{"cells":[{"cell_type":"code","source":"# Tratamiento de datos\n# ==============================================================================\nimport pandas as pd\nimport numpy as np\n\n# Preprocesado y modelado\n# ==============================================================================\nfrom sklearn.svm import SVC\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import accuracy_score\n\n# Configuración warnings\n# ==============================================================================\nimport warnings\nwarnings.filterwarnings('ignore')","metadata":{"id":"iRukjeBxaGjN","cell_id":"890bc6a1f8e84da58209bf6e01684eb7","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":1432,"user_tz":240,"timestamp":1650987596242},"deepnote_cell_type":"code"},"outputs":[],"execution_count":1},{"cell_type":"code","source":"#Cargamos los datos!\nurl = 'https://raw.githubusercontent.com/JoaquinAmatRodrigo/' \\\n + 'Estadistica-machine-learning-python/master/data/ESL.mixture.csv'\ndatos = pd.read_csv(url)\ndatos.head()","metadata":{"id":"yhtMxyWYaGjf","colab":{"height":207,"base_uri":"https://localhost:8080/"},"cell_id":"15db3be5667b4100a292098556c18343","outputId":"c7effb6b-e9f6-4efb-cfd8-25ec2cdd5e88","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":16,"user_tz":240,"timestamp":1650987596244},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" X1 X2 y\n0 2.526093 0.321050 0\n1 0.366954 0.031462 0\n2 0.768219 0.717486 0\n3 0.693436 0.777194 0\n4 -0.019837 0.867254 0","text/html":"\n
\n
\n
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
X1X2y
02.5260930.3210500
10.3669540.0314620
20.7682190.7174860
30.6934360.7771940
4-0.0198370.8672540
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":2}],"execution_count":2},{"cell_type":"code","source":"#Visualizacion!\nimport matplotlib.pyplot as plt\nfig, ax = plt.subplots(figsize=(6,4))\nax.scatter(datos.X1, datos.X2, c=datos.y);\nax.set_title(\"Datos\");","metadata":{"id":"37BMSdiCaGji","colab":{"height":281,"base_uri":"https://localhost:8080/"},"cell_id":"0d268dc137e0461498d9c00813eddb3b","outputId":"02e73979-ca26-446b-9376-e1e163448f0a","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":637,"user_tz":240,"timestamp":1650987596869},"deepnote_cell_type":"code"},"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gUZdeH7zPbN5UQQCyIIqLYFSv2Loq9oyhi735WLO9rF3uX1957w14RRUFRsKBiAxULPT3ZvnO+P54lyWZ3IT0E5r6uXJDZmWfObHbPPHOec35HVBUHBwcHh+6L1dUGODg4ODi0DceROzg4OHRzHEfu4ODg0M1xHLmDg4NDN8dx5A4ODg7dHMeROzg4OHRzHEfu4ODg0M1xHLnDCoWI/CkiYRGpEZFKEZkiIqeKyDI/6yLSX0RURNydYauDQ3vhOHKHFZHhqloArAmMBS4GHu5akxwcOg7HkTussKhqlaq+DhwBHCciG4rIviLyjYhUi8jfInJlo0Mmpf6tFJFaEdlWRCwRuVxE5ojIQhF5QkSKAETELyJPiUhZavb/lYj06eTLdHBwHLnDio+qfgn8A+wA1AEjgWJgX+A0ETkwteuOqX+LVTVfVT8Hjk/97AKsDeQD96T2Ow4oAtYAegKnAuEOvhwHhwwcR+6wsjAXKFHVj1X1e1W1VXUG8Cyw01KOGwHcpqq/q2otMAY4MhVHj2Mc+DqqmlTV6apa3dEX4uDQFMeRO6wsrAaUi8jWIjJRRBaJSBVmFl26lONWBeY0+n0O4Ab6AE8C7wHPichcEblJRDwdZL+DQ04cR+6wwiMiW2Ic+WfAM8DrwBqqWgT8D5DUrtmkQOdiFk2X0A9IAAtUNa6qV6nqYGA7YD9M2MbBoVNxHLnDCouIFIrIfsBzwFOq+j1QAJSrakREtgKObnTIIsDGxMKX8CxwnoisJSL5wPXA86qaEJFdRGQjEXEB1ZhQi90Jl+bgkIaTL+uwIvKGiCQwTnUmcBtm5g1wOnCriNwDfAK8gFn4RFVDInIdMDkVItkbeAQTXpkE+DGhlLNSY62SGnd1oBZ4HhNucXDoVMRpLOHg4ODQvXFCKw4ODg7dHMeROzg4OHRzHEfu4ODg0M1xHLmDg4NDN6dLslZKS0u1f//+XXFqBwcHh27L9OnTF6tqr6bb2+zIRcSPSc3ypcZ7SVX/u7Rj+vfvz7Rp09p6agcHB4eVChGZk217e8zIo8Cuqlqbyr39TETeUdUv2mFsBwcHB4dl0GZHriYRvTb1qyf14ySnOzg4OHQS7bLYKSIuEfkWWAh8oKpTs+xzsohME5FpixYtao/TOjg4ODjQTo48JeG5KaZUeSsR2TDLPg+o6hBVHdKrV0as3sHBwcGhlbRr+qGqVgITMRoVDisgqkk09h0an4FqsqvNcXBwoH2yVnoBcVWtFJEAsAdwY5stc1ju0NiXaMVZQMxsED8U34d4N+tSuxwcVnbaI2ulL/B4SsrTAl5Q1TfbYVyH5Qi1y9GKk0AbdTLTOrTiBOg1CbEKus44B4eVnPbIWpkBOFOyFZ3w25BNKVNtiLwLwcM63yYHBwfAKdF3aC5agSkZaEoM7MqG3TSGXXMb9oItsedvgF0+Eo3/1mlmOjisjDiO3KF5eLcGCWRuFy94t6r/VSsvhLpHQauAOMS+QMuPQJPzOs9WB4eVjJXekavaaPhN7LKR2GVHYdc9j2q8q81a/vBsaX5o5MwlAN4dEe8mAGjyX4h+RMbMXaNo3eOdZqqDw8rGSt/qTavGmBgvqUW8xEw08haUPIbISn+fq0dEoMc4CL+Ohl8GBAkeCv7hDTslZpsZujYNwcQh/n2Lzqd2LUQ/ALsWfEMR99rLPsjBYSVlpXbkGv8VIu8AkUYbw5CYAbFPwbdT28a361LOqAw8Q8CzsXGI3RQRNwQPRoIHZ9/B1R80luUFD3jWb/Z5NDoVrTwlJfSQhBrQ4JFIwaXd+v1zcOgoVmpHTmwqWWVhNIRGJyNtcOQa/xEtHwmaBGIgHvAOheK7MZmaKx7i7of6toPoFNLCK+JBgsc1awzVGFp5Omgo/YXwC+bG6tu+/Qx2cFhBWLljB1YPkGz3Mi9Ypa0eVlXRijNAa4AQkDAz/ehkCL/S6nG7A1J8JwQOxagaC7g3QkqeQtxrNG+A2Jdkv7mG0fBL7Wipg8OKw8rtyP27kf0tcCGBA1o/buK3VLpeU8Jo+IXWj9sNEPFjFf0X6TMD6TMTq/RlxJMhvZObpS00a6LtBjo4rICs1I5cJICUPA5Wb5AgSB5IEdLjXsTVpw0jJ4EcsVy12zBu90FEWhdC8m6Nef+aEkQC+7fVLAeHFZKVO0YOZrbYaxIkZpoZn2dDs6jXFtyDzE2haZwXPwQOatvYKzhiBdHCG6HqQsAGEkbTxbsD+HbvavMcHJZLVnpHDpg0w5Y8/jdnvOI70YoTU4udUTPjd2+EBA9vt/N0d9SuQsOvQ/IvxLMp+PdAxIsV2Bv1bmRes6sR387g3crJWHFwyIFoNv2MDmbIkCG6MvTsVLsCwm+i9iLEuzV4t13hc9MX/VPGJy9MIRqKsdWwzRi4efb8b43/jJaPSMXEI0AQXKsgPV9ArMJOtdnBobsgItNVdUjGdseRdw4a+wqtewrscjPzDByKWMGuNqtd+eSFKdw06l7UVpLxBB6/lz1G7sTZ956YMZu2Fw+HxC9NRvBA8BiswjGdZ/RygMa+Q2tvN++Hqz+Sfzbi27arzXJYDsnlyFfs6eFygl33OFp+IkTfhfhUqLkFLTsUbSwJ282pq6rj5lH3EgvHiEfj2LZiJ8J89MzHfDvxh7R91S6HxO9ZRolD5C2SiSQv3PI6x6x9Oof2Hs3NJ9zL4rnlnXIdnY3GpqHlx0Jsiikci09HK07BDn/Q1aY5dCOcGHkHo3YN1NxCuv5IBJL/oKGXkLxjWzducpEplU/+jXiHgH8YIr52sbk1TP9gBpbbZKmsOSjMebf8w7qbhrCTwu8/j0HtpxGrKLX30uYPbm4ceTdTXv+KaMhUiU54ahJfvfMNj/x0J/nFeR17IZ2M1owlrbIYzO8110Ngj64wyaEb4szIO5r4d6aqM4MIRFo369LYt+jiPaD2Hgi/iFZfhS7eH7Wr22ZrGxARBCjqGee28bMYtFkIlws8XmXA4Flo+fEsCeOJVQyejcj8+PmpiezN5PFf1jtxgGTCJlQd5u2HJnTa9XQa8abhpRT2PDRDs8bBITuOI+9orEJMGl1TBFwlLR5OVdGq81OpjSlnpyFI/ovW3d8WS9vEFntuQjJps8+IcjxexWr0yXK7bUj+YW5qKaT41lT+fh7gNUqKno2Z8dW2uL2ZD4rRcIzvP53ZCVfSyVg9s2+XIODtVFMcui+OI+9o3Bulyv2bvtU+JNiKsIo9D5KLsrwQM118uohgQYAxT53N2hvE8AVyLKAn/6z/r7hWQ3pNQIpuRgouQno8ipQ8Se81V8dOZt743F43awxarYOs70LyTydNGhgAP+SNctItHZqN48g7GBFBejwCrjVS1aP5gB8KLkS8W7RiRC/ZZ/gYCdkuZOiBW7HV8ONIJLKEktQ2hVKNEPEg/t2RvJGId3NEhHW3WJvV110Vtye9KtTtcbP/6Xt1pPldggQOg/wzUk8mAfMTPBbJO6OrTXPoRjiLnZ2AuPtB6fuQ+BHsKvBsglj5rRvLVYp61k/pezd26H4IHtku9raFYO8R6KLHQStpsM8H3s2QZkjZigg3vn8FN59wH9Pe+xaArfbwMvrabemz2kKgd4fZ3hWICJJ/Mpp3PNiLwerZpYvWDt0TJ4+8G6LJf9Gyo0GrU9otCr7tkeK72i4v0Ba7Er+jNben5IETRptcghA4BCk4BxF/i8YL15ThqjsNt/yCeXi0wb0+0uNhxFqxslccHJpDrjxyZ0beDRHXatDrI4hNhuR807DCs16X2qSJv9CyQ1OLsKmZuAQgbxRW/mnp+6oabRu72tiewyn77LuAmenNKuI/oDVjkaJrWmdn9FO07gHzvnm3RfJPQ1x9WzWWg8PyguPIuykiLvDt2NVm1KN144zmeuNwj4ahdhwaPK6+ilUTf6EVo8FeBFigCbRgDFbeUZmDRsZTn5lTTwzCr0ErHLld9wzU3Eh9W7/wv2jkHSh93XHmDt2aFWqxUzWKXXsP9sJdsRfujF1zq+n96NDxxKaTVX5WXJCcAyxpuDEKkn+bmbvWYopfxqKxbzOPzalNHqOlIUHVGNTeTL0TB0z4pw6tHdeisRwcljdWGEeuqmj5CVB7P9j/gD0X6h5Fy49Gu0lDAk3Oxa76D/aiPbHLR6LRyV1tUvNx9cu+XeOwRNs9PsOUoWdk3UTQ0FOZx3q3IVPXXcC7TctT8xJ/5noBYp+3bCwHh+WMFcaRE59mskLSSuFjkPwLohO7yqpmo8l/0cX7Q/glk28d+wKtOB079HxXm9YsJP8UoOlipg98uyFWqvBJq8j+kVOTsdF0zML/ghQ0GtcPUmC2ZxtFFU38iSZmZc7YrZ65Z/hWW5qIODh0PSuQI5+RvYO7htBGFYXLK1p7H2gd0PjpIQw1N5qwwHKOeLeEohtTlYo+wAv+fZDiGxt28mySw5n6szaNEPeaSK8PTJ61fxjkn4H0eh9xr5WxryZmoYv3NlIFZYeii3ZEYw2ZUeLqCb6hZFZLBpD8k1tzyQ4Oyw0rzmKn1RfEl9nXUQImy6MdUI2gdQ9D+FWzIXAgkndii9PqshL7guwtzmzzVOFep+3n6GCswD6ofy+zkCkFGTK9YhWh3p0g9n76geJHgodkHVOsHqnZfm5Uo2jZiFTuuprezRoyjT1KJxgnDkjRrUbeIDq5Qf8m/wJkOVo0dnBoDSuOI/fvDjXXZGZO4Ab/fmhyMUTeNrNe3/aIZ6MWDa9qo+XHQXwm9eGb2vvR6CQoea7tDSOs3mYRMOPECbBarsnSVYhYDTHxJmhyIcQ+yfJCBBKzUkJarSD6ESa7pUk4RZNoeDySP9rYZuUjPe43nwW7DNz9neIbhxWCFSa0IuJFSp4D92DM47MXXAORkqchNg1dtCtaczNaeydadgx21ZiWZT7EPk81Qmgcg49C4lejJd1W+/NOJlNzw2tSDO0a7Jq7sKvHmgYVXVDElQ1VG7Urmh/6iU4k+0cuhobfab0hyUWZT2LmhGAvyNgqrlLEM8hx4g4rDN1qRm4cmJ2zO7u410RKX0GTZUAScfVGNYyWH0m65nMYIu+Afy/w7dy8k8dnmJljhlFho+rn275lF9PUdv8uaMEFUHtbaty4GdO7Pbp4OCZ2nkTDz5p4ctEtXSqqZIffMprZtlnA1OARRvwqq2TvElwmCSXbfSjH37RZeLcg6w1Cgoh3q9aP6+DQTegWjlztOrTmelMIQhz1bIIUXpVTu2NJTBSA6Bdk/ZJryDx2N3LkqjbEPjVO2+prFuuWVB26+mCyJ0JNBgqAtUrrL64RVt6xaPBwkypnlYJ40IVDSXsK0DBEJxg7uyi2q9HJUDWGtJtj6HlUY0jRVbkP9O8K1dle9yL+fZd6zmQiyQdPfMJ7j03E5XExbPRu7HzkUCzLQjwboL7tIfoZDXnifrOu4NulhVfn4ND9aLMjF5E1gCeAPpi51gOqemdbx22MVpwK8W+or/KLf4uWHw2l7yCuZTjRpc5aG15TDaNlx0BydqrMPGiqAEueQTwDwbc3yA2gTaaU4gH/3q28smzm+sBjVAI18g6IG5o2GNAQGn6ryxbptPZesna1Cb+CFlyUs+RerBK08Dqovgzz3tvm3/zTlioxoKpcvt8N/DD5ZyJ15r345ctZTH37a8Y8dY4Zu/guNPQihJ8H4uA/AMk7NufTm4PDikR7zMgTwPmq+rWIFADTReQDVW2XLgAa/y3VkCDW9AU09DRScP7SB/BuTXbZ1wASOLBhuNoHTby7fvYbAhW06v+Q0jdMBkbJM2jluSaLBMC1BlJ8RwcKOLnJLIjBbFtqCKODybYoCyY8YpfBUt4PK7g/6tsWoh+kwke7Iu41lnq6byZ8zw9Tfql34gCRuiiTx3/JrG/+YJ3N1kLEheQdCXldrwDp4NDZtHmxU1XnqerXqf/XAD8B7dcBIPm7mZVmEIP4z8s8XCSAFN+BCYv4AZf5NzAcvI1mtOHxpC9kAigk/jDZFoB4BmL1egvp9QHS6wOsXm8jnnVbdVnNwrc92W9CfiRwUMedd1l4NiLnDWZZT0iAuHpRWbsvL9xXxF1nv8NHz35GPJarHB+++egHIrWZ6xN2wua7j39sgeEODism7RojF5H+wGbA1CyvnQycDNCvX45y7my4B+bISPCBZ+Pm2eXbGXp/bBY47Vrw7YB4BjffhiZOa5nhnHZCJADF96AVZ9AQilDTPaZVTSnaya78s1PyAY11SwKQfybSjOYWM7/4lUv2vIZkIkksEmfCU5/yzHUvc+eU68grDGbsX9yrEK/fQyyS7uzdXjeFPQvaeDUODt2fdtMjF5F84BPgOlV9ZWn7tlSP3K44GaKf0zBjFlNwUvou4ipttc1p56i5G+oeIH1WLuBeD6v0tXY5R2tRuwaiH5qFTu8OywxFAITrIkx85jN+mPIz/Qatxl6jdqFHn+L2syk+E625ObUw3AvJPwMJDF/2caqMXOdM5v+xMG27x+fhsPOHM+raTBXEigWVjBxwJpFQ+hNTsDDAc//cTyC/adpm90BV+f7Tn/h9xhxWG9iXzXffCJfLiek75CaXHnm7OHIxOWdvAu+p6m3L2r+ljlw1htbcAeEXTAqgdxuk8HLE3b/1RmecI4KWjzRxco2A+AEf0vNppBtUVTamclEVZ2x5CdVlNUTqonj9HtweN7dMvJKBm6/dpbbN/3MhJ25wHtFwZu5537V788Sse7Me9/WE77n2iNtIxpMoSiDfz1WvXsR6Ww3saJM7hHBtmIv2uIY/f/wbO5HE5XFRskoPbp90NT36FKPRqWjoCbArwL8nEjg8o1LWYeWjwxpLiElmfhj4qTlOvHXn8CKFF0HhRR0xfOocfih53hT3xL8HV1/zBZLuN9t77IrnKZ9XQSJuSv5jkTixSJybjr+XB2fc2qW2ub1ubDv75MHtzb2Au/luG/Hi/If4ZdpsXG4XAzdfC8vqvvVsj17+HLO//ZN4NBUuisSZH17IbSffz1XP9IKaO6jPDIr/gIaeh54vO87cISvtESMfChwLfC8iS0SlL1XVrmvp3kpExAgr+YZ2tSltYvL4qfVOvDH//DqX6vIaCku6Lq7cs3clo6+IMH9OBZ+9WcjieSam7gt62ffkTOGsxrjcLgZv04GLy53Ih09NanDiKZKJJDMnf4XW/IKkhfgikPwXDb+E5I3sXEMdugVtduSq+hnZUxgcugiPL/fM1u3puhowu/ZuqH2QA0cliUcTnDBmLuMu789H43ux2W4bcuCZ+3SZbZ1NMpFNIA3W3bQO8JCZQRWByIfgOHKHLHTfZ1OHnAw7cTd8gfTsEZfbYpOdBhMs6JpQkcZnQu2DQASROF6/4vMrZ934N3dNPp9rXrsEl7vtC30an2l0aWrHoTmbSXQ92x2wZcb1igi91lgLkWwppwLttLDvsOKx0jpytcuxa8dhV5yBXXO3UcRbQTji4gPZeKfB+II+/Hk+AgV++q7dh4seP7PLbNLI22T23wSX28NaA2e1yzns6hvRsiOh7j6ovRtdPBy77ul2Gbu9OfmmY+m5ag8C+UYC2R/0UVCSx+FjLgOrF5lfTR8SPLbT7XToHnQLrZX2RhNzUh3fI0AUop+goceMHK2ne2ZBNMbj9XD925cx69s/mPXNn6zSvxcb7zQ45+KgqpoMiboHwK4E93pI4aXtnKu+tOyotmdOafx7CD1Ng3SADSRMP1D/Hoird5vP0WKbErMg/iO4VgPPFmkiZz36FPPIT3fw7ftP0bvni5SuMhdf0ZZ4ekSBh42Wur2QJQ2qKbgE8W7W6dfg0D1otzzyltDS9MP2xi4/EWKfkV41KeDZAqvnM11lVpdh19wGocdTWu5L8CM9n0E8G7bLOTT+I1p2FJkaLT6k18Q21wPYNTdD3cNkVsIGkMIxSLDzSvdV42jlOUbES1yAgrUqUvJkmqCbRiaglefR8J5YpslGyfPgXhcSPxl1Sc/GHSgD4dCdyJV+uHKGVmJfkPmFV4h/bRQQVyJUw1D3WBMnDhBFa+5ut/OIZwPIG0WDTIIX8EHhFe1U1JUjvi5Lea2D0LqHU0qMEdPIREOQ/BOturhhH1W0+mrSb2y2EUSruQkRQTyDEd+2jhN3WCYrZWjFtITL1gwhl0jVCkxyPoiVJbqhkFi2lk1LsArOQ/37GRnelGpke7XhE/++aN1jZMz4NYp6h3TuXzX0XKYdJCD2OWrXIlY+aHXWhtNASulz5aG6rIby+ZX0Xbs3voDT7KM1rJyOPHBw6svWOMXLC4H9u7RZQ5dg9QbNngqHe0C7n048A6ED1iHEMwgNHgeh+zNfrDwX7Tm+8/62GU839S9Qv+ArAcyTQhaxMMuEX+KxOFNem8a82fMZsGl/tthzk25dBNWUaDjKLaPHMfnVL3F7XaitjLzycA47f/+uNq3bsVI6cik4H038BrGvMV8mGzwbIAWXdbVpnY5YeWjwKAg9T7oIlh/JP6vDz1+1uJrvPv6RQEGAzXbdsG157pYPE7Jp/LRlQ+IPiH8LnbVYaJVAsiLLCx4k1X9VxIsGDobwK6TP3gOQdzIL/1rEOUMvp646RCwcw+v30ndAH2775OqswmLdkTtOfYAp478kHo3XF0c9ceUL9O7Xi50O27aLreterJyOXPxIyWNo/BfT9Ne9VgvVEFcspOBi1CpIxcprwdUfKbyiw7MkXrr9TR697BnjvMWU74999/LW68EkZpEtxREiaOXZUPI04s6uvKmqEH3flMJrHAkcAIEDMlrXqcYhuQCsktzl8smF2bcTNV2UUgqRUnipWaOIvJ1qIJKEvNFI4FBuPuFqyudXYifNmk24NsLfP//LY5c/xxl3ndCMN2P5Jlwb5pMXPs+obo3URXlu7CuOI28hK6UjX4J4BtV341mZEXEh+WeheWcCSSSr/nv78tPU33jsimfrdWCWcMne1/L8vw+0bmbu2RQiE0l/skhhL0QrjofSDxHJDE9o9eUQeSvVHQo0PgMib0CPR+v3t+uegNo7gCSojQYONuJtTZt8iOTIqGzUkSoyAa29A5JzwbMeBI5C/HshVh7RcJTvJ/1U78SXEI8m+OjZz1YIR15TUYflyh7qKptX2cnWdH9WnICbQ5sRkU5x4gBvP/ABsXBmfDgRTbS6WYQEDllKdyI1SoLxrzNfScyC8Ov1TtyQaqod+9TsE3kXam81TywaBqIQfhWtGZt5Kv/emDL7xljgHYKIFzs03qQdJn4BrTHnqb4SEqaplskIzp4W3BXpwh1Bz1V7ZF3YFEvYcPvcbf8csuM4coc2oXYtdu3D2GVHYlecjka/aNZxtVV12Z2SmDBCaxCrAOn5Clh9cu9kl2Vui2X0QTFoCI2mHHntPVkWMSMQeg7bTrdXCi4wRUCSCr1IEKweSOH15pprbyJbz1OtuQkwVZ6DtxuEWOkzVrfXzU6HrxghB5fLxWl3HI8v2ODMLZeFP8/PqGucdn0txXHkKxkVC6uY8vpX/DD5Z2y7bTnzateiZQebcEP8a4h+iFacgl33WPp+qmj0C7TuUTTyIapxdjx0O/x5mTOyRCzBJjtv0GqbxLUK5J0OZNGU0Th4ssT9pShHO0FvfQZJ7rh3HGquSx/OKkZK30KKxkLe6Ujhf5FeH5mGIFpnqmezkfit/r8XPnIGRaUF9SX8gQI/q6zVmxOuOzqHHd2P3UfsyDWvX8xmu23EqgP6sNuIHRg3/UbWGNR+nSJXFlbKys6VlSeueoHnbxyP2+tGVSnsWcBNH/yHVQe0rnWdXftIKmbcdHbpR3pPQax81A6lGnb8hkm184JVhBY9w8X7PMgvX80iUhdFLMHr93DiDSM48KxhbbpO1TC6+GBI/kNDimkAgsdiFV6Qff+F25swR9Pr6PUe4uqLXT66PsySiQ8pHY80I11TNYkuHGIcelNca2P1erf+10goyqcvfcHc2fNZe5P+bLf/kHYRFnPovnRoh6CW4jjyzmfq219z7eG3pbVLE0tYfWBfHp55R6tyrO2yERD/KvMFKUCK70J8Q7GrboDw42RU0nq2QYse5bNXpjLppc/J75HPsJN2Z9CQ9sldV7sODT0FkXfBKkSCx4Bv95zXqfHv0YpTU3FyAQQpvtX0eyXV2q7sUCBb/1gvUnABknd8s2yza++F2gdIW5SVAFJ4PRLYt/kXuRwQi8R495GJTHzuMwIFfoafuhfb7LfFyleP0Ul0WIcgh/ZD1cgEYC8Gzybt2uT5tXvfyeh5qbay6J8y/vzhL9baaM3m2WiHIDYZsMEqxji9ppOBBFg9zH/DL5AphwDEp2JZUXY6fDt2Ony7Fl7NshErD8k/BfJPad7+no2g16emOxQx8/43aiQtnsFoYASEnyDjesXVEA9vzrnyTkOxoe4RE+6RPMg/r9s58UQ8wfk7/5c/fviLaMikfX4/6SeGn7YXJ9+0fCs1amIWWn0DxL4CKx+CxyB5J3faYn970z2tXgHR5Fy0/DiwF2EU72Jo8Cik4NJ2md3UVmR5lMcsMNVV56pEbGJj5CO06jxMEZUaJ4Sb9OpEC6y+4F4/9XvuKkfVxHIliCBigXeT3K/nj0LDTSuCMX7dv2eLzmPSPU8z4RwpypoSmQ1VGxI/mpxzz4Zd5niSiSRPXfsyv8+Yk5Y+GqmL8to973DgmXvTu1+vLrFtWWhyHlp2eCq8pWBHoPZ/aGIOUnxjV5vXKpzFzuUErTgdkn+bR3utBWIQesHkNrcD2x+8Dd4mzSYAbFtZd4tlF+CoXY5WnmsyN7Q29SWIYbyYDyTflJ271kJKHm5088ntqsXK3cloeURcq0LRjYA/db35IEGkx92IVdzy8cSNWD2a78Tj36OLdkTLj0UrRqELt0Ojk1t83rYy84tfOWLVk3juhlfTnPgSXG4XMyb91Ol2NReteww0SvqTVQQib6HJ+V1kVdtwZuTLAZr4GzPlULcAACAASURBVBKzyQxBhNHQk0hgvzafY/ipe/D+YxOZ/+cioqEoliV4/B7Oue9EvP5MB59B5L0cL1iQfwbi2QysInAPSn+CcK8PiR+yHNYLo4TYvbACw1DfjhD7HHCBbzvTuLuDMYvGx2csyGrl6VD6QafprUdCUS7d5zrqqkI59xERikq7ri/sMol/R1aNG/GZ72E7hjQ7C8eRLw9oXapEu2mfRsBumknROgL5Ae75ciwfPPEJU9+aTo9Vijng9L1ZZ7O1mmljCMgmrpUwJe2+rbMeJoWXoeWjSM9s8UPeuRD/FnWvWa8/0l0QKx/8e3TuSaMfknWtQZNo+HUk/8ROMeOLN6YtM23VG/Cy+e4bd4o9rcI9KOXMm3yeNQau7BIOyzuOI18ecK9DZiUggBf87deQ2B/0MfzUPRl+avPjuQ2m7AjcSdOZTDQM9435mV1GzMj65RXvFlDypClHT/wMrjUAH9RcjYrXrAUEDjK51tK61DrTiedXcPdfbjRzYtE4j13xLG8/OIFoOMbGOw3mjDtPoN96rcyRtitTaxIZZ8pe5NRB1FaGsBPZHbnL46Jn3x5c99aly3WapOSNQsPjSV+/8YFvW5Pr3w1xYuTLASJupOgGGpouAASMxGzyL+wFW2Iv2Aa7eqzJGukKGz0DIXgEEEBVsG0I11lMeKWYdx9fyH8OvJGJz2eP14p3E6ySR7F6f270UOLfAdFUmCAK4fFo3UNZj9X4D9jlo8x7sHg/Uyq/5DWNYVecjC4+GK2+HC07CrvsCNSubfV1qtpo9FPsqv+YHqDx35Z9UBauOexWXrv3XeqqQiRiCb75cAZnb3spZfOyqSI2A++WZP26ShDxtX/WTy42223DrBW53oCXU28ZyVN/3Ef/DZZvZyju/kjJY6YLExbgg8CBSPFdXWxZ63HyyJcjNDEbrXsG7Lng2QZCj4G9gIbcZR941kdKns+ayVJXVccnL3xO2bwKBm+7LpvttlG76lerKsS+5KvXrqRifjkfvdKDryfls2RBs2SVYp795/6l9wZdsAmZBUSAVYrVe0r6/vGZqfZw6fnW5F+ElTcCu+ZWo9jYVFfevw9W8c2tuD4brTzLpFdqCHNT9UDhZVjBI5o9zj+/zuWUzS4kFk5XYvT43Bx+wf4cf81RLbYNwK68EKLvN5IKCIB3U6SRsFdncN+5j/LOwxOI1Jn33Z/nY8Pt1+O6ty5drvXSVRUir6J1T5gFe98ekHccYvVq9dNgZ+PkkXcDxD0AKboCAA2/hmoF6QUoUUj8CvFpqRlaA7O++YMLdrmSZDJJJBTFn+dn4GZrMfb9K/D62ic7RETAtzXXn9qbusr8jNdrKmqpraijsGeuha4EGal7S7CrMzZpzW1kdvwJQ+1taPBwk9WTMV4MIm+jOrblX87oxEZOHEwMNQnV16L+vZqdmfLXT//i9riINcm8LCgKM3ijJ7AX3GFuSMEjkbzRmeqJOZCiGyGyExp6AYgjgYMgcFCnOnGA024/ni323IR3HppALBpnt6N3YOcjtluunTiAVl8FkVcbboShJyDyDpS+aTKQujGOI19O0dj3TdT4lryQhPjPaY5cVbnm8Fupq27YP1Ib4ddps3ntnnfaveNKySo9qKvMtM1yWQQKcmdwiHhQ9zppmiL1uDcxqXSJWeBeG7xDTb50NhVAjZu4sOYS10o54Bb26tTI29nfc3GbLJVmrlestm5fkvH0hbRgQZJ73vuN4lIjgYtWQO3taO3/0LwRSN5Jy7xRiFgQ2K9dspjagoiw9bDN2XrY5i0+VlX5duIPfP3h9xSVFrDr0dtTskqPDrCyyXmT8yD8Eul69XGwy9Hwy0jecR1uQ0eyfN9CV2bc/ckq/CRuaLIgM3f2/Kyx12g4xnuPTkQTf6Gx79Ccjq9ljLjskDTVOgBf0Mu+J+2Ox7v02aUUXolZC1jy0XMBAdAFaOUZaM1NaOXZ6OJhID1zjJKqKvUNJetH2L1BWlVms5EA2fPeBWh+L8k111+dDbZfD6+/4b3Y84hy8gqSuFyNFwoVCEHdo2jZwaidvWirvZn61nROGHwue3mO4Og1T+PdRz9q0fGqyuTxX3LJXtdwztDLePWut4iGczxpNSKZSHL58LH854AbeW7sqzx6+bOMXOcspr3/XWsvpfnEvzd9YjOIQGxKlu3dC8eRL6dI4AAQL+mOxWVK3707pO+bo/KzuDTOJXdNRhfvmyog2QY79DyxSIzKRVWt1rbebcQOHHfV4QTy/fjz/Xj9HvYYuTMnNaMsW7xbIj1fAv9+4F7P9E/17QDJeanZcNykYyb/Ars8xygB0+WpYAxIIQ1O1guShxRd06rrksAh5Mxt9w1t0VhXvXoRex6/C96AF7GE7fYR/MFcaXsJSJah4VdbdI7W8NV733LN4bfx98//YidtFv29mHvOeoTX73t32QenuP/CJxh77F1M/2AGMz//lYfHPMN5O1xBPJYtq6aBj575jBmf/FgfW49F4kRDUa478nYS8WwaNu2I1YfsGu8ucK3esefuBJzFzuUYTcxGq8ZAPFVQ490WKboho/hDVRm13jn8+9u8tO33vPsbAzaMYFkNDiQec3P5MQPo0TvOyAvm02eNJC7/ICT/QpMGGZsM4gffjsssdIlF45T9W05x70L8gSoT6nD1a3HM1p6/MVkXQHPiRnpPRqwepuI09ILJhHEPQoJHIa6l6JEvy5bacVB7H4jFknmO9Lgf8W7VqvFU1dww6+6EuofJ3oouhW83rB7jWnWe5nLq5hcy+9s/M7YX9sznxQUPLzPOvfCvRYxa75yMik5/no9z/3cKu43YIceRcOHuV/HtR5nFYcHCANe9OYYNt18/y1Htg6qap7zkn6Tnj/tTypWtbC/YyTiLnd0QcQ9Aer5gUg7FyulYRYQrXvg/LtjlShKJJLFwjLXWT7DmoGiaEwdwuROceMUc1hgQxR9M3cTjM9CKUZjZvzf1ECDQ436kcSzeDoEIIibk4/V5WGXNJFpxLFr7C0ZnpQCKbmphSlxLddFTdgJilSD5p7bw+NxY+aehgYMgOhmsIHh3yt2bsxmYrkuCBo9EQ4+bopOsuFM59h1L05v9Euqqw4RrI8ts7PzDZz/j8rggktlrc+pb05fqyHPmlqtZX+lIRARKHkMrz0lNjFxg5ZmJUSc48alvTeehS57m31nz6bNmL0ZdeyQ7Htp+TUIcR94NaI4jGbBJf575axyTXvqC8nmVDNk1gdd/Q0q3pQHLgrXWj+DO+MsvebSN1z+BasUp0HsKJBeiVZeYTvSAugdB3ong2w3KjzF9J5c4YzuMVpwGpW82v7jCtzNEJ5A+U7LAWhPseaTP1t3mySRnS7e2I65VIHhIztc1/isk/wD3wAwnoKpo+GWTEaF14NsNyT8VcfWFHo+jlReD/XuWUT1IsOObRvRduw9/fP9XxvZAvr++icXSKCwtRLKsI7jcLkr6Ln3Rcp8TduXHyT/Xh1aW4PF7GLTVOss8d1sRVx+k53NocqH527jWrH96VFVI/GRE6zwbtWu18dS3pnPN4bcRTaWj/vPrXG46/h5i0Ti7j9ixXc7RrUIrJg/0LaMzrXXg3wcJjjQl0w5pqF2LLtyOpiGLaATcHnA1J6FD8qDwGqi+FrSS9JnzkgVAJTMF0AN5o7AKMps4ZLU1Od9ofWttKk4eNLPhkuegZixEP0uFOgDXakjJk11S1q92nbm5xWekJBUS4NsGKb6nfnHVrroyPcUND1ilpmNQ6nNqx3+BqktNKilWamY4FvG1z5d6aXzx5nSuPfK2etlZAF/Qx6hrj+SQcxuyYUI1YTw+d8bidTKR5Oh+p1KxoJLGrsMX9DJu+k1L7e5j2za3nHAfk176HDth4/K4EEsY++7lDN6265qga3IBWjHaiNbhMk9NeScg+ee1i/Lo6A3O46+f/snYXrpaCc/+fX+LxlohGkvY1ddA6CUaCkR85otdOr5ThIu6G3bdI1BzJ0ver1hEqCp3kVdoE8xvTjgjDwL7QfgNoIUVpf5hWMV3NHt31TBE3kHjvyDudc1NOvUkYkrwfzJ9MD2bdVnTArvqUtOkOS3O7Ut1HrrI3JAW7UHWG5t/H6Tw8rQUQ03ONzcuV/9OzQWf9NLnPHjxU8z/YyE9+hRxzBWHMvy0vRARvvvkR+445X7m/b4Ay+Vil6OGcubdownkNXy/5vz0D1cMv4GKhVX1MfULHj6dHQ7Zplnnn/3dn3z70Q8UlOSz/cFbEyzIkp3Vidhlh6XCLY2fCANI8U2If682j7+P76isi7ki8HbkWdye5gdGOtSRi8gjwH7AQlXdcFn7t8aRa3IuumgvMr8kAaTwMiR4eIvGW1nQ6Kdo3aNgl/HdF7246dQa9jhsHkecuYBA3rL+9qny5Zya4rkIIIWXIi2ohlzeMVWpG5F1sVIKsPpMRyMfoFUXZ4SzDC7ADYVXYi0lbNMWfpk2m3cemkBddYgdDt6aoQdthWspj162bactbs756R/O2PISoo0akHj8HjbdZUOuf+vStGNVld9nzCFSF2XdIWsvM+10eUM1DhpC7RpYvA9ZC9U8Q7B6PtPmc40ceCbzZi/I2F7Uq5CXFjzcorFyOfL2mgY8BuzdTmNlJ/ZNjga54fpO5w6ZiG8HrJJHsEpfY9N9H+S4q0/h03c35dWH1iAS8qDqMpKyrsGNutws+VjYNM+JN/67eMHVGwLtW4TU9dhklT4F0Brs8uNQ8ZN74TYJRKH6SjSRGaNuK6/c9Rbn7/Qf3n7oQz5+bjI3j7qXS/e5nmQym2KloWmGymt3v0xeQYjGaXrxSJzvJv7IvD/SHZGIMGCT/myw3aBu5cRVE0azaMEQE3osO5TsaYnkbpLdQo6/+kh8wfS6Bl/QxzFXHNou40M7LXaq6iQR6d8eY+XEKs3xghtcfTv01CsKIsLeJ+zK3ifsCqS6zWg45cAVop+g0fcg9jUk55DzA55GAAJHQHyqCRP490HyTqzPbAFIJpN8/cEM/v1tPmtt1I+Ndxrc7Xo6irhQzyb1C74ZxL4yksOu1SDxO9klfwGSaORNJP90ILXuE//G5M2710c8LY8VV5fV8PAlT2d06pn5+S9MGf/VMkMealejVWM4dcwETr5YKVvg4fbzV+e7yUZqwe1xMe/3hfRdq/VpncsLWn0dhF+mfu1Ic9UqeNtNqnjXo7YnHo3zyKXPULmwivySfI79z2EccEb7zX3bLUaecuRv5gqtiMjJwMkA/fr122LOnDktGl/VRhftlspiaDzr8SOlryHuZupqOywTe+FOqfd5WQSw3UOI++4mUJA9s6ZyURXnbn8F5fMrSMaTuNwuVh+0Krd8dGVabDSZSDLxuclMeHoSHq+HvUfvyrbDhyxXDl/jP6PlR6UWMrPNvAPQ439Qe7dxzlmduUDeSVgFF6B2hWnvl0zN0NUG75ZIj3Etqkyd9NLn3Dp6HKGazKennY/YjsuePW+px9tlR5kF3EZPHJGQcMZe6/LPbBMbLyjJ58SxIxh24u7Ntmt5Q+0QunBrsuv9SOrHBvxglZi1t1Z0fsp5flXi0Tgen6fVn+uODq0sE1V9QFWHqOqQXr1a3stPxEJKngD3QEyrrTyQYqT4TseJtzeuVXO84IXCm8G7C3G25sUHhnBAv1oO6nkCZ249hjkz/8444o5THmD+HwsJ10SIReKEayP8MWMON468m2TCODrbtrnigBu587QHmPbed3z+xjRuGHEn95zVsvhhexCPxXn0imc5pNcohgWOZsze1/LXz/8CIJ71kNJ3TE/SbIgLIWbiqiXPsCTXPX0fP+IzzlCrLjcdaTSUytaJQOxLtPa+Ftnsz/NnVRYQSwguIy/cLCTPpGnYyO1RDhy9uP73mvJa7jv3MT55oWXl7N9O/IHrjrqdy/a7gQ+e+KTjKziXhr2YnPo70gMCB4J3W8g/Byl9s12dOJgnYq/f2yGTk06bkTemrZWdmphjPvjugd226/XyjEYnoRVnkp666AP/XljFt2DbNqPWO4cFfy6qd8YikFeUxxOz76Ggh0mzSyaS7BscUb9PU4pKC7j69UsIVYe56tBbiNSmp0p6/R6OuvQQPnvlC8K1EXY4ZGuOuOjA+vE7gqsPv5Wpb31dL0ErAsHCIA/9cBulqxntF7v2PqgdR+bMzov0mggaRuseh+hHKRni1PWLH/z7IYXXAnF0waakq1umyCLpuzTisThH9D2JmiYNtn1BL7dOvIpBW+bO0dbox2jl/2VdoP12ch4XH5Z+bL/1V+PhH5uXjfTk1S/y/E2v1S+e+vN8rLvFAG768D9d0nhCNWZm5NpU00bAtwtWj/91uk0tpctn5O2JuNdEPOuvFE5c1TZl6DkrAtsf8e0IhVekdEwCLNH4lqLrAPj6w++pWFCZ5qBVjUP54IlPGm3Tpeq5VC2u4dJ9ruPzN6ZlOHGARDzJ09e+xOxv/2TurPm8csdbnLHlJYTr2kf8qynz/ljA1Denp+mIq0IsHGP8Pe/Ub5Pg0WAVkr7EFIDgUZD8Gy0bDuFnwf439ZoHfMOQ4vuNE9fqVJPfHO9NtpZ/S8Hj9XD9O5dR0COPYGGAYEEAr9/DqGuPWqoTB0xP1SyfrWhEmPF55g1z0d/N60a0eG45z419NS0DJlIX5devf2fKa181a4z2RsQLeWeQKUbnR/LP7gqT2o128YQi8iywM1AqIv8A/1XVzn8uXsGww29AzfWpvp0WGjwCKbio2frVbcEKHmZK1ZPzwSpOK7qaN3t+1nZf0VCMv3/5t/53t8fNxjuuz3efzETtTKflDybZ68i5bL/3yxQH63jziR6UL2i4NjtpYycb6cREE5TPr+TDJye1rl1dI9SuQ2vvhPB4IAn+PZn72154fJ4MHZF4LMEvX86u/12sYuj5Glo7zlSkWoVI3vHgPwhdvF+jYiAwM27L/OteCy0fCfGvMbEQF5lxdBf4dmnx9ay31UCen/cg30z4gXBthE132YCi0sJlHieuPmjgwFR+/JIbpEU05OLNxzITDPpv2Lxq3Rkf/5i9lL82wuTxXzY757y9sfJPxLZKoW5cqopzQ6TgwuWmRWBraa+slda1POlmqF0L0Y/NF9W3gynl7qhzRT+DqstIC2+Enkc1jhRd2WHnbYyIG9yZynADNu2PWJlxPn++n/W2Gpi27bwHTuWsbS+lrrKOZCPnX9Qzzr3v/UZBcRJ/0GbgBsJBJy3gksMH8Mu3ueO60VCUbyZ832pHvvCvRbzxv/fYc/9xrLJGBS5XKrQRfo2NNpwCZK4PuD1u1t5kzbRt4ipNNQG5on6b2rWQzFZ+b0NsMlp+DCT/IdN5e4GYkdGVPKSZFbFN8Xg9bLXPZi0+TgqvRt3rQuhJM2nw7ch3329DJPIyjfPmfQEvJ449pllj5hUFs8aCLZdFYc+urcS2ggdC8MAutaG96Zahla5Ao1PQRduj1VegNdehi/YwSnkddb7ae8hUBIxA+OUu69u5hPW3WZeBm6+Np5HetsvjorBnPjsfkS6WteqAVXhy9r3se8qeaXHR4y6aT3FpvF7a1etXgvk2F971N4ECP3lFwYzcWzBOdZW1emdsbw4/fPYTozc4j58nP0eP0rIGJw5AAreriiPPDaTpiINp0XbQ2cPStqnaJoslMashfCRecn+lPKnFtqZO3AOezY2sb/7/IaXvd+gEIRsiFlbeSKxeH2D1+QKr+CZ2OuJgxjx1Dmtt1I+8oiCDtxvEDe9ezsY7Nm/muvkeG2etWPR43eyTI/MlGo4Srm1p8ZkDOKJZzUI1jFaentk9pnYc6t0O8W7S/idNZmozGCyj090GRb62IiLc8O5lPHnVi7z32Mck4gmGHrgVo28YgS+Q2YAhWBDgjDtHMXfWPH74zIgmbbd3NZ4sSR2rrZ1g7NtnMnDLzTlxg/OY/+eitPCKy+Nq1WxcVbnp+HuI1EXpv24tbne2zkMhDjlzLebP78MHj39MPJpg3SFrc/Z9J7FK/4abh8a+QivPNYtmquDqBcX3IZ51Uf8+EHmX9ApQt8mKsOdmsSwOrj6t6jHa0Qw9cCuGHtg6+V6P18PY9y7n0mHXEw3HEIFkPMlZ957IWhv2S9u3YkElt544junvf4eqeeK74JHTM/ZzyE230lrpKjTyfqr0uulqtwWBI7CKrmr3c9oVp5msh6YLYpKH9J7aug44XUwykeTj56cw4elJXHDzyxT3zFbK7jHXZ+Wz6J8yrj7sVmZ/+ycut0WwMMDFj5/F5rtv3OJzL/63jJHrnEk8mmCr3aoZc98cggXpcf5oxIUduIi8PqNQVeyknZFdoclF6OLdm8TBMamwvT8FjRv1x/h3mJzkZS1SB6DgMqy85UNiIhKK8sf3f1FUWsCqA9r+ZJBMJvlx8i9E6qJsuP16Gboqtm0zeoPzmDd7QdrieV5RkCdm3bOU/q8rJ44eeVvImTFi07KGCM1H8s9Go1NIL5EPQP7Z3dKJg5E63W3EDuw2Ygfs2p6mgUOGRO3W9QurvVbvyd2fX8/if8uIhGKsOqBPqxv8egNeEqk+mtM+LqCq3I3XH8OdiqLYSYiG4Nrjf+CWj81TR7YUOQ2PN4U7GS/EIPoR4t8H6fkkduRTqDxlGVZ5wFWCBIe36pram9fHvceDFz2J5bJIxJMM2GRNrnr1Inr0aX0+tcvlWmo45tuJP1I2tzwjRTUajvHIZc9w1r0nLlUvxsHgxMibg2870/C3KRJA/MMyt7cD4lkf6fmMaUIsheBaBym6DitvVIecr7ORvNGp9ml+IxEgQaMPXXRTxr6lq/Vk9YF929SlPVzTcMOwk8L/HbAO0z8pIBGHRAJmTsvj3P0H8vO0+fUFQFmxF5K9MjCEVl+Hxn8215f8lez9PzEd263eEDgS6flympxBa1C10cgE7Mr/w64ag8Za/rT73cc/8sCFTxKpixKqDhMLx/h12u/858DMv0d7Mv/3BWmhsyUkYgnefXQiI9Y8jX9+zRaScmiMMyNvBmKVoAWXm1RA4kDSOB7vzuDtOA1p8WyAlDzaYeN3JSIepMc4NP4bJGaaalJPx5XkfzvxB7x+b31ec/lCD/8ZuTYer41YEIuYm0RekZvyeRX0Wy+7rrZ4t0bDL2aulwDYC9HyEdBrAuarlePGoxHwbm8UIqVts01VNV1vYp+mbBI0/DaadwJWwTnNHuel295Iy/kGEwr7Y8Yc/p01j9XW6Rg9owGb9s/5N0/Gk5TPq+Ty4WN59Oc7lyu5huUNZ0beTKy8I5HSVyBvNASORorvQ4pvdz5cbUQ8A5HAAaYpcwe+l/nFebhcmePHY1a9EweIR+Oss9lSJB98u4B7XSBHLr/GTfjFv7QF2QREP4H2aLYcmwLRSY1uLAqEoe4hNJFrwTyTsrkVWbe7PC4qF1a33c4crDtkAIO2XAevP3u4UFUpm1vOnJnNv5aVEceRtwBxr4NVcAFW0ZWIb7uVyolr/FfsijOwF+6IXXY0Gp3c1Sa1iC332WyZZeH+PB9HX3YI+cW528iJuJCSJ1NFO9n+/hFIzDGt3QqvIKfDJ4yGn2uu+TnRyEdklxq2TCPtZrLVvpvj8WU+oCcTdkYOfXsiIlz31hgOPndYzr+PZVlEOqiad0XBceQOy0TjP6Hlh0H0Q7DnQ3waWnGaqTxtum/iHzT0NBp6GW2hnnMymWTe7wuoqciWzdI2vD4PY9+/guLeRQQLAgQLA/iCXrbZbwv6DV6djXcczJinz2HEZctu+iDiQ/JOBLJ0pZIg4t0UACt4OPR4gKziWQCaWyu82Vh5ZI2QimWE5ZrJwWcPo6i0EI+v4cbjC/oYff3Rad2BOgJfwMfo60cw+oaj8QUy3ytxSf1TkmoCDb+BXXEaduUFaKxryv2XN5z0Q4dlYpePNjHYplilSK/P6tuUNYhJiXEkaht1Sv+yS84/efFz7jrjQaKhGHYyyZC9NuXix88kr6hlTZaTySTffTyT8nkVrL/NwIzYbjKZZOaUX4lFYmwwdD38wcy89+agqkaCNv4NDYufHnD1Nf05xZfaz0YX7WDKwdPwQ8H5WHnHter89XYk/kAXH0BG9pQEkV6TW9Skurqshpdvf5Opb39NSd9iDj1veKtSPVtLJBTlnKGXMXfWfCJ1UVxuF26vizFPncPQA7dCNYmWj0qldoYxT0R+yD8FK6XvvqKzQvTsdOga7AVbglZlecWL9J5kFoPj36NlI8hMxwxQJW/z4VPTWfRPGRvtMJjt9h+S9hg984tfuWj3q9IaAnt8bjbacTA3vncFzWX+nwu5YJcrqS6vATWLdTsfOZTzHzqtTRkvuVCNorUPQPhFIAG+vZGCszPkTzX2FVpxUmoGHgWC4FkPKXm83uG3BTv0ClT/Fxpp8EjxOMS3dZvH7mxi0TifPD+FL9/5mp6rlbDvSbvXN3TWyHupeo6mC81GdVJcLZfH7m44jtyh1diLhkFyVpZX/EifaYh4sauvhdBTNG24kLQD3H7+anw8voh4NIFlCUW9i7hrynX11ZJXHXoLk1+dStOPotfv4dGf76R3v+Z9QU/f8mJmf/MHdiOBLl/Qx5l3nVDfFakzUDtk5GutPg0NpJOL0fBrYC9EvNuAb8c2Z6ykn7PGLHziRd0DIfImJOci3q3Bv2enCK11NHblBRB5PcsreUjR1Uig5fn44boID495mg+fnEQilmDLfTbjtNuPp/cauTqSdS0rlIytQ+di2pJlSn8SPKyhOEnjZJNljYVj2Iko8ajRNbFtpWJ+JaM3OJcFc0y4Yf4fCzOcOIDH52Hxv7lacaWz8K9FzPnx7zQnDkZk67V7323WGG1F1cauvhlduA1adhC6cBvs6ptQtRFXKVb+aKzCMYh/l3Z14gBiFZiO71Y+lO0LtfdA+Dm06jK07BDUblqV3A2xisjqskRMbn4LUVUu2esa3n5wAnVVIaLhGFPGluC29wAAIABJREFUf8mZW11CXXXX6hm1FMeROywTCewHBWenujIFAR8E9kcKLm7Yxz/MNE5oguWymTYxU041Fo7zyOXPArDJzoNxezMdWzyaYM0NmiebGgnFsFzZP86Rupbpe7cWrXso9VQSaej4E3oarXuwc86vmmoSEaZBGiAEiT/Q0GOdYkNHIoHDyL5w7EoVl7WMn6b+xu/fzSEebSj2s20lXBthwlPdq6G748gdmoWVN9pooPR8Hen9OVbRtelSAd6tjIKfBDCLUG5UfTxwVT+qyrPXnU17zzQyPvT8/QnkB9IcsT/o44iLDyBvGa3KFv69mFtPuo8nLjuPYSPmMmSXaiyrYVbu8XnYqYkiY4dR9zCZqYBhqHukc86f/APsbDnfUciSYdTdEM96UHgZ4DMzcMkD6YGUPNIq2Yo/f8hsTQipBhjTsoUSl1+cyk6HZiPiBXd2RToRgcJrIXAoGvkAJIAVGM6ML+8Aspe8L3HSpauW8L+vb+KJq17k6w9mUNS7kMMvOCBDErcpi+eWc9725/Hfh2ewav8obreSiAvlizz83wEDiEbyKV29J4f9337LvLbq8hq+eGM6iXiSrffdnJ59eyzzmAyyLggD2rI0zNbjJXtTaFISu90fK3gE6h8Gsa/MpMG7Zas7ha0xaFUTlmmCL+hlrY26l/Kis9jp0KH8/cu/nLLpBfUx8iV4A15OvOFoDjp736Uen4gnePeRibz32EREhN2P3YmNd1yf0tVKeOKqF+i32gPsflg5Xl/D5zgeh9kz+/PXv5ewy1FDs0rrNubTl79g7Mi7zRNBSvXw5JuP5YAz9mnRtdqLh0Pil8wX3Otilb6Z8zjVGBp6xSxQShAJHgX/396dx8lc/wEcf33mnj1ZrPsmR87c5MqVnPWjdBAdKDkSKh3oUESpUCSFclQiSSjkvuXOLcc617l2d+7P74/ZljWzu7O7szs7fJ6Ph0fMzPf7fc/Ge77zOd5vY7NMbThzXWyXNDF9679rM4S/hiY0Y/1frly4xvIZqzh96CxVGlWk2WMN0/1ZBhMpJX3vG8rJf2Jw2Nx/P4UQhOZxV17Mzt6wmaVWrSgBc/XCVV5u8jZnj51HZ9QhnZKW3Zsy8Ivn01wWKKVk+EPvs2ftgRR1QDRaDVqdFoPZwKxNmwiN8LwLlVKLptDedCcVr8Ve54kSL2CzpKxwaTAb+GL7WIpXKMKx3Se4cSWee2qXwRyWeoErad3sXmaYYgmmCZF3KsLovbWZlHZ3fRb7QW4Oy7j7f2oiXkszdq/nc/zrPp9MuLnhyNgckefjDE2wHt5xjCHNR+KwO7BZ7JhCjeSJjmTSlg9TlJaV0j2mbDQbAtJQOavirtzg837TWDt/M06nk6qNK/HylD4Uu8ezU1RuoMrYKgFxLfY6Hzz1OedPXHRv8NDreHFSL1r3aJbusbvX7GfvugMexZz+6+XpsDvQaFO7EZGk2tz4FusXbkXjpQaL0+5k8ZTlbFu2i4unYtHqtDhsDvqM70GHvm28nksY60G+75Bxn4HjMOjKI8L6e208Ih2nwboCaf/ntiSO+/cJ3yNDeyC0GUsoQlcKCvwF1rXuSo36mgh9hQydA2DM0xNJiLsZkyXeSmzMZWaM/IH+nz8LwPY/dvHZi9M4f+ICWp2W1j2b88LHT6daNyU3Cs8bxvDZg3C5XEgpg7ZkrkrkSrZ6o91ojuz8F2dSLXCbxc5nL35F+ZqlKV017Roeu1fvT7FJ6HbSJdm4LJImHa4m1xUHcDoFWnM9n8ZOnXaHx5JFcG8m+nPWGuKvxqd4fsqQmZSuWpIqjSp6PZ/QV0NETbsZo7QhXZfdjSf+2wEb/zXETUh6hR2v49pCC7bNYH443ffgcajQgynz6+avXrxGzOGzHo87bA7Wzt9E/8+f5cjfxxnx8Njk/z9Oh4vlM1YRd+UGb855OdPXDpTs2DCWk4I7eiVXO773JP/uO52cxP9jtzr4ecJv6R6fJzoSg5faG7eaPro4V2INJMa7/ypbLTo02jyIiHd9irFeu/vwtohdb9JjTbR5JHlboo2FE39P97xSOnBdH4M8Xwd5oQnyQkNcCT8jHUeTkrg16Vcqk5MIEJlv6JAV3npt/ue/wlpzPvgZW2LKGv22RDsbFm7lyvmcmtxV/qMSuZJtYmMuo9N7flV1OV2cOXY+3eObPdbQ67DHrS6d15G34gYsmlexiccxRY9EE70SkcrqmttFlyhAj1GPYTQb3JOdwl0FsXbr6l5jlxKunEs/Ucm4jyDhe9xDJjaQl+H6SGTcZMCRztEAeqRlJa6LrXFd7oG0rvPp/fhDWJ5QqjSq6LEu32A20O55d+PkUwfO4G1+TW/UceFkbI7EqdykhlYUwP11euOibbicLup3qJ255Xe3KVezNDarZ2clg0nPfS2rpnt8eN4wPvj9Td7pOp7LZ73Xy3Y5XWgNoeQrnfnOSY8N7USdNjVYOWcdDpuDJl0bULJSUR4t3NvjtUazgYad6qR5PimtkDAHz7ozFrBvTuNIAwgdoAd5HSzz3A87/0XadiHDX0cT2i0jby3TXp35EoObjuDqxWtJHXwE1ZpUouuQjgBUqFeOE/+c9uju47A5KFIu670+lYxRq1YUVs5Zy/hnv0Cj1SAlSJeLPuOfpuML3if1MuLLITP4bcofybsrtXotEfnCmbbnY58b67pcLh7J14v4a57bpg0mPb3ef5z4awnUbl2Dyg3u8Vud+PkTFvPNm3OTJ1sNZgPRxfMzeduHaa9ecZ5HXmyF136uIiKpB+ztz+nA0BScp8F5CK8TtTnceNvpdPL3ir1cOHGR8rXKUP6+MsnPxRw5ywu1hqVooWcMMdK+Tyv6js9aRUcldWr5oeLV5XNX6F6mHzZLyjtng9nA1F3jstziS0rJn7PWMH/CYm5ciade+1o8+cYjRBXK2B3/tyPm8tO4X7Em3pz81Ol1SOlCo3WvKDGGGKjfoTavfzfAb5NXO1ftZcFnS7gWe51GnevSvk+rNJM4JNXMvlDffVd9O0Mj0NeE+Gm4JzoF7qT933/TqFEuQhFRPyD05VO/tv2wu1SA44i7kXVor2yrCnh870mmDp3FvvUHCM8XTpfB7en8Utu7quFKTlOJXPHq1y+WMWXoTI/VIVq9lh4juvLE8PQbLeQEh93B2J6TWPfzZgwmPTaLDafD5fHV3hRq5LVZA2jUuW6AInVzxX8PcWPwWFOebzZCX8WdcC3L3eu9E2ZwszZKWgyIAqsR2nzer2lZC1f7kHIM3gT5f0Oj861mDcD+jQdZNXc9QgiaP34/leql/sGh5Cy1jlzxymF3Ir0sv5NOV/Jut9xAp9cx/PuBXDx9iVMHYog9c5lJA6aTcD1lbRNLvJU/Zq7OkUR+4VQsiXGJFKtQxGP9sSb0SaQ2H/LGRHCeBX0VRPgQhL4KkNSrVF8emTAXiS9rlwUY7081iUsp4dogPCdSLXD1Zcj/k0/vacrQmfz6xXJsiTYQsGTaCh4e0JZnRz/p0/FKYKhVK3e5+h1qeX1cb9TTMMB3td4UKJaP+1pWS3MyNrUqiP4SG3OJ/g2G06vCAF6qP5xHCz/PpsXbPV4nTA+iyb8YTcHtaKJmIPReJniFAe+9P2+jq4mIHJfq09J1CWSc9ycde9M/P3Bs9wl+nbwMa4LVXUnRJbEmWPn50yWcPOC9Xo6SO6hEfpcrXLog3Ud0TV5+JzQCY4iBjv0epFyNNLrJB1jVJpW9jsWaQo206dnML9eIOXKW4e1G09b0OJ0iezBp4HQS4y0Ma/UOh7YdxWaxY7lh4XpsHO91+5gT/3jv9O5yufhl8lKeqTyQbsX6MKHvVC6fS1qFY2xB6mvJzbhbmb2BJv9chCaN2h9pbr9P7fwpbfx1G3Yv38JcDiebflVDobmZGlpR6Pbqw9R76D5WzlmHy+miSdeGVKhdNtBhpenaxes8MfwRZo78AaEROGwONFoNzR5vRN2H7svy+a9fiqN//eHcuBqPdEkcNgdLvvqTfesPEnv6ssfYvN3qYNGkpfSf+JzHuT7pPYVVc9cnr35ZOn0lG3/dxtf7PiEsTyQycjxcewX3fZUEXBDaC2F8APSVfGoHJ0QeJGY8y+gCmqI+vWeDyYBWq/F4bxqdNqi23d+NVCJXAChdtSTPprNl/nYul4vdq/dz7t+L3FOrDGWqZez4jDp5IIb5nyxmwy9buX4pDlOIEZfLRfHyRTGFmTi84xjLvl7Foa1HGTDpee5t6FljxJJgZdaoH/lj1mqcDidNutSn13uPExGVcinkkmkrsCbaUswf2Cx2/t130mtxKJfTldzx6FYXTl5k5ey1KVYFOR1O4q/Gs2TaCh4d0hGNuRXSuBasq9ydloxNENqCGfrZCCGQEe/B9SGkXLqohcixPp2jadf6fPvWHM8nJDTu4r3oV1ZIKSFxgbvphSsOTA8gQl9MdR5ASZ1fErkQ4kHgU0ALTJNSfuiP8yq51+VzV3il2QgunbniHk+VkhrNqzBi/hD0Bv/3h9yxYg9vdxqDLdGavKP+v6JOx/eeRGgELof7TvLYrhO81vpdJm8fk9y4F9yJ49VW73D47+PYkxLr0umr2PHHHr7a+zEG4824D2076p7wu41Wr/UoyQvuGta1Wnl2nD+0/Rg6g85jeac10cauVXt5NGmDjdBEgrlzRn4kHjQhHZDaaGTcWHCeBF1FRMRQhN4zLm+iSxRg0JQ+TOgzJfnDyulw8cr0F/yyQex2Mu5dSJyf1NEISJjrXsmT/zeExrOrlJK6LI+RC3dtzElAW6Ay8LgQonJWz6vkbmN6TOTssfMk3rBgibdiTbCxc+VefhznrTlu1kgpGf/c5KRJOC/Pu2RyEv+PzWrnh49SxrJ33QGO7TmZnMTBvRPxyvmrrPs55Y7LcjVLYTB5+UCS0OR/9TGF3hzu0Bt15I3OQ5tenoWqokvk9xiqAEC4W4193PtLzvpQrsBXwlgPTf75aApuRZNvls9J/D+tujdlzqkp9J/0HAMmP8+c01/yQLf7/Rbff6TzPCT8cDOJA2AH1zVkwjy/X+9O54/JzrrAESnlMSmlDZgLdPLDeZVcKv56ArvX7Md5W/K0Jtr47as//X69y+eucuV8Kt13UuFyuji+50SKxw7vOIbT7nk3nXjDwsGtKVt7tX2uJXqTPkUDGb1RR9kapXj9+4G8PKUPFeqWo1iFIvzv5Q5M3j6GkHDPjULl7ytD0fKFPeu2SIi7fIPl366i731DOXUw96wKicgXTqvuTWn5VBOPISe/se9LpWuRBWwbs+eadzB/JPKiwK3N704nPabcodJaX377EII/mEKNXte6p0Wr11KhTrkUjxUuUxCdwXM00RRi9NjBmjc6kk/Xv+9eHaMR6I16WjzZhMFfvcBP43/l5IEYXvi4J9P3T+DZ0U+k2k1GCMGHy96kerN7vRbhcjpcJMZZ+Hr47Ay9v6CnLYj3Xaxa0Pq+eUlxy7HJTiFEb6A3QIkSwdUPT0kpMn8ERcsV4sT+lMvtdHotjTr5f+15aEQIdR6swdalO33epGQw6enySocUj9VtW5PwqDCsCbbk4Q4hQGfU0eJJz+GDkpWKMX7VKFwuF0II1i3Ywou1huFKWsUy/5PFNOxcl9dm9ndPNkrJ/o2H2PDLFowhRh54ojHFyhcmT4FIPlz2lrvtXfUhHkv8pJTsWfNPJn86QUpXGbSl3A04Umxi0iNCuwcoqODljzvyGODWj9BieOm2K6WcKqWsLaWsXaBA9tR+UHLO0G9fwhxuTh5HNoUaiSqcl57vPpY91/umH/fUKoMxxIA53JS85t0bIWDs8rcpXDrlyg+tTsun696jWtPKaPVatHot99Qux4R17xEaGZrqtTUaDZYEK2N7fI410YbdakdKiSXeyoaFW9i0eDtSSj5+/ktea/0uP4xbxOzRP9OnxhB+/3pF8nmiS+T32uwXILJANg1h5FJCCETe6WCojbtptBk0+RF5P0foyqV3uHIbf9yRbwXKCyFK407g3YAn/HBeJRerULss3x78lKXTV3Lq4BmqNKrIA082xhxqypbrhecN49P17/PvvlOcP3GRstVL0rv6EOIu3/B4rVanpViFIkjXdXAcBW1hhNZdWjV/0Xx89OcIEuMtuJwuQiNCfLr+rlX70Og873ss8VZWfLcGU6iRv+atx5K0Vtxpd+K0O5nY/2sada5LRL5wjGYjzbo1ZPW8DSmGoEwhRh4blrUVK8FIaPMhomYinZdAxoO2WHIXJSVjspzIpZQOIcRLwDLcyw+nSyn3ZTkyJdeLKpQ3x4tqlbq3OKXudX8BbNChNiu+X+Mx6Vq8YhFCNJORF2a4J9SkHWlsiIj8BKFxJ+6MfuCkte1/z9p/MIUZk0v13kqr17Jt2U4eeKIxAAMnP48l3srmxdvRGXQ4bE7+90p7Wj/dLEPx3Enc68bV2vGs8MsYuZRyCbDEH+dSFF89M/oJti3fRfy1eKwJNvRGPTqDllFzykLCVNydeZLWgls3IK+PQOT5KFPXqtH8Xq9LH8G9C3Tf+oMIjfAyKStSbCAymo28/cMrXDl/ldiYyxQtX9jrahdFyQhVxlYJavHXE1j+7Sr2bzxEsQpFaNe7FVH6x8F53MurDYiCWxEic4lz2/JdvN72Pa89H3R6LRqdxqOPpTHEyA9nv1LJWvELVcZWuSOFRoTw8IB2PDygXfJjrrSa/7riQZu5pFq7dXVCI0K8dipCCDr3f4iFny0BIdAk3Z2/Ne9llcSVbKcSuXLnMdQD63I8qv5pokCTtbHYmi2qsn7hFo8hlOji+Xnugydp36cVW3/ficvl4sCWw7z/xASkS9Kwc11eGN+DPNF5fL6WlJLdq/dzbPcJipYvTK3W1TzqnisKqESu+MDpcLJjxR6unr/GvY0qUKRs7m6uK8IHI23rk7Z/O3DX+zYiIkZluQ3Zcx8+yd8r92BNsCVXXNQb9Qya0hshBIVLF6Rdn5b0qTGUmENncNidNOt0hZ4DpxDunIjzfDQifBCakC5pXichLpGhLUZy6oD7HDqDlrwF8zBh7bvkLej7h4Fyd1CJXEnT6cNnGdJ8BIlxFqSUOB1OWj7VhEFT+uTa3oxCVwry/4q8MQ3s20BbChH2vPfGDhlUtFxhpu0Zz/ofv8Co24oxpADlGvSjeKWb596+fDcXTl7EYXfSpMMVXh5/ClNI0h28vADX38UFaSbz6W/M5viek8kFuuxWOzbLRT7pM4V3Fr6a5feh3FlUIldSJaVkROcxXD57lVsnxVfOWUe1pvfS4snGAYwubUJbBBH5tt/PK6WLqJBRdHh8DUgLcAzYirR8ijA1B+D4npPJk569Xjt3M4knS4QbEyCNRL7iu7UeVRaddidbfv+bDYu2Env6MvfULkOFOuVy7QeqknNUIldSFXP4LOdPXOT2lU2WeCuLvliaqxN5trEuB+sabjZwcC9vlNcGg3ETQhgpdk9hDGY9iXFOooul0lTZdQEpXalugHE6vdUhcSfzD576DJfThUYjqFivPO//NjxFCV7l7qO2USmpsiRYU90I423zy91AJi7AaxceBNjcS2rrt69FZL4ItDoN506l0llHUzDNXYwNO9X12sACwHLDgi3RhiXeyv6Nh5g3ZmEG34Vyp1GJXElV6aol0Hu50zOYDTTPhhrVwSGtL7Huf05anZZPN7xH3YfuY8aYIlgSbh/6MEHYy2lepc9H3clXJC+mMPcOVGOI9w8EW6KNpdNX+hq832xYtJVnKg+irbEbT9/Tn1Vz1+d4DMpNakOQkqatS/9mVJfxOO0OHHYnplAjRcoWYsL697Ktroq/nD58lo2LtqHVaWj8v/oUKJb1beDSstI9jCJvW0suIhDRGxC31dh2Op1gWYpI+AScp0FbGEJfRhPSMd1rWROtrPlxE4d2HCO6eD6+Hj4bp91zyCWqUB7mnfkqS+8rIzb+uo33H/8Ea8LNYSNjiIGBX/SmVfemORbH3Si1DUEqkSvpOnv8PEu+WkHs6UvUal2dJl0bZOuYrMvlYvvyXRzddYIiZQvSoGPtDLeP+/79+cx+fz7SJd1VEoWg/8RnedBLF5/UHN5xjH/3nqJYhSJUrFsuuVStvP4WJC7CXU9bDwJEnikIY72MvdEMOHUwhueqDPboNqQz6GjfuxX9Pnsm2659u2cqD+LUAc9GGPmLRjHn1JQci+NupBK5EhTirycwuOnbnD16HpvFhsFsIDQihE83vE908fw+nePY7hMMaDAc6209Nw0mPbOOTSKqUNr9Jy0JVt5oN5qDW4+6PwSkpGTl4oxZ/mZyuVtpPwi2DSDCwdQ623tMPld1MCf2nfJ4PLJABNP/mZB9nXy8aGvshsPLNwMhYIllDjq9WkORXVJL5GqMXMlWsWcu88fM1aydvym5xGtavn1zLqcOxJB4w5LcPefyuauMe2ayz9dc8+NGj+YNAEIj2Lgo/RuIr1//ngObD2NNsGJJ6kl6bPe/TBww/ea59BUQob0QIV2yPYmf+/dCqn0980ZH5mgSB4gu6b2fQGSBSJXEA0Ql8ruQlJLda/bz9fDZzBu7kAunYrPlOnM+XECPsi/x2UvTGPfMZB4r8jx71qbdCWflnHUe66ddThe7V+/DmujbShkpJamVKvTlC+gfM1d7tKyzWx38NW+Dx1LMnOCwO1NdK+701tg5m/V6t5vH5KsxxEiPkV1zPBbFTSXyu4zL5eK9xz7hjXajmfvhAma8PY9eFQeybsHm9A/OgP2bDvH9ez9ht9qx3LCQEJdIwvVE3ur4ITZr6n0900qUvubQxl3qe11tI12S+h1qpXu8PZX4nA4nLlfOJ86i5QoRmd/zrttg0nttUZfdmj3WiEFf9iZ/0SiEgDzRkfQZ1532fVrneCyKm0rkd5n1C7ey5fcdyevA7TYHtkQbY3p87tPQh6+WTl/pUdIV3In67z93p3pcky4NPBokC42gcsMKmEKMPl27XI3SdBnSAaPZgFanRWfQYTDpeWFCL/IXiUr3+FqtqqO5rY2cEFDl/ooBKVolhOCNOYMwh5mSW+uZw0yUqFSMRwa1z/F4AFo+1ZQ5p6bwu3UuP56bRoe+bdQO0wBSA1p3mRXfrfG6mUej1bB79X7qtq3pl+tYE6ze764lHpOQt3r2gyfYtXofl2Iuk3jDgjnMhDHEwNDp/TJ0/Z6jutH8sUZs+MW9/LBJ1wYUKhXt07EvftqLfRsPYk2wYk1wT7gajHoGftE7QzH4U+UGFZhxZCJ/zlrNhZOxVGtSmYad6qS6aSinBPr6iptK5HcZnT71f3haLz0pM6tp14Zs+GWrx4eGw+6gZovUi1eF5w3jq93j2bhoG8d2n6BwmYI06drA57vxW5WsXJySlYun/8LbFCoVzbcHP2PZN6s4tO0oZaqXou2zDxCZP3snNdOTNzqSrq+kv/5cufuoRH6XadOrOZuX7PBIsEIIqjap7Lfr1O9Qi5otqvL3yr1Ybljc5V4NOvp+/DThecPSPFan19H4f/Vp/L/6fosno8LzhtFlcIeAXV9RMkIl8rtM7TY1aNOzOUunr8TlciV/NR7581C/bvLRaDSM/Hko25btYt2CzYREmGnTszmlq5Tw2zUURXFTG4LuUif2n2L78t2ERIbQ+JG6yRtdAkFKyYWTsZjDTTm+JlpRgonq2amkkNnxY3/btnwX456ZzI0rN3A5XVRvdi+vfTcg4OPROcnpcPLHrDUsm74Su91OVKG82K0OylQrSad+bYgu4X0DTqAc+fs4EwdM58Dmw5jDTXR8oQ3dR3RVm4ECSN2RKwFz4p/T9KvzGtZblj1q9VrKVi/FpC0fBjCynCOl5O3OY9i5cq/HvIXOoEVv0PPRypFUqF3Wb9dcOWcd37w5h4unYilYKppnRz9Bky4NfDr2zNFz9K05lMQbluTHjGYD9z9Sj9dmDfBbjIp3aou+kuv88vnvHptvnHYnJ/85zbHdJwIS06mDMbzRfjTtQ5+ka6FnmfnOjzjsntv9/WXfhoNekziAw+Yk8YaFCX39V4jqz+/X8PHzX3Du+AWcDhdnjpxjbM+JrPlpo0/H/zT+V2yWlMtHrYk21szfROyZy36LU8kYlciVgIk5ctajmh+417RfOJk9ZQPSEhtzif71h7P1951YE21cvXCdH8YsZGzPSdl2zd2r93uUA7jdsV0nfC5PkBYpJV8Nm5Wi/CyANcHG18Nn+3SOwzuO4XR4/j8zGPXEHDqb5RiVzFGJXAmYGs2rYDB7Nkyw2xyUu690jsfz86dLsCbaUmxksibaWLdgMxdOXsyWa+YpEJG8WzM1Wp0my+PP/+47Ra9KA7l89qrX588dv+DTecpUL+V1v4Hdaqdo+UJZilHJPJXIlYBp16cVoZEhKXYHGkOMtOnZ3Ket9P52cOsRHF6qJhqMek7sP50t12zStYG7VG4q9EYdTR9tmKUdlNZEK680e5szh1O/Y44u4VuJ4K5DOqI33lYwy2ygQcc65C+a9cYdSuaoRK4ETERUOF/uGEvb5x6gQLF8lLy3GC9+0pMBk54LSDylqpRA62Xnq81ip0i5Qrf82cbhHcf8UjUyLE8oHy59k6hCeTCFGpN7pJpCjRhDDFSsW57+E7P289jwyzbsNkeqRceMIQZ6vdvNp3MVK1+YcStHUKGOu9GGOdxEhxfb8OrMl7IUo5I1atWKoiQ5c/QcfWoMxRJvSfG4EILmjzdi6Df9WPrNKqYMmYlGI3DYHFSsV57eY7uz+fcdWOOtNOxUl8oN7slwASmXy8XRnf8ipcQcbubEvlMULV/YLxuofp7wG9Ne+85rjXZzmIkBk5+j5VMZb9EmpVSFsnKY6hCkKD74Z/Nh3mz/AdcvxaV43Gg20OTRhqz5cWOK5ZIarQbpkmh0GpwOJyazkWaPNWTwtBdyTZI7sOUwQ1uM8lgZYwo1Mnz2IBp08MgLSi6llh8CiVdeAAAPRklEQVQqig8q1CnrcUcO7knPVXPWpUji4G56IaV0N0WW7jZxf/2wgZ2r9uZUyOmqUKcc1Zvdi/GWwmMGs4FSVUpQ9yH/VLtUAkslckW5hdPh9DoEAfi8ntwSb2X1Dxv8GVaWCCEYtWAYz495krLVS1Ly3uL0GNGVcStHBKS+uuJ/WVrTJIToCowEKgF1pZRqvEQJanqDnjLVSnJ0578pHhcCCpaMJvbMZa8rW1K8ViO8Tppmhc1qZ+X3a1n900bC8oTSoW9rqmWgWqVWp6VTv7Z06tfW47nYmEvs23CIPNERVG1cCY1G3d8Fm6wWR9gLPAL4b+uZogTYwC96M6zlKOxWB06HM7nD0LCZL/Fu1/HEXYlPM5kbTHpadc/45GFq7DY7Q5qP4Piek1jirQgBGxdto/vbXXhsWOdMn1dKydRhs/hl0lL0eh0SSXjeMD5aMYIiZdWa8GCSpY9eKeU/UsqD/gpGUXKDSvXKM2XnONr1bknVxpXo3L8t0/Z+QtX7KzFl5zg6vfQgJe8tRs0WVekx8lGMZgOmUKO7k5BJz6NDO1Gxbnm/xfPXvA3JSRzcvUutCVZmjvyBa7HXM33edQu2sPjL5dgtdhLiEkmMs3Dx9CXe6vhhQJpMK5mXY+XKhBC9gd4AJUqomtRK7lakbCH6T3wOS4KVrUt3smfNfu5rVY28BfPQd9zTMO7p5Nd27t+W9Qu3Yk2wUvehmhQuXTDD19vy+998/fr3xBw5S6FS0Tzz/hM07FQHgPULt3itxaIz6Ni95h8aP1IvU+9x0eSlHueVLsn5E7GcPBBDyUrFMnVeJeelm8iFEH8C3r5nvSGl/MXXC0kppwJTwb380OcIFSVA/l65hxGdxyI0InllSu+PunuMM4fnDePBXs09jrfb7Pw1dwPrFmwmPG8o7fq0plI9zzv1TYu38163j5NroJzYf5rRT05g6PR+NH20IRH5wtFoBC7Xbf9sJIRGhmT6/cVfS/D6uFanITEuMdPnVXJeuolcStkyJwJRlNwk8UYiIzqPTVGuFWDqsO+o1qQypauWTPN497j2SI7tPuEe19YI/vphA899+BSdX0r5QTA1lUJWU1+dRdNHG9K+TytWzl7r8RpjiIHqzTLfnq9p1wac2H8a223NsIUQlK1RKtPnVXKemp5WFC+2LPkbvOzncdgcLJ+5Ot3j/5q7ITmJg3vIwppg46ths7hxNT7Fa88cOef1HBdOxOJyubinVln6ftwTg9lASIQZc7iJfEXyMvSbfnw5eAavNB/B1GGziI25lKH32PHFNhQuUxBTqHt9uVanwWg2MPirvugN/mv7p2S/rC4/fBj4HCgA/CaE2CmlbOOXyBQlgCwJVuTtQxm4NwBZbnhuGLrdmp82pjGuvZ+GHeskP5a/aBTnT3hWV8wTHZm8FLB971Y079aIfesPEhJuQqvXMqzVu9itdpx2J/s3HmLJV3/y6Yb3fR7bNoeZmbTlA1bNWc/m37aTv2g+2vdtlSs6RykZk6VELqVcACzwUyyKkmvUal3da610U6iJ+32YXAyPCkMI4bn6Q0JoRMpx7R6jHuWzF6el2DVqCjXy1Fv/S/G60IgQ6rZ178R8ofawFB8oDpsDp93Bl4Nn8MHvb6Qb33+MZiMPPvMADz7zgM/HKLmPGlpR7hqnD51h4ee/s+zbVcRfi0/ztfmLRNFj1GMYQwxoksrMmkKN1GtXk/taVkv3Wu37tPJaa90YaqRK44opHmvdoxl9P36ayAIRaHUawqPC6PX+43R88UGv53bYHR4blsC9LHHXX/vSjU2586iiWcodT0rJlKEz+fWL5SAlGq0WkIxa+Cr3taia5rGHth9l+Yy/sMZbadK1AbXb1PC5GNb8CYv5evhs9AYdSPfk5Jjlb6U6USqlxJJgxRRiTPMaLpeLDmFPee0sFJEvnPkXp/sUnxJ8VPVD5a61Y8UeRnQe4zFmHRJh5sdz0zCYPO+c/eX65Tj2rj1ASISZqk0q+a22yYQXpvDHjNUpkrnRbKDLkA70HOVbbXEl+KSWyHNsQ5CiBMryb1d5nXgE2LlqX/K4c3aIiApP3tjjTy983JMLJy+x66996A067FY79TvU5qk3u/j9Wv9x2B1sXLSNUwfPULJyMeq3r5WlzkWK/6hErtzxHHZnGs/5VtEwtzGajYz+bTgxR84Sc/gcJSsXo2DJAtl2vSvnrzKgwRtcu3Qda7wVY4iRvAXz8OmG98hTIDLbrqv4Rk12Kne8B564P3mt9K2cDhc1H6gSgIj8p2i5wtRtWzNbkzjA5y9N4+LpSyTGWXC5JIk3LJw/eZEvXp6RrddVfKMSuXLHq9++FvXa1UpO5jqDDqPZwNDpL2IOMwc4utxPSsnGRdtwOlJ+s3Hanaz7eVOAolJupYZWlDueRqPhjTmD2LvuAJsWbyM0MoQWTzbJ9rvYO0lqayJuf3zrsp0s/GwJ12LjaNS5Dh37Peixbl7xP5XIlbuCEIKqjStRtXGlQIcSdIQQ1G9fi02Lt+F03NwkpdVpadTZPZH7775TTBrwNXvWHXC3vQOO7znB0m9W8cX2sYSEq28+2UkNrSiKkq6XJj5LviJRmMNNAJjDTBQolo8XJ/Ri3ke/0K/Oq+xctS85iQPYLHYuxVxmybQ/AxX2XUPdkSuKkq78RaL45uBnbFi4hVMHzlCicjEadqpNbMxlZo6Y53VzEribVm9evIMuL3fI4YjvLiqRK4riE4NRT7PHGqV4bNOv29M8RghBVOG82RmWghpaURQlC7Q6bZrlBAxmA537ezZ8VvxLJXJFUTKt0cN1U+3vaQwx0O+zXl67Iin+pRK5oiiZlq9wXl6e2geD2YAxxIgxxIDeoOORQe2Yf3E6bZ9pEegQ7wpqjFxRlCxp+VRTarWuwYaFW3A5XTToWJv8RfMlP394xzFmjPyBo38fp9g9Reg+oivVmmS+RZ3iSVU/VJRMcDqcXL14nfCoMAxG1RYtNfs3HmRYq3ewJdqSNw8ZQwy8OXcw9dvXCmxwQSi16odqaEVRMmjR5KV0iX6WHuVe4pF8vfjq1Vk4nakX5rqbTRkyE2uCLcUOUGuCjUkDVM10f1JDK4qSAX/NW8/UYd+laMv2y6RlaLQanh39ZAAjy528dTICuHAqFmuiFaPZs5iZknHqjlxRMmDWOz+mSOIA1gQrCz//3aOolOJuIO2N0WxAr4ak/EYlckXJgNiYy14fd9idJN7SDFlx6/b6wxhDUt51G0MMPDzwITQalX78Rf0kFSUDylYv5fXx8KgwQiJUYajbtXu+JY+92glTqBFzmAmj2cBDz7Wkx8hHAx3aHUWtWlGUDNi/6RDDWr6TYnjFGGJg0JQ+tHyySQAjy91sFhsXT18iqnBezKGmQIcTtNSqFUXxg8r172HcyhHUbFGFyPzh3FOrDG/NG6ySeDoMJgNFyxVWSTybqDtyRVGUIKHuyBVFUe5QKpEriqIEOZXIFUVRgpxK5IqiKEFOJXJFUZQgpxK5oihKkFNFsxRFyRZXzl9l2Yy/OHfsPPc2qkjTRxuqkr/ZJEuJXAjxEdABsAFHgV5Syqv+CExRlOB1cOsRhrYYhdPhxGaxs2L2OmaP/pnPN44mLE9ooMO742R1aOUPoIqUshpwCHg96yEpihLMpJR88NRnJN6wYLPYAbDcsHD+3wvMHj0/wNHdmbKUyKWUy6WUjqQ/bgKKZT0kRVGCWWzMZS6eivV43G518Ne8jQGI6M7nz8nOZ4DfU3tSCNFbCLFNCLHt4sWLfrysoii5ic6gI7XSHwaTGiPPDukmciHEn0KIvV5+dbrlNW8ADuD71M4jpZwqpawtpaxdoEAB/0SvKEqukzc6knI1y6DRpkwvRrOBh55vEaCo7mzpTnZKKVum9bwQoifQHmghA1GBS1GUXOeNOYMY3PRt4q7cwOV0AVCjeRUeGdguwJHdmbK6auVBYBjQVEqZ4J+QFEUJdgVLFmDmkYlsW76L2NOXqFCnHOVqlg50WHesrK4jnwgYgT+EEACbpJR9sxyVoihBT6vTUu+h+wIdxl0hS4lcSlnOX4EoiqIomaO26CuKogQ5lcgVRVGCnErkiqIoQU4lckVRlCAXkObLQoiLwIkcv7Bv8gOe+4tzt2CMGYIz7mCMGYIz7mCMGbI37pJSSo8dlQFJ5LmZEGKbty7VuVkwxgzBGXcwxgzBGXcwxgyBiVsNrSiKogQ5lcgVRVGCnErknqYGOoBMCMaYITjjDsaYITjjDsaYIQBxqzFyRVGUIKfuyBVFUYKcSuSKoihBTiVyL4QQHwkhDgghdgshFggh8gQ6pvQIIboKIfYJIVxCiFy9ZEsI8aAQ4qAQ4ogQ4rVAx+MLIcR0IcQFIcTeQMfiKyFEcSHEKiHE/qS/GwMDHZMvhBAmIcQWIcSupLhHBTomXwkhtEKIv4UQi3PyuiqRexeMTaX3Ao8AawIdSFqEEFpgEtAWqAw8LoSoHNiofPIt8GCgg8ggB/CKlLIyUB/oFyQ/ayvwgJSyOlADeFAIUT/AMflqIPBPTl9UJXIvgrGptJTyHynlwUDH4YO6wBEp5TEppQ2YC3RK55iAk1KuAS4HOo6MkFKelVLuSPp9HO4EUzSwUaVPut1I+qM+6VeuX5UhhCgGtAOm5fS1VSJPX5pNpZUMKwqcuuXPpwmC5BLshBClgJrA5sBG4pukIYqdwAXgDyllMMQ9AXfHNFdOXzirHYKClhDiT6CQl6fekFL+kvSadJtK5yRfYlaU2wkhwoD5wCAp5fVAx+MLKaUTqJE0P7VACFFFSplr5yeEEO2BC1LK7UKIZjl9/bs2kQdjU+n0Yg4SMUDxW/5cLOkxJRsIIfS4k/j3UsqfAx1PRkkprwohVuGen8i1iRxoBHQUQjwEmIAIIcR3UsqncuLiamjFi1uaSndUTaX9bitQXghRWghhALoBiwIc0x1JuBvpfg38I6X8ONDx+EoIUeC/lWJCCDPQCjgQ2KjSJqV8XUpZTEpZCvff6ZU5lcRBJfLUTATCcTeV3imE+DLQAaVHCPGwEOI00AD4TQixLNAxeZM0ifwSsAz35NsPUsp9gY0qfUKIOcBGoIIQ4rQQ4tlAx+SDRkB34IGkv8c7k+4Yc7vCwCohxG7cH/x/SClzdDlfsFFb9BVFUYKcuiNXFEUJciqRK4qiBDmVyBVFUYKcSuSKoihBTiVyRVGUIKcSuaIoSpBTiVxRFCXI/R9ddAjxkfKnDwAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"execution_count":3},{"cell_type":"code","source":"# División de los datos en train y test\nX = datos.drop(columns = 'y')\ny = datos['y']","metadata":{"id":"IGl1ASH0aGjk","cell_id":"a1089bfaeb104ada8aa42816e59c0d2e","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":12,"user_tz":240,"timestamp":1650987596871},"deepnote_cell_type":"code"},"outputs":[],"execution_count":4},{"cell_type":"code","source":"X","metadata":{"id":"B0U6Bph5ORL1","colab":{"height":424,"base_uri":"https://localhost:8080/"},"cell_id":"003f87a9e72e4d408f1c1cf62fab7846","outputId":"d34768f3-7ff1-4780-e10a-935ba7c91dd9","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":11,"user_tz":240,"timestamp":1650987597275},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" X1 X2\n0 2.526093 0.321050\n1 0.366954 0.031462\n2 0.768219 0.717486\n3 0.693436 0.777194\n4 -0.019837 0.867254\n.. ... ...\n195 0.256750 2.293605\n196 1.925173 0.165053\n197 1.301941 0.992200\n198 0.008131 2.242264\n199 -0.196246 0.551404\n\n[200 rows x 2 columns]","text/html":"\n
\n
\n
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
X1X2
02.5260930.321050
10.3669540.031462
20.7682190.717486
30.6934360.777194
4-0.0198370.867254
.........
1950.2567502.293605
1961.9251730.165053
1971.3019410.992200
1980.0081312.242264
199-0.1962460.551404
\n

200 rows × 2 columns

\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":5}],"execution_count":5},{"cell_type":"code","source":"y","metadata":{"id":"xgSeoBePOTzL","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"f3cad5aa597d482dae2fda8646dc491b","outputId":"9ff83f30-9637-4205-cd83-7126acc18c86","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":240,"timestamp":1650987598263},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"0 0\n1 0\n2 0\n3 0\n4 0\n ..\n195 1\n196 1\n197 1\n198 1\n199 1\nName: y, Length: 200, dtype: int64"},"metadata":{},"execution_count":6}],"execution_count":6},{"cell_type":"code","source":"X_train, X_test, y_train, y_test = train_test_split(X,y.values.reshape(-1,1),train_size= 0.7,random_state = 42,shuffle=True)","metadata":{"id":"9PZ3r3zLORPV","cell_id":"2f1371718ed640be9d20ba5c877ea4d6","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":5,"user_tz":240,"timestamp":1650987599646},"deepnote_cell_type":"code"},"outputs":[],"execution_count":7},{"cell_type":"code","source":"# Creación del modelo SVM \nmodelo = SVC(C = 100, kernel = 'linear', random_state=42)\nmodelo.fit(X_train, y_train)","metadata":{"id":"TfGGYtOvaGjm","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"642570b494bd494c8db0e2501374202d","outputId":"933e3df6-796e-4a84-8c4b-350f6f5df8e4","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":514,"user_tz":240,"timestamp":1650987600158},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"SVC(C=100, kernel='linear', random_state=42)"},"metadata":{},"execution_count":8}],"execution_count":8},{"cell_type":"code","source":"#Predicciones!\ny_test_pred = modelo.predict(X_test)","metadata":{"id":"U4zcXt7faGjn","cell_id":"f8a6de7201144d08bf170d3e51b1c731","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":9,"user_tz":240,"timestamp":1650987601361},"deepnote_cell_type":"code"},"outputs":[],"execution_count":9},{"cell_type":"markdown","source":"A lo largo de este notebook, se solicita calcular las métricas requeridas como así también su correspondiente interpretación: \n\n1. Calcular la métrica Accuracy.","metadata":{"id":"4o1E5zjBaGjp","cell_id":"6add817297844637bfa00f090504f2d6","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"###Completar\nfrom sklearn.metrics import accuracy_score\naccuracy_score(y_test,y_test_pred)","metadata":{"id":"vUSJj6eMaGjt","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"6e36e02bc3f3476db650f03b48246140","outputId":"959ae872-5127-4fab-e1e8-5ff577cafb56","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":453,"user_tz":240,"timestamp":1650987602244},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"0.7"},"metadata":{},"execution_count":10}],"execution_count":10},{"cell_type":"markdown","source":"2. Crear la Matriz de Confusión","metadata":{"id":"an4bC4jIaGjv","cell_id":"180733fc43fe402e9b76da28e7ea17a6","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"###Completar\nfrom sklearn.metrics import confusion_matrix\nconfusion_matrix(y_test, y_test_pred) ","metadata":{"id":"55vncdmWaGjx","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"67364bbd50a24936a1deb4cfd838065d","outputId":"9f294484-1b6c-44ad-a3e3-0426fcd82e7f","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":5,"user_tz":240,"timestamp":1650987602628},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"array([[21, 10],\n [ 8, 21]])"},"metadata":{},"execution_count":11}],"execution_count":11},{"cell_type":"markdown","source":"3. Calcular la métrica F1 score","metadata":{"id":"NUeSPxVhaGjy","cell_id":"d436803a5e7341ab8b2f8c4e5f193541","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"###Completar\nfrom sklearn.metrics import f1_score\nf1_score(y_test, y_test_pred) ","metadata":{"id":"BmppWOhdaGjz","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"0bf9f56784d74f59b029859decf1b71f","outputId":"c8ab8479-c67e-4a49-ed57-37b3622917d4","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":7,"user_tz":240,"timestamp":1650987603714},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"0.7"},"metadata":{},"execution_count":12}],"execution_count":12},{"cell_type":"markdown","source":"Calcular todas las metricas al tiempo","metadata":{"id":"zTgUTEomPquo","cell_id":"ed261c673aa741ce993425bc808244f3","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"from sklearn.metrics import classification_report\nreporte=classification_report(y_test,y_test_pred)\nprint(reporte)","metadata":{"id":"aqPX-U4VPhnY","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"82a0744a1498495384a4bcbef798f18a","outputId":"6d34d466-7ce2-4bee-b7ca-69fd2a4018e4","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":240,"timestamp":1650987605214},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":" precision recall f1-score support\n\n 0 0.72 0.68 0.70 31\n 1 0.68 0.72 0.70 29\n\n accuracy 0.70 60\n macro avg 0.70 0.70 0.70 60\nweighted avg 0.70 0.70 0.70 60\n\n"}],"execution_count":13},{"cell_type":"markdown","source":"\nCreated in deepnote.com \nCreated in Deepnote","metadata":{"created_in_deepnote_cell":true,"deepnote_cell_type":"markdown"}}],"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"SVM (Ejemplo 3 - Alumnos).ipynb","provenance":[],"collapsed_sections":[]},"deepnote":{},"kernelspec":{"name":"python3","language":"python","display_name":"Python 3"},"varInspector":{"cols":{"lenVar":40,"lenName":16,"lenType":16},"kernels_config":{"r":{"library":"var_list.r","varRefreshCmd":"cat(var_dic_list()) ","delete_cmd_prefix":"rm(","delete_cmd_postfix":") "},"python":{"library":"var_list.py","varRefreshCmd":"print(var_dic_list())","delete_cmd_prefix":"del ","delete_cmd_postfix":""}},"window_display":false,"types_to_exclude":["module","function","builtin_function_or_method","instance","_Feature"]},"language_info":{"name":"python","version":"3.8.5","mimetype":"text/x-python","file_extension":".py","pygments_lexer":"ipython3","codemirror_mode":{"name":"ipython","version":3},"nbconvert_exporter":"python"},"deepnote_notebook_id":"d86e78ee518e49069d2bf9003d0cd7d6","deepnote_execution_queue":[]}}