{"cells":[{"cell_type":"markdown","source":"REGRESIÓN LINEAL SIMPLE","metadata":{"id":"HKkOFiEa_mGL","cell_id":"48ffa218527842a5a54e9f131ef853f3","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"#Importacion ded librerias\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n%matplotlib inline","metadata":{"id":"vyxhkJ1n_mGT","cell_id":"c0ff7dcced74431ba838ba6637c1f582","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":697,"user_tz":240,"timestamp":1652018861311},"deepnote_cell_type":"code"},"outputs":[],"execution_count":1},{"cell_type":"code","source":"from google.colab import drive\nimport os\ndrive.mount('/content/drive')\n# Establecer ruta de acceso en drive\nimport os\nprint(os.getcwd())\nos.chdir(\"/content/drive/My Drive\")\nprint(os.getcwd())","metadata":{"id":"_5hMAX62ACFa","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"931400d4f0434d8db721013f03b7f96e","outputId":"19d5069d-b22d-43fd-b88e-4f350f3fe36c","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":55713,"user_tz":240,"timestamp":1652018921895},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"Mounted at /content/drive\n/content\n/content/drive/My Drive\n"}],"execution_count":2},{"cell_type":"code","source":"#Importacion de los datos\ndataset = pd.read_csv(\"student_scores.csv\", sep = \",\")","metadata":{"id":"zpakVxDg_mGW","cell_id":"31f87b41013a42bfa8e506dfd16b670c","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":650,"user_tz":240,"timestamp":1652018924614},"deepnote_cell_type":"code"},"outputs":[],"execution_count":3},{"cell_type":"code","source":"#Vemos el dataset\ndataset.head()","metadata":{"id":"NytTMwWZ_mGX","colab":{"height":206,"base_uri":"https://localhost:8080/"},"cell_id":"beff8ad77d134b7facb9f2f328b8c987","outputId":"9c5e832a-b5e1-4063-e28a-0707716fe568","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":319,"user_tz":240,"timestamp":1652018925950},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Hours Scores\n0 2.5 21\n1 5.1 47\n2 3.2 27\n3 8.5 75\n4 3.5 30","text/html":"\n
\n "},"metadata":{},"execution_count":6}],"execution_count":6},{"cell_type":"code","source":"#Ploteamos el dataset\ndataset.plot(x='Hours', y='Scores', style=\"o\")\nplt.title('Hours vs Percentage')\nplt.xlabel('Hours Studied')\nplt.ylabel('Percentage Score')\nplt.show()","metadata":{"id":"jOEjWiG-_mGZ","colab":{"height":295,"base_uri":"https://localhost:8080/"},"cell_id":"95de59b089f44bce9f0f721986089c83","outputId":"c8afc1a1-7360-4daf-dbfe-89676b7ca5ba","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":18,"user_tz":240,"timestamp":1652018929883},"deepnote_cell_type":"code"},"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de7hWdZ338fcnQNmihhxUBBFUVCwUagsS2kOAWmZKPD1iOQ2ZDR28CHPGkZwmyydHnLpyyrGMpGTynAc0nMdEUdPJyM0hUVFJUwJRtuSWgxAHv88fa916s9uHe2/3uo+f13Xd115r3evw3Vv83uv+/n7r91NEYGZmteM9pQ7AzMyKy4nfzKzGOPGbmdUYJ34zsxrjxG9mVmOc+M3MaowTv5lZjXHity4j6UVJk5pt+5ykR0sVU1dKf5ddkjZL2ihpuaTTSh1XPkkh6fBSx2HlzYnfKpKk7iW69GMRsTfQG5gL3Cppv46coISxmwFO/FZkkoZLekhSk6SnJJ2e995Dkr6Qt77bt4X0bvY8SauAVUpcKWl9ege+QtL7W7jmVEkNzbZ9TdLd6fKpkp6WtEnSWkn/1N7vERFvAT8D6oDDJO0p6XuSVkt6VdI1kurS84+XtEbSRZJeAX4uqZukiyU9n153iaSD0/2PkrRQ0l8kPSvpzLy4r5N0taR70uMWSzosfe836W5/SL+VTJW0n6QFkholvZ4uD8o731BJv0nPdX967uvz3j9e0m/T/15/kDS+vb+NlT8nfisaST2AXwH3AfsDM4AbJB3ZgdNMBsYARwMnAx8GjgDeC5wJbGjhmF8BR0oalrftM8CN6fJc4IsRsQ/wfmBRAb9Ld+ALwGZgFTA7jWMkcDgwEPhm3iEHAn2AQ4DpwAXAp4FTgX2BzwNvSuoFLExj2x84C/iRpKPzznUW8G1gP+CPwGUAEfHh9P1jI2LviLiF5P/xn6fXHQxsBf4z71w3Ar8H+gLfAj6b9zsOBO4BvpPG/k/A7ZL6t/f3sTIXEX751SUv4EWSRNiU93oTeDR9/0TgFeA9ecfcBHwrXX4I+ELee5/LHZuuBzAhb30C8BxwfP45W4nteuCb6fIwYBOwV7q+GvgisG875/gcsDP9vV4DfgdMAgRsAQ7L23cs8Kd0eTywHeiZ9/6zwBktXGMq8EizbT8BLkmXrwOuzXvvVOCZZn+jw9v4HUYCr6fLg9PfZ69mf6fr0+WLgF80O/7XwLRS/1vz6929fMdvXW1yRPTOvYCv5L13EPDnSMokOS+R3B0X6s+5hYhYRHL3ejWwXtIcSfu2ctyNJHfYkNztz4+IN9P1/02SQF+S9LCksW1c/3fp79YvIo6PiPuB/sBewJK0JNIE3Jtuz2mMiG156wcDz7dw/kOAMbnzpOc6m+QbQ84rectvAnu3FqykvST9RNJLkjYCvwF6S+pG8t/jL3l/B8j7+6ax/J9msZwADGjtelYZnPitmF4GDpaU/+9uMLA2Xd5CkkBz8pNdzm7DyUbEDyPigySlnyOAC1u59kKgv6SRJB8AuTIPEfF4RJxBUlqZD9xa8G+UeI2khPK+vA+990bSCNxi3CQJ9rAWzvVn4OH8D89IyjZf7mBMOf8IHAmMiYh9SUpjkHxLWQf0kZT/Nz+4WSy/aBZLr4iY3clYrEw48VsxLSa5Q/1nST3ShsJPADen7y8HpqR3qYcD57Z1MknHSRqTth1sAbYBb7W0b0TsAH4JfJekXr0wPcceks6W9N50n42tnaM16TeYnwJXSto/Pe9ASae0cdi1wP+VNCxtpD5GUl9gAXCEpM+mf6Me6e85vMBwXgUOzVvfh+RDqUlSH+CSvLhfAhqAb6V/h7Ek/z1yrgc+IemUtDG6Z9pQPQiraE78VjQRsZ0ksXyM5C75R8DfR8Qz6S5XktTCXwXmATe0c8p9SRLu6yQlow0kib01N5LU5H8ZETvztn8WeDEthXyJpLTSUReRNLT+Lj3P/SR32q35Psk3i/tIPmzmAnURsYmk0foskm9IrwBXAHsWGMe3gHlpaeZM4D9Ieh7l2iTubbb/2STtERtIGnFvAf4KEBF/Bs4ALgYaSb4BXIjzRsVThCdiMbOEpFtIGosvaXdnq1j+5DarYWkZ6TBJ75H0UZI7/Pmljsuy5ScIzWrbgcAdJP341wBfjohlpQ3JsuZSj5lZjXGpx8ysxlREqadfv34xZMiQUodhZlZRlixZ8lpE/M0QGxWR+IcMGUJDQ0P7O5qZ2dskvdTSdpd6zMxqjBO/mVmNceI3M6sxFVHjb8mOHTtYs2YN27Zta3/nGtCzZ08GDRpEjx49Sh2KmZW5ik38a9asYZ999mHIkCFIKnU4JRURbNiwgTVr1jB06NBSh2NmZa5iE/+2bduc9FOS6Nu3L42NjaUOxcxaMX/ZWr7762d5uWkrB/Wu48JTjmTyqI5MRdF1KjbxA076efy3MCtf85et5et3rGDrjl0ArG3aytfvWAFQkuTvxl0zs4x999fPvp30c7bu2MV3f/1sSeJx4n8XLrvsMt73vvdxzDHHMHLkSBYvXlzqkMysDL3ctLVD27NW0aWejujq+tpjjz3GggULWLp0KXvuuSevvfYa27dv7/T5du7cSffuNfOfw6ymHNS7jrUtJPmDeteVIJoauePP1dfWNm0leKe+Nn/Z2naPbc26devo168fe+6ZTIzUr18/DjroIB5//HE+9KEPceyxxzJ69Gg2bdrEtm3bOOeccxgxYgSjRo3iwQcfBOC6667j9NNPZ8KECUycOJEtW7bw+c9/ntGjRzNq1CjuuusuAJ566ilGjx7NyJEjOeaYY1i1atW7/puYWfFceMqR1PXottu2uh7duPCUtiZpy05N3GK2VV/r7F3/ySefzKWXXsoRRxzBpEmTmDp1KmPHjmXq1KnccsstHHfccWzcuJG6ujp+8IMfIIkVK1bwzDPPcPLJJ/Pcc88BsHTpUp544gn69OnDxRdfzIQJE/jZz35GU1MTo0ePZtKkSVxzzTXMnDmTs88+m+3bt7Nr1652ojOzcpLLM+7VU0RZ1Nf23ntvlixZwiOPPMKDDz7I1KlT+Zd/+RcGDBjAcccdB8C+++4LwKOPPsqMGTMAOOqoozjkkEPeTvwnnXQSffr0AeC+++7j7rvv5nvf+x6QdFldvXo1Y8eO5bLLLmPNmjVMmTKFYcOGdTpuMyuNyaMGlizRN1cTiT+r+lq3bt0YP34848ePZ8SIEVx99dUdPkevXr3eXo4Ibr/9do48cvevf8OHD2fMmDHcc889nHrqqfzkJz9hwoQJ7yp2M6tdNVHjz6K+9uyzz+5Wa1++fDnDhw9n3bp1PP744wBs2rSJnTt3cuKJJ3LDDTcA8Nxzz7F69eq/Se4Ap5xyCldddRW5WdGWLUtmwHvhhRc49NBD+epXv8oZZ5zBE0880em4zcxq4o4/i/ra5s2bmTFjBk1NTXTv3p3DDz+cOXPmcM455zBjxgy2bt1KXV0d999/P1/5ylf48pe/zIgRI+jevTvXXXfd243C+f71X/+V888/n2OOOYa33nqLoUOHsmDBAm699VZ+8Ytf0KNHDw488EAuvvjiTsdtZlYRc+7W19dH84lYVq5cyfDhw0sUUXny38TM8klaEhH1zbfXRKnHzMzekWnilzRT0pOSnpJ0frqtj6SFklalP/fLMgYzM9tdZolf0vuBfwBGA8cCp0k6HJgFPBARw4AH0vVOqYQyVbH4b2Fmhcryjn84sDgi3oyIncDDwBTgDGBeus88YHJnTt6zZ082bNjghMc74/H37Nmz1KGYWQXIslfPk8BlkvoCW4FTgQbggIhYl+7zCnBASwdLmg5MBxg8ePDfvD9o0CDWrFnjMehTuRm4zMzak1nij4iVkq4A7gO2AMuBXc32CUkt3rJHxBxgDiS9epq/36NHD882ZWbWCZn244+IucBcAEn/BqwBXpU0ICLWSRoArM8yBjOzSpP1bF1Z9+rZP/05mKS+fyNwNzAt3WUacFeWMZiZVZIsRhNuLut+/LdLehr4FXBeRDQBs4GTJK0CJqXrZmZGcWbryrrUc2IL2zYAE7O8rplZpSrGbF1+ctfMrIy0NmpwV87W5cRvZhVv/rK1jJu9iKGz7mHc7EVdWg8vtmLM1lUTo3OaWfXKNYbm6uK5xlCgbCY+6YhizNblxG9mFS2LqVVLLevZupz4zazi5Pdzb23Qlq5sDK02TvxmVlGal3Za05WNodXGjbtmVlFaKu0019WNodXGd/xmVlHaKuEIMmkMrTZO/GZWUQ7qXcfaFpL/wN51/M+sCSWIqPK41GNmFaUY/dyrne/4zayiFKOfe7Vz4jezipN1P/dq51KPmVmNceI3M6sxLvWYmeXJevarcuDEb2aWqrYB31qT9dSLX5P0lKQnJd0kqaekoZIWS/qjpFsk7ZFlDGZmhSrG7FflILPEL2kg8FWgPiLeD3QDzgKuAK6MiMOB14Fzs4rBzKwjijH7VTnIunG3O1AnqTuwF7AOmADclr4/D5iccQxmZgUpxuxX5SCzxB8Ra4HvAatJEv4bwBKgKSJ2prutAVosnEmaLqlBUkNjY2NWYZqZva1WngrOstSzH3AGMBQ4COgFfLTQ4yNiTkTUR0R9//79M4rSzOwdk0cN5PIpIxjYuw6RjP9z+ZQRVdWwC9n26pkE/CkiGgEk3QGMA3pL6p7e9Q8CKndyTDOrOrXwVHCWNf7VwPGS9pIkYCLwNPAg8Kl0n2nAXRnGYGZmzWRZ419M0oi7FFiRXmsOcBFwgaQ/An2BuVnFYGZmfyvTB7gi4hLgkmabXwBGZ3ldMzNrncfqMTOrMR6ywcw6rRbGtalGTvxm1im1Mq5NNXKpx8w6pVbGtalGvuM3s06plXFt8lVLact3/GbWKbUyrk1OrrS1tmkrwTulrfnLKu8ZVCd+M+uUWhnXJqeaSlsu9ZhZp+RKHNVQ+ihENZW2nPjNrNNqYVybnIN617G2hSRfiaUtl3rMzApQTaUt3/GbmRWgmkpbTvxmZgWqltKWSz1mZjWmoMQv6QRJ56TL/SUNzTYsMzPLSruJX9IlJGPofz3d1AO4PsugzMwsO4Xc8X8SOB3YAhARLwP7ZBmUmZllp5DEvz0iAggASb0KObGkIyUtz3ttlHS+pD6SFkpalf7c7938AmZm1jGFJP5bJf2EZJL0fwDuB37a3kER8WxEjIyIkcAHgTeBO4FZwAMRMQx4IF03M7MiabM7ZzpJ+i3AUcBG4EjgmxGxsIPXmQg8HxEvSToDGJ9unwc8RNKGYGZmRdBm4o+IkPTfETEC6Giyz3cWcFO6fEBErEuXXwEOeBfnNbMqUS1DHleCQko9SyUd19kLSNqDpHH4l83fy287aOG46ZIaJDU0NjZ29vJmVgGqacjjSlBI4h8DPCbpeUlPSFoh6YkOXONjwNKIeDVdf1XSAID05/qWDoqIORFRHxH1/fv378DlzKzSVNOQx5WgkCEbTnmX1/g075R5AO4GpgGz0593vcvzm1mFq6YhjytBu3f8EfES0Bv4RPrqnW5rV9r18yTgjrzNs4GTJK0CJqXrZlbDam02r1Ir5MndmcANwP7p63pJMwo5eURsiYi+EfFG3rYNETExIoZFxKSI+EtngzezxPxlaxk3exFDZ93DuNmLKq42Xk1DHleCQko95wJjImILgKQrgMeAq7IMzMwKk2sYzdXIcw2jQMX0iqmmIY8rQSGJX0B+q8uudJuZlYG2GkYrKXFWy5DHlaCQxP9zYLGkO9P1ycDc7EIys45ww6h1VLuJPyK+L+kh4IR00zkRsSzTqMysYNU0F6wVRyGNu8cDqyLihxHxQ+B5SWOyD83MCuGGUeuoQh7g+jGwOW99c7rNzMrA5FEDuXzKCAb2rkPAwN51XD5lhOvl1qqCGnfToRUAiIi3JHmuXrMy4oZR64hC7vhfkPRVST3S10zghawDMzOzbBSS+L8EfAhYm77GANOzDMrMzLJTSK+e9STDKpuZWRVo9Y5f0j9IGpYuS9LPJL2RjtD5geKFaGZmXamtUs9M4MV0+dPAscChwAXAD7INy8zMstJWqWdnROxIl08D/isiNgD3S/r37EMzsxzPTmVdqa07/rckDZDUk2TO3Pvz3vMjgWZF4tmprKu1lfi/CTSQlHvujoinACT9L9yd06xoPDuVdbVWSz0RsUDSIcA+EfF63lsNwNTMIzMzwIOwWddrsx9/ROxslvRzk6tsbu0YM+tanp3KulohD3B1mqTekm6T9IyklZLGSuojaaGkVenP/bKMwaxcdHaWLA/CZl0t08RP0u3z3og4iqQ76EpgFvBARAwDHkjXzarau2mg9SBs1tWUN/5ayztIAs4GDo2ISyUNBg6MiN+3c9x7geXpcZG3/VlgfESskzQAeCgi2rx1qa+vj4aGhsJ+I7MyNG72ohbHzB/Yu47/mTWhBBFZLZC0JCLqm28v5I7/R8BYkoe4ADYBVxdw3FCgEfi5pGWSrpXUCzggItal+7wCHNBKwNMlNUhqaGxsLOByZuXLDbRWTgpJ/GMi4jxgG0Da2LtHAcd1Bz4A/DgiRgFbaFbWSb8JtPiVIyLmRER9RNT379+/gMuZlS830Fo5KSTx75DUjTRBS+oPvFXAcWuANRGxOF2/jeSD4NW0xEP6c32HozarMG6gtXJSSOL/IXAnsL+ky4BHgX9r76CIeAX4s6Tcv+yJwNPA3cC0dNs04K6OBm1WadxAa+Wk3cZdAElHkSRukfTIWVnQyaWRwLUkpaEXgHNIPmxuBQYDLwFnRsRf2jqPG3fNzDqutcbddsfjl9SHpBxzU962HnkDuLUqIpYDf3NRkg8RMzMrgUJKPUtJeuc8B6xKl1+UtFTSB7MMzszMul4hiX8hcGpE9IuIvsDHgAXAV0i6epqZWQUpJPEfHxG/zq1ExH3A2Ij4HbBnZpGZmVkm2q3xA+skXQTcnK5PJemS2Y3CunWamVkZKeSO/zPAIGB++hqcbusGnJldaGZmloV27/gj4jVgRitv/7FrwzEzs6wV0p2zP/DPwPuAnrntEeGRpawqeD5bqzWFlHpuAJ4hGXTt2yRTMT6eYUxmReP5bK0WFZL4+0bEXGBHRDwcEZ8HfLdvVcHz2VotKqRXT+4J3XWSPg68DPTJLiSz4vFwyVaLCkn830knVflH4CpgX+D8TKMyK5KDete1OEGKh0u2alZIqef1iHgjIp6MiI9ExAeBNgdVM6sUHi7ZalEhif+qAreZVRwPl2y1qNVSj6SxwIeA/pIuyHtrX5KHt8yqwuRRA53oraa0VePfA9g73WefvO0bgU9lGZSZmWWn1cQfEQ8DD0u6LiJeKmJMZmaWoUJ69ewpaQ4wJH//Qp7clfQisAnYBeyMiPp0Ypdb0vO9SDID1+sdDdzMzDqnkMT/S+AakikUd7Wzb0s+ko73kzOLZPrG2ZJmpesXdeK8ZmbWCYUk/p0R8eMuvOYZwPh0eR7wEE78ZmZFU0h3zl9J+oqkAZL65F4Fnj+A+yQtkTQ93XZARKxLl18BDmjpQEnTJTVIamhsbCzwcmZm1p5C7vinpT8vzNsWwKEFHHtCRKyVtD+wUNIz+W9GREiKlg6MiDnAHID6+voW9zEzs44rZDz+oZ09eUSsTX+ul3QnMJpk9q4BEbFO0gBgfWfPb2ZmHdduqUfSXpK+kfbsQdIwSacVcFwvSfvkloGTgSeBu3nnW8Q04K7OBm9mZh1XSKnn58ASkqd4AdaS9PRZ0M5xBwB3Sspd58aIuFfS48Ctks4FXsLTN5qZFVUhif+wiJgq6dMAEfGm0mzeloh4ATi2he0bgIkdjtSsDHi2LqsGhST+7ZLqSBp0kXQY8NdMozIrQ7nZunITt+Rm6wKc/K2iFNKd8xLgXuBgSTcAD5DMwWtWUzxbl1WLQnr1LJS0FDgeEDCz2ZO4ZjXBs3VZtSikV88nSZ7evSciFgA7JU3OPjSz8tLarFyercsqTUGlnoh4I7cSEU0k5R+zmuLZuqxaFNK429KHQyHHmVWVXAOue/VYpSskgTdI+j5wdbp+Hkm/frOa49m6rBoUUuqZAWwnGUP/ZmAbSfI3M7MK1OYdv6RuwIKI+EiR4jEzs4y1eccfEbuAtyS9t0jxmJlZxgqp8W8GVkhaCGzJbYyIr2YWlZmZZaaQxH9H+jIzsypQyJO789KxegZHhJ9Nr0EemMysuhTy5O4ngOUk4/UgaaSku7MOzMpDbmCytU1bCd4ZmGz+srWlDs3MOqmQ7pzfIpk5qwkgIpZT2LSLVgUqdWCy+cvWMm72IobOuodxsxf5g8osTyE1/h0R8UazIfjfyigeKzOVODCZh082a1shd/xPSfoM0C2ddvEq4LeFXkBSN0nLJC1I14dKWizpj5JukbRHJ2O3IqjEgckq9VuKWbEU+uTu+0gmX7kReAM4vwPXmAmszFu/ArgyIg4HXgfO7cC5rMgqcWCySvyWYlZMrSZ+ST0lnQ/8O7AaGBsRx0XENyJiWyEnlzQI+DhwbbouYAJwW7rLPMBDPJexyaMGcvmUEQzsXYeAgb3ruHzKiLIumVTitxSzYmqrxj8P2AE8AnwMGE7H7vQB/oNktq590vW+QFNE7EzX1wDlm0EMqLyByS485cjdavxQ/t9SzIqprcR/dESMAJA0F/h9R04s6TRgfUQskTS+o4FJmg5MBxg8eHBHD7ca5uGTzdrWVuLfkVuIiJ3NevUUYhxwuqRTgZ7AvsAPgN6Suqd3/YOAFvvZRcQcYA5AfX19dPTiVtsq7VuKWTG11bh7rKSN6WsTcExuWdLG9k4cEV+PiEERMQQ4C1gUEWcDDwKfSnebBtz1Ln8HMzPrgFbv+COiW2vvvUsXATdL+g6wDJib0XXMzKwFRZlCMSIeAh5Kl18geRLYzMxKoJB+/GZmVkWc+M3MaowTv5lZjXHiNzOrMUVp3DUDT+hiVi6c+K0oPFSyWflwqceKwkMlm5UPJ34rCg+VbFY+nPitKDxUsln5cOK3oqjECV3MqpUbd60oPFSyWflw4rei8VDJZuXBpR4zsxrjxG9mVmOc+M3MaowTv5lZjXHiNzOrMZn16pHUE/gNsGd6ndsi4hJJQ4Gbgb7AEuCzEbE9qziqSVuDnJVqADQPvGZWebLszvlXYEJEbJbUA3hU0v8DLgCujIibJV0DnAv8OMM4qkJbg5wBJRkAzQOvmVWmzEo9kdicrvZIXwFMAG5Lt88DJmcVQzVpa5CzUg2A5oHXzCpTpjV+Sd0kLQfWAwuB54GmiNiZ7rIGaPHWUNJ0SQ2SGhobG7MMsyK0NchZqQZA88BrZpUp08QfEbsiYiQwCBgNHNWBY+dERH1E1Pfv3z+zGCtFW4OclWoANA+8ZlaZitKrJyKagAeBsUBvSbm2hUHA2mLEUOnaGuSsVAOgeeA1s8qUZa+e/sCOiGiSVAecBFxB8gHwKZKePdOAu7KKoZoUMshZsXvXeOA1s8qkiMjmxNIxJI233Ui+WdwaEZdKOpQk6fcBlgF/FxF/betc9fX10dDQkEmcZmbVStKSiKhvvj2zO/6IeAIY1cL2F0jq/Vam3DffrLp5WGbbjfvmm1U/D9lgu3HffLPq58Rvu3HffLPq58Rvu3HffLPq58RfJeYvW8u42YsYOusexs1exPxlnXs8wn3zzaqfG3erQFc2yLpvvln1c+LvYqXoCtlWg2xnru1J0c2qmxN/FypVV0g3yJpZR7jG34VK1RXSDbJm1hFO/F2oVHfebpA1s45w4u9CpbrznjxqIJdPGcHA3nUIGNi7jsunjHCd3sxa5Bp/F7rwlCN3q/FD8e683SBrZoVy4u9C7gppZpXAib+L+c7bzMqdE38F8XDJZtYVnPgrhIdLNrOuklmvHkkHS3pQ0tOSnpI0M93eR9JCSavSn/tlFUNnddW4N13JwyWbWVfJsjvnTuAfI+Jo4HjgPElHA7OAByJiGPBAul42cnfWa5u2ErxzZ13q5O+nc82sq2SW+CNiXUQsTZc3ASuBgcAZJHPxkv6cnFUMnVGud9Z+OtfMukpRHuCSNIRk/t3FwAERsS596xXggFaOmS6pQVJDY2NjMcIEyvfO2k/nmllXyTzxS9obuB04PyI25r8XEQFES8dFxJyIqI+I+v79+2cd5tvK9c7aT+eaWVfJtFePpB4kSf+GiLgj3fyqpAERsU7SAGB9ljF0VCmfvm2PnxEws66QZa8eAXOBlRHx/by37gampcvTgLuyiqEzfGdtZtVOSbUlgxNLJwCPACuAt9LNF5PU+W8FBgMvAWdGxF/aOld9fX00NDRkEqeZWbWStCQi6ptvz6zUExGPAmrl7YlZXTfHT7mambWsKp/c9VOuZmatq8rx+Mu1L76ZWTmoysRfrn3xzczKQVUm/nLti29mVg6qMvH7KVczs9ZVZeOuZ8IyM2tdVSZ+8FOuZmatqcpSj5mZtc6J38ysxjjxm5nVGCd+M7Ma48RvZlZjMhudsytJaiQZybMQ/YDXMgyns8oxrnKMCRxXR5RjTFCecZVjTJBtXIdExN/MZFURib8jJDW0NAxpqZVjXOUYEziujijHmKA84yrHmKA0cbnUY2ZWY5z4zcxqTDUm/jmlDqAV5RhXOcYEjqsjyjEmKM+4yjEmKEFcVVfjNzOztlXjHb+ZmbXBid/MrMZUTeKX9DNJ6yU9WepYciQdLOlBSU9LekrSzFLHBCCpp6TfS/pDGte3Sx1TjqRukpZJWlDqWHIkvShphaTlkhpKHU+OpN6SbpP0jKSVksaWOJ4j079R7rVR0vmljClH0tfSf+tPSrpJUs8yiGlmGs9Txf47VU2NX9KHgc3Af0XE+0sdD4CkAcCAiFgqaR9gCTA5Ip4ucVwCekXEZkk9gEeBmRHxu1LGBSDpAqAe2DciTit1PJAkfqA+Isrq4R9J84BHIuJaSXsAe0VEU6njguQDHFgLjImIQh++zCqWgST/xo+OiK2SbgX+OyKuK2FM7wduBkYD24F7gS9FxB+Lcf2queOPiN8Afyl1HPkiYl1ELE2XNwErgZJPEhCJzelqj/RV8jsASYOAjwPXljqWcifpvcCHgbkAEbG9XJJ+aiLwfKmTfk/uyUsAAAU2SURBVJ7uQJ2k7sBewMsljmc4sDgi3oyIncDDwJRiXbxqEn+5kzQEGAUsLm0kibSkshxYDyyMiHKI6z+AfwbeKnUgzQRwn6QlkqaXOpjUUKAR+HlaGrtWUq9SB5XnLOCmUgcBEBFrge8Bq4F1wBsRcV9po+JJ4ERJfSXtBZwKHFysizvxF4GkvYHbgfMjYmOp4wGIiF0RMRIYBIxOv3qWjKTTgPURsaSUcbTihIj4APAx4Ly0rFhq3YEPAD+OiFHAFmBWaUNKpGWn04FfljoWAEn7AWeQfFgeBPSS9HeljCkiVgJXAPeRlHmWA7uKdX0n/oylNfTbgRsi4o5Sx9NcWh54EPhoiUMZB5ye1tNvBiZIur60ISXSO0YiYj1wJ0ldttTWAGvyvqndRvJBUA4+BiyNiFdLHUhqEvCniGiMiB3AHcCHShwTETE3Ij4YER8GXgeeK9a1nfgzlDaizgVWRsT3Sx1PjqT+knqny3XAScAzpYwpIr4eEYMiYghJmWBRRJT0rgxAUq+0YZ60lHIyydf0koqIV4A/Szoy3TQRKGmngTyfpkzKPKnVwPGS9kr/n5xI0t5WUpL2T38OJqnv31isa1fNZOuSbgLGA/0krQEuiYi5pY2KccBngRVpPR3g4oj47xLGBDAAmJf2vHgPcGtElE33yTJzAHBnki/oDtwYEfeWNqS3zQBuSEsrLwDnlDie3IfjScAXSx1LTkQslnQbsBTYCSyjPIZvuF1SX2AHcF4xG+erpjunmZkVxqUeM7Ma48RvZlZjnPjNzGqME7+ZWY1x4jczqzFO/FaRJG1utv45Sf9ZxOsfL2lxOgrlSknfSrePl9Thh4MkXSfpU+nytZKO7sCx48tpNFMrf1XTj9+sK0jqng6a1Z55wJkR8Yf0eYjcg1TjSUaJ/W1nY4iIL3T2WLNC+I7fqo6kIZIWSXpC0gPpk5G73VWn65vTn+MlPSLpbuDp9Gnde9L5Cp6UNLWFy+xPMuBXbtyjp9OB+L4EfC39JnBiG9eUpP+U9Kyk+9Pz5fZ5SFJ9unyypMckLZX0y3TcJyR9VMk4/Esp4qiOVh2c+K1S1Slv0g/g0rz3rgLmRcQxwA3ADws43wdI5iQ4gmTcopcj4th0boeWntS9EnhW0p2SviipZ0S8CFwDXBkRIyPikTau90mSbwlHA39PC2PHSOoHfAOYlA4S1wBcoGQSkZ8CnwA+CBxYwO9n9jYnfqtUW9PkOjIdZfSbee+N5Z1xT34BnFDA+X4fEX9Kl1cAJ0m6QtKJEfFG850j4lKSCWPuAz5Dyx8ObfkwcFP6beFlYFEL+xxP8sHwP+mH2zTgEOAokkHHVkXy6H1ZDGZnlcOJ32rJTtJ/85LeA+yR996W3EJEPEfyDWAF8B1J+R8q5O33fET8mGTQr2PTcVc6cs32iGSuhNwH3NERcW4HjjdrkRO/VaPfkozwCXA2kCu5vEhSGoFkvPgeLR0s6SDgzYi4HvguLQx3LOnj6UiPAMNIxlJvAjYB++Tt2to1fwNMTSfEGQB8pIVQfgeMk3R4es1eko4gGUl1iKTD0v0+3dLvYdYa9+qxajSDZGaqC0lmqcqNWvlT4C5JfyApzWxp5fgRwHclvUUycuKXW9jns8CVkt4kuas/OyJ2SfoVcJukM9I4WrvmncAEkqGUVwOPNb9ARDRK+hxwk6Q9083fiIjnlMwEdk96/UfY/cPGrE0endPMrMa41GNmVmOc+M3MaowTv5lZjXHiNzOrMU78ZmY1xonfzKzGOPGbmdWY/w8LO4HQkVYJNQAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}],"execution_count":7},{"cell_type":"code","source":"#Preparacion de datos\nX = dataset.iloc[:, :-1].values\ny = dataset.iloc[:, 1].values","metadata":{"id":"k2tC6gdw_mGa","cell_id":"35c2ff78d304424983a87a551ea77dde","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":419,"user_tz":240,"timestamp":1652018932299},"deepnote_cell_type":"code"},"outputs":[],"execution_count":8},{"cell_type":"code","source":"X","metadata":{"id":"doxozwNs8M8f","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"d336dd6bfcd14f4eb66c73b4c0ec1e56","outputId":"51c42ad9-eb1c-45cc-a8f0-6553226270da","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":240,"timestamp":1652018932564},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"array([[2.5],\n [5.1],\n [3.2],\n [8.5],\n [3.5],\n [1.5],\n [9.2],\n [5.5],\n [8.3],\n [2.7],\n [7.7],\n [5.9],\n [4.5],\n [3.3],\n [1.1],\n [8.9],\n [2.5],\n [1.9],\n [6.1],\n [7.4],\n [2.7],\n [4.8],\n [3.8],\n [6.9],\n [7.8]])"},"metadata":{},"execution_count":9}],"execution_count":9},{"cell_type":"code","source":"y","metadata":{"id":"3Icfnen98OEm","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"656f0962acb741acbc1dec0afc80a66d","outputId":"caa22c0d-e5c4-4f15-bef3-2ba51fecac44","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":249,"user_tz":240,"timestamp":1652018934232},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"array([21, 47, 27, 75, 30, 20, 88, 60, 81, 25, 85, 62, 41, 42, 17, 95, 30,\n 24, 67, 69, 30, 54, 35, 76, 86])"},"metadata":{},"execution_count":10}],"execution_count":10},{"cell_type":"code","source":"#Empezamos a crear nuestro modelo\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)","metadata":{"id":"8t7RBXQ2_mGb","cell_id":"699d323c290d48018e53a12bd291f242","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":704,"user_tz":240,"timestamp":1652018936050},"deepnote_cell_type":"code"},"outputs":[],"execution_count":11},{"cell_type":"code","source":"#Entrenando el modelo\nfrom sklearn.linear_model import LinearRegression\nregressor = LinearRegression()\nregressor.fit(X_train, y_train)","metadata":{"id":"AJuaNfa5_mGc","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"79b6e39ad68145eba96b03289684561e","outputId":"73329adc-67fb-43c9-9b33-71615816d48a","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":319,"user_tz":240,"timestamp":1652018936365},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"LinearRegression()"},"metadata":{},"execution_count":12}],"execution_count":12},{"cell_type":"code","source":"#Recuperamos la intersección\nprint(regressor.intercept_)","metadata":{"id":"d0oOGMwA_mGd","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"873837bc76164d31b0140080ad3090bf","outputId":"ddcf5396-24af-43f8-d497-f1b5225ba8e0","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":5,"user_tz":240,"timestamp":1652018936980},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"2.826892353899737\n"}],"execution_count":13},{"cell_type":"code","source":"#La pendiente\nprint(regressor.coef_)","metadata":{"id":"GBFQN7Wk_mGe","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"b711b39fc6a54640a8f025016710c94f","outputId":"42d30e62-e8a4-498d-f34c-7c37b7341a46","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":3,"user_tz":240,"timestamp":1652018937234},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"[9.68207815]\n"}],"execution_count":14},{"cell_type":"code","source":"#Hacemos nuestras predicciones\ny_pred = regressor.predict(X_test)\ny_pred","metadata":{"id":"HMoBm0ik_mGe","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"f3726476697c415b9e50914361f60594","outputId":"99deb9d6-4b6e-4133-b631-240ad00b174f","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":424,"user_tz":240,"timestamp":1652018939058},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"array([83.18814104, 27.03208774, 27.03208774, 69.63323162, 59.95115347])"},"metadata":{},"execution_count":15}],"execution_count":15},{"cell_type":"markdown","source":"El y_pred es una matriz numpy que contiene todos los valores predichos para los valores de entrada en la X_test","metadata":{"id":"a-iEdMf4_mGf","cell_id":"9862f39a733b448cb0ed19e05f8c0551","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"#Convertimos en df la salida\ndf = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})\ndf","metadata":{"id":"FLY8Eix4_mGf","colab":{"height":206,"base_uri":"https://localhost:8080/"},"cell_id":"1c2aef6b3b2144b1b256f156f22c848a","outputId":"b622e9d7-dac0-4e87-b1ae-89e9537c34db","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":9,"user_tz":240,"timestamp":1652018939699},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Actual Predicted\n0 81 83.188141\n1 30 27.032088\n2 21 27.032088\n3 76 69.633232\n4 62 59.951153","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
Actual
\n
Predicted
\n
\n \n \n
\n
0
\n
81
\n
83.188141
\n
\n
\n
1
\n
30
\n
27.032088
\n
\n
\n
2
\n
21
\n
27.032088
\n
\n
\n
3
\n
76
\n
69.633232
\n
\n
\n
4
\n
62
\n
59.951153
\n
\n \n
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":16}],"execution_count":16},{"cell_type":"markdown","source":"**Evaluación del modelo**:\n\nEl último paso es evaluar el rendimiento del algoritmo. Este paso es particularmente importante para comparar qué tan bien funcionan los diferentes algoritmos en un conjunto de datos en particular. Para los algoritmos de regresión, se utilizan comúnmente tres métricas de evaluación:\n\n* El error absoluto medio (MAE)\n* El error cuadrático medio (MSE)\n* Root Mean Squared Error (RMSE)","metadata":{"id":"Lu1WnDJ0_mGg","cell_id":"f1ee47561b61473eb28f0641ae4afd70","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"import numpy as np\ndef mse(actual, predicted):\n return np.mean(np.square(actual-predicted))","metadata":{"id":"bqTRWFCR9Nki","cell_id":"04dd2051ab5f4057b8804a2475b95543","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":235,"user_tz":240,"timestamp":1652018941695},"deepnote_cell_type":"code"},"outputs":[],"execution_count":17},{"cell_type":"code","source":"def mape(actual, predicted):\n return np.mean(np.abs((actual - predicted) / actual)) * 100","metadata":{"id":"i8ZPIvUr-Nkb","cell_id":"245957edda3c4e01ad11a72f5407f5d4","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":333,"user_tz":240,"timestamp":1652018942324},"deepnote_cell_type":"code"},"outputs":[],"execution_count":18},{"cell_type":"code","source":"mape(y_test, y_pred)","metadata":{"id":"CgSmTVrk-OgM","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"1dc3f174d0444796816d800402d2da92","outputId":"47ccf52d-b38d-4d90-9eaf-e3afede2f02a","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":3,"user_tz":240,"timestamp":1652018942861},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"10.600118977553539"},"metadata":{},"execution_count":19}],"execution_count":19},{"cell_type":"code","source":"from sklearn import metrics \nprint('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) # MAE\nprint('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) # MSE\nprint('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) # RMSE","metadata":{"id":"kihmR7mp_mGh","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"9c38eb56419442128a7beecae0bf2427","outputId":"c3a0c7d4-ac1d-4e8d-f22c-39b689440274","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":240,"timestamp":1652018943307},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"Mean Absolute Error: 3.9207511902099244\nMean Squared Error: 18.943211722315272\nRoot Mean Squared Error: 4.352380006653288\n"}],"execution_count":20},{"cell_type":"code","source":"from sklearn.metrics import r2_score\nprint('El r^2 es:',r2_score(y_test,y_pred))","metadata":{"id":"FEIzufCoEzHH","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"036ade47422d4c38b05c47614d2dfb3e","outputId":"4bcb304f-e427-433f-c91c-84a981787565","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":283,"user_tz":240,"timestamp":1652018944915},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"El r^2 es: 0.9678055545167994\n"}],"execution_count":21},{"cell_type":"markdown","source":"REGRESIÓN LINEAL MÚLTIPLE","metadata":{"id":"4u4y8Of1_mGi","cell_id":"d06ee10f152046c39d14cf927f4674a2","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"dataset = pd.read_csv(\"petrol_consumption.csv\", sep = \",\")","metadata":{"id":"2SUk9in9_mGi","cell_id":"ca54ca76c7e34cee9757f5e9a3d2d4d9","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":605,"user_tz":240,"timestamp":1652018946655},"deepnote_cell_type":"code"},"outputs":[],"execution_count":22},{"cell_type":"code","source":"#Vemos el head\ndataset.head()","metadata":{"id":"FfydBx_7_mGi","colab":{"height":206,"base_uri":"https://localhost:8080/"},"cell_id":"ddba6a5551204a55a69cf97e413b0493","outputId":"265f4d8e-7575-4ea1-c393-14ee01380392","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":7,"user_tz":240,"timestamp":1652018947322},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Petrol_tax Average_income Paved_Highways Population_Driver_licence(%) \\\n0 9.0 3571 1976 0.525 \n1 9.0 4092 1250 0.572 \n2 9.0 3865 1586 0.580 \n3 7.5 4870 2351 0.529 \n4 8.0 4399 431 0.544 \n\n Petrol_Consumption \n0 541 \n1 524 \n2 561 \n3 414 \n4 410 ","text/html":"\n
\n "},"metadata":{},"execution_count":24}],"execution_count":24},{"cell_type":"code","source":"#Preparación de datos\nX = dataset[['Petrol_tax', 'Average_income', 'Paved_Highways','Population_Driver_licence(%)']]\ny = dataset['Petrol_Consumption']","metadata":{"id":"DTJNUM1V_mGj","cell_id":"a0797b7991384103aa1cc31c0a3ddb1d","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":263,"user_tz":240,"timestamp":1652018950194},"deepnote_cell_type":"code"},"outputs":[],"execution_count":25},{"cell_type":"code","source":"#Separacion en train y test\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)","metadata":{"id":"YPXF2XE-_mGk","cell_id":"f3242ab85349497c930563e31356ce53","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":2,"user_tz":240,"timestamp":1652018950448},"deepnote_cell_type":"code"},"outputs":[],"execution_count":26},{"cell_type":"code","source":"#Entrenamiento del modelo\nfrom sklearn.linear_model import LinearRegression\nregressor = LinearRegression()\nregressor.fit(X_train, y_train)","metadata":{"id":"SdguVHmv_mGk","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"9f951dd008524dd4981fb6c335b77ad7","outputId":"5b1bf609-4a8b-463e-b0f8-11808cde71ab","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":255,"user_tz":240,"timestamp":1652018952114},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"LinearRegression()"},"metadata":{},"execution_count":27}],"execution_count":27},{"cell_type":"markdown","source":"Como se dijo anteriormente, en caso de regresión lineal multivariable, el modelo de regresión tiene que encontrar los coeficientes más óptimos para todos los atributos. Para ver qué coeficientes ha elegido nuestro modelo de regresión, podemos ejecutar el siguiente script:","metadata":{"id":"gGLxsmr5_mGl","cell_id":"e547c2deee264c5fad77b5672bb127d7","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"regressor.coef_","metadata":{"id":"IarAbjyeGeFi","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"75bdbd5aeaa143a2ae2007147cfb2d12","outputId":"19a922d1-0aa8-4ee4-a74f-12be63c11676","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":240,"timestamp":1652018953361},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"array([-3.69937459e+01, -5.65355145e-02, -4.38217137e-03, 1.34686930e+03])"},"metadata":{},"execution_count":28}],"execution_count":28},{"cell_type":"code","source":"regressor.intercept_","metadata":{"id":"rYkVwLqyG4AT","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"8a3861f7d1464b8fa354bf8ed4f51f86","outputId":"f8f82cff-52e4-43c3-e6b9-dca6bdbe0843","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":5,"user_tz":240,"timestamp":1652018954320},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"361.45087906653225"},"metadata":{},"execution_count":29}],"execution_count":29},{"cell_type":"code","source":"coeff_df = pd.DataFrame(regressor.coef_, X.columns, columns=['Coefficient'])\ncoeff_df","metadata":{"id":"ma_SlQkj_mGl","colab":{"height":175,"base_uri":"https://localhost:8080/"},"cell_id":"29888a85f9824f9ea6efd58e2a1a7bf7","outputId":"8e418789-d4bc-4954-d314-57b382b969ea","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":404,"user_tz":240,"timestamp":1652018955603},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Coefficient\nPetrol_tax -36.993746\nAverage_income -0.056536\nPaved_Highways -0.004382\nPopulation_Driver_licence(%) 1346.869298","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
Coefficient
\n
\n \n \n
\n
Petrol_tax
\n
-36.993746
\n
\n
\n
Average_income
\n
-0.056536
\n
\n
\n
Paved_Highways
\n
-0.004382
\n
\n
\n
Population_Driver_licence(%)
\n
1346.869298
\n
\n \n
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":30}],"execution_count":30},{"cell_type":"code","source":"#Realizando las predicciones\ny_pred = regressor.predict(X_test)","metadata":{"id":"W6FSJHQt_mGl","cell_id":"b361635179844f09930cfe1ff49ed211","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":4,"user_tz":240,"timestamp":1652018956813},"deepnote_cell_type":"code"},"outputs":[],"execution_count":31},{"cell_type":"markdown","source":"Para comparar los valores de salida reales X_test con los valores predichos, convertimos en df:","metadata":{"id":"wGWILlu6_mGl","cell_id":"63477d47c39a40308dd140b29fa28808","deepnote_cell_type":"markdown"}},{"cell_type":"code","source":"df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})\ndf","metadata":{"id":"WZiMEKDc_mGm","colab":{"height":363,"base_uri":"https://localhost:8080/"},"cell_id":"da44e05bdad24da9b59629d53a8a8d20","outputId":"eb077006-3ca7-4f92-ee09-e01e360d5cd1","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":8,"user_tz":240,"timestamp":1652018957536},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":" Actual Predicted\n27 631 606.692665\n40 587 673.779442\n26 577 584.991490\n43 591 563.536910\n24 460 519.058672\n37 704 643.461003\n12 525 572.897614\n19 640 687.077036\n4 410 547.609366\n25 566 530.037630","text/html":"\n
\n
\n
\n\n
\n \n
\n
\n
Actual
\n
Predicted
\n
\n \n \n
\n
27
\n
631
\n
606.692665
\n
\n
\n
40
\n
587
\n
673.779442
\n
\n
\n
26
\n
577
\n
584.991490
\n
\n
\n
43
\n
591
\n
563.536910
\n
\n
\n
24
\n
460
\n
519.058672
\n
\n
\n
37
\n
704
\n
643.461003
\n
\n
\n
12
\n
525
\n
572.897614
\n
\n
\n
19
\n
640
\n
687.077036
\n
\n
\n
4
\n
410
\n
547.609366
\n
\n
\n
25
\n
566
\n
530.037630
\n
\n \n
\n
\n \n \n \n\n \n
\n
\n "},"metadata":{},"execution_count":32}],"execution_count":32},{"cell_type":"code","source":"#Evaluación de Modelos\nfrom sklearn import metrics\nprint('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))\nprint('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))\nprint('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))","metadata":{"id":"hU4inS_o_mGm","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"9fece2aa030f476db3bd99677aaf2430","outputId":"98a1e325-4b84-4253-b3b2-5af412da237b","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":246,"user_tz":240,"timestamp":1652018959363},"deepnote_cell_type":"code"},"outputs":[{"output_type":"stream","name":"stdout","text":"Mean Absolute Error: 53.468541282916625\nMean Squared Error: 4083.2558717453767\nRoot Mean Squared Error: 63.90035893283681\n"}],"execution_count":33},{"cell_type":"code","source":"mape(y_test, y_pred)","metadata":{"id":"mG8QOMnd_uM-","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"ed43aacd830e41798d71ddccb5585b42","outputId":"19b1cb3f-1544-45a9-87a6-454f96c10ded","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":7,"user_tz":240,"timestamp":1652018960064},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"10.250194382138336"},"metadata":{},"execution_count":34}],"execution_count":34},{"cell_type":"code","source":"from sklearn.metrics import r2_score\nr2_score(y_test,y_pred)","metadata":{"id":"ehK7XGr8Htxd","colab":{"base_uri":"https://localhost:8080/"},"cell_id":"ac323735720447e7956f42e88802e677","outputId":"8b640701-3f72-44b7-f0d9-20e99eeb355c","executionInfo":{"user":{"userId":"09471607480253994520","displayName":"David Francisco Bustos Usta"},"status":"ok","elapsed":240,"user_tz":240,"timestamp":1652018961348},"deepnote_cell_type":"code"},"outputs":[{"output_type":"execute_result","data":{"text/plain":"0.3913664001428886"},"metadata":{},"execution_count":35}],"execution_count":35},{"cell_type":"markdown","source":"\n \nCreated in Deepnote","metadata":{"created_in_deepnote_cell":true,"deepnote_cell_type":"markdown"}}],"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"Regresión - Ejemplo 1 .ipynb","provenance":[],"collapsed_sections":[]},"deepnote":{},"kernelspec":{"name":"python3","language":"python","display_name":"Python 3"},"varInspector":{"cols":{"lenVar":40,"lenName":16,"lenType":16},"kernels_config":{"r":{"library":"var_list.r","varRefreshCmd":"cat(var_dic_list()) ","delete_cmd_prefix":"rm(","delete_cmd_postfix":") "},"python":{"library":"var_list.py","varRefreshCmd":"print(var_dic_list())","delete_cmd_prefix":"del ","delete_cmd_postfix":""}},"window_display":false,"types_to_exclude":["module","function","builtin_function_or_method","instance","_Feature"]},"language_info":{"name":"python","version":"3.8.5","mimetype":"text/x-python","file_extension":".py","pygments_lexer":"ipython3","codemirror_mode":{"name":"ipython","version":3},"nbconvert_exporter":"python"},"deepnote_notebook_id":"f7c0b14a851c4cf2a13f0bd08fd73d9f","deepnote_execution_queue":[]}}