJI0ic8eSZIkSUvByBKEVXVUVW1XVTvQLTLyxap6AfAl4LnttIOBT7ftlW2fdvyLVVWt/IC2yvGOwE7At0cVtyRJkiRJkjRO5mMV48leA5yW5M3Ad4ATW/mJwEeSrAZupksqUlWXJDkDuBS4HTjcFYylhWEuq0K7IrQkSZIkSQvLvCQIq+oc4Jy2fRVTrEJcVb8CnjdN/bcAbxldhJIkSZIkSdJ4GvUqxpIkSZIkSZIWMBOEkiRJkiRJ0hhbF3MQSloAnD9QkiRJkiSBPQglSZIkSZKksWaCUJIkSZIkSRpjJgglSZIkSZKkMWaCUJIkSZIkSRpjLlIiSUuEC89IkiRJkubCBKE0IJMwkiRJkiRpKXGIsSRJkiRJkjTGTBBKkiRJkiRJY6yvIcZJzq6qvWcrkzQ/5jLMGRzqLEmSJEmS7mnGBGGSjYD7AFsm2QxIO3R/YNsRxyZJkiRJkiRpxGbrQfgS4JXAg4HzuCtB+DPgfSOMS5IkSZIkSdI8mDFBWFXHAccl+euqeu88xSRJkiRJkiRpnvQ1B2FVvTfJ44EdeutU1dwmQpMkSZIkSZK0IPS7SMlHgIcCFwB3tOICTBBKczCXRUZcYESSJEmSJI1CXwlCYBmwc1XVKIORJEmSJEmSNL/W6/O8i4EHjTIQSZIkSZIkSfOv3wThlsClST6fZOXEz0wVkmyU5NtJvpvkkiT/0Mp3TPKtJKuTnJ5kw1Z+77a/uh3foaeto1r5FUmeOrdblSRJkiRJkjRZv0OMj55D278GnlxVtya5F/C1JJ8D/gY4tqpOS/5fe/cfNVldH3b8/XGBivgDkJUgu1SSoMbkWGC3SCIxFCIBaiUxakiDLGrONi20YFMajD3RSM0B0bTNSYOHChH8ARJ/rp40shLU9lSRXVyQBZRVMexmYRdQwVo14Kd/3O/GYfPMPPfeuTPPnWfer3Puee7cme9nPvPsd+czz2fuj3gX8Hrg8vLzW5n50xFxJnAp8BsR8QLgTOBngWcDn46I52bm4ws9qSRJkiRJkqT66l7F+LNNA5fzFX633Ny3LAmcBPzLsv1qqubj5cAZ/LgR+SHgTyMiyvbrMvMHwDciYhtwHPD5pjlJkiRJkiRJeqJahxhHxKMR8UhZvh8Rj0fEIzXGrYiILcAuYCPwNeDbmflYech24PCyfjhwH0C5/zvAMwe3LzBm8LnWR8SmiNi0e/fuOi9LkqSxWHskSZIkLQe1GoSZ+bTMfHpmPh3YH/h14M9qjHs8M48GVlHt9ff8cZJd5LmuyMy1mbl25cqVk3oaSZL+nrVHkiRJ0nJQ9yIlfy8rHwNqXywkM78N3AT8PHBgROw5tHkVsKOs7wBWA5T7nwE8NLh9gTGSJEmSJEmSxlD3EONXDCyvjIhLgO8vMmZlRBxY1vcHXgrcRdUofGV52Drg42V9Q7lNuf+vy3kMNwBnlqscHwkcBXyx9iuUJEmSJEmSNFTdqxj/i4H1x4B7qS4eMsphwNURsYKqEXl9Zn4yIu4ErouI/wx8CbiyPP5K4L3lIiQPU125mMzcGhHXA3eW5z7XKxhLkiRJkiRJ3ah7FePXNg2cmbcDxyyw/etU5yPce/v3gVcNifU24G1Nc5AkSZIkSZI0Wt1DjFdFxEcjYldZPhwRqyadnCRJkiRJkqTJqnuRkj+nOhfgs8vyibJNkiRJkiRJ0gyrew7ClZk52BB8T0RcMImEJElLY82F17Qat/myszvORJIkSZI0TXX3IHwoIs6KiBVlOQt4aJKJSZIkSZIkSZq8ug3C1wGvBu4HdgKvBM6ZUE6SJEmSJEmSpqTuIcZvBdZl5rcAIuJg4B1UjUNJkiRJkiRJM6ruHoQv3NMcBMjMh4FjJpOSJEmSJEmSpGmp2yB8UkQctOdG2YOw7t6HkiRJkiRJknqqbpPvncDnI+Ivyu1XAW+bTEqSJEmSJEmSpqVWgzAzr4mITcBJZdMrMvPOyaUlSZIkSZIkaRpqHyZcGoI2BSVJQ6258JrGYzZfdvYEMpEkSZIk1VX3HISSJEmSJEmSliEbhJIkSZIkSdIcs0EoSZIkSZIkzbHa5yCU+sDzm0mSJEmSJHXLPQglSZIkSZKkOWaDUJIkSZIkSZpjNgglSZIkSZKkOTaxBmFErI6ImyLizojYGhHnl+0HR8TGiLin/DyobI+I+JOI2BYRt0fEsQOx1pXH3xMR6yaVsyRJkiRJkjRvJrkH4WPA72bmC4DjgXMj4gXARcCNmXkUcGO5DXAacFRZ1gOXQ9VQBN4MvAg4DnjznqaiJEmSJEmSpPFM7CrGmbkT2FnWH42Iu4DDgTOAE8vDrgY+A/xe2X5NZibwhYg4MCIOK4/dmJkPA0TERuBU4NrFcvCKt5IkSZIkSdJoE2sQDoqI5wDHADcDh5bmIcD9wKFl/XDgvoFh28u2Ydv3fo71VHsecsQRR3SXvCRpqmbpyx1rjyRJkqTlYOIXKYmIpwIfBi7IzEcG7yt7C2YXz5OZV2Tm2sxcu3Llyi5CSpI0krVHkiRJ0nIw0QZhROxL1Rx8f2Z+pGx+oBw6TPm5q2zfAaweGL6qbBu2XZIkSZIkSdKYJnkV4wCuBO7KzD8euGsDsOdKxOuAjw9sP7tczfh44DvlUORPAadExEHl4iSnlG2SJEmSJEmSxjTJcxC+GHgN8OWI2FK2/T5wCXB9RLwe+Cbw6nLfXwKnA9uA7wGvBcjMhyPiYuCW8ri37rlgiSRJkiRJkqTxTPIqxv8biCF3n7zA4xM4d0isq4CrustOkiRJkiRJEkzhIiWSJEmSJEmS+ssGoSRJkiRJkjTHbBBKkiRJkiRJc8wGoSRJkiRJkjTHbBBKkiRJkiRJc8wGoSRJkiRJkjTH9lnqBDQ/1lx4TeMxmy87ewKZSFrO2rzXgO83kiRJkuaXexBKkiRJkiRJc8wGoSRJkiRJkjTHbBBKkiRJkiRJc8wGoSRJkiRJkjTHbBBKkiRJkiRJc8wGoSRJkiRJkjTHbBBKkiRJkiRJc8wGoSRJkiRJkjTHbBBKkiRJkiRJc8wGoSRJkiRJkjTHbBBKkiRJkiRJc2xiDcKIuCoidkXEHQPbDo6IjRFxT/l5UNkeEfEnEbEtIm6PiGMHxqwrj78nItZNKl9JkiRJkiRpHk1yD8L3AKfute0i4MbMPAq4sdwGOA04qizrgcuhaigCbwZeBBwHvHlPU1GSJEmSJEnS+CbWIMzMzwEP77X5DODqsn418KsD26/JyheAAyPiMOBXgI2Z+XBmfgvYyD9sOkqSJEmSJElqadrnIDw0M3eW9fuBQ8v64cB9A4/bXrYN2/4PRMT6iNgUEZt2797dbdaSJC3A2iNJkiRpOViyi5RkZgLZYbwrMnNtZq5duXJlV2ElSRrK2iNJkiRpOZh2g/CBcugw5eeusn0HsHrgcavKtmHbJUmSJEmSJHVgnyk/3wZgHXBJ+fnxge3nRcR1VBck+U5m7oyITwF/NHBhklOAN045ZwFrLrym1bjNl53dcSaSJEmSJEnq0sQahBFxLXAicEhEbKe6GvElwPUR8Xrgm8Cry8P/Ejgd2AZ8D3gtQGY+HBEXA7eUx701M/e+8MlEtWmM2RSTJEmSJEnSrJhYgzAzf3PIXScv8NgEzh0S5yrgqg5Tm0s2OiVJkiRJkrSQaR9iLEmSJM01v7iVJEl9s2RXMZYkSZIkSZK09NyDcMK8uIckSVI/LJfPZcvldUiSpP5wD0JJkiRJkiRpjrkH4QzwPDWSJEnqkp8vJUnSIBuEkiRJmgl9aGr1IQdJkqSueYixJEmSJEmSNMfcg1CSJEkT5553kiRJ/WWDUJIkaUK82qwkSZJmgQ1CSZKkHutiz7txY9jolCRJWt5sEEqSJElqzMPGJUlaPmwQSpIkSZo690yVJKk/vIqxJEmSJEmSNMdsEEqSJEmSJElzzEOMJUmShvAca1K/+X9UkqRu2CCUJKkjnk9LkmaPTUZJkmwQSpIkSVJrfjkkSVoObBBKkqRlyb2CJEmSpHpmpkEYEacC/w1YAbw7My9Z4pQkSeqcTS1JkiRJ0zYTDcKIWAH8d+ClwHbglojYkJl3Lm1mkiT1z7hNxi6alEuRw0J5SJIkSVrck5Y6gZqOA7Zl5tcz84fAdcAZS5yTJEmSJEmSNPMiM5c6h0VFxCuBUzPzt8vt1wAvyszzBh6zHlhfbj4P+MoiYQ8BHhwjrXHH9yVGH3LoIkYfcugiRh9y6CJGH3LoIkYfcugiRh9y6CLGNHJ4MDNPrRusYe2Zl9/hLOTQRYw+5NBFjD7k0EWMPuTQRYw+5NBFjD7k0EWM3tUdSZImZSYOMa4jM68Arqj7+IjYlJlr2z7fuOP7EqMPOXQRow85dBGjDzl0EaMPOXQRow85dBGjDzl0EaMPOeytSe3pQ/7m0F2MPuTQRYw+5NBFjD7k0EWMPuTQRYw+5NBFjD7kIEnStMzKIcY7gNUDt1eVbZIkSZIkSZLGMCsNwluAoyLiyIjYDzgT2LDEOUmSJEmSJEkzbyYOMc7MxyLiPOBTwArgqszcOmbY2ocjT2h8X2L0IYcuYvQhhy5i9CGHLmL0vKXN9wAAC9lJREFUIYcuYvQhhy5i9CGHLmL0IYelfu7l8DvsQw5dxOhDDl3E6EMOXcToQw5dxOhDDl3E6EMOXcToQw6SJE3FTFykRJIkSZIkSdJkzMohxpIkSZIkSZImwAahJEmSJEmSNMfmrkEYEadGxFciYltEXNRi/FURsSsi7hgjh9URcVNE3BkRWyPi/IbjnxwRX4yI28r4PxwjlxUR8aWI+GTL8fdGxJcjYktEbGox/sCI+FBE3B0Rd0XEzzcc/7zy3HuWRyLigoYx3lB+j3dExLUR8eRmrwIi4vwyfmvd519oLkXEwRGxMSLuKT8PahHjVSWPH0XE2hbjLyv/HrdHxEcj4sAWMS4u47dExA0R8eymMQbu+92IyIg4pGEOb4mIHQNz4/Q2OUTEvy2/j60R8famMSLigwM53BsRWxqOPzoivrDn/1hEHNcih38SEZ8v/1c/ERFPHzF+wfenJnNzRIwmc3NYjFrzc8T4RnOzC2Hd2TvW3NedEmes2hMzWndGxKhde4aMn2rdGZFH7dozLIeYYt0ZEaN27RkyvnbdKY8fq/aMGD+1urNIjKnXHkmSGsvMuVmoLnDyNeAngf2A24AXNIzxEuBY4I4x8jgMOLasPw34apM8gACeWtb3BW4Gjm+Zy78HPgB8suX4e4FDxvhdXA38dlnfDzhwzH/f+4F/3GDM4cA3gP3L7euBcxo+788BdwBPobrwz6eBn24zl4C3AxeV9YuAS1vE+BngecBngLUtxp8C7FPWL22Zw9MH1v8d8K6mMcr21VQXJ/rmqHk2JIe3AP+hwb/jQjH+Wfn3/Efl9rPavI6B+98J/EHDHG4ATivrpwOfafE6bgF+qay/Drh4xPgF35+azM0RMZrMzWExas3PEeMbzc1xF6w7C8Wa67pTxo1Ve5jhujMiRu3aM2T8VOvOiDzeQs3aM2T8VOvOiDxq154h42vXnfKYsWrPiPFTqzuLxJhq7XFxcXFxcWmzzNsehMcB2zLz65n5Q+A64IwmATLzc8DD4ySRmTsz89ay/ihwF9UfC3XHZ2Z+t9zctyyNrzYTEauAfw68u+nYLkTEM6g+VF4JkJk/zMxvjxHyZOBrmfnNhuP2AfaPiH2o/tj624bjfwa4OTO/l5mPAZ8FXrHYoCFz6QyqP14pP3+1aYzMvCszv1In8SHjbyivA+ALwKoWMR4ZuHkAi8zPEf+v/gvwH8cYX9uQGP8auCQzf1Aes6ttHhERwKuBaxuOT2DPnhfPYJH5OSTGc4HPlfWNwK+PGD/s/an23BwWo+HcHBaj1vwcMb7R3OyAdWeAdecJxqk9M1t3RsSoXXv6UHcWiVFLH+rOiBi1a8+4dafEGKv29KHuLBJj2rVHkqTG5q1BeDhw38Dt7TT4A2kSIuI5wDFUe2M0GbeiHDKyC9iYmY3GF/+V6kPwj1qM3SOBGyJic0Ssbzj2SGA38OdRHW727og4YIxczmSRD8F7y8wdwDuAvwF2At/JzBsaPu8dwC9GxDMj4ilU37Svbhhjj0Mzc2dZvx84tGWcrrwO+J9tBkbE2yLiPuC3gD9oMf4MYEdm3tbm+YvzyiE9Vw07LGkRz6X6t705Ij4bEf90jFx+EXggM+9pOO4C4LLyu3wH8MYWz72VHzelXkXN+bnX+1Orudn2Pa5mjFrzc+/x487Nhqw7TzT3dQc6qT3Lue5Ay9rTk7oD49WePtQdGL/2tKo7MH7t6UPdWSjGlGuPJEmNzVuDsFci4qnAh4EL9vpmcVGZ+XhmHk31LeZxEfFzDZ/7ZcCuzNzcZNwCTsjMY4HTgHMj4iUNxu5DdUjK5Zl5DPB/qQ4faSwi9gNeDvxFw3EHUX2APRJ4NnBARJzVJEZm3kV1yMkNwF8BW4DHm8QYEjdZwm+YI+JNwGPA+9uMz8w3ZebqMv68hs/9FOD3Ge8D9OXATwFHU/0B/s4WMfYBDgaOBy4Eri97ZLTxm7RoJFDtTfKG8rt8A2XPp4ZeB/ybiNhMdcjTDxcbMOr9qe7cHOc9brEYdefnQuPHmZuzzrqz9HWnjB2r9izXugPj1Z4e1B0Yv/b0oe7A+LWncd2B8WtPH+rOsBjzXHskSbNh3hqEO3jiN5iryrapi4h9qT44vD8zP9I2Tjk06ibg1IZDXwy8PCLupTrk7aSIeF+L599Rfu4CPkp1OF1d24HtA3uhfIjqD7c2TgNuzcwHGo77ZeAbmbk7M/8O+AjwC02fPDOvzMw1mfkS4FtU55xp44GIOAyg/Bx5aNGkRMQ5wMuA3yofyMfxfhY5tGgBP0X1h/NtZY6uAm6NiJ+oGyAzHygNjR8B/4Nmc3OP7cBHyuGVX6Ta62nkSesXUg4hfAXwwRY5rKOal1A1Ihq/jsy8OzNPycw1VH8sfm3U44e8PzWam128xw2LUXd+1sihzdxsyrrzY9adHxu79iy3ulOe/xy6qT1LUnegk9rTh7oDY9aepnUHxq89fag7NfOYRu2RJKmxeWsQ3gIcFRFHlm/+zwQ2TDuJ8k3wlcBdmfnHLcavjHIFtYjYH3gpcHeTGJn5xsxclZnPofo9/HVmNtpzLiIOiIin7VmnOolz7atsZub9wH0R8byy6WTgziY5DGj7LfnfAMdHxFPKv8vJVOeLaSQinlV+HkH1gfwDLXKBaj6uK+vrgI+3jNNaRJxKdQjgyzPzey1jHDVw8wyaz88vZ+azMvM5ZY5upzrp9/0Ncjhs4Oav0WBuDvgY1QnjiYjnUl3Q4MEWcX4ZuDszt7cY+7fAL5X1k4DGh4oNzM8nAf8JeNeIxw57f6o9N8d9jxsVo+78HDF+rLnZgnWnsO48wdi1ZznVHRi/9vSh7pQ8xq09fag7MGbtaVJ3yuPGqj19qDuLxJh27ZEkqbnswZVSprlQnafnq1TfZL6pxfhrqQ4Z+TuqD4+vbxHjBKpDJG6nOixoC3B6g/EvBL5Uxt/BIlenqxHvRFpcTZLqqpy3lWVry9/n0cCm8lo+BhzUIsYBwEPAM1q+/j+k+qB2B/BeypUDG8b4X1R/ZN4GnNx2LgHPBG6k+iD+aeDgFjF+raz/AHgA+FTD8duozpm2Z24udiXIhWJ8uPw+bwc+QXWC7tb/r1jkqqVDcngv8OWSwwbgsBavYz/gfeW13Aqc1OZ1AO8BfqflnDgB2Fzm1s3AmhYxzqd63/sqcAkQI8Yv+P7UZG6OiNFkbg6LUWt+jhjfaG52sWDdWSjeicxx3Skxxqo9zGjdGRGjdu0ZMn6qdWdEHrVrz5DxU607I/KoXXuGjK9dd0qMsWrPiPFTqzuLxJh67XFxcXFxcWm6RKYX0ZIkSZIkSZLm1bwdYixJkiRJkiRpgA1CSZIkSZIkaY7ZIJQkSZIkSZLmmA1CSZIkSZIkaY7ZIJQkSZIkSZLmmA1CaYZFxHf3un1ORPzpwO31EXF3Wb4YEScM3HdvRBwycPvEiPjkQJzdEbGljH3DNF6PJKnfrDuSJEnLkw1CaZmKiJcB/wo4ITOfD/wO8IGI+ImaIT6YmUcDLwbeFBGrJ5SqJGkZsO5IkiTNLhuE0vL1e8CFmfkgQGbeClwNnNskSGY+BGwDDus8Q0nScmLdkSRJmlH7LHUCksayf0RsGbh9MLChrP8ssHmvx28C1jV5gog4AngycHvbJCVJy4Z1R5IkaRmyQSjNtv9XDscCqnM4AWtrjs1Ftv1GRLwEeD5wXmZ+v3WWkqTlwrojSZK0DHmIsbR83Qms2WvbGmBrWX8IOGjgvoOBBwdufzAzXwj8AnBJg3NISZLmk3VHkiRpRtkglJavtwOXRsQzASLiaOAc4M/K/Z8BXlPuWwGcBdy0d5DM3AS8Fzh/4hlLkmaZdUeSJGlGeYixtExl5oaIOBz4PxGRwKPAWZm5szzkYuDyiLgNCOCvgPcNCXcpcGtE/FFmPjrp3CVJs8e6I0mSNLsic6HTwUiSJEmSJEmaBx5iLEmSJEmSJM0xG4SSJEmSJEnSHLNBKEmSJEmSJM0xG4SSJEmSJEnSHLNBKEmSJEmSJM0xG4SSJEmSJEnSHLNBKEmSJEmSJM2x/w9OzBHlfDhTxgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"execution_count":13},{"cell_type":"markdown","source":"# Otros graficos ","metadata":{"id":"s0_2Dc130Xnt","cell_id":"dd847845bfd24158a03ee5bff6a4432d","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"df_prueba=df[['DATE','BOROUGH']]\npie_borough = df_prueba.groupby('BOROUGH').agg('count')\npie_borough=pie_borough.rename(columns={'DATE': 'Frecuencia'})\npie_borough","metadata":{"id":"iwWH-b2LLtxf","colab":{"height":238,"base_uri":"https://localhost:8080/"},"cell_id":"39c3f9b6bd9445b5b236f725272c0866","outputId":"bd7b9616-ef0f-479f-884a-749a1fb5d090","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":397,"user_tz":180,"timestamp":1647184366534},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Frecuencia\nBOROUGH \nBRONX 37709\nBROOKLYN 76253\nMANHATTAN 48749\nQUEENS 67120\nSTATEN ISLAND 8691","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
Frecuencia
\n
\n
\n
BOROUGH
\n
\n
\n \n \n
\n
BRONX
\n
37709
\n
\n
\n
BROOKLYN
\n
76253
\n
\n
\n
MANHATTAN
\n
48749
\n
\n
\n
QUEENS
\n
67120
\n
\n
\n
STATEN ISLAND
\n
8691
\n
\n \n
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":14}],"execution_count":14},{"cell_type":"code","source":"labels = pie_borough.index\nprint(labels)\npie, ax = plt.subplots(figsize=[10,6])\nfig=plt.pie(x=pie_borough, autopct=\"%.1f%%\",labels=labels,explode=[0.05]*5,\\\n pctdistance=0.5)\nplt.title(\"Distribucion de barrios\", fontsize=14);\n","metadata":{"id":"RzVAQnCZM30i","colab":{"height":461,"base_uri":"https://localhost:8080/"},"cell_id":"0d6f095fa6ea41c6b6c30383ba757bf0","outputId":"070f9776-6b35-48f0-f75b-b240e5b6d1ae","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":609,"user_tz":180,"timestamp":1647184368326},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"Index(['BRONX', 'BROOKLYN', 'MANHATTAN', 'QUEENS', 'STATEN ISLAND'], dtype='object', name='BOROUGH')\n"},{"output_type":"stream","name":"stderr","text":"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: MatplotlibDeprecationWarning:\n\nNon-1D inputs to pie() are currently squeeze()d, but this behavior is deprecated since 3.1 and will be removed in 3.3; pass a 1D array instead.\n\n"},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAbIAAAFlCAYAAACOSG2LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhcVfnA8e+bpPsypXSjQBk2yVACZZWlIBQQpFVckM1lQBEqVVlEGEV0AP1ZQBCRQhWoBAXFnWUQBQLIvrdcYAKlULpQaAvttGmSZju/P85NM5lOMjfJzNxZ3s/z3KeZuWfufSed3HfOuWcRYwxKKaVUsarwOwCllFJqIDSRKaWUKmqayJRSShU1TWRKKaWKmiYypZRSRU0TmVJKqaKmiUxtRUQeE5Ebc3DcoIgYETnAfXyk+3hcts+Vct7bReT+XJ6jl3O/JiLRAR5jqYhclKWQvJ7TiMhJ+TynUv1V5XcAKj9E5HYg7D5sA9YBrwN/A35njGlNKv5FoBUP3Iv0ScaYvTwUXw5sB6z1FnXWnAdIns9Z7LbDfkaUKnhaIysvD2MvUEHg08B9wOXAEyIyorOQMeZjY8zGbJ5YRAYbY9qNMR8YY9qyeexMjDEJY8z6fJ6z0IlIhYhUpnl+MID7/7Q5/5Ep1XeayMrLZvcCtdIYs9AYcx1wJLAfcHFnodSmRRH5ooi8KiJNIvKxiDwuIhNF5Azgp8BUtynKuM91Nk3NEZF/iMgm4P9SmxaTHCwiC0WkWUReEpH9k859hog0JBdO1yQpIgeLSJ2IbBKRhPvzZHdft6ZFERkiIteLyIfuOZ8Vkelpjn+0iDwnIo0i8qKI7NfbL1dEJojIPe7v6T0R+UaaMgER+Z2IrBaRje7vMvX3kc5IEfmjiDSIyAepTY0icqH7f7RJRFaKyK0iMib19ygiJ4jIa0ALEHKbLaMiskBE1gN3uuW7NS2KSI2IPJz0GbhdRAIp+x8RkQ3ueRaJyFEe3pdSA6aJrMwZY14DHgS+lG6/iEwC/gzUAiHgCOAP7u67gWuBN7E1ve3c5zr9FHgAqAHm9RLGL4FLgAOAd4D7RWS41/cgIvsAjwJvA4cBB7tx9NR0fjVwCvANYF/AAR4Uke1Syv0CiGAT/UfAnSLSWxPl7cBuwDHA54GvY2u/nXEKEAO2B2a55/4fUJfm3KkuBOJuLD/FfjH4YtL+DuB8YCpwOnAQ8JuUYwwFLgPOAfYE3ks6dj329/+j1BO7tfX/AA3ucb8AHAosSCp2F7DK3T8NiALNGd6TUtlhjNGtDDbsRfb+HvbNBRqTHj8G3Oj+vB9ggJ16eG0UeC3N8wb4TcpzQff5A9zHR7qPv5JUZiSwHjjLfXwG0JBynM7XjXMf3wk84+W9AyOwtZGvJ+2vBJYAP0s5/nFJZQ5zn9uhh3N8wt1/WNJzOwHtQNR9PAObDIalvHYhcHEv8S8FHkp57lbgyV5eczywGahI+j0aYP80x76vh/+/k9yfvwUkgFFp/g92cx9vAMJ+f851K89Na2QKbEeInmaPXoS9t/aaiPxdRL4tIuM9HvdFj+We6fzBGNOArSHt6fG1YGs2dR7L7goMAp5KOme7G0PqOV9N+vl9998JPRw3hK0VPZ903PeSXgewPzAcWOM2vzW4zaZ7uXH15pk0j7fEKyIzROQhEVkhIhuBfwCDgUlJr2nDJs1Umf6fQsCrpvt906ex77czhuuAW90m3UtFpDrDMZXKGk1kCuzF6J10O9yL/Kfd7VXgm8Bitzkvk01ZiK2DrXscDsrCcdNJTeatafZl+pvpbTmJCuBDbNNb8laNbfLrFxHZCdtkGQe+jE2YnffnBicV3ez+f6YayP+Trb4ZE8V+jv6FbXZ8Nd09QqVyQRNZmRORvbDNUH/rqYyxnjHGXA4ciK1lnOLubsE2zQ3EwUnxjMDWUOLuU2uA4SIyOqn8tJTXv4JttvNiCTbmw5LOWQkcArzRt7C7qcf+PR2UdNwpwOSkMi8DE4EOY8zbKdvqDMc/OM3jzt/RAdiEdYH7//RWynkHKg7UiMiopOcOxb7fzhgwxiw2xtxgjJkJ3AaclcUYlOqRJrLyMkREJonIZBHZR0QuxN4Pewnb4WIrbm/AH4vIge6F+XPAjnRd9JcCO4nIfiIyTkSG9COuH4vIsSIyFduBoAXbeQDgOWyN4RcispuIfAk4N+X11wD7ur0B9xGRPUTkLDfebowxm4CbgavcHnwh9/FE4KZ+xN553DexnWZ+KyKHiMg07L25pqRiD2ObNO8Rkc+IyM5u2ctF5PAMpzhYRH4oIruLyLewHUl+5e5bjP1bPt895mnYjh/ZcifQCNzh9k48Avgt8A9jzNsiMkxE5rm9PYMi8klgOgP7YqCUZ5rIyssx2J5ly4BHsEkpChzhXuDTSWBrL/djL5jXAlcaY/7o7v87tmfiI9ja02n9iCviHvdlYHdgVmc8xpiPga8Ax2LvnZ1NSjOcMWah+96qgWexye9Ueh7UfQm2V+PvsfeM9gaON8as6kfsyc4A3sXer7sPm4yXJsVpgBPc/bdge3v+BdiD7vfS0rnOjfMV4GfAT4wxf3OP+yp20PeF2ORxFpC1mUCMMY3AccBo7D3Ae7D36DqbDtuBbbCJ+03gn+7+C7MVg1K9Efu3pZRSShUnrZEppZQqaprIlFJKFTVNZEoppYqaJjKllFJFTROZUkqpoqaJTCmlVFHTRKaUUqqoaSJTSilV1DSRKaWUKmqayJRSShU1TWRKKaWKmiYypZRSRU0TmVJKqaKmiUwppVRR00SmlFKqqGkiU0opVdQ0kSmllCpqmsiUUkoVNU1kSimlipomMqWUUkVNE5lSSqmipolMKaVUUdNEppRSqqhpIlNKKVXUNJEppZQqaprIlFJKFTVNZEoppYqaJrIcEZF2EVkoIotE5GUROdR9PigiTe6+N0TkDhEZlPS66SLyvIjUu9vZKcc9O2nf8yIyPWnfYyJygPvzziKyWESOE5EjReR+9/mh7mtrkl73AxH5rRubEZHvJu27UUTOyNkvSimlBkgTWe40GWOmGWP2AX4I/CJp3xJjzDSgBtgBOBlARCYBdwGzjTHVwHTgHBGZ6e6fBZwDTHf3zwbucl+3hYjsADwIfN8Y85/kfcaYZuB84CaxtnePE3GLrAbOE5HB2fpFKKVULmkiy4/RwLrUJ40x7cDzwPbuU3OA240xL7v71wIX05VkLgF+4D6PW67WfV2n7YD/ApcaY+5NF4wx5kFgFfB14FdA1BjTGd8a4BEg3K93qpRSeVbldwAlbJiILASGYpPLjNQCIjIU+CRwnvvUVGxiSvai+3zn/pfS7E9OOrXAj40xf8sQ3/nYJLrYGPOHlH1XAf8WkQUZjqGUUr7TRJY7TW7zISJyCHCHiOzl7tvVTXI7AzFjzKtZPO/DwFdF5HZjTGNPhYwx74tIHXB/mn3viMhzwOlZjMs/0cBIYEdgMhAARvWwjXBf0Z6ytSX93ICtXa93//0I2xy7GlhDNNGel/eklNpCE1keGGOeEZFxwHj3qSXGmGnuc0+JyOfcZsA3gP2Be5Jevj/wuvtz5/66HvYDXA18DfiriJxojGnrJbQOd0vn/4C/AY9nfIN+iwaGYmurIWAKNml1blOAMXmKxBANrAKWAG+7W9fP0UQiT3EoVVY0keWBiFQDldhv78M7nzfGrBWRCLYzyL3APOA5EfmHMWahiGyLbea7wn3J1cBVInK8MeYjEZkGnIFtnkx2PrbTyG397XFojKkXkTeAzwIv9OcYWRcNCLYWWwPsnfTvbtjfr98EW+ubDBy+1d5oYC32y8hL2CbhF4HFRBMmjzEqVXI0keVO5z0ysBe4sDGmXURSy/0LiIrI4caYJ0Tkq8AtIjLKfd31xpj7AIwx97q9DJ8WEQNsBL5qjFmVfEBjjBGRMLbZ8GogBhwtIiuSin3Zw3v4OfBKX950VkUDQ4CDgE8BRwAHY5sAi9U47Ps4Ium5BNFAcmJ7mmhipR/BKVWsxBj9MqgKRDQwAjiUrov9QdjOMuUmDjyE7X36ONFEg8/xKFXQNJEpf0UD2wMnutuRgI5f664VeAab2B4CXiCa6Om+plJlSROZyr9oYC/g89jktT+2CVV58wG2E87dwFN6f00pTWQqX6KBqdjxbl8EdvU5mlKxEvgr8BfgWU1qqlxpIlO5Ew0EgNOAbwAH+hxNqVuGTWi3EU3U+x2MUvmkiUxll+0ifzRwJvAFYJi/AZWlx4CbgX8STbT6HItSOaeJTGVHNLAtdkLjs4GdfI5GWR8AtwG/I5pY5ncwSuWKJjI1MNFANXYA9tfR2lehagceAG4gmnjY72CUyjZNZKp/ooFDsbPyz0J7HRaT57ED3e/TziGqVGgiU30TDXwG+BF2rTRVvBbROZ+mjktTRU4TmfImGpgOzAUO8zsUlVX12EVf7yKa6G2CaaUKliYy1btooAZ7oZvpdygqp5YAPySa+KvfgSjVV5rIVHrRQBC4Ersmma4kXj6eBC4kmiiMFQ+U8kATmeouGtgGiAKz0XkPy5UB7sTW0FZkKqyU3zSRqS7RwNeBX9K1AKgqb03Yz8NVRBOb/A5GqZ5oIlOdY8Fuxs4+r1Sq94Hz9f6ZKlSayMpZNDAMuBT4AdqMqDK7DzhXmxtVodFEVq6igeOBecAufoeiispGYC+d8koVkiq/A1B5Zldhvh44y+9QVFH6tyYxVWg0kZWTaOAgbG+03fwORRWlj4Dv+h2EUqk0kZWDaKAS+CHwU/T/XPXfeUQTqzMVCkZinwNWL50789k8xKSU3iMreXZg8x/RqaXUwMSIJmZlKhSMxCYCbwBjgOuAy5bOndmc6+BUedMZG0pZNHA6dnJYTWJqIDZgB8h7cSMwFnttuQh4JRiJHZCrwJQCrZGVpmigCrgW+J7foaiSMJto4reZCgUjsS8Cf0+zqwW4ZOncmddnPTKl0ERWeuxKzX8BZvgdiioJjwEzMq1dFozEtsE2KU7qpdg9wJlL585cl73wlNKmxdISDewDvIgmMZUdjcBZHhfgvI7ekxjAicDCYCR2yIAjUyqJ1shKRTRwCrAAGO53KKpkfJ9o4rpMhYKR2HHAg304bht2Rplrls6dqRcgNWCayIpdNCDY9cIu8TsUVVKeAw7NtHp0MBIbCbwG7NSPc8SA05fOnbmhH69VagttWixm0cAg4C40iansagG+mSmJuebSvyQGdrHWp4ORWLCfr1cK0ERWvOxUU/cDp/odiio5PyeaeD1ToWAkNh04d4Dnmgo8p/fN1EBoIitG0cA4oA74tN+hqJLzKrapulfBSGwocBsgWTjnBODRYCR2ehaOpcqQJrJiEw1MAZ4ADvI7FFVy2rFNiq0eykaBT2Tx3EOAO4OR2BXBSCwbyVGVEe3sUUyigT2B/wA7+B2KKknXEE1cnKlQMBLbH9sZpDJHcfwZCC+dO7MlR8dXJUZrZMUiGpiGrYlpElO5sBg7qXSvgpHYIOwwj1wlMbD3fe8JRmLDcngOVUI0kRUDWxN7CDuHnVLZZrBNik0eyl4C7J3jeACOBx5wu/cr1SttWix00cDuwP/IPGuCUv11E9HEnEyFgpHYnsArwODch7TFM8Bnls6dmcjjOVWR0RpZIbNLsDyCJjGVO8uASKZCwUisAttLMZ9JDOAQbI/GcXk+ryoimsgKVTSwA7aL/Y5+h6JK2jlEExs9lDsPODjXwfRgX+CxYCSmX+hUWtq0WIiigUnA42S3e7NSqe4gmghnKhSMxHYBHPyfx/Mt4PClc2dmXKValRetkRWaaGAUtou9JjGVSx8CF3gsewv+JzGwfxP/DkZio/0ORBUWTWSFJBqoxI6hyUevMFXe5hBNfJypUDAS+xaFtSzQfsC97swiSgGayArNr4AT/A5Clby/E02kW8m5m2Aktj3wyzzE01efAv4cjMRyOZZNFRFNZIUiGpgDfNfvMFTJWwdk7Grvmg8UajPeicCtOp2VAk1khSEa+Azwa7/DUGXhAqKJDzMVCkZipwGz8hDPQJwBXON3EMp/2mvRb9FADfAUMMrvUFTJe5Bo4jOZCgUjsfHAG0CxjN06b+ncmTf4HYTyj9bI/BQNbAvchyYxlXsbgXM8lr2B4kliANcGI7FC6pCi8kwTmV+igQrgTvq/uq5SffFDoollmQoFI7HPUXyLtVYBf3XHu6kypInMP5cCx/kdhCoLTwA3ZSoUjMQCwM25DycnxmJnzNdJhsuQJjI/RANHYxcmVCrXmoGziCa83Az/JTA5x/Hk0l7AHdqTsfxoIsu3aGAC8Ef0d6/y46dEE29lKhSMxI4GzspDPLn2BTysq6ZKi15M8ykaEKAWnc1e5ceLwLWZCgUjsRHYaahKxU+Ckdhn/Q5C5Y8msvz6PnbBQKVyrRW7WGa7h7I/B3bOcTz5JMCCYCS2nd+BqPzQcWT5Eg3sBbxE/tdzUuXpSqKJn2QqFIzEDgGepDS/1D4MfHrp3Jl6kStxpfjhLTx2MuAFaBJT+fE68LNMhYKR2BDsYpmleh04BtsKokpcqX6AC80FwIF+B6HKQge2SbHFQ9nLgFCO4/Hbz4OR2L5+B6FyS5sWcy0a2B1YBAzzOxRVFq4jmshYCwlGYtOAF7CDiUvdm8B+S+fObPQ7EJUbWiPLJdtL8VY0ian8WIKtZfUqGIlVYZu6yyGJAeyBXSJJlShNZLn1beAIv4NQZcEA3yKa8FLruAgot+a2s4OR2KezdTARaReRhSKySEReFpFD3eeDItLk7ntDRO4QkUFJr5suIs+LSL27nZ20LyoijSIyIem5BvffHUXkXREZ6z7exn0czNZ7KmaayHIlGpgCzPU7DFU2biGaeDRToWAktgflO2D45mAklq3WkSZjzDRjzD7AD4FfJO1bYoyZBtQAOwAnA4jIJOAuYLYxphqYDpwjIjOTXruWNB1UjDHLsdOHdV5T5gK/M8YszdL7KWqayHLnWnRWe5UfK4AfZCoUjMQqsL0Uh+Y8osK0Cx6aXvthNHbB0m6MMe3A88D27lNzgNuNMS+7+9cCFwORpJctAE7prHml+BVwsIicj02Chbh6ty80keVCNHA4cJLfYaiyMZtoYoOHcnOAw3IdTIG7KBiJTc3CcYa5zYf12PvgV6YWEJGhwCeBB92npmLHkiZ70X2+UwM2mZ2XejxjTCv2C8uvgPPdxwpNZNlnO3hc53cYqmzcRTQRy1QoGIntRPfmr3I1CPhtFiYW7mxarMbO1nOHiHQec1cRWQh8CKwyxrzax2PfAIRFJF2LzmeAVdgJkpVLE1n2fQ04wO8gVFlYQ5pv7j24BRiRw1iKyWHA2RlLeWSMeQa7EOl496nOe2S7AvuLyOfc598A9k95+f7YAezJx1uPvZc2J/l5EZkGHAscDFwgIjoFl0sTWTZFA8OB//M7jELW3GY46JYG9pnfwNSbGvjpo80AfOUfjexxYwN73dTAN+5porU9/fjG2oUt7P6bBnb/TQO1C+2Y381thuP/uIm9bmrgphe6xgGffV8TL6/yMtVg0fou0cTaTIWCkdiZ2Aug6jI3GIlNzMaBRKQaqAQ+Sn7evQcWwXYGAZgHnOEmJERkW+Aq4Oo0h70Ou6J3lVtWsJ09zjfGLAOuQe+RbaGJLLsupuvGrkpjSCXUhUewaPZIFp4zggeXtPHsija+UjOI+jkjcL49gqY2w60vb938/3GT4fLHN/PcWSN4/qwRXP74ZtY1Gf6zpI3pU6p49dsj+MOr9nWLPminvQP2264y328xX+4hmrg7UyF34lxt6t7aGOxkyf3VeY9sIXA3EHY7d6T6FzBcRA43xqwCvgrc4t5bexpYYIy5L/VFbhL8JzDEfepbwDJjzEPu45uAkIh8agDvoWSUy4DI3IsGtsdDz7FyJyKMdGecbO2A1nY7VfkJu28ZasNBkytZsaFjq9f+5+02jt2lirHD7K2IY3ep4sG32xgzFBpbDa3t0DlRzWWPbmb+rJLtnLceO0bRi5uwF221tTODkdivl86d6fT1hcaYtN+Q3O7weyU9NsA+SY//Rw/T1RljoimPLwQudH/+HfC7pH3twH59jbtUaY0sey4DhvsdRDFo7zBMm9/AhGs2cuwuVXxyh67vU63thj+82srxu239HWvlxg52DHR9ZHcYXcHKjR0cu2sVS9d3cPBtm/jeJwdz75ut7LddBZNHlezH+yKiiVWZCgUjsZOBz+chnmJVgTbPlYSS/UvPq2hgB+BMv8MoFpUVwsLZI1lx4Sief7+d11Z3tcicG2vmiJ2qOHwn740FVRXCXV8azivnjOTLe1Zx/bMtfP+QIVz4n2ZO+ksj975ZUr2UHyaauC1ToWAkti3wmzzEU+w+nc0ZP5Q/NJFlx8XoEi19NmaocFTQNg8CXP7YZtY0Gq47bkja8tuPqmB5oqvJccWGDrZPqXXd9EILX99nEM+uaCcwRLj7pGFc+4yXieCLwibsvRIvrgcmZCylAP4vC93xlY80kQ1UNDAROMvvMIrFmk0drG+2N7KaWg0PvdNG9bgKbn25hf8saeNPXxpGhaS/phy3WxX/faeNdU2GdU2G/77TxnFJTZDrmgz3L27j6/sMorHVUCEgYs9TIn5ENLE0U6FgJHYCtlOB8mZ/dAKDoqaJbOAuQme392xVg+Go2k3sfXMDB96yiWN3qWLWJwYx+/5mPtzUwSG3bWLa/AaueHwzAC++385Z9zYBMHaYcNkRQzjwlgYOvKWBnxwxZEvHD4ArHt/MpYcPoUKE43ar4ollbdTcvImv7V0SleWngRszFQpGYqOB3+Y+nJJzZTASK9kurqVO1yMbiGhgW+A9dKCpyq3NwDSiifpMBYOR2Hzs+CPVd19dOnfmnX4HofpOa2QDcwGaxFTuXeExiX2KLM5YUYYu9jsA1T+ayPorGhgJfMfvMFTJe4X0Mz904y5Pcit2WJ7qn72Dkdhn/A5C9Z0msv77KhDwOwhV0tqAbxJNtHkoeyWwW47jKQeX+B2A6jtNZP3ndWYFpfrraqKJVzIVCkZiBwHn5yGecvAp9/epiogmsv6IBg4D9vY7DFXS6oErMhUKRmKDsYtlao+77NFaWZHRRNY/WhtTudSBbVLc7KHsj9C1qbLt88FI7BN+B6G800TWV9HAeHTwpMqtG4kmns5UKBiJ1WATmcquCmyPZFUkNJH13TfoWlpBqWx7Fw/JyR28uwC74rHKvq8EIzEdWlMkNJH1RTRQgQ42Vbl1NtHEJg/lLkRXIs+lUcDJfgehvNFE1jeHAzv7HYQqWQuIJh7OVCgYie0OXJ6HeMqdzqFaJDSR9c0pfgegStYq4PuZCrmztN+Kzu+ZD4cGI7GQ30GozDSReRUNVAJf8jsMVbK+TTSx3kO52cARuQ5GbaG1siKgicy7o9D1nVRu3E00cU+mQsFIbApwVR7iUV2+5o7VUwVME5l32qyocuEj4Lsey87HdkJQ+TMeONHvIFTvNJF5EQ0MAr7odxiqJJ1HNLEmU6FgJPY1QCe09cfpfgegeqeJzJtjgbF+B6FKToxoIuP6V8FIbCJwfR7iUekdF4zEhvsdhOqZJjJvvux3AKrkbMB23PDiRvSLlJ+GobXhgqaJLJNoQIDj/Q5DlZwfEE2syFQoGIl9EZ0SrRBoj+UCpokssxpgkt9BqJLyKHBLpkLBSGwbYF7uw1EezNTei4VLE1lmn/Y7AFVSGoFvEU0YD2WvQ79EFYrRwDF+B6HS00SW2bF+B6BKymVEE0syFQpGYscBZ+Q+HNUH2nO5QIkxXr4YlqloYCjwMTodkMqO54BDiSY6eisUjMRGAq8BO+UlKuXVGmDS0rkze/3/U/lX5XcABW46msRUdrQA38iUxFxzyWISW/vA9TQteYHK4QEmf/MmANY/eScNi/5DxfAAANsc8XWG7XrgVq/d8MK/aFj0XxAYND7IuBPOR6oGs+a+a2hd8x7Ddj2QbT4Vtsd8+s8MHrcTwz9xSLZCLzTjgX2AV/wORHWniax3en9MZcvPiSbeyFQoGIlNB87N5olH1hzDqP1m8VHsum7Pjzrg8wQ+2XNrWdvGtWx46T4mf/MmKgYNYc2/5rIp/j8GT9yViqohTP7GjXz45x/TsXkTHa2baXn/TcYcemo2Qy9ER6GJrODoPbLeHe13AKokvAr8IlOhYCQ2FLgNkGyefOiOe1E5rJ8zW3W0Y9paMB3tmLbNVI4ci1RU0dG2GWM6MB1tIBUknvgjgelfyWbYheoovwNQW9MaWU+igWHA3n6HoYpeO/BNoolWD2WjwCdyG06XjS/fz6bX6xg8aTe2mXEWlUNHdttfNWocow/6AitvPhOpGszQnfdl2M77AVA5LMCq289j5NSjaFu3CmMMQybtlq/Q/XR4MBKrXDp3Zrvfgagumsh6Ng39/aiBu5Zo4sVMhYKR2P7ARXmIB4BR+55A4NBTQYT1T/yRdXW3Mu6E87uVaW9uoHHxc2w/+zYqhoxgzT1zaXj9UUZOPYqxx5y9pdzqv13O2OO+Q+Lpu2lZ/S5Dg9MYNa1k5xAIAPsCGf9PVf5o02LPtr7zrVTfvAX8NFOhYCQ2CFgAVOY8IlfliG2QikpEKhi1z3G0rHprqzLNSxdSFZhI5fAAUlnF8E8cwuaV8W5lGhc/y+BJu2Fam2ldv4rxn4/Q+OZTdLQ25+ut+EGbFwuMJrKeHeB3AKqoGeAsogkvV/RLyHMzdlvDx1t+bnzrGQaN27qTZNXo8bS8/yYdrc0YY2h+bxGDtt1xy37T3saGF+9h9Ce/hGnbzJZbe6YD2tty/Rb8pImswOg4sp5EA3Gg2u8wVNG6iWhiTqZCwUhsT2wvuJxNf7Tm3qvZvMyhvWkDlcPHEJj+FTYvd2j58B0QoSowgbHHfYeqkWNp2/gRHz14AxO/fDkA65+4k031TyAVFQyeuCvbHv89pGoQABteuIeKoSMYWXMMxhjWbumSfwDbHHlmrt5OIdgIjNHxZIVDE1k60cAoIEGWe4+psrEM2ItoYmNvhYKRWAXwFHBwXqJS2VS9dO7MN/0OQlnatJje/mgSU/13dqYk5joPTWLFaprfAagumsjS29/vAFTRqiWa+E+mQsFIbGkcG14AACAASURBVBfgZ3mIR+XGvn4HoLpoIksv5HcAqih9CFzgsewtgK46XLy0RlZANJGlt4ffAaiiNIdoYl2mQsFI7FvAjDzEo3JHE1kB0USWniYy1Vd/J5r4e6ZCwUhse+CXeYhH5dbEYCS2nd9BKEsTWapoYBDwPHYwq5dphZT6GMjY1d41H7tIoyp+WisrEDoFUyo7J94s+3OgEpgC7JZm2wUY6k+QqsBcSDTxYaZCwUjsNDo/W6oU1AD/9jsIpYmsd9FEO/Cuuz3UfV9AgB1In+R2BUbkM1TlmweJJmozFQpGYuOBG/IQj8qfXfwOQFmayPormjDAcnd7dOv9ge3oOckF8hanyqWNwDkey94AjMthLCr/gn4HoCxNZLkSTawCVgFPbL0vMJ70SW43YGz+glQDFCGaWJapUDAS+xxQ8itOlqGg3wEoS6eoKjTRwBh6TnITfYxMdfc/4Ei3Zt6jYCQWAN4AJuclKpVPzcDwpXNn6kXUZ1ojKzTRxHrsWkdbr3cUDYyk5yQ3GZ1WK1+asTPbe7mA/RJNYqVqKPbL5Qd+B1LuNJEVk2iiAVjobin7AsOw99/SJbkd0aEW2fRToonFmQoFI7GjgbPyEI/yTxBNZL7TRFYqookm4DV3S9kXGIztYZUuye2Efg764kXg2kyFgpHYCOw0VKq0BYFn/Q6i3OkFDKiprRmKHROy2Ak76/2OJ+uiiRag3t1S9gWqsH+MqT0rdwN2BobkK8wi0Ap80x2WkcnPsb8/Vdp2zFxE5ZomMmsqdjYPamprPgbeTrc5YWeNbxHmSjTRRtd7TNkXqMD+ofY0jGBY3uIsDL8gmng1U6FgJHYI8N08xKP8p72MC4AmMiuY9PNY4CB366amtiYBLCF9kluV+zDzLJroAN5zt0e67wsIthNDT0luVD5DzYPXsbWsXgUjsSHAbeg9yXIxxu8AlCayTl6bgALAfu7WTU1tzSa6J7nkn5c7Yae0uujaHnsr3e3xrfcHJtJzD8ti++PvwDYptngoexm6DFA5KbbPcknSRGYFs3CMEcDe7paquaa25l3SN1m+54QdL/dcioude/BD4Kmt9wW2peckV4izX1xPNPFcpkLBSGwacEke4lGFQxNZAdBEZgVzfPyh2G/p6b6pt9bU1iwlfZJ71wk7pTcDfzTxEfARsHVyiAYC9DyMwI9lM5YAP85UKBiJVQEL0L+pcqOJrADoH53l54wZg4Dd3S1Ve01tzTLSJ7klTtjZnLco8yWaSAAvu1vKvsAIek5yO5D9AeEGO/C5yUPZi4B9s3x+Vfg0kRUAnaIKqKmtWYy9GBaTDuz9qZ56WDb6GFv+RQND6Xms3BSgsh9H/R3RRMZJgYOR2B7YQeq6rE/5+WDp3Jm6wKbPtEZmFeNs9J1d43cEjkrdWVNbs4r0PSwXO2FnQx7jzI9oohk7p+EbW+8LDMJ26EmX5ILYWnGqFcAPMp02GIlVYHspahIrT7pIagHQRGYVYyLLZDt3m566o6a2Zi091+Q+ymeQeWEXS33L3VL2BSqxs5ukDgafTzThJeHPAQ7LWqyq2KT7EqTyrOybFt1ZPbzcAykX6+h5rFzGVZDLSTAS2wk7vkwXUS1f7UvnztQKgc/0P6A0a2MDsQ1wgLt1U1Nbs5EekhzwfsmNlcvsFjSJlbv+3HtVWaY1stqaTwBv+h1HCWgE3iGlZ6X77zIn7HT4GFvWuR08LvY7DlUQztI1yfyliay25kDceRZVzmwGlpK+JrfUCTtt/oWmlCp22rSoTYv5MATYw91StdXU1rxH+iT3jhN2vEwLpZQqY5rINJH5rQrbU3BX4LiUfR01tTXL6XlAuHbSUUppIkNv1heyCmzX+J2Ao1P2mZramvfpeRhBQ66Dmze7bjRwCPBJ9HNUzt6ZM3/Gb/0OopzpPbLamq8Af/Q7DpV1H7L1KgSdA8KzunjqvNl1VdgVEQ7Djts7DH+nPVP59dic+TO2mpRA5Y8mstqak4G7/Y5D5VVPi6c+l63elfNm1+2GTWqdia06G8dVBemROfNnHON3EOVMmxZBOxOUn3SLp77shJ39s3WCOfNndCbH2wHmza4bh01onbW2/YHB2TpftrS2tXD9vefT1t5Ku2ln352PYOaBZ2xV7uUlj/HAi7Ugwvbb7sqZR1/Kh+uXc/sjP6e9o41TD7+AXSZNpb2jnZseiHDOcVcyeFDJzuJVUkNLipEmMii9ZVJUf/wylwefM3/GWuAed2Pe7LqhwIF01doOpQBmUq+qHMT3PnstQwYNo729jevuPY89pxzEzhP33FJmdWIF/33lT1z4+RsYPmQUG5vWAfDkG/dx0qFzGDtqEn97eh67TJrKE2/cy4G7H13KSQz0y7DvNJFpIlPwHvDXTIXi1aEQMB54PlQfbx7ICefMn9EMPOFuzJtdJ8BUupoip5P7dfK2IiIMGTQMgPaONto72pCU1XGejsc4YurnGD5kFACjhm0DQGVFFS1tm2lpa6ayopLGzQ289t4znHvC3Py+ifxL+B1AudNEpt+mFPza46DsXwPHAi3x6tDLwJPYFbCfDNXH1w4kgDnzZxjgNXebDzBvdt32dO9Asg95mBKpo6Odq/7xbdYkVnLE1BMJTuy+HuzqxAoArvvX9+gwHZyw/9fZc8pBHDH1RO549Cra2ls47YgLePDlP/DpfU+nQipyHbLfNJH5TBOZ1sjK3XrsnIm9ileH9sEmMbD3tg52t4vc/W/iJjVsYls80MDmzJ+xEviLuzFvdt1IbHf/zsR2MDno9l9RUckPT/odjZsbuOW/P+H9j99l8tidt+xv72hndWIl5332OtZtWsP1917Aj758K2NHTeT8z10HwJrEStY3rGXSmCnU1v2C9vY2Zh54BhPH7JjtcAuBJjKfaSLTGlm5+63HMWcXZdjfOXPJNwDi1aHVdCW2p4CXQ/XxAX1pmjN/RgPwkLt1dvvfh+69I7O2yOPwISP5xORpvLH8hW6JbMyI8QQnhKisrGLc6O2YENiBNYkV7DShq2Pmfc8vYNZBZ/LYa//k0OoT2HbUJO59/jbOOPpH2QqvkJTe+n5FRhOZ1sjKWQtwQ6ZC8erQDsApfTz2BOAL7gbQGK8OPU9Xcns6VB8f0AVwzvwZbcBL7vZrgHmz63ah+322EKTc5OrFxqb1VFZUMXzISFraNlO/4iWOmXZqtzL7BA/jxSV1HFJ9PA1NCVYnVrDt6K78ufj9RQRGbMuEwA60tm1GRBARWtoGdFuxkGmNzGeayLRGVs7+5ISd9z2UO4+BL6A4HDjS3QA64tWh13CbIrHNkcsHeA7mzJ/xDnYVgjsA5s2uG4vtEdlZazsAO/dlWhsaP+IPj15Nh2nHGMN+u36Kmp0O4f4Xfs+U8Xuwd/BQQjseSHzFi/zs7jORiko+f/DZjBxqZ3ozxvDgy3/kG8dcBsBhoZncXvd/dHS0c8rh5w/07RUqTWQ+0wHRtTWTgFV+x6F8UeOEndd6KxCvDo0GlpOfJe2Xk9SBBHBC9fGsjlGaN7tuCDaZddbaDsOOq1P999k582fc73cQ5UxrZLAaaEN/F+XmwUxJzHU2+UliADsCp7kbQCJeHXqWrlrb86H6eONATjBn/ozN2ET5FGzp9h+iqylyOrDLQM5Rhvr1RVhELgVOB9qxg6rPASLAzsBI7FCPd93i5xpjnhaRhUC9MeZUETkT21oAsCd2XcV24EGgHrgGWJl0ytOx6wa+C3zPGPMbN44bgReNMbenxBcFGowxvxSRg7HN10Pc7W5jTFREzgAOMMZ8J837q3J/N7cZYyJJzz8GjDTGHOA+PgD4pTHmSBE5EjvW8h1sK8aHwNXGmF6/KJT9xdsJOx01tTUfAtv7HYvKq4wDoOPVoUF0XSj8EMCuCNC5KkBrvDr0Ct27/a8eyAncbv9vuNstAPNm102ieweSaei1ojcrMxfpTkQOAWYB+xljNovIOGCwMeYL7v4jgYuMMbOSXhPCDr84XERGGGN+D/ze3bcUOMoYs9Z9fAY22XRLMCISxH55P09EfmuM8XprpRY42RizSEQqSb8kU6pjgbeAL4vID0335r8JIvIZY8y/07zuic73LSLTgH+JSJMx5pGeTqQfTut9NJGVk1ecsNPjH0WSU4Adch1MHwyia2qtCwHi1aG36aqxPRWqj9cP9CRz5s/4APibuzFvdt0IbFf/zlrbwcCogZ6nRLRhE0NfbQesNcZsBuhMQBmcBvwBW4M+EbirH+cFWIP9IhTGw9AT1wTcmqcxph37xSeT07C1uG9jh408nbTvGuBSIF0i28IYs1BErgC+A2giy8DLDX9VOrxOR5Wpy30h2M3dzgCIV4fWYC8YnffZXgrVxwfUoWnO/BmbsBeRRwDmza6rBPame62tXL8Irpozf0Z/7mP+F/iJiLwFPIytPT2e4TWnYGs51cB3yZzIThGR6UmPD0n6+Srg3yKywGO8vwLedJsFHwRqjTE9dkMVkaHAMdjm0jHYpJacyJ4BviAiRwEbM5z7ZeAHvRXQRGZpIisfy3AHGPcmXh06FjtGq9iMx35bP9F93ByvDr1AV63t6VB9fEDL2MyZP6MdeMXdfgMwb3ZdkO7d/qfSh27/RWxpf15kjGkQkf2Bw4GjgLtFJJJ6n6qTex9prTFmmYisBBaIyFhjzMe9nCZd02Ln+d8Rkeew9828xHuFiNwJfNp9zWl09cBNZxbwqDGmSUT+DlwmIue7tblOPwN+DFyS4fQZP0eayCxNZOXD63RUxVAb82Io9mJ5uPvYxKtDr9P9PtvSgZ5kzvwZS7EX9T8CzJtdN4aubv+HYZtDS3Hm4KX9faF7UX8MeExEHGxT3+09FD8NqHbvhYHtgPQlvDcNpvN/2ObjTDVBAIwxS4CbReQWYI2IbNtL8dOA6UnxbgvMwB3M7x6vTkR+hm2q7s2+QLy3AprILE1k5SGBt+mo9sZ+8yxFAuzlbrMB4tWhlSRNrwW8GqqPt/d4BA/mzJ+xHnjA3Zg3u24wduma5Lkjxw3kHAXivf68SET2ADqMMZ1TmU3r6VgiUgGcDNQYY953nzsKuIwBJDJjTL2IvAF8FnghQ7wzgQfcDhu7Y3tHpq3Zi8ho7BenHTvvAbo9LE8jKZG5foadW/SdHo61N/Z9ntVbfJrILE1k5eF3TtjJ1B4PpVMb82p77IXyZPfxxqRu/08Bz4bq45sGcoI582e0YO+LPIN7j3Le7Lo96H6fbfeBnMMnb/XzdSOB34jIGGyHkbexQz3SORxY2ZnEXP8D9hSR7YwxPXX/T71Hdi5bX+t+jm0izuRrwK9EpNGN9yvGmHa3qfIMEfl8UtlLgbrOJOa6B7haRLoNxjfGPCAia1LOdbiIvILtfr8aO1Sg185ZZT8gGqCmtqYGeNXvOFROtQI7O2Gn167S8erQ9thxNgOdyaOUtAEL6T4p8gfZPsm82XUT6H6fbV8K//9hvznzZ3hJBCqHNJEBNbU1o9FpZkrdHU7YCWcqFK8OXU2GHlIKsE1BybOQxEP18axeTObNrhuOvbfWWWs7hPwNTveiHRjpri2nfKSJzFVTW/MuPixkqPJmbyfsOL0ViFeHRmGniQrkJ6SS8jG2e3XnfbYXQ/Xxzb2/pG/mza6rAGroXmvzc12YN+fMn1GduZjKNb1H1mURmshK1X8zJTHXt9Ak1l9jsV2uO2ei2ByvDr1IV63tqVB9vLeu4hm547UWuds8gHmz66bQvQNJDZCvlTy9fKZUHmgi67KIrrE3qrRck6lAvDpUBZTs9Ow+GELXpMRgu/3H6X6fLW1Ptb6YM3/GMuzYwD8BzJtdF6D74qMHYTsN5IKXuTpVHmgi67LI7wBUTix0ws7DHsqdgr/NVKVOsBPb7omt+RKvDq2i++Kjr2Sh238CO/PEgwDzZtcNAvaje61twkDOkUQTWYHQRNZFE1lputZjue/nNAqVznbASe4G0BCvDj1HV3J7JlQf97J6d4/mzJ/RCjznbtcBzJtdtzvd77N5mQA3Hb1mFAjt7OGqqa0RbM9FnQy1dKzAdrnvdSaPeHXoaOx8d6qwtGOHxSQvPpr1MZ/zZteNp/vio/sBgzO8bO2c+TPGZzsW1T+ayJLU1NY8hf1Aq9JwkRN2MtbI4tWhB+laKkUVtqV07/b/eg66/Q+lq9v/YdhrwpiUYvfPmT/js9k8r+o/bVrsbhGayEpFAvhdpkLx6lANmsSKSdDdvuo+XhevDj1DV63thVB9fEDjutxxYf9zt87FR/ei++KjzwzkHCq7NJF1V9Jt3i0ftbDylpW0bbAtbdscuQ3jPj2OtoY2lt+8nNa1rQwaN4gp506hckRl2mO0N7Wz+EeLGb3faCZ/bTIdrR0s+/UyWte1MnbGWLY92s4juvL3Kxl71FiGBYfl7f2luMXjdFR6b6y4bQOc4G4ALfHq0Et07/bvZa2vHrmLjzruNh+2LGWjCoQ2LSapqa05EHje7zhypXV9K23r2xgWHEZ7UztLokuY8r0prH9yPZUjKhk/azxr7l9De2M7k06elPYYq+5cRdvGNipHVDL5a5PZ8MoGmpc3M37WeN75+TvsetmuNC1r4qOHPmKHb/q2JmUrsIsTdlb0ViheHZqMnY4q0/0QVdzepPt9trd9jkdlmdbIunsZ2yRVkoNiB40ZxKAxduq6ymGVDJk8hLZ1bWx4ZQM7R3YGYMz0Mbw79920iaxpaRNtiTZG1oykaWkTAFIpdLR0YNoNuN+JVv9jNZPDk/PzptL7c6Yk5joPTWLlYA93+yZAvDr0IW5tDZvcXg7Vx70s7aMKVL5GwBcFJ+x0rg9U8lrWtND8XjPDdh1GW6JtS4KrClTRltj6b9p0GFb9aRWTTu2e4EZOHUnr2lbeufIdtj12Wza8soGhOw1l0Da+zvWacQVodzqqc/IQiyo8E4EvYodmPAck4tWhR+PVoSvj1aHj4tWhQprPUXmgNbKtPUSJz/DR3tzOshuXMen0SVQO697ULyJp12P9uO5jRu0zikFjuycoqRR2nG3HEZs2w9JrlzLle1NY9adVtH7UypjDxjB637xeFx5ywo6XlQzOokRr3qrPhmNXOz7SfdwRrw45dN1neyJUH/dSw1c+0US2tZIeT2TaDMtvXM6YQ8YQOMBex6sCVbSub2XQmEG0rm+lavTWH4vGtxtpfKuRjx/5mI7NHZg2Q8WQim5NkB/VfcSYQ8fQtKSJymGVTDp3Eu9e9W6+E5mX2phOR6V6UwHs425zAOLVoVtC9fGe1gtTPtOmxRRO2HkTOwN6yTHGsHLBSoZsN4Rxx3ctzjt62mjWP2kXe13/5Pq0iWfH2Tuyx3V7sMe1ezDplEmMOWxMtyTWvqmdjYs2MuawMXS0dGyp1ZmWvHYmWuSEnf96KHcyMCXXwaiS8rrfAaieaSJLryRrZY2LG1n/9Hoa4g28fdnbvH3Z22xctJFxs8bR8HoDb13yFg1vNDBupk1yTe82sXJBr+tQbrH6ntWMnzUeqRBG7jWSTW9t4u0fv82YQ1PHkeaUTkelcuV/fgegeqbd79Ooqa05HbjT7zhUn6zAdrlv7a1QvDo0A+h12XSlUqwHtg3Vxzv8DkSlpzWy9B5mS2dyVSRuyJTEXBflPBJVah7SJFbYNJGl4YSd1eiiecVkA/DbTIXi1aGpwPG5D0eVmJjfAajeaSLr2X/8DkB5dosTdjZ4KHcRaQcXKNUjA/zb7yBU7zSR9exuvwNQnrQC12cqFK8ObQecnvtwVIl5MVQfX+13EKp3msh64ISdl7BztKnC9heP01F9D52OSvWdNisWAU1kvbvL7wBURl4GQI8EZuchFlV6NJEVAU1kvdMu+IXtYSfsLPRQ7iy2XhhRqUw+AF7yOwiVmSayXjhhZwl2UlFVmLzUxirR6ahU//wl26tPq9zQRJaZ1soKk+OEHS89S78M7JTrYFRJ0r/9IqGJLLO7AV2rqPB4nY5KB0Cr/ng7VB8v2UV2S40msgzcwdElOfdiEVuJh4448erQUcD+uQ9HlSDt6FVENJF5o00MhUWno1K5pomsiGgi8+af2GmQlP824m06qj2Bz+Q+HFWCXgrVx3UMaRHRROaBE3Y2Abf6HYcC4FYn7CQ8lPs+Oh2V6p8/+B2A6htNZN79Gu304bc2vE1HNQn4au7DUSWoEaj1OwjVN5rIPHLCzjLgb37HUeb+4v4/ZKLTUan+uitUH1/vdxCqbzSR9c11fgdQ5rwMgB6BTkel+m+e3wGovtNE1gdO2HkBeMLvOMpUnRN2XvFQ7pvANrkORpWkp0P1cS9TnqkCo4ms77wOxFXZdU2mAu50VBfkIRZVmm7yOwDVP5rI+u4+YLHfQZQZxwk7D3oodxIQzHEsqjStBv7qdxCqfzSR9ZETdjqAX/kdR5nxem9SB0Cr/poXqo+3+B2E6p8qvwMoUrcDVwLb+hxHOXgfb9NRfQo4IPfh9N2q1lZ+uGoVa9vbEODkMWP42jZjiTc3c/mHH7DZGKoQLps4kb2HDdvq9WcvX86i5ib2GzaMm3fYccvzP3j/fRZv3synRo7kgvHjAZj/0Vp2GzyEY0aNytfbKwUbgBv8DkL1n9bI+sEJO03ovbJ8ucEJO16+KRdsbaxKhIsnTOD+nXfhzzvtxF3r1vH25s1cu2Y15247jn8Gd+Y748Zx7ZrVaV9/5tixzN1uu27PvdnczNAK4V8778xrzU1sbG9nTVsbrzY1aRLru5u0y31x00TWf78GVvkdRInbCMzPVCheHQoBM3MfTv+Mr6piz6FDARhRUckuQ4awuq0NQdjU0QFAQ0cHE6oGpX39ISNGMKKi+59qlQjNHYYOY2gzhgoRfrN2Dd8ZNz63b6b0NKLDaoqeJrJ+csJOI7Z5UeXObaU2HdXK1hbizc3sPXQokQkTuGbNamYseZtr1qzm/PHek9CuQ4YwtqqSL723lCNHjmRZSwsdsCVhKs9+F6qPr/E7CDUweo9sYG4BLgR28zuQEuR1OqqJFMl0VJs6Ojhv5Up+OGEiIysr+fXatUQmTODTo0bz7w0buOyDVSzYcYrn4/1wwsQtP5+7YjnRSZOY/9Fa3ty8mUOHj+DLY8bk4m2Uks14GGSvCp/WyAbACTttwGV+x1Gi/uaEnfc8lPsuMCTXwQxUqzGcv3Ils0YHONa9h3XPhgTHjrQ/Hz9qFE5zc7+O/cjGjew5dCiNHYblLa38avL2/HfjRprcZkvVowWh+vhKv4NQA6eJbODuBp7zO4gS5GUA9Ajg23mIZUCMMVz2wSp2GTKYM8aO3fL8hKoqXmhqBODZxkZ2GpT+HllvWo3hD+vW8c2x29Lc0YG4DaztGFqNyUr8JaoBuNzvIFR2iNEP+4DV1NYcAjztdxwl5FEn7MzIVCheHfouRdBt+qXGRr62fBmfGDxkS6I5f9x4RlZU8IvVH9IODBbhJxMnMXXoUF5rbuLu9eu5cpLtqfjVZe/xbksLjR0djKms5MpJk5g+YiQAd3z8MaMqK/hCYAzGGH6w6n0Wb27hiJEj+P74CT6946Lw01B9/Aq/g1DZkTGRiYgB7jTGfNV9XIXtrfecMWZWUrl/AZOMMQcnPRcFLgaCxpjV7nMNxpiRqT+7j88ADjDGfCfpuYVAvTHmVBE5EzjP3bUn8CbQDkwFXnefrwEc9+cFxpgbROR64MvAjsaYjqRzLQCmGWNedZ97DZhljFma4fe2lZramj8Bp/b1dSqtmU7YeaC3Au50VG8Bu+QnJFVC3gd2D9XHG/0ORGWHl6bFTcBeItI5UvNYoFu7soiMAfYHAiKSemFZi+1V1mciEgIqgcNFZIQx5vfGmGnGmGnYD+NR7uNBSc83df7sJrEK4AvAcuBTKadYAVzan9jSuATo300Olex14N8eyn0RTWKqf36iSay0eL1H9gBd43ROA/6Usv+L2DkI/8zWtZIFwCkiMpa+Ow27Wut/gRP78XqAI7EXx5vd4yW7H5gqInv089hbuOtk/WKgx1Fc64QdL+3dBTsAWhU0B/i930Go7PKayP4MnCoiQ4G92bpzQ2dy+xNbJ4sGbDI7j60NE5GFnRuQ2mZ9invudMf1qjO2fwIzRST5jnoHcDXwo34eO9UvgEVZOlY5WgXcmalQvDp0BHBQ7sNRJejiUH1cu3OWGE+JzL2HFMQmhW73LkRkIrA78KQx5i2gVUT2SjnEDUBYRFLnzkluBpwG/CTpuAcAa40xy4BHgH37WqsTkcHACcC/jDEbsAn4uJRidwEHi8jOfTl2Ok7YaQXOxI6BUn33m2KfjkoVtH+G6uNeVlFQRaYv3e/vxQ4eTG1WPBm7kOG7IrKUroS3hTFmPTZhzOnD+U4Dqt1jLgFGA1/qw+vBJq0xgOMeZ3qa2Nqw8yZe0sdjp+Uu/nhVNo5VZhrwNh3VHsCsTOWUSrEBO+ZQlaC+JLIFwOXGGCfl+dOA440xQWNMENvpI13vveuAc/Awm4jbQeNkoCbpuCfS9+bF04Czko6xM3CsiAxPKXc7cAyQrYnqrqCrF6Xy5jYn7KzzUK5opqNSBeVSHfxcujwnMmPMCmNMtzE7IhIEdgKeTSr3LpAQkU+mvH4t9j6Vl1kYDgdWGmPeT3ruf8CeIrJdD6/pxk1WxwOxpBg2AU8Cn02JrQXb/JmVgTdu89iZ2KEBKrN2PKzx5k5H9fXch6NKzPPo6s8lTQdE51BNbc1V2HF0qnd3O2En4xi8eHXoSuDHeYhHlY424IBQfVw7YZUwnaIqt36KHbSteudlOqrhFMF0VKrg/EqTWOnTRJZDTthpxjYxanffnj3mhJ2XPJQ7E12RW/XNGyT1hFalSxNZjjlh5xl03bLeZFxGI14dqsAul6OUVy3A6aH6uM62UwY0keXHFXibdqncvEHKuMQe6HRUqq8u1SbF8qGJLA+csNMBfAV41+9YCsx1Oh2VyoE67NhQVSY0keWJO0bqGXBVXwAACvdJREFUi0CT37EUiA+AP2YqFK8OTQc+mamcUq51QDhUH9fu2GVEE1keOWFnIdrzrtNvnLCz2UO5H+Q8ElVKzgnVx1f4HYTKL01keeaEnVrgt37H4bNN2NUIehWvDn2ClMHrSvViXqg+/le/g1D5p4nMH9/DzjZQrhbodFQqy54BLvA7COUPTWQ+cKewOglY43csPvA6HdUEdDoq5c1q4Muh+nir34Eof2gi84kTdpZjk1m5jXP5uxN2vPTe/A4wNNfBqKLXCpykEwKXN01kPnLCzv+wKwWU0+TCXqajGgacm4dYVPH7Xqg+/oTfQSh/aSLzmRN27gG+5XccefI/J+y86KGcTkelvJgfqo9nXMNOlT5NZAXACTu/pzxmyfc6HZXetFeZ3IdtflZKE1mhcMLONXhoditiceB+D+U+D+yW41hUcXsOODVUHy+nJnnVC01kBcQJOxdjV+IuRV6no9IB0Ko3i4FZofp4o9+BqMKhiazwnA38y+8gsuxD4A+ZCsWrQ4cBB+c+HFWkPgSOD9XH1/odiCosmsgKjBN22oHTgMd8DiWbbvQ4HZVODqx6sglbE3vH70BU4dFEVoDcBTlnAQ/7HUsWbAJuylQoXh3aHfhc7sNRRagRmBmqj3vp8arKkCayAuWEnU3ATOBvfscyQL93ws7HHsp9H/08qq01Ymtij/sdiCpceuEoYO5UVqcAt/odSz95nY5qPDodldpaE/DZUH38Ub8DUYVNE1mBc8JOhxN2vgVc7Xcs/fBPJ+x4uacxBxiW62BUUelMYnV+B6IKnyayIuGEnUuAS/yOo4+8Tkc1Jw+xqOLRDJwYqo8/4ncgqjhoIisiTti5GjiL4pib8Qkn7HhZquYMYFyOY1HFI4HtYv+Q34Go4qGJrMg4Yec27H2zFr9jyUCno1J99T5whHbsUH2liawIOWHn78AMYJXfsfTgTexceJmcCOye41hUcXgTODRUH3/V70BU8dFEVqScsPMUsD/wlN+xpHGtx+modAC0Ajt34mGh+vh7fgeiipMmsiLmhJ1VwFHAjX7HkuRD4I5MheLVoUOBQ3MfjipwDwAzQvXxj/wORBUvTWRFzgk7rU7Y+S52HFaT3/EA83Q6KuXRL4HP6QTAaqDEGC8tQKoY1NTWTAP+AezsUwiNwBQn7PT67TpeHdoNe09Ev0iVpybgrFB9/C6/A1GlQS8kJcQJOwuBA4D/+BTC7zMlMdeF6GevXC3D3g/TJKayRi8mJcad1/AE4HKgLY+n7gCuy1QoXh0ahx07psrP48ABofr4K34HokqLJrIS5E5rFcWu7eXk6bQ6HZXqicF+yTkmVB9f43cwqvRoIithTth5CdvU+DNyXzvzMh3VUHQ6qnLzIfCZUH38+6H6eD5bCFQZ0c4eZaKmtmY/4HagJgeHf9IJO4dnKhSvDp0DzM/B+VVhegA4M1QfX+13IKq0aY2sTDhh52Vs7exKsl878zod1YVZPq8qTJuB80L/397dxspR1XEc/x4KaGrxAYVULDH4QHeqNyEUKvICFZSoGIjRxKfQazShRkkNUSRSo31plNoIqNFE26qIJIZgg0/RBlJJTFBr6FZmLEKv0RhMsTy00qbS/n1xps2Cve29l3vv3HP3+0kmO5nZ3fnvvtjfnpkz5zT1FYaYZoNBNkT6o/2D/dH+F4EVwHQNBbQT2DyB510JnDtNx9TctR1YUTX1zV0XouFhkA2h/mj/T+TW2eeBp57n233N4ahEnnrlRmC54yVqtnmNbMiNbBo5A1gLXAOcPMmX7ybfAH3geE+qe9VFwO+mVKBKcA+wqmrqh7ouRMPJFtmQ64/2d/dH+58idwKZyIj1g249UYi1bI3NT4+TR+i41BBTl2yR6VlGNo28ldx5Y/kJnrofOHsCw1G9lnwdzT9N80cAtwHXV039aNfFSP646Fn6o/17gQuBq8nDCY1no8NRDaX7gDdVTX21Iaa5whaZxjWyaeSFwLXkMHrlwK7DwNL+aP+vx3t93ateTg7DhTNWpGbLI8ANVVP/pOtCpOfyn7LG1R/tH+iP9m8ij6a/Cni43XXXiUKs9UkMsdI9CXwOWGaIaa6yRaYJG9k0sgB4P7Cz7cI/rnY4qr8BZ85GbZp2e4FbgHVVU+/puhjpeAwyzYi6V10DfLvrOjRpe4FvADc5a7NKYZBp2tW9KgE1sLTrWjRhe4CvAzdXTf1E18VIkzHZG2CliXgZeQbo1+N12LmuIbfANlZNva/rYqSpsEWmGVP3qtcBnyZPpLmo22o04DDwM/I1sN9UTe2PgIpmkGnG1b1qEfAB4OPAmzsuZ5g9AXwX+GbV1BOZBFUqgkGmWVX3qmXkQFsJvKLjcobBM8AvgR8Cm6um3t9xPdK0M8jUibpXnUqe2uWDwLvwfrPpdj/wA+COqql3d12MNJMMMnWu7lULgXcD7wOuAE7rtqIiBbCNPPDz7VVT7+y4HmnWGGSaU9obqS8nh9rlwOJuK5rT9gNbyOF1d9XU/5yNg6aUlpB7Oi4DFgA/Bz4DfAi4ICKuHXjuvcBnI+IPKaUx8n1qh9rdWyNidUppI/AW8igiAE9HxMUppY8C3wPOi4jt7fvtAN4TEWMppY8B15FD/CRgTUT8dMY+uOYsu99rTqma+gB5xunNAHWveiPwDuDtwCUMd+/HAB4EtgK/ALZUTf30bBaQUkrAncC3IuKqlNIC4DvAV4DjjvbSeltEPHaM7ddHxLGGwPoHsIbcWWiwjiXt9vMj4smU0iLgjEl8FM0jBpnmtKqpdwA7gPV1rzoFuAi4rH28EDi9w/Jm2iFyOGxtl/vmwGgblwIHImIDQEQcSildRx6ObCbmJLsbuCSltDQi/jKw/Uxy625fW8e+I+saPgaZilE19X+B37YLAHWveg2wghxqK4DzKbPjyEFya+uBgeX3VVPv7bSq//cG4I+DGyLiqfa04UR+T+5JKR05tbgpIta3619NKX2hXf9zRHykXT9Mbu3dCIwOvM8DwL+AXSmlLcCdETHZiWE1TxhkKlp7P9QjwI8B6l51EvBq4FzyEFlHHpcCS4DUTaVH7QZ2AWPt4w7yj3LTBnXJXjLO9sEL8ZM9tQjwI2BNSumco2+YW4LvJP+BuQxYn1JaHhFrp1C3CmeQaV6pmvowOSB2Ab8a3Nf2jnwVuQPJYvIca4OPLyW35hYCLxpYP2Wcwx1sl/3A48C/yWMW7hlYf4w8J9sYMFY19X+m5YN250HyDAhHpZReTP7+tpFvpxh0Ovk7mLKIeCaltA644Tnbg3ybwf0ppV8DG4C1z+dYKpNBpqHRdox4iEley6l71cnAqeTTXIeBmAetp6naAnw5pbQyIr7fdvZYB9xKDpVbUkqLI+LRlNIFwAuAv0/DcTeS50U7DSCldBawOCK2tfvPI1+n0xCy+72kSUkpnU3ufl+RewreERGr2n1XAV8id4ffB6w+EjbH6H6/PSJWHqP7PeTrnR9moDt/Smk1eYT+c8inKzcAZwEHyKdsPxERD6OhY5BJmrKU0sXA7cB7B1pH0qwyyCRJRXOuKElS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtEMMklS0QwySVLRDDJJUtH+B+fsJKUc8X+tAAAAAElFTkSuQmCC\n"},"metadata":{}}],"execution_count":15},{"cell_type":"code","source":"pie_borough","metadata":{"id":"J8XlI61GTu_2","colab":{"height":238,"base_uri":"https://localhost:8080/"},"cell_id":"2654d3883dfd483c8096971be824ddd5","outputId":"8c9549e0-7bc5-4971-9df0-2018954e4b8a","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":14,"user_tz":180,"timestamp":1647184369666},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Frecuencia\nBOROUGH \nBRONX 37709\nBROOKLYN 76253\nMANHATTAN 48749\nQUEENS 67120\nSTATEN ISLAND 8691","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
Frecuencia
\n
\n
\n
BOROUGH
\n
\n
\n \n \n
\n
BRONX
\n
37709
\n
\n
\n
BROOKLYN
\n
76253
\n
\n
\n
MANHATTAN
\n
48749
\n
\n
\n
QUEENS
\n
67120
\n
\n
\n
STATEN ISLAND
\n
8691
\n
\n \n
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":16}],"execution_count":16},{"cell_type":"code","source":"import plotly.express as px\nfig = px.pie(pie_borough, values='Frecuencia', \\\n names=pie_borough.index, title='Piechart Boroughs')\nfig.show()","metadata":{"id":"CxpXXYJjTn6C","colab":{"height":542,"base_uri":"https://localhost:8080/"},"cell_id":"0017ce0fb393483ba0e699109704b221","outputId":"652eb57f-49f1-478d-afd6-54747fe89cc0","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":12,"user_tz":180,"timestamp":1647184371104},"deepnote_cell_type":"code"},"outputs":[{"output_type":"display_data","data":{"text/html":"\n\n\n
\n
\n\n"},"metadata":{}}],"execution_count":17},{"cell_type":"code","source":"import plotly.express as px\nfig = px.pie(pie_borough, values='Frecuencia', \\\n names=pie_borough.index, title='Piechart Boroughs')\nfig.update_traces(textposition='inside', textinfo='percent+label')\nfig.show()","metadata":{"id":"DKPcfSo3TNPu","colab":{"height":542,"base_uri":"https://localhost:8080/"},"cell_id":"b33551a4603746d290b9210a0c1db7c8","outputId":"07278e34-1336-4dd5-9262-4237eed55db4","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":18,"user_tz":180,"timestamp":1647184372796},"deepnote_cell_type":"code"},"outputs":[{"output_type":"display_data","data":{"text/html":"\n\n\n
\n
\n\n"},"metadata":{}}],"execution_count":18},{"cell_type":"markdown","source":"# Medidas de tendencia central \n\n**Media** \n$$\\bar{x} =\\frac{\\sum_{i=1}^n x_i}{n}$$\n\nPara el caso de datos discretos agrupados:\n\n$$\\bar{x} =\\sum_j x_j fr(x_j)$$\nPara datos agrupados en clases, la media se calcula suponiendo que todos los datos de cada clase son idénticos al centro de la clase, con lo que,\nllamando mj a estos valores centrales y fr (mj) a la frecuencia relativa de la\nclase j, la fórmula se reduce a:\n$$\\bar{x} =\\sum_j m_j fr(m_j)$$\n\n**Media geometrica**\nMuy utilizada en lo que son tasas de interes y aspectos financieros\n\n$$B=\\sqrt{x_1 *x_2 *\\dots* x_n}$$\n\n**Media armonica**\nSe usa usualmente para calcular promedios espacio temporales \n\n$$C= \\frac{n}{\\sum_{i=1}^n \\frac{1}{x_i}}$$\n\nLa media armonica siempre es la menor de las tres, la aritmetica la mayor y la geometrica un valor intermedio:\n\n$$C< B<\\bar{x}$$\n\n**Media recortada** Es simplemente la media removiendo en la parte inferior y superior de los datos ordenados cierto porcentaje de los datos \n\n**Mediana y moda**\nLa mediana es un valor tal que, ordenados en magnitud los datos, el 50% es menor que ella y el 50% mayor. Por tanto, al ordenar los datos sin agrupar,\nla mediana es el valor central, si su número es impar, o la media de los dos\ncentrales, si hay un número par\n\nPara datos agrupados discretos se toma\ncomo mediana el valor xm tal que\n$$fr(x\\leq x_a) <0.5$$\n$$fr(x\\leq x_b) >0.5$$\n\nLa moda simplemente es el valor mas frecuente\n\n\n\n","metadata":{"id":"5dKt5_iMUaoW","cell_id":"47f3942d7ccc48c581b4feabafcaba96","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"import scipy \nscipy.stats.describe(monthly_accidents)","metadata":{"id":"Yj_tYHNVVXZd","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"b83ac25cf6fe46ceb056f9ac8c6dcaa7","outputId":"8a8c2895-0641-4cc4-ee37-88851523ecdd","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":275,"user_tz":180,"timestamp":1647184529757},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"DescribeResult(nobs=20, minmax=(8466, 13438), mean=11926.1, variance=1518605.3578947366, skewness=-1.160513548007565, kurtosis=1.140580420470969)"},"metadata":{},"execution_count":19}],"execution_count":19},{"cell_type":"code","source":"scipy.stats.gmean(monthly_accidents) # Media geometrica","metadata":{"id":"Ap-ftqQeYo6B","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"ce63eff9a700450798de251c7447e1a2","outputId":"ae27a4da-200b-4534-f4fb-f706448b0bbf","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":306,"user_tz":180,"timestamp":1647184530470},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"11859.492451965642"},"metadata":{},"execution_count":20}],"execution_count":20},{"cell_type":"code","source":"scipy.stats.hmean(monthly_accidents) # Media armonica","metadata":{"id":"Zjbo6DwyYun2","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"7adfde0ca61640dda850463a313df8b4","outputId":"2ab88692-166e-4a78-eecd-90dad9f9b987","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":5,"user_tz":180,"timestamp":1647184531590},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"11785.837775632142"},"metadata":{},"execution_count":21}],"execution_count":21},{"cell_type":"code","source":"scipy.stats.trim_mean(monthly_accidents,0.1) # Media recortada (Proporcion removida en cada cola 10%)","metadata":{"id":"bUFcmrl9ZfDk","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"868a3c2caaa74f699e999b264dfec449","outputId":"06201734-e0b5-400c-c5dc-a78442f92bc7","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":477,"user_tz":180,"timestamp":1647184532518},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"12060.75"},"metadata":{},"execution_count":22}],"execution_count":22},{"cell_type":"code","source":"scipy.stats.mode(monthly_accidents) # Moda","metadata":{"id":"urL1Q_BdgF3y","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"17bf158a9e6c410d990a6f1c451d1072","outputId":"e3e62d98-fc45-43ec-f02b-f2dfc678c486","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":5,"user_tz":180,"timestamp":1647184532785},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"ModeResult(mode=array([8466]), count=array([1]))"},"metadata":{},"execution_count":23}],"execution_count":23},{"cell_type":"markdown","source":"# Medidas de dispersion\n\n**Desviacion tipica** \n\nPromedio de las desviaciones de los datos respecto a la medida de centralización\n\n$$s=\\sqrt{\\frac{\\sum_{i=1}^n (x_i -\\bar{x})^2}{n-1}}$$\n\nPara datos agrupados es:\n\n$$s=\\sqrt{\\sum_{i=1}^n (x_i -\\bar{x})^2 fr(x_i)}$$\n\nLa información conjunta que proporcionan la media y la desviación típica\npuede precisarse de la siguiente forma: entre la media y k veces la desviación\ntípica existe, como mínimo, el\n\n$$100(1-\\frac{1}{k^2})\\%$$ de las observaciones.\n\nPara dos desviaciones tipicas:\n\n$$100(1-\\frac{1}{2^2})\\% = 75\\% $$\n\nA esto se conoce como la desigualdad de **Tchebychev**\n\n\n**Coeficiente de variacion**\n\nEl coeficiente de variación es una medida relativa de variabilidad. En ingeniería\nse utiliza mucho el coeficiente inverso,$\\frac{|x|}{s}$, que se conoce como\ncoeficiente señal-ruido.\n\nEl coeficiente de variación en datos positivos de una población homogénea es típicamente menor que la unidad. Si este coeficiente es mayor que 1.5, conviene investigar posibles fuentes de heterogeneidad en los datos (medidas con distintos instrumentos; en personas de distinto sexo; en distintos momentos temporales, etc.).\n\n**Mediana de las desviaciones absolutas**\nLa mediana de las desviaciones absolutas (MEDA) que tiene la ventaja, como la mediana, de no verse afectada por datos extremos.\n\n$$MEDA= median|X_t - Mediana| $$\n\n**Rango** Se denomina rango o recorrido de una variable la diferencia entre su valor máximo y mínimo\n\n$$Rango = Max(X)- Min(X)$$\n\n\nLlamaremos **percentil** p al menor valor superior al $p%$ de los datos. Por ejemplo, si el número de datos es impar,la mediana es el percentil 50. \n\nLlamaremos **cuartiles** a aquellos valores que dividen la distribución\nen cuatro partes iguales. El primer cuartil, Q1, es por definición\nigual al percentil 25, el segundo es la mediana y el tercero, Q3, el percentil\n75, los percentiles y los cuartiles se utilizan para construir medidas de\ndispersión basadas en los datos ordenados, como el **rango intercuartílico (IQR)**,\nque es la diferencia entre los percentiles 75 y 25.\n\n$$IQR= P_{75} -P_{25}$$\n\n**Error estandar**\nDesviación estándar de la muestra dividida por la raíz cuadrada del tamaño de la muestra (suponiendo la independencia estadística de los valores de la muestra).\n\n$$SE= \\frac{\\sigma}{\\sqrt{n}}$$\n\n","metadata":{"id":"gjOb8LLNbc7u","cell_id":"5e187b97f33749fa9ce4bfe285d343e5","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"monthly_accidents","metadata":{"id":"3G9hl3WdaKu8","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"bd23a09ced7646509a00ff854a8d273a","outputId":"22bedc31-0fb5-48af-f4f4-b7e244da5b7d","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":6,"user_tz":180,"timestamp":1647184535584},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"DATE\n2018-01 11735\n2018-02 10395\n2018-03 12519\n2018-04 11679\n2018-05 13438\n2018-06 13314\n2018-07 12787\n2018-08 12644\n2018-09 12425\n2018-10 13336\n2018-11 12447\n2018-12 12479\n2019-01 11000\n2019-02 10310\n2019-03 11482\n2019-04 10833\n2019-05 12642\n2019-06 12577\n2019-07 12014\n2019-08 8466\nFreq: M, dtype: int64"},"metadata":{},"execution_count":24}],"execution_count":24},{"cell_type":"code","source":"scipy.stats.describe(monthly_accidents) # Calcular el coeficiente de variacion","metadata":{"id":"ukBuN9BzgAOT","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"bc89342545cf48be874775fa237cc7a1","outputId":"4451e85d-6a69-43e6-f336-6a2a4c988c4d","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":436,"user_tz":180,"timestamp":1647184537150},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"DescribeResult(nobs=20, minmax=(8466, 13438), mean=11926.1, variance=1518605.3578947366, skewness=-1.160513548007565, kurtosis=1.140580420470969)"},"metadata":{},"execution_count":25}],"execution_count":25},{"cell_type":"code","source":"scipy.stats.variation(monthly_accidents) # Calcular el coeficiente de variacion","metadata":{"id":"894Ei7kkfwdK","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"0a6153ce9a5443248bfe2a08c6d596e3","outputId":"fe997bc6-bf02-4d33-bf82-38bbb92bf3f0","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":180,"timestamp":1647184537434},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"0.10071306660647113"},"metadata":{},"execution_count":26}],"execution_count":26},{"cell_type":"code","source":"scipy.stats.iqr(monthly_accidents) # Calcular el IQR","metadata":{"id":"MRR6jFzUgOfb","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"b1b2c260f0ea4bb1a460262810764d0b","outputId":"66a68e7d-6455-49a2-db5b-7e9dda32ae38","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":180,"timestamp":1647184538420},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"1281.0"},"metadata":{},"execution_count":27}],"execution_count":27},{"cell_type":"code","source":"scipy.stats.sem(monthly_accidents) # Calcular el Error estandar","metadata":{"id":"VS-XCLp8gVHH","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"15f39ebeebb949f592fef80a9abfef43","outputId":"43c5748d-8cf6-482c-a7f4-a4cc4bf250d8","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":6,"user_tz":180,"timestamp":1647184538970},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"275.5544735523937"},"metadata":{},"execution_count":28}],"execution_count":28},{"cell_type":"markdown","source":"# Medidas de asimetria y kurtosis\n\nEstas medidas informan sobre dos aspectos importantes de la forma de\nla distribución: su grado de asimetría y su grado de homogeneidad. Al ser\nmedidas de forma, no dependen de las unidades de medida de los datos\n\n**Asimetria** En un conjunto de datos simétricos respecto a su media $\\bar{x}$, la suma $\\sum (x-\\bar{x})^3$ será nula, mientras que con datos asimétricos esta suma crecerá con la asimetría.\nPara obtener una medida adimensional, se define el coeficiente de\nasimetría mediante:\n\n$$CA=\\frac{\\sum_{i=1}^n (x_i -\\bar{x})^3}{ns^3}$$\n\nDonde s es la desviación típica.\n\nEl signo del coeficiente de asimetría indica la forma de la distribución. \n1. Si este coeficiente es negativo, la distribución se alarga para valores inferiores a la media\n\n2. Si el coeficiente es positivo, la cola de la distribución se extiende para valores superiores a la media\n\n\n\n","metadata":{"id":"aZ2PBUf0gvzh","cell_id":"e1fb1ff6defd425a9b38dde2dac6ee2b","deepnote_cell_type":"markdown"}},{"cell_type":"markdown","source":"**Kurtosis** es una característica de como la frecuencia relativa se reparte entre el centro y los extremos\n\n\n$$CA_p=\\frac{\\sum_{i=1}^n (x_i -\\bar{x})^4}{ns^4}$$\n\nEste coeficiente es siempre mayor\no igual que uno. El coeficiente de curtosis es importante porque nos informa respecto a la heterogeneidad de la distribución.\n\n1. Si es muy bajo (menor de 2), indica una distribución mezclada\n2. si es muy alto (mayor de 6), indica\nla presencia de valores extremos atípicos.\n","metadata":{"id":"DBRyor7xh22P","cell_id":"09b32ea1e7e946c39632673a5c2437d1","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"scipy.stats.skew(monthly_accidents) # Calcular el CA","metadata":{"id":"rUZG-NhZhXZk","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"1774a07e0db448bba8699b61f16ed1f4","outputId":"1a67997e-4961-44fd-cdee-e9a0974292a7","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":455,"user_tz":180,"timestamp":1647184542403},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"-1.160513548007565"},"metadata":{},"execution_count":29}],"execution_count":29},{"cell_type":"code","source":"scipy.stats.kurtosis(monthly_accidents) # Calcular el CA_p","metadata":{"id":"e94m4q1zgvPG","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"96f17c5ff9714502a3916bba06759a97","outputId":"dcc43176-7983-4c9a-82d3-4e12823b16b8","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":180,"timestamp":1647184542752},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"1.140580420470969"},"metadata":{},"execution_count":30}],"execution_count":30},{"cell_type":"code","source":"plt.hist(monthly_accidents)","metadata":{"id":"mhji3Yi4jWqJ","colab":{"height":334,"base_uri":"https://localhost:8080/"},"cell_id":"5cf9c44ec340426aa0d723c36ce0c687","outputId":"ed0bc530-d953-4ee5-a8e2-127ea3a0dea7","executionInfo":{"user":{"userId":"09471607480253994520","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GjvGjd5VpSUEHTxlxXRYAinh8eCspL5nxvcW9wD=s64","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":299,"user_tz":180,"timestamp":1647184543318},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"(array([1., 0., 0., 2., 1., 1., 3., 2., 7., 3.]),\n array([ 8466. , 8963.2, 9460.4, 9957.6, 10454.8, 10952. , 11449.2,\n 11946.4, 12443.6, 12940.8, 13438. ]),\n )"},"metadata":{},"execution_count":31},{"output_type":"display_data","data":{"text/plain":"