{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "x638pyoqfBDa"
},
"source": [
"# *Proyecto Final Data Science* \n",
"**-------------------------------** \n",
"Dataset con datos del 2002 -> 2022 \n",
"Fuente: [Evolucion de Telefonos](https://www.kaggle.com/datasets/pranav941/evolution-of-smartphones) \n",
"**-------------------------------** \n",
"Estudiante: **Righes Marcos**\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P6u7Ga5bifsz"
},
"source": [
"# **Objetivos e información general del proyecto** \n",
"El dataset utilizado toma los datos generales de telefonos desde 2002 hasta 2022 \n",
"El objetivo principal de este proyecto es poder **encontrar** caracteristicas (componentes) similares entre estos telefonos y agruparlos para **categorizar** de esta manera a las marcas y sus productos como competencias / alternativas de compra para los usuarios.\n",
"\n",
"Este proyecto pude ser de interés tanto a nivel usuario / consumidor como para nivel empresarial. \n",
"\n",
"Usuario ya que podremos ver las alternativas a modelos de ínteres personal, sabiendo que muchas veces los precios entre un producto y otro cambian por el nombre de quien lo vende, a pesar de que los componentes y calidad sean practicamente iguales. \n",
"\n",
"Empresarial ya que permite a las marcas saber quienes son su verdadera competencia segun los objetivos de producto que tengan, por otro lado se podra sacar conclusiones de que es lo que hace especial o popular a una marca u otra, permitiendo asi tomar conclusiones y respectivas acciones para llegar a igualar o superar a una marca objetivo. \n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "G8cnfO_iv4N2"
},
"source": [
"|Variables|Descripcion|Medida Expresada|\n",
"|--|--|--|\n",
"|Brand|Nombre de la marca del teléfono|--|\n",
"|Model|Nombre identicatorio del teléfono|--|\n",
"|OS|Sistema operativo de fabrica|--|\n",
"|Release_Date|Fecha de lanzamiento al mercado|month day, year|\n",
"|Battery|Capacidad de energía|mA|\n",
"|Processor|Procesador Incorporado|--|\n",
"|Memory|Capacidad de memoria RAM|GB|\n",
"|Primary_Storage|Capacidad de Almacenamiento Integrado|GB|\n",
"|External_Storage|Tipo de almacenamiento externo compatible|--|\n",
"|Display_Size|Tamaño de pantalla principal|inch (pulgadas)|\n",
"|Display_Resolution|Resolucion de la pantalla|pixels x pixels|\n",
"|Display_Refresh_Rate|Tasa de refresco de la pantalla|Hz|\n",
"|Primary_Camera|Calidad de la camara frontal|Mpx|\n",
"|Front_Camera|Calidad de la cámara trasera|Mpx|\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "InGlcmMfVTH4"
},
"source": [
"Contamos para nuestras comparativas, con la participacion de 113 Marcas de telefonos, sin embargo no todas las marcas presentan todas las caracteristicas de sus celulares, por lo que las comparativas entre los mismos estarian incompletas si se usara los datos asociadas a estas marcas, por lo que realizando una limpieza solo 71 de ellas se utilizaron para el analisis \n",
"Todo el dataset fue obtenido por una recopilacion colaborativa en Kaggle (Pagina web)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LeLWTySlWXN5"
},
"source": [
"# Librerias"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1s__fSt6WWuJ"
},
"outputs": [],
"source": [
"#Importacion librerias\n",
"import numpy as np\n",
"import pandas as pd\n",
"import missingno as msno\n",
"import matplotlib.pyplot as plt\n",
"import plotly.express as px\n",
"import seaborn as sns\n",
"\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.cluster import KMeans\n",
"from sklearn.metrics import silhouette_score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5azHalj9WcKu"
},
"outputs": [],
"source": [
"#Dataframe de Telefonos\n",
"df=pd.read_csv(\"https://docs.google.com/spreadsheets/d/e/2PACX-1vQhiKIWZRZIWB_D3qPJQuHurMHWDA-3mLEABP8vylmrGRrulkE40PE_BsVbESWcG1rlwCkuJMuWv14o/pub?output=csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HASLP2tiwgw7"
},
"source": [
"# Tratamiento de Nulos y transformacion de valores categoricos a numéricos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 18,
"status": "ok",
"timestamp": 1684158695983,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "ohxsaGxPhTJI",
"outputId": "90958ee4-e401-4dd9-b0df-1361ccf183ed"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Graficamos los histogramas para cada variable\n",
"df_num.hist(layout=[2,3],figsize=[15,5])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "br1JCnVGTVgZ"
},
"source": [
"Teniendo en cuenta que todas las variables son numéricas de tipo continua, podemos visualizar la distribucion de frecuencias por medio de intervalos en el grafico."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SNCt8Gc1nf3S"
},
"source": [
"Realizado los histogramas para cada columna numérica del Dataframe, podemos visualizar mejor el comportamiento de cada variable con respecto a sus datos.\n",
"Las frecuencias mas distribuidas podemos ver que son la de batería y el tamaño display.\n",
"\n",
"Tambien se visualiza la aparicion de valores extremos / atipicos en los datos, seguramente pertenecientes a modelos mas alta gama dentro del set de datos."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vpJ9NtEJ3MS0"
},
"source": [
"Se continua con un mapa de correlaciones lineales entre variables y se toman algunas variables para comparar."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 755
},
"executionInfo": {
"elapsed": 13,
"status": "ok",
"timestamp": 1684158700941,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "2B_StkRBpcaf",
"outputId": "d42b53ea-8b1e-4e15-ea89-01fd12d05798"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
":3: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.\n",
"\n",
":5: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.\n",
"\n"
]
},
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Mapa de Correlacion Lineal')"
]
},
"execution_count": 217,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAIoCAYAAAASteGjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zU9R/A8ddxbJEhICoqblCGOHIg5MptmjO3uXKXucBVpjkq/Zk7V5o7c2VqWuYkzXIg5B4ogovtYN/d7w/y9OROQQ8hfD8fj3vUfb6fz+f7/n5P5c1nfE+h0Wg0CCGEEEKIN5JJXgcghBBCCCHyjiSDQgghhBBvMEkGhRBCCCHeYJIMCiGEEEK8wSQZFEIIIYR4g0kyKIQQQgjxBpNkUAghhBDiDSbJoBBCCCHEG0ySQSGEEEKIN5gkg0KIfCUyMhJ3d3e2bt2a16HkKXd3d+bPn58rfef3e7x161bc3d2JjIzM61AAaNSoEUFBQXkdhhC5RpJBIf5jHv+gdHd358SJE1mOazQa6tevj7u7OwMHDsyDCPOn1NRUVq1aRadOnahRowbe3t40a9aMKVOmEB4entfhvTGCgoKoVq1aXochhHiKaV4HIIR4ORYWFuzcuZOaNWvqlP/111/cuXMHc3PzPIos/4mLi6N///6cPXuWhg0b0rp1a6ytrQkPD2f37t1s2rSJf/75J6/DfG1cXV0JDQ3F1DR//gho27YtrVq1kj/DQrwm+fNfAiHEC9WvX589e/YwceJEnR/qO3fuxNPTk4SEhLwLLp8ZN24c58+fZ968eTRr1kzn2IgRI5gzZ45RzpOUlIS1tXWWco1GQ2pqKpaWlkY5z6tSKBRYWFjkdRgGKZVKlEplXochxBtDpomF+I9q1aoVCQkJ/PHHH9qytLQ09u7dy7vvvqu3zYoVK+jSpQu1a9fGx8eH9u3bs2fPniz13N3dmTJlCjt27KBZs2Z4e3vTvn17/v77b516UVFRTJ48mWbNmuHj40Pt2rX56KOPsr3W6/79+wQFBVGjRg1q1qxJYGAgDx480Fv36tWrfPTRR9SqVUsbz++///7Cc5w5c4aDBw/SsWPHLIkggLm5OYGBgTplx44do1u3bvj6+lKzZk0GDx7M1atXderMnz8fd3d3rly5wqhRo3jrrbfo1q0bkLnGbODAgRw5coT27dvj4+PDxo0btdc8bdo06tevj5eXF02aNGHp0qWo1ernXkdO7vX9+/eZPn06jRo1wsvLi7fffpuxY8cSFxcHGF4zmJPrvnHjBkFBQdSsWZMaNWowbtw4kpOTn3sN2aVvzeDje3rixAk6duyIt7c3jRs3Zvv27XqvPzv3OLt/H4Qo6GRkUIj/KFdXV3x9fdm1axf169cH4PDhwzx48ICWLVuyZs2aLG1Wr15No0aNePfdd0lPT2fXrl18/PHHLFmyhAYNGujU/fvvv9m9ezc9e/bE3NycDRs20L9/f3788UcqVaoEQFhYGKdPn6ZVq1YUK1aMqKgoNmzYQK9evdi1axdWVlYG49doNAwZMoSTJ0/SpUsXypcvz2+//ZYlMQO4fPkyXbt2xcXFhQEDBmBtbc0vv/zC0KFDmT9/Pk2aNDF4nv379wOZU4/ZcfToUQYMGEDJkiUZNmwYKSkprF27lq5du7J161ZKliypU//jjz/Gzc2NTz75BI1Goy0PDw9n1KhRvP/++3Tu3JmyZcuSnJxMjx49uHv3Ll26dKF48eKcPn2a//3vf0RHRzNhwgSDcWX3Xj969Iju3btz9epVOnToQJUqVYiPj2f//v3cvXuXIkWKGOW6R4wYQcmSJRk5ciTnzp3jxx9/pEiRIowZMyZb9/ll3Lhxg48//piOHTvSrl07tmzZQlBQEJ6enlSsWBEgR/c4J38fhCjQNEKI/5QtW7ZoKlWqpAkNDdWsXbtWU61aNU1ycrJGo9FoPvroI03Pnj01Go1G07BhQ82HH36o0/ZxvcfS0tI0rVu31vTq1UunvFKlSppKlSppwsLCtGVRUVEab29vzdChQw32p9FoNKdPn9ZUqlRJs23btudex2+//aapVKmSZtmyZdqyjIwMTbdu3TSVKlXSbNmyRVveu3dvTevWrTWpqanaMrVarXn//fc1TZs2fe55hg4dqqlUqZImMTHxufUea9u2raZu3bqa+Ph4bdn58+c1Hh4emrFjx2rL5s2bp6lUqZJm5MiRWfpo2LChplKlSprDhw/rlC9cuFDj6+urCQ8P1ymfNWuWpnLlyppbt25pyypVqqSZN2+e9n127/XcuXM1lSpV0vz6669Z6qvVao1Go9HcvHkzyz3O6XWPGzdOp++hQ4dqatWqleWczwoMDNT4+vo+t87jP+M3b97Ulj2+p3///be2LDY2VuPl5aWZOXOmtiwn9zi7fx8aNmyoCQwMfOG1CfFfJdPEQvyHtWjRgtTUVA4cOMDDhw85ePCgwSliQGfNWmJiIg8ePKBGjRqcO3cuS91q1arh5eWlfV+iRAkaN25McHAwKpUqS3/p6enEx8dTunRpbG1t9fb5tMOHD2NqakrXrl21ZUqlkh49eujUS0hI4M8//6RFixY8fPiQuLg44uLiiI+Px9/fn+vXr3P37l2D53n48CEAhQoVem48APfu3eP8+fO0a9cOe3t7bbmHhwd+fn4cOnQoS5suXbro7atkyZIEBATolO3Zs4caNWpga2urvY64uDj8/PxQqVRZpuGflt17/euvv+Lh4aF3tFShUOTaddesWZOEhATt/c4NFSpU0NkwVaRIEcqWLcvNmze1ZTm5xzn5+yBEQSbTxEL8hxUpUoS6deuyc+dOUlJSUKlUetfFPXbgwAEWL17M+fPnSUtL05brSxLc3NyylJUpU4bk5GTi4uJwdnYmJSWFJUuWsHXrVu7evaszTWpo7d9jUVFRODs7Z0nSypYtq/M+IiICjUbD3LlzmTt3rt6+YmNjcXFx0XvMxsYGyJw+tbW1fW5Mt27d0hsDQPny5QkODs6ySeTZ6dPnld+4cYOLFy9St25dvW0er+nTJ7v3OiIigqZNmxrsR5+Xue4SJUro1Ht8bxMTE7X33NiKFy+epczOzo7ExETt+5zc45z8fRCiIJNkUIj/uNatWzNp0iRiYmJ4++23DSY8J06cYPDgwbz11lt89tlnODs7Y2ZmxpYtW9i5c+dLnXvq1Kls3bqV3r174+vrS+HChVEoFFnWz72Kx4v++/btm2Wk7bHSpUsbbF+uXDkALl26lOUxPMZgaFeuvp3DarWaevXq0b9/f71typQpY/A8r+Ne54SJif6JpdyMJTs7jLN7j3Pj74MQ/1WSDArxH9ekSRM+++wzQkJCnvuIlL1792JhYcGKFSt0nt+2ZcsWvfVv3LiRpez69etYWVlpNyHs3buX9957T+fbGVJTU184KgiZG2D+/PNPHj16pDM6+OwDoEuVKgWAmZkZfn5+L+z3WQ0bNmTJkiXs2LHjhcng49EufQ+hvnbtGg4ODnofHZNdpUuXJikp6aWuI7v3unTp0ly+fDlHfef2db9O2b3HOf37IERBJmsGhfiPK1SoEJMnT2b48OE0atTIYD2lUolCodCu94PMR4wYejzL6dOnOXv2rPb97du3+f3336lXr552hEbfSM2aNWt0zmHI22+/TUZGBhs2bNCWqVQq1q5dq1PP0dGRWrVq8cMPP3Dv3r0s/TxvahUy1z4GBATw448/sm/fvizH09LS+PLLLwEoWrQolStXZvv27dy/f19b59KlS/zxxx/aXdsvq0WLFpw+fZojR45kOXb//n0yMjIMts3uvW7atCkXLlzgt99+y1Lf0Khdbl/365Tde5zTvw9CFGQyMihEAdCuXbsX1qlfvz4rV66kf//+tG7dmtjYWNavX0/p0qW5ePFilvqVKlWiX79+Oo+WARg+fLi2ToMGDfjpp5+wsbGhQoUKhISEcPToUZ1NCIY0atSI6tWrM3v2bKKioqhQoQK//vqr3lHFzz77jG7duvHuu+/SuXNnSpUqRUxMDCEhIdy5c4cdO3Y891xfffUVffv2ZdiwYTRs2JC6detiZWXFjRs32L17N/fu3dM+0mbs2LEMGDCA999/n44dO2ofsVK4cGGGDRv2wut6nn79+rF//34GDRpEu3bt8PT0JDk5mUuXLrF3715+//13g49+ye697tevH3v37uXjjz+mQ4cOeHp6kpiYyP79+/n888/x8PDQ239uXvez0tPTWbRoUZZyOzs7unfv/kp9Z/ce5/TvgxAFmSSDQrwh6taty7Rp01i2bBnTp0+nZMmSjB49mqioKL0//N566y18fX1ZuHAht27dokKFCsyYMUMnmZgwYQImJib8/PPPpKamUr16de0P2BcxMTFh8eLFTJ8+nR07dqBQKGjUqBFBQUG89957OnUrVKjAli1bWLBgAdu2bSMhIYEiRYpQpUoVhg4d+sJzFSlShI0bN7J+/Xp2797NnDlzSE9Px9XVlUaNGtGrVy9tXT8/P5YvX868efOYN28epqamvPXWW4wZM0Y7Zf2yrKysWLNmDUuWLGHPnj1s374dGxsbypQpw/DhwylcuLDBttm914UKFWLdunXMnz+f3377jW3btuHo6EjdunUNbrLJ7et+Vnp6ut7NQKVLl37lZDC79zinfx+EKMgUmrxYeSyEyNfc3d3p3r07n376aV6HIoQQIpfJmkEhhBBCiDeYJINCCCGEEG8wSQaFEEIIId5gsmZQCCGEEOINJiODQgghhBBvMEkGhRBCCCHeYJIMCiGEEEK8wSQZFPmeWq0mNDQUtVqd16HoJfG9vPwcG0h8ryI/xwYS36vIz7E9T3rMNaO9Chr5BhKR72k0GtLT0w1+r2pek/heXn6ODSS+V5GfYwOJ71Xk59ieS/3i70x/U8nIoBBCCCHEG0xGBoUQQghR8Gn+W9Par5Mkg0IIIYQo+P5jaxxfJ5kmFkIIIYR4g8nIoBBCCCEKPI1MExskI4NCCCGEKPjUauO9cmjdunU0atQIb29vOnXqRGho6HPrr1q1imbNmuHj40P9+vWZPn06qampL3vlLyTJoBBCCCFELtm9ezczZsxg6NChbNu2DQ8PD/r160dsbKze+j///DOzZ89m2LBh7N69m2nTprF7927+97//5VqMkgwKIYQQouDTqI33yoGVK1fSuXNnOnToQIUKFfj888+xtLRky5YteuufPn2a6tWr8+6771KyZEn8/f1p3br1C0cTX4Ukg0IIIYQo+NQqo73S0tJ4+PChzistLS3LKdPS0jh79ix+fn7aMhMTE/z8/Dh9+rTeMKtVq8bZs2e1yd/Nmzc5dOgQ9evXz537gmwgEUIIIcSbwIgbSJYsWcKCBQt0yoYNG8bw4cN1yuLj41GpVDg6OuqUOzo6cu2a/q+1e/fdd4mPj6dbt25oNBoyMjLo0qULgwYNMlr8z5JkULyQu7s7Cxcu5J133snrUIQQQog8N3DgQPr06aNTZm5ubpS+jx8/zpIlS/jss8/w8fEhIiKCadOmsXDhQoYOHWqUczxLksF8JigoiG3btmnf29vb4+XlxZgxY/Dw8MjDyIQQQoj/MCM+dNrc3DxbyZ+DgwNKpTLLZpHY2FicnJz0tpk7dy5t2rShU6dOQOaATFJSEp9++imDBw/GxMT4K/xkzWA+FBAQQHBwMMHBwaxatQpTU9PnDg+np6e/xuiEEEKI/x6NRm20V3aZm5vj6enJsWPHtGVqtZpjx45RrVo1vW1SUlKyJHxKpfLfa9C8xJW/mCSD+ZC5uTnOzs44OztTuXJlBgwYwO3bt4mLiyMyMhJ3d3d2795Njx498Pb25ueffyY+Pp6RI0cSEBBA1apVeffdd9m5c6dOvz179uSLL77gq6++olatWtSrV4/58+fr1Ll+/Trdu3fH29ubli1b8scff7zOSxdCCCEKlD59+rBp0ya2bdvG1atXmTx5MsnJybRv3x6AsWPHMnv2bG39hg0bsmHDBnbt2sXNmzf5448/mDt3Lg0bNtQmhcYm08T53KNHj9ixYwdubm7Y29uTlJQEwKxZswgKCqJy5cpYWFiQlpaGp6cnAwYMwMbGhoMHDzJ27FhKly6Nj4+Ptr9t27Zp/2CGhIQQFBRE9erVqVevHmq1muHDh+Po6MiPP/7IgwcPmD59el5duhBCCGE8efTdxC1btiQuLo558+YRHR1N5cqVWb58uXaa+Pbt2zojgYMHD0ahUPDNN99w9+5dihQpQsOGDfnkk09yLUZJBvOhgwcPaoePk5KScHZ2ZsmSJTp/WHr37k3Tpk112vXr10/7/z179iQ4OJhffvlFJxl0d3dn2LBhAJQpU4a1a9dy7Ngx6tWrx9GjR7l27RrLly/HxcUFgE8++YQBAwbk+BrUarXRhrNVKpXOf/Mbie/l5efYQOJ7Ffk5NpD4XkVuxJZbI1468vDr6Hr06EGPHj30HluzZo3Oe1NTU4YNG6b9Wf06SDKYD9WuXZvJkycDkJiYyIYNGxgwYAA//vijto6Xl5dOG5VKxbfffsuePXu4e/cu6enppKWlYWlpqVPP3d1d572zs7N2YevVq1cpVqyYNhEEDK5peJF//vnH6GsZw8LCjNqfsUl8Ly8/xwYS36vIz7GBxPcqjBlbjRo1jNaXyDlJBvMhKysr3NzctO89PT2pWbMmmzZt0u4usra21mmzYsUKVq9ezfjx43F3d8fKyorp06dnSchMTXU/coVCkSsLUr28vIw6MhgWFoa3t/fr+e0xhyS+l5efYwOJ71Xk59hA4nsV+Tm251Lnv1HW/EKSwf8AhUKBQqF47pdUnzp1isaNG9O2bVsgc5r2+vXrlC9fPtvnKV++PHfu3OHevXsULVoUgJCQkJeKOTe2viuVynz9D4/E9/Lyc2wg8b2K/BwbSHyvIj/HplceThPnd5IM5kNpaWlER0cDcP/+fdauXUtSUhINGzY02MbNzY29e/dy6tQp7OzsWLlyJTExMTlKBv38/ChTpgxBQUGMHTuWhw8fMmfOnFe+HiGEEELkX5IM5kNHjhzB398fgEKFClGuXDnmzp1L7dq1iYyM1Ntm8ODB3Lx5k379+mFlZUXnzp155513ePDgQbbPa2JiwoIFC5gwYQIdO3bE1dWViRMn0r9/f6NclxBCCJFn8mg38X+BJIP5zMyZM5k5c6bB4yVLluTixYtZyu3t7Vm0aNFz+352xxKQpU3ZsmVZv369Tpm+8wkhhBD/KTJNbJAkg0IIIYQo+GRk0CD5BhIhhBBCiDeYjAwKIYQQosDTaOTRMoZIMiiEEEKIgk/WDBok08RCCCGEEG8wGRkUQgghRMEnG0gMkmRQCCGEEAWfTBMbJNPEQgghhBBvMBkZFEIIIUTBp5bdxIZIMiiEEEKIgk+miQ2SaWIhhBBCiDeYjAwKIYQQouCT3cQGSTIohBBCiIJPpokNkmRQ5Iofinc3ep9XjNjX+7fXGbE3IYQQ+Z6MDBokawaFEEIIId5gMjIohBBCiIJPRgYNkmRQCCGEEAWeRiPPGTREpomFEEIIId5gMjIohBBCiIJPpokNkmRQCCGEEAWfPFrGIJkmFkIIIYR4g8nIoBBCCCEKPpkmNkiSQSGEEEIUfDJNbJBMEwshhBBCvMFkZFAIIYQQBZ9MExskyaAQQgghCj6ZJjZIksHXJCgoiG3btmnf29vb4+XlxZgxY/Dw8MhWH/Pnz2ffvn389NNPOuXu7u4sXLiQd955x6gx56YKHzTBY0grLJ3tSDgXwakJ3xMXcs1g/ZKta+Ed2IlCJZ14EH6X0C82cHv/Ge1xU2sLfCZ0wbV5TcwdbHh0M5rLK/ZydfXvr+NyhBBC5HcyMmiQrBl8jQICAggODiY4OJhVq1ZhamrKoEGD8josrfT09NdynlJt6uA7uTtnZ2/l12YTSTgXQf0NQVg42uqt71izInUXD+Pa+oPsbTqBqD0nqLdyJHbuJbV1fD/vQbGGPvw5bBG/vD2GS8t+ofq03pRoWv21XJMQQgjxXyXJ4Gtkbm6Os7Mzzs7OVK5cmQEDBnD79m3i4uIA+Prrr2nWrBlVq1alcePGfPPNN9oEbevWrSxYsIALFy7g7u6Ou7s7W7dupVGjRgAMHToUd3d37XuAffv20a5dO7y9vWncuDELFiwgIyNDe9zd3Z3169czaNAgfH19Wbx4MU2aNGHFihU6cZ8/fx53d3du3LhhlPvgPrAF19YdIPyHw9y/FMWJsd+RkZxK2a719dav1L85dw6EcnHxLh5cvsU/X20mIew6Ffo21dZxqlmR6z8eIfrYeZIiY7i29gAJ5yIoUq28UWIWQgjxH6dWG+9VwMg0cR559OgRO3bswM3NDXt7ewAKFSrEjBkzKFq0KJcuXWLSpEkUKlSIAQMG0LJlSy5fvsyRI0dYuXIlAIULF6ZBgwbUrVuXGTNmEBAQgFKpBODEiRMEBgYyceJEatasSUREBJMmTQJg2LBh2jgWLFjAqFGjmDBhAkqlEnNzc7Zu3Uq/fv20dbZs2cJbb72Fm5vbK1+3iZkSB5+ynJ+/40mhRsPdI//gVKOi3jaONStwackvOmW3D4ZSsnkN7fuYE5dxbVqd8A2HSL4TT1G/KhQuV4yQz9a+csxCCCEKAFkzaJAkg6/RwYMHqVatGgBJSUk4OzuzZMkSTEwyB2iHDBmirVuyZEnCw8PZtWsXAwYMwNLSEmtra5RKJc7Oztp6lpaWANja2uqUL1iwgA8//JB27doBUKpUKT7++GO+/vprnWSwdevWdOjQQfu+Xbt2zJs3j9DQUHx8fEhPT2fnzp0EBgYa5R6YFymMiamSlOhEnfKU6PvYViiht42ls32W+qnRiVgWtde+PzXhe2p+3Y82pxegTs9Ao9ZwYsxyov+8oLdPlUr1aheipy9j9mlM+Tm+/BwbSHyvIj/HBhLfq8iN2B4PZIi8Icnga1S7dm0mT54MQGJiIhs2bGDAgAH8+OOPuLq6snv3blavXs3NmzdJSkoiIyMDGxublzrXhQsXOHXqFN9++622TKVSkZqaSnJyMlZWVgB4eXnptHNxcaF+/fps3rwZHx8fDhw4QFpaGs2bN3+5i35NKvZtimP1ChzpNYtHkTE41/Gg+vQPSL4Tz90jZ7PUDwkJMXoMYWFhRu/TmPJzfPk5NpD4XkV+jg0kvldhzNhq1Kjx4kqvqgBO7xqLJIOvkZWVlc5Uq6enJzVr1mTTpk00aNCA0aNHM3z4cPz9/SlcuDC7du3STgnnVFJSEsOHD6dp06ZZjllYWGj/39raOsvxTp06MXbsWMaPH8/WrVtp2bKlNnl8VWlxD1BnqLB0ttMpt3S2JeVeot42KdEJWepbONuRci8BAKWlGd7j3uePvnO4/XsIAInnb+Lg6Yb74FZ6k0FfX99XvpbHVCoVYWFheHt758vfbvNzfPk5NpD4XkV+jg0kvleRn2N7LpkmNkiSwTykUChQKBSkpqZy+vRpSpQoweDBg7XHb926pVPfzMwMtZ7fbMzMzLIM11epUoXw8PCXWudXv359rKys2LBhA0eOHGHtWuOtu1Onq4gPDcfF35OoPSczCxUKXPy9uLzyV71tYk9coai/J5eW7dGWFXvbi5iTVzKbm5qiNDdFo9HotNOo1ShM9O+Ryo1/wJRKZb7+hzE/x5efYwOJ71Xk59hA4nsV+Tk2kTOSDL5GaWlpREdHA3D//n3Wrl1LUlISDRs25OHDh9y+fZtdu3bh7e3NwYMH2bdvn057V1dXIiMjOX/+PC4uLtjY2GBubo6rqyvHjh2jevXqmJubY2dnx9ChQxk0aBAlSpSgWbNmmJiYcOHCBS5dusQnn3zy3DiVSiXt27dn9uzZuLm5adc5GsvFJb9Qe+5A4s6EExtyFfcBzTG1tiB84yEAas8bRNKdeMKm/wDApeV7aLR1Iu4DW3Lr99OUblsXh6rlODEmc9dzxsNk7h09h++krpxMTiMpMgbnupVx6xhAyGTZQCKEEAKZJn4OSQZfoyNHjuDv7w9k7hwuV64cc+fOpXbt2gD07t2bKVOmkJaWRoMGDRg8eDALFizQtm/WrBm//fYbvXr14v79+8yYMYP27dsTGBjIzJkz+fHHH3FxcWH//v0EBATw7bffsnDhQpYtW4apqSnlypWjU6dO2Yq1Y8eOfPvtt7Rv397o9+Hmjj+xcCyM19iOmQ+dPnuDQ92+JDXmPgDWro5o1E9G+WJPXObYkIV4B3bCe1xnHobf4Y8+/yPxYqS2zrFBC/AZ/z51Fg7B3N6GpKgYwr7cJA+dFkIIkUmmiQ1SaJ6dWxOCzEfTfPDBBxw8eBAnJ6cct/+hePdciMp43r+9zmh9qVQqQkJC8PX1zZdTJvk5vvwcG0h8ryI/xwYS36vIz7E9T/LW6Ubry6r9eKP1lR/IyKDQkZaWRlxcHPPnz6dZs2YvlQgKIYQQ+Y5MExsk30AidOzcuZOGDRvy4MEDxo4dm9fhCCGEEMYh30BikIwMCh3t27fPlXWCQgghRJ6SVXEGycigEEIIIUQuWrduHY0aNcLb25tOnToRGhr63Pr379/n888/x9/fHy8vL5o1a8ahQ4dyLT4ZGRRCCCFEwZdH07u7d+9mxowZfP7551StWpXvv/+efv36sWfPHhwdHbPUT0tLo0+fPjg6OjJ37lxcXFy4desWtra2uRajJINCCCGEKPjyKBlcuXIlnTt3pkOHDgB8/vnnHDx4kC1btvDhhx9mqb9lyxYSExPZuHEjZmZmAJQsWTJXY5RpYiGEEEKIHEhLS+Phw4c6r7S0NL31zp49i5+fn7bMxMQEPz8/Tp8+rbfv/fv34+vry5QpU/Dz86N169Z8++23Wb5pzJgkGRRCCCFEwadRG+21ZMkSatSoofNasmRJllPGx8ejUqmyTAc7OjoSExOjN8ybN2+yd+9eVCoVS5cuZciQIaxcuZLFixfnym0BmSYWQgghxJvAiNPEAwcOpE+fPjpl5ubmRulbo9Hg6OjI1KlTUSqVeHl5cffuXVasWMGwYcOMco5nSTIohBBCCJED5ubm2Ur+HBwcUCqVxMbG6pTHxsYa/FIHZ2dnTE1Ndb7dpVy5ckRHR5OWlma0pPNpMk0shBBCiIJPozHeK5vMzc3x9PTk2LFj2jK1Ws2xY8eoVq2a3jbVq1cnIiIC9VMjmdevX8fZ2TlXEkGQZFAIIYQQb4I8+gaSPn36sGnTJrZt28bVq1eZPHkyycnJ2i94GDt2LLNnz9bW79q1KwkJCUybNo3w8HAOHjzIkiVL6N69u1Fvx9NkmlgIIYQQIpe0bNmSuLg45s2bR3R0NJUrV2b58uXaaeLbt29jYvJkbK548eKsWLGCGTNm0KZNG1xcXOjVqxcDBgzItRglGRS5oorl/bwO4bmmuhn/N6zdRuxr0o11RuxNCCFEXn6ncI8ePejRo4feY2vWrMlSVq1aNTZt2pTbYWlJMiiEEEKIgk+Td8lgfifJoBBCCCEKPI06+xs/3jSygUQIIYQQ4g0mI4NCCCGEKPjycM1gfifJoBBCCCEKPlkzaJBMEwshhBBCvMFkZFAIIYQQBZ9sIDFIkkEhhBBCFHyyZtAgmSYWQgghhHiDycigEEIIIQo+GRk0SJJBIYQQQhR8GlkzaIhMEwshhBBCvMFkZDAHgoKC2LZtGwBmZmYUL16ctm3bMmjQIExN5VbmRJGeLXH+sD2mzg6knA/n1uQlJJ+5rLeuQ5emOLRvhGUlNwCSw65wZ9bqJ/VNlRQb1YPCDWpiXroYqgePePjHGe58+T0Z9+JeOsb6IztQrWtDLG0LcfPEJX6Z8B1x1+8+t03NXk2o+2ErbJztuHs+gj2ffc+tM9e0x1tO70tZfy8KuziQ9iiFyJOX+X3mBmKv3n7pOIUQQmSDTBMbJCODORQQEEBwcDB79+6lT58+LFiwgBUrVmSpl5aWlgfR5S5jXZNdK3+KT+jPvbkbuNJ6BCnnwyn7/RSUjnZ669vU9iZhx2GudR3P1fZjSLsdQ9nVUzB1KQKAiZUFll7lubfgBy6/O4Ibg2ZgUc4Vt2UTXzpGv0GtqfVBM3aPX8l3bT8lPSmVbmuCUFqYGWxTpXUdmkzszuG5W1nWeiJ3z0fQbU0Q1o622jq3w8L5efRSFjcew/peX6JQQPc1QShMFC8dqxBCiGxQa4z3KmAkGcwhc3NznJ2dcXV1pVu3bvj5+bF//36CgoIYMmQIixcvxt/fn+bNmwNw8eJFevXqhY+PD7Vr12bSpEk8evRIp8/NmzfTqlUrvLy88Pf3Z8qUKdpj9+/fZ8KECdSpU4fq1avTq1cvLly4oD1+4cIFevbsSbVq1ahevTrt27cnLCwMgKioKAYNGsRbb72Fr68vrVq14tChQ9q2f/31Fx07dtSed9asWWRkZGiP9+zZkylTpjBt2jRq165Nv379jHIPnfq/R/wPe4nf/DupV24SNWER6uRUinRqorf+zU9mE7d2Nynnw0m9FklU0HxQmGBTryoA6gdJXO/5KYm7gkm7FkVyyEVufbYEa5+KmJVwfqkYa/VrzpEF27n020nuXbjJTyMXU7ioPR5NaxhsU6d/C05vPMCZHw8TczmKXeO/Iz05Fd/O9bV1Tm84QMRfF0iMjOHOP9c5MOtH7FydsC/5cnEKIYTIJo3aeK8CRuY2X5GFhQUJCQkAHDt2DBsbG1auXAlAUlIS/fr1o1q1amzevJnY2FgmTpzI1KlTmTlzJgDr169n5syZjBo1irfffpsHDx5w6tQpbf8ff/wxFhYWLFu2jMKFC/PDDz/Qu3dv9u7di729PaNHj6Zy5cpMnjwZpVLJ+fPnMTPLHL2aMmUK6enprF27Fmtra65cuYK1tTUAd+/e5cMPP6Rdu3Z8+eWXhIeHM3HiRCwsLBg+fLj2/Nu2baNr165s2LDBKPdLYWaKlVcFohdtflKo0fDwjxCsq7tnqw8TKwsUZkpUCQ8N1ylsjUatRnXfcB1D7Es5U7ioA+HBZ7VlqQ+SiQq5imv1ipz9+c+s5zNTUty7LH8s2vGkUKMhPPgfSlavqPc8ZlYWVO1Un/iIeyTejs1xnEIIIYQxSDL4kjQaDceOHSM4OJgePXoQHx+PtbU1X3zxBebm5gBs2rSJtLQ0vvzyS20S9umnnzJo0CBGjx6Nk5MTixcvpk+fPvTu3Vvbt4+PDwAnTpwgNDSUY8eOafsMDAxk37597N27l/fff59bt27Rr18/ypcvD0CZMmW0/dy6dYtmzZrh7p6ZZJUqVUp7bP369RQrVoxPP/0UhUJB+fLluXv3LrNmzWLo0KGYmJho+xs7dqzR7pvSwRaFqZKMmHid8oyYBCzKl8xWH8UCPyD9bhwPg0P0HleYm1E88AMSdxxG/TA5xzHaFLUH4FFMok75o5hEbJzt9baxdiiMiamSh1na3MepfAmdsho93+GdcV0xL2RJzJVbrOs+A3W6SqeOSqX7/lU87suYfRpLfo4NJL5XkZ9jA4nvVeRGbEql0mh9GVQAp3eNRZLBHDp48CDVqlUjPT0djUZD69atGT58OFOmTKFSpUrapA3g6tWruLu7axNBgOrVq6NWqwkPD0ehUHDv3j3q1q2r91wXL14kKSmJ2rVr65SnpKQQEREBQJ8+fZg4cSI//fQTfn5+NG/enNKlSwPQq1cvJk+eTHBwMH5+fjRt2hQPDw9tbNWqVUOheLJWrUaNGiQlJXHnzh1KlMhMYDw9PY1w14zHeVBH7N4NILzreDRp6VkrmCopvTAQFAqiJi3KVp9e7/nRavqTKfANfb42Vrh6/bP9D8KPhGFT1IG6H7akw6KPWNnhc1SpT64nJCTE6Od9vHwgP8rPsYHE9yryc2wg8b0KY8ZWo4bhJTjGopENJAZJMphDtWvXZvLkyZiZmVG0aFGdXcRWVlY56svCwuK5xx89eoSzszNr1qzJcqxw4cIADB8+nNatW3Po0CEOHz7MvHnzmDNnDk2aNKFTp074+/tz8OBB/vjjD5YuXUpgYCA9e/bMdow5vaYXUcXfR5OhwtTJQafc1MmejOh4A60yOQ1oh/PgDoT3mETKhetZK5gqKb0gEDPXooR3m5DtUcFLv50i6vTVJ92YZ36mhZzseHgvQVteyMmOO+du6O0jKf4B6gwVNk66m2AKOdnyMFp3tDD1QTKpD5KJu36XyNOXGRO6FI9mNTm745i2jq+vb7Zizw6VSkVYWBje3t6v57fvHMjPsYHE9yryc2wg8b2K/BybeDmSDOaQlZUVbm5u2apbvnx5tm3bRlJSknZ08NSpU5iYmFC2bFlsbGxwdXXl2LFj1KlTJ0t7T09PYmJiUCqVlCxpeAq1bNmylC1blg8++ICRI0eyZcsWmjTJ3IxRvHhxunbtSteuXZk9ezabNm2iZ8+elC9fnr1796LRaLSjgydPnqRQoUIUK1Ysp7cl2zTpGST/c4VC9Xy4/9u/a+8UCmz8qhK7epfBdk4D21N0SGfCe39GctiVrBX+TQQtypTgWrfxqBIeZDumtEcppD1K0Sl7cC+esvU8uftv8mduY4Wrb3lOrt2ntw91uorbYeGUqefJxV9Paq+rbD0v/v7+V4PnVigUKBQKlOa6u5Rz4x9YpVKZb//hzs+xgcT3KvJzbCDxvYr8HJteMk1skOwmzkXvvvsu5ubmBAUFcenSJf7880+mTp1K27ZtcXJyAjJH9lauXMnq1au5fv06Z8+e1Y4E+vn54evry9ChQwkODiYyMpJTp04xZ84cwsLCSElJYcqUKRw/fpyoqChOnjxJWFiYdv3gtGnTOHLkCDdv3uTs2bMcP35ce6xbt27cuXOHqVOncvXqVfbt28f8+fPp06ePdr1gbolZvp0iXZph374RFuVLUuKLIZhYWxK/OTPRKjn7E1zG9NLWdxrYAZdPehAZOI/0yLuYOtlj6mSPibVlZgVTJW6LgrDyrsDNT2ahMDHR1lGYvdzvO3+t2IP/8Peo9E51irqX4r3/DeLBvQQuPE70gB7rx1Gz95Md0H8u/4XqXRri0yEApwolaDmtD2bWFpz5MXMHt30pZ+oNaUMxrzLYlnCkZI2KdFz0EekpaVw5EPJScQohhMgm2U1skIwM5iIrKytWrFjBtGnT6NixI1ZWVjRt2pSgoCBtnXbt2pGamsqqVav46quvsLe31z6WRqFQsHTpUr755hvGjRtHfHw8Tk5O1KxZEycnJ0xMTEhISCAwMJCYmBgcHBxo2rQpH330EQBqtZopU6Zw584dbGxsCAgIYNy4cQC4uLiwdOlSvvrqKzZt2oS9vT0dO3Zk8ODBuX5fEncFY+poh8vI7pg6OZBy/hrhH3xGRkwCQObjYJ76Dc6xRwtMLMxwWzxOp5+736zn3twNmLk4Ytskc2S14u75OnWudRnHo+P/5DjGo9/uxMzaglYz+mFpa03EiUus7/Wlzro+h9IuWDsU1r4/t/NPrB0LU39kx8yHTp+7wfpeX/Io5j4AGanplKrlTq2+zbGyK8TDmEQi/rrAqvafkxR7P8cxCiGEEMag0Gjky/qE8YWVfTevQ3iu7WrbF1fKQ5NurDNaXyqVipCQEHx9ffPdlE5+jg0kvleRn2MDie9V5OfYnufRlO5G66vQp8b7Nzo/kJFBIYQQQhR8spvYIFkzKIQQQgjxBpORQSGEEEIUfLKb2CBJBoUQQghR8BXAXcDGIsmgEEIIIQo+GRk0SNYMCiGEEEK8wWRkUAghhBAFnnw3sWGSDAohhBCi4JNpYoNkmlgIIYQQ4g0mI4NCCCGEKPhkZNAgSQaFEEIIUfDJo2UMkmliIYQQQog3mIwMCiGEEKLgk2ligyQZFLniXIptXofwXM6mirwO4bk2F+9u9D7DjdhXx9vrjNibEELkPo0kgwbJNLEQQgghxBtMRgaFEEIIUfDJyKBBkgwKIYQQouCTbyAxSJJBIYQQQhR8MjJokKwZFEIIIYR4g8nIoBBCCCEKPhkZNEiSQSGEEEIUeBqNJIOGyDSxEEIIIcQbTEYGhRBCCFHwyTSxQTIyKIQQQoiCT60x3iuH1q1bR6NGjfD29qZTp06EhoZmq92uXbtwd3dnyJAhOT5nTkgyKIQQQgiRS3bv3s2MGTMYOnQo27Ztw8PDg379+hEbG/vcdpGRkXz55ZfUrFkz12OUZFAIIYQQBZ5GrTHaKydWrlxJ586d6dChAxUqVODzzz/H0tKSLVu2GGyjUqkYPXo0w4cPp1SpUq966S8kawZzSVBQENu2beP9999nypQpOsc+//xz1q9fT7t27Zg5c2YeRZi3KnzQBI8hrbB0tiPhXASnJnxPXMg1g/VLtq6Fd2AnCpV04kH4XUK/2MDt/We0x02tLfCZ0AXX5jUxd7Dh0c1oLq/Yy9XVv79UfJ6938F3YCusnO2IPR/BH5+u5t5z4ivXqhZvje5I4ZJOJF6/y/HpG4k48CS+mp+0p3ybOtiUKII6TUV0WDh/ffUj90Ku5ji28h80odK/9y7xXASnJ3xP/HNic21dC89/793D8LuEfbGBO0/dOwsnW7wndsWlvjdmdtbE/HmBkAnf8zD8bo5jE0KIfMuIawbT0tJIS0vTKTM3N8fc3DxLvbNnzzJw4EBtmYmJCX5+fpw+fdpg/wsXLsTR0ZFOnTpx8uRJo8VtiIwM5qLixYuze/duUlJStGWpqans3LmTEiVK5GFk+mk0GjIyMnL9PKXa1MF3cnfOzt7Kr80mknAugvobgrBwtNVb37FmReouHsa19QfZ23QCUXtOUG/lSOzcS2rr+H7eg2INffhz2CJ+eXsMl5b9QvVpvSnRtHqO4yv/bm38JnXnxDfb2NJyIrHnImi1JhBLA/G51KjIOwuGcmHjITa3mMj1vSdptvwTHJ6KLyH8NsGTvmdTk3Fs7zCFB5ExtFoXiGWRwjmKrWSbOvhM7s652VvZ9++9C3jBvau9eBjX1x9kX9MJ3NpzAr+VI7F9Kja/lSMp5FaUox/8j31NJpAUGUPApvEorSxyFJsQQrwplixZQo0aNXReS5YsyVIvPj4elUqFo6OjTrmjoyMxMTF6+z5x4gSbN29m6tSpuRK7PpIM5qIqVapQvHhxfv31V23Zr7/+SvHixalcubK2TK1Ws2TJEho1aoSPjw9t2rRhz5492uPHjx/H3d2dI0eO8N577+Hj40OvXr2IjY3l0KFDtGjRgurVqzNq1CiSk5O17dLS0vjiiy+oW7cu3t7edO3aVWfR6uN+Dx06RPv27fH29mbHjh14eHgQFhamcy2rVq2iYcOGqI3w3Y7uA1twbd0Bwn84zP1LUZwY+x0ZyamU7Vpfb/1K/Ztz50AoFxfv4sHlW/zz1WYSwq5ToW9TbR2nmhW5/uMRoo+dJykyhmtrD5BwLoIi1crnOD6fAS04v+EAFzcdJv7yLQ6PW0lGSioe7+uPz7tfM24eDOXMkl0kXLnF37M2E/PPdbx6N9HWubL9GFHBZ3kQEU38pSiOTlmHha01jpVL5yi2SgNbEL7uADd+OMyDS1GcGvsdquRUyhi4dxX6N+fugVAu/Xvvzn61mfiw65T/997ZlCuGY82KnA78jvgz13h49TanAleitDSjVLu6OYpNCCHyNbXxXgMHDuTkyZM6r6dH/17Ww4cPGTt2LFOnTqVIkSKv3F92STKYyzp06MDWrVu177ds2UL79u116ixZsoTt27fz+eefs2vXLj744APGjBnDX3/9pVNvwYIFTJo0iY0bN3Lnzh1GjBjB6tWrmT17NkuXLiU4OJg1a9Zo63/11Vfs3buXmTNnsm3bNtzc3Ojfvz8JCQk6/c6ePZtRo0axe/duGjVqhJ+fn07MAFu3bqVdu3aYmLzaHxkTMyUOPmW5e+SfJ4UaDXeP/INTjYp62zjWrKBbH7h9MBSnGhW072NOXMa1aXWsijkAUNSvCoXLFePuId2kNjvxOXuXJTL4rE58kUfO4vLU+Z7mUr0CkcG68d08FGqwvomZkirdG5Ka+IjYczeyHZvCTIm9T1nu6bl3jjm4d3cPhuL4b2wm5mYAqFLTdfpUp2bgVMs927EJIUR+Z8w1g+bm5tjY2Oi8np0iBnBwcECpVGbZLBIbG4uTk1OW+jdv3iQqKorBgwdTpUoVqlSpwvbt29m/fz9VqlQhIiIiV+6NrBnMZW3atGH27NlERUUBcOrUKf73v/9pE720tDSWLFnCypUrqVatGgClSpXi5MmT/PDDD9SqVUvb14gRI6hRowYAHTt2ZPbs2ezbt0+7uLRZs2YcP36cDz/8kKSkJDZu3MiMGTOoXz9z1Gjq1Kn88ccfbN68mf79+2v7/eijj6hXr572fceOHZk8eTLjxo3D3Nycs2fPcunSJRYtWvTK98O8SGFMTJWkRCfqlKdE38e2gv6pc0tn+yz1U6MTsSxqr31/asL31Py6H21OL0CdnoFGreHEmOVE/3khR/FZ/htf8jPnS45JxL5Ccb1trJ3tSY65/0z9+1g72+uUlW7sS5OFwzC1MifpXgI7u39JSvzDbMdmYeDepb7g3qVmuddP7t2DK7d4FBmD1/j3OTV2BRlJqVT6sAXWro5Yuthn7fBfKpUq23E/z+N+jNWfsUl8Ly8/xwYS36vIjdiUSqXR+jIoD54zaG5ujqenJ8eOHeOdd97JDEOt5tixY/To0SNL/XLlyvHzzz/rlH3zzTc8evSICRMmUKxYsVyJU5LBXFakSBEaNGjAtm3b0Gg0NGjQQGfo98aNGyQnJ9O3b1+ddunp6TpTyQDu7k9GahwdHbGystLZZeTk5KSd3o2IiCA9PZ3q1Z+smTMzM8PHx4erV3U3LXh7e+u8f+edd5gyZQq//fYbrVq1Ytu2bdSuXZuSJUuSX1Xs2xTH6hU40msWjyJjcK7jQfXpH5B8J567R86+uIPX4NbR8/zYfAKWDjZU7taQJouGsbXNZFJi77+4cS7RZKg41m8ONWd/SNsLy1BnqLh35B9u/x6CQqEw2C4kJMSocTy7LCG/kfheXn6ODSS+V2HM2B4PdBREffr0ITAwEC8vL3x8fPj+++9JTk7WzhKOHTsWFxcXRo0ahYWFBZUqVdJpb2ubuSb82XJjkmTwNejQoYN2R/Fnn32mcywpKQnInCp2cXHROfbskLOp6ZOPS6FQ6Lx/XPYya/qsrKyynPe9995j69atNGnShJ9//pkJEybkuF990uIeoM5QYelsp1Nu6WxLyr1EvW1SohOy1LdwtiPlXgIASkszvMe9zx9953D79xAAEs/fxMHTDffBrXKUDKb8G5/VM+ezcrIjKVp/fEnRCVg52T5T35ak6ASdsozkVO5fv8v963e5d/oqXQ/PonKX+pxeqPtboCGpBu6dxQvunUWWe/3k3gEkhF5nX5PxmBa2wsTclLTYBzTa9TlxZ8INxuLr65utmF9EpVIRFhaGt7f36xkZyCGJ7+Xl59hA4nsV+Tm253r1Je8vpWXLlsTFxTFv3jyio6OpXLkyy5cv104T3759+5WXYL0qSQZfg4CAANLT01EoFPj7++scK1++PObm5ty6dUtnSvhVlS5dGjMzM06dOoWrqyuQOdoYFhZG7969X9i+U6dOtG7dmvXr16NSqWjatOkL22SHOl1FfGg4Lv6eRO35d7u8QoGLvxeXV/6qt03siSsU9ffk0rInm2qKve1FzMkrmc1NTVGam2b5EnKNWo0ih3/B1OmZj31xrefJ9b1P4nP19+SfVb/pbXP31BVc63kStmKvtqxkgBd3/43PIBMFyn/X7GWHJl1FQmg4Rf09ufXUvSvq78XVF9y7K0/dO5e3vYjVE1vGg8zNRzZlXXCoWo6zX202GIuxfwAolcp8/UNF4nt5+Tk2kPheRX6OTZ+cPh/QmHr06KF3WhjQWeuvz+t4BJ0kg6+BUqnkl19+0f7/02xsbOjbty8zZsxAo9FQo0YNHjx4wKlTp7CxsaFdu3YvdU5ra2u6du3KV199hZ2dHSVKlGD58uWkpKTQsWPHF7YvX748VatWZdasWXTo0AFLS8uXikOfi0t+ofbcgcSdCSc25CruA5pjam1B+MZDANSeN4ikO/GETf8BgEvL99Bo60TcB7bk1u+nKd22Lg5Vy3FizAoAMh4mc+/oOXwndeVkchpJkTE4162MW8cAQiavzXF8oct+oeH/BhIdGs69kKv49GuOmZUFFzdlxtdwzkAe3Ynnry83ARC2Yi9tfpyAz4ctiPg9hApt6uLsU45DQd8BYGplQfWP2nL915Mk3UvAskhhvHo3oZCLA1d3Hc9RbJeW/MJbcwcSfyacuJCrVPz33l3/9969NW8QyXfi+effe3dl+R7qb51IxYEtufP7aUr9e+9O/nvvIPM5hGmxD0iKisG2cml8p/Ykas+JHG++EUII8d8kyeBrYmNjY/DYiBEjKFKkCEuWLCEyMpLChQtTpUoVBg0a9ErnHD16NBqNhrFjx/Lo0SO8vLxYvnw5dnZ2L25M5kaS06dP06FDh1eK41k3d/yJhWNhvMZ2zHzo9NkbHOr2Jan/bsKwdnXU+Q0u9sRljg1ZiHdgJ7zHdeZh+B3+6PM/Ei9GauscG7QAn/HvU2fhEMztbUiKiiHsy00v9dDpqz8fx7KILW+N6oC1sx0x526wq+dX2k0ihV2d4KlRyLsnL/P78EXUGtOJ2mM7k3j9Dnv7zyH+3/g0ajX25YvTbOnHWDoUJiXhIffOXOOnjl8QfykqR7FF/nvvqvx77xLP3iD4Bffu+JCFeAV2wuvfe3e0z/+4/9S9s3JxoOrkHlg625F8L4GIH49wbs62HN83IYTI1/Jomvi/QKF5dm5NiH8tXLiQPXv2ZNnZlB0/FO+eCxEZT7yp4c0R+YFTRv7+a9nx9jqj9KNSqQgJCcHX1zdfTjdJfC8vP8cGEt+ryM+xPU9cO/3PY30ZRbYdMlpf+YE8Z1Bk8ejRIy5dusS6devo2bNnXocjhBBCiFwk08Qii6lTp7Jz507eeecdo08RCyGEEHlCpokNkmRQZDFz5szXsntJCCGEeF00kgwaJNPEQgghhBBvMBkZFEIIIUTBJyODBkkyKIQQQogCT6aJDZNkUAghhBAFnySDBsmaQSGEEEKIN5iMDAohhBCiwJNpYsMkGRRCCCFEgSfJoGEyTSyEEEII8QaTkUEhhBBCFHgyMmiYJINCCCGEKPg0iryOIN+SZFDkigxF/v5L12u8Q16H8FwHJ0fndQjPtdq1h1H7O2vEvnpFrTVib0IIUfBJMiiEEEKIAk+miQ2TZFAIIYQQBZ5Gnb9nrPKS7CYWQgghhHiDycigEEIIIQo8mSY2TJJBIYQQQhR4GtlNbJAkg0IIIYQo8GRk0DBZMyiEEEII8QaTkUEhhBBCFHiym9gwSQaFEEIIUeBpNHkdQf4l08RCCCGEEG8wGRkUQgghRIEn08SG5fuRwUaNGrFq1aq8DkMIIYQQ/2EatcJor4LmtY4MBgUFsW3bNgDMzMwoXrw4bdu2ZdCgQZia6g9l8+bNWFlZvc4wjebmzZt88803HD9+nMTERBwcHPD09GT06NGUL1+eyMhIGjduzPbt26lcuXJeh/taVfrgHSoPboWVsx3x5yI4MXE1sSHXDNYv3boWPmM7YlPSiQfhdzk9bSO39p/RHu9+a63edqembuD84l05iu2HMxF8f+I6sUlpVHKyIbBhZbyK2emtu+NsFJ/9dlanzFxpwvHh7+iUXYt7yNzgy5yKjCdDraacow2zWlWluG3O/2y79WlK2SHvYlHUjgfnIjg7fiWJp6/qrWvjXpJKYzth61MO69LOnJv0PdeX/qJTp/xHbXFpWQubiiVQpaQR//clLk5dz6Ort3McG4B773fw/PezjTsXwV+Tnv/ZurWuhe+YzM/2fvhdTk3fSNRTny2AXYUSVJ/QBZc6HihMTUi8dItDA+by6FbsS8UohBDiidc+TRwQEMCMGTNIS0vj0KFDTJkyBTMzMwYOHKhTLy0tDXNzc4oUKfK6Q9Q5/8tKT0+nb9++lC1blgULFuDs7MydO3c4fPgwDx48MGKkT85nZmZm9H5zg1ub2lT/rDt/Ba0k5tQVPAY0p+H6QH4OGENq7P0s9Z1qVqTeoqGEzNhE1G+nKdPOj7e/+4Rfmk0k8WIkAFuqDtVpU6JRVerM7s/NXX/lKLa9F+8w+/BFJjSqglcxO9afvsGQbSfZ3rseRawt9LaxMTdlW+962vfP/s54MyGJvpv+5j1PVwbXKU8hc1Ouxj7EwjTnA/PF29bF4/OenB27nIRTVyjzYUtqbRzHoXojSYvJeu+UVuYk3bjH7Z//pPKUXnr7LFK3MjdW/kpiyFUUShPcx3eh1g/jOfz2aFRJqTmKr0yb2tT8rDt/Bq0k5vQVKvdvzjvrAvnp7TGk6PlsnWtWJGDhUE7P2ETkvtOUbedHgxWfsKv5RBL+/Wxt3IrSfPskLm84xJlZW0h7mIx9pZKoUtNzFJsQ4s0mG0gMe+3TxObm5jg7O+Pq6kq3bt3w8/Nj//79BAUFMWTIEBYvXoy/vz/NmzcHsk4Tu7u7s3HjRgYOHEjVqlVp0aIFp0+f5saNG/Ts2RNfX1+6dOlCRESEtk1ERASDBw/Gz8+PatWq0aFDB44ePaoTV6NGjVi4cCFjx46levXqfPrpp/Tq1YspU6bo1IuLi8PLy4tjx4499zqvXLlCREQEn332Gb6+vri6ulKjRg0++eQTfH19AWjcuDEA7733Hu7u7vTs2RMAtVrNggULePvtt/Hy8qJt27YcPnxY23dkZCTu7u7s3r2bHj164O3tzc8//0x8fDwjR44kICCAqlWr8u6777Jz506duB4+fMioUaPw9fXF39+fVatW0bNnT6ZNm6atk5aWxpdffklAQAC+vr506tSJ48ePP/d6c8LjwxZcWX+Aaz8c5v7lW/wVuBJVcirlu9bXX79/M24fCOX84l3cv3KL0K83Ex92Hfc+TbR1UqITdV4lm1Xn7h/neRgRnaPY1p66TnuvkrT1dKW8ow0TGlfB0lTJ9rO3ntvOqZCF9uVYSDdpXHD0Cv5lnBgRUAmPoraUsremQfmiBpPL5yk7qBU31+4ncuMhHl6K4p8xy1Elp1GyawO99RNDrnFhyjpubz+GOjVDb52/u84k6odDPLwYyYNzEYR+vBirUs7Y+pTNcXyVB7Tg8voDXN10mMTLt/gzKPOzrdBF/2dbuV8zbh0M5ey3u0i8couQrzcT94/uZ1stsBOR+89watpG4s7e4OGNe0T+dkpvcimEEIbINLFheb5m0MLCgvT0zN/wjx07Rnh4OCtXrmTJkiUG2yxatIi2bduyfft2ypUrx6hRo/j000/58MMP2bJlCxqNRieJS0pKon79+qxatYpt27YREBDAoEGDuHVL9wf8d999h4eHB9u3b2fIkCF06tSJnTt3kpaWpq2zY8cOihYtSp06dZ57XUWKFMHExIS9e/eiUqn01vnxxx8BWLVqFcHBwcyfPx+A1atXs3LlSgIDA9mxYwf+/v4MGTKE69ev67SfNWsWvXr1Yvfu3fj7+5OWloanpydLly5l586ddO7cmbFjxxIaGqptM3PmTE6fPs3ixYv57rvvOHHiBGfP6k5zTpkyhdOnTzNnzhx27NhB8+bN6d+/f5bzvwwTMyVFfMpy58hT59RouHPkLE41Kuht41SjAreP/KNTdutQqMH6lk62uDb25erGgzmKLV2l5vy9B9Qu5fgkXoWC2qWLEHo7wWC75HQVLVYcpvnyQ4zYcZqrsQ+1x9QaDcHh0ZR2sGbI1pM0WnKAnhv+5MCVezmKDUBhpsTWpyyxR8KeFGo0xBwOw6FmpRz3Z4hpYWsA0hMevqCmLhMzJY4+Zbn9zGd7O/gszgY+K2d9n+3B0Cf1FQpKNvbl/rU7vLNuLJ3OLKTFz5Mp1axGjmITQghhWJ7tJtZoNBw7dozg4GB69OhBfHw81tbWfPHFFy+cnm3fvj0tW7YEYMCAAbz//vsMGTKEgIAAAHr16sW4ceO09T08PPDw8NC+HzFiBPv27WP//v306NFDW16nTh369u2rfe/i4sLUqVPZt2+f9nxbt26lffv2KBTP/83AxcWFiRMn8vXXX7NgwQK8vLyoXbs2bdq0oVSpUgDaKXB7e3ucnZ21bVesWMGAAQNo1aoVAGPGjOH48eN8//33fPbZZ9p6vXv3pmnTpjrn7devn/b/e/bsSXBwML/88gs+Pj48fPiQ7du3M2vWLOrWrQvAjBkztPcN4NatW2zdupUDBw7g4uKi7fPIkSNs3bqVkSNHPve6X8SiSGFMTJWkRCfqlKfEJGJbobjeNpbO9qQ8MwWaEn0fy6L2euuX6xxA+sMUInafyFFs8clpqDQailjr/vlztLbgetwjvW3cHArxWRNPKjnZ8CAtgzUnr/PBD3+xuacfLoUtiUtKIyldxcq/wxnqV5GP/Svyx41YRu0MYWnHmtQsmf1lEOZFbDExVZL6zL1LjU7EpqJrjq7VIIWCKl/0Ju74BR5eiMxR08efbXKMbnzJ0YnYljf82SZHP/PZxtzHytk+87iTLWY2VngNbU3IV5s5OX0jrg2q0mD5x/zaaTp3/7yQpU9Dv3y9jMd9GbNPY8rP8eXn2EDiexW5EZtSqTRaX4bIdxMb9tqTwYMHD1KtWjXS09PRaDS0bt2a4cOHM2XKFCpVqpStdXru7u7a/3d0zBzFqVSpkk5ZamoqDx8+xMbGhkePHrFgwQIOHjxIdHQ0KpWKlJSULCODXl5eOu8tLCxo06YNW7ZsoWXLlpw9e5bLly+zePHibF1r9+7dadu2LX/99Rdnzpxhz549LFmyhMWLF1OvXj29bR4+fMi9e/eoXr26Tnn16tW5cEH3B9+z8apUKr799lv27NnD3bt3SU9PJy0tDUtLSyBzejk9PR0fHx9tm8KFC1O27JPpwEuXLqFSqbTT9I+lpaVhb2+frevOa+W61Of6tqOoX8Oasqol7Klawv7J++L2dFj9B5vDIhnqVwH1v4tUGpQvSo/qbgC4F7XlzO0ENodG5igZfB08Z/bFxr0Uf7b57MWVXwOFSeY/3pF7T3F+2R4A4s9G4FyzIpV6NtabDIaEhBg9jrCwsBdXykP5Ob78HBtIfK/CmLHVqJH7o/3y3cSGvfZksHbt2kyePBkzMzOKFi2qs4s4u7uGn94o8XiETl+ZWp35yX/55ZccPXqUwMBASpcujaWlJR999JF2evp55+/UqRPvvfced+7cYevWrdSpUwdX1+yPwtjY2NCoUSMaNWrEiBEj6Nev33OTwZywtrbWeb9ixQpWr17N+PHjcXd3x8rKiunTp2e5zudJSkpCqVSyZcuWLL+pPXu+l5Ea9wB1hgpLZ93duZZOdiQ/M+L1WEp0ApZOtrr1nW1JuZeQpa5zLXfsKpQgeNCCHMfmYGWOUqEgLilNpzw2KTXLOkBDzJQmuBe15WZCkrZPUxMF5YrY6NQr51CI07eyxv88aXH3UWeosHjm3lk425Gq517kVJXpfSjapDp/vjeZlNtxOW7/+LO1ctKNz8rZLstI8GMp0QlYOT/z2TrZkhyd8KTP9AwSLkfp1Em8HEXRWu7o83hNrjGoVCrCwsLw9vZ+LSMXOZWf48vPsYHE9yryc2zPo5aRQYNeezJoZWWFm5vbaz3n6dOnadeuHU2aZC5Kf/ToEVFRUS9olcnd3R0vLy82bdrEzp07mTRp0kvHoVAoKFeuHKdOnQKeJLBPD7Xb2NhQtGhRTp06Ra1atbTlp06d0hnR0+fUqVM0btyYtm3bApnJ8PXr1ylfvjwAJUuWxMzMjLCwMEqUKAHAgwcPuH79OjVr1gSgcuXKqFQq4uLitGXGpE5XERcaTjF/TyL3nMwsVCgo5u/JxVW/6W0Tc/IKxQI8ubh8r7as+NtexJy8kqVu+a71iT1zjYRzEVmOvYiZ0oTKRQtz/GYsDSsUzYxXo+Gvm3G8X7V0tvpQqTVciXlAvTLO2j6ruNhyI153mvlGQhLFbS1zFJ8mXcX90HAcA7y4+8u/U+AKBY4BXtz4bu/zG79Alel9KNbyLf5sN4XkHG66eUydriI2NJzi/p7c3PvMZ7tS/2cbffIKxfw9Of/MZxv972erTlcRc+Zalmlm23LFeRQZo7fP3PjhpFQq8/UPvfwcX36ODSS+V5GfYxM5k+cbSF4HNzc3fvvtN86fP8+FCxcYNWqUdtQwOzp16sTSpUvRaDTahPJFzp8/z+DBg9mzZw9Xrlzhxo0b/Pjjj2zZskW7i9jR0RFLS0uOHDlCTEyM9pEz/fr1Y9myZezevZtr164xa9YsLly4QK9e+h8N8vR1Hj16lFOnTnH16lU+/fRTYmKe/MC0sbHhvffe46uvvuLPP//k8uXLTJgwAYVCoR1NLVu2LO+++y5jx47l119/5ebNm4SGhrJkyRIOHjyY7Xv2PBeW/kKFbg0o2ykA2wolqDWzD0prC65tPARA3bkD8R3X+Un95Xsp0cAHj4EtsK1QHO9R7SniUy5LgmFqY4Xbu7W4uv7l4+xRvQzb/olix7korsU9ZPrv50lOV9G2SmbyPHFvGPOCL2vrL/nzKsduxBCZmMT5e/eZsCeM2/dTaOf1ZPS4d40y7L10h61hkUQkJLExJILD16Lp7FMqx/GFf7uLUt0b4dr5bQpVLIHXV/0wtbYg8t975zN/CO4TumjrK8yUFPZ0o7CnGybmSiyLFaGwpxvWZVy0dTxn9sW1oz8hg+eT8TAZc2c7zJ3tMLHM+aOKzi/7hYrdGlCuUwB2FUpQZ2YfTK0suPJDZnz15g6kWtCTz/b8ir24NvChysAW2JYvTtWR7XF85rM9u3g3Zd6tQ8VuDShcxgX3D5pQskk1Ln6/L8fxCSHeXBqNwmivguaN+Dq6oKAgxo8fT5cuXXBwcGDAgAE8eqR/Q4A+rVq1Yvr06bRq1QoLi+xNF7q4uODq6srChQuJjIxEoVDg6urK8OHD+eCDDwAwNTVl4sSJLFy4kHnz5lGzZk3WrFlDr169ePjwITNnziQuLo7y5cuzaNEiypQp89xzDh48mJs3b9KvXz+srKzo3Lkz77zzjs5zDYOCgvjss88YNGgQNjY29O/fn9u3b+tc14wZM1i8eDEzZ87k3r172Nvb4+vrS4MGDbJ9z57nxo7jWDjaUnVMByyd7Yg/e4MD3b/SbhIp5OqERv3kgVAxJy7zx9BFVA3shG9QZx6E3+Fw3znaZww+VqZtHVAouL79+Y/9eZ5m7sWIT05j8bGrxCal4u5UmIXvVddOE9+5n4LJU08SfJCazpR954hNSsXWwozKRW1Z9X4tyjs+mRZuVMGFCY2r8N3f4Xx18AJuDoX4unVVqrk65Di+2z8dw9zRlkpjO2Fe1J4HZ2/wV9eZpP07DWvl6gRP3TvLYkUI2P+l9n25oe9Sbui7xP5xjuPtM3fcu/XJ3IRUZ7vuOsEzHy0m6t8kLruu7ziORRFbfEd3yHzo9Nkb/N7jqc+2hO5nG33iMkeGLcJ3bCeqBXbmfvgdDvabo33GIMDNPSc4HvQdXsPb8NaUXty/dptDA+Zy7+9LOYpNCPFmK4iPhDEWhUYjj2F8kcjISJo0acLmzZvx9PTM63CMKikpibfffpvAwEA6depktH7Xlejx4kp5qN2knCdir9PByS83Vfu6xBj4xqD8oFeU/m+jeRkqlYqQkBB8fX3z5XRYfo4vP8cGEt+ryM+xPc+FSi2N1pfHpd1G6ys/yL//oucD6enpJCQk8M0331C1atUCkQieO3eOa9eu4ePjw4MHD1i4cCHw5AHYQgghREEkQ1+GSTL4HKdOnaJXr16UKVOGefPm6Rw7ceIEAwYMMNj29OnTuR3eS/vuu+8IDw/HzMwMT09P1q1bl2df+yeEEEK8DjJNbJgkg89Ru3ZtLl68qPeYl5cX27dvf70BGUGVKlXYunVrXochhBBCiHxCksGXZGlp+dofkSOEEEKIlyPPGTRMkkEhhBBCFHgF8ZEwxvJGPGdQCCGEEELoJ8mgEEIIIQo8jcZ4r5xat24djRo1wtvbm06dOhEaGmqw7qZNm+jWrRtvvfUWb731Fh988MFz6xuDJINCCCGEKPDUGoXRXjmxe/duZsyYwdChQ9m2bRseHh7069eP2NhYvfWPHz9Oq1atWL16NRs3bqR48eL07duXu3fvGuM26CXJoBBCCCEKvLz6OrqVK1fSuXNnOnToQIUKFfj888+xtLRky5YteuvPnj2b7t27U7lyZcqXL88XX3yBWq3m2LGX/3atF5FkUAghhBAiB9LS0nj48KHOKy0tTW+9s2fP4ufnpy0zMTHBz88v288jTk5OJiMjAzs7O6PF/yxJBoUQQghR4BlzzeCSJUuoUaOGzmvJkiVZzhkfH49KpcLR0VGn3NHRkZiYmGzFPWvWLIoWLaqTUBqbPFpGCCGEEAWeMZ8zOHDgQPr06aNTZm5ubrT+H1u6dCm7d+9m9erVWFhYGL3/xyQZFEIIIYTIAXNz82wlfw4ODiiVyiybRWJjY3Fycnpu2xUrVrB06VJWrlyJh4fHK8X7IpIMilxRSK3O6xCeS3M3e8PzeSVemb//aqryOoDneDCkhVH7qwQkGbG/wot+MWJvQojsyouHTpubm+Pp6cmxY8d45513ALSbQXr06GGw3bJly/j2229ZsWIF3t7euR5n/v6JI4QQQghhBHn1dXR9+vQhMDAQLy8vfHx8+P7770lOTqZ9+/YAjB07FhcXF0aNGgVkTg3PmzeP2bNn4+rqSnR0NADW1tYUKlQoV2KUZFAIIYQQIpe0bNmSuLg45s2bR3R0NJUrV2b58uXaaeLbt29jYvJkP+/GjRtJT0/no48+0uln2LBhDB8+PFdilGRQCCGEEAXeS3xxiNH06NHD4LTwmjVrdN7v37//dYSkQ5JBIYQQQhR4eTVN/F8gzxkUQgghhHiDycigEEIIIQq8vNhN/F8hyaAQQgghCrz8/cCzvCXJoBBCCCEKPA0yMmiIrBkUQgghhHiDycigEEIIIQo8dV4+Wyafk2RQCCGEEAWeWqaJDZJp4hxq1KgRq1atyuswhBBCCCGMIldHBoOCgti2bVuWcn9/f1asWPHC9j179sTDw4MJEybkRni57sKFC3zzzTecOXOGhw8f4uzsjI+PD5MmTcLR0ZHjx4/Tq1cv/v77b2xtbfM63DxVtk8TKg5pjYWzHYnnIgid8D0Jp6/qrVvY3ZXKYzphX7Us1qWcCZu0mqvL9hgtFtO3mmBW710UNnao70SQ9ssq1FH6Y3ma0qsulh0/IuPC36Ru/N+TA4XsMG/SFWV5HxSW1qhuXCBt9yo0cXdeKr5KH7xD5cGtsHK2I/5cBCcmriY25JrB+qVb18JnbEdsSjrxIPwup6dt5Nb+M9rj3W+t1dvu1NQNnF+8K8fxefR+B6+n4vtz0mpinhNfmda1qDbmSXwnpm8k8qn4/Od8SMXOb+u0iTwQym89vspxbABmb7fGvElHFLYOqCOvkbJpMeobl17YzrRGfaz6BZF+5igpS6Zqy81bdce0Rn1MHJxBlY4q4gqpO75Hff3iS8UnhMgdsoHEsFyfJg4ICGDGjBk6Zebm5rl9Wh1paWmv/ZxxcXH07t2bhg0bsmLFCgoXLkxUVBT79+8nKSkJR0dHo51Lo9GgUqkwNf1vzvq7tq2D1+QenAn8jvhTVyg/oAV+G4LY5z+KtJj7WeorrSx4FHGPqJ+P4z1F/9f7vCylZx3Mm/UkbecKVFFXMKvTAsseQSQtGAWPssbymMLeCfOm3VHdOJ/lmGWXkaBWkbphFprUZMzqtsSy13iSF46B9NQcxefWpjbVP+vOX0EriTl1BY8BzWm4PpCfA8aQGps1PqeaFam3aCghMzYR9dtpyrTz4+3vPuGXZhNJvBgJwJaqQ3XalGhUlTqz+3Nz1185ig2gbJva1PqsO0eDVhJ9+gqe/ZvTdF0gW98eQ4qe+IrWrEj9hUM5OWMTN/edplw7Pxqt+IQdzSeS8G98AJH7zxA8cqn2vSotPcexAZjWeBuLDh+SsmE+6usXMWv0HtbDv+DR5AFoHiYabKcoUhSL9v3JuByW5Zj6bhSpPyxCHXMHhbk5Zo3aYT18Go8+6/fcPoUQr5c8WsawXJ8mNjc3x9nZWedlZ2fH8ePH8fLy4sSJE9q6y5Yto27dusTExBAUFMRff/3F6tWrcXd3x93dncjIzB8Oly5don///lSrVg0/Pz/GjBlDXFyctp+ePXsyZcoUpk2bRu3atenXrx/Hjx/H3d2dY8eO0b59e6pWrUqXLl24du3JiEVERASDBw/Gz8+PatWq0aFDB44ePfpS133q1CkePnzIF198QZUqVShVqhR16tRh/PjxlCpVisjISHr16gXAW2+9hbu7O0FBQUBm8vrFF19Qt25dvL296dq1K6Ghodq+H1/LoUOHaN++Pd7e3pw8eTJb8d+7d48PP/wQHx8fGjVqxM8//5xl6vv+/ftMmDCBOnXqUL16dXr16sWFCxde6j5kR/mBLbmx7gARGw/x4FIUIWNXoEpOxa1Lfb31E0KucXbKeqJ+OoY6LcOosZjVbUXGqf1khBxCEx1F2s4VaNLTMKvWwHAjhQKL9sNIP7AZdfw93UOOxVCWqkTqzu9Q37qGJvY2abu+Q2Fmjqm3X47j8/iwBVfWH+DaD4e5f/kWfwWuRJWcSvmu+u+VR/9m3D4QyvnFu7h/5RahX28mPuw67n2aaOukRCfqvEo2q87dP87zMCI6x/F5DmjBpfUHuLLpMImXb3E0aCUZyalUNPBZVunXjKiDofzz7S4Sr9zi9Nebif3nOpWfig8yk7/k6ETtKy0xKcexAZg3akf6H7+Q8edvqO9EkLphPpq0VMz8mhpupDDBqs9Y0natQROTdTQ348RBVBdD0MTeQX07gtQty1BYFcLEtexLxSiEEK9bnq0ZrF27Nr169WLs2LE8ePCAc+fOMXfuXL744gucnJyYMGEC1apVo3PnzgQHBxMcHEzx4sW5f/8+vXv3pkqVKmzevJnly5cTGxvLiBEjdPrftm0bZmZmbNiwgc8//1xbPmfOHIKCgtiyZQtKpZLx48drjyUlJVG/fn1WrVrFtm3bCAgIYNCgQdy6dSvH1+fk5ERGRga//fYbGk3WLUzFixdn/vz5AOzZs4fg4GDtdPhXX33F3r17mTlzJtu2bcPNzY3+/fuTkJCg08fs2bMZNWoUu3fvxt3dPVvxBwYGcu/ePdasWcP8+fPZtGkTsbGxOv1+/PHHxMbGsmzZMrZu3Yqnpye9e/fOcn5jUJgpsfcpS/Thf54UajREH/mHIjUrGv18z6VUYlKiLKprurGorv2DSUnDsZjV74Dm0X0yTh/U06dZ5n8z0nT61GRkYFLaPUfhmZgpKeJTljtHzur0defIWZxqVNDbxqlGBW4f+Uen7NahUIP1LZ1scW3sy9WNB3MU2+P4HH3KcuuZ+G4Hn6WogfM516jArWfiizoYmqV+sbqV6XJmIe0Pf03dGR9g4WCT4/hQmmJSuiKqiyE68akuhGBStrLBZuYtu6F+kEj60V+zdQ4z/xZokh6ijjQ8NS6EeP00KIz2KmhyfV7x4MGDVKtWTads4MCBDBo0iBEjRnD06FEmTZrE5cuXadeuHY0bNwagcOHCmJmZYWlpibOzs7bt2rVrqVKlCiNHjtSWTZ8+nfr16xMeHk7Zspm/jZcpU4axY8dq60RHZ45yfPLJJ9SqVQuADz/8kA8//JDU1FQsLCzw8PDAw8ND22bEiBHs27eP/fv306NHzqYjfX19GTRoEKNHj2by5Ml4e3tTp04d3nvvPZycnFAqldjZ2QHg6OioXTOYlJTExo0bmTFjBvXrZ46mTJ06lT/++IPNmzfTv39/7Tk++ugj6tWrp31vb2//3PivXr3K0aNH2bx5M97e3gB88cUXNG36ZFTkxIkThIaGcuzYMe3UemBgIPv27WPv3r28//77OboPL2JRpDAmpkpSonWn01KjE7GpUMKo53oRhbUtChNllqk9zaNETJz0x2JS2h3T6g1I/nac3uOamFuoE6Ixf6crqT8vh/QUzOq0xMTOEbWNfY7iM3SvUmISsa1QXG8bS2d7Up6Zak+Jvo9lUf3nLtc5gPSHKUTsPqH3eHbiS47RjS85OhG78vrjs3K2Jzn6mfhi7mPl/CS+qAOh3Nh9goc371HYzYUaQZ1psmYMu9pMRpODZ0UobGxRKJWo78frlGsexKN0Kam3jbK8J2Z+zUiaPlTvcW09r1pY9Q0Ccws09+NImj8BjYFlBSqVKtsxv8jjvozZp7Hk59hA4nsVuRGbUqk0Wl+GyDSxYbmeDNauXZvJkyfrlD1OgszNzZk1axZt2rShRIkSjBun/wfq0y5cuMDx48ezJJiQOc37OBn09PTU297d/clozOMkMzY2lhIlSvDo0SMWLFjAwYMHiY6ORqVSkZKS8lIjg5CZeH7wwQf8+eefhIaGsnHjRpYsWcLatWt14nj2GtLT06levbq2zMzMDB8fH65e1d3E8Dihe+xF8YeHh2Nqaqpzb9zc3LSfB8DFixdJSkqidu3aOn2npKQQERHxUvehwDK3xKLdENJ2LIOkB/rrqFWk/jAH87YfUihoORq1CtW1f8i4fBry4W+X5brU5/q2o6hTX25NXm4I3/Gn9v/jL0QSdz6CTsfmUMyvCreDzz6n5SuysMKy92hS1s01mNg9prp0hkczhqIoZIeZf3Os+o0j6asRetcMhoSEGD3UsLCsaxnzi/wcG0h8r8KYsdWoUcNofRkiyaBhuZ4MWllZ4ebmZvD46dOnAUhMTCQxMRFra+vn9peUlETDhg0ZPXp0lmNPjyBaWVnpbf/0JguFIvOHsVqd+Ufkyy+/5OjRowQGBlK6dGksLS356KOPSE9/+R+MDg4OtGjRghYtWvDJJ5/Qrl07vvvuO7788suX7vOxZ6/RGPE/evQIZ2dn1qxZk+VY4cKFXznmZ6XGPUCdocLS2U6n3MLZjtR7CUY/3/Noku6jUatQ2OjGoihkh+Zh1lhMirhg4lAUi25jnqqc+WfK+tO1JM8fiSb+Hurb4aR8Ow4srEBpCkkPsOw/FfWtnE0jGrpXlk52JEfr36iQEp2ApZPuTnVLZ1tS9Nxb51ru2FUoQfCgBTmK69n4rJx047NyNhxfcnQCVs7PxOdkS3J01vgeexgRTUrsfWzLuOQoGdQ8vI9GpcLE1kHnh4KisEOW0UIAE+fimDgVw2rw5KcqZ36+NvN38ujzAWhibmeWp6Wiib6NJvo2qdcvYDp5OWb1mpG2d1OWfn19fbMd84uoVCrCwsLw9vZ+LSMrOZGfYwOJ71Xk59jEy8nT7acRERFMnz6dqVOnsnv3bgIDA1m1ahUmJplLGc3MzLSJ2mOenp7s3bsXV1dXo++ePX36NO3ataNJk8zF648ePSIqKspo/Zubm1OqVCmSk5OBzOsD3aH20qVLY2ZmxqlTp3B1dQUgPT2dsLAwevfu/Urxly1bloyMDM6dO4eXlxcAN27cIDHxyQ9qT09PYmJiUCqVlCypf+rMmDTpKhJCw3EO8OT2nn+nJhUKnP09ufZdNtZoGZNKhfpWOMqyXqguPIlFWc6TjL+yxqKOuUXSojE6ZeaNOqMwtyJ1z/do7uuuxSQ183NXFCmGSYlypB/Imig8jzpdRVxoOMX8PYncc1IbXzF/Ty6u+k1vm5iTVygW4MnF5Xu1ZcXf9iLm5JUsdct3rU/smWsknHu5EWB1uorY0HCK+3sSsfdJfMX9PTm/Un980SevUNzfk3NPxef6thf39MT3mHXxIlg42JB0NyFnAaoyUEdcRunuS8aZY9r4lO6+pB/akfV67tzk0dRBOmXmbXqhsLAm9cdv0cQ/Z4ONwgRMzfQeyo0fnkqlMt/+UM7PsYHE9yryc2z6FMS1fsaS6xtI0tLSiI6O1nnFxcWhUqkYM2YMAQEBdOjQgRkzZnDx4kW+++47bVtXV1fOnDlDZGQkcXFxqNVqunXrRmJiIiNHjiQ0NJSIiAiOHDnCuHHjXnn9gpubG7/99hvnz5/nwoULjBo1Kksyml0HDhxg9OjRHDhwgPDwcK5du8aKFSs4fPgwjRo10l6fQqHg4MGDxMXF8ejRI6ytrenatStfffUVhw8f5sqVK0yaNImUlBQ6duz4SvGXL18ePz8/Pv30U0JDQzl37hyTJk3C0tJSO0rq5+eHr68vQ4cOJTg4mMjISE6dOsWcOXNybbri6pLduHVvSKnOAdhULEHVL/uitLYkYuMhAKrPH0yV8U/WKirMlNh5umHn6YbCzBTL4kWw83SjUBmXV44l/dguTGs0xLTq2yicSmDeqi8KMwvST2fGYt5uMGaNu2RWzkhHcy9S95WShCYtGc29SPj3z6OySm1MylRG4VAUpXsNLHuNR3Xhb1RXc34/Lyz9hQrdGlC2UwC2FUpQa2YflNYWXPv3XtWdOxDfcZ2f1F++lxINfPAY2ALbCsXxHtWeIj7luPhMcmZqY4Xbu7W4uv7gS9y1J84u+4VK3RpQoVMAdhVK4DezD6ZWFlz+ITO+gLkDqRH0JL5zK/ZSsoEPngNbYFe+OL4j2+PoU06bPJpaW1BzYlecq5fHpqQTxf09afzdJ9y/fpeoQ6F6Y3ietP3bMKvXHNPa72BSrBQWXYahsLAg/Vjm+Sx7j8K87QeZlTPSUd++ofMi6RGa1KTM/1dlgLkF5m16Y1LGA0WRopiUqoBlj09Q2DuScerIK91LIYRxqRXGexU0uT4yeOTIEfz9/XXKypYtS+vWrYmKiuLbb78FoGjRokydOpWRI0fi7++Ph4cHffv2JSgoiFatWpGSksLvv/9OyZIl2bBhA7NmzaJfv36kpaVRokQJAgICtCOKLysoKIjx48fTpUsXHBwcGDBgAI8ePXqpvipUqICVlRUzZ87kzp07mJub4+bmxhdffMF7770HgIuLC8OHD2f27NmMGzeO9957j5kzZzJ69Gg0Gg1jx47l0aNHeHl5sXz5cp21fS8b/5dffsmECRPo3r07zs7OjBw5kitXrmBhYQFkTp0vXbqUb775hnHjxhEfH4+TkxM1a9bEycnppe7Fi0T99CfmjrZUHtsRC2d7Es/e4FjXmaT+u/HB2tURnkpqrYo50PD3J8+urDikNRWHtCbm6DmC23/xSrGozv5JWiFbzBp2xNzGHvWdG6SsnQmPMkdPTeycUOvZHf48isL2mDfricLGDs2DeDLOHCH98NaXiu/GjuNYONpSdUwHLJ3tiD97gwPdv9JuEink6qSzqSLmxGX+GLqIqoGd8A3qzIPwOxzuO0f7jMHHyrStAwoF17cfe6m4HgvfcRzLIrZUG90BK2c74s7e4NceT8VXQje+eycuc2jYIqqP7USNwM7cD7/D/n5ztM8Y1KjVFKlcigqd/DG3LUTS3XhuHQrj1NebX+qxQhknD5NqY4dF6x4obIugjrxK0oJJaB4kAKBwKIpJTr7AVK3GpFgprOq8k7mc4NF9VDcukfS/MahvyxpbIcR/g0Kj77kn4o1x584d7eNo6tata7R+txfrZrS+ckOTQfn7j/32pfl76iUtH/9m3LFt7Isr5aHCi34xWl8qlYqQkBB8fX3z3XRdfo4NJL5XkZ9je56fjPhzqe2d9UbrKz/4b35lhXhpx44dIykpiUqVKhEdHc3XX3+Nq6srNWvWzOvQhBBCiFyTv4cA8pYkgy9px44dfPbZZ3qPlShRgl27cv6drq9DRkYGc+bM4ebNmxQqVIhq1aoxa9Ys7WYWIYQQQrxZJBl8SY0aNaJq1ap6j+Xn7wgOCAggICAgr8MQQgghXit5zqBh+TdryedsbGywsXmJr8QSQgghxGunVuTjxc55LM++m1gIIYQQQuQ9GRkUQgghRIEnG0gMk2RQCCGEEAWerBk0TJJBIYQQQhR4BfGbQ4xF1gwKIYQQQrzBZGRQCCGEEAWeGhkaNESSQSGEEEIUeLKBxDCZJhZCCCGEeIPJyKAQQgghCjzZQGKYJIMiV6Tm8ye9mw/7Iq9DeK6DqwLzOoTnqqGyyOsQDFJ6V8jrEJ7r0YzeRu3PA0j51Xj9FRr3vfE6EyIfkUfLGCbTxEIIIYQQbzAZGRRCCCFEgScbSAyTZFAIIYQQBZ6sGTRMpomFEEIIId5gMjIohBBCiAJPNpAYJsmgEEIIIQo8SQYNk2RQCCGEEAWeRtYMGiRrBoUQQggh3mAyMiiEEEKIAk+miQ2TZFAIIYQQBZ4kg4bJNLEQQgghxBtMkkHA3d2dffv2GaWvyMhI3N3dOX/+vFH6M4agoCCGDBmS12EIIYQQeUZjxFdBU6CniYOCgti2bRsApqam2NnZ4e7uTqtWrWjfvj0mJpm5cHBwMHZ2dnkZ6ivZtGkTa9eu5ebNmyiVSkqWLEmLFi0YOHAgABMmTECjyV9/fCt80ASPIa2wdLYj4VwEpyZ8T1zINYP1S7auhXdgJwqVdOJB+F1Cv9jA7f1ntMdNrS3wmdAF1+Y1MXew4dHNaC6v2MvV1b/nOLYNW35m5frNxMTF416hHOM/GYx3FXeD9df8sI0ftu3i9t1o7O1tadrAnxGD+mBhYZ6l7vI1m/jm25X06NSWoBGDchzbY20+eZ+Aro2xti3ElRMXWDdxGfeu3zFYv2KtyjT7sA1u3uWwdynCwg+/IuTXv7XHlaZK3hvdBa8G1XEuXZTkB0mcDw5jy5frSLwXn6PYPHu/g+/AVlg52xF7PoI/Pl3Nved8tuVa1eKt0R0pXNKJxOt3OT59IxEHnny2NT9pT/k2dbApUQR1morosHD++upH7oVczVFcj/1wJoLvT1wnNimNSk42BDasjFcx/X//d5yN4rPfzuqUmStNOD78HZ2ya3EPmRt8mVOR8WSo1ZRztGFWq6oUt7XKUWym1RtjVrsFChs71PdukvbrWtS39d87U29/LFoP0CnTZKSR9PWTMmWlGphVb4RJsTIorGxIXjEJ9b2IHMUkREGRl99Asm7dOlasWEF0dDQeHh5MmjQJHx8fg/V/+eUX5s6dS1RUFGXKlGH06NHUr18/1+Ir8CODAQEBBAcHs3//fpYtW0bt2rWZNm0aAwcOJCMjAwBnZ2fMzbP+4P4v2Lx5M9OnT6dnz55s376dDRs20L9/f5KSkrR1ChcujK2tbR5GqatUmzr4Tu7O2dlb+bXZRBLORVB/QxAWjvpjdKxZkbqLh3Ft/UH2Np1A1J4T1Fs5Ejv3kto6vp/3oFhDH/4ctohf3h7DpWW/UH1ab0o0rZ6j2H7Zd4iv5i9lcN/u/PjdfNwrlGXgyInExiforb/r1wPM+XYlg/t2Z8f6pUwJGsGe3w8zd8mqLHXDzl/kx592U6lC2RzF9Kzmg9rSuE8L1k5YyvT3xpGWnMqI1RMxtTAz2MbC2oLI8zdY/+kKvcfNrSwo7VmOXfM3M7V1IIsHzcKlfAmGLQ/MUWzl362N36TunPhmG1taTiT2XASt1gRiaeCzdalRkXcWDOXCxkNsbjGR63tP0mz5Jzg89dkmhN8meNL3bGoyju0dpvAgMoZW6wKxLFI4R7EB7L14h9mHLzKwTnnWd6tDJefCDNl2krikVINtbMxN+W1Afe1rd98AneM3E5Lou+lvyjoUYlnHmmzq4ceAWuWwMM3ZP6/KyrUwb9yV9OCfSP7uM9R3b2L5/miwNnydmpQkkuZ99OS1cJTOcYW5Baqbl0g7sClHsQghjGf37t3MmDGDoUOHsm3bNjw8POjXrx+xsbF66586dYpRo0bRsWNHtm/fTuPGjRk6dCiXLl3KtRgLfDJobm6Os7MzLi4ueHp6MmjQIBYtWsThw4e1o4ZPTxOnpaUxZcoU/P398fb2pmHDhixZskTbn7u7O+vXr6d///74+PjQuHFj9uzZY/D8KpWK8ePH06hRI3x8fGjWrBnff/+99vjff/+Np6cn0dHROu2mTZtGt27dXnh9+/fvp0WLFnTq1Ak3NzcqVqxI69at+eSTT7R1np4mfjyN/eyrZ8+e2vonTpygW7du+Pj4UL9+fb744gud5PJVuQ9swbV1Bwj/4TD3L0VxYux3ZCSnUrar/t96KvVvzp0DoVxcvIsHl2/xz1ebSQi7ToW+TbV1nGpW5PqPR4g+dp6kyBiurT1AwrkIilQrn6PYVv+wjY7vtqBdq6aUL+vGp2OGY2lhwbadv+qtHxJ2nmreVWjVtCGuxV2oV7sGLZs0IOz8RZ16SUnJBH3+NZMDP8a2sE2OYnpW476t2DV/C2d+O0HUhQi+G7kAexcHqjV9y2Cbfw6GsH32Rk7v/Uvv8eQHSczpOZUTu45x99otrp2+zIZPV1DGpzxFSjhlOzafAS04v+EAFzcdJv7yLQ6PW0lGSioe7+v/bL37NePmwVDOLNlFwpVb/D1rMzH/XMerdxNtnSvbjxEVfJYHEdHEX4ri6JR1WNha41i5dLbjemztqeu09ypJW09XyjvaMKFxFSxNlWw/e+u57ZwKWWhfjoUsdI4tOHoF/zJOjAiohEdRW0rZW9OgfFGKWFsY6E0/s1rNyThziIywI2hib5G2ZxWajDTMfN5+TisNmkeJ2hdJ93WOZvxzlPQ/fkJ1/ayB9kK8OdRGfOXEypUr6dy5Mx06dKBChQp8/vnnWFpasmXLFr31V69eTUBAAP3796d8+fKMGDGCKlWqsHbt2pxecrYV+GRQn7p16+Lh4cGvv2b9Ab9mzRr279/PN998w549e/j6669xdXXVqTN37lyaNWvGTz/9xLvvvsvIkSO5elX/lJVaraZYsWLMnTuXXbt2MXToUObMmcPu3bsBeOuttyhZsiQ//fSTtk16ejo///wzHTp0eOG1ODk5ERISQlRUVLauvXjx4gQHB2tf27dvx97enpo1awIQERHBgAEDaNq0KTt27GDOnDmcPHmSqVOnZqv/FzExU+LgU5a7R/55UqjRcPfIPzjVqKi3jWPNCrr1gdsHQ3GqUUH7PubEZVybVseqmAMARf2qULhcMe4eCst2bOnp6Zy7eJk6b/k+idfEhDo1fTnzj/41oL7elTl38Qph5zKTv5tRtzl87G8C6ugmZl/MXsjbdd+i7lvVsh2PPk6limJf1IHzfzy5ruQHSVwLuUK56oansl+GVWFr1Go1SfcfZau+iZkSZ++yRAY/lXhoNEQeOYvLU5/V01yqVyAyWPezvXko1GB9EzMlVbo3JDXxEbHnbmTvQv6VrlJz/t4DapdyfNKfQkHt0kUIvZ1gsF1yuooWKw7TfPkhRuw4zdXYh9pjao2G4PBoSjtYM2TrSRotOUDPDX9y4Mq9HMWGiRKTYmVQhT+dtGlQXT+Liav+ewGAuSVWQ2ZjNfR/WHT4GIWTq+G6QrzhjJkMpqWl8fDhQ51XWlpalnOmpaVx9uxZ/Pz8tGUmJib4+flx+vRpvXGGhIRQt25dnTJ/f39CQkJe/uJfoECvGXyecuXKcfHixSzlt2/fxs3NjRo1aqBQKLIkggDNmzenU6dOAIwYMYKjR4+yZs0aJk+enKWumZkZH330kfZ9qVKlCAkJYc+ePbRs2RKAjh07snXrVvr37w/AgQMHSE1NpUWLFi+8jmHDhjF8+HAaNWpEmTJlqFatGm+//TbNmzfXrol8mlKpxNnZGYDU1FSGDh1KtWrVGD58OABLlizh3Xff5YMPPgCgTJkyTJgwgZ49ezJ58mQsLHI22vEs8yKFMTFVkhKdqFOeEn0f2wol9LaxdLbPUj81OhHLovba96cmfE/Nr/vR5vQC1OkZaNQaToxZTvSfF7IdW3zCfVQqNY5FHHTKHYs4EB4RqbdNq6YNiU+8T8/Bo0GjIUOlovN7Lfmwdxdtnd37DnL+0lU2Lp+b7VgMsXO2B+B+dIJO+YPoBO0xYzC1MKNDUA/+3vEHKQ+Ts9XG8t/PNvmZzyo5JhH7CsX1trF2tic55v4z9e9j/cy1lG7sS5OFwzC1MifpXgI7u39JSvxDciI+OQ2VRkMRa90lIY7WFlyP05/wujkU4rMmnlRysuFBWgZrTl7ngx/+YnNPP1wKWxKXlEZSuoqVf4cz1K8iH/tX5I8bsYzaGcLSjjWpWbJItmJTWBdGYaJEk6R77zSPEjFx1H/v1HG3Sdu1AvW9m2BhhVntFlj1nEjy8vFoHuRsnefTVCrVS7fV14+x+jM2ie/l5UZsSqXSaH29DkuWLGHBggU6ZY9/Hj8tPj4elUqFo6OjTrmjoyPXrulfDxwTE4OTk1OW+jExMUaIXL83NhnUaDQoFFlXk7Zr146+ffvSvHlzAgICaNCgAf7+/jp1qlXTHd3x9fV97u7hdevWsWXLFm7dukVqairp6el4eHhoj7dv3565c+cSEhKCr68vW7dupUWLFlhbW7/wOooWLcoPP/zApUuX+Pvvvzl9+jRBQUFs3ryZ5cuX600IHxs/fjyPHj3iu+++09a7cOECFy9e5Oeff9bW02g0qNVqIiMjKV8+Z9Our0vFvk1xrF6BI71m8SgyBuc6HlSf/gHJd+K5eyT3psj+OhXKstU/MHHUUHw83YmIvMXMuUv4duV6BvXpxu270cz8ZgnLvpmud0PJi9Ru60+P6QO17+f3nWHM8PVSmioZuGAkKGDtxGW5fr7suHX0PD82n4Clgw2VuzWkyaJhbG0zmZTY+y9u/AqqlrCnagn7J++L29Nh9R9sDotkqF8F1P9uzGpQvig9qrsB4F7UljO3E9gcGpntZPBlqKOuoo56MiORGnUFqw9nYFqtIemHt750v8YefQgLy/7ofF6Q+F6eMWOrUaOG0foyxJjbKAcOHEifPn10yv6rew/gDU4Gr169SsmSJbOUe3p68vvvv3P48GGOHj3KiBEj8PPzY968eS91nl27dvHll18SGBhItWrVKFSoECtWrODMmSe7JR0dHWnYsCFbt26lZMmSHDlyhNWrV+foPJUqVaJSpUp0796dEydO0L17d/766y/q1Kmjt/6iRYsIDg7mxx9/xMbmyRq2pKQkunTporOG8LHixfWPUOREWtwD1BkqLJ11d29aOtuSci9Rb5uU6IQs9S2c7Ui5lwCA0tIM73Hv80ffOdz+PQSAxPM3cfB0w31wq2wngw72tiiVJsTG6Y6qxMbF4/TMaOFjC5at5t1mjejYpjkAlcqXJTkllc+/nMeHvbtw7uJl4uIT6Nx3mLaNSqXmZMg/bNj6M6cO7Hjub8Qh+05wLeSK9r2ZeeZfWVtnexKfGh0s7GzPzXPXs3Wdz6M0VTJw4UgcSzoxu+vn2R4VBEj597O1euazsnKyIyla/2ebFJ2AlZPtM/VtSXpm5DMjOZX71+9y//pd7p2+StfDs6jcpT6nF/5MdjlYmaNUKIhL0p3KiU1KzbIO0BAzpQnuRW25mZCk7dPUREG5IrrrQMs5FOL0rQQ9PeinSXqARq1CYa177xSF7NA81H/vslCrUN+5gYmDS7bPq4+vr+8rtX9MpVIRFhaGt7d3vhz1kfheXn6O7XmMuZvY3Nw8W8mfg4MDSqUyy2aR2NjYLKN/jzk5OWUZBXxefWN4I5PBY8eOcenSJe1U6LNsbGxo2bIlLVu2pFmzZvTv35+EhATs7e2BzN+c33vvPW39M2fOULlyZb19nTp1imrVqtG9e3dtWURE1kc7dOzYkVGjRuHi4kKpUqVe6bekChUy1xglJ+v/Qb53714WLVrEsmXLKF1adxF+lSpVuHLlCm5ubi99/udRp6uIDw3Hxd+TqD0nMwsVClz8vbi8Uv8mjdgTVyjq78mlZU826hR724uYk5lJksLUFKW5aZbH52jUahTPGRl9lpmZGVXcK3L8RAiN385c36FWqzl+MoSuHdrobZOSmoqJie6/MMp/z6nRaKhTw5dtaxbrHJ847X+UdStFvx6dXvgPaeqjFKIf6T4yJuFePB5+Xtrkz9LGinK+FTi0dm+2r1Wfx4lg0TLFmNX1cx4l5GwaVp2e+dgX13qeXN/75LN19ffkn1W/6W1z99QVXOt5ErbiSewlA7y4e/KK3vpaJgqU5oZ3T+tjpjShctHCHL8ZS8MKRTNj1mj462Yc71fN3mYUlVrDlZgH1CvjrO2ziostN+J1p5lvJCRR3NYy+8GpVajvXEdZpgqqy6f+LVSgdKtCxslsPgNVocCkaElUV0Ozf149jP3DXalU5uuEQeJ7efk5Nn3y4htIzM3N8fT05NixY7zzTuYjqdRqNceOHaNHjx562/j6+vLnn3/q5ChHjx412i9q+hT4ZDAtLY3o6GjUajUxMTEcOXKEJUuW0LBhQ52E7rGVK1fi7OxM5cqVMTExYc+ePTg7O+s8mmXPnj14eXlRo0YNfv75Z0JDQ5k2bZre87u5ubF9+3aOHDmi3SgSFhaWZVQyICAAGxsbFi9erLPG8EU+++wzihYtSp06dShWrBjR0dEsXryYIkWK6P2Dc+nSJQIDA+nfvz8VKlTQ7mI2MzPD3t6eAQMG8P777zNlyhQ6deqElZUVV65c4ejRo3z66afZjut5Li75hdpzBxJ3JpzYkKu4D2iOqbUF4RsPAVB73iCS7sQTNv2HzJiX76HR1om4D2zJrd9PU7ptXRyqluPEmMzHpGQ8TObe0XP4TurKyeQ0kiJjcK5bGbeOAYRMztnuq17vt2PCtNl4elTEq4o7azdtJzkllfdaZe5uHTd1FkWdHPlkcOb0QP16tVm9cSselcrjU8WDiMhbzF+2mvr1aqNUKilUyJqK5cronMPKyhJ728JZyrPr9+920Wp4B+5dv0PMzXu0HfU+CXfjOf3UcwNHrvuU03v/4sDqzATawtqSomWKaY87lSpKqSpleJTwkLhbMShNlQxaPIrSnmWZ328mJkoTbP9dt/co4SGq9IxsxRa67Bca/m8g0aHh3Au5ik+/5phZWXBxU+Zn23DOQB7dieevLzMfdRK2Yi9tfpyAz4ctiPg9hApt6uLsU45DQd8BYGplQfWP2nL915Mk3UvAskhhvHo3oZCLA1d3Hc/xvetRvQyf/voPVVxs8Spmx/pTESSnq2hbJXO96sS9YRQtZMlH/pmbmZb8eRWf4naUsrfmQWoG35+4zu37KbTzerKWuHeNMgTuDqW6qwM1SxXh6PUYDl+LZlnHmjmKLf2vPVi0HoD6TjiqW9cwe6sZCjML0kOPAGDe+kM0D+JJP/QjAGb12qK+dRV1/F0UFtaY1WmJwtaJ9JBDTzq1LISJrSOKwvYAKByLYQJPdh8LIXJdnz59CAwMxMvLCx8fH77//nuSk5Np3749AGPHjsXFxYVRozIfDdWrVy969uzJd999R/369dm9ezf//PMPU6ZMybUYC3wyeOTIEfz9/TE1NcXW1hYPDw8mTpxIu3bt9K6nK1SoEMuXL+fGjRuYmJjg7e3N0qVLdeoOHz6c3bt38/nnn+Ps7Mzs2bO1o3HP6tKlC+fPn+eTTz5BoVDQqlUrunXrxuHDh3XqmZiY0K5dO5YsWaI3STXEz8+PLVu2sGHDBhISEnBwcKBatWqsWrUKB4esU5v//PMPycnJLF68mMWLn4xY1apVizVr1uDh4cGaNWv45ptvtI+2KVWqlHazizHc3PEnFo6F8RrbMfOh02dvcKjbl6T+u5HA2tURjfrJKF/sicscG7IQ78BOeI/rzMPwO/zR538kXnyyqePYoAX4jH+fOguHYG5vQ1JUDGFfbsrxQ6dbvFOf+IREFixfS0xcHB4Vy/Pt7KnaaeLbd+9h8tRa04G9u6JQKJi/dDX3omNxcLCjQb3afPRh71e5Rc+159ufMLeypOeMgVjbWnP57wvM7T2NjNR0bR1nNxdsnnoOn5tPOcZs/Fz7/v1JHwBwdPNBVo5eiH2xIvg2ydwB/dkvs3TO93WXz7j057lsxXb15+NYFrHlrVEdsHa2I+bcDXb1/Eq7SaSwqxM8NYJ79+Rlfh++iFpjOlF7bGcSr99hb/85xP/72WrUauzLF6fZ0o+xdChMSsJD7p25xk8dvyD+UvZ20D+tmXsx4pPTWHzsKrFJqbg7FWbhe9W108R37qdgwpPP90FqOlP2nSM2KRVbCzMqF7Vl1fu1KO/4ZFq4UQUXJjSuwnd/h/PVwQu4ORTi69ZVqeaqf2mBIarzf5FmbYtZQHvMC9mhvhdByqZZ2sfFmNgWQa15MrahsCyEeYs+mVPJKY9Q37lOypqpaGKfPCbHtGI1nQdTW743FIC0I9tID96eo/iE+K/Lq69eaNmyJXFxccybN4/o6GgqV67M8uXLtdO+t2/f1skxqlevzqxZs/jmm2/43//+R5kyZVi4cCGVKlXKtRgVmvz21RT5nLu7OwsXLtQO9xrT+PHjiYuL49tvvzV636/bD8W7v7hSHmofZpxH5eSWITVz9rDn162G6tV2leemXuNzloS9bpqE3N308qoKjfv+xZWyQaVSaTfF5cepRInv5eXn2J5nmpvxfi5NuLHOaH3lBwV+ZPC/4MGDB1y8eJGdO3fqjNYJIYQQQuQ2SQbzgSFDhhAaGkqXLl2oV6+ezrH+/ftz8uRJve0GDhzIoEEv//22QgghxJsiLzaQ/FdIMphD+h5U/arWrFlj8Ni0adNISUnRe8zOzk5vuRBCCCF0yZo4wyQZzOdcXF7tmWFCCCGEEM8jyaAQQgghCjyZJjZMkkEhhBBCFHjG/AaSgib7X88ghBBCCCEKHBkZFEIIIUSBp5YtJAZJMiiEEEKIAk9SQcMkGRRCCCFEgScbSAyTNYNCCCGEEG8wGRkUQgghRIEnawYNk2RQCCGEEAWepIKGSTIockW8af5+oJND6cZ5HcJz7SxcM69DeK4L5nkdgWFjv7yX1yE8V2h6TF6H8FxHP3PN6xAMykiLyusQhCiQJBkUQgghRIEnG0gMk2RQCCGEEAWerBk0THYTCyGEEEK8wWRkUAghhBAFnowLGibJoBBCCCEKPFkzaJhMEwshhBBCvMFkZFAIIYQQBZ5GJooNkmRQCCGEEAWeTBMbJsmgEEIIIQo8ebSMYbJmUAghhBDiDSYjg0IIIYQo8GRc0LBcGRl0d3dn3759RukrMjISd3d3zp8/b5T+/guOHz+Ou7s79+/ff6V+3sR7J4QQQuijRmO0V0GTo5HBoKAgtm3bltnQ1BQ7Ozvc3d1p1aoV7du3x8QkM7cMDg7Gzs7O+NG+BsePH6dXr17a9w4ODnh7ezN69Gjc3d3zMLLnCwoK4v79+yxatEhbVrx4cYKDg3FwcMjDyPTz7P0OvgNbYeVsR+z5CP74dDX3Qq4ZrF+uVS3eGt2RwiWdSLx+l+PTNxJx4Iz2eM1P2lO+TR1sShRBnaYiOiycv776kXshV186xomTPuGDPl2ws7Plz2MnGPHxJK5evZ6ttiNHDWLK1EAWLviOwLFTAXBwsGPCxE9o1DiAUqVKEBMTy86ff2PqlP9x//6DbMdVok8zSg9pg3lRex6eu8Hl8d/x4PQVvXWt3UtSduz7FPYph2XpolyZtJLIpbt16pQZ3YkyYzrrlCVdjuIv/xHZjulp/4XP9lmtPumEX9fGWNkW4tqJi/wwcTnR1+8YrF++VmXe+fBdSnuXxc6lCEs//JrQX08YLZ6+oz/g3W4tsbG1IezEP/xv3Fwiw6MM1u8+rOv/2bvrsKjSNoDDv6EbJFXEQkUFTBRlZe3u7lw7d1271rV1de1YO/ezu1uxCwW7QAxEUrrP9wfryMigoKxndN97L651znnPmWfO1DNv8mP9KhQokp+E+ARuX7vLsmnLef7khbLM/G1zKOtRRuW4PRv2MWfUvGzFNvG3YfzUowMWFmZcuHCNAYNG8/ixX5aOHTF8ANOmjmH+gpX8Ouw3lX2V3MszedJIKlYsS0pKCrdu3aF+w47Ex8dnKz5BELIv2zWDnp6enDt3jpMnT7JixQrc3d2ZOnUqffr0ITk5GQAbGxv09PRyPNiv6fDhw5w7d45Vq1aRmJhInz59SExMlDusbNHW1sbGxgYdHc3qDeDY2B2P8R25Nm8XOxqMI/RuAA03jMTAykxtebvyRam1aAD3N59he/1x+B+5Tt2Vv5DLKZ+yTIRfIOfGr2Nr7dHsbjmJqBchNNw0EgNL08+K8ZehfejbrxtDBo+jWtXmxMTGsXvvOvT1P/26Lle+FD1+6oCvj2qNbJ48duTJY8vYMdOo6FaXvr2HU6t2VZYsnZnluGyaelDk9674z9nGtdojib7zjFKbx6Jrrf7aaRvqE/fsDU+nbiIhKDzT88bcD+CCSy/ln3eT8VmOKb1v4bn9UK2+TajavT6bx65kdrOxJMbFM2D9GHT0dTM9Rt9In5f3nrFlwuociSG9Dv3b0bJHc+aMmkefxgOJj41n9qYZ6H0knjKVSrFr3V76Nh7I0PYj0NHVZs7fszAwNFApt3fjfpqVaaX8WzplebZiGz6sPwMH9KD/wFF4VGlMTGwsB/dvQl9f/5PHupUvTa+enbjlczfDvkru5TmwfyPHjp+h8g8NqeTRkMVL15KaKsZ/CjknNQf/vjfZTgb19PSwsbHBzs4OZ2dn+vbty5IlSzh79qyy1jB9M3FiYiKTJk2iSpUquLq6Ur16df766y/l+ZycnPj777/p2bMnpUqVombNmhw+fDjT+09JSWHMmDHUqFGDUqVKUbduXdatW6fcf/XqVZydnQkODlY5burUqXTo0CHLj9PKygobGxucnZ3p2rUrgYGBPH36vnbj2rVrdOjQgVKlSlG1alWmTJlCbGyscv+mTZuoU6cOrq6ueHh4MHjwYOW+xMREpkyZQuXKlXF1daV9+/b4+PhkGsvChQtp2rSpyra1a9dSo0YN5f5du3Zx4sQJnJyccHJy4vLly2qbia9cuUKrVq1wcXGhSpUqzJ49W5nEA3Tu3JkpU6Ywa9YsKlasyA8//MDChQuzfN2yolSv+tz73ykebD1L+KNXnB29huT4BIq3raq2vOtPdXl+2odbfx0g4vErrs7eTshtf1y61laWebz7Ii/P3SEqIJjwhy+5MGkT+mZGWJXI/1kxDhjYg1kzF3Fg/zHu3L5P756/kiePHY0b1/noccbGRqxaPY+BA0YTEfFWZd/duw/p2KE/hw6ewM8vgDNnLjJp4mzqN6iBtrZ2luJy6NuIwI0neL35NLEPX/Bw+HJS4xLJ076G2vJRN5/wdNIG3uy+gJSQlOl5peRUEoMjlH9JYVmvqUzvW3huP1S9RwOOLNyJ77FrvLofwPqhizG3y0XpOhUyPebu6Zvsn7MFnyNXcySG9Fr3bMGG+Rs5d/QCT+89ZeqQmVjZWVOlbpVMjxneaTSHtx7B/+Ezntx9yrSfZ5E7nx1OpYqqlEuITyAsOFz5Fxsdm8kZ1Rs8qCfTps9n376j+Preo1v3IeTNa0fTpnU/epyxsRHr1y+ib78RRIRHZNg/Z/ZEFi1ezaw/FnP37kMePnzC9u37vrkf4IJmk3Lwv+9NjvQZrFy5MsWLF+fo0aMZ9m3YsIGTJ08yb948Dh8+zB9//IG9vb1Kmfnz51O3bl327NlD48aNGTp0KE+eqG8CSk1NJXfu3MyfP58DBw4wYMAA5s6dy8GDaU1fFSpUIF++fOzZs0d5TFJSEvv27aNly5bZfmxRUVEcOHAAAF3dtF/mAQEB9OrVizp16rB3717mzp3L9evXmTw5rTnQ19eXqVOnMnjwYA4fPszKlStxc3NTnnPWrFkcOXKEGTNmsGvXLgoUKEDPnj2JiIjIdnwAPXr0oH79+spa23PnzlG2bNkM5YKCgujduzeurq7s2bOHiRMnsn37dpYuXapSbteuXRgZGbF161aGDx/O4sWLOX/+/GfF9iEtXW1sXAvx4tyd9xsliRded7ArX0TtMXblivDi3G2Vbc/P+GRaXktXm5Idq5PwNobQu8+yHWPBgg7kzm3LqVPnlNsiI6O4dvUmFd3LffTYP+dO4sjhk5w+lbXrZWZuSlRkNCkpKZ8sq9DVwbRUYcK90v1wkCTCz/pg5lYsS/eXGcPCual86y/cryyixJLB6NtbZ/sc38Jz+yErB1vMbXNx/7yvclt8VBz+Nx9TsFzRjxz578iTPw9WdlZcO3dDuS0mKoZ73vdwKV8yy+cxMTMGIDJCNamv3bwme313svbESnqP+gl9g0/X6L1TqFB+8uSx48RJ1ffFlSveVHIv/9FjFy6YxqGDJzhx0ivDPhsbK9zdy/HmTQheZ/bw8vlNTh7fzg8emSfjgiDkrBxrPyxcuDAPHjzIsD0wMJACBQpQvnx5FApFhkQQoF69erRu3RqAn3/+mQsXLrBhwwYmTpyYoayurq5KLZuDgwM3b97k8OHDNGjQAIBWrVqxc+dOevbsCcCpU6dISEigfv36WX48Vaum1WS8q+2rUaMGjo6OAPz11180btyYbt26AVCwYEHGjh1L586dmThxIoGBgRgaGlKtWjVMTEywt7enZMmSyvNt3ryZ6dOnK+9j8uTJnD9/nu3btytjzg5jY2MMDAxITEzExsYm03J///03uXPnZsKECSgUChwdHQkKCmL27NkMGDBA2efTycmJgQMHKh/bxo0buXjxIj/88EO2Y/uQgaUpWjraxAWr1prFhbzFokgetccY2VgQFxL5QflIjGwsVLblr1mG2osHomOoR+ybCPZ3nEl8eHS2Y7SzS7uGb96EqGx/8yZEuU+dVq0aUaaMMz96Ns20THpWVrkYOWoQa9ZszlJ5XUtTFDraJH5w7RKD32JUNOP7Kqsibzzi/uDFxD55hZ5tLgoOa03ZPZO4WnUoKTFZ76/1LTy3HzL7536iPog5Kvitct/XZGWb1r83PFi1ST8sJBxL26z1/VUoFAz6fQA+V3zxe+Cv3H5890levwgiNCgUxxKF6TO2F/kdHRjXa2KWzpvbzhaAoCDVVpegNyHkzm2b6XFt2jShbFkXKlVuqHZ/4UIFAJgw/ldGjJzELZ87dO7YmqNHtlC6bE2V/ohZ+dGUVe/OlZPnzEmaHN+/EVtWW0e+xPfYvJtTciwZlCQJhUKRYXvz5s3p0aMH9erVw9PTk2rVqlGlimpzx4e1WGXKlPnoCNhNmzaxY8cOXr16RUJCAklJSRQvXly5v0WLFsyfP5+bN29SpkwZdu7cSf369TEyMsry49m0aRMGBgbcunWLZcuW8fvvvyv33b9/nwcPHrBv3z6Vx5+amsqLFy/w8PAgb9681KpVC09PTzw9PalduzaGhoYEBASQlJREuXLva5h0dXUpVapUprWhOeXJkyeULVtW5XkqX748sbGxvH79mrx58wJkGChjY2NDaGjovxpbTnh14R7b6o3FIJcJJTpUp/aSgexsMpH40I+Pym7TtikLFk5V3m7V4qds37e9fR5m/fEbjRt3JiHh001bpqYmbN+5mvv3HzF1yrxs319OCjt5U/nvmLsBRN14RKXrS7Fp6sHrv0/KF1g6n/vcfsitaRXaT+ulvL20x4ycDjVbajevya8zf1HeHtllzBef85dpgynkVJCBzYeobN+36YDy30/v+xH6JpR5W+eQt0AeXj0LzHCe9u2bs3Tx+/6sTZp2yVDmU/Lly8vcOZOo16A9CQkJasu8+xG6YuVG1q3fCsDNm3eoXuMHundry9hx75+jmzdvZjuGT/H19f10IRlpcnw5GVv58h+vXc4J32Pzbk7JsWTwyZMn5MuXL8N2Z2dnTpw4wdmzZ7lw4QI///wzHh4eLFiw4LPu58CBA8ycOZORI0dStmxZjI2NWbVqFbduvR99aGVlRfXq1dm5cyf58uXDy8uL9evXZ+t+8uXLh5mZGYULFyY0NJRffvmFTZs2AWm1e+3ataNz584ZjsuTJw96enrs2rWLK1eucO7cORYsWMCiRYvYvn37Zz1mhUKBJKm+iNP388tpHw44UXf/nys+LIrU5BQMbVRHmxtamxP7Qe3MO7HBERh+MEDC0NqM2OAIlW3JcQlE+gcR6R/EG+8ntD87mxLtquK9eB8fc/DAca5dvam8/W6QiK2tNUGv39eC2Npa46Om8ztA2XIu2NpZc/7C+/vS0dHhhyoV6dO3C5YWTsrO8CYmxuzas5boqGjat+2T5ecyKSwKKTkFvQ+unZ6NOYlvIrJ0jqxIjowl9skrDAvlztZxmvjcfsj3+DX8bz5S3tbRS+v6YWpjTmS6+zS1MefFXf9snftznDt6gbve73/46v4TTy6bXIS+CVNut7TOxeM7n/6x+POUQXjUqsSgFr8QHBjy0bJ3b9wHwL6gvdpkcN++o1y54q28/e59YWdnw+vXb5Tb7WytuXnrTobjAcqVc8XOzoarl9/3A9fR0cHTsxID+nfDyKQQga+D0uK591Dl2Pv3H+PgoFrjXaZMmY8+puxISUnB19cXV1fXr1IrlV2aHJ8mxyZ8nhxJBi9evMjDhw+VzaYfMjExoUGDBjRo0IC6desq+8dZWFgAab/2mjVrpix/69YtSpQoofZcN27coGzZsnTs2FG5LSAgIEO5Vq1a8euvv2JnZ4eDg8MX/ero2LEjy5cv59ixY9SuXZuSJUvy+PFjChQokOkxOjo6eHh44OHhwcCBA6lQoQKXLl2iSpUq6OrqcuPGDWWTeVJSEr6+vnTt2lXtuSwtLQkJCVGpff2w5lRXV/eTI+8cHR05cuSIynmuX7+OsbExuXNn74v/c6UmpU0NYv+DM/5HrqdtVCiwr+LM7bXH1B4TdOMx9j8447vqiHJbPk8Xgq6rn05FSUuBtl7mIzDfiY6OITo6RmXb69dvqFbtB+WIYFNTE9wqlGHlio1qz3H61AUquql2ol/61ywePnjK3D+XKZ8bU1MTdu9dR2JCIm1a98pSLeI7UlIyUT5PsfB0JeTQPwMXFApyebrycnXmg66yS9vIAMOCuQnafjZbx2nic/uhhJh4Ej5o+n77JhwnD1de/tMH0cDEkIJlinBuo/qYc1JcTBwvY+JUtoUGhVK+Sjll8mdkYkSJsiXYvf7jie/PUwbhWa8KQ1oPJfB55tPivFPEOa3bS/qkMz1174vAwCBqVK/CrX+SP1NTEypWLMuy5ep/bJ88eY7SZVUHN61c8ScPHjzhj9mLSU1Nxd//OS9fBuJUzFGlXNGihTly5JTKtn8j8dDW1tbohEaT49Pk2NQRzcSZy3YymJiYSHBwMKmpqYSEhODl5cVff/1F9erVVRK6d9asWYONjQ0lSpRAS0uLw4cPY2Njg5nZ+9qAw4cP4+LiQvny5dm3bx8+Pj5MnTo1w7kAChQowO7du/Hy8lIOFPH19c1QK+np6YmJiQlLly5V6WP4OQwNDWndujULFiygVq1a9OrVi7Zt2zJp0iRat26NoaEhjx8/5sKFC0yYMIFTp07x/PlzKlSogJmZGWfOnCE1NZVChQphZGRE+/btmTVrFubm5uTNm5eVK1cSHx9Pq1at1N6/u7s7kyZNYsWKFdSrVw8vLy+8vLwwMTFRlrG3t+fcuXM8ffoUCwsLTE0zTrvRoUMH1q1bx+TJk+nYsSN+fn4sXLiQ7t27K5tqvgafFYeo/mcfgn38eHPzCaV+qoeuoT4Ptp4BoPrcPsS8DufKzLQmI99VR2iybSyletcn4MRNijSpjE2pwpwZlTath46hPuUGN8X/6HVi30RgYGmKS9faGNvl4smBy58V4+JFqxkxciBPnvjzzP854yYMJTAwiH373g+S2n9gI/v2HeWvZeuJjo7h7l3Vmo3YmDjCwsKV201NTdizbz1Ghob07PELpmYmmJqlPYchwWFZmkbj+bL9lFgwgKibT4jyfky+3g3RMtIncHPal2bxhQNJeB2G39S/gbRBJ8bF0t4bCj0d9HJbYeJckJSYeOL+mUfP8bfOhBy9TsKLYPTsclFwRFuklFTe7Mr+oKFv4bn90KnVB6k3qDnB/oGEPn9Dw1/b8jYonFtH348UHrRpHLeOXOXs+rSkVc9IH5uC739AWTnYYl+yALER0YS/+rIuFdtW7qTL4I68ePqCwOev+Wl4d0KDQjh35P3Ajblb/sDr0Dl2rk0bKPfLtMHUalaTMT3GExsdi6VNWv/C6KgYEuMTyVsgD7Wa1+TSictEhkfiWKIwAyf25+bFWzy9l/kckB9asHAlY0YP5tHjp/j7P+f3icN59SqIPXveJ/NHD29h955DLFm6lujoGO7cUe1LHhsTS2houMr2OX8u47cJv3LL5y63bt2hS+fWFHdypG273p91DQVBndQcauH6HmU7GfTy8qJKlSro6OhgZmZG8eLFGTduHM2bN1ebUBgbG7Ny5UqePXuGlpYWrq6uLF++XKXsoEGDOHjwIL///js2NjbMmTOHIkXUjyZs164d9+7d45dffkGhUNCwYUM6dOjA2bOqtRhaWlo0b96cv/76S22Sml2dOnVi7dq1HDp0iAYNGrBhwwbmzZunnK7GwcFBOYDF1NSUY8eOsWjRIhISEihQoABz5syhaNG00YnDhg1DkiRGjBhBTEwMLi4urFy5MtOJuh0dHfntt9/466+/WLp0KXXq1KFHjx5s3bpVWaZNmzZcuXKFli1bEhsby/r16zMM1rGzs2P58uXMmjWLrVu3YmFhQatWrejXr98XX5/seLLvMgaWZlT4tSVGNuaE3H3Ggc6zlAMJTO2tId2bNuj6I04MWkLF4a1xH9GGt/6vOdJzLuEP0ibUlVJTsXDMQ93lQzDIZUp8RDRvbj1lT6sphD/MfKLej5n7518YGxuxcNE0zM3NuHjhKs2bdlOpyStUuABWVlmf0LtMGWcqVkzrH+t754zKvpLFqxAQ8OlYg/dcQM/KjEIj2qZNOn3HH5/2U0n6pxnWwN4aUt9fO/3cuXA7+Yfydv4BTcg/oAkR5+9ws8XEtDJ5rSi5bAi6uUxJCo3k7ZX73GgwhqRs9seDb+O5/dDxZXvRN9Sn/fTeGJoZ8eTqA5Z0nU5yuql4rAvYYZJuXsMCpRwZsvn9pMktx6fV6l/afpqNw1RH52fX30s2Y2BkwLBZQ9Mmnb7qy7BOo0lMF0/eAnkxt3z/edG8a9qgpYU75qqca9ovszi89QjJScm4VSlH654tMTA0IDjwDWcOerF+vvqa7sz8MXsJxsZGLFsyCwsLM86fv0rDxp1U+gMWLlwAa2vLbJ13wcKVGBjoM+ePiVhaWuDjc5d69dvz9OmXjxgXhHdEKpg5hZRTncE+k5OTE4sXL6ZWrVo5fu4xY8YQFhbGsmXLcvzcwsctc+gkdwgfNSw0Z6bK+bfsN3X7dCEZ3dfL+pQkX9tt7cznU9QEPkkf78sntwvB9+UOIVPJiTnzAwDS+r29G2SoiU2dmhyfJsf2MZ0KtMixc218tjPHzqUJNGtpihwSFRXFgwcP2L9/f4Y59ARBEARB+O/5HtcUzinfZTLYv39/fHx8aNeuXYa58Xr27Mn169fVHtenTx/69u37NUIUBEEQBOErElPLZE72ZFDdRNVfasOGDZnumzp1aqYLn2fWZ08QBEEQBOF7JXsy+LXZ2dnJHYIgCIIgCF+ZmFomc/+5ZFAQBEEQhP8e0Wcwc19vcjlBEARBEARB44iaQUEQBEEQvntiAEnmRDIoCIIgCMJ3T/QZzJxoJhYEQRAEQfgPEzWDgiAIgiB892RecC1LIiIimDx5MqdOnUJLS4s6deowduxYjI2NMy2/cOFCzp07R2BgIJaWltSqVYshQ4Zgamqq9hh1RDIoCIIgCMJ371sYTTxs2DCCg4NZs2YNSUlJjBkzhgkTJjBnzhy15d+8ecObN28YOXIkRYoU4eXLl0ycOJE3b96wYMGCLN+vSAYFQRAEQfjuaXqfwSdPnuDl5cX27dtxdXUFYNy4cfTu3ZsRI0aonSe5WLFiLFy4UHk7f/78/PzzzwwfPpzk5GR0dLKW5ok+g4IgCIIgCNmQmJhIdHS0yl9iYuIXndPb2xszMzNlIgjg4eGBlpYWPj4+WT5PdHQ0JiYmWU4EQdQMCv8SNyla7hA+KnjHL3KH8FFHul+SO4SP0tfgn9h/zCoudwgflXIj6x/qctCuPEDuEDLVtkAzuUP4qC3PdssdgvAROTm1zF9//cWiRYtUtg0cOJBBgwZ99jlDQkKwtLRU2aajo4O5uTnBwcFZOkdYWBhLliyhbdu22bpvkQwKgiAIgvDdy8k+g3369KF79+4q2/T09NSWnT17NitWrPjo+Q4ePPjFMUVHR9OnTx8cHR0ZOHBgto4VyaAgCIIgCEI26OnpZZr8fahHjx40b978o2UcHBywtrYmLCxMZXtycjJv377Fxsbmo8dHR0fTs2dPjI2NWbx4Mbq6ulmK7R2RDAqCIAiC8N2Ta2oZS0vLDM2/6pQtW5bIyEhu376Ni4sLAJcuXSI1NZVSpUplelx0dDQ//fQTenp6LF26FH19/WzHKAaQCIIgCILw3UvNwb9/g6OjI56enowfPx4fHx+uX7/O5MmTadiwoXIkcVBQEPXq1VMOKImOjqZHjx7ExsYydepUoqOjCQ4OJjg4mJSUlCzft6gZFARBEARB0ACzZ89m8uTJdO3aVTnp9Lhx45T7k5KS8PPzIy4uDoA7d+5w69YtAGrXrq1yrhMnTpAvX74s3a9IBgVBEARB+O7l5Gjif4uFhUWmE0wD5MuXjwcPHihvu7u7q9z+XCIZFARBEAThu/ctrEAiF9FnUBAEQRAE4T9M1AwKgiAIgvDdk2s08bdAJIOCIAiCIHz3RDNx5kQyKAiCIAjCd+9bGEAiF41OBmvUqEGXLl3o1q2b3KEIOcyma31y922Oro0Fsff8eT5+BTE3H6kta1DMAfthHTBydUTfwZaA31bxZtU+lTJaxgbYD++IRT13dK3Nib3tR8BvK4m99TjbsW328mXdSW9Co2IplteKkS1/xLWAXablI2MTWHTwEid9nvI2Jp48lqYMb14Fz5IFlWWCIqKZv+8i5+89Iz4pGQdrc35vXxPn/LbZjk+dQt1rU7R/I/RtzHl7NwCfseuI8H6itqypkz0lhrfGonQhjBxs8B2/nicrDudIHADFu9bCpV9DDG3MCb8bwKXx6wm5+TTT8gUbVaTs8FaY5LMmyi+Ia9M28+LkLeX+KnN7U7TNjyrHvDjlw7FOs7Id2+Yrj1h3/h6h0fEUy23ByPrlcc1nlWn5yLhEFp304eS9F7yNSySPuTHD65XFs1heAK77v2HdhfvcexVGcHQ8f7atQo0SWZvKQR1dj/roVm2GwtSC1EB/EnavJPW5+vdFejqlq2DQ6VeSb18mft0MlX0K23zoN+iMdmFn0NYmNeg58etnIUWEZDu+zRfvs+7sbUKj4yiW25KRTSri6pD5ygiRcYksOnqDk3cCeBubQB4LE4Y3qoBn8bRrtPXSfbZdfsir8LS1zB1tLehdsxRVnD7/GrYe2p6a7WtjbGbMg2v3WTl2Ga/9AzMtX6JiSRr3aU4hV0cs7Sz5o9d0rh29rFImszWHN05by76/1O8ThG/JV0sGR40axa5duwDQ1dUlT548NG3alL59+6Kjoz6M7du3Y2ho+LVCzHHPnj1j2bJlnD9/nrCwMGxtbSlTpgzdu3fH1dVV7vBkk6vxDzhM6MGz0UuJ8X6IXc8mFN34G7erDiA59G2G8lqG+iQEvCZs/3kcfuuh9pwF/xiIoVN+/IbMIykoDKsW1Sj2v9+5U2MQSa/D1B6jzpEbj5iz+xxj21TDtYAdm87cov+yfewZ0wFLU6MM5ZOSU+i7dC+Wpob80a0etubGBIZHYWr4fgb4yNh4us3fSYWi9izq0xhLE0OeBUdgZpT9WeLVsW9aCZeJnbg1cjXhNx7j2Ks+Hv8bxfEqv5IYEpmhvLahPjEBb3i57zKukzrlSAzvFGriTsXfOnJh1BqCvR/j3LMedTaNZOePw4kPzRiLrVtRqi4ewPXpW3l+3JvCzT2oseoX9tYbR8SDF8pyL07e4tzQ5crbKYlJ2Y7tyO0A5hzxZmwjN1ztrdh06QH9N55mz8CGWJoYZCiflJxC3w2nsTTW5482P2Brakjg21hMDd4v8xSXlEwxOwualS3M0C3nsh1Tejqlf0CvcXcSdiwjJeAhep6NMew5gdhZA5FiMr4v3lHkskGvUVdSnt7JuM8qN0b9p5F09TiJRzcjJcShZecASZ9x/Xz8mHPgKmObVcLVwYZN5+/Sf/Vx9vzaDEuTjJ/TSckp9F11FEsTA/7oUA1bcyMCw6MxNXy/hJeduTGD65Yjv7UZSBJ7bzzh5w2n2DyoEUXscmU7xiZ9m1O/WyOW/DqfN8+DaPNrB8Zs+I1faw0iKUH9Y9Y3MuDZPT9ObT3OsOWj1Zbp7dZN5XbZauXoM2sglw9ezHaMgnxSRZ/BTH3V0cSenp6cO3eOI0eO0L17dxYtWsSqVasylEtMTATSlnCRIxl8d/9fwtfXlxYtWuDn58ekSZM4ePAgixcvpnDhwsycOTMHosxZOfGYs8qud1NC/neU0K0niX/0gmejlpIan4B1u5pqy8feesyLKesI33sOKTE5w36FgR65GlTmxdR1RF++S4L/a179uZkE/9fYdK6Xrdg2nL5Ji8rONHMvgWNuS8a1roaBng67L99TW3735XtExsYz96f6lC2cB3srM9yK2ONkb60ss+aEN7lzmTCpQ01cC9hhb2WGR/H8OFibZyu2zDj2acCzTacI2HyGqIcvuTliFSlxCRRoV1Vt+YibT7kz6W9e7rlIqprr+SWce9Xn4d+neLz1LG8fveLCqDUkxyVQNJNYSv5Ul5enfbi97ABvH7/C+4/thN72p0R31clTUxKTiAt+q/xLfBub7dg2XLxPi3KONCtbGEdbc8Y1qoCBrg67vdXXWu729iMyLoG57Twpm98G+1wmuBW0xSn3+ySlStG8DKxZ6otqA9/R/bEJSZePkXztJNKbFyTsXIaUlIBORfXvCwAUWhh0+IXEo5tJDQvKsFuvXgeS718n8cB6Ul/5IYW+JuXu1Y8ml5nZ4HWXFhWK0sytKI52FoxrVhkDPW12X1Nf+777+uO069e5BmUL2qZdv8K5ccrzflmuqiUc8CyejwLWZhSwMWdQ3XIY6engG5D9WkuABj81ZueirVw7doWA+89YPHQ+uWwtqVDHPdNjbp6+wZbZf3P1yOVMy7wNjlD5c6vtzp2Lt3nzPOM1FzSXlIN/35uvmgzq6elhY2ODvb09HTp0wMPDg5MnTzJq1Cj69+/P0qVLqVKlCvXqpX2B16hRg7Vr1yqPd3JyYvPmzfTp04fSpUtTv359vL29efbsGZ07d6ZMmTK0a9eOgIAA5TEBAQH069cPDw8PypYtS8uWLblw4YJKXDVq1GDx4sWMGDGCcuXKMWHCBLp06cKkSZNUyoWFheHi4sLFix//NShJEqNHj6ZAgQL8/fffVKtWjfz581OiRAkGDhzIkiVLlGX/+OMP6tatS+nSpalZsybz5s0jKd2v9oULF9K0aVO2b99OtWrVKFu2LBMnTiQlJYUVK1bwww8/ULlyZZYuXaoSQ2RkJGPHjqVSpUqUK1eOLl26cP/+/Qzn3bZtGzVq1FCue3j27Fnat2+Pm5sb7u7u9OnTR+V6fimFrg7Gro5Eevmkv2BEet3CuJzT551TWwuFjjapH/zyT41PwLRiySyfJyk5hXsvgnEv9v6LXUtLgXuxfPj4v1Z7zOnbfpQqmJvp289SY9xqWs74HyuPXSMl9f2CRWdu+1HSwZZhaw5Tfdxq2v6xhR0XM9bifA6FrjYWpQoRfPb2+42SRLDXbSzdiubIfWSVlq42VqUK8cor3WOTJALP3cG2fBG1x9iUL8Irr9sq216e9slQPnflErS7tZgWZ/+g8vRu6OcyyVZsSckp3HsVjnvh9839WloK3Avb4fMiVO0xpx+8pFQ+a6YfuEaNP3bRcvEhVp69o/Lc5hhtHbTsHUl59L55HEki5ZEP2gUyf1/o1W6DFP2W5KsnMu5UKNAp7kZqyCsMek7A6Le1GA6aibZzxWyHl3b9QnEvkle5TUtLgbtjXnwCgtUec/ruc0rlt2X6nkvUmLqFlvP2sPKUT6bXLyU1lcO3/IhLTKZU/sybnjNj62BHLltLfM+9/2yJi4rl8c2HFP3MzxZ1zK3NKVujPKe2HM+xcwqC3GSdZ1BfX1+Z+Fy8eBE/Pz/WrFnDX3/9lekxS5YsoWnTpuzevZvChQvz66+/MmHCBHr37s2OHTuQJEkliYuNjaVq1aqsXbuWXbt24enpSd++fXn16pXKeVevXk3x4sXZvXs3/fv3p3Xr1uzfv1+lxmzv3r3Y2tpSqVKljz6ue/fu8ejRI3r06IGWVsZLbGZmpvy3sbEx06dP58CBA4wdO5Zt27apJMCQltCePXuWlStXMmfOHLZv307v3r0JCgpiw4YNDBs2jHnz5imXpAEYMmQIoaGhrFixgp07d+Ls7EzXrl2JiIhQOe+RI0dYtGgRu3fvBiAuLo7u3buzY8cO1q5di0KhYMCAAaTm0BegjqUpCh1tkoIjVLYnh7xF1zb7zUIAqTHxRF+7T96f26Brlwu0tLBsURWT8k7ZOmd4TDwpqRJWHzQHW5kaERKpvibqZWgkx289ITVVYlGfRvSu48aGUzdZcfSassyL0Ei2nb9NfhtzlvZtTOsfXJi104u9V+6rPWd26FuaoqWjTXywak1PQvBb9G0tvvj8nxNLXIhqLHHBbzG0UV8LamhjQVywavNxfEgkhjYWytsvT/ngNeQvjrSdzrWpm8ldqQS1NwxHoaXIcmzhsYmkSBJWHzQHWxkbEBIdp/aYl+HRHL/7nFRJYlHHqvSu6syGiw9YcfZulu83qxTGpii0tZGiVa+dFB2BwtRC7TFaBUugU6Em8duWqN2vMDFHYWCIXvUWpDzwJn7FRJJvX8agy0i0CjtnK77w2IS098aH18/UgJCozK5fFMdv+6ddv2616F2jFBu87rLipI9KuUevw6n82yYqjt/IlN0X+bNTdRzt1D/mj7H45/X+NiRCZfvbkLdY2HzeZ4s6VVvWID4mjiuHRRPxtyYVKcf+vjeyDCCRJImLFy9y7tw5OnXqRHh4OEZGRkyZMgU9Pb2PHtuiRQsaNGgAQK9evWjbti39+/fH09MTgC5dujB69Pt+H8WLF6d48eLK2z///DPHjx/n5MmTdOr0vr9UpUqV6NHjfX80Ozs7Jk+ezPHjx5X3t3PnTlq0aIFC8fEvIX9/fwAKFy78yWvRv39/5b/z5cuHn58fBw4coFevXsrtkiQxbdo0TExMKFKkCO7u7vj5+bFixQq0tLQoXLgwK1as4PLly5QuXZpr167h4+PDxYsXlddz5MiRHD9+nCNHjtC2bVsgbY3DWbNmYWn5vtmmbt26KvFNmzaNypUr8/jxY4oVK/bJxyMXvyHzKDhnIKWvr0FKTiH29hPC9nhh5Or4r95vqiRhaWLI+LbV0NbSoqSDLW/exrDulDd961VUlinpYMvgRpUBKJ7PhieBoWw/f5smFYt/7PQC4Lf3kvLf4fdfEHYvgNYX55LboySB53KmhlWdVAksjQ0Y37hC2nOb15I3kbGsu3CfvtVc/rX7zRJ9AwzaDyFh+1KIjVJf5p/PqeQ7V0jyShtwlfrKH+0CTuhWqkuCmj6GOSk1FSyNDRnfvHLa9bO34s3bWNZ53aFvrTLKcgWtzdgyqDHRCUkc9/VnwvZzrOxV75MJYZVmP9JrWj/l7Rndp/xLj0RVtTY1Obf7rNo+iCkpKTl2P+/OlZPnzCn/Rmza2to5dq7MfI9JXE75qsng6dOnKVu2LElJSUiSRKNGjRg0aBCTJk2iWLFin0wEIa2p+B0rq7RRgOmTFCsrKxISEoiOjsbExISYmBgWLVrE6dOnCQ4OJiUlhfj4+Aw1gy4uqh/u+vr6NGnShB07dtCgQQPu3LnDo0ePMjTHfqmDBw+yfv16nj9/TmxsLMnJyZiYqDaB2dvbq2yztrZGW1tbpdbR2tqa0NC05q4HDx4QGxuLu7tqP5n4+HiVJt+8efOqJIKQlsguWLCAW7duER4erpykMzAwMEeSweSwKKTkFHTT1fwA6Fibk/Qm/LPPm/DsNQ9ajUPLUB9tUyOS3oRTeMkwEgKy3qcnl7EB2loKQqNUawFDo2KxNss4eATAxswYHW0ttNM9F4XschESGUtScgq6OtrYmBnhmFu1ZqKQnSXHfTIfYZtVCWFRpCanYPBBzZu+jTkJbyK++PyfE4vhB30hDW3MiQtW30ctLjgCQxszlW0G1mbEfVBznF50QDDxoZGYFbTLcjKYy0gPbYWC0Oh4le2hMfFYqxn8AGBjaoCO1gfPrY0ZIdHxyuc2p0gxUUgpKShMVK+dwsQCKSoiQ3ktq9xoWdph0H1MusJpyZ/xjO3E/jEQKSIEKSWZ1KDnKsemvnmBdqES2Yovl5F+2nvjw+sXFY+1aSbXz8ww4/WzNSckKk7l+unqaKcNIAFK2ltx50Uof1+4x/jmlT8a07VjV3jk/VB5W1cvbWCPubUFEek+S8ytzfG/65eNR5u54hVKYl8kH/MHzla7/+bNmzlyP+n5+vrm+DlzSk7GVr58+Rw7l5B9XzUZdHd3Z+LEiejq6mJra6syijirA0V0dd+P5HtXQ6du27tmzZkzZ3LhwgVGjhxJ/vz5MTAwYPDgwSr98jK7/9atW9OsWTNev37Nzp07qVSpEvb29p+MsWDBggA8ffqUkiUz77Pm7e3NsGHDGDRoEFWqVMHU1JQDBw6wZs0alXIfjrZWKBRqt717zDExMdjY2LBhw4YM92lqaqr8t7rH3LdvX+zt7ZkyZQq2trakpqbSqFGjDNfrc0lJycT4PsG0Siki3nXYVigwq1KKN2sPfvH5U+MSSI1LQNvcGLOqZXkxbV2Wj9XV0aZEPhuuPHpBjVJptbqpqRJXHr6gnaf60d+lC+Xm0PVHpKZKaP3TbPksOAIbMyPll13pQnnw/yAxexYcQZ5cph+eLtukpBQifPyw8XQm8PA/TdMKBTZVnHm6+ugXnz87UpNSCPXxI08VZwKOXFfGkqeKM/fWHFN7TPD1x+Sp4szdlUeU2+x/dOHN9cynBDLKY4l+LhNigyKyHJuujjYl8ubiil+QcrBHaqrEladBtKuovm9laQdrDvk+U31uQ6OwMTHI0UQQgJRkUl8+QbtIKVLuXEnbplCgXcSVpAuHMhRPffOS2NlDVLbp1esA+oYk7lmVNm1MSjKpzx+jZaP6maVlk5fUcPX9/DKTdv2suPIkkBrO+dNiSJW48iSQdpXV126XLmDLoZtPVa9fSCQ2poYfvX6pkkRi8qdrnOJj4omPUe3LG/4mDNcfSvHsn+TP0MSQImWKcWxjzkydVL1tLZ74PObZPX+1+8uUKZMj9wNptW6+vr64urp+lVqz7NDk2D5GrECSua+aDBoaGlKgQIGveZd4e3vTvHlzatdOG50YExPDy5cvs3Ssk5MTLi4ubN26lf379zN+/PgsHVeiRAmKFCnC6tWradCgQYZ+g5GRkZiZmeHt7U3evHnp1+99U8eHNZafw9nZmZCQELS1tcmXL+ujHMPDw/Hz82PKlCm4ubkBcO3atU8clX1By/dQaO4QYm89JubmI+x6NkbL0ICQLWmd4AvOG0LS61BeztgIpA06MSjqoPy3Xh5LDEsWIjU2joR/BnaYVS0DCgXxT15iUDAP+cZ1I/7JC0K3qOlY/xGdq5Vh/N8nKOlgi0t+WzaduUVcYjJN3dNqUsZtPI6tuTGDG6fVWrT5wYUtXr7M2uVFe89SPAuOYNWx67T/sZTynJ2qlabbvJ2sPHaNOmWKcDvgDTsu3mF8m2pfchmVnvx1kHLz+xJ+6ynh3k9w7FUfbSMDAjafAaDcwn7EB4Zxd9oWIG3Qidk/g2QUujoY5LHE3LkAyTHxxPh/2ejIOysOUWVuH0J9/Aj2foJzr3roGOrzaEtaLJ7z+xAbGM71GVsBuLvqCPW3j8W5T31eHL9JoaaVsSpVmPMjVgOgY6RPmaEteHbwCnFv3mJa0A63se2I9A/i5RmfTONQp3Pl4ozfdYmSeS1xsbdk06WHxCUl07RsWuI/buclbM0MGVyrNABtKhRhy5VHzDp8g/YVi/IsLJpVXndp7/6+hjw2IYmAsGjl7ZcRMdwPDMfcUI88FsbZii/p7F702w4m9cUTUp4/Qs+zEQo9A+XgEP12g5HehpF4aCMkJ5EapDqwS4qPQQEq2xPP7Mag46+kPL1LyhNfdJzKol2iAnHLsvZZll5nz5KM33aOkvZWuDhYs+n8vbT3xj+DfcZt9cLWzIjB9dJqeNq4O7Hl4n1m7b9C+8rFeRYaxarTvrT3eF8rueDwdX5wsie3hQmxCUkcuvmUa36vWfLBaPKsOrhqH80HtSbQ7xVvnr+h7a8dCH8TxtV08waO+3sSV49c4si6tB+f+kYG5C6YR7nf1sGWAiULER0RReir96OaDU0MqdTQgw1TVH+sp/dvJEba2toam3BpcmzqiGbizGn0pNM5oUCBAhw7dowaNWqgUCiYN29etgZDtG7dmkmTJmFkZKRMKD9FoVAwffp0unXrRocOHejXrx+FCxcmJiaGU6dOcf78eTZu3EiBAgUIDAzkwIEDuLq6cvr0aY4f//IRah4eHpQpU4YBAwYwfPhwChYsyJs3bzhz5gy1atXKdI5Dc3NzLCws2LJlCzY2Nrx69Yo5c+Z8cTwfCt93Hh0rc/IOa4+uTS5i7/rxqPPvJP8z8EDf3iatw9Y/dO0scT46V3k7d9/m5O7bnKiLt3nQehwA2qbG2I/qjF4eK5Ijoog4dJGXMzchZaGGIb265YoSHhPH0kOXCYmMxcnemiV9GikHlQSGR6n0Gc2dy5QlfZswe/c5Ws/ajK25MR2qlqJ7zXLKMi757fjzp/os2H+R5UeuYW9pxvDmVWjoljMjHF/uuYSelRklRrRC38aCt3eecbH9DBL+mWPQyN4qrQPXPwxz56L6ienK20X7N6Jo/0aEXLjLuRZf1u/Kb+9lDCzNKDusJYY25oTdecbRTrOI/ycW47zWSOme2zfXHnFm4BLKjWhN+ZFtiPR7zcmf5irnGJRSU7Es4UCR1lXQMzMmNiicV2d8ufHH9mxPi1PXJT/hMfEsPeVLSHQ8TrktWNKpmnJQRODbGNJ3B85tbsySztWYfdib1ksPY2tmSAf3YnSv8j6ZufMqjF7rTilvzzniDUDj0gWZ3PzjA80+lHzrPApjM/TqtkNhmovUV37ErZykHFSiZWGT7XnSUm5fJmHnX+hVb4Gi2U+kBr8ifsMsUv3VT5X0MXVLFSI8Op6lx28SEhWHUx5LlnSvhdU/zcSBETGq7w0LY5Z0r8XsA1dpvWAvtmZGdPAoQfeq77vkhMXEM27rOUKi4jAx0KNY7lws6V6bykXzZrj/rNi7bBf6Rgb0nt4fIzNjHly7x/Quk1T699nlz41prvddExxLFeG3Le9f910n/ATA6W0nWTpsgXK7R2NPFAoF5/d6fVZsgqDJvvtkcNSoUYwZM4Z27dqRK1cuevXqRUxMTJaPb9iwIdOmTaNhw4bo62d9kuBSpUqxY8cOli1bxrhx4wgPD8fW1payZcsyZkxaP5+aNWvStWtXJk2aRGJiItWqVaNfv34sWrQo248zPYVCwfLly5k3bx6jR48mPDwca2tr3NzcsLa2zvQ4LS0t5s6dy5QpU2jUqBGFChVi3LhxdO7c+YviUSd47UGCM2kWfpfgvZP44g3X8jX76PnC958nfP/5HImtnWcp2nmWUrtv1aDmGbaVLpSbDb+0+ug5f3QuyI/OBXMiPLX8Vh/FL5Nm4Q8TvNjnIezO3eFfi+Xe2mPcW6u+Wfhw66kZtvnvv4L//itqy6fEJ3G0Y/ZXGslMO/ditHNX3/d1VfeM8/mVdrBmQ6/MfwRWKGTHzYntciy+pAuH1DYLA5+szUvYslDt9uSrJ9RPPfMZ2nmUoJ2H+v6Gq3pnnNOzdAFbNvRvmOn5Jrb8IUfiSm/bn/9j25//y3T/oCq9VW7fvXSbtgWaffK8J/53lBP/+7pdL4ScJZajy5xCEo3oH/XixQtq167N9u3bcXbO3nQM/2WfSt7k5ryihtwhfNSR7pc+XUhG4dqyzkr1Ue1m/7sjyL9Uyo3sNW9/bdqVK8gdQqa6/aL+R4OmyGzZus+RkpLCzZs3KVOmjMY1xWpybB/jlsczx851LfD7qiH+7msGP1dSUhIRERHMmzeP0qVLi0RQEARBEL5hos9g5kQymIkbN27QpUsXChYsyIIFC1T2Xbt2TWUewA95e3v/2+EJgiAIgiDkCJEMZsLd3Z0HDx6o3efi4qJcsUMQBEEQBM0nesVlTiSDn8HAwOCrT5EjCIIgCMLnE83EmdPcXuCCIAiCIAjCv07UDAqCIAiC8N0TU8tkTiSDgiAIgiB897I7aft/iWgmFgRBEARB+A8TNYOCIAiCIHz3RDNx5kQyKAiCIAjCd080E2dONBMLgiAIgiD8h4maQUEQBEEQvnuimThzIhkUBEEQBOG7J5qJMyeSQeFf8SbJQO4QPsr5zSu5Q/ioBIVC7hA+KlmTw9PWljuCj0p+9VbuED5K6+ULuUPIVKyULHcIHxV/ZVuOns8ZSLr+lKQcOp9BxdY5dKZvk6gZzJzoMygIgiAIgvAfJmoGBUEQBEH47olm4syJZFAQBEEQhO+eaCbOnGgmFgRBEARB+A8TNYOCIAiCIHz3JClV7hA0lkgGBUEQBEH47qWKZuJMiWZiQRAEQRCE/zBRMygIgiAIwndPEqOJMyWSQUEQBEEQvnuimThzoplYEARBEAThP0zUDAqCIAiC8N0TzcSZ+yaTwVGjRrFr164M248ePUqBAgX+lft0cnJi8eLF1KpVK8vHJCYmsm7dOvbt28ezZ88wMDCgUKFCtG7dmiZNmqCrq/uvxPotKNC9DoX6N0bf1pyouwHcGbOGt95P1JY1ccpHsRGtMStVGKP8Ntwdvw7/5YdUyjgObopdg4qYFM1LSnwi4Vcf8mDy38Q8Ccx2bJuvPWXd5UeERsdTzM6ckXVK4ZrXUm3ZPT7P+G3/DZVtetpaXBnZVHk7NDqeeafucMnvDVHxSZTLb8XIOqUpYGmS7dgAinSrTfH+DTGwMSfibgA3xq4j7ObTTMvna1QR15GtMc5nTZRfED5T/kfgyVvK/TpG+pQa2w77em7o5TIh5nkwj1Yd4cn6E58VX8mutSjVtyGGNuaE3Qvgwvj1BH8kvkINK+I2vBUm+ayJ9A/iyrTNPE8XX3pVpnenROeaXPxtA7dXHfms+DZffsC6c/cIjY6jWO5cjGzohms+60zLR8Ylsuj4TU7efc7buETyWBgzvEF5PIvZA7DqzG1O3HuOf3Ak+rralHaw4ec6ZSloY5bt2PRqN8WgYVsU5pakBDwhbt1CUp7eV1tW180T/aYd0LazB21tUoNeEn9wG0nnjinLKMxyYdi+FzqubiiMTEi+70PcuoWkBr3MdmwAW3yes847gNDYRIpZmzDyx2K42JmrLbv33it+O3FP9fFpa3G5X3Xl7QnH77Lvvup71CO/JYublP2s+NTpOLQjdTrUxdjMmHvX7rFkzBIC/TNfm7zVgNZ41KuMvWM+EuMTuX/9Hmunr+Xl08+7Zu9sPnaJdQfPEfI2mmIOuRnVpRGujvnUlv1p6kqu3ffPsN2zdDEWDetCUnIKi7Yf59yth7x4E4apkQHuzo4MaVsH21zZf939V4gVSDL3TSaDAJ6enkyfPl1lm6Wl6hd2YmIienp6XzMslfv+6aefePDgAUOGDKFcuXKYmJhw8+ZNVq9eTcmSJSlRooQssWUmKSnpqySoeZpWpvjvnbkzYiURNx5TsHcDKm4ezZkfhpIYEpmhvLahHrHP3hC47xIlJnVRe07LyiV4tuYob28+QaGthdOYdlTcMoazPw4jJTYhy7EdufuCOSd8GVuvDK55c7Hp6hP6b77Anj61sTTWV3uMib4Ou/vUVt5WpNsnSRK/7LiEjpYWc1tVwkRfhw2XH9P373Ps7F0LQ73svQUdmlSizMSOXB+5mlDvJxTrVY+q/xvFwSrDSAjNeO2s3IpSeelAfKZt4dVxbwo09+CHNUM5Vmcsbx+8AKDM752w/aEklwYuIeZ5MLmruVJ+enfiXofz6uiNDOf8mMKN3ak0oSPnRq/hjfdjXHrWo/7GkWytOpx4NfHZli9KjcUDuDpjKwHHvXFs5kHtlb+wq/44wv+J752C9dywLVeEmNdh2YopvSO+/sw5dIOxTSrims+aTRfv03/dKfYMaYyliUGG8knJKfRddwJLYwP+aOeJrZkRgRExmBq8/1y57v+GthWL4WxvRUqqxMLjN+m37gQ7BzfO1vOrW6kahh37Ebd6HslP7qFfryXGo2YSNawrUmREhvJSTCQJezaR8ioAkpPRKVsJo94jiHkbTrLvNQCMh06ClBRi/hyPFBeLfv1WmIyZTeSI7pAQn71r9yiIOeceMbZacVxym/H3zef033uT3R0rY2mk/nPWRE+bXR0rK28rFBnLeOS34vea7z8L9bRzrvdSy34tadS9MfOGziXoeRAdh3Vi0sZJ9K/Zj6SEJLXHuLi7cGDdAR75PEJLW5suI7owaeNk+tfsR0Jc1j9L0jt8yZfZfx9iXPcmuDo6sOnwBfrNWsueWT9jZZ7xR+GfQzqQlJyivB0RHUubsYupXdEFgPjEJO77v6J3s2o45c9NZEw8MzccYMjcjfxvUv/PivG/QKxAkrlvts+gnp4eNjY2Kn/dunVj0qRJTJ06FXd3d3766ScArly5QqtWrXBxcaFKlSrMnj2b5ORk5bk6d+7MlClTmDVrFhUrVuSHH35g4cKFyv01atQAYMCAATg5OSlvf8y6deu4du0aa9eupWPHjpQoUQIHBwcaN27M1q1blTWYZ8+epX379ri5ueHu7k6fPn0ICAhQnufFixc4OTlx8OBBOnToQKlSpWjZsiV+fn74+PjQokULypYtS8+ePQkLU/2S3LZtG/Xr18fV1ZV69eqxadMmteft1KkTrq6u7Nu3j/DwcIYOHYqnpyelS5emcePG7N+//zOeocwV6tuQ5xtP8mLzGaIfvuT28JWkxCWSr301teXf3nzK/UmbCNx9kdSEZLVlrrafwcstZ4h+8IKouwH4DFmKoYMNZqUKZSu2DVce06JMQZqVLoCjjRnj6pfBQEeb3bf8P3KUAmsTA+WfVbqkIiAsGp+X4YypVwaXvLkoaGXK2PpliE9O4dDdFx85p3pOferzdNMp/LacJfLhS66NWE1yXAKF2ldVW75Yz3q8PuXDg6UHiHr0ituzthPh60+RHnWUZazdiuK/zYvgi/eIfRHC042niLgbgGVZx2zH59q7Pvf/d4qHW88S8egV50atITk+Aad26uNz+akuL0774LPsABGPX3F99nZCbvvj3K22Sjmj3LmoPLkLpwYtITUpRe25smLDhfu0cCtCs3KOONqaM65xRQx0tdl9Q32t9O4bT4iMTWRuh6qULWCLfS4T3ArZ4ZQnl7LMkq41aFrOkSJ2FjjlycWkFpUJfBvL3Veh2YpNv35rEk8dJPHsYVJfPiNu9VxISECvan215ZPv3SLp2jlSXwWQ+uYViUd2khLwFB0nVwC0cudDp6gzsavnkfL0AamBz4lbMw909dCr/OnPsA9tvBlAC2d7mpbMi6OlCWOrF097b9zLvJYNFFgb6yv/rIwy/qDS01YtY2aQcz9Im/zUlK0Lt3D52GX87/sz95c/sbS1pFKdypkeM7HLb5zYfoKAhwH43/Nj3q9zsc1nSxHXIp8dx4ZD52lRzY1mP5bH0d6Wcd2bYKCvy+6z19WWNzcxwtrCVPl36fYTDPR0lcmgqZEBf43qTl13VwrmsaFUEQdGd23EXb9XBIZEfHacwn/XN5sMZmbXrl3o6uryv//9j99//52goCB69+6Nq6sre/bsYeLEiWzfvp2lS5dmOM7IyIitW7cyfPhwFi9ezPnz5wHYvn07ANOnT+fcuXPK2x+zb98+PDw8KFmyZIZ9urq6GBkZARAXF0f37t3ZsWMHa9euRaFQMGDAAFJTVWdKX7hwIf369WPXrl3o6Ojw66+/8scffzB27Fg2bdpEQEAA8+fPV5bfu3cv8+fP55dffuHgwYMMHTqUBQsWZGhenz17Nl26dOHgwYNUqVKFxMREnJ2dWb58Ofv376dNmzaMGDECHx+fLFz9T1PoamNWqhChXr7vN0oSIWd9yeVWLEfuA0DHNO36JkVEZ/mYpJRU7gVG4F7QRrlNS6HAvZANPi8zr42KS0ym/qLD1F14mJ+3XeRx8PsasMSUtOdRX+f9W01LoUBPWxvv59lLFrR0tclVqhBBXrffb5QkgrxuY12+qNpjrNyKqJYHAk/7YF3+/RdbyLVH2Ncph2HutATH1qMkpoVzE3TGl+zQ0tXG2rUQL73uqMT30usOtuXUf5HalS/Cyw/ie3HGB9t08aFQUH1+X3yWHSD84ec31SUlp3DvVRjuhXO/j1lLgbtjbnyeh6g95vT9l5RysGb6/qvUmLGDlgv3s/LMbVJSM1/JIDo+rcbJ3FB9TbJa2jpoFypG8u10yYEkkXz7OjpFM36GqKPjXBbtPPlIvv/Pe/VdLX9Soso5SU5Cx8kl67Hxz3vjTRTuDu9bX7QUCtzz5cLn9dtMj4tLSqH+uvPUW3uOnw/c4kloxvfjtZcR1Fh1lmYbLzL19H0i4tTX2GWXXX47LG0tuXnupnJbbFQsD28+oHj54lk+j7GpMQBR2fgsSS8pOZl7/q+o5Pz+x5WWlhaVnB3xefw8S+fYdeY69Sq5YmSQeUtXdGw8CoUCU+OMNdxCGkmScuzv3xIREcGvv/5KuXLlcHNzY8yYMcTExGT58fXs2RMnJyeOHz+erfv9ZpuJT58+Tdmy7/uVeHp6AlCwYEFGjBih3D537lxy587NhAkTUCgUODo6EhQUxOzZsxkwYABaWmlf0k5OTgwcOFB5jo0bN3Lx4kV++OEHZfOzmZkZNjbvE4WPefbsGRUrVvxkubp166rcnjZtGpUrV+bx48cUK/Y+OerRo4fyMXbp0oWhQ4eydu1aypcvD0CrVq3YuXOnsvzChQsZNWoUdeqk1QA5ODjw+PFjtmzZQvPmzZXlunbtqizzzrsaVUirNT137hyHDh2iVKlSWXrsH6NnaYaWjjYJwapfIAnBbzEpav/F5wdAoaDklK6EXb5P9P2s176FxyaQIklYfdAcbGVsgL+aLzGAgpYmTGxUjqK2ZkTHJ7P+8iO6rT/Djl61sDMzpKCVKXnMDFlw6i7j65fBUE+HjVceExQVR0h09prp9CxN0dLRJv6DaxcfHIlZkbxqjzGwschQPiH4LQa2FsrbN8auw+2Pn2jivYjUpGSkVIlrw1cSfEl9X7XMGPwTX9wH9xcX8haLInnUHmNoY0HcB10D4oIjMbR5H1/p/o1ITU7lzmf2EXwnPDaBlFRJpeYWwMrEAH813RMAXoZHc9UvmgalCrGoczWeh0Uxbd9VklNS6Vsj4/shNVXij4PXKJPfhiJ2FhlPmAmFqTkKbW1S34arni8yHJ28+TM/0NAY80VbQUcXUlOJWztPmVCmvgogNSQIg7Y9iVv1J1JCPPr1W6FlZYvCwirLsQGExyWRIklYGqomI1ZGevhHxKo9poCFMb/VLEExKxOiEpPZ4B1Atx3X2N6hEnb/PAce+S2p4WiDvakhLyLjWHjxMQP33WRdKze0tdS0KWdDLpu0HzcRH9SURYREkCvd6+tjFAoFvSb24u7VOwQ8fPZZcYRHxZKSmpqhOdjKzAS/V+p/hKTn++QFj18EMbFn80zLJCQmMW/LUepXcsXEUCSDmfkWppYZNmwYwcHBrFmzhqSkJMaMGcOECROYM2fOJ49dt24dCnV9MbLgm00G3d3dmThxovK2oaEhv/76K87Ozirlnjx5QtmyZVUuUPny5YmNjeX169fkzZv2Jerk5KRynI2NDaGh2au5SS+rvxz8/f1ZsGABt27dIjw8XHlcYGCgSjKYPj4rKyu12941E8fGxhIQEMDYsWMZP368skxycjKmpqYq9+/iolpDkJKSwrJlyzh8+DBBQUEkJSWRmJiIgcG38wHjPKMHJk4OXGry279+X6XzWVE6n1W625a0WH6c7d5+DKhaEl1tLea0dGfiAW9+nHsA7X9qGn9wtENTPpeK9qiDVbkieHWZTcyLEGwqFafctG7EvQ4nKH0tnwysXQvi8lNddtUfJ8v9p0oSlsYGjG9aEW0tLUraW/EmMo515+6qTQan77/K4zdvWduzjpqz/QviY4ka0wuFgSE6zuUw7Nif1DeBJN+7ldZXcO4EjHoPx3zFXqSUFJJvXyfp5mXVjq3/ktJ5zCmd5/3gktK5zWn59yW2337JgEpptWT1ir2vpS1qbUJRKxMab7jAtZfhKrWQWVG1WTUGTB+gvD2p2+9f+Aig75R+5C9WgJEtR3y68L9k15lrFHWwy3SwSVJyCsMXbUGSJMZ2b/LRc6WkfH4XC3XnyanzAWhra+fYub5VT548wcvLi+3bt+PqmtbdY9y4cfTu3ZsRI0ZgZ2eX6bH37t1j9erV7NixgypVqmT7vr/ZZNDQ0FDtyGFDQ8PPOp+OjuqlUCgUX1QVXLBgQfz8/D5Zrm/fvtjb2zNlyhRsbW1JTU2lUaNGJCWpNpWkH9jxLrFNH7NCoVA2LcfGpv1Snzx5MqVLl1Y5z7ua0HfeNVe/s2rVKtavX8+YMWNwcnLC0NCQadOmZYjncyWGRZKanIK+jeoIRH0bcxLeRHzx+UtO645t7XJcajaR+MDsDTTIZaSPtkJBaIxqJ/HQmHisMxk88iFdbS2c7Mx5Hv6+Wr9knlxs7VmDqPgkklJSsTTWp9Pa05TMbZGt+BLDokhNTsHgg2tnYGNG/Bv1TXXxwREZyuvbmBP/z7XWNtDFdXRbzveYS+CJmwC8vfecXM4FcOrXMFvJYPw/8Rl+cH+G1ubEZhJfXHAEhtaqox8NbcyIC06LL3dFJwytzWh/+X0XCC0dbdwndMSlZz02V/4ly/HlMtJHW0tB6Ac1sqHR8VibqP/csDE1REdLC+1075tCNmaERMeTlJyCrs77L7Dp+69y9sFLVvesjZ25kbrTZUqKeouUkoKWeS7Sf71qmeVCevuR17EkkRqU1mcv5dkTtPLmR79Jh7RkEEjxf0TUmN5gaIxCRwcp6i0mvy8mxe9BtuLLZaiLtkJBWFyiyvbQ2ESsMhk88iFdbS2crE15/jYu0zL5zA2xMNDl+dvYbCeDV45d5qH3+8elq5/2mWlhbUH4m/c1rhbWFjy9++nP5j6T+lKhZgVGtx5F6OvPrxjIZWqEtpYWoW9VWxdCI6Oxtvj4jAKx8YkcueRL/5Y11e5PSwQ3ExgSwYrRPT5ZK3jz5s1sxf4pvr7Z60ryMe9auf5NOdm8m5iYSGKi6vtBT0/viwatent7Y2ZmpkwEATw8PNDS0sLHx4fatWurPS4uLo5ff/2VCRMmZLn18kPfbDKYVY6Ojhw5cgRJkpRJ1PXr1zE2NiZ37tyfOPo9XV3dbP0KatSoEXPnzuXu3bsZ+g0mJSWRlJREQkICfn5+TJkyBTc3NwCuXbuW5fvIjLW1Nba2tjx//pwmTT7+S/FDN27coGbNmjRtmjY1SmpqKv7+/jg6Zn8wgTpSUgqRPn5YeboQdOifx6pQYOXpwrPVX9YMWHJad3I3qMCl5pOICwjO9vG62lqUyGPBFf9gajil1RinShJX/INpV75wls6Rkirx+E0kVYpk/AVn+k/H+Gdh0dwNDKf/j9kbTZ6alEK4jx92VZx5efifvmUKBXZVXHi05qjaY0KvPca2ijMPVxxWbsv9owsh1x+nHa6jg7aeToYPSSk1FYVW9roUpyalEOLrh30VZ54deR9f3irO3F17TO0xQdcfk7eKs8o0Mfk8XXjzT3yPdpzn5TnVhLT+phE82nGeh1vOZis+XR1tSuS15MrT19Qo6ZAWc6rElaevaefupPaY0vltOOTjT2qqhNY/zZbPQqOwMTVUJoKSJDHjwDVO3n3Oyp9qYZ/rM6YMSkkmxe8hOs7lSLqe1lcZhQIdl3IkHN2d9fMotFDoqBmAEReDBGjZ2aNduBjx29dkKzxdbS1K2Jpy+XkY1QunfdmkShJXXoTTtpT6GqsPpaRKPA6N5ocCmTdRB0XH8zY+Kcs/vtKLi4kjLkY10Qx7E0bpH8rg90/yZ2hiSLEyThzccEjdKZT6TOpL5XqVGd1mNEHPg7IdS3q6OjqUKJiXy3efUsMt7bsgNTWVy3ee0q62+0ePPXblNonJKTT0KJNh37tEMOB1KCvH/ISF6ad/gJQpk/E8nyMlJQVfX19cXV2/qRq9nJxa5q+//mLRokUq2wYOHMigQYM++5whISEZZkXR0dHB3Nyc4ODMv9OmT59O2bJlszX13Ye++2SwQ4cOrFu3jsmTJ9OxY0f8/PxYuHAh3bt3z1BL9jH29vZcvHiRcuXKoaenh7m5+rm13unWrRtnzpyhW7duDBkyhPLly2NsbIyvry8rV65k6tSpODk5YWFhwZYtW7CxseHVq1dZ6heQFYMHD2bKlCmYmpri6elJYmIit2/fJjIyku7du2d6XIECBThy5Ag3btzA3NycNWvWEBISkmPJIIDfsgOUWtCPtzefEuH9mEK9G6BjpM+LzWcAKLWwPwmvw3gwdTOQNujEpFjaF46WnjYGuS0xdS5ASkw8sf5pH9TOM3qQt8UPXO86m+ToOPT+qZ1KjoolNT7rtZqdKxZh/L7rlMxjgUveXGy68oS4pBSalkqrhR639xq2poYMrp7WHeEvr/u42ucify4TohKSWHfpEYGRsTQvXVB5zqP3XpLLSI88ZkY8Cn7LrGO+VC+WF4/CmVf5Z+bBX4dwn9+HsFt+hN58glOveugY6eP3z7VzX9CX2Nfh+E7bAsDDlYepsXMcTn0a8OqEN/mbViZX6cJcG74q7fpEx/Hmwl3KjG/P9bhEYl+EYFO5BAVaeXJz4sZsx+e7/BBV5/Yh+JYfwTef4NKzHrqG+jzckhZftXl9iHkdztUZWwG4veoIjbePxbV3fQJO3MSxaWWsSxXGa+RqABIiokn4oON+alIKcW8iePs0+3NIdvYozvidFylpb4WLvRWbLt4nLjGFpuXSkv1x2y9ga2bI4Dpp/ZHbVCzKlssPmHXwGu0rOfEsNIpVZ+7QvtL75HHa/qsc8vFnXoeqGOvpEhKVlpCYGOhioJv1j9iEQ9sw6jOKZL8HpDy5j369lqBvQOKZtETeqO8oUsNDiN+yEgD9Ju1JefowrWZQVxfdMu7oVamdNmL4H7oVqyJFRZAa8gat/IUw6jyQpGvnlVPPZEenMvmZcPwuJW3NcLEz4+9bAcQlp9C0RFp/0HHH7mBrrM9gj7TBP39deUqp3OY4mBulvTe8AwiMiqe5c9oPrdjEZP666kdNR1usjfR4/jaO+Rce42BuiEf+7PVpzMzeVXtoO7gtr/xfEhQQRKdhnQh7E8aloxeVZab8byoXD1/kwLq0WRP6TenHj02rMrXnFOJiYrH4p39hbGQsiQmJ6u7mkzrX/4Hxy3fgXCgvLoXzsfHIBeISEmn2Y1pt2Nhl27HNZcaQtqrdC3aduU71ciUyJHpJySkMW/g/7vm/YuHQzqSmphISEQWAuYkhujrqX3c5nbhpa2t/U8lgTurTp0+G79LMagVnz57NihUrPnq+gwcPflYcJ06c4NKlS2rnXs6O7z4ZtLOzY/ny5cyaNYutW7diYWFBq1at6NevX7bOM3LkSGbMmMG2bduws7Pj5MmTHy2vp6fHmjVrWLt2LZs3b2bmzJkYGhpSuHBhOnfuTNGiRdHS0mLu3LlMmTKFRo0aUahQIcaNG0fnzp2/5CED0Lp1awwMDFi1ahWzZs3CyMiIYsWK0bVr148e169fP54/f85PP/2EoaEhbdq0oVatWkRFRX1xTO8E7rmInpUZxUa0Rs/Wgqg7z7jSfgaJ/ww8MLS3htT3v+AMclvieXKm8nbhAY0pPKAxoefvcrnFJCBtEmuASrtV+wneGryUl/8kIllRt2Q+wmMTWHr2HiExCTjZmbOkrYdy0EFgZJxK/9PI+EQmH/QmJCYBMwNdSuS2YF2Xqjimm3A4JDqeOcd9CY2Jx8bEgEau+eldJeujGdN7vvcS+lamuIxolTbp9J1nnOkwk4R/BkAY2Vshpbt2odcecbH/YlxHtsZ1dBui/V5zvvufyjkGAS72XUSpMW2ptLg/ehYmxL4MwXfm1s+adPrpvssYWJlRflhLjGzMCb37jEOdZykHiRjbW6vE9+b6I04OXILbiNZUGNmGt36vOdZzboY5BnNKXdeChMcksPTELUKi43HKk4slXapj9U8zceDbGBTpBi7kNjdmSZcazD50ndaLD2BrakSHyk5093xf27/tyiMAeq5WHb33e/NKNC2X9R9RSZdOE2dqgWGr7ijMc5Hy7AkxM0ciRaY1cWpZ2YL0fhSzQt8Qw+5D0LK0QUpMIPXVc2KXTiPp0un3ZXJZYtipHwrzXEgRYSR6HSV+14asX7B06ha1IzwukaVXnhIak4CTjSmLG5dRThfzOioerXTvjaiEZCaduk/ou/eGjSlrW7nh+M9k61paCh6FRLPvfiBRCcnYGOtT2cGS/pUK59hcgzuW7sDA0ICB0wdhbGbM3Wt3+a3zBJU5BnPnz42Z5fv3a4MuDQGYvm2GyrnmDZ3Lie2fNxF7vUquhEfFsGTHCULeRuOUPw9LhndVDip5HRqhcu0A/AOD8X74jGUjumU435vwSE7fSBvg1WbcYpV9K8f0oEKJrLVk/NfkZDNxdpqEe/TooTJwUx0HBwesra0zTBGXnJzM27dvM23+vXTpEgEBAVSoUEFl+6BBg3Bzc2PDhqy93xWSWJ9F+BcctGsndwgfVX1WQblD+Ki9o7I25YRcIrW/wgiEz9Tpz5yboujfkLDntNwhfJRepc/7ofI1tP0j4NOFZLRt+8d/bMvNoGLrHDlPSkoKN2/epEyZMt9UzaC5Sc61cL2NVj836Zd48uQJDRo0YMeOHcrBnefOnaNnz56cOXNG7QCS4OBgwsNVZyFo3LgxY8eOpXr16jg4OGTpvr+7eQYFQRAEQRC+NY6Ojnh6ejJ+/Hh8fHy4fv06kydPpmHDhspEMCgoiHr16inn/rWxsaFYsWIqfwB58+bNciII/4Fm4n9Lw4YNefVK/cz7v//+e7YHbgiCIAiC8O/5FhpCZ8+ezeTJk+natStaWlrUqVOHcePeT62VlJSEn58fcXGZj8r/HCIZ/EzLly9XWdIuvXfzAAqCIAiCoBlycjTxv8XCwuKjA0nz5cvHgwcfnxrqU/vVEcngZ7K3z6HVMgRBEARB+NdJmjLTvwYSfQYFQRAEQRD+w0TNoCAIgiAI371voZlYLiIZFARBEAThu/ctDCCRi2gmFgRBEARB+A8TNYOCIAiCIHz3xACSzIlkUBAEQRCE755oJs6caCYWBEEQBEH4DxM1g4IgCIIgfPdEzWDmRDIoCIIgCMJ3T6SCmRPNxIIgCIIgCP9hCknUmwqCIAiCIPxniZpBQRAEQRCE/zCRDAqCIAiCIPyHiWRQEARBEAThP0wkg4IgCIIgCP9hIhkUBEEQBEH4DxPJoCAIgiAIwn+YSAYFQRAEQRD+w0QyKAiCIAiC8B8mkkFBEARBEIT/MJEMCoIgCIIg/IeJZFAQBEEQBOE/TCSDgvAZnj9/LncImUpKSqJr1674+/vLHYogCILwDdCROwBBSO/EiRNZLluzZs1/MZKPq127NhUqVKBVq1bUq1cPfX192WL5kK6uLg8ePJA7jI+qUaMGLVq0oEWLFuTNm1fucDIICAhgx44dPH/+nLFjx2JlZcWZM2fImzcvRYsWlTs8IiMjOXLkCAEBAfz0009YWFhw584drK2tsbOzkzs8ABITE3nx4gX58+dHR0ezvmouXrzIxYsXCQ0NJTU1VWXf9OnTZYrqvcePH/Pq1SuSkpJUtsv5mSd83xSSJElyByEI7xQvXlzltkKhIP1LVKFQKP997969rxbXh+7du8eOHTs4cOAASUlJNGjQgFatWlGqVCnZYkpv2rRp6OnpMWzYMLlDUWvt2rXs2rWLR48e4e7uTqtWrahduzZ6enpyh8aVK1fo1asX5cqV4+rVqxw6dAgHBweWL1/O7du3WbBggazx3b9/n+7du2NqasrLly85fPgwDg4OzJ07l8DAQGbNmiVrfHFxcUyePJndu3cDcOTIERwcHJg8eTJ2dnb07t1b1vgWLVrE4sWLcXFxwcbGRuUzBWDx4sUyRZbW4jBgwAAePnyo8tn3LkY5P/Pe8fX15dChQwQGBmZIVhctWiRTVMIXkwRBQ50/f15q3ry5dPbsWSkqKkqKioqSzp49K7Vo0UI6d+6c3OFJkiRJSUlJ0pEjR6Q+ffpIzs7OUsOGDaXVq1dLoaGhssY1adIkqVy5clLz5s2l8ePHS9OmTVP50xS3b9+WJk+eLLm7u0sVKlSQfv/9d+n27duyxtSmTRtp9erVkiRJUpkyZaSAgABJkiTp1q1bkqenp5yhSZIkSV27dpVmzpwpSZJqfNevX5eqV68uZ2iSJEnS5MmTpebNm0tXr15Vie/YsWNS06ZN5Q1OkqQffvhB2rVrl9xhqNWnTx+pX79+UmhoqFSmTBnp8ePH0tWrV6VWrVpJV69elTs8af/+/ZKzs7Py865Pnz5SnTp1pPLly0ujRo2SOzzhC4g+g4LGmjZtGmPGjMHT0xMTExNMTEzw9PRk9OjRTJkyRe7wANDR0aFOnTosWLCAYcOG8ezZM2bOnEnVqlUZMWIEb968kSWuhw8fUrJkSYyNjfHz8+Pu3bvKP02oXXjH2dmZcePG4eXlxYABA9i2bRutWrWiadOmbN++XaVW+Gt5+PAhtWrVyrDd0tKS8PDwrx7Ph3x9fWnXrl2G7XZ2dgQHB8sQkaoTJ04wYcIE3NzcVLYXLVqUgIAAmaJ6LykpiXLlyskdhlre3t4MHjwYS0tLtLS0UCgUuLm5MXToUI34zFu2bBmjR49m2bJl6OrqMnbsWA4fPkz9+vXJkyeP3OEJX0CzOnIIQjoBAQGYmZll2G5iYsLLly9liCgjX19fduzYwcGDBzE0NKRHjx60atWKoKAgFi1aRP/+/dm+fftXj2vDhg1f/T4/R1JSEseOHWPnzp1cuHCB0qVL06pVK16/fs3cuXO5ePEic+bM+aoxmZqaEhwcjIODg8r2e/fuaUR/PD09PaKjozNs9/f3x9LSUoaIVIWFhWFlZZVhe1xcXIYmWTm0atWKffv2MWDAALlDySA1NRVjY2MAcuXKxZs3byhcuDD29vb4+fnJHF1aM3bVqlWBtNdhbGwsCoWCbt260bVrVwYPHixzhMLnEsmgoLFcXV2ZMWMGs2bNwtraGoCQkBD++OMP2fvmrVmzhp07d+Ln58ePP/6orA3U0kqrbHdwcGDGjBnUqFFD1jgBXr9+DUDu3LlljuS9O3fusHPnTvbv34+WlhbNmjVj9OjRODo6KsvUrl2bVq1affXYGjZsyOzZs5k/fz4KhYLU1FSuX7/OzJkzadas2VeP50M1atRg8eLFzJs3T7nt1atXzJ49mzp16sgX2D9cXFw4ffo0nTt3Vtm+bds2ypQpI09Q6SQkJLB161YuXryIk5NThsEto0ePlimytNrTBw8e4ODgQOnSpVm5ciW6urps3bo1w48TOZiZmRETEwOAra0tjx49wsnJicjISOLi4mSOTvgSYgCJoLGePXvGwIED8fPzUzZBBAYGUrBgQRYvXkyBAgVki61OnTq0bNmS5s2bY2trq7ZMYmIiBw4coHnz5l85urQahiVLlrBmzRpiY2MBMDY2pnv37vTr10+ZtMqlRIkSeHh40KpVK2rVqoWurm6GMrGxsUyePPmrj+5MTExk0qRJ7Nq1i5SUFHR0dEhJSaFRo0bMmDEDbW3trxrPh6Kiohg8eDC3b98mJiYGW1tbQkJCKFOmDMuXL8fIyEjW+K5du0avXr1o0qQJu3btom3btjx58gRvb282bNiAi4uLrPF9mKSmp1AoWL9+/VeMRpWXlxdxcXHUqVOHZ8+e0adPH/z9/bGwsGDu3LlUrlxZttgAfv31V1xcXOjevTuLFy9m48aN1KxZkwsXLlCyZEkxgOQbJpJBQaNJksT58+d5+vQpAI6Ojnh4eMja3JScnMzSpUtp3bq1RtW2pTdnzhy2b9/OoEGDlP2jrl+/zqJFi2jTpg2//PKLbLGlpKSwd+9eatSogbm5uWxxfMqrV6949OgRMTExlCxZkoIFC8odkopr167x4MEDYmNjcXZ2xsPDQ+6QlAICAli+fDn3798nNjaWkiVL0qtXL5ycnOQO7ZsTERGBubm5RjSxR0REkJCQgJ2dHampqaxcuZIbN25QsGBB+vXrp9HvZ+HjRDIoCJ+hbNmy7Nu3j3z58skdilpVqlTh999/zzAv2fHjx/n999/x8vKSKbI0rq6uHDx4UCOavoT/Lk3qQpGUlETp0qXZvXs3xYoVkzucDJKTk9m/fz9VqlRRdtsRvh+iz6Cg0TR1cthKlSpx9epVjU0G3759S+HChTNsL1y4MG/fvpUhIlVFixblxYsXGpkMZva6UigU6Ovrkz9/fmrWrImFhcXXDewfmTVjpo+vQoUKsjVnd+nShYoVKzJw4ECV7W/fvmXQoEGyNsOC5nah0NXVJU+ePBk+5zSFjo4Ov/32GwcPHpQ7FOFfIJJBQWN9anJYOf3444/MmTOHhw8f4uzsjKGhocp+uVcKKF68OJs2bWLcuHEq2zdt2pRhYm85/Pzzz8ycOZMhQ4bg7OycoZ+biYmJTJGhnIInNTWVQoUKAeDn54e2tjaFCxfm77//ZubMmfz9998UKVLkq8e3du1awsPDiYuLUzbLvX37FkNDQ4yMjAgNDcXBwYH169fLMt3HlStXePjwIXfv3mX27NnK5zYpKYmrV69+9Xg+NHfuXLZv386vv/6aoQtFYmKirF0o+vbty59//smsWbNk+7HxMaVKleLevXvY29vLHYqQw0QzsaCxqlSpwrBhwzRiBOeHPpZQKRQK2efyu3LlCn369CFPnjzKEZw3b94kMDCQFStWZJgD7mtLf/3SJ/mSJMl+/dauXcv169eZPn26MimNiopi7NixlC9fnjZt2vDrr7+SkJDAqlWrvnp8+/fvZ8uWLUydOpX8+fMDaYOtJkyYQNu2bSlXrhy//PILNjY2sqyWUrx4cXbv3s2ECROIi4tj6dKl5MuXj5CQEDw9PWV/b2hyF4pmzZrx7NkzkpOTyZs3b4YfSbt27ZIpsjQHDx7kzz//pFu3bmp/BGvCD03h84hkUNBY7u7ubNu2TfmFJ2RPUFAQf//9t3LwTeHChenQoYNGzJV35cqVj+6vWLHiV4okI09PT9asWZOh1u/Ro0f06NEDLy8v7ty5Q48ePbh8+fJXj69WrVosXLiQEiVKqGy/e/cugwYN4sSJE9y4cYPBgwdz7ty5rx5f8eLFOX/+PKampowePZrz588zf/58HB0dNSIZdHV1Ze/evcpa33eePn1Ks2bN8PHxkSmyTy/n9mHT+9emLtl7t2ye3D/ihC8jmokFjaXJk8Oml5CQgL6+vtxhZGBnZydrk9fHyJnsfUp0dDShoaEZksGwsDDlZM9mZmYZ1mX9WoKDg0lOTs6wPTk5mZCQECBtDrh388F9be9qevX09JgzZw5LliyhZ8+e9OrVS5Z4PqTJXSjkTvY+5cSJE3KHIPxLRDIoaCxNnhw2JSWFZcuWsXnzZkJDQzly5AgODg7MmzcPe3t7WrduLVtsAGfPnsXIyEjZHLxp0ya2bt1KkSJFmDBhgkZMAREZGcn27dt58uQJkDaopGXLlpiamsoaV40aNRgzZgyjRo3C1dUVSFtpZubMmcpl6nx8fGSbasbd3Z3ffvuNKVOmULJkSSCtVnDixIlUqlQJSFtST67BTR82NvXv3x9HR0dGjRolSzwfGj58OH369OHChQtqu1DILTIykiNHjhAQEMBPP/2EhYUFd+7cwdraWvZafdFX8PslmokFjaXJk8MuWrSI3bt3M3jwYMaPH8/+/ftxcHDg4MGDrFu3ji1btsgWG0Djxo0ZNmwYVatW5cGDB7Rs2VLZrFm4cGFZR2JDWnLVs2dP9PX1lavJ+Pr6Eh8fz+rVq3F2dpYttpiYGKZPn87u3btJSUkBQFtbm+bNmzN69GiMjIyUzWEfNtV+DcHBwYwYMYKLFy8qfyClpKRQuXJl5Wo9ly5dIjk5mSpVqnz1+F6+fEmePHkyjMp9+PAhd+7ckWUS9g9paheK+/fv0717d0xNTXn58iWHDx/GwcGBuXPnEhgYyKxZs2SND2D37t1s3ryZFy9esGXLFuzt7Vm7di358uVTu6a38I2QBEHItlq1akkXLlyQJEmSypQpIwUEBEiSJEmPHz+W3Nzc5AxNkqS0mJ4/fy5JkiQtWLBAGjRokCRJknT79m3Jw8NDztAkSZKk9u3bS6NGjZKSkpKU25KSkqSRI0dKHTp0kDGy96Kjo6V79+5J9+7dk6Kjo+UOJ4PHjx9Lx48fl44fPy49efJE7nCEHNC1a1dp5syZkiSpfq5cv35dql69upyhSZIkSZs2bZLc3d2lJUuWSKVKlVLGt2PHDqlTp04yRyd8CdFMLAifISgoSO3AFkmS1Pbn+tp0dXWJj48H4MKFC8oR2ebm5sp+b3K6ffs2kydPVmn619HRoWfPnrRs2VLGyN4zNjaWvQ/Zxzg6Oqqs5SyngQMHMmPGDExMTD7Z702OJcvu379PsWLF0NLS4v79+x8tK+dz7uvry6RJkzJst7OzIzg4WIaIVG3cuJEpU6ZQq1Ytli9frtzu4uLCzJkzZYxM+FIiGRQ0mq+vL4cOHSIwMDBDh30518EsUqQI165dy9CH5vDhw7I0HX6oXLlyTJ8+nXLlyuHr68u8efMA8Pf314jVFkxMTAgMDMyQzAQGBmJsbCxTVO9p6uvundevX3PixAm18cnRlzZ9P0+5+3yq06xZM86fP4+VlRXNmjVTjoD9kNwjYvX09NT+WPP398fS0lKGiFS9ePFC7eebnp4ecXFxMkQk5BSRDAoa68CBA4wcOZIqVapw7tw5qlSpgp+fH6GhodSuXVvW2Pr378+oUaMICgpCkiSOHj2Kn58fu3fv5q+//pI1NoAJEybw+++/c+TIEX777TdlX6izZ8/i6ekpc3TQoEEDxo4dy8iRIylbtiwAN27cYNasWTRs2FDW2DT5dQdpq/L069cPBwcHnj59StGiRXn58iWSJCkHlHxt6fugyt0fVZ0TJ04okylNHhFbo0YNFi9erPzxBmlrZM+ePZs6derIF9g/8uXLp3bSaS8vL42ppRY+k7yt1IKQuUaNGkkbN26UJOl9/5nU1FRp3Lhx0vz582WOTpKuXr0qdevWTapUqZJUqlQpqV27dpKXl5fcYX0TEhISpMmTJ0vOzs5S8eLFpeLFi0suLi7S1KlTpYSEBFlj0/TXXcuWLZVxvIsvOjpa6tu3r7Rp0yaZo8vo8uXL0unTp6WIiAi5Q5EkSZKuXLmi0lf1naSkJOnKlSsyRPReZGSk1K1bN8nNzU0qUaKEVLVqVcnZ2Vnq2LGjFBMTI2tskiRJW7dulTw9PaUDBw5IZcqUkfbv3y8tWbJE+W/h2yWSQUFjlS5dWjkIomLFitL9+/clSUrrOP/DDz/IGZrGu337tvJ6SZIkHTt2TOrXr580Z84c2ZOt9GJjY6X79+9L9+/fl2JjY+UOR5IkzX/dlSlTRnr27JkkSZLk5uYmPXz4UJIkSbp3756sgwz++usvae7cucrbqampUo8ePSQnJyfJyclJ8vDwUMYqp+LFi0shISEZtoeFhUnFixeXIaKMrl69Km3cuFFavny5dP78ebnDUbFnzx6pdu3ayufV09NT2rp1q9xhCV9InhW5BSELzMzMlBPn2tra8ujRIyBtHi65+6fUrFmT8PDwDNsjIyNlX5cY0pqJ/f39AXj+/DlDhw7F0NCQw4cP88cff8gbXDqGhoY4OTnh5OSUYWkruWjy6w7AyMhI2U/QxsaGgIAA5T51r8mv5dChQxQrVkx5+/Dhw1y7do1NmzZx6dIlXFxcNKK/pfTPahkfioiI0JjXoJubGx07dqRXr154eHjIHY6KJk2acPToUby9vTl//jxnz56VfV5V4cuJPoOCxqpQoQIXLlzAycmJevXqMXXqVC5dusSFCxeoXLmyrLG9fPmS1NTUDNsTExMJCgqSISJV/v7+yo7ehw4dokKFCsyZM4fr168zdOhQxo4dK2t8CQkJbNiwgcuXLxMaGpqhM7+ca7Bq8usOoHTp0ly/fh1HR0eqVq3KzJkzefjwIceOHaN06dKyxfXixQucnJyUt8+ePUvdunUpX748AP369WPIkCFyhacc5axQKBg1ahR6enrKfSkpKTx48EDZf1VOPj4+XL58mbCwsAyfMXJOtP8hQ0NDjUmehS8nkkFBY40fP56EhAQg7YtEV1eXGzduUKdOHfr16ydLTOk7n3t5eamMnExNTeXixYsaMUu/JEnKL5KLFy9SrVo1APLkySNr7dE7Y8aM4fz589StW5dSpUqpramRiya+7tIbPXq0suZy0KBBxMTEcPDgQQoWLCjrKh/JyckqCZa3tzddu3ZV3ra1tZX1tffuvSpJEsbGxhgYGCj36erqUqZMGdlruJYtW8a8efMoVKgQ1tbWKvs04T0SHh7OggULMv0R96k1xwXNJZJBQSMlJydz+vRp5QoKWlpa9O7dW+aoUFkn+cMvXh0dHezt7TVi2S0XFxeWLl1K5cqVuXr1KhMnTgTSam8+/JKRw+nTp1m+fLmy1khTaOrr7p2UlBRev36trIEzMjJSOy+dHPLnz8/Vq1dxcHDg1atX+Pv7U6FCBeX+169fY2FhIVt870Y529vb06NHD4yMjGSLJTPr169n2rRptGjRQu5Q1BoxYgQBAQG0bNkSa2trjUhQhZwhkkFBI+no6PDbb79x8OBBuUNR8W7C2ho1arB9+3aNmPtLnTFjxjB8+HCOHz9O3759KVCgAABHjhzRiKYwOzs7jZhP8EOa+rp7R1tbmx49enDw4EHMzMzkDkdFx44dmTx5MteuXePWrVuUKVOGIkWKKPdfunRJtqlv0vvUpNhy0tLSoly5cnKHkalr167xv//9T6MnYxc+j0gGBY1VqlQptXNaaYLBgwdjYmKSYXtiYiIHDx5Urvghl+LFi7Nv374M20eMGJFhzVg5jBw5ktmzZ/P7779r3POrya87gKJFi/LixQscHBzkDkVFmzZt0NLS4tSpU7i5uWVIut68eaMRq8vUqFHjozVacs5D2LVrVzZt2iR7n97MFC5cWLmykfB9UUgfNvoLgoY4ePAgf/75J926dcPZ2TlDZ2U5f52WKFGCc+fOYWVlpbI9PDwcDw8PWVcxeCcyMpIjR44QEBDATz/9hIWFBXfu3MHa2lo5CbVcwsLCGDJkCNeuXcPAwABdXV2V/XL2PdLk1x2kDcz4888/GTJkCM7OzhmaO9X9SNFEy5cvp127dl+9hnPdunUqt5OTk7l79y7nzp3jp59+krVbQGpqKr1798bf358iRYqoLNcI8q9+4+Pjw5w5cxgwYABFixbN8L79Vl57QkaiZlDQWEOHDgVgypQpGfbJvWxUZtNTBAUFacRyXPfv36dbt26YmZnx8uVL2rRpg4WFBUePHiUwMJBZs2bJGt/QoUN58+YNv/zyi8b1PVL3unu3fJncrztAmaz069dP5bppSnxZtWzZMurXr//Vk8H0g1rS27RpE7dv3/6qsXxoypQpXL58GXd3dywsLDTqfQFp0y5FR0dnuIbf2mtPyEgkg4LG0sRlo96ta6pQKOjatavKL/eUlBRevHihEcu9zZgxgxYtWjBixAiVPoJVq1Zl2LBhMkaWxtvbmy1btshey6aOJr7u0lu/fr3cIeQITWuU+vHHH5kzZ46sy+nt2rWLhQsXKkf/a5phw4ahq6vLnDlzsLKy0rhkVfh8IhkUNJaRkRG5cuUCIDAwkK1btxIfH0/NmjVxc3OTJaZatWoBcO/ePapUqaIyCEJXVxd7e3uNWEPU19dX7ShTOzs7goODZYhIlSb3PdLUvoLvVKxYUe4QvkuHDx+WdbQzgIWFhcb1BU3v0aNH7Nq1i8KFC8sdipDDRDIoaJwHDx7Qr18/AgMDKVCgAHPnzqVnz57ExsaipaXFunXrWLBggTIx+5redYq3t7enQYMG6Ovrf/UYskJPT4/o6OgM2/39/TViBPSvv/7KjBkz+OWXXyhWrJjG9T0KCAhg3bp1PHnyBIAiRYrQpUsX8ufPL2tc70RGRrJ9+3ZlfEWLFqVly5Ya0UVB072r3X9HkiRCQkIICwvjt99+kzGytM+XhQsXMn36dI2c0NnFxYXXr1+LZPA7JAaQCBqnZ8+e6Ojo0KtXL/bs2aOc9+1dH67Jkydz584dtm7dKnOkmmvs2LFEREQwb948KlasyN69e9HW1mbAgAG4ubnJPlrxXfPwh81MmtD3yMvLi379+lGiRAnlNB83btzg/v37LFu2jB9++EG22CCt1rdnz57o6+tTqlQp5bb4+HhWr16Ns7OzrPFlVdmyZdm7d+9Xrwn7cBCGQqHA0tKSihUr4ujo+FVj+VCzZs0ICAhAkiTy5cuXYQCJnCvzQNpqRosWLeKnn36iWLFiGeLTxG4fQtaIZFDQOO7u7qxbt47ixYsTExND+fLl2b59Oy4uLgA8efKEtm3bcu3aNdliTElJYe3atRw6dIjAwEDlWrHvyD0Tf1RUFIMHD+b27dvExMRga2tLSEgIZcqUYfny5bJPuPup6yNnU2izZs2oUqVKhr6Vs2fP5vz587J/IXfo0IECBQowefJk5ZdxcnIy48aN4/nz52zatEnW+LJKrmRQk31qtLDccySqS/Y0aXCV8PlEM7Ggcd6+fYuNjQ0AxsbGGBoaYm5urtxvbm6uXI5LLosWLWLbtm306NGDefPm0bdvX16+fMnx48dVVimRi6mpKWvWrOH69evcv3+f2NhYnJ2dNWbRe03u9/bkyRPmzZuXYXvLli0zTEsih9u3b6skgpA2WXbPnj01Yh6/rHJzc/tq3SzUdZnIjJxdFORO9j5F0wdXCZ9PJIOCRtL0UWr79u1jypQpVKtWjYULF9KoUSPy58+Pk5MTt27dkjs8pfLly2vckm/vXLt2jc2bN/PixQvmz5+PnZ0du3fvJl++fLINEAKwtLTk3r17FCxYUGX7vXv3MswrKQcTExMCAwMzNGkGBgZqxKounTp1olWrVtSrV09l/d8PrVix4qvF5Obm9snPFFG79WmaPrhK+HwiGRQ00qhRo5SL3icmJjJx4kRlh+rExEQ5QwMgJCSEYsWKAWm1l1FRUQBUr16d+fPnyxkakDZfWf78+enSpYvK9o0bN/Ls2TPZ+wweOXKEESNG0LhxY+7cuaN8TqOjo/nrr79kTQZbt27NhAkTeP78uUqfwRUrVtCtWzfZ4nqnQYMGjB07lpEjRyqnDbpx4wazZs2iYcOGMkeXNiH7zJkzmTx5MvXr16dVq1aUKVNG1pi+lel4NL37yTuPHz/m1atXGeKrWbOmTBEJX0okg4LGad68ucrtJk2aZCgj93Jv76ZoyZs3Lw4ODpw/fx5nZ2d8fX2VSaycjhw5wtKlSzNsL1u2LMuXL5c9GVy6dCm///47zZo148CBA8rt5cqVUxv31zRgwABMTExYvXo1f/75JwC2trYMHDgwQ3IthxEjRij/n5KSAqQ1E7dv314j5pB8l6iePHmSXbt20alTJ/Lnz0/Lli1p2rQp1tbWXz0mTe6WkJ6mdz95/vw5AwYM4OHDh8q+gvC+JUfUqn67RDIoaBw5J33Nqtq1a3Px4kVKly5N586dGT58ONu3b+fVq1caUXsUERGhdpoRExMTwsPDZYhIlZ+fn9raP1NTUyIjI2WI6D2FQkG3bt3o1q2bsq+Z3FPdpKenp8e4ceP49ddfCQgIACB//vwaNRWJjo4OderUoU6dOoSGhrJlyxbmz5/P3Llz+fHHH+ncuTOVK1eWLT5NnZpH07ufTJ06lXz58rF27Vpq1qzJ9u3bCQ8PZ+bMmYwcOVLu8IQvIP+K9YLwDRo2bBh9+/YF0prtNm3aRPv27VmwYIFG1M4UKFAALy+vDNvPnj2rEaM3ra2tlYlMetevX5c9vi5duigTUhMTE2UiGB0drRE1g6NHjyY6OhpDQ0OcnJxwcnLC0NCQ2NhYRo8eLXd4Knx8fFiwYAFr1qzBysqK3r17kytXLvr27cvMmTNlicnX15fatWuzdu1a3r59y9u3b1mzZg21atXizp07ssT0zse6n5w+fVrGyNJ4e3szePBgLC0t0dLSQqFQ4ObmxtChQ9UuGyp8O0QyKAifIX3tWmBgIGfOnOHNmzey1yy8061bN/744w8WLFjAlStXuHLlCvPnz2fOnDkaUXPZpk0bpk6dyq1bt1AoFAQFBbF3715mzpxJ+/btZY3typUrGfpCASQkJHD9+nUZIlK1e/duEhISMmyPj49nz549MkSkKjQ0lNWrV9OoUSM6dOhAeHg4c+bM4eTJkwwePJipU6eyatUqNm/eLEt806dPp0aNGpw8eZJFixaxaNEiTpw4QfXq1Zk2bZosMb2TfoWgd91PAI3pfpKamqocpJQrVy7evHkDpA0s8fPzkzM04QuJZmJByAZNXh0lvVatWpGYmMiyZctYsmQJkPaBPXHiRNn7WwL07t2b1NRUunXrRlxcHJ06dUJPT48ePXrQuXNnWWK6f/++8t+PHz9WWbYvNTUVLy8v7Ozs5AgNSKuZlCQJSZKIiYlRmZYlJSWFs2fPasTqMlWrVsXBwYGWLVvSokULtTEVL15cOW/o16bJU/NoeveTokWL8uDBAxwcHChdujQrV65EV1eXrVu3yl6jL3wZMem0IGTDt7g6SlhYGPr6+hox7ciHEhMTCQgIIDY2FkdHR1ljLF68uLIjvLqPRQMDA8aNG0erVq2+dmiAanzqKBQKBg0aRL9+/b5iVBldu3ZN1tHgn+Lh4cGsWbOoUqWKynYvLy9GjhzJhQsXZIoso5s3b+Lt7U2BAgWoUaOG3OHg5eVFXFwcderU4dmzZ/Tp0wd/f38sLCyYO3eurP1AhS8jkkFByIZvYXWU9MLCwnj69CkAhQsXlr3mKKt92uQYRPTy5UskSaJWrVps27ZN5Vrp6upiZWWFtrb2V4/rnStXriBJEl27dmXhwoUqE7Hr6uqSN29eWWsuvxVTpkzh2LFjaqfmqVOnjuwj7b81ERERmJuba/zcsMLHiWZiQciGb2F1FIDY2FgmT57Mnj17SE1NBUBbW5umTZsyfvx42Uae7tq1i7x581KyZEm1tW9yejehbvrmYk3ybnqUEydOkDdvXo3+8j18+HCmc+XJvZyfJk7Nc/v2bWbOnMnSpUszjFyPioqif//+jB07Vra1f1NSUnj06BEFCxbMMJG4gYEBDx48oFixYmhpiWEI3yqRDApCNmnyl/A7M2bM4OrVqyxdulS5Asn169eZMmUKM2bM4Pff2YN/fwAAHG1JREFUf5clrvbt23PgwAFevHhBixYtaNKkCRYWFrLE8iE/Pz+ioqIoVaqUctvFixdZsmQJcXFx1KpVSzmCXA5hYWHExcWprALx6NEjVq9eTWxsLLVq1aJx48ayxffO+vXrmTt3Li1atODEiRO0aNGC58+f4+vrS8eOHeUOTyOn5lmzZg2VKlVSO4WRqakpHh4erFy5ktmzZ8sQHezZs4eNGzeybdu2DPt0dHQYM2YMXbt2pWnTpjJEJ+QE0UwsCNlQvHhxfvzxR+XIvlOnTlGpUiWV1VG8vLxkn3zV3d2dBQsW4O7urrL90qVL/Pzzz1y6dEmmyNKu0dGjR9mxYwfe3t5UrVqVVq1aUaVKFVkT7QEDBlCsWDGGDBkCpE2w26hRI9zc3ChUqBA7duxgyJAhsnXkHzp0KLa2towaNQpIG7Vbv359bG1tcXBwwMvLiylTpsg+QKhevXoMHDiQRo0aUbZsWfbu3YuDgwPz58/n7du3TJgwQdb4PhQdHc2lS5coVKhQhiX+vpZatWqxaNGiTGv+Hjx4QP/+/WVbG7hDhw507Ngx0xVuDh48yKZNm9i0adNXjkzIKaJmUBCy4VtYHQXSphlRt9KDlZUV8fHxMkT0np6eHo0aNaJRo0a8fPmSXbt28fvvv5OSksL+/ftlG0Ry+/Ztevbsqby9b98+ChYsyKpVqwBwcnJi48aNsiWDN2/eZMaMGcrbu3fvxtzcnN27d6Ojo8OqVav4+++/ZX/9BQYGKvviGRgYKLtNNG3alLZt28qeDA4ZMoQKFSrQqVMn4uPjadmypbK/6J9//kndunW/ekxBQUEffd0bGRmpjG7/2vz8/ChdunSm+11dXZUTeAvfJpEMCkI2fAurowCUKVOGBQsWMGvWLOUUJPHx8SxatEj2dWLTe9fHSJIkZf8tuYSHh5M7d27l7cuXL1O9enXlbXd3d9kmSoa0CYnTNxFfunSJ2rVrK6dIqVGjBsuXL5crPCVra2vevn2Lvb09efLk4ebNmxQvXpwXL15oRD/Ra9euKUdcHzt2DEmSuHr1Krt27WLp0qWyJIOWlpb4+fllOj3L06dPyZUr11eO6r24uDjlajzqxMTEyP4jU/gyorenIHyHxowZw40bN/jxxx/p2rUrXbt2pWrVqnh7e8s+WjIxMZH9+/fTvXt36taty8OHD5kwYQKnT5+WdWoZc3NzZe1Lamoqt2/fVkmck5KSZE1mTExMlCtSQNrqHulraxQKBYmJiXKEpqJSpUqcPHkSgJYtWzJ9+nS6d+/OL7/8Ivv8m5A2IOPdoC8vLy/q1KmDoaEh1apV49mzZ7LE5OHhwbJly9TukySJZcuW4eHh8ZWjeq9AgQJ4e3tnuv/69esUKFDgK0Yk5DRRMygI3yEnJyeOHj3Kvn37lFPLNGrUiMaNG2cYDfg1TZw4kYMHD5I7d25atmzJnDlzZJ/u5p2KFSuyZMkSfvvtNw4fPkxqaqpyBC+kTUSdvmbuaytdujTr169nypQpHD16lJiYGCpVqqTc7+/vr1KzKZfJkycrR7B37NgRCwsLvL29qVGjBm3btpU5OsiTJw/e3t6Ym5vj5eXFn3/+CaStVyzXKh/9+vWjRYsWtG7dmu7du1O4cGEgrUZw9erV+Pv7q3QR+NoaNWrEvHnzKFu2bIZ+jffv32fBggUqXSyEb48YQCII35mkpCTq16/PX3/9JVuH+MwUL16cvHnzUqJEiY8OFlm0aNFXjCrNixcv6NGjBwEBAWhrazN27Fg6dOig3N+/f3/y5cvHmDFjvnpskPal261bN6Kjo0lJSaFPnz78/PPPyv3Dhw/H0NCQSZMmyRLft2LTpk1MmzYNIyMj8uTJw+7du9HS0mLDhg0cPXqUDRs2yBKXr68vo0eP5vHjxyqTnxcpUoRp06apjHL/2pKSkujRowc3btygcuXKKsnqxYsXKVeuHKtXr0ZXV1e2GIUvI5JBQfgOeXp6snbtWo1LBkeNGpWlEcNy9c1MTk7m8ePH5MqVK8MEzvfv38fOzk7WvlthYWHcuHEDGxubDB36T58+jaOjoyzLgmVnbka55spLz9fXl9evX+Ph4aHsmnD69GlMTU2VUzHJ5d69e/j7+yNJEoUKFaJEiRKyxvNOUlISa9euZf/+/Tx79gxJkihYsCCNGjWia9euGrF2svD5RDIoCN+hZcuW4e/vz5QpU1TWYBVyTrly5dizZ4/GrsnauHFjli9fTp48ef71+3q3VN6nvk4UCoXs0y69k5iYyIsXL8ifP/839x7R9Nfe/v37qVGjBkZGRnKHImTRt/UOEAQhS3x9fbl48SLnzp3Dyckpw4S6cjTDfm80/Xf0ixcvSE5O/ir3Jdf8d58jLi6OyZMns3v3bgCOHDmCg4MDkydPxs7Ojt69e8sbYBZo+mtvwoQJlC5dWiSD3xCRDArCd8jMzEyWKTKE/yY5B9Zk15w5c7h//z7r16+nV69eyu2VK1dm0aJF30QyqOk0PVkVMhLJoCB8R1JTU1m5ciV+fn4kJSVRqVIlBg0aJOsIYuG/5+nTp2zcuFE5EbGjoyOdOnVSDjyQ04kTJ5g7d26G+TaLFi2qXJ5OEP5rxDyDgvAdWbp0KXPnzsXY2Bg7Ozs2bNgg2zrEwn/TkSNHaNy4MXfu3KF48eIUL16cu3fv0rhxY44cOSJ3eISFhWFlZZVhe1xc3Dex7rgg/BtEzaAgfEf27NnDb7/9Rrt27QC4cOECvXv3ZurUqcrVPoScIRIH9f744w969+6tXOP5nQULFvDHH3/I3n3BxcWF06dP07lzZ5Xt27Zt06jVeT5GvPaEnCaSQUH4jrx69YqqVasqb3t4eKBQKHjz5o1GTEj8PRH9otQLDg5Wuz5ykyZNlOs8y+mXX36hV69ePH78mJSUFNavX8+TJ0/w9vaWbY7B7BKvPSGniaoCQfiOpKSkKNcifkdHR4ekpCSZIvr2XLp0KUvlVqxYkWEuQk0yadIktc2h/7aKFSty7dq1DNuvX7+Om5vbV4/nQ25ubuzZs4eUlBSKFSvG+fPnsbS0ZPPmzbi4uMga2/fy2rO3t//mpuv5rxPzDArCd6R48eL8+OOPKhPAnjp1ikqVKqlMLyOmlsmci4sLuXPnpkWLFjRv3vyrzNP3KevXr89y2S5duvyLkXza//73PxYsWED9+vWVE2PfunWLw4cPM2jQIGxtbZVla9asKVeYah0+fJh69erJdv+a+NpLr2bNmmzfvj3DxOuRkZE0b978m5piSFAlkkFB+I6MHj06S+XkWuHjWxAWFsbevXvZtWsXjx8/plKlSrRs2ZJatWrJtspCjRo1slROoVDI/oWc1RVG5JiAOjk5madPn6Krq0uhQoWU248fP86CBQt4+vQpt2/f/qoxpaeJr730ihcvzvnz5zPUOIeEhFCtWjVZr53wZUQyKAiCkIk7d+6wc+dO9u/fD6St6tGqVSuNWFJNyJ6HDx/St29fAgMDgbRarokTJ/Lzzz/z6NEjWrduTadOnTSmb60mvfbe/cAYMGAAM2bMwNTUVLkvNTWVixcvcv78eY0YLS58HpEMCoIgfERQUBBbt25l+fLl6OjokJCQQJkyZfj9998pWrSo3OF9EyIjIzEzM5M1ht69e5OYmEjXrl3Zv38/Bw4coFChQrRq1YqOHTtq5FycmvLae5eAqltyUEdHB3t7e0aNGkX16tW/WkxCzhLJoCAIwgeSkpI4ceIEO3bs4MKFC7i4uNCqVSsaNmxIWFgY8+bN4+7duxw8eFCW+F6/fs2JEycIDAzMMDgoq10F/i3Lly8nX758NGjQAIDBgwdz9OhRbGxsWLFihWy1qpUrV2b16tWUKFGCqKgoKlSowIwZM9SOfJaTJr/2atSowfbt27G0tPzq9y38u8RwH0EQhHQmT56sbJpr0qQJw4cPp1ixYsr9RkZGjBw5Ek9PT1niu3jxIv369cPBwYGnT59StGhRXr58iSRJlCxZUpaY0tu8eTOzZ88G4Pz581y8eJGVK1dy6NAhZs2axerVq2WJKzw8XDl4xdTUFENDQ42bV1DTX3snT56U5X6Ff59IBgVBENJ5/Pgx48ePp06dOpl22s+VK1e2RvjmpDlz5tCjRw8GDx5M2bJlWbhwIZaWlgwbNky2JCG9kJAQ5SjYU6dOUb9+fapUqYK9vT1t2rSRLS6FQkFMTAz6+vpIkoRCoSA+Pp7o6GiVciYmJjJFqPmvPUj7MXLx4kVCQ0NJTU1V2ScGpn27RDIoCILwj6SkJPLmzUvp0qU/OnpTR0eHihUrfsXI3nvy5Al//vmnMo74+HiMjY0ZMmQI/fv3p0OHDrLE9Y6ZmRmBgYHkyZMHLy8vfv75ZyBtouSUlBTZ4pIkSWX1E0mSaN68ucptOUY4v/MtvPYWLVrE4sWLcXFxwcbGRqyE8h0RyaAgCMI/dHV1OXr0KP3795c7lEwZGRkp+wna2NgQEBCgHEwQHh4uZ2gA1KlTh2HDhlGgQAEiIiL48ccfAbh37x4FChSQLS45a9Oy4lt47W3evJnp06drXD9L4cuJZFAQBCGdWrVqceLECbp16yZ3KGqVLl2a69ev4+joSNWqVZk5cyYPHz7k2LFjykme5TR69Gjs7e0JDAxk+PDhGBsbA2nL1MlZa5nd2rTly5fTrl27rzoKWtNfe0lJSZQrV07uMIR/gRhNLAiCkM6SJUtYs2YNlStXxtnZWWXlFpB/hY/nz58TExND8eLFiY2NZcaMGXh7e1OwYEFGjRqFvb29rPF9L8qVK8eePXtwcHD4avep6a+9P/74g/+3d/8xUdd/HMCfZ/wqGVaYiciPwZKDscIN6AQ5Fy0drUAhw4E4dGE6Z1KJQlDpcFlZuhoTTG3OVHALRArzR/gbMX8kac2DhSQmaCp6kjiP7j7fP8j73sFhpnbv9909H5t/8Pmw8Zy+pi/f936/X4888gjmzJkjNAc9eGwGiYgs3GnahwwTPmRUV1cHrVYLd3f3f/z9kW0E3UBGjx6NmpoauzaDstfekiVLsHXrVoSFhSEsLKzf/GHR1xrRvWMzSETkgAwGAzo7O/ud6BwxYoTds1iOKbvTPYIiD2j8WyKaQdllZWUN+E6lUkm/L5MGxmaQiMiBtLa2orCwECdOnLB6Lvo0rLNhM0iuhAdIiIj6kHnCR0FBAdzc3FBWVoZhw4ZJdb2HyWRCVVUVdu3ahfPnz0OlUmHkyJGYMGECUlJSpMoqK5lrz9KFCxcAQJpZznR/2AwSEVmQfcKHTqdDZWUlQkNDRUexoigKZs+ejX379kGtVmPUqFFQFAUtLS3Iz8/Hzp07sXLlStExpSZ77ZlMJvMhl+7ubgDA4MGDMX36dMyePRuDBg0SnJDuFZtBIiILsk/4CA0NleI+wb6qqqpw9OhRrFu3DhqNxupdQ0MD5syZg+rqaoe5oy46Ohqenp52/Zmy196KFSvw9ddf4+233zZfMXP8+HGUlJTAYDDgzTffFJyQ7plCRERmUVFRytmzZxVFUZTo6GilublZURRFOX36tPLcc8+JjKYoiqIcOnRISU9PVw4fPqx0dnYqXV1dVr9EmT59urJq1aoB35eWliozZsywYyLbMjMzlS1btig3b94UHaUf2WsvPj5e+f777/s937VrlzJ27FgBiehB4ZouEZEFWxM+bpNhRW769OlobGxEdnY24uLiEBMTg5iYGERHRyMmJkZYrqampjuuXmm1Wuh0Ojsmsi08PBwfffQR4uPjUVRUhMbGRtGRzGSvPb1ej5CQkH7PQ0JCoNfrBSSiB4UfExMRWZB9woes13fo9Xr4+voO+N7X11eKhqGwsBALFy7E7t27sWXLFkydOhWBgYFIS0tDSkoKhg4dKiyb7LWnVquxceNGFBUVWT3fuHHjHa8UIvnxahkiIgsyT/jo6enBa6+9hsWLFyM4OFhYDlvCw8NRX1+Pxx9/3Ob7y5cvIyEhQbqrb65cuYLNmzejrKwMJpMJWq0WWVlZGDNmjN2zyFx7AHDkyBG8/vrr8PPzQ1RUFACgsbERHR0dWL16NaKjo4Xmo3vHZpCIyIFoNBpUVFRI1wyq1WpotVp4eHjYfG8wGHDgwAGpmsGTJ0+isrIS27Ztg7e3NyZNmoSLFy/i22+/RUZGBhYuXCg6onQuXryITZs24cyZMwB6PyLOyMjAk08+KTgZ3Q82g0REA7hx4wb6/hXp7e0tKE2vDz74AB4eHpg/f77QHH3d7R14S5cu/Y+T3NmVK1ewdetWVFVV4bfffkNiYiJeeeUVJCQkmO9BPHbsGHJycvpd7G1PstWezKvSdP+4Z5CIyMK5c+dQXFyMI0eO4NatW+bniiQTPoxGI8rLy3Ho0CFERkbi4Ycftnov6mJi0U3e3Ro3bhwCAgKQlpaG1NRUmx9rq9VqREZG2j2bzLXn7u6OpqYmYT+f/ltcGSQisjBlyhQAwLRp0+Dr69tvakZsbKyIWGacD3t/jh07Ju3eNtlrT9ZVabp/bAaJiCyMHj0alZWVNq/QIPovyV57xcXFqK6uRlBQkFSr0nT/+DExEZGFyMhIXLhwQdp/kG87e/Ys2traEBMTAy8vL/NHifTPtm/fju+++87m/N8tW7YISiVv7Z07dw7+/v5obm42j8VrbW21+h7WnmPjyiARkYW2tja8//77SE5OxlNPPQU3N+v/M4u+T+3q1avIzc3FDz/8AJVKhZ07dyIgIAAFBQUYMmQI8vPzheaT3fr167FixQqkpqZi8+bNSE1Nxblz53Dq1ClkZmYKHakma+2Fh4fj4MGD5nskc3NzUVRUJPRORnqwuDJIRGShs7MTbW1tVh95qVQqKTbxA70HNdzc3LB3714kJSWZn7/44ov48MMP2Qz+g02bNqG4uBgvvfQSqqqqkJOTg4CAAHz22WfCL8WWtfb6rhnt378fN2/eFJKF/htsBomILLzzzjuIiIjA8uXLbW7iF62+vh5r167F8OHDrZ4HBwejvb1dUCrH0dHRgdGjRwMAvLy8cOPGDQBASkoK0tPT8d577wnLJnvt3cYPFJ0Pm0EiIgvt7e0oLS1FUFCQ6Cg2dXd3w8vLq9/za9euDXjhM/3f0KFDodfr4e/vDz8/PzQ2NkKtVuP3338X3uTIWnsqlUraxpQeDDaDREQWNBoNdDqddP8g3xYdHY3q6mrk5uaan5lMJqxZswbPPvusuGAOQqPRYPfu3YiIiEBaWhqWLl2KHTt24Oeff8YLL7wgPJuMtacoCvLz883/2TAYDFi0aFG/08QlJSUi4tEDwAMkREQWNm/ejNLSUqSlpWHUqFH9NvE///zzgpL1am5uRnZ2NiIiInD48GEkJibi119/hV6vR3l5OQIDA4Xmk53JZILJZDL/udbW1uLEiRMICgpCenq60NVVWWvPUabL0L1jM0hEZOFOJzZlOEACAF1dXdiwYQN0Oh26u7sRERGBzMxMDBs2THQ0ug+OUHvknNgMEhE5kPb2dvj5+dncw9Xe3o4RI0YISCU3nU53198r+uogIhHYDBIROZC+d77ddvXqVcTFxXH1yAa1Wm2+ouVOuPpGrooHSIjI5a1fvx7p6enw9PT8x9m+06ZNs1Mq2waaNNLd3Q1PT08BieRXV1cnOsKAHKn2yHlxZZCIXF5iYiIqKyvx2GOPITExccDvU6lUwhqL25vz169fj8mTJ1ud5DQajTh58iQGDRqEiooKIfno3jhC7ZHzYzNIROQAsrKyAABHjx5FVFQU3N3dze88PDzg7++PGTNmIDg4WFBCx3HmzBls2LABLS0tAIDQ0FBMnTpVupnARPbCZpCI6G89PT1ISkrCqlWrEBoaKjqOTQUFBSgsLIS3t7foKA5px44deOuttxAZGYmoqCgAwE8//YRTp05h+fLlmDBhgpBcjlB75Ly4Z5CI6G/u7u64deuW6Bh3lJeXN2Aj2NTUhLCwMDsncizLli3DzJkzMW/ePKvnn3/+OZYtWyasGXSE2iPnNUh0ACIimWRmZmL16tX466+/REex6eWXX8bevXv7PV+7di0mT55s/0AO5tKlS5g4cWK/58nJybh06ZL9A1mQvfbIeXFlkIjIwqlTp9DQ0ICDBw8iLCxMupFb2dnZmDt3LlJTU1FQUAC9Xo8FCxagubkZn376qdBsjiA2NhbHjh3rN/Lt+PHjiI6OFpSql+y1R86LzSARkQUfHx9hHxXejZycHMTHx2PBggVITk6GXq/H008/jZqaGjzxxBOi40kvMTERn3zyCX755Rc888wzAHr3DG7fvh1z5861OrFr7/FvstceOS8eICEiQu/M2jVr1mD37t3o6emBRqPB3Llz4eXlJTpaP3/++Sfeffdd7Ny5EwCwZMkSTJo0SXAqx3C3E0bseQG1I9UeOSeuDBIRASgtLUVJSQni4uLg6emJr776Cp2dneb7/WRx/Phx5OXl4dFHH0VNTQ1+/PFHFBcXY9++fVi8eDGGDBkiOqLU/s1oOntxlNoj58WVQSIiAOPHj8eMGTMwZcoUAMChQ4cwc+ZM82XOsoiMjER2djbmzZtnvmuwra0NeXl56OjowP79+wUndDzXr1+Hj4+PsJ/vKLVHzotVRkQEoL29HePGjTN/HRcXB5VKhT/++ENgqv6+/PJLzJ8/3+rS6cDAQJSXlyM9PV1gMsfwxRdfYNu2beav33jjDcTGxiIhIUHYqqGj1B45LzaDREToHenWd7avm5sbenp6BCWylpOTg66uLsTGxgLobWquX79ufq/X61FbWysqnsOoqKjA8OHDAQD19fVoaGjAmjVroNVq8fHHHwvJJHvtkfPjnkEiIgCKoiA/Px8eHh7mZwaDAYsWLbK64kPU9R4HDx6EwWAwf11WVoakpCTzx5tGoxGtra1CsjmSy5cvw8/PDwCwZ88eJCUlYezYsfD398err74qJJPstUfOj80gERFg8zRucnKygCS29d3eze3e98bHxwcdHR3w8/PDgQMHkJubC6D399NoNArJJHvtkfNjM0hEBPDkposYP3485s+fj6CgIFy7dg1arRYAcPr06X4XUdsLa49EYzNIROQAVCoVVCqV6BgOr6CgAP7+/ujo6EBeXh4GDx4MoHdMXUZGhuB0RGLwahkiIgegVquh1WrN+8r27NkDjUZj3lNmMBhw4MABu12UTETOgyuDREQOoO++Mlt7yiZOnGinNI6lrq4OWq0W7u7uVuPmbLH3CDoiGXBlkIiInJparUZ9fT18fX3vOI7OniPoiGTCZpCIiIjIhfFjYiIicgkmkwlVVVXYtWsXzp8/D5VKhZEjR2LChAlISUnhAR1yWVwZJCIip6coCmbNmoV9+/ZBrVYjJCQEiqKgpaUFzc3NSExMxMqVK0XHJBKCK4NEROT0qqqqcPToUaxbtw4ajcbqXUNDA+bMmYPq6moewiGXxNnERETk9GprazFr1qx+jSAAjBkzBjNnzsQ333wjIBmReGwGiYjI6TU1NSEhIWHA91qtFjqdzo6JiOTBZpCIiJyeXq+Hr6/vgO99fX2h1+vtmIhIHmwGiYjI6RmNRri5DbxN/qGHHoLRaLRjIiJ58AAJERE5PUVRkJ+fbx7n15fBYLBzIiJ5sBkkIiKn13ecny08SUyuivcMEhEREbkw7hkkIiIicmFsBomIiIhcGJtBIiIiIhfGZpCIiIjIhbEZJCIiInJhbAaJiIiIXBibQSIiIiIXxmaQiIiIyIX9D3lgf8P3X/OGAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Realizamos un mapa de correlacion\n",
"#Se crea una mascara para ocultar los valores espejo del grafico y asi tener mas limpio la visualizacion\n",
"mask= np.triu(df.corr())\n",
"\n",
"sns.heatmap(df.corr().round(2),annot=True,mask=mask)\n",
"plt.title('Mapa de Correlacion Lineal')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nup-hEsJrNOs"
},
"source": [
"Relaciones interesantes que obtenemos: \n",
"\n",
"|Componentes|Correlacion Lineal|Intensidad de Correlacion|\n",
"|--|--|--|\n",
"|Display Size x Battery|r = 0.84|Directa Alta|\n",
"|Front Camera x Primary Camera | r = 0.72 |Directa Alta| \n",
"\n",
"Los dos valores mas alto de correlacion lineal que obtuvimos"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "alqgzCxOScbK"
},
"source": [
"# Insights\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jO_ny9LiGfKp"
},
"source": [
"## Correlaciones -- Grafico y analisis"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3R9tyxAKZFz"
},
"source": [
"## Camara Trasera X Camara Frontal"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tFd73UVpa7o0"
},
"source": [
"Unas de las observaciones generales que se obtuvo, es la correlacion lineal entre la 'Calidad' / Pixeles de una camara trasera en relacion a la camara frontal, siendo esta ultima en su mayoria inferior o igual a la otra.\n",
"\n",
"Solo para recordar, el coeficiente de correlacion lineal de este caso es: 0.72"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 529
},
"executionInfo": {
"elapsed": 850,
"status": "ok",
"timestamp": 1684158701783,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "ZgmZxNUGaOsE",
"outputId": "55539c88-e749-4dc7-f851-96ee98eb7f0b"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAIACAYAAACmbZRAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfuElEQVR4nOzdd5xcddX48c+9d/rO9pLek02AVBJKQm+ioFR/IKIICgpKEdBH8PGhiDQVHykKCMIjUZoCKlIUpEovaUB632SzfWenz9zy++POTHaS3WRnd3Z3dnPerxcvzeyU7042e+Z77vmeo1iWZSGEEEKIgqMO9gKEEEII0TUJ0kIIIUSBkiAthBBCFCgJ0kIIIUSBkiAthBBCFCgJ0kIIIUSBkiAthBBCFCgJ0kIIIUSBkiAthBBCFCgJ0kIIIUSBkiAthBCi1+6++26mT58+2MsYthyDvQAxtG3ZsoUHH3yQt956i8bGRpxOJ7W1tXzhC1/g7LPPxuPxDPYSB8zXv/513n///b3e79JLL+Wyyy4bgBUNLNM0WbRoEd/61re46KKLMre/9NJLPPHEE6xYsYJwOExZWRnz58/nK1/5CgsXLhzEFQ+Ou+++m3vuuafLr91www2cc845A7aWhoYGnnzySY4//nj222+/AXtd0XMSpEWvvfbaa1xxxRW4XC5OPfVUamtrSSaTfPTRR/ziF79g3bp13HTTTYO9zAFz8cUX8+Uvfznz5xUrVrB48WIuvvhiJk+enLl9uO46li9fTltbG0cffTQAlmXx4x//mKeffpr999+fCy64gKqqKpqamnjppZc4//zzeeyxxzjwwAMHd+GD5IYbbsDn82XdNmfOnAFdQ2NjI/fccw9jxoyRIF2gJEiLXtm6dStXXnklo0eP5g9/+AM1NTWZr5177rls3ryZ1157bfAW2AuRSGS3X5q5OOyww7L+7Ha7Wbx4MYsWLeKQQw7pt9fNt96u5/XXX2fMmDFMmzYNgIceeoinn36ab3zjG1x77bUoipK57yWXXMJf//pXHI6h8yvIsizi8XjeskMnnngiFRUVPbpvof2MiIEj16RFrzz44INEIhFuvvnmrACdNmHCBL7xjW9k/vzUU09x3nnnsXDhQmbOnMlJJ53Eo48+utvjjj32WL7zne/w3nvvccYZZzB79my+9KUv8d577wHwr3/9iy996UvMmjWLM844g88++yzr8atWreKaa67huOOOY9asWRx22GFce+21tLW1Zd0vfR1t3bp1XH311Rx00EF89atfzek5eiMfrxsKhbj55ps59thjmTlzJgsXLuSCCy7g008/zbrfsmXL+Na3vsX8+fOZM2cOX/va1/joo4/67X14/fXXOeqoowCIxWL87ne/Y/LkyfzoRz/KCtBpp512GrNnzwagvb2d22+/nS996UvMmzePAw88kAsvvJBVq1ZlPea9995j+vTpPP/889xzzz0cccQRzJs3j8svv5xgMEgikeDmm29m4cKFzJs3j2uvvZZEIpH1HLn+LL755puZn8XHH388p+fojaeffprp06fz/vvvc8MNN7Bw4cLM+wrwpz/9iZNPPpmZM2dy+OGHc+ONN9LR0ZH1HF//+tf54he/yLp16/j617/OnDlzOOKII3jggQey3st05ufaa69l+vTpTJ8+naeffhqADz/8kMsvv5yjjz6amTNnctRRR3HLLbcQi8Xy8n2Knhk6H2NFQXn11VcZN25cj1OVjz32GNOmTePYY4/F4XDw6quvcuONN2JZFueee27WfTdv3szVV1/NV77yFU455RQeeughLr74Ym688Ub+93//N3PN7ne/+x3f//73efHFF1FV+/Pm22+/zdatWznjjDOorq5m7dq1PPnkk6xbt44nn3xyt2BxxRVXMGHCBK688krSo9VzfY7e6MvrXn/99fzzn//ka1/7GlOmTKG9vZ2PPvqI9evXc8ABBwDwzjvvcNFFFzFz5kwuvfRSFEXJ7GofffTRTHDM1/vQ1NTEZ599xuWXXw7ARx99RHt7O+eddx6apu31/di6dSsvv/wyn//85xk7dizNzc088cQTfO1rX+O5555jxIgRWff/3e9+h8fj4dvf/jabN2/mj3/8Iw6HA0VR6Ojo4NJLL2XZsmU8/fTTjBkzhksvvTTz2Fx+Fjdu3MjVV1/N2WefzVlnncWkSZNyfo7uBAKBrD9rmkZpaWnmzzfeeCMVFRV873vfIxKJADuvZy9atIhzzjmHjRs38thjj7FixQoee+wxnE5n1vNfeOGFnHDCCXzhC1/gn//8J7/85S+pra3lqKOOYsqUKVx++eXcddddnH322cyfPx8g82/6xRdfJBaLcc4551BWVsby5cv54x//yI4dO7jrrrt69D2KPLCEyFEwGLRqa2utSy65pMePiUaju932zW9+0zruuOOybjvmmGOs2tpa6+OPP87c9uabb1q1tbXW7NmzrW3btmVuf/zxx63a2lrr3Xff3ePr/OMf/7Bqa2utDz74IHPbXXfdZdXW1lpXXXVVj9ba1XPszQsvvLDb+vLxuvPnz7duvPHGbl/XNE3rc5/7nPXNb37TMk0z6/mPPfZY64ILLsjreizLsv785z9bs2fPzjzmD3/4g1VbW2u99NJL3a6zs3g8bhmGkXXb1q1brZkzZ1r33HNP5rZ3333Xqq2ttb74xS9aiUQic/tVV11lTZ8+3brwwguznuPss8+2jjnmmL1+X3v6WXzjjTd2u39Pn6Mr6fd81//S63zqqaes2tpa65xzzrF0Xc88rqWlxTrggAOsb37zm1nv1R//+EertrbW+stf/pK57Wtf+5pVW1trPfPMM5nb4vG4ddhhh1mXXXZZ5rbly5dbtbW11lNPPdWj7/H++++3pk+fnvXvMP39iP4h6W6Rs1AoBEBRUVGPH9P5Ol4wGKS1tZWDDz6YrVu3EgwGs+47depU5s2bl/lzupjm0EMPZfTo0bvdvnXr1i5fJx6P09ramrnfrulggK985St7XGtPnqM3+vK6JSUlLFu2jIaGhi6fe+XKlWzatIkvfelLtLW10draSmtrK5FIhIULF/LBBx9gmmbe1gPwxhtvcMghh2Qek+vPiMvlymRDDMOgra0Nn8/HpEmTdrukAXDqqadm7Rpnz56NZVmceeaZWfebPXs29fX16Lre5fe1t5/FsWPHcsQRR+z2+rk8R3fuvvtuHn744cx/v/jFL7K+ftZZZ2VlId5++22SySTnnXde5r0C+H//7//h9/t5/fXXsx7v8/k49dRTM392uVzMmjUr69/LnnT+HiORCK2trcybNw/Lsrr8OxH9Q9LdImd+vx+AcDjc48d89NFH3H333SxdupRoNJr1tWAwSHFxcebPo0aNyvp6+msjR47sch2dr8e1t7dzzz338Pzzz9PS0rLb6+xq7Nixu92W63P0Rl9e9wc/+AHXXHMNRx99NAcccABHHXUUp512GuPGjQNg06ZNAPzoRz/q9vWDwWBWarUv60kmk7z11ltcddVVmdty/RkxTZNHHnmERx99lLq6OgzDyHytrKxst/t3/rAGO39GuvrZMU2TYDBIeXk5kNvPYlfvS67P0Z0FCxbssXBs19fevn07QNZJAbCD77hx49i2bVvW7SNHjtzt0kxpaSmrV6/e69rSr3fXXXfxyiuv7JaaT38IE/1PgrTImd/vp6amhrVr1/bo/lu2bOH8889n8uTJXHPNNYwaNQqn08nrr7/O//3f/+22q+vuGmZ3t1upa6gA3//+91myZAnf+ta32G+//fD5fJimyYUXXph1vzS3273bbbk+R2/05XVPOukkFixYwEsvvcRbb73F73//ex544AHuvvtujjrqqMx9/+u//qvbYzW7Vgr3ZT0fffQRoVAoq7gpHUhWr17N8ccfv9f347777uPOO+/kzDPP5IorrqC0tBRVVbnlllu6fM877yR7cnv6OXL9WeyqkjvX5+itrv5OctGTWoDuGIbBBRdckLmuPXnyZHw+Hw0NDVxzzTV5+x7F3kmQFr1yzDHH8MQTT7BkyZKs1HRXXnnlFRKJBPfee2/WDihdsZ0vgUCAd955h8suuyyrUCi9sxyo5+iNXF+3pqaGc889l3PPPZeWlhZOP/107rvvPo466qjMjtrv97No0aJ+X8/rr7/O1KlTs3Z+8+fPp7S0lOeee46LL754rwHjn//8J4cccgi33HJL1u0dHR2ZHXA+5ONncaB+nneVfq0NGzZk/o4BEokEdXV1vfq77q4Ics2aNWzatInbb7+d0047LXP7W2+9lfNriL6Ra9KiVy688EJ8Ph8/+clPaG5u3u3rW7Zs4Q9/+AOw8xN95x1RMBjkqaeeyuuaugsE6XUM1HP0Rk9f1zCM3VLulZWV1NTUZI4azZw5k/Hjx/PQQw91mW5ubW3N23og++hVmtfr5cILL2T9+vX88pe/7HI3/Le//Y3ly5dnXm/X+7zwwgvdXnfvrXz8LA7Uz/OuFi1ahNPpZPHixVmv/Ze//IVgMLjb30FPeL1egN2OcKUzEp1fx7IsHnnkkd4sXfSB7KRFr4wfP55f/vKXXHnllZx00kmZjmOJRIIlS5bw4osvcsYZZwB2kw+n08nFF1/MV77yFcLhMH/+85+prKykqakpb2vy+/0cdNBBPPjggySTSUaMGMFbb71FXV3dgD5Hb/T0dcPhMEcddRQnnngiM2bMwOfz8fbbb7NixQquueYawP4F+7Of/YyLLrqIL37xi5xxxhmMGDGChoYG3nvvPfx+P/fdd19e1rN161bWr1/PDTfcsNtzXHjhhaxbt46HHnqI9957jxNPPJGqqiqam5t5+eWXWb58eebc8dFHH81vfvMbrr32WubNm8eaNWt49tlns3aM+ZCPn8WB+nneVUVFBd/5zne45557uPDCCzn22GPZuHEjjz76KLNmzeKUU07J+TnHjx9PSUkJjz/+OEVFRfh8PmbPns3kyZMZP348t99+Ow0NDfj9fv75z3/uFsxF/5OdtOi14447jr///e+ceOKJ/Pvf/+bGG2/kjjvuYNu2bVxzzTX85Cc/Aezrk3fddReKonD77bfz+OOPc9ZZZ3HeeeflfU133HEHhx9+OI8++ii/+tWvcDgcWQ0cBuo5eqMnr+vxeDjnnHNYuXIld911F7feeisbN27k+uuv54ILLsjc75BDDuGJJ55g5syZ/PGPf+Smm27imWeeoaqqKqvJTF/X88Ybb1BcXNzleXlVVfn5z3/OXXfdRXl5OQ899BDXXXcdixcvZuzYsSxevDhzqeTiiy/mm9/8Jm+++SY333wzn376Kffff/9uhWB9lY+fxYH8ed7VZZddxnXXXcf27du59dZbeeGFFzjrrLN46KGHsqrde8rpdHLbbbehaRo33HADV111FR988AFOp5P77ruP/fbbj/vvv5977rmHiRMncvvtt/fDdyX2RLHyVQkjhNjnXHTRRfh8Pu68887BXooQw5Kku4UQvXbwwQezYMGCwV6GEMOW7KSFEEKIAiXXpIUQQogCJUFaCCGEKFASpIUQQogCJUEa+5C+YRh5a/kohBBC5IMEaezm/kuXLu11P1rTNFm+fLn0s80zeV/7h7yv/UPe1/6zL7+3EqTzwLIsksmk7MTzTN7X/iHva/+Q97X/7MvvrQRpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQokBJkBZCCCEKlARpIYQQBSuWNLj1hVWsbU0M9lIGhQRpIYQQBeuBNzfw4H828cDHHYO9lEEhQVoIIUTBevrjbQBs6zCwLGuQVzPwJEgLIYQoSCvrA2xsDgMQMyy2tUcHeUUDT4K0EEKIgvTEB3VZf/5se3CQVjJ4JEgLIYQoOKZp8Y/l2wGo8DkBWL4tMJhLGhQSpIUQQhSct9c30xxKUOTSOPeQ8QB8un3fKx6TIC2EEKLgPPnhVgCO338EB44vA2BdY2gQVzQ4JEgLIYQoKLGkwcsrGwE4a8FY9h9dAkB9IEYkoQ/m0gacBGkhhBAF5YVP6okkDKr8LhZOrqLK78bvUrCAT7fvW9elJUgLIYQoKOmz0V+cPRpVVQAYW+wAYHmdBGkhhBBiULSE4ryzvgWwU91pE8vsIL1yHzuGJUFaCCFEwXj64zp002JSVRH7jy7N3D6h1A7Sq3bsWxXeEqSFEEIUjL8ttc9GnzJndNbtkyvss9IbmsOYpjng6xosEqSFEEIUhHWNIT7Z3oECfHn+mKyvTSh1oikKkYTBxubI4CxwEEiQFkIIURD+nDobPWdcKeMqirK+5lQVxlV4AVi+rX2glzZoJEgLIYQYdIZh8tyKemD3VHfatBo/AJ/tQ53HJEgLIYQYdO9vaqOuLYpTUzh93pgu71M7wg7Sq+olSAshhBAD5qmP7IlXCydXUl7k7vI++42yO4+tawpjmPvGbGkJ0kIIIQZVOK7z71UNAJw6t+tUN8DMVHvQHR0xWkLxAVnbYJMgLYQQYlD9e2UDbZEkfreDL8wc1e39Rpd6KPE4sCz4bB9JeUuQFkIIMWgsy+KvS+02oEdPr8bndnR7X01TmVRtV31/so/MlpYgLYQQYtA0dMR4O9UG9LS5XReMdVZbUwzAyvp9oz2oBGkhhBCD5h/L64klTar9bo6cVrXX+08faQfp9U0h4rrR38sbdBKkhRBCDIq4bvB86mz0CfvX4HJqe33MAal+3ltaI0Tiw3+2tARpIYQQg2JjU5ilW9sBuj0bvasZI4tRFYgkDDa3DP/2oBKkhRBCDLh0wZhpwcRKH3PHl/foccUeB6PL7PagK/aB4rFBDdIffPABF198MYcffjjTp0/n5Zdfzvq6ZVnceeedHH744cyePZvzzz+fTZs2Zd2nvb2dq6++mgMPPJAFCxbw4x//mHA4PIDfhRBCiFx1xHReXmmfjf78zJE4tZ6FI4emMqnKrvD+dHsHljW8m5oMapCORCJMnz6d66+/vsuvP/DAAyxevJgbbriBJ598Eq/Xy7e+9S3i8Z2H2H/wgx+wbt06Hn74Ye677z4+/PBDrrvuuoH6FoQQQvTCJ3XtrGsMoyg9q+rurHaEXTy2sTlMLDm8x1YOapA+6qijuPLKKznhhBN2+5plWTzyyCNccsklHH/88cyYMYOf//znNDY2Znbc69ev58033+RnP/sZc+bMYcGCBfzkJz/hueeeo6GhYaC/HSGEED2QNEz+mpobPXN0CVNSgzN6ar9RdpDe0hohkhjexWPdnxofZHV1dTQ1NbFo0aLMbcXFxcyZM4clS5Zw8skns2TJEkpKSpg1a1bmPosWLUJVVZYvX95l8N8Tw+hdOX/6cb19vOiavK/9Q97X/iHva881BaK8sbYJgBP3H4GKtcf3bdf3dkZq0IbdHjRGmbdgQ9keadreq9kL9jtrarL/AisrK7Nur6yspLm5GYDm5mYqKiqyvu5wOCgtLc08PhcrVqzo5Wrz83jRNXlf+4e8r/1D3te9e2NTlIaOOA4VJjnaWLp0aY8el35vQwkDr0Mhqls89/YKjpzg7cfV9p/58+fv9T4FG6QHw6xZs3r0yWZXhmGwYsWKXj9edE3e1/4h72v/kPe1Z4Ixnfs+WQ7AggkVHLfwwL0Wje363sZ1k4nvv8PK+iARVzmzZk9HU5WBWP6AK9ggXV1dDUBLSws1NTWZ21taWpgxYwYAVVVVtLa2Zj1O13UCgUDm8bnQNK1P/7j6+njRNXlf+4e8r/1D3tc9a4lEeG+j/Xv7i7NH4XE5e/zY9HvrVVUmVRaxsj7IptYIccOi2Fmw4axPCvac9NixY6muruadd97J3BYKhVi2bBnz5s0DYN68eXR0dPDJJ59k7vPuu+9imiazZ88e8DULIYTonm6YvLyykY6Yjt+tcfz+I3r1PIqiZNqDbmmJEk0M3zqAQf3oEQ6H2bJlS+bPdXV1rFy5ktLSUkaPHs15553Hvffey4QJExg7dix33nknNTU1HH/88QBMmTKFI444gv/5n//hxhtvJJlMctNNN3HyySczYkTv/vKFEEL0j7ZIkldXNQKwcEoVlX53r59r/1R70Lr2CKFYkpoST17WWGgGNUh/8sknnHfeeZk/33rrrQCcfvrp3HbbbVx00UVEo1Guu+46Ojo6mD9/Pg8++CBu986/2F/+8pfcdNNNfOMb30BVVT73uc/xk5/8ZMC/FyGEEHu2tTXMki3tAHxx1qgeNzDpyvSRflQFwnGDDc1hJqemYw03gxqkDznkEFavXt3t1xVF4YorruCKK67o9j5lZWXccccd/bE8IYQQeRKO6/zrswbiukm138WiqZV7f9AelHicjCzxsD0QY/WOIEfUVuN2DL9agIK9Ji2EEGL4aA0n+M9a+/jsEdOqKfO5+vR8bofGuAofABuaw8P2urQEaSGEEP3KMC1W7ejgs/oOAL40p2+pbgC3Q2Vipd3De0trhGhSgrQQQgiRs/ZIgldWNmUmXs0aW9bn51RVhdpU57Ft7VFCseHZHlSCtBBCiH7VFIzz7sYWAI6cVk2pt+dno/dk5hi7wntHIEZjMDYsJ2JJkBZCCNFvogmD5XUBNjaHURW7gUlfU91pY8u9FLk0TAvWN4aG5UQsCdJCCCH6TWskkRmmsd+oEibnOPFqTzxOjTHldt/uDc3DcyKWBGkhhBD9wjQttrdF+CDVBvSo2vylugHcTo3xqQrvra0RIsOwwluCtBBCiH4RiCZZsqWdhmAcl6by+QNG5i3VDXaF96Qqu8J7eyBKIJrI23MXCgnSQggh+kVzKM47G+yCsXnjyxhdnt+Rkk5NZUq1nT6va4sSiCQxzOFVPCZBWgghRN7Fkgbb2iN8tLkNsFPdJZ78pbrT9h9djKLYIzAbg7Fhd11agrQQQoi8a4sk+HBzGx0xnWKPg2Nn1OBy5D/klPvcjCi2h2tsbIkMu85jEqSFEELklWVZ7AjE+HCjvYs+aGIFVcW9n3i1J26nmqnwrmuLEo7LTloIIYToVkdUZ1sgysdb2wE4enr/pLrB7uGdrvCub4/SHk32y+sMFgnSQggh8qo5FOfDja0kdJOaYjeHTKzol1Q3pHt420F6W3uMcFwnoQ+fpiYSpIUQQuRNQjfZ0RHjo83tABw6uYIKf/+kusEO0lNqdvbwDsb0YXVdWoK0EEKIvGmLJNjWHuXT7QEAjp5ek9cGJrtSFIUJFV58Lg3DtNjWHiWSHD7XpSVICyGEyIt0wdjHm9owLZhcVcTM0aX9lupOK/G6GFNmF49tb48Nq4lYEqSFEELkRTCu0xqO88Fmuw3oIZMrKC9y9fvruh0a41IV3vWBKG2RxLCZiCVBWgghRF60huJsbo6wvimMpih5HUu5J26HytjyVPFYW5Rowhg2E7EkSAshhOizpGGyIxBnSV07APuPLmFKtb/fU91gn5WeWGUH6c2tEeK6OWw6j0mQFkII0WdtkQSBaIJ3U726D5k0MKlusNPdk6qKULCHerRHksNmIpYEaSGEEH3W2BFnQ3OEho44HqfKoqmVA5LqBtBUxW4PWmK3B93REaVjmDQ1kSAthBCiT0JxneZQnCVb7Dag88aVMbbMNyCp7jS/R8tUeO8IxOmI6sNiIpYEaSGEEH3SFk4QiiczYykPnlQ5YKnuNK/LwZhyeye9rT1KTNeHxXVpCdJCCCF6TTdMtrVHWd8YJhjTKfM6mT+hfMBS3WmdK7y3tEZIGNaw6DwmQVoIIUSvtUeTBGNJ3t9on41eMLGcESXuAU11Q6qHd6rCe2trBN0wh8VELAnSQggheq0xGCOWMPlgk309+pBJlVQU9V+v7u64HRqjSjx4nRq6adEaTgyLiVgSpIUQQvRKJKHTFIzzWX2AhGEypszDjFHFA57qBnA5VDwuB+Mq0sVjw2MilgRpIYQQvdIaThBNmLy93i4YO2hiBTXFA5/qTvO7HYxNVXhva48RS5pD/rq0BGkhhBA5M0yL+kCMWNJgeZ098ergiRWDkupO87sdjEoF6S2tYQzLGvITsSRICyGEyFkgmiQQSbJkSxsWMH1EMeOriijxOgZtTW6HmjkrvbE5jIoy5CdiSZAWQgiRs+ZgHNOyeHNtM2BXdVcVuXA7tEFbk9uhMb7ChwK0RZLEdWPIT8SSIC2EECInsaRBQzBGeyTJhuYwDlVh/oRyKvwD28BkV26nSrHXsbM9aCA25CdiSZAWQgiRk9ZwgnBcz5yNnjuujJoSz6BUdXfmdqj2bOlUhff2QHTIT8SSIC2EEKLHTNOiPhDFpam8vrYJgAUTBj/VDaAoCj7Xzh7em1oimBZDeiLW4F3hF0IIMeR0xJK0RZLUt0dpCsbxuTRmjikd9FR3WrHbwajSVJBuDuPUlCE9EUt20kIIIXqsORTHMCz+sy41TGNiBWVFrkFPdad5XBpjy9PHsCI4VGVIT8SSIC2EEKJH4rrBjtS86P+ss1Pd8wsk1Z3mdmhU+l2d2oMmh/RELAnSQggheqQtnCQU01m5I0g4blBZ5GJajb9gUt1gF495HBoTKu1hG3VtqYlYyaF5XVqCtBBCiL2yLIuGjhguTeWNNfYueuHkSvxeZ8GkusEO0s5OYys3tUQAiAzRiVgSpIUQQuxVR0ynJRxHU8kcvSq0VDeAQ1PxurI7j7k1lfbI0AzSUt0thBBir1pCcRK6ySfbOtBNiwkVPkaVugsq1Z1W7HYyqsxuaLKpJYzHqRGKJ0no5qAN/+itobVaIYQQAy6hm+wIxPC7nbyeSnUvmlKJ31NYqe40r0tjZIk96KM1nCCeNIbsRCwJ0kIIIfaoPZIgGEsSTRis2GZPvJo7rowqv7ugUt1pboeG16kxMtUedGt7dMhOxJIgLYQQoluWZbGjI4ZDVfnPOnuYxszRJZT5nAWZ6gbwOFUcDjVT4b1pCE/EkiAthBCiW6G4TmsoQYnXyetrGgFYOLmKIrejIFPdYO+kXZrKuPJOxWNOdUhOxJLCMSGEEN1qDSeI6QYdMZ1NLXYHr1ljSwo21Q3gcqhZs6U3tYTxODSiCZ1Y0sTrKsx1d0V20kIIIbqkGyb1gRhFLgevrbZ30QdNrMDtUAs21Z3m9zgYWWpfk97SGsGhKSSMoTcRS4K0EEKILrVFknREkxS5HZmq7oWTKws61Z3mdzkpK3LidWokDYv6QGxITsSSIC2EEKJLjR0xVEVhZX0HLeEERW6NaSP8VPoLq4FJVzxOFVVRsorH7GEbQ2silgRpIYQQuwnHdZpDcYo9Dl5bbe+iD5tShapAZZF7kFe3d26HhqaoTKhItwe1r0sPtYlYEqSFEELspjWcIJo0cKgqb623j14dmkp1lxR4qhvA7VRxagrjUkF6Y7PdeSym60Nq2IYEaSGEEFkM06I+EMXndPDBplYiCYPqYjdjyr1U+F14nIWd6gZwaSouTWN0pwpvl0MlYVhDqnhMgrQQQogs7ZEEgahOscfBq6mq7iOnVYFlUTUEUt0Aqqrgc+/sOtYcsrumYQ2tiVgSpIUQQmRpDMYAewbzR5vbADhk0tBJdaeVeBw4NIURqT7em5rDuB1DayKWBGkhhBAZ0YRBUzBBsdvJf9Y1o5sWk6uKKC9yDZlUd5rHpWFZMLGyCICNLRHcnSZiDQUSpIUQQmS0RhJEEjo+l5ap6j6ythrTNIdMqjvN7dBQFJjY6RiWx6EOqYlYEqSFEEIAYJoW9e1RPA6NxmCcz+o7ULC7jA21VDeA27FLhXdLGIemDqmJWBKkhRBCABCIJmmPJFPDNOxd9OyxpbhSbUCHUqob7CDtcmiMLrUrvLe0RDBMa0hNxJIgLYQQAoDmUBzDsnCoSqZX95G11RhDMNUN4NBUvC6V8iIXbodKwjDZHojidqq0R5NDYiKWBGkhhBDEkgYNHTFK3E42NIfZ2hbFpanMHVc2JFPdacVuJ7ppZYrH7OvSGpHURKxCJ0FaCCEEbZEE4YROkVvL7KIPnlSBaUHlEEx1p3ldGoZpZYrH0rOlE/rQmIhV0EHaMAx+/etfc+yxxzJ79myOP/54fvOb32SlKCzL4s477+Twww9n9uzZnH/++WzatGnwFi2EEEOMZVnsCMRwaRqmBW+ssduAHllbhTmEGph0xR4EYjGpKrWTbgmjKsqQmYhV0EH6gQce4LHHHuO6667j+eef5wc/+AEPPvggixcvzrrP4sWLueGGG3jyySfxer1861vfIh6PD+LKhRBi6OiI6rRGEpR4nKzYFqA1kqDY7WC/kSX4XNqQTXVDqoe3Q2VseXrQRgRgyEzEKuggvWTJEo477jiOPvpoxo4dy+c//3kOP/xwli9fDtif/h555BEuueQSjj/+eGbMmMHPf/5zGhsbefnllwd59UIIMTQ0hWLohonLoWbagB4+rYqYbg7pVDekKrw1ldFldnvQpmCcUEwfMhOxHIO9gD2ZN28eTz75JBs3bmTSpEmsWrWKjz76iGuuuQaAuro6mpqaWLRoUeYxxcXFzJkzhyVLlnDyySfn9HqG0bvUR/pxvX286Jq8r/1D3tf+MVTf17huUt8ewetUicQTvJ2aeHX41Ep0Xafc4xj076kv762GhUMBQ4HqYjdNwTgbmoNMq/HTEUsSiiXwuwcnFGra3j/8FHSQ/va3v00oFOILX/gCmqZhGAZXXnklp5xyCgBNTfY5vsrKyqzHVVZW0tzcnPPrrVixok/r7evjRdfkfe0f8r72j6H2vrZEDda1JqnwqixvSBBLmpR7VJKt26hvgbKYm+2aMtjLBHr/3m5rT9ISNahymzQF4f3PNuIMeWmOGNDmpNwzOJmC+fPn7/U+BR2kX3jhBZ599lnuuOMOpk6dysqVK7n11lupqanh9NNPz/vrzZo1q0efbHZlGAYrVqzo9eNF1+R97R/yvvaPofi+WpbFiroASnmC6mI3f1m3CoDjDxjFqPE1jC7zsv+okkFeZd/f24rWCKt2BJkZbWRl8zYimp/a2ikUB2JMqvEzMVVUVogKOkj//Oc/59vf/nYmbT19+nS2b9/O/fffz+mnn051dTUALS0t1NTUZB7X0tLCjBkzcn49TdP69I+rr48XXZP3tX/I+9o/htL72hFL0h7TKfO5CcVNlmxtB+CY6TWgqNSUeAvqe+nte+tzO9FUhcnVxQBsbo2gqRpep4Ng3Cyo73FXBV04FovFUJTsNIumaZkjWGPHjqW6upp33nkn8/VQKMSyZcuYN2/egK5VCCGGmpZgnLhu4XFq/GddM4ZpMbXaT0WRG59Lo3QIV3V35naoqIrK+HK7PeimVHvQoTARq6B30scccwz33Xcfo0ePzqS7H374Yc4880wAFEXhvPPO495772XChAmMHTuWO++8k5qaGo4//vhBXr0QQhSupGGyIxDPFE2lG5gcPb2aUFxndJlnSFd1d+Z2aDg1Bb/bjcthNzLZEYgxosRNS1gnmjBwOQpzz1rQQfonP/kJd955JzfeeGMmpX322Wfzve99L3Ofiy66iGg0ynXXXUdHRwfz58/nwQcfxO0euofvhRCiv7WFEwTjSWqKPdQHoqzaEURV4IipVcQMk0r/8Pkdah/DsjuPTajwsbYxxMaWMGPKvZmJWKUUZtagoIO03+/nv//7v/nv//7vbu+jKApXXHEFV1xxxQCuTAghhraGYAxVUdBUJTPxas7YMtxODVVThk2qG0BVFXxujbZwgolVRaxtDLGpOczhU6t2TsQqHexVdq0w9/dCCCH6TTCWpCVkdxizLIvXVttB+ujpNYTiOpVFQ7uBSVf8bgcJw2RS5c72oEDBT8SSIC2EEPuY1nCCWNLA69JY2xhiW3sUl0PlkEnlGJY1rFLdaV6XhgWZ41Ybm+0gXegTsSRICyHEPkQ3TOoDMXwu+2pnOtV96KRKQBlWVd2duR0qCjCxwu7h3RiME47rmYlY0WRhdoqTIC2EEPuQtkiSYCxJiceJYVq8kQrSx6Squit8wy/VDeB22hXebqdGVSpTkD0RqzDHVkqQFkKIfUhTMIaCXTC2dGs77dEkJR4Hc8aWopsWVcXDL9UN9k7a6dBIGGZmtvSmVMq7kCdiSZAWQoh9RDiu0xSKU+xJnY1eY5+NPnJaNQnDGrapbgCnpuJxqCR1MzNbemNqbKXHoRGIFOZELAnSQgixj2gNJ4gmTHwuB9GEwTvrW4DhXdXdWbEnVeGdCtLpnbTHqRHT9YK8Li1BWggh9gGGabGjI4Y3FYTf29hCXDcZVephWk3RsE51p/lcDgzTylR4b2oJY1oWTk0hYVgFeV1agrQQQuwD2iMJ2sPJTqnu1Nno2mqiSXNYp7rT3E4VFBhd6sWlqcRT7UEVRQELInEJ0kIIIQZBUzCOhYVTU2mLJFiypQ3Yd1LdYPfw1lQFy7IYnzqKlT4v7XaotEckSAshhBhg0YSRKhizd8pvrm3GtKB2hJ9RpZ59ItUN6R7eavZ16UznscKciCVBWgghhrnWSIJIXKfIZe+UX09VdR9dW0MkYewTqW5IBWmHStKwmFiVvZP2OFRiSZNoorCKxyRICyHEMGaaFjsCUdwODUVR2NYWZU1DyJ54Na3KbmCyD6S6wR7I5HdrJHSTibv08HZoamYiViGRIC2EEMNYIJqkLZykJLVTTp+Nnje+nFKv0051D8Ne3d3xux0kzZ1BuqEjnqnqzkzEKiASpIUQYhhrDsUxTLtgzLKsTK9uu6p730l1p3mcDhSgxOukssgFwKZUU5NCnIglQVoIIYapWNKgoSOWOXa1uiFIfSCGx6ly6ORKQjE71e11Df9Ud5o9aEPBtKzdm5qkJmLFC6h4TIK0EEIMU22RBOGETpE7dTY6NTf60MmVuB0qurVvpbrB3i07HUqX16XTE7EiBVQ8JkFaCCGGIcuy2BGI4VQ1VEVBN0zeXJuaeFVbQzRp4HXuW6lusM9KuzSVpGHuNlu6ECdiSZAWQohhqCOq0xpJUOK1d9FLtrbTEdMp8zmZM65sn0x1A2iqgs/lINFp0Mbmlghm6jq0QymsiVgSpIUQYhhqDsVJ6iZuhx2EX1u9c+KVqrBPprrT/B6NpGExpsyLU1OIpq7dg93UpJAmYuU1SBdSRZwQQuyrErrJjo4Yfredyo4kdN7d2ArsrOreF1PdaV6XAxMTTVUy7UF3TsRSC2oiVs5B+pprriESiex2e11dHeeee25eFiWEEKL32iIJgrGdwzTe3dBCQjcZU+Zlao1/n011p7kdKmD38N5ZPGbHNbttaOFMxMo5SK9atYpTTjmFJUuWZG575plnOPXUUykvL8/r4oQQQuRmZ8GYiqooALyaquo+eno1ALpl7rOpbrCDtFNT0DuNrUwXjxXaRCxHrg/485//zK9+9Su+/vWv881vfpPNmzfzxhtvcO2113LWWWf1xxqFEEL0UDCu0xqOZzqMtYYTLK9rB+xe3dGkgWcfTnXDzgrvzsVj6WNY9tcLZyJWzkHa6XTyox/9CK/Xy29/+1scDgeLFy9m3rx5/bE+IYQQOWgNxYknTar8dir7jbVNmBbsN7KYkaUeGjti1JS699lUN4DLoeJ2akQTRibdXR+IEU0YeF2aPREroZPQTVyOwa2vzvnVk8kkt912Gw888ADf+c53mDt3Lpdddhmvv/56f6xPCCFEDyUNkx2BeKZ5Ceys6j5qeg2WZaFbJtV+z2AtsWD43Q6Sukmp10mFz24Purml80QsoyAmYuW8kz7zzDOJxWIsXryYuXPnYlkWDzzwAJdeeilnnnkmN9xwQz8sUwghxN60RRJ0xJLUFNtBeGtrhPVNYTRV4fCpVZLq7sTvdqBbdvvPiVVFtG5JsLElzIxRJTg0FdO0J2KVMrjvVc476ZkzZ/LXv/6VuXPnAvZF9m9/+9s88cQTfPjhh/lenxBCiB5q7IijKAqaaheMvZYapjE/NfFqX6/q7ixd4Q0waZfZ0gBKgUzEynknfcstt3R5+/7778/TTz/d5wUJIYTIXSiu0xyKU5I6dmVZVibVffT0akl178Lt0NAUBcPc/RgWZE/EUlJV8oMh5yANYBgGL730EuvXrwdgypQpHH/88bhcrrwuTgghRM+0hRPEkgaVRfbRqpU7gjQG43idGgdNrJBU9y46D9roPA0rHZQ7T8TyOAcv85BzkF67di2XXHIJzc3NTJo0CYAHH3yQn//859x3333U1tbmfZFCCCG6pxsm29qj+Jy7F4wtmlKJx6nR2BGjumTfruruzKWpuDSNhGE3eXGoqfagwTgjSzy4nSqBmD0RazCDdM7XpH/yk58wdepUXn/9dZ555hmeeeYZXnvtNaZPn851113XH2sUQgixB+3RZFaHsaRh8ubaZgCO7lzVXbzvNjDZlaoqFLk1koaJQ1N3aw+qplLhg915LOcgvXLlSq6++mpKS0szt5WWlnLllVfy2Wef5XVxQggh9q4xaA+HcGj2r/SPNrcRiutU+FzMGlMqqe5uFLsdJI1UhXdlducxAKeqDvpErJyD9MSJE2lubt7t9paWFiZMmJCXRQkhhOiZSEKnKRin2L0zAKeruo+srUZTFUJxnXKfC5+rV2VIw5bHpZEeCzUxVeGd1XmsACZi5Rykr776am6++WZefPFFduzYwY4dO3jxxRe55ZZb+MEPfkAoFMr8J4QQon+1hhNEEya+1LXmcFzn/Y0tQKeqblNS3V1xOzQUwLQsJlX5gZ3pbiiMiVg5f6z6zne+A8D3v//9TFl6ekTlxRdfnPmzoiisXLkyX+sUQgixC8O0qA/E8DjUzO/jt9c3kzQsxlX4mFxVJKnuPXA7VFyaStIwmVhp76TrAzFiqffMpanEdZNIQsfvHpwsRM6v+sgjj/THOoQQQuQoEE0SiCSpKNp5/DWd6j6mthpFsVPd1cVuSXV3we1QcTpUkrpFmc9Fuc9JWyTJ5pYI00cWoygKCoo9Eat4cNaY89/awQcf3B/rEEIIkaPmYBzDsnCmCsaaQ3FW1AUAOKpWUt1749BUvC6VYNROZ0+sLKIt0s6mljDTR9pR2e1QCUQHr8J7cMd7CCGE6JVY0qAhGKPEszON/caaJizggNEl1JR4JNXdA8VuJwljZw9vyK7wdjs1gnF7ItZgkCAthBBDUGs4QTiuU9SpOUk61X10bQ2AVHX3gNelYabqqrqaLZ2ZiDVIxWMSpIUQYogxTYv6QNSuTk4VjG1qDrOxOYxDVThsaiWWZZE0JNW9N26HBqkgnenhnWoPCmQmYg3W2EoJ0kIIMcR0xJK0RZJZqe70LnrBxHKKPU6iSQOvpLr3yu1UcTjsCu+x5XZ70HDCoCkYz9xHQSEUH5ymJhKkhRBiiGkOxdENE5fD/hVuWhavd5HqLpNU9151Pobl1FTGlnuBXZuaqLRFkpnd9UDq1d/eiy++yAsvvEB9fT3JZPani2eeeSYvCxNCCLG7uG6woyOetYv+dHsHzaE4RS574pVlWeiGSU2JpLr3xh60oZLQTXwuu3hsU0uEjc1hDp5UCTCoE7Fy3kk/8sgjXHvttVRVVfHZZ58xa9YsysrK2Lp1K0ceeWR/rFEIIURKWzhJKKZT5O5i4tXUKlwOVaq6c6AoCsUeR6bCe1K6h/cus6XjSXsi1kDLeSf96KOPctNNN/HFL36Rp59+mosuuohx48Zx5513EggE+mONQgghsLs5NnTEcGkqaqpgLKGbvLXOnqdwTG01YKe6q/zSwKSn/G4nuhEFdh7D6tweVFUUTMueiNW5ccxAyHknXV9fz7x58wDweDyEw/Y3cuqpp/Lcc8/ld3VCCCEyOmI6LeE4Jd6dwffDza2EEwZVfhcHjCmVVHcvuJ0qipI6hpXaSW9vjxLrdOxqsCZi5Rykq6qqMjvmUaNGsXTpUgDq6uoG5aK6EELsK1pDcZK6ZR8bSnlttV0wdlRtNaqiSKq7F9wOFVVRMUyL8iIXZV4nFrCltXPK256IZQ7wRKycg/Shhx7KK6+8AsCZZ57JrbfeygUXXMCVV17J8ccfn/cFCiGEsNPa9YFY1rXoUEzng02tgFR194XboeHUlJ2zpbvoPJaeiBUZ4KYmOf8t3nTTTZim/Y2ce+65lJWVsWTJEo499ljOPvvsvC9QCCEEtEcSBGNJRpR4M7e9tb4Z3bSYWOljYlVRJtUtDUxyYx/D0kikqrcnVhaxdGt71jGswZqIldMr6brOfffdx5e//GVGjhwJwMknn8zJJ5/cL4sTQghhF4zt6IjhUFU0Vcnc/mqqqvvo6fYuOpY0JdXdC6qq4HNrtIUTAEyqssdWdi4eG6yJWDmlux0OB7///e/R9cGbCCKEEPuaUFynNZSgpFPwbQzG+HR7Bwpw5LSdVd1lPldWSlz0TLHHQTKVJZ6YOYYVzqq1cjlUQvGBjX+9uib9wQcf9MdahBBCdKE1nCCmG1mNNNIdxmaOKc2kt5OGIanuXvI4NdI1YeMqfGiqQjhu0BxKZO6jAANcN5b7NekjjzySO+64gzVr1nDAAQfg9Xqzvn7cccflbXFCCLGv041UwVinQjDLsjJV3UdPt3fR0YRUdfeF26GiYL+3Tk1lbJmXza1257HB/OCTc5C+8cYbAXj44Yd3+5qiKKxcubLvqxJCCAFAWyRJRzRJTbEnc9umljBbWiM4NYVFU6oAO9Vd6ZdUd2+5nekKbwuXQ2FiVRGbWyNsaglz8KSKQVtXzn+bq1at6o91CCGE6EJTMIaqKLsUjNm76IMmVmQqjSXV3Tduh4rToZFIDS6ZVFXE62uasiq8B0OfpmDF4/G930kIIUSvhOM6TcE4xZ6d+ynD7DTxKlXVLanuvnNqKh6HSlLfpXiseYgFacMw+M1vfsMRRxzBvHnz2Lp1KwC//vWv+fOf/5z3BQohxL6qNZwgmjSyGpN8sj1AaziB3+1gwYRyQKq68yVr0EbVzvagcX3gB2uk5Ryk7733Xp555hl++MMf4nTu/NRWW1vLX/7yl7wuTggh9lWGaVEfiOJzZgfe9MSrw6ZW4dTsX+EJSXXnhc/lwEiVb5f7nJR4HJgWbOk0EWug5Ryk//a3v3HTTTdxyimnoKo7Hz59+nQ2bNiQ18UJIcS+qj2SIBDVs1Ldcd3grXUtABwjVd1553aq9jkr7ELozESsQbwunXOQbmhoYPz48bvdblmWNDkRQog8aQrGAQuHtvPX9Aeb2ogmDWqK3ew3qgSwU93lkurOC7dDQ1MV9F1mS28aSjvpqVOn8uGHH+52+4svvsh+++2Xl0UJIcS+LJowaAzGKXZn747Tqe70xCuQVHc+2T281cx16a4GbQy0nD96ffe73+Waa66hoaEBy7L417/+xcaNG/nrX//K/fffn/cFNjQ08Itf/II333yTaDTKhAkTuOWWW5g1axZg7+Dvuusu/vznP9PR0cGBBx7IDTfcwMSJE/O+FiGEGAitkQSRhE5Z6c5mUR3RJB9ubgOkqru/uB0qLodK0kjNlk6nu5vDgzaKOeed9PHHH899993HO++8g9fr5a677mL9+vXcd999HHbYYXldXCAQ4JxzzsHpdPLAAw/w3HPP8aMf/YjS0tLMfR544AEWL17MDTfcwJNPPonX6+Vb3/qWHA8TQgxJpmlR3x7F49BQlJ1no99a34xhWkyuLmJ8hT0AQlLd+aUoCn63PQ0LYFy5D1WBYFynNZzYy6P7R6/+ZhcsWNBlx7F8e+CBBxg5ciS33npr5rZx48Zl/r9lWTzyyCNccsklmVnWP//5z1m0aBEvv/yyTOcSQgw5gWiS9kiSiiJX1u3pBiZH11ZnbpNUd/4Ve5xsa48B9kCNMeU+tqbag6Z31gMp5yBdX1+PoiiZUZXLly/n2WefZerUqXmfJ/3KK69w+OGHc/nll/PBBx8wYsQIvvrVr3LWWWcBUFdXR1NTE4sWLco8pri4mDlz5rBkyZKcg7Rh9O4sXPpxvX286Jq8r/1D3tf+ka/3tSEQRTcMVMXCMO3nauiIsbLennh1+NRKDNMgmjRwaQp+lzrs/y4H8mfWoYBpmpn3fmKll62tETY0hxhf4cE0zLytQ9O0vd4n5yB99dVXc9ZZZ3HaaafR1NTE+eefT21tLc8++yxNTU1ceumlvVpsV7Zu3cpjjz3GBRdcwMUXX8yKFSv42c9+htPp5PTTT6epyf5kWVlZmfW4yspKmpubc369FStW9Gm9fX286Jq8r/1D3tf+0df39bOmOAkDOtw7r0b+e6NdXTy1wknztk00A+0xgxK3yppwXVZafDgbiJ/ZYNxkU3OCgFdFVRT8VhSA5Rt3MN7RQbNbw2jOTw3A/Pnz93qfnIP02rVrmT17NgAvvPACtbW1PP744/znP//h+uuvz2uQtiyLmTNnctVVVwGw//77s3btWh5//HFOP/30vL1O2qxZs3r0yWZXhmGwYsWKXj9edE3e1/4h72v/yNf7mtzYSkw3KfPZgcCyLO76cBkAn587ntpau2hse3uUWWNKGV3m7fa5houB/JmNJHTMTW0UuTTcTo0OdxsvrFtFa0Jj8uTJVBa5mTW2dO9PlCc5B2ld13G57Gslb7/9NsceeywAkydPzuxs86W6upopU6Zk3TZ58mT++c9/Zr4O0NLSQk1NTeY+LS0tzJgxI+fX0zStTz8AfX286Jq8r/1D3tf+0df3VdVUNBM01X6OdY0h6tqjuDSVw6dWo6kasaSBz+2k3O/Zp/4OB+Jn1udW8TgdGJb9dzC1uhiAbe1RDFOx/34G8D3v1Tnpxx9/nA8//JC3336bI488EoDGxkbKysryurgDDzyQjRs3Zt22adMmxowZA8DYsWOprq7mnXfeyXw9FAqxbNky5s2bl9e1CCHEYEifjT5kckWmh3emqtu17wTogaKpCj6XI1PhXVHkothttwfdHogO+HpyDtI/+MEPeOKJJ/j617/OySefnNmxvvLKK5k0eL584xvfYNmyZdx3331s3ryZZ599lieffJKvfvWrgF0uf95553Hvvffy73//m9WrV/Nf//Vf1NTUZKq9hRBiqDJMizfWdlXVbVJV7N5nrkUPNL9Hy5yVVhQlU9W9tXXgg3TO6e5DDjmEd999l1AolHVe+ayzzsLrze+1kdmzZ3PPPffwq1/9it/85jeMHTuWH//4x5xyyimZ+1x00UVEo1Guu+46Ojo6mD9/Pg8++CButxxLEEIMbcvq2mmLJCn2OJg33p54FUsauB2qNDDpR16XAxMz8+eJVUUs3xZga9vAtwft1TlpTdOyAjTYqef+cMwxx3DMMcd0+3VFUbjiiiu44oor+uX1hRBisLyeOht9xLTqzMSrUFynokhS3f3J7VABBcuy7EEblXbzmCETpF988UVeeOEF6uvrSSaTWV975pln8rIwIYTYl8WSBu9ssCdeSap7YLkdKk5NQTctnJrCpCo/YKe7B7o9aM7XpB955BGuvfZaqqqq+Oyzz5g1axZlZWVs3bo1U0QmhBCib97b2Eo0aTCixM2MkXaFsaS6B4bbodmDNtLtQSu8qIqdxRjo9qA5B+lHH32Um266if/5n//B6XRy0UUX8fDDD/P1r3+dYDDYH2sUQoh9Trqq++jpNZlds1R1DwyXQ8Xt1DLTsNwOLXMefaDHVuYcpOvr6zPHmzweD+GwPcLr1FNP5bnnnsvv6oQQYh/UEU3y8ZbUxKtOqe64LqnugeJ3O0jqO4vHMhOxWgZ2bGXOQbqqqopAIADAqFGjWLp0KWD30R6sUV5CiJ5LGibBhLn3O4pB897GVkwLptb4GVtuFy3FkgYeSXUPGL/bgW51qvCu3Dm2ciDlXDh26KGH8sorr7D//vtz5plncuutt/LPf/6TTz75hBNOOKE/1iiEyBPTtNjQFGJjW5LZ0SQVfkmbFqK319uzB46ZvnMXHYrrlPmckuoeIG6HimXtzFjsnC09sOnunIP0TTfdhGnany7OPfdcysrKWLJkCccee2zep2AJIfJreyDK5pYokaTF5uYwpT43miqp00KyIxBjXVMYVYEjpmanumtKPJLqHiBuh4ZDVTBMC01VMjvpuvYocd3A7RiYD0s5BWld17nvvvv48pe/nBlVefLJJ8vcZiGGgLZwgvWNIYrcGhVelR0dMaoD0Uw6VRSGN9fau+i548ooT82UllT3wHM7VZwOhYRu4nVpVPntgr1wwmB7e2zAZkvndE3a4XDw+9//Hl3X+2s9Qoh+EEsarG0MkjQsSrxOuz+x28HG5jChuPx7LhSWZfGfdXaQPnr6zqFBobhOqaS6B5TboeLSdlZ4K4rCuYeM56RZIxlbPnCTx3IuHDv00EP54IMP+mMtQoh+YJgW6xpDtIYSVBfvbJdb6nUSSehsag5jmlL0Odgsy2Lxu5upD8RwOVQOnVSZ+ZqkugeeoigUuTWSxs7isUVTqrj4qCmZ7m8DIedr0kceeSR33HEHa9as4YADDtitX/dxxx2Xt8UJIfquri3CtvYoNSUeVEXB6BSPq4o8bG+PUuV3M7LUM3iL3MfFkgbX/e0TnvywDoDjZtTgTe2aJdU9eIrdDnYEYoO6hh4H6fPOO4+7776bG2+8EYCHH354t/soisLKlSvztzohRJ80h+KsbwpR4nF2+enf5VBxOzQ2Noco9TozgUEMnK2tES7500d8sq0DVYGvHDyOz+8/MvN1qeoePB6XxmDnmHocpN9//310XWfVqlX9uR4hRJ6E4zrrGkIoKPjd3f9TL/c52d4eZXNLmOkjiyWlOoDeWNPE5Y8voT2SpKLIxV1fmYfLoRBP7kyxxnWTamlgMijcDg0FMC0LdZDe/4FLrAshBoxumKxrDBGIJahMVQh3R1EUKv1u6tqiNIcGti/xvso0Le55ZS3fePh92iNJ5owt5dnLDufwaVVZ95NU9+Cyi8fUrOvSAy2na9Lr1q2jqalpj/eZMWNGnxYkhOgby7LY3BKhPhBlRHHPio08To1QXGdjc4gSr2PAzoDuizpiSa56Yhkvr2wA4JyDx3P9l/bH49z9PQ+nqrr3lAkR/cftUHE6VJK6xWD9FeT0sueff36XrT8VZefcTbkmLcTgagzG2dgcptznwpFDFWpFkYv6QIytrRGm1hT34wr3Xat3BPnO4g/Z1BLB5VD52akzOeugcd3eX1Ldg8uhqXhdKsGoMXhryOXOTz75JBUVFf21FiFEH3XEkqxtDOHSVHyu3D76q4pCuc/J1tYIlUXuTCMNkR9/W7qNa55aQTRpMKbMy71fO5DZY8u6vb+MpSwMxW4nLaHkoL1+Tv+KR48eTWVl5d7vKIQYcAndZH1jiEhcZ1Rp75ot+FwOQnGdDc0hZnvKBvQ8aFfCcfsc936jSlCHaPvSpGFyy/MrefitTQAcMa2KO78yj4q9fAiSVHdh8Lo0zEEcHiV/+0IMA5Zlsak5TENHnJElfTvvXFnkZkdHlO3tUSZUDkzrw+6E4jrRpGFX1zL0gnRjR4zvPfoxH2yyx05+75gpXHXC9B71S5dUd2FwOzQYCkH6oIMOwumUtIsQhWh7IMamljCVRa4+D8zQVIUSj5NNLWHKfK5BTbeG4zpxfWiO1fxwUyvf/dPHNAbjFLsd3HHWHD53wMi9PxA7QEuquzB4nCoOx+BVePc4SC9evLg/1yGE6KX2SIJ1jUF8LkeXFcK9UexxUh+Isqk5zMwxpYM2Kas9mhj0ZhK5siyLh9/ayM3PrUQ3LWpH+Lnva/OZXO3v8XOE4zrjK32S6i4Aboc2qMew5CdAiCHMHpwRIqlbVJTkd9dV5XdTH4hSVexmTNnADRRIi+sG4bgxpNK9Md3kqj8v5+/L6gH40pzR3H7mrJyL+DRVkVR3gbC78qlZDWYGkgRpIYYo07TY0BSiJRTvdaHYnjg1lSKXg41NIcq8TooGeFcXS5jEkyaeIdIOc1NLmGtfaWVLQEdTFf77pP244LCJvQq0RW5NUt0FxO9xEIzF0AbhQ5N0HBNiiKpri7ClNUK139NvLQtLvU5CcZ3NLQM/KSuS1Inpg3c+NRcvf9bAab99hy0BnSq/i8cuOpRvHj6p1zthqeouLH6XE92UnbQQoodaUoMzSj0uXI7++6ytKApVfjfb2qNU+t2M6GPleC5CMR3dKOwr0oZp8euX13D3K+sAmFHp5KELFzG6vPdV8U5NlVR3gXE7B28/26sgvWPHDv79739TX19PMpl9yPvaa6/Ny8KEEF2LJHTWNoawLAW/p/8/Z7sdGk5VZWNTmFKvM2/FaXtiWRbt0STufvwA0ldt4QRXPLGUN9bYrZLPWziek0bH+/xBZmy5jxKv7J8KicehoSkqxiDMXc/5J+Gdd97hkksuYdy4cWzYsIFp06axbds2LMti//337481CiFS0oMz2iMJRvfDdejuVBS52B6IsqUlwrQR/n7f5cV1k0hCH5APBL3xybYAF//xI+raonicKreeMYtTZo9i6dKlfX7u6mJ33xco8srtVHFqCtHEwKe8c/6Yescdd/DNb36TZ599FpfLxd13381rr73GQQcdxOc///n+WKMQIiU9OKOmh4Mz8kVRFCp8bra0RWgJ9/+krEjCIJG0CnIn/ecPt3LmvW9T1xZlQqWPZ757GKfPGzvYyxL9yKWpuDSNxCAcw8r5X8D69es57bTTAHA4HMRiMYqKirjiiit48MEH870+IfYoaZi8uqqRUFwf7KX0u8aOGBtbwpR5XYPSrtPrsmfrbmwOk+jnBiPRpIGBOWgzfLsS1w1+/MwKfviX5cR1k+Nm1PD3Sw9nv1Elg7000c9UVcHn1gYl3Z3zv3Sfz5e5Dl1dXc2WLVsyX2tra8vfyoToRlMwzuaWMACPf7CVC/7vA+58ec0gr6p/BVODM5xq7oMz8qmyyE1LKMHW1ki/vk5HNIlDKZxd9Pb2KGfd/y6PvrcFRYGrTqjlgfMWyDGpfUixx8FgfGbM+V/7nDlz+Oijj5gyZQpHHXUUt99+O2vWrOGll15izpw5/bFGIbLEkgaRhL1z/mhTKwCbWvo3aAym9OCMUFxn1ABWV3dFUxXKvKlJWX4XZb78T8oyTYtANFkw16PfXtfMZY8toSWcoNTr5M6vzOXo6TWDvSwxwLwuDccgdN7LOUhfe+21hMP2Luayyy4jHA7z/PPPM3HiRK655pq8L1CIXcV1g3TW6dPtHYBdaTscpQdn7EgNziiEYzlFbntS1sbmMLPGOHKaWd0TMd0gljQocjkGJb2YZlkWv3tjA7e/uArTggNGl3Df1+YzrsI3aGsSg8ft0AblMlNOQdowDHbs2MH06dMBO/X905/+tF8WJkR3IgkDTVWIJQ3WN4UAaI0MzyBdH4ixuTU/gzPyqcrvpiEYZXu7i/F5npQVSRjEdZMKn0okMTjNTIKxJD/883Je/HQHAF+eP5afnTazYHb3YuC5HSouR4F3HNM0jW9+85sEAoH+Wo8Qe5WeirR6RzCzo24dhjvpQCTJusYQHodWcMFBUxX8LiebWiJ0xJJ7f0AOogkDLAYta7CuMchpv3mLFz/dgVNT+NlpM/nFl2cX3N+BGFh2kB74n4Gc9+7Tpk2jrq6uP9YixF4ZpkUyFaQ/q+/I3B6IJtEHaUpNf7AHZwRJ6Ga/XPfNhxKvk2jSYFNzOK9p6UA0gUMbnAD9/Ip6Tr3nLdY3hRlZ4uHJ7yzka4dOKIjLDGJwOTQVzyB0Hsv5Fb///e9z++238+qrr9LY2EgoFMr6T4j+lDRM9FRA+Gz7ziBtWXagHg5M02Jjc4jmUJwqf/80trDyNMS+2u+mvj1KQ0csL89nmBbBqIFngHcsumFy6/Mr+e6fPiacMFg4uZJ/XH4488aXD+g6RGEr8Qx8NX/OhWPf/va3AbjkkkuyPl1aloWiKKxcuTJ/qxNiF7ppYaQa3X+6PfuyS1skQWU/BbWBtK09wpaWCFV+d96vQ4diOne9soYVdW38T2mQ/UeX9en5nJqK1+VgQ3OYMp+zz8fDokmDmK5T4hm47IFumFz8x495eWUDAN85cjI/PHF63gvixNDndWkDPlc6539RjzzySH+sQ4ge0Q0Tw7R3XKt2BAG7G1DCMGkND/2ddGs4wfrGMMUeJ+487ybXNYa47cWVNHTEAfjfl9dy11cOxNvHUZBlXifbAlE2tYTZb2RJn1LDkYROwrBwDlC627Isbnj2U15e2YDbofK/Z8/lpFmjBuS1xdBTUeTCO8C1CTkH6YMPPrg/1iFEjyQNC9002RGIEUkYeJwq00eWsGxr+5AvHosmDNY0BDEsi+I8ptUsy+JfnzVw/xvrSRoWI0rcxOJJdnTEeeitjXzvmKl9en5FUaj2u9nWFqOqyE1NH85yR+L6gBaNPfjmRv74rt2g5M6vzOXzMyVAi+75XI4BbybU61eLRqNs3759tylYM2bM6POihOiObtrXpOta7bP6M0aWUOW3U6NtQ/gYlmFarG8K0RZJMCaPgzNiSYN7X1/PK6saAThkUgWXHTuF15es5oGPO3jx0x0cMrmCBRMq+vQ69qQsnQ3NYUr6MCkrENUHrF/38yvqufl5+/Lcf5+0nwRoUZByDtKtra1ce+21vPHGG11+Xa5Ji/6kGxa6abGh2Q7S+48uyVR7D+Wd9JaWMHVtEUbkcXDG9vYot76wkk0tEVQFvn7oRM44cAyWZTKtwskXZ4/kH8t3cNe/13LPOQdS0scWl+VFLuoDUba2Rpg2ojjnxycNk2Bcz3uavysfbW7jyieWAvCNhRP41uGT+v01heiNnD+y3nzzzXR0dPDkk0/i8Xh48MEHue2225gwYQL33ntvf6xRiIy4bmCZsL4pFaRHlVBRZO+kh2qQbgzG2JDnwRnvrG/myieXsqklQpnXyU2nzuTL88dmDaz4+qHjGVvupS2S5Levr+9zxbeqKJT7XPakrFA858dHkwZx3cDdz8dcNreEueiRD4nrJsfvV8N1XzpAjliJgpXzTvq9997jt7/9LbNmzUJRFEaPHs1hhx2G3+/n/vvv5+ijj+6HZQphiyXtDlQbUp3GDhhdkpmANRRbg4biOusaQmgoFLn7fq3LMC3+8M4mnlmyDbA/xPzXidO7rHp3OzSuOr6WHz61nLfWNfP6pIo+96T2uRyEYnbL0GKPE1cOqetowkA3zH5tvdgWTnD+wx/QGk4wa0wpd50zr6A6uQmxq5z/NUQiESoq7OtXpaWltLbaAw5qa2v57LPP8rs6IXYRS5p0RJO0RZKoin1NuiLV7GOotQZNGvbgjGBMz2QD+qI1nOC//7oiE6BPmzuGm0+bucdjadNGFHP2gnEA3PfGepp7sQPeVaXfTXMozra23IaehOM6Cv0XMGNJg28v/pCNzWHGlHn5/TcWDOpEMSF6IucgPWnSJDZu3AjA9OnTeeKJJ2hoaODxxx+nuro67wsUIs00LZK6xY6OKACTqorwujTKUwFuKO2kLctic3OY+kCUEXkYnLFiW4ArnljCp9s78Do1rvn8DL51+KQenfX9f/PHMq3GTzhucOe/12L2Me2tqQqlXhebWyMEIj0/FtceTfTb9WjTtPjhX5bzwaY2ij0OHr7goD5VoQsxUHIO0ueddx5NTU0AXHrppbzxxhscffTRLF68mKuuuirvCxQiLWma6JbJ9oDd3Wr/0aUAO69JD6Gd9I6OGBtbIlT4+tawxLIsnvq4jp/8dQXtkSQTK33871lzOWxqVY+fw6GpXHVCLS6HytKt7Ty/or7X60nzux3oht05rSftWuO6QThu9Ftl9y//tZpnl23HoSrc/7X51PaisE2IwZBzrufUU0/N/P+ZM2fy6quvsmHDBkaNGpVJgwvRH3TDwjAstrXZO+n9R5UAO4N02xBpZhKI2oMz3A61T41EQnGdX7+8hvc22pecjp1ewyVHT+nV8aex5T4uWDSR+9/YwMNvb2LuuDLGlvdtJGNlkYsdHXEq/bG9jneMJgziSZNif/7bLj72/hZ++9p6AG47czaLcvgAI8Rg6/PHVq/XywEHHCABWvS79PGrulSQPmB0KkinrkmH4jpxfXBGG/ZUXDdY1xgkljQo78PgjI3NIa56cinvbWzFoSp87+ipfP/4aX2a1HTSrFHMHVdGQjf535fX9HlohkNT8bsdbGoJE9zLpKxo0sCwrLwXcb2+pomf/PUTAK44bhpfnj82r88vRH/LeSdtWRYvvvgi7733Hq2trZhmdirrnnvuydvihOgsaZqYlpVJa0+otHdnxR4HmqpgmBZt4SQjSwtzpKBpWmxsCtMUjDOypPcNS15e2cC9r60nYZjUFLu55vMzenUueVeqonDFcdO49NGPWdMQ4s8fbeUrB43v03OWep1sb4+yuSXC/qNKULsJwqGYjprnorHPtnfwvT99jGFanDFvDN8/flpen1+IgdCrc9L/9V//RV1dHT6fj+Li4qz/hOgvumGRMEwSqeYl6YIxVVUo99lp0kI+K709EGVLa+8HZ8R1g7tfWcud/15LwjCZP6GcX589Ny8BOq3K7+bio6YA8PgHW1nX2PfJdtXFbra3R2kIdj0py7Is2qPJvJ6Prg9E+eb/fUAorrNwciW3nTlbzkKLISnnnfTf//537rnnHo466qj+WI8Q3UoaJuG4nTZVFSjudK643OeiOZQo2NagsaTB5pYIXqfWqwrmHYEYt764kg1NYRTg3EPG8/8WjMtqTpIvR9VW8+7GVt5a18wdL63m12fP7VPVtVNT8Tg0NjTZDVt2vQ4f100iCR2vIz/HoYKxJBc8/AE7OmJMrfFz39fm53ReW4hCkvNPrt/vZ+xYua4jBl5CN4nE7V10sceZtTMqL/CuY82hOKFYsletN9/f2ML3n1zChqYwJR4HPz11JmcfNL5fAjTYwy2+e9QUyn1O6tqiPPLO5j4/Z5nPSTCms6kltFtns0iqaCwfO+mkYfK9R5ewakeQKr+bh88/iFLfwM8AFiJfcv5Xcdlll/Gb3/yGWCw/Q96F6KmYbhBNdRwr9mTvuiqLCnfIRtIwqWuL4nU6cgqshmnxh7c3cdNzKwnHDWaMLObOr8xj7riy/ltsSonXyeXH2ddw/75sO8vq2vv0fIqiUFnkYltbjKZdGqZEEjoWVp8/dFiWxXV/+4Q31jThdWo8dP6CvVaVC1Hocs4vfeELX+Af//gHCxcuZOzYsTh2SVE988wzeVucEJ3FkgbRhB2kS3YZ5VjIO+nWcIJAJMGIHIrF2iIJfvnP1SzfFgDgS7NHccFhk/q1ZeauFkyo4PMHjOTFT3fw65fXcs858/rUutTj1AjF9VRGYOekrGBMR1P6/n3d9/oGHnt/K4oCd50zj9ljy/r8nEIMtpz/xf3oRz/i008/5ZRTTqGqqkqKMcSAME2LRNIikuh6J50+hlVoXcdM02J7exSnpvW4WOzT7QF+/uJqWiMJvE6Ny46dyhHTBqeb3zcPm8SyunbqAzF+98YGrjyhtk/PV5GalFXXFmFqTTGmaRGIJvt0dAzg2WXbuf3FVQBc/8X9OWH/EX16PiEKRc5B+vXXX+fBBx9kwYIF/bEeIbqkmxa6ZRJO2MM0SrzZP7qZnXQObSgHQmskQXMokUnH74llWfxt2XYefmsjpgXjKnxc+4UZjOtjU5G+8Lo0vn98Ldc+vZxXVjdyyOQKFk3pfTOQzKSs1ggVRW48TpVY0qCoDz20P9jUytV/XgbYHyrOP0zGTorhI+cc08iRI/H7/f2xFiG6pZsmhmFlgnTxLunuiqL0Eay+D4jIF8uyd9EK7DVNHUno3PbiKn7/HztAHzmtmju+PGdQA3Ta/qNKOGOeXSz6m1fX9Tlb4XM5ME27IUtHVCeum71uB7qhKcRFj3xIQjf53P4j+O+T9+vT2oQoNDn/y7jmmmv4xS9+QV1dXX+sR4guJXW721g43nW6O929q7WAWoN2RHWaQ3FK91LRvak5zJVPLOXt9S04VIWLj5zMDz5X26eWofn21UPGM6mqiI6Yzt2vru3z7Okqv5vmYJzGYAwsenXZrCUU54L/+4D2SJI548q48ysydlIMPznnmH74wx8SjUY54YQT8Hg8OJ3Zv4Def//9vC1OiLSkaWJYFqFYKt2920668K5J1weiJA1rj9dbX1nVyG9eW0dCN6ny293Dpo8svKZATk3lquNrufLJpXywqY2XVjbwuf1H9vr5NFWhxOOisSPeq2K4WNLgokc+ZHNLhHEVXh48b0FBfagRIl9yDtI//vGP+2MdQuyRblgokOkB3e1OOpLAsqxBL2gMxXUaOmKUdbOLThomD7y5gRc+2QHAvHFlXP256XvddQ+miVVFfP3QCTz89iYefHMjs8eUMbK09+Me/R4HSdPEl2NwNU2Lq55cysdb2inxOHj4/IOpLu5+ZrYQQ1nOQfr000/vj3UIsUdJw8SyIBhPX5Pe5Zy03w7SCd0kkjD6dFQoHxoCMaIJg4qi3YNHQ0eM215cxbrGEArwlYPGcfZB44dEqvbUuWN4f1Mrn27v4Nf/XsPNp83q07p7M2Tk9hdX8fyKHTg1hd+dt4CpNVIjI4avPh1OjMfjhEKhrP+E6A9Jw0RR7DO1sHu62263af84D/ZZ6VjSoD4Q7bK72IebWvn+E0tZ1xii2O3g+i8dwFcPmTAkAjTYaervH1+L16nx6fYO/rZ024C+/uJ3N3P/GxsA+MWX53Do5MoBfX0hBlrOQToSifDTn/6UhQsXMnfuXA466KCs//rT7373O6ZPn87NN9+cuS0ej3PjjTdyyCGHMG/ePC677DKam5v7dR1i4MWSBqrSfbpbUZSd16UHuetYUzBOKG7g77SbtyyLR9/bzI3/+IxQXGdajZ9fnz2X+RPKB3GlvTOyxMOFR9jHnBa/u5lNzeEBed1XVzVy/d/ssZNXn1DLafPGDMjrCjGYcg7Sv/jFL3j33Xe54YYbcLlc/OxnP+Oyyy6jpqaG22+/vT/WCMDy5ct5/PHHmT59etbtt9xyC6+++iq//vWvWbx4MY2NjVx66aX9tg4xOGK6QUK3SI843nUnDTtTpy2DuJNO6Cbb2qP4XFrWdfEPNrXx2AdbAXtu8+1nzqampPfXcwfbCfuN4OCJFeimxa9eXkPSMPf+oD74ZFuA7z36MaYFZy0Yy6XHTu3X1xOiUOQcpF999VWuv/56TjzxRDRNY8GCBXz3u9/lyiuv5Nlnn+2PNRIOh/nhD3/Iz372M0pLSzO3B4NBnnrqKa655hoWLlzIzJkzueWWW1iyZAlLly7tl7WIgWdZFvGklenb7XaoOLs4V1sIFd4t4TjtkeRuHyKeXmIfWTxlzmguOWrKgLb37A+KonDpsVMp8TjY2Bzmsfe39NtrNYfifHvxR0QSBodPreLm02cNemGgEAMl5+qaQCDAuHHjAHsiViBg9xaeP38+N954Y35Xl/LTn/6Uo446ikWLFnHvvfdmbv/kk09IJpMsWrQoc9uUKVMYPXo0S5cuZe7cuTm9jmEYvVpf+nG9fbzoWvr9jCV0ErpOOG4H3yK3A8Mwd3u/y3z2j3NLKD4ofxeGabG1JYxTtQCT9OZyTUOQT7d34FAVTp0zEsMc3J8T0zSz/re3Sjwa3z16Mre9uIanPq5j/vgyZozK7/GxYCzOL19cTWMwTu0IP/ecMwcVqyD/rcnvgf4zXN9bTdv7yYacg/TYsWOpq6tj9OjRTJ48mRdeeIHZs2fz6quvUlyc//Odzz33HJ999hl/+ctfdvtac3MzTqeTkpKSrNsrKytpamrK+bVWrFjR63Xm4/Gia8tWrGBtU4ItHXbRmBODtWtWk2zM3q0akQ4AVm7YytKi9oFeJu0xgzUtSco8Ki2dCsEWLw8CMGeEi5btm2kZ8JV1bd26dX1+jgpg/ig3H9XH+fmLn3HlIWW4Hfnb5T7+SZC69gTlHpWrFnhZv+rTvD13f5HfA/1nuL238+fP3+t9cg7SZ555JqtWreLggw/m29/+NhdffDF//OMf0XWda665plcL7U59fT0333wzDz30EG53/5+DnDVrVo8+2ezKMAxWrFjR68eLrqXf1+kz9idS1EHH9gAQoqLYx8z999vt6M301nW8sG4druJy5s6dOaBrtSyLFXUBppQlqOl0Zrc+EOPTpiUAnHfkDCZUDm6bz4RuEo4n2bBhI/MOqEVV+552v2qCzhVPLKM5lOA/jU4uOXpyHlYKgWiSFa9+BMDdXz2QhX3oGT4Q5PdA/9mX39ucg/T555+f+f+LFi3ihRde4NNPP2X8+PHMmDEjn2vj008/paWlhTPOOCNzm2EYfPDBB/zpT3/i97//Pclkko6OjqzddEtLC9XVuU8N0jStTz8AfX286JqpqFiKQjRpp2eL3A48Lsdu73Wl3w6O7RF9wP8e2sIJWqI6lUUetE6B79nlOzAtmD+hnMnVA9tJzLIs4rpJLGkQ0w1My8KlqbgdGhYWHTGdSn/Px2d2p8RrD+H4yV8/4Z+fNXDo5EoWTKzo8/O+vHI7ScNicnURh06pRhsi1/Hl90D/2Rff2z53fBgzZgxjxvTPUYhDDz10t2K0a6+9lsmTJ3PRRRcxatQonE4n77zzDieeeCIAGzZsYPv27TlfjxaFS09d3O1InZEucjtQuygc2jkJa+ALx+o7opimhatTQVsgmuTllQ0AnD4Ax4XSQTmasIOyBbg1Fa9LY1SZh2KPkyK3A7cKoR1OYkk7gPd1TCTAnLFlnDJnNH9ftp27XlnLPecc2OU58Z7SDZPnV9QD8DkZOyn2YT3+aPrOO+9w0kknddmwJBgMcvLJJ/Phhx/mdXF+v5/a2tqs/3w+H2VlZdTW1lJcXMyZZ57Jbbfdxrvvvssnn3zCj3/8Y+bNmydBehjRDQvLItO3u8jd9WzmwZop3RFL0hiIU+bN7p71/Ip6ErrJlOoiZo8p7ebRvWdaFpGETms4wfb2KPWBKJGEjtetMaXaz7zxZRw0qYKDJ1UwtaaYESUe/G4HqqpQ4VUZX+GlJRzHMPs2LCPtvIUTGFfupS2S5Levr+/TEI53N7bSEk5Q6nVyiDQsEfuwHu+k//CHP3DWWWd1OaayuLiYs88+m4cffnjA50z/+Mc/RlVVLr/8chKJBIcffjjXX3/9gK5B9K+EYaS6jdmNTPxuB44ugnRmJz3AQbqxI0ZMNzLpdoC4bvBcaid4xryxeTkyZJgWcd0gmjCIGwYKCm6nit/jYHyFF7/HSZFbw+vU9vp6iqIwscpPJGnRHIozIg9ntt0OjatOmM4P/rKMt9Y18/qkCo6eXtOr5/rH8u0AHDujZsgfVxOiL3ocpFevXs0Pf/jDbr9+2GGH8dBDD+VlUXuyePHirD+73W6uv/56CczDWFw30VRlZ7rbpaF2tZPu1HHMNK0u75Nv0YRBfSBGqSd7F/3KqkYC0SQ1xW4Om9q7gifDtM+Gx5IGCd1EVcHj1Cj1Oaks8uNza/jdjl6nq90Olak1fpZtbScQTeZluMfUGj9fOWgcf3pvC/e9sZ6ZY0qp8udW9LmxOcSn2zvQVIUT9pNUt9i39ThINzc343B0f3eHw0Fra2teFiVEZ9GkgUNVd+6kPU60LnaKZT47yJiWnYIu68Xwhlw1BmOE4zqjS3cWYBmmxV+X2D2tT507usd9uXXDJJY0iSYNEob9PXucKhVFLiqKXBS5HfhcWl6uIaeV+VxMqfHz6bYAXqeWdU29t/7f/HF8sKmVNQ0h7vz3Wm485YAuawi68+xyOwOxaEolFUUu9D7OrhZiKOvxv8gRI0awdu3abr++evXqXlVUC7EndrcxeyedHq5R7HF0uUt2O7RMv+yBSHnHdYNtbVH8bmdWevn9jS1sD8QocmucsF/3M5eThkkwlqSxI8b2QJSWcAITi+oSFzPHlDJ/QjkHT6pkzrgyxlX4qChy5TVAp40u9TKuwkdTMIaZh4CoqQpXHl+Ly6GydGt7pgCsJzqiSV5fbfc4+OLs0X1eixBDXY+D9FFHHcWdd95JPB7f7WuxWIy7776bY445Jq+LE8KwQDctHJ2CdImn62vSwIAO2WgJJQjGk7sN+3gmtYs+aeYovJ1mJeuGSSCapCEVlNui9hpHlXmYOaaUgybaRV6zxpQxttxHeZErLzvbvVFVhcnVfir8LppDu//77o2x5T4uWDQRgIff3kRdW6RHj/vXZw0kDJPJ1UXsN3Jgj6wJUYh6nO6+5JJL+Ne//sWJJ57Iueeey6RJ9hScDRs28Oijj2IYBhdffHG/LVTsmwzTTh+b1s7e3SUeZ7cp5PIiF1taI7SGk/26Lt0wqWuL4Na0rFTuyvoOVu4I4lCVrJ2gaVk0BO1r12PLvZT6nPhcDopcGo4CKIzyOO2K8OV17YRiOn5P3+dxnzRrFO9tbGXp1nZ+9dIafvHlOXtM/RumxfOf2LvuL80aLf25hSCHIF1VVcXjjz/ODTfcwK9+9avM8QpFUTj88MO57rrrqKoq7I5AYujRLQvDsIhadoBWFCjydH1OGqAidV26v49htYYTtEeS1BRnV0WnB2kcM6Mms6sHew52icfJgRPLcDsKsxlDpd/N5Go/K+uDuJ1qn6uqVUXhiuOmceljH7O2McSTH27lnIPHd3v/9ze20BSMU+xxcESt/C4RAnJsZjJmzBgeeOABAoEAmzdvBmDChAlZk6mEyCfDBN0y0ROpbmMuB05V3eNOGvp3XKVpWmxvj6KpStY6trVFeW+DXTx5+tydzUssyyIYT3LAqJKCDdBpY8t9BKJJtrdHGV3q7fNutsrv5uIjp3DHS2t44sOtLJhQzrQRXaex0wVjnz9gZMG/T0IMlF59VC4tLWX27NnMnj1bArToV7ppgaUQjNs7aX+qaKy7IJ1paNKP16TbIgmaQ4nM/Oq0vy7dhgUcNLGccRU7e3SH4jp+t4Pq4sKfH62pClNr/JR5XXkrvjuqtprDp1ZhpGZPx/XdJxltag6zYlsAVYEvzByVl9cVYjgY/IthQuyBbgIKhNLHr1wOnFr3u7v+bmhiWRb1gRhAVjq4PZLg36vsFqBnzBub9ZiOmH1Eq3MRWSHzuRxMrilCT3U06ytFUbjkqClU+FzUtUV55J3Nu93nH6kK8EMnV1Jd3P/DdIQYKiRIi4JmWBZKahgE2C1B93StNFPd3U9BuiOm0xSM7db447kV9SQNi2k1fg4YvXPYSySh43WqjCgt/F10ZzXFHiZVFtEWSWR6p/dFidfJZcdNBeDvy7azrK4987VQTOe11Y2AHLsSYlcSpEVBi+sWqqpmjl8VuR049jBeMZ2C7q8hGw2BGAnDzDqvHEt2agF6YHYL0PZoMtMze6gZX+ljVKmXxjwdy1owoYIvzLTPjf/65bWE4vbf6UsrdxDXTSZW+pg5umRPTyHEPkeCtChoSSN9RtpOdxe5Hbgc3ae7K/39t5MOx3XqO6K7tQD998oGgjGdESVuFnYaBhFLGjg1hVGlfR8HORicmsrk6iKK3I68vZ8XLJrEqFIPzaE4D7yxAcO0+EeqYOyLs+XYlRC7kiAtCpZlWSRMK6vbmM+153R3ZifdD0G6KRgjmjAo6rQrNkyLvy61h0GcNndMVkGb3bvbQ4l36O2i04o9TqZW+4kb9gjMvvK6NK48vhZVgVdWN/Kb19bRGIzjdzs4qlY6FgqxKwnSomDppoVhkhqusbNwbE8NMdLXpDtiOsk8XEtNiyUNtrXH8Luzr0W/u6GFHR0xit0Oju80DCL92qNKPUN+dziixM3ESh+tkURexlruN6qEMw+0i+te+swutvvc/iP6peWpEEOdBGlRsHTDwtilJWiRZ89ButTrJB0T83kMqzkUJxhLUtKpE5dlWZnmJSfNGpUVZNoiCSr9rt2OaQ1FiqIwobKI6mIXTaFYXp7znIPHM6mqCABVsd8/IcTuJEiLgqWbJgZkXZP2u7UuJ2ClaapCmTfddSw/rUGThkldWxSf05G1K/6svoM1DSGcmsLJs3cGGcO0P1yMKfMOyLjMgeByqEytKcbt0AhE+/6+OjWVq0+opaLIxednjsrLPGshhqOhe7FMDHtJw8JMpbszO2lX1xOwOisvctEWSebtunRLKEF7JMHIkuwCsKc/tgdpHDtjRNaOuT2SoDw1XnI4KfU6M2MtPU61z13BJlQW8YcLDs7T6oQYnmQnLQqWbpikJycGU8d1/G5ntxOw0vLZdcw0Lba1R3A7tKw0+9bWCO9vakUBTpubPUgjphuMKfMWxOCMfBtV4mFchZfmUDwvYy2FEHs2/H6LiGEjaViARSRhZAqWir1730lX5LHrWGskQWs4uVvzkr8utXfRB0+qYGz5zhagHdEkZV4XVf7h2TVLVRUmVfmp9LtpCubn/LQQonsSpEXBag3HcWhKpumFy6Hidap7vCYN+es6Zln2IA3IbgHaFk7wyiq7Q9YZB47Nun84YTC6zDMgc6AHi8epMbXaj0PbWSsghOgfw/c3iRjSogmD9qiOx7HzenSxe8/DNdIy/bv7mO4ORJM0heKU+7J30c8u345uWkwfUcx+I3dOdLIHaWjU7ANFUOVFLiZXFdERS+b1qJsQIpsEaVGQgrEk0YSOW9sZpP0eB5qidDtLOq0iTw1NdgRi6IaVVSAVTRi88MkOAM44cExWtXdHNMmoUu8+c953TLmPseU+GoPxzHx5IUR+SZAWBak1nEBVFBSlUyMTtwNVUfZaOJaPSVjBWJKGjljmOFfaSysbCMV1RpV6OGTSzhagkYSO16UNuUEafaGpClOq/ZT5nDSH+m80qBD7MgnSouAkDZOWcAKf296Rdh6uoapKDwrHUuek+5DubuyIE02a+FzZLUD/lioY27UFaHvE3kUPxUEafeF1aUyt8YNiEY73faylECKbBGlRcIIxnUjCyATITLp7L7Ok09JnlnvbzCSWNKgPRLO6iwG8vb6ZxmCcEo+D4/arybq/06Hssw05qvxuJlUWEYgl5Pq0EHkmQVoUnEAkgWmZmZ1q+oy0by+zpNP6egSrKRgnFDeydsWWZWWal3xx9uis69TDYZBGX42rSI21DMbk+rQQeSRBWhQU07RoCsXxOncGvPQxn71NwEpLB+lo0sh5clNCN9nWFqXIpWUVha3YFmBdUwiXpmb1mR5OgzT6wqGpTKn2U+Jx9ssEMiH2VRKkRUEJxnWCcZ0iV+cgvbMlqKsHQdrv3pkWz/W6dEs4Tns0SckuBWPPLLF30cftV5PV2KQtkqBqmAzS6Ksit4OpNX500yKSkOvTQuSDBGlRUIKpc7edm4FkZkn3MN2tKEomaDZ0xNjaGiGW3PuO2jAttrVF8TjUrGNem1vCfLi5LdUCdEzmdt0wMUyL0eXDZ5BGX1UXu5lY5aMtT2MthdjXSZAWBaUllMCtZZ8zTnccs4dr9Ox50inv+kCMtY1Blm5t3+v10pZwnNZwYrcWoOld9KGTKxldtnPIRiCapLzIRWXR8GwB2hvpsZYjSzw0BvMz1lKIfZkEaVEwIgmd9kgiK9UNO3fSxXuZJd1ZeifdHklgGHYTkuVbA6zeEexyV21ZFvXtMTRFyRqM0RKK8/qaJsBuXpJmmBYx3WRsubfHa9pXODWVyTV+vC4trzO9hdgXSZAWBSMY04npJh7nzh9Lw7QHbAD43I699u1OS++k2yPJzJ9LvU42tYTtXXVH9q66PWK3AC3b5drys8vr0U2L/UaVMGNkSeb2jliSMp9TdtHdKPE4mVrjJ64bPbrUIITomgRpUTBawvFMl7G0SNIOpArgc2o930mnGpq0d9rJeZwao0u9xBIGy+oCrNrRkan+rg9EsSwr61p4JKHz4if1AJwxb+cu2rIsokl7HOVwHqTRVyNLPEyoKKIlHJfr00L00r57sFMUlIRu0hpO4t8l1R1J2kec/G4HDlXtcZCuSO1w26LZDU0URaHS7yaWNNjcHCEQ0Rld5qWxI06pJ3sX/a/PGggn7GB88KSKzO3BmE6R20F1seyi90RRFCZU+eiIJWkOxffZZi9C9IVsA0RB6IglicTt/tedpXfSfo8DRaXHVdQVvvROuuuuYx6nxugyL3HdZHVDBzHdyHpt3TD529LtgF3R3bnaOxhPMqbUs88M0ugLt0NjWk0xTk0hEJWxlkLkSoL0MBJLGmxsDg/Jjk+BSBILdtsph9NB2u3AoSg9viZdXrSzcKw7iqJQkarOHlGcvcv7z7pmmkNxyrxOjp2xswVoOPVBYl8YR5kvpT4nU2r8hONJErq0DRUiFxKkh5FY0qA1HCc+xH4RGqkuY74udqad092KunsQ7066cKytm510Z05Nzarotiwrc+zqi7NHZV13DsQSjCrxUrSPDdLoq9GlXsZV+GgKxjCH4IdIIQaLBOlhxDAtEklryAXpUEwnFNe7DHyRTjtpTVF6dQQrV8vqAmxoDuN2qHxh5s4WoLGkgUtT96lxlPmiqgqTq/1U+F00h+I9ekwsadAeTeBzanudIS7EcCVBehgxLIu4bgy5lGJHLIlumF12E8vspD32LOneHMHKNf3/9Md1AJyw34is9qDt0QQjSjy7NTsRPeNxakytKUZV7A9m3TEti+ZQnEA0yeQqP/uPLpGObmKfJTm7YcQ0Ia6bJIbQuEDLsmgKxfA4ui7CSu+ki1x2I5Oe/rJO76R10z4u1VMbm8Ms2dqOqsCpnVqAJnQTBYWRpd49PFrsTUWRi8nVflbWB3E71d0+mEUSOm2RBBVFLiZV+anyu/bpwSVCSJAeRgzLImEYxIdQ84hIwqAj2nWqGzoFabeG09HzX9Zel4bXqRFNGpm2oj3xzBJ7F71wShUjO6W12yMJqovdlPtkF91XY8t9dER1trVHGF3qRVEUDNOiJRRHUWFqjZ9xFb6scaBC7KskSA8jpmlhWOQUlAZbRyxJXDe67dwVTqW7fS77nHQuKopcbGuP7jG12llTMM4ba5uB7OYlumFiWBajyvbtcZT5oqkKU2qKCMd1WsMJPE6N9miCKr+bSVVFVPrl/LkQaXJNehgxLQvLtHenQ+UYVmsogUPp/scwvZP2ubScu3ulr0v39EPLs8u3Y5gWM0eXUDuiOHN7IJrMHNUS+eFzOZhS48fAIpY0mD6imNljyyRAC7EL2UkPI0nDRFPt/00YZsGnC+O6QVskgW8Px5kinXbSzhx30uU5BOlwXOfFT3YAcPq8sZnbDdMibphMl0EaeVdd7OaAUaV4nOpuPdOFEDbZSQ8jScPC7dDsID0EKrw7ojrhhIHP1fWHCcuydu6kezhLurN017FgD9Ld//x0B9GkwbhyLwsmlu9cYyxJqddJlezw+sXIUo8EaCH2QIL0MJI0TFwOFd2whkSQDkQTKNDtGdhY0sRIZe2LXFqPZ0mn9XQnnTRM/r7MbgF6+rydLUAtyyKS0Blb7s35A4IQQuSD/OYZRnTTRFMULCj4Y1iGadEcSuBzdZ/q7ojZ3cKcmoLLoeZeOObrWZB+c20TLeEE5T4nR0/f2QK0I6bj98guWggxeCRIDyNJ3SK9KS30Y1jBWJJQTKeom1S3fR87uBZ7HCiK0vud9B7S3UnD5OmP7RagX5o9OmvHHIonGVsmgzSEEINHCseGCcuyME07dexUVSKJwg7SHVEd3bSyembvKhOk3fa15Z52G0ur3Eu6O5LQueX5lWxujeB1alktQENxHZ/LIYM0hBCDSnbSw4RhWhhYqKqCU1MK+qy0ZVk0BmN497JDTX8PxZ7c+nan7emadEc0yf/87ROW1QXwOjX+++T98Ht2fmbtiCUYVerZYzpeCCH6m/wGGiYMy8I0LZwOBaemktBNkt30wx5s4YRhp7r3MkkqvZP2u7WcZkmndXdOuiUU53/+/ilbWyMUux3ccMoBWeeiowkDt6bJIA0hxKArvN/goldM025moip2kC7kY1gd0SQx3djrtd5gqnCsyO1AQ8GR6046VTgWjusYpl0mvr09yn89tZytrREqi1zcdubsrAAN9iCNmhI3JR5pASqEGFyykx4mDMvCsiw01U4LJ1PHsAqxSVZLON6jHX5mJ+2xZ0nnOq6wLHVO2sLeTbdHElz3909pjyQZVerhplNnMmKXa84J3URVFUbJIA0hRAGQID1MGKm+3aqiZIJZIc6VjiUN2iNJinpwrTcdpItcGpqq5nxN2qmpFHscBGM6721s4f/e2kQ4YTC5qogbTjkgs9PurC01SKNMBmkIIQqApLuHCdO0+3an45hlUZDp7o5Ykkhcx7uHo1dpwXg6SNvp7lyru2Hnbvo3r64nnDDYf1QJN58+q8sAnTRMLCxGl3llkIYQoiBIkB4mTMvCxMoEF4eqEE4UXoV3IJJEVZUepa7T16R9LgdqLwrHAMq9O4Px/Anl3HjKAfi7KVhLD9JIF5wJIcRgkyA9TBi7TL1yairhAjuGpRsmTcE4PmfPrrJ0pNLdPnfuE7DSJlYVAXDktCr++6T9ui1WM0yLuG4wpswngzSEEAVDrkkPE+YumW2nphLXTXTD3GPDkIEUjOlEEkaP2mxub4/SGk4AUOTWcq7sTvvhibXU1vg5bFrVHtuKdkSTlPlcVPplFy2EKByF8dtb9NmuO2mHpmRGVhaKQDRh9xffS8CNJQ1ufWElScNiYpmDar+71zvpYo+T6SNL9pheNy2LaFIGaQghCo/8RhomTNOicxhyaoU1Dcs0LZpCib2mui3L4jevrWNTS4Qyr5NzZxVjWfRr8AzKIA0hRIGSID1MGKZF5820pioYVuEE6XBCJxRL4nPvuar7+U928NrqJlQFfvC5aZS6VSz6N0iH4knGyCANIUQBkiA9TCQNc/fqZ6twzkp3xHQSuoXb0X0gXLWjgwff3ADA+YsmMnNMaeZrvans7olIQsfj1KgqlhagQojCI0F6mEgaFrvGMVVViBXIyMrm4J67jLVHEtz+4ip00+KwKZWcNndMp69avToj3RPBmE61393tsSwhhBhMBR2k77//fs4880zmzZvHwoUL+e53v8uGDRuy7hOPx7nxxhs55JBDmDdvHpdddhnNzc2DtOLBo5vmboHMqSqE44MfpKMJg/ZogqJuUt2GafGLf62mOZRgTJmXy4+bltVMRIGcZ0n3hJ5qXiKDNIQQhaqgg/T777/Pueeey5NPPsnDDz+Mrut861vfIhKJZO5zyy238Oqrr/LrX/+axYsX09jYyKWXXjqIqx4cScPcrYLZqalEEwamaXXzqIERjCWJJc1uR1P+8d3NLK8L4HGq/Pik/XYbD2mR+yzpnq1Lp9Tr7LL7mBBCFIKCzvH9/ve/z/rzbbfdxsKFC/n000856KCDCAaDPPXUU/zyl79k4cKFgB20TzrpJJYuXcrcuXMHYdWDQzes3a7bOjWVqK6TMEw86uAVRbWGE2iK0mWrzXc2tPCXj+sAuPzYaYyv8GV9PT3Za09nnHvDsiwiSYNJ1UXSvEQIUbAKOkjvKhgMAlBaahcUffLJJySTSRYtWpS5z5QpUxg9enSvgrRh9C41nH5cbx/fWdKw09a5FEqZpkXSMHh5ZQN/+WgbN3xpf6bW+FEVk0TCIBpP4hyknEnSMGkKRnE7wDCz35/t7VF+/fIaAL40exSLplRk3cc0TUwLsCwsy+zV+2sYBoZlYJgGVqcPCeG4jsehUObV8vL3NpTk8+dV7CTva/8Zru+tpu198zRkgrRpmtxyyy0ceOCB1NbWAtDc3IzT6aSkpCTrvpWVlTQ1NeX8GitWrOjTGvv6eICtgSRep0qVr+c7X920WNuU4N+fdBCKG/zlnTWcsZ8fgOaIgRpwUuYZnJ10R9xkVXOCMk/2FKuEYXHP+wEiCYOJZQ4WVcVZs2bNbo+3LNiyeRP+yHY8vWhoEkyYbGxK0O5Vsy4HtEQMRhRprAnvu9Ou8vHzKnYn72v/GW7v7fz58/d6nyETpG+88UbWrl3Lo48+2m+vMWvWrB59stmVYRisWLGi14/vTK1rR1WUrONHexPXTSIbWmh5dykAm0NK5oNMSSBG7egSRpcNznzkjc0h4sVhRnYqzrIsi/99eR07wgblPifXnTq7y6EWpmny6aq1TJk8iXmTq3D34hxzeyRBbHMbNcXuTJBOGial4QQHji/fJ4dp5PPnVewk72v/2Zff2yERpH/605/y2muv8cc//pGRI0dmbq+qqiKZTNLR0ZG1m25paaG6ujrn19E0rU8/AH19PICJXZGtW+zxTHFnigFtUbsvNkB9IEZzKMmIEg+qqpIwepZWyTfTtGiN6PjcTrRO18T/sXw7b6xtRlXgR5+fQXVx9x8gTCwcmobL6UDrRUMTTdPQFA1N1TJBuj2iU+n3UOn39Nv566EgHz+vYnfyvvafffG9Lejqbsuy+OlPf8pLL73EH/7wB8aNG5f19ZkzZ+J0OnnnnXcyt23YsIHt27cP2aIxw7SIJAxCsZ5PsDIsi62tkazbltW1A6lpWIM0sjIY1wnGdYo6VWuvrO/gwf9sBOCCRZM4YPSeMwamaZ/3zldxl2VZxHSD0WXefTpACyGGhoLeSd9444384x//4Le//S1FRUWZ68zFxcV4PB6Ki4s588wzue222ygtLcXv9/Ozn/2MefPmDckgbVkWhgmRpEEorlPZw17ShmlR1xbNum3Z1nY+t/9InJpKJGFgWVaX1dX9KRhLkjTMzHCMtkiC215chZFqWHLq3NF7fQ4LcHRTGd4b4biB3+3YJ9PcQoihp6CD9GOPPQbA17/+9azbb731Vs444wwAfvzjH6OqKpdffjmJRILDDz+c66+/fsDXmg+mZQdqh6LQHIozvsLXo+BkdgrSc8eVsXRrO8vqApiWhVNTiOv2NKyeps/zpSWUwJ1KTRmmxS/+uZrWcIKx5bs3LOmOaYGzlxOwutIRSzK5ukj6dAshhoSCDtKrV6/e633cbjfXX3/9kA3MnZmWhQn43Q5CMZ1o0titsUdXDMtiW7sdpD+3/whW7wgSiCbZ3BJmbLmPUEInoQ9skI4kdNojiUyqe/G7m1ixLYDXqfHjL+zesKQ7pmXlbR52QjdxOBSqi2XalRBiaCjoa9L7GtOysCwLr0sjpps9vi6tGyb1ATtIT67yc8Bou4hu6dZ2HKoyKCMrgzGdmG7icaq8vb6Zpz7eBsDlx01j3C4NS/bEtOz2pvkQiCap9Lko9e67x66EEEOLBOkCYll26lpVFFTFTs32RF1blKRhp7ZHlnqYO64MgKVbA5mUcsIY2CDdEoqjKgrb2qP8+uW1AJw2dzSHT63K6XksC1yOvgdpy4KkaTKy1Dvg1+aFEKK3JEgXEHsnDYoCHodGcyjRo77b6xpDAIwr96GpSiZIf7o9QNIwUYBYYuA69YTjOk3BOC5N4dYXVhFNGhwwuoRvLJyY83NZFnlpCRqK6xRLwZgQYoiRIF1ADNPCxN5J+1wOIgmdUA+OT61vsoP0+Eo7jTy+wkeZz0lcN1m1I4hDHdhjWK3hBJGEzu//s5EtrRHKfU7+68QZvby2bOXl+FUolmRUqSdTaS6EEEOB/MYqIKZl/6cqCi6HStKwenRden1TGIAJFUUAKIrC3LFlgH0Uy6kpmUYn/U03TLa1R3lrXQtvrG1GUxV+9PkZvd7BKoqy23Sv3nA7VSqlYEwIMcRIkC4glmVBKt0N9njG9mhir4/bkNpJT6jcWZA1J3Nduh2nppLQzQEpHmuNJFi9I8hjH2wF4IJFE/fasGRPLMCh9T1IV/rdFLsL+jCDEELsRoJ0ATEtO+Wd3jn6XBptYbshSHeShpk5Iz2hU9X0nNROem1jkIRukjTMASkea+yI84/l2zFMiwUTyjllzt4bluxNX3fSXrfGyFKPFIwJIYYcCdIFJK4b/Oql1Tzw5gYAfC4H0b20CN3UHEY3LdwONev8b3WxmzFlXkwLVu3oIDkAx7CCsSRLtrTx4aY2AM5bOKFPgdH+wEKfrkmrqkKpx0G5TwrGhBBDjwTpAWTspVJ7dX2Q1Q0h/r5sO82hOJqqYFgWoXj3QXpjs309uqbYvVtATFd5L68LAPR7kG4JxXn6421YwGFTKplU5e/T85mWHaT7spMu8Tg5YHQpzjw1RBFCiIEkv7kGSDius7K+Y4+BOtDpXPR/1jYD4NJUWsPdX5fe1JIK0iUe4np2cVjmunRdO5bVv0E6oZu8va6FJVvbUYDj9hvBtvYIbZEEei/T7KZloQJ9ja8ySEMIMVRJkB4gScNEN609Bulgp7T2G2vtYSI+l0YgmiSW7Lo6e3OLPf1qdJmHQCS7+cmsMaWoit3spCOa7NdjWG2RBI9/aBeLHTKpgv1Hl7DfqBI8TpXmUIL6QJRQTMe09n7uO8007SI6LQ/npIUQYiiS334DxLLAMM09BqmO6M4gu7YxxI5ADI9TI5o0sgJ4Z1tSIyqnVPsxrOwPAX63g2k1xQCsaQgS3kPavC8sy+KNNU0srwugKPDF2aOZXFXEhMoi5k+oYP7EciZWFmFYJvWBGI3BWLcfOjozLLuILg/F3UIIMSRJkB4gpmVlOop1Z9dA/Obapsz12FA3LULrAzEAZowspsTrzAr0sDPlvXJHkLhu9jr1vCcdUZ0/vLMJsHfRCyaWZ4rYNFWhoshF7chiFkysYO64Mqr8bsJxnW2BCG3hRLfV66ZlpXbSEqWFEPsmCdIDxAIMkz3upIOpQJw+z5tOeXsdGs3hhH2OehcNqSA9obKIMWVeIkkj635zx9pnlD/ZHiChG/1yDOu1NQ18sq0DVYGvHDSeiVVFXVZ1e5z2UajZY0uZP7GcA0aV4nHZ19y3B6IEY8ms98c0waEgR6eEEPssCdIDxLQsTNPac7o7tZM+qrYah6qwqSXC1tYIXpdGOKYT3qVrWCiuE0ylsMeUe6kudlPmc2YVms0YVYLLodIeSbKlNZr34rFY0uB3b2wE4LApVSycUrnXWc2KolDscTKuwsf8CRUcOKGcyVVFmMCOjhiNHTGiCcMeUym7aCHEPkyC9ACxLPsa655OYYXi9k56RImHeePLADvl7XFqxI3dz0tvSzUxKXJrlHiceJwak6uL0E0rc83XqanMTI2u/HR7IO9B+t+rGvh0eweaqvCtIyZSk2PrzXQ6fNqIYg6aWM7ccWVUl7iJJHVCMV2CtBBinyZBeoBYqW5ie5pqlb4mXeTWOHJaNQBvrG3GsixURSWwS4vQramisRElnsxt1X434yt8tITjmV17uvvYynr7unS+GIbJb15ZB8Ax06s5ZFJVn1LTbofGiBIPs8eWsWBiBXPGlVLmlR9RIcS+S34DDpB04die0t3ppiV+t4ODJ1Xg0lS2tUfZ2BzG69RoDSWzqrfTld2jS72Z2xRFYXylj4oiFy0hO6inm5qsaQh2W4DWG//6rIHP6oM4VIXLj52G17XnNHcu/G4HY8t9lHvy95xCCDHUSJAeIBZ2IdSe093pnbQDn8vBgonlgL2b9rk0wqkUcFq6kcm4Cm/W89hpbz+WYhFJ6EysKqLE4yCumyzdGsjP92NZ3PXvtQCcNGskM8f0foiGEEKIrkmQHiCmaaGbVpcV2mmh2M4gDWRS3m+ubcKhKpimmdVVrK7VviY9PjWisrMqv5sJFT7aIkksa+dRrA83te4x5d5T//q0gZU7grg0las/N126egkhRD+QID2AzL0UjqWrt9NBev6EcjxOlcZgnDUNISxA7/QE29rTQdq723MBjKvwUeV30RKKZ65LL98W6PMxLMuy+NVLawA4c/4YJlTu/iFBCCFE30mQHiB7O4LVed5zUerarsepccikSiB1ZtpSsq5JNwR3npHuitthp71VFWpH2MMu1jeFaNlDL/Ce+NdnDaxuCOJxqFx1fG2fnksIIUT3JEgPEMO0Ukewug7SnQu6fC5H5v8fOa0KgP+sswdupAN5LGnQnurVPaas6500QEWRi/EVRbgcKiNLPJgWvLehpU/fy/+mdtHnHjKB6k6V5UIIIfJLgvQASbcE7e6SdLpozKkpWW0w540vp8il0RpOsL4plLkmnU51e5wqZT7nHl97fKWP6mI300fafbzf6UOQXtsQZNWOIJqqcMkxU3r9PEIIIfZOgvQAMUw7SHe7k04F6V27dTk1lYVT7JT3h5taSej24zenKrtHFHv2ejbZqalMqfYzc4zd1OS9Da17LGDbkz+9uwWAhZMrqfLn1rhECCFEbiRID5B0rZZu7DlIe7toqXlEqsr7g81tRFLjJjNnpMt6lm4u87k48YCRKIr92GV1uR/FMkyLvy/fDsA5B4/L+fFCCCFyI0F6gLyxppGf/3MVG5qCXX69u5002B3DSjwOgjGd5XXtGKbF1hY73T223NfjNew/qoSDJthnrxenplbl4pVVDbSGExR7HJyw/8icHy+EECI3EqQHyG0vrqY+EOOOl9Z2+fVw3L7W3NVOWlMVDptqF5C9vb4F3TTZ0mbvpMeWd180tiuHpvLVQyYA8OInO2gNx3P6Hh5/fysAX5g5EpdDfnSEEKK/yW/aAdbazfGn9HANVYX2yO73SR/FWtsYwjAttmfOSPd8Jw3w+ZkjqfK7CCcM/vJhXY8f1x5JZEZnnnPQ+JxeUwghRO9IkB4AjR2xzP/vrnAsvZMucjlImGYm/Z02qtS+9twaTpA0THYE9nxGujsep8apc0cD8OeP6no8FevPH9aRNCzGV/iYm5rQJYQQon9JkO5n0YSRKfKC7nt3h1NBudTrZEpVEYFoIiuAVvpdAMR1k8aOeGZHPi7HnTTAVw+egKYorG0M8d7Gnh3Heupje9d9+rzRfZp0JYQQouckSPezjlgyK8VtdtO/O5TaSZd4HYyrKGJ8pY+mUCzTYczt0Cj12uehP97ShgW4NJWqVPDOxaSqIg6eXAHAH9/dnNXFrCufbGtn1Y4gigJnLZCqbiGEGCgSpPtZWzjBR1vaMn82LGu3oGiaFsFUxzG/24mmKkyp9lNT7KEhGMsE9erUueQPN9nPV1Ps7tWuVlUVzjnIDravr2liW3tkj/d/4gO7YGzBhHLG5FBNLoQQom8kSPejpGHy3Ip67n99Q+a2SNzY7TrwtvYIzSG70tqfGq7hdmhMG+HH73ZkduJVxfaueenWdgBG9fCMdFeO26+GESVuYkmTJz7Y2m1zk2hC5/lPdgBw+rwxvX49IYQQuZMg3Y+CMZ2XP2vIus2wLNo6VW93xJJsbI4QTI2pLPbs7Ntd7HFSO6IYC3unnd5Jr28KAXvu2b03RW4nX5o9CoBnl9UTiCS7vN/LKxtoCSXwuTT+f3v3HhTVefcB/LsLLLDcREARRWIguxhAWO8i0SlNNN7aVyxeKmZUJlOVaMbqBKKTKsYLtKZGa0wVjFVC4qvh8kYlMeqo1YqXWAUhmqqoiJAIi4hc5LJ73j8WTl1BcVk2u8D3M7MznvuPH4y/fZ7znOf8Jtir3dcjIiLDsUib0K3SR7j2c8vJS+4/0rWaNVoBt0qr8NnpWzh3qxzAf1vSzTycbOHr4Yiqukb0kOta0s295YZMZNKa6cO8YS2VoLC8Bqeul7XYrtUK+OriPQDAr5QecLR7/hzhRETUsVikTUSrFXAg96dWX6hR2lSkf6p8jORTt3DiP6XiNqdWCmE/Vzn695TD1kb/1+X9jPdIv6gB7o4Y2TSAbP/Fu+KUo83uVdTgbNPLOCIG9zPqWkREZDgWaROprm/Eyf/cb3VbUdNEJP97vhAHckv0tj3Z3d1MKpXgZQ9HDHjqmej+PQ17RvppNlZSRA7RDSDLLlCjoKkbvVnGpXuoa9TC09kOYU0znhER0S+HRdpE8osrcausBlIJ8EovR71td9TVuFVWjW0nbgIAgvq5iNscWynSACCzlsLvqfP4uBnXkgaAMQp39O1hjwaNgP3fF4mvwnz0uAFZV3QDxt4M9IRtK9OVEhGRabFIm8j/XdLdyx3YxxnrI4Iwa7g3Iofouozvqmtx8c4DNGoFeLvaI2FqkHhcay/YaObdU47mV01bSyXo7Wx8kXaxl+HNwN4AgO9++BllTV3xeUUPdc9GA5jGrm4iIrNgkTaB2vpGHP9Rd5/5V0oPKHo74c0AT/R30w30uvugBrVN9389XezwsocjVkz0x/Sh/RD8RKv6aQ621nBtGjzm7iiDldT4mb+kUgkih3pDZiVFycPHOHbtPmrrNUhr+pLxqpczFJ6ObZyFiIhMofW+VTLK+dvl+KnyMWysJPhNsBdc7G3Qv6ccd9S6SUOKKmpRU6/rVnZzsIW9zArRYS+jUat97uQkcpkV3Bxtoa6uRx8jHr96mrerHCNf7ol/Xi/DodwSDPVxxcmmwWwTAj1ha82ubiIic2BL2gS+vlwMABji44r+TYO9+rs5IEzhDgl083nfbXrVZPOc3FZSSZvF0MZKCk9n3bPSXh1YpB1srcWJSi7eeYAjP/yM0kd1sLWWYgqfjSYiMhsW6Q5W16DBsWu6Ud2TgvqI95itpBK87O4IVwddUb5xXzeSWi4zrJUa7K3rDh/U99nd4u0x2s8d/XvK0agVsP2fuhnSRgzoCU+X9s9qRkRExmGR7mAn/1OKipoGOMisMCmoT4vtvZ10LeFbZdUAAHuZYXccokb44K/TgzGjg1900UMuwxuv6gaQNXfFTx7Uh13dRERmxCLdwTKburrHKDzQs2kazyc1Dx77uVI3itrQlrTc1hoD3B0gs+nYX53MWor/CfGCXdN53RxkGKPw6NBrEBGRYVikO9Dj+kac+FHX1R0xuPWXUXg663cfG1qkHW2t8bK7I+QGtsBfRD9XOV7z0xXm8IG9xGlIiYjIPDi6uwMduVqKmnoN3Bxk+JWiV6v79H7qHq+9gZOESCQSuMhNM4e2i70N5oe9BIWnI94M9HzuM9tERGR6bEl3oMJy3YjtCUGesLZuPbUtW9KW8z1JKpWgn6scKm9X9HbigDEiInOznArRBcwL9YGrg+y5L6N4ukjbyyzre5Kbowy9nG3hbM83XhERmRuLdAeS21pjzqiXnrtPy+5uy/oVyGXWCPRygbQDZjMjIiLjWFYzrhswduDYL4EFmojIMrBI/8IcbK3hZPvf1rMlFmkiIrIMLNJm8GSXtz2LNBERPQOLtBk82eVtSaO7iYjIsrBIm0FvvSLNljQREbWORdoMPF1004VKJIDtM56nJiIiYoUwg+bubrmN1XPfH01ERN0bi7QZNHd3G/oGLCIi6l5YpM3gld5OAIC+PTj1JhERPRubcmYwwN0BaQtD0beHvblDISIiC8YibSZDfFzNHQIREVm4LtPdnZqaivDwcAQFBSEyMhK5ubnmDomIiMgoXaJIZ2VlYcOGDYiJiUFGRgb8/f0RHR0NtVpt7tCIiIjarUsU6V27dmH69OmYNm0a/Pz8EB8fDzs7O6SlpZk7NCIionbr9EW6vr4e+fn5CA0NFddJpVKEhobi0qVLZoyMiIjIOJ1+4NiDBw+g0Wjg5uamt97NzQ0FBQUGnUuj0bQrhubj2ns8tY55NQ3m1TSYV9Ppqrm1smp7WuhOX6Q70pUrV8x6PLWOeTUN5tU0mFfT6Wq5HTJkSJv7dPoi7erqCisrqxaDxNRqNdzd3Q06V1BQ0At9s3maRqPBlStX2n08tY55NQ3m1TSYV9Ppzrnt9EVaJpMhICAA2dnZeP311wEAWq0W2dnZiIqKMuhcVlZWRv0BGHs8tY55NQ3m1TSYV9Ppjrnt9EUaAObNm4fY2FgEBgZi0KBB2L17N2praxEREWHu0IiIiNqtSxTpiRMnory8HFu2bEFpaSkGDhyI5ORkg7u7iYiILEmXKNIAEBUVZXD3NhERkSXr9M9JExERdVUs0kRERBaKRZqIiMhCsUgTERFZKBZpIiIiC9VlRncbQxAEAJy729Iwr6bBvJoG82o6XTm3UqkUEonkmdslQnOF6sbq6+u73JywRERk+UJCQp47ixqLNHTTiDY2Nrb5jYaIiKgjsSVNRETUSXHgGBERkYVikSYiIrJQLNJEREQWikWaiIjIQrFIExERWSgWaSIiIgvFIk1ERGShWKSJiIgsFIu0kVJTUxEeHo6goCBERkYiNzfX3CF1OhcuXMCCBQsQFhYGpVKJo0eP6m0XBAGbN29GWFgYBg0ahLlz5+L27dvmCbYT2b59O6ZNmwaVSoVRo0Zh0aJFKCgo0Nunrq4O8fHxGDFiBFQqFRYvXoyysjIzRdw5fPHFF5gyZQoGDx6MwYMHY8aMGTh58qS4nTntGDt27IBSqcS6devEdd0xtyzSRsjKysKGDRsQExODjIwM+Pv7Izo6Gmq12tyhdSo1NTVQKpVYtWpVq9uTkpKQkpKC1atXY9++fbC3t0d0dDTq6up+4Ug7l/Pnz2P27NnYt28fdu3ahcbGRkRHR6OmpkbcZ/369Th+/Dg+/vhjpKSk4P79+3jnnXfMGLXl8/T0xPLly5Geno60tDSMHDkSMTExuH79OgDmtCPk5uZi7969UCqVeuu7ZW4Farff/e53Qnx8vLis0WiEsLAwYfv27WaMqnNTKBTCkSNHxGWtViuMHj1aSE5OFtdVVlYKgYGBwsGDB80RYqelVqsFhUIhnD9/XhAEXR4DAgKEb775Rtznxo0bgkKhEC5dumSmKDunYcOGCfv27WNOO0BVVZUwbtw44V//+pcQFRUlrF27VhCE7vv3ypZ0O9XX1yM/Px+hoaHiOqlUitDQUFy6dMmMkXUtRUVFKC0t1cuzk5MTgoODmWcDPXr0CADg4uICAMjLy0NDQ4Nebn19feHl5YXLly+bI8ROR6PR4NChQ6ipqYFKpWJOO8CaNWswduxYvRwC3ffvle+TbqcHDx5Ao9HAzc1Nb72bm1uL+37UfqWlpQDQap67+r2ojqTVarF+/XoMHjwYCoUCAFBWVgYbGxs4Ozvr7evm5ibmnVr3448/YubMmairq4NcLscnn3wCPz8/XL16lTk1wqFDh/DDDz/gq6++arGtu/69skgTdQPx8fG4fv06vvjiC3OH0iUMGDAAmZmZePToEQ4fPozY2Fh8/vnn5g6rUyspKcG6devw2WefwdbW1tzhWAwW6XZydXWFlZVVi0FiarUa7u7uZoqq6/Hw8ACgy2uvXr3E9Wq1Gv7+/uYKq1NZs2YNTpw4gc8//xyenp7iend3dzQ0NKCyslKvdaJWq8W8U+tkMhl8fHwAAIGBgbhy5Qr27NmDCRMmMKftlJ+fD7VajYiICHGdRqPBhQsXkJqaip07d3bL3PKedDvJZDIEBAQgOztbXKfVapGdnQ2VSmXGyLqWfv36wcPDQy/PVVVVyMnJYZ7bIAgC1qxZgyNHjmD37t3w9vbW2x4YGAgbGxu93BYUFKC4uBghISG/cLSdm1arRX19PXNqhJEjR+LAgQPIzMwUP4GBgZgyZYr47+6YW7akjTBv3jzExsYiMDAQgwYNwu7du1FbW6v3TZDaVl1djcLCQnG5qKgIV69ehYuLC7y8vPDWW2/h008/hY+PD/r164fNmzejV69eeP31180YteWLj4/HwYMHsW3bNjg4OIj37ZycnGBnZwcnJydMmzYNCQkJcHFxgaOjI9auXQuVStWl/9Mz1kcffYQxY8agT58+qK6uxsGDB3H+/Hns3LmTOTWCo6OjOF6imVwuR48ePcT13TG3LNJGmDhxIsrLy7FlyxaUlpZi4MCBSE5OZne3gfLy8vDWW2+Jyxs2bAAATJ06FQkJCXj77bdRW1uLP/3pT6isrMSQIUOQnJzM+1Zt+PLLLwEAc+bM0Vu/YcMG8YvkihUrIJVKsWTJEtTX1yMsLOyZz6uTjlqtRmxsLO7fvw8nJycolUrs3LkTo0ePBsCcmlJ3zK1EEATB3EEQERFRS7wnTUREZKFYpImIiCwUizQREZGFYpEmIiKyUCzSREREFopFmoiIyEKxSBMREVkoFmki6tLi4uKwaNEic4dB1C4s0kQdpLS0FB9++CF+/etfIzAwEGPHjsWCBQv05hruCtLT06FUKlt89u/fb9LrzpkzB+vWrTPpNYgsDacFJeoARUVFmDVrFpydnfHee+9BoVCgsbERp0+fRnx8PL799ltzh6hHEARoNBpYW7fvvwBHR8cWP5OTk1OL/err6yGTydp1DSJiS5qoQ8THx0MikWD//v0YP348BgwYgFdeeQXz5s3Dvn37xP127dqFKVOmICQkBGPHjsXq1atRXV0tbk9PT8fQoUNx/PhxjB8/HsHBwViyZAlqa2uRkZGB8PBwDBs2DGvXroVGoxGPy8zMREREBFQqFUaPHo1ly5bpvUb13LlzUCqVOHnyJCIiIhAUFISLFy+isLAQCxcuRGhoKFQqFaZNm4YzZ860+fNKJBJ4eHjofezs7PC3v/0Nv/3tb7F//36Eh4dj0KBBAIDi4mIsXLgQKpUKgwcPxrvvvouysjLxfM3HZWZmIjw8HEOGDMHSpUtRVVUFQNdlff78eezZs0dsuRcVFUGj0WDFihXitcaPH4/du3cb9LtrzvnRo0cxbtw4BAUFITo6GiUlJQB0X2jmzp2L6OhoNM+iXFFRgTFjxmDz5s0GXYvIUCzSREaqqKjAqVOnMHv2bMjl8hbbn3z3rUQiwcqVK3Hw4EEkJCTg7Nmz+Mtf/qK3/+PHj5GSkoJNmzYhOTkZ586dwzvvvIOTJ09ix44d+POf/4y9e/fi8OHD4jGNjY1499138fXXX+OTTz7BvXv3EBcX1yKWjz76CMuWLUNWVhaUSiVqamowduxY/OMf/0BGRgZee+01LFiwAMXFxe3OR2FhIQ4fPoytW7ciMzMTWq0WixYtwsOHD5GSkoJdu3bh7t27WLp0aYvjjh07hr///e/Yvn07Lly4gKSkJADAypUroVKpMH36dJw+fRqnT59Gnz59oNVq4enpic2bN+PQoUOIiYnBpk2bkJWVZVDMjx8/xqefforExER8+eWXqKysFOOTSCRITEwU3xkNAKtWrULv3r0RExPT7jwRvRCBiIySk5MjKBQK4bvvvjP42G+++UYYPny4uJyWliYoFArhzp074roPPvhACA4OFqqqqsR18+fPFz744INnnjc3N1dQKBTiMWfPnhUUCoVw5MiRNmOaNGmSkJKS8sztzTGGhISIn9DQUEEQBGHLli1CQECAoFarxf1Pnz4tDBw4UCguLhbXXb9+XVAoFEJOTo54XHBwsPDo0SNxn8TERCEyMlJcjoqKEtauXdtm/PHx8cLixYvF5djYWGHhwoVt/jyXL18W1924cUMvPkEQhKysLCEoKEjYuHGjEBISIty6davNWIiMxXvSREYSDHiR3JkzZ7B9+3YUFBSgqqoKGo0GdXV1qK2thb29PQDA3t4e/fv3F49xd3dH37594eDgoLeuvLxcXM7Ly8PWrVtx7do1PHz4UIyppKQEfn5+4n5BQUF68VRXV2Pr1q04ceIESktLodFo8Pjx4zZb0g4ODsjIyBCXpdL/dsp5eXmhZ8+e4vLNmzfh6emJPn36iOv8/Pzg7OyMgoICsUu8b9++cHR0FPfp1auXXpf9s6SmpiItLQ3FxcWoq6tDQ0MD/P392zzuSdbW1nq58fX1hbOzM27evCnGN2HCBBw9ehQ7duzA6tWr8dJLLxl0DaL2YJEmMpKPjw8kEgkKCgqeu19RURH+8Ic/YNasWVi6dClcXFxw8eJFrFy5Eg0NDWKRfnowl0QiaXWdVqsFANTU1CA6OhphYWHYuHEjXF1dUVJSgujoaDQ0NOgd13yNZomJiThz5gxiY2PRv39/2NnZYcmSJS2Oe5pUKoWPj0+r256+xotqbRBbW1+ADh06hMTERMTGxkKlUsHBwQE7d+5ETk5Ou2J4ntraWuTl5cHKygp37tzp8PMTtYb3pImM1KNHD4SFhSE1NRU1NTUttldWVgIA8vPzIQgC4uLiEBISggEDBuD+/ftGX7+goAAVFRVYvnw5hg4dCl9f3xdqgQLApUuXMHXqVLzxxhtQKpVwd3fHvXv3jI7pSb6+vvjpp5/EgVgAcOPGDVRWVsLX1/eFz2NjYyN+MWn273//GyqVCrNnz8arr74KHx8fFBYWGhxjY2Mj8vLyxOWCgoIW8SUkJEAqlSIpKQkpKSld7tE6skws0kQdYNWqVdBqtYiMjMThw4dx+/Zt3Lx5E3v27MGMGTMA6FrcDQ0NSElJwd27d5GZmYm9e/cafW0vLy/Y2NiI5z127Bi2bdv2Qsf6+PjgyJEjuHr1Kq5du4Zly5a1KITGCg0NhUKhwPLly5Gfn4/c3Fy89957GD58eIvu9+fp27cvcnJyUFRUhPLycmi1Wvj4+CAvLw+nTp3CrVu38PHHH+PKlSsGx2hjY4MPP/wQOTk5yMvLw/vvv4+QkBCxq/vEiRNIS0vDxo0bMXr0aERHRyMuLg4PHz40+FpEhmCRJuoA3t7eSE9Px4gRI5CYmIjJkydj3rx5yM7OxurVqwEA/v7+eP/995GUlITJkyfjwIED+OMf/2j0tXv27ImEhAR8++23mDhxIpKSkhAbG/tCx8bFxcHZ2RkzZ87EggUL8NprryEgIMDomJ4kkUiwbds2ODs7IyoqCnPnzoW3tzc2bdpk0Hnmz58PKysrTJo0CaNGjUJxcTFmzpyJcePGYenSpZg+fToqKirw+9//3uAY7ezs8Pbbb2PZsmWYNWsW5HK5GF95eTlWrlyJxYsXi7lZvHgx3NzcsGrVKoOvRWQIiWDIqBcioi4mPT0d69evx/fff2/uUIhaYEuaiIjIQrFIExERWSh2dxMREVkotqSJiIgsFIs0ERGRhWKRJiIislAs0kRERBaKRZqIiMhCsUgTERFZKBZpIiIiC8UiTUREZKFYpImIiCzU/wMToEfOILV63QAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.relplot(data=df,\n",
" x='Front_Camera',\n",
" y=\"Primary_Camera\",\n",
" kind=\"line\"\n",
" )\n",
"sns.set_style(\"whitegrid\")\n",
"plt.title(\"Camara Trasera/Camara Frontal\")\n",
"plt.xlabel(\"Camara Frontal px\")\n",
"plt.ylabel(\"Camara Trasera px\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_PAs63qVIHjI"
},
"source": [
"Teniendo una visualizacion grafica de los valores, ya podemos ver un cierto comportamiento entre las variables de analisis. \n",
"\n",
"Algo interesante es que por lo general la camara trasera, presenta mayor calidad que la frontal. \n",
"\n",
"En la mayoria del tiempo, sacamos fotos a elementos externos a nosotros, por lo que es lógico que se haga incapie en obtener una mejor resolucion en las fotografias que sean hacia nuestro entorno y en menor medida para las fotos frontales. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BJ35mkfzKT1e"
},
"source": [
"## Batería X Display"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RiASdp1bW2a1"
},
"source": [
"Siguiendo la dinámica de las observaciones anteriores, una de las relaciones mas fuertes de los componentes, es la capacidad de las baterias y el tamaño del display/pantalla.\n",
"Lo cual es bastante logico, debido a la alta demanda de consumo energetico que presenta tener constantemente prendida la pantalla y la actualizacion de los pixeles."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 472
},
"executionInfo": {
"elapsed": 1406,
"status": "ok",
"timestamp": 1684158703184,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "hpIg0XZsTyzA",
"outputId": "49cbd6af-ea3a-453f-b8c8-9764bd5683fe"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYTUlEQVR4nOzdd3wUdfrA8c/MbM8m2SSEFooU6UFQRFEExV5Q0LNiwQKnxwkieud5/vQ823liQUT00LNjOYVTFMEKFjwLghQBIdSEQEjbZLN9Zn5/bHbJZrPJLqSS7/v18ne/zM7OfL+7S/bJfJ95HknXdR1BEARBEIQ2SG7pAQiCIAiCIBwqEcgIgiAIgtBmiUBGEARBEIQ2SwQygiAIgiC0WSKQEQRBEAShzRKBjCAIgiAIbZYIZARBEARBaLNEICMIgiAIQpslAhlBEARBENosEcgIQjP4/vvv6d+/P99//32THH/RokX079+f/Pz8Jjl+Y+vfvz9z585tkmPn5+fTv39/Fi1a1CTHF6LNnTuX/v37t/QwhHZMBDKCUEs4KAj/N2jQIE455RTuuusu9u/f39LDa3XGjRsXea0GDBjAiBEjGD9+PP/3f//HL7/80tLDazZPPvlk3GD1o48+on///rz++uv1HuOuu+6K+eyNHTuWmTNnsm3btkMa1/79+5k7dy6bNm06pOcLQmtnaOkBCEJrNX36dLp164bf72ft2rUsXryY1atX8+GHH2I2m1t6eFEuuugizj//fEwmU4ucf+DAgVx//fUAVFVVsX37dpYtW8Y777zD5MmT+ctf/hK1/7p161AUpSWG2mT+8Ic/sHTpUu677z4++OCDyHtRUVHBI488Qm5uLldddVWDxzGZTDz44IMAqKrK7t27eeutt/j666/56KOP6NSpU1LjKioq4plnniEnJ4eBAwcmP7EG3HLLLUydOrXRjysIiRKBjCDEMWbMGHJzcwG49NJLycjIYMGCBXz++eecd955LTy6aIqitGhg0KlTJy666KKobXfccQezZs3i5ZdfpmfPnlFf4q0tEGwMZrOZv/3tb9xwww3861//4o9//CMAs2fPprS0lAULFiDLDV8ENxgMMa/lsGHD+P3vf8/KlSu57LLLmmT8yXK73dhsNgwGAwaD+CoRWo5YWhKEBI0YMQKAPXv2RG3Py8tj+vTpjBw5ktzcXC6++GI+//zzBo/3008/MX36dE499VSGDBnC2LFjefjhh/F6vTH75uXlMWPGDE488USGDh3K2WefzZNPPhl5PF6OzBtvvMH555/PkCFDGD16NPfffz8VFRVR+1xzzTVccMEFbNu2jWuuuYZjjjmGU045hQULFiT82tTFYrHwz3/+E4fDwXPPPYeu65HHaufIuFwuHnroIcaNG8eQIUMYNWoU119/PRs3bowZ54YNG7jiiisYOnQo48aN480332xwLJs3b+auu+7i9NNPJzc3l5NPPpm//OUvlJWVRfb53//+R//+/fn0009jnr9kyRL69+/PmjVr6j3PySefzAUXXMDzzz/Pjh07WLNmDe+88w7XXnvtYV0N6dChA0BUsFpeXs6jjz7K+PHjGT58OMceeyw33XQTmzdvjuzz/fff87vf/Q6Av/zlL5Elq5r5Q7/88gs33ngjxx13HMcccwxXX301q1evjjp/OA9m27ZtzJo1i+OPPz4SmNaVI/Pee+9x7bXXMmrUKIYMGcJ5553HwoULD3n+glAfEUYLQoIKCgoASEtLi2zbunUrV155JZ06dWLKlCnYbDY+/vhjpk2bxty5cznzzDPjHm/ZsmV4vV6uvPJKHA4H69at4/XXX2ffvn08/fTTkf02b97MpEmTMBgMXH755eTk5LB7926++OILZs6cGff4c+fO5ZlnnuGkk07iyiuvZMeOHbz55pusX7+eN998E6PRGNnX6XRy0003ceaZZ3LuueeyfPlyZs+eTb9+/Rg7duwhv2YpKSmcccYZvPvuu2zbto2jjz66zv3uu+8+li9fztVXX02fPn0oLy9n9erV5OXlMXjw4KhxTp06lXPPPZfzzz+fjz/+mL/97W8YjcbIF3ZdVq1axZ49e7j44ovJzs5m69atvPPOO2zbto133nkHSZI44YQT6NKlC0uWLIl535YsWUKPHj0YPnx4g3P+y1/+wtdff829995LeXk5nTt35tZbb03wFQspLS0FQNM09uzZw+zZs3E4HJx22mmRffbs2cNnn33GOeecQ7du3SguLubtt9/m6quvjixB9enTh+nTp/P0009z+eWXc9xxxwFw7LHHAvDdd98xZcoUhgwZwh//+EckSWLRokVcd911LFy4kKFDh0aNa8aMGfTs2ZOZM2dGBaa1vfnmmxx99NGMGzcOg8HAl19+yf3334+u60yaNCmp10IQGqQLghDlvffe0/v166evWrVKLykp0QsLC/Vly5bpJ554oj5kyBC9sLAwsu91112nX3DBBbrP54ts0zRNv/zyy/Wzzjorsu1///uf3q9fP/1///tfZJvH44k59/PPP6/3799fLygoiGybNGmSPnz48Kht4fPUHvOePXt0Xdf1kpISffDgwfoNN9ygq6oa2e/111/X+/Xrp7/77ruRbVdffbXer18/ffHixZFtPp9PP/nkk/Vbb721wdfrtNNO06dOnRr38Zdeeknv16+f/tlnn0W29evXT3/66acjPx933HH6/fffX+95wuP897//HTXOiy66SB81apTu9/t1Xdf1PXv26P369dPfe++9yH51vdYffvih3q9fP/3HH3+MbHv88cf1IUOG6BUVFZFtJSUl+qBBg6LG25C33npL79evn96vXz/9008/Tfh5f/7znyPPq/nfKaecom/YsCFqX5/PF/Xe6npo7kOGDNGfeeaZyLZ169bFvB66Hvr8nHXWWfoNN9wQ9VnyeDz6uHHj9Ouvvz6y7emnn9b79eun33777TFjDj9WU12v9w033KCffvrpCbwKgpAcsbQkCHFMnjyZUaNGMXbsWKZPn47VamX+/Pl07twZCF3a/9///se5556Ly+WitLSU0tJSysrKGD16NDt37qz3LieLxRL5/91uN6WlpQwfPhxd1/n111+B0F/mP/74I5dccgldu3aNer4kSXGPvWrVKgKBANdee21UXsall16K3W5n5cqVUfvbbLaovAyTyURubm7MMtqhSElJAUJJwPGkpaXxyy+/NHhXWPiqVM1xXn755ZSUlEQtQ9VW87X2+XyUlpZyzDHHAEQ976KLLsLv97Ns2bLItqVLlxIMBrnwwgvrHVtNGRkZAFit1shVkESZzWZeeuklXnrpJV588UX+/ve/Y7PZmDp1Kjt27IjsZzKZIu+tqqqUlZVhs9no1atX5PNTn02bNrFz507Gjx9PWVlZ5PPrdrsZNWoUP/74I5qmRT3niiuuSGgONV/vyspKSktLGTlyJHv27KGysjKhYwhCosTSkiDEce+999KrVy8qKyt57733+PHHH6PuCtq9eze6rjNnzhzmzJlT5zFKSkri3mWyd+9enn76ab744gucTmfUYy6XCziYj9OvX7+kxr53714AevfuHbXdZDLRvXv3yDJZWOfOnWMCo/T0dLZs2ZLUeesSDmDCAU1d7rjjDu666y5OPfVUBg8ezNixY5kwYQLdu3eP2q9jx47YbLaobUcddRQQWvobNmxYnccvLy/nmWeeYenSpZSUlEQ9VvOLtU+fPuTm5rJkyRIuvfRSILSsNGzYMHr27JnQfF0uFw8++CC9evWKLAs99NBDCT0XQnkwJ510UtS2sWPHctZZZ/HEE09Ecos0TePVV19l4cKF5Ofno6pqZH+Hw9HgeXbu3AnAn//857j7VFZWkp6eHvm5W7duCc1h9erVzJ07l7Vr1+LxeGKOmZqamtBxBCERIpARhDiGDh0auWvpjDPO4KqrrmLWrFksW7aMlJSUyF+rN9xwA6ecckqdx+jRo0ed21VV5frrr4/kpvTu3Rubzcb+/fu56667Yv4SbmpNecfT1q1bAeoNBM477zxGjBjBp59+yrfffsuLL77IggULmDt37mHl6ITddtttrFmzhhtvvJGBAwdis9nQNI2bbropJtdjwoQJPPTQQ+zbty9y6/29996b8LmeeuopiouL+c9//sNHH33Ev//9by6++OKkr8zU1LlzZ3r16sWPP/4Y2fbcc88xZ84cLrnkEmbMmEF6ejqyLPPwww/Xm78SFt7nT3/6U9xE5NpBYyJ3m+3evZvJkyfTu3dv7rrrLrp06YLRaGTlypW8/PLLzf7ZFo58IpARhAQoisLtt9/OtddeyxtvvMHUqVMjVwuMRmPMX9AN+e2339i5cyePPvooEyZMiGz/9ttvo/YLn+O3335L6vjhZajt27dHXdXw+/3k5+cnPd5DVVVVxWeffUaXLl3o06dPvft27NiRSZMmMWnSJEpKSpg4cSLPPfdcVCBTVFQUue03LHxlIScnp87jOp1OvvvuO2699dbILdE1n1fbeeedxz/+8Q8+/PBDvF4vRqORc889N6H5rl+/njfeeIOrr76awYMH06tXr0hC8uLFiw/rNmVVVXG73ZGfly9fzgknnMDDDz8ctV9FRUVkaQviL0GGPxd2u71RPw9ffPEFfr+f+fPnRy2HNlVVa0EQOTKCkKATTjiBoUOH8sorr+Dz+cjKymLkyJG8/fbbFBUVxewfvvOkLuHchpp/Oeu6zquvvhq1X2ZmJscffzzvvfdeZLmo5v7xnHTSSRiNRl577bWo/d59910qKysb5SpHQ7xeL3/6058oLy/n5ptvjvuFqqpqTN5EVlYWHTt2xO/3R20PBoO8/fbbkZ/9fj9vv/02mZmZUXc31RTvatMrr7xS5/bMzExOOeUUPvjgA5YsWcLo0aPJzMyMO8+a87jvvvvIzs5mxowZQOiKxj333MNvv/3Gyy+/3OAx4tmxYwc7duxgwIABkW2KosR8Bj7++OOYPCOr1QoQc9v9kCFD6NGjB//+97/rzF+q7/Nbn/DrXXNs4eVZQWgK4oqMICThxhtvZMaMGSxatIgrr7yS++67j6uuuorx48dz2WWX0b17d4qLi1m7di379u3jgw8+qPM4vXv3pkePHjz66KPs378fu93O8uXLY75sAO655x6uvPJKJk6cyOWXX063bt0oKChgxYoVvP/++3UePzMzk9///vc888wz3HTTTYwbN44dO3awcOFCcnNzk0pcTcT+/fsjY3G73eTl5bFs2TIOHDjADTfcUG+SaFVVFWPHjuXss89mwIAB2Gw2Vq1axfr167nrrrui9u3YsSMLFiygoKCAo446iqVLl7Jp0yYeeOCBqNvJa7Lb7Rx//PG88MILBAIBOnXqxLfffltvX6oJEyYwffp0gEhQ0pDXXnuNjRs3MnfuXOx2e2T76aefzrhx45g3bx7nnXdeTNJ2bcFgMPJa6rpOfn4+b731FpqmMW3atMh+p556KvPmzeMvf/kLw4cP57fffmPJkiUxeUU9evQgLS2Nt956i5SUFGw2G0OHDqV79+48+OCDTJkyhQsuuICLL76YTp06sX//fr7//nvsdjvPPfdcQnOv6eSTT8ZoNHLzzTdzxRVXUFVVxX/+8x+ysrI4cOBA0scThIaIQEYQknDWWWdF/oq97LLL6Nu3L++99x7PPPMMixcvpry8nMzMTAYNGhT1pVOb0Wjkueee48EHH+T555/HbDZz5plnMmnSpJiqrgMGDOCdd95hzpw5vPnmm/h8Prp27drgcsett95KZmYmr7/+Oo888gjp6elcdtll3H777XG/9A/Vpk2b+NOf/oQkSaSkpNClSxdOO+00Lr300phaJLVZLBauvPJKvv32Wz755BN0XadHjx6RILGm9PR0/vGPf/Dggw/yzjvv0KFDB+69994Gq90+/vjjPPDAAyxcuBBd1zn55JNZsGBB3Nym0047jfT0dDRN4/TTT29w/vv27WPOnDmcdtppnHXWWTGP/9///R/nn38+DzzwAPPnz6/3WH6/nz/96U+Rn+12O7m5uTz22GOMGjUqsv3mm2/G4/GwZMkSli5dyqBBg3j++ed5/PHHo45nNBr5xz/+wRNPPMHf/vY3gsEgjzzyCN27d+eEE07g7bff5tlnn+X111/H7XaTnZ3N0KFDo+4OS0bv3r15+umneeqpp3j00Ufp0KEDV155JZmZmdx9992HdExBqI+kJ5IVJgiC0MKuueYaysrK+PDDD5v8XMFgkFNOOYXTTjstJgdFEITWReTICIIg1PLZZ59RWloalYgtCELrJJaWBEEQqv3yyy9s2bKFZ599lkGDBjFy5MiWHpIgCA0QgYwgCEK1N998kw8++IABAwbwj3/8o6WHIwhCAkSOjCAIgiAIbZbIkREEQRAEoc0SgYwgCIIgCG3WEZ8jo2kawWAQWZbr7RYsCIIgCELroes6mqZhMBgi1dDrcsQHMsFgkPXr17f0MARBEARBOAS5ubmYTKa4jx/xgUw4isvNzW3SDr/JUFWV9evXt6oxNbb2MEcQ8zyStIc5QvuYZ3uYIxz58wzPr76rMdAOApnwcpKiKK3ujW6NY2ps7WGOIOZ5JGkPc4T2Mc/2MEc48ufZUFqISPYVBEEQBKHNEoGMIAiCIAhtlghkBEEQBEFos0QgIwiCIAhCmyUCGUEQBEEQ2iwRyAiCIAiC0GaJQEYQBEEQhDZLBDKCIAiCILRZIpARBEEQBKHNOuIr+wqCIAhCe6ZpOhv3VlDq9pNpMzG4axqyfOQ0URaBjCAIgiAcoVZtK2b+yjzyilwEVB2jItGno51bxvbhpL4dWnp4jUIsLQmCIAjCEWjVtmLuXryeTYUVpJgNdEw1k2I2sKmwkrsXr2fVtuKWHmKjEIGMIAiCIBxhNE1n/so8XL4gndMsWIwKsixhMSp0TjPj8qnMX5mHpuktPdTDJgIZQRAEQTjCbNxbQV6RiwybKaZ7tCRJOGxG8opcbNxb0UIjbDwtGsj8+OOP3HzzzYwePZr+/fvz2WefRT2u6zpz5sxh9OjRDB06lMmTJ7Nz586WGawgCIIgtBGlbj8BVcek1P01b1ZkAppOqdvfzCNrfC0ayLjdbvr37899991X5+MLFizgtdde429/+xvvvPMOVquVG2+8EZ/P18wjFQRBEIS2I9NmwqhI+FWtzsd9qoZRlsi0mZp5ZI2vRe9aGjt2LGPHjq3zMV3XefXVV7nllls444wzAPjnP//JSSedxGeffcb555/fnEMVBEEQhDZjcNc0+nS0s6mwks5pctTykq7rlLsDDOySyuCuaS04ysbRam+/zs/P58CBA5x00kmRbampqRxzzDGsWbMm6UBGVdXGHuIhC4+lNY2psbWHOYKY55GkPcwR2sc828McoeF5Tj2lF/e8v5F9FV4cViMmRcavapR7AtjNBqae0gtd12itL1Oi71+rDWQOHDgAQFZWVtT2rKwsiouTv2Vs/fr1jTKuxtQax9TY2sMcQczzSNIe5gjtY57tYY4Qf5424PohZhZvDlJQ4SGog0GCnDQDEweYsVXuYe3aPc072CbQagOZxpabm4uiKC09DCAUZa5fv75VjamxtYc5gpjnkaQ9zBHaxzzbwxwhsXkOAyadobOxsIIyt58Mm4nBXdpGZd/w/BrSagOZ7OxsAEpKSujYsWNke0lJCQMGDEj6eIqitLoPdGscU2NrD3MEMc8jSXuYI7SPebaHOULD81QUGNYjsxlH1LxabR2Zbt26kZ2dzXfffRfZ5nK5+OWXXxg+fHgLjkwQBEEQhNaiRa/IVFVVsXv37sjP+fn5bNq0ifT0dLp27cq1117L/Pnz6dmzJ926dWPOnDl07NgxcheTIAiCIAjtW4sGMhs2bODaa6+N/PzII48AMHHiRP7xj38wZcoUPB4P9957LxUVFRx33HG88MILmM3mlhqyIAiCIAitSIsGMieccAJbtmyJ+7gkScyYMYMZM2Y046gEQRAEQWgrWm2OjCAIgiAIQkNEICMIgiAIQpslAhlBEARBENosEcgIgiAIgtBmiUBGEARBEIQ2SwQygiAIgiC0WSKQEQRBEAShzRKBjCAIgiAIbZYIZARBEARBaLNEICMIgiAIwiHxeDwUFRW16BhatEWBIAiCIAhtj9/vp6ysDJfLhclkatGxiEBGEARBEISEqKqK0+mkvLycYDDY0sMBRCAjCIIgCEIDdF2noqKC8vJy/H4/uq639JAiRCAjCIIgCEJcVVVVlJaW4vP50DStpYcTQwQygiAIgiDE8Pl8lJaWUlVV1SoDmDBx15IgCIIgCBHBYJADBw6Qn59PZWVl3CBm3bp13HTTTRx33HG8/PLLzTvIGsQVGUEQBEEQ0DSN8vJynE4nwWAwbh7Mjh07ePLJJ1m+fHlk26OPPsrkyZObaaTRRCAjCIIgCO1cZWUlZWVl+Hy+uAFMUVER8+bN4z//+Q+qqkY9dtlllzXHMOskAhlBEARBaKc8Hg+lpaV4PJ64S0iVlZW88MILvPLKK3g8nqjHBg0axN13381VV13VHMOtkwhkBEEQBKGd8fv9kUTe2ldXau6zcOFC5s+fT3l5edRj3bt357bbbuO8884jJSUFSZKaYdR1E4GMIAiCILQTqqpG5cHE22fJkiU8/fTTFBQURD2WmZnJtGnTuOyyy1q8om+YCGQEQRAE4QiXSEE7Xdf56quvePzxx9myZUvUYzabjRtvvJHJkydjt9uba9gJEYGMIAiCIBzBEilo98svvzB79mx++OGHqO1Go5ErrriCW265haysrOYYbtJEICMIgiAIR6BECtpt376dJ598kk8++STmsQsuuIAZM2bQo0ePph7qYRGBjCAIgiAcQYLBIGVlZVRUVMRN5N2/fz/z5s3j3Xffjdln9OjRzJo1i0GDBjV4LkVRsFqtjTLuQyUCGUEQBEE4Aui6Tnl5eaQzdV15MBUVFSxYsIBXX30Vr9cb9djgwYO58847GTVqVIPnUhSFlJQUMjIyMJvNjTaHQyECGUEQBEFo41wuVyQPpq4Axufz8frrr/P888/jdDqjHuvZsyczZ87knHPOafA2almWsdvtrSKACROBjCAIgiC0YXv37o2byKuqKu+//z5PP/00hYWFUY916NCBadOmcemll2I0Gus9hyzLkSswFoulUcd/uEQgIwiCIAhtTCAQoLi4mMLCQmw2G4qiRD2u6zpffvklTzzxBFu3bo16LCUlhZtuuonrrruOlJSUes8jyzI2mw2Hw4HNZmv0eTQGEcgIgiAIQhsRbuxYXl6Oz+fD7/fH7PPzzz8ze/ZsVq9eHbXdaDRy1VVXcfPNN5OZmVnveWRZxmq14nA4Ggx2WlqrD2RcLhdz5szhs88+o6SkJNLXYejQoS09NEEQBEFoFrquRxo7xitot23bNh5//HG++OKLqO2SJDF+/HimT59O9+7d6z2PLMtYLBYcDkerK3wXT6sPZO655x62bt3KP//5Tzp27MgHH3zA9ddfz9KlS+nUqVNLD08QBEEQmpTb7aa0tBSv11tnHkxhYSHPPvssixcvjnl8zJgxzJo1iwEDBtR7DlmWMZvNZGRktJkAJqxVBzJer5dPPvmEZ599luOPPx6AW2+9lS+//JKFCxcyc+bMFh6hIAiCIDQNn89HWVkZLperzgCmvLycV199lWXLluHz+aIey83N5Y477uDEE0+s9xyyLGMymSIBTEs2fzxUrTqQCQaDqKoac4uX2Wzm559/bqFRCYIgCELTCQaDkcaOdRW083q9vPbaa/zrX/+ioqIi6rGjjjqK22+/nbPOOqveoESSJMxmMw6Hg9TU1DYZwIS16kDGbrczfPhwnn32WXr37k2HDh348MMPWbt2bdIlk+NVN2wJ4bG0pjE1tvYwRxDzPJK0hzlC+5hnW51juLFjWVkZgUAgJg8mGAzy/vvv88wzz7B///6ox7Kzs5k2bRoTJ07EaDTGbUkgSRImkwmHw0FaWhqSJMXdt6Ul+v5Jel0ZQ63I7t27ufvuu/nxxx9RFIVBgwZx1FFHsXHjRj7++OMGn6+qKmvXrm36gQqCIAjCITAYDPh8PpxOJ263O+YLXNd1fvjhBxYuXEh+fn7UYzabjQkTJnD++efXW98l3EogNTUVq9WKpml1Jgy3RsOGDYu5vbymVn1FBqBHjx68/vrruN1uXC4XHTt25Lbbbmsw87q23Nzcel+I5qSqKuvXr29VY2ps7WGOIOZ5JGkPc4T2Mc+2NEev10tpaSlut5vU1NSYx3/66SeeeOKJmD/IjUYjV155JePGjeO4446LO09JkjAajZErMLIsN8U0mkT4fWxIqw9kwmw2GzabDafTyTfffMOdd96Z1PMVRWl1H+jWOKbG1h7mCGKeR5L2MEdoH/NszXMMBAKUlpbicrlQVRVJkqLG+ttvv/HEE0/w5ZdfRj1PkiQuuugipk+fTufOndm0aVOd85QkCYPBQHp6Ounp6a32dWgMrT6Q+frrr9F1nV69erF7927++c9/0rt3by6++OKWHpogCIIgJEVVVZxOZ6SxY2179+5l7ty5LF68OGbp59RTT+X222+nf//+kWPVFg6IwgGMwdDqv+YPW6ufYWVlJU888QT79u3D4XBw1llnMXPmzAb7QgiCIAhCa9FQQbuysjL+9a9/8frrr8dU6x0+fDh33HEHI0aMqPccBoOBtLQ0HA5Huwhgwlr9TM877zzOO++8lh6GIAiCIBySqqoqysrK6ixo5/F4ePXVV1mwYAGVlZVRj/Xu3ZtZs2Zx+umnx709OnwFJiMjA4fD0S7/yG/1gYwgCIIgtEX1FbQLBoMsWrSIuXPnUlRUFPVYp06duPXWW5k4cWK9V1YURaFDhw706NGj1XWkbk4ikBEEQRCERlRfQTtd1/n000954okn2LFjR9RjaWlpTJ06lWuuuabBW6ntdjtpaWm43e52eRWmJhHICIIgCEIj0HU90pk6GAzG5MF8//33PP744/zyyy9R200mE9dccw1Tp07F4XDEPb6iKKSkpJCRkYHZbEZV1TZX9K8piEBGEARBEA6Ty+WitLQUn88XE8Bs3ryZxx9/nK+++ipquyzLTJw4kVtvvZUuXbrEPbYsy9jtdhwOR7teQopHBDKCIAiCcIhqFrSrnQeTn5/PnDlzWLJkSUxwM27cOGbNmkXfvn3jHluWZWw2GxkZGVit1iYZ/5FABDKCIAiCkKTaBe1qKi0t5bnnnmPhwoUEAoGox4499ljuuOMOjjvuuLjHDgcwDocDm83WJOM/kohARhAEQRASpGlaVB5MTW63m5dffpkXXniBqqqqqMf69u3L7bffzrhx4+LeSi3LMlarFYfDQUpKSpPN4UgjAhlBEARBaEB9Be0CgQDvvvsu8+bN48CBA1HP69y5M9OnT2fChAlx2wTIsozFYsHhcGC325t0HkciEcgIgiAIQj3cbjelpaUxBe10Xefjjz9mzpw57Ny5M+o56enp/P73v2fSpElxE3RlWcZsNpORkSECmMMgAhlBEARBqEN9Be2+++47Zs+ezYYNG6K2m81mrr32WqZMmUJ6enqdx5UkKSqAibfUJCRGBDKCIAiCUEN9Be02bdrE7Nmz+eabb6K2y7LMJZdcwh//+Ec6d+5c53ElScJkMuFwOEhLSxMBTCMRgYwgCIIgEFoqCnemDgQCUXkwe/bs4amnnuLDDz+Med4ZZ5zB7bffTp8+feo8bjiACXekFgFM4xKBjCAIgtDuxStoV1JSwvz583nrrbdibqUeMWIEd9xxB8OHD6/zmJIkYTQaIwGMLMtNOof2SgQygiAIQrsVr6BdVVUVL730Ei+++CJutzvqOf369WPWrFmMHTu2zqsrkiRhMBgiAUy8u5WExiECGUEQBKHdCQQClJWVUVlZGZUH4/f7+c9//sO8efMoKSmJek7Xrl2ZMWMG48ePrzM4kSQJRVFwOBwigGlGIpARBEEQ2o14Be00TePjjz/mqaeeYvfu3VHPcTgc3HLLLVx55ZWYzeaYY4YDmPAVGINBfLU2J/FqC4IgCEe8+grarVq1itmzZ7Nx48ao51gsFiZPnsxNN91EampqncdVFIW0tDQcDgdGo7FJ5yDUTQQygiAIwhGtqqqKsrKymIJ2GzduZPbs2axatSpqf0VRuPTSS5k2bRodO3as85iKopCamorD4cBkMjXp+IX6iUBGEARBOOIoioLf78fpdMYUtNu1axdPPfUUS5cujXne2WefzcyZM+nVq1fc49rtdhwOR53LTELzE4GMIAiCcEQJBoNUVlayZ8+eqO0HDhzg2Wef5Z133olp+Dhy5EjuvPNOhg4dWucxFUUhJSWFjIwMEcC0MiKQEQRBEI4ImqbhdDopKSmhpKSEDh06oCgKLpeLF198kZdffjnmVuoBAwYwa9YsTjnllDpvpZZlORLAxOuZJLQsEcgIgiAIbV7NgnbBYBBN0/D7/bzzzjvMnz+fsrKyqP1zcnK47bbbuOCCC+osVCfLMjabjYyMDKxWa3NNQzgEIpARBEEQ2iyPx0NpaSkejyeSB6NpGitXrmT69OkUFBRE7Z+RkcEf/vAHrrjiijqTdGVZxmq1kpGRgc1ma5Y5CIdHBDKCIAhCm+P3+yktLaWqqipS0E7Xdb7++mtmz57Nli1bova32WxMnjyZG2+8EbvdHnM8WZaxWCxkZGSQkpLSLHMQGocIZARBEIQ2Q1XVSGfqmgm769at47HHHuOHH36I2t9gMHDZZZfxhz/8gezs7JjjybKM2WwmIyOjzgBHaP1EICMIgiC0erquU1FRQVlZWVRn6h07dvDkk0+yfPnymOecc8453H777fTs2TPmMVmWMZlMkQBGdKRuu0QgIwhtmKbpbNxbQanbT6bNxOCuaciy+IUsHFlcLlekoF04gCkqKuKZZ57h3XffjeqVBHDiiSdy8cUXc8EFF8T0O5IkCbPZjMPhIDU1VQQwRwARyAhCG7VqWzHzV+aRV+QioOoYFYk+He3cMrYPJ/Xt0NLDE4TD5vP5Inkw4UTeyspKXnjhBV555RU8Hk/U/oMGDeKOO+7gxBNPZNOmTVGPSZKEyWSK9EMSAcyRQwQygtAGrdpWzN2L1+PyBcmwmTApMn5VY1NhJXcvXs/DE3NFMCO0WXV1pvb7/SxcuJD58+dTXl4etX/37t2ZOXMm5557LrIsR12hkSQJo9EYCWDqutVaaNtEICMIbYym6cxfmYfLF6RzmiXyl6VFVuicJrOvwsf8lXmc2DtLLDMJbUpdnalVVWXJkiU8/fTTMbdSZ2ZmMm3aNC677LKYW6llWcZoNJKZmUl6enrMEpNw5BCBjCC0MRv3VpBX5CLDZoq5PC5JEg6bkbwiFxv3VpDbLb2FRnno/H6V577azq7SKnpmpnDzmN6YTEqT5wNpmk5eWYCKrQfoYLeKfKNmFk7kDXem1nWdr776itmzZ/Pbb79F7Wuz2bjxxhuZPHlyzJ1G4Ssw2dnZdO/eXbQTaAdadSCjqipz587lgw8+oLi4mI4dOzJx4kT+8Ic/iPVNod0qdfsJqDompe5L5GZFxqnplLr9zTyyw/fXRet4+6d8gpoe2fb0F1sZ268DflVvsnygVduKeXbFNjYXlCEplRgVWeQbNRO3201paWlUZ+q1a9cye/Zsfvzxx6h9jUYjl19+ObfccgsdOsS+L4qikJaWRlpaGpWVlRgMrforTmgkrfpdXrBgAW+++SaPPvooffv2ZcOGDfzlL38hNTWVa6+9tqWHJwgtItNmwqhI+FUNixx7udynahhliUxbbNXS1uyvi9bxxg97YrYHNZ3PNx/AYpDpnmlr9HygSL6RN4jFKJFmMxPQdJFv1MR8Ph9lZWVRnanz8vJ46qmn+OSTT2L2v+CCC7jtttvo3r17zGOKopCamorD4cBkMqGqalS3a+HI1qoDmTVr1nD66adz6qmnAtCtWzc++ugj1q1b17IDE4QWNLhrGn062tlUWEnnNDnq6qSu65S7AwzsksrgrmktOMrk+P0qb/+UH/k5PCX94IUZvEENsyE038bKB6qZb9QpzYzX60GWJSyKLPKNmoiqqpSVleF0OiNJufv37+eZZ57hvffei7mVevTo0cyaNYtBgwbFHEt0pBaglQcyw4cP55133mHHjh306tWLzZs3s3r1au66666kj1X7H0dLCo+lNY2psbWHOULLzXPqKb245/2N7Kvw4rAaI1cpyj0B7GYDU0/pha5rNNawmnqez67cFllOqm/VuKjSR8fUg19YDquBvCIX6/LLyM1JPh9ofYGTvCIXDquxxnn1SAB1uMdvjVrqM1tXQbuKigpeeOEFXn/9dbxeb9T+Q4YM4fbbb+fEE0+MGW9dAUzNx8XvnyNDovOSdL3m3zyti6ZpPPHEE7zwwgsoioKqqsycOZPf//73CR9DVVXWrl3bdIMUhBayvsjH4s1VFFQECepgkCAnzcDEASnkdmxbf53O/aGcFbtCX2Q145jav5zsJolOKQeX0zRdp8yr88fj0xneOfk5r9nn45kfnWRYJOQ6IqjDPb4QahHg8/lwOp243W5UVcXv9/Pxxx+zaNEiXC5X1P6dO3dm0qRJjBo1KiYX0mQykZKSQlpaWuQ7QTjyDRs2rN67zlr1FZmPP/6YJUuW8Pjjj9O3b182bdrEI488Ekn6TUZubm6ruf1OVVXWr1/fqsbU2NrDHKFl5zkMmHSGzsbCCsrcfjJsJgZ3aZo7bZp6nsNKt7Fi17bQD/VEMjazCav1YEDhDajYdJURuQMO6YqJUuDEtm4NilHBYpTxeDxYrdbIIA73+K1Rc35mvV4vpaWluN1uUlNTUVWVDz74gLlz57Jv376ofbOyspg2bRqXXHIJRqMx6jFZlrHZbGRkZFS/P/UTv3+ODOH5NaRVBzL//Oc/mTp1Kueffz4A/fv3Z+/evTz//PNJBzKKorS6N7o1jqmxtYc5QsvNU1FgWI/MZjxf08zzD2P78syXeQS10LJOvOWljqnmyF/puq5T7gkysEsqQ7tlHFIAN7RbRiTfqJMhnBwtIUlSoxy/NWvKz2wgEKC0tBSXyxW5arJixQqefPJJtm7dGrVvSkoKU6ZM4brrrsNms0U9JssyVquVjIyMmMcSIX7/tA+tOpDxer0xlxYVRaEVr4YJgnAITCaFy0d0i9y1VNc/cYtBxukJIEmhxz0BFbvZwC1j+xxykCHLEreM7cPdi9ezv9KHRdIxazp+TaPcHcBuVg7r+O2Nqqo4nc6ognarV69m9uzZ/Pzzz1H7Go1GrrrqKm6++WYyM6ODcVmWsVgsZGRkkJKS0mzjF9qmVh3InHbaaTz33HN07do1srT00ksvcckll7T00ARBaGQPXTwUIKaOjEGWyM1JY0eJm73lHnRCCz+pViOTTuhx2LdGn9S3Aw9PzI3UkfG5fBgVmYFdUkUdmQTpuk5lZWVUQbutW7fyxBNP8MUXX0TtK0kS48ePZ8aMGXTr1i3qsXAA43A4YgrdCUI8rTqQueeee5gzZw73338/JSUldOzYkcsvv5xp06a19NAEQWgCD108lPsuGBxV2feYbunct2QjigRdHVZkSULTddx+lTe+383grumNEswc39PB4pU/kd3tKFHZNwlVVVWRztSaplFYWMjcuXNZvHhxTC2XsWPHcvvttzNgwICo7bIsYzabycjIEAGMkLRWHcjY7Xb++te/8te//rWlhyIIQjMxmRSmn3E0EKrzct1LP+DyBemSbo1aak636o1a50WWJfpkGBl2dHa7zjdIVO3O1OXl5fzrX//itddew++Prio9dOhQ7rjjDk444YSo7ZIkYTabcTgcpKamiortwiFp1YGMIAjt25HeV6otCgaDlJWVUVFRgaqqeL1eXn31VRYsWEBFRUXUvkcddRSzZs3izDPPjHr/JEnCZDLhcDhIS0sTAYxwWEQgIwhCq3Uk95Vqa3Rdj+pMHQgEWLx4MXPnzmX//v1R+2ZnZ3Prrbdy8cUXR91KHW7oGA5gZLnu91UQkiECGUEQWq0jta9UW+NyuSgtLcXn86FpGp9//jmPP/4427dvj9rPbrczdepUrr322qh6L+EAJi0tDYfDIQIYoVGJQEYQhFbrSOwr1ZbULGinaRo//fQTs2fPZs2aNVH7GY1Grr76an7/+9+TkZER2S5JEoqi4HA4SE9PF7lHQpMQgYwgCK1WzTov+yp8OGxGzIqMTxV1XpqS3++PdKZWVZXffvuNJ554gi+//DJqP0mSmDBhArfeeis5OTlR2xVFIT09nfT0dAwG8VUjNB3x6RIEocUEgxpL1hVSUO4mx2Fj/NAuyLLExr0VlLr9ZNpMnNg7i4cn5jJ/ZR55RS6cmo5RlkSdlyagqirl5eU4nU6CwSAFBQXMnTuX//73vzGFSE899VRuv/12+vfvH7VdUZTIElLtVgOC0BREICMIQotY8FUe81bkUekJoAEy8H/vryc71YwvoBFQdYyKRJ+Odm4Z24dXrh8ZFeCIOi+Np3Zn6tLSUp5//nlef/11AoFA1L7Dhw/njjvuYMSIEVHbFUUhNTUVh8OBySRyloTmIwIZQRCa3YKv8nh02RZUTcegSBgkUDUdl0/F5XPTIcVIpzQrflVjU2Eldy9ez8MTc8XVlybgcrkiBe2qqqoit1LX7krdu3dvZs2axemnnx6Vq6QoCna7HYfDgdksOoQLzU8EMoIgNKtgUGPeijxUTcdkkJAlGR0drcbSRZk7QKc0CxajQuc0uVEL3wmh4MPn81FeXo7b7cbv9/Pee+8xd+5cDhw4ELVvp06duPXWW5k4cWJUrouiKKSkpJCRkSECGKFFiUBGEIRmtWRdIZWeAAYlFMRAqAmkrod6KOmAqoPTEyQjxSQK3zWyYDBIZWUl+fn56LrOJ598whNPPMHOnTuj9ktLS2PKlClcc801UbdSy7IcCWAsFkszj14QYolARhCEZlVQ7kYDDDUurOh6KICRwpEMEFAP9ukRhe8OX7iNQGlpKcXFxezYsYPHH3+cdevWRe1nMpm45pprmDp1Kg6HI7JdlmVsNhsOhwObzdbMoxeE+EQgIwhCs8px2JABTYfwKpEkha7GUOPGGGONar6i8N2hq92ZesOGDTzwwAMxtWBkWWbChAlMnz6dLl26RG23WCxkZGSQkpLS3MMXhAaJQEYQhGY1fmgX7v9wI053AFnSkCU5FMhIoeAGQJEg3Rr69SQK3x06t9tNaWkpXq+X3bt3M2fOHJYsWRJzK/Xpp5/OzJkzOfrooyPbREdqoa0QgYwgCM3KYJCZdmofHl22BX9Qx6BoyFLo6kw4kHHYjICEJ6CKwneHwOfzRQraFRcXM3/+fN58882YW6mPO+44Zs2axXHHHRfZFu5IHQ5gRENHobUTgYwgCM1uypg+AJE6MiqhpSW7WYnUkSly+UThuyQFg8FIQbvKykpefvllXnjhBaqqqqL26969O3fddVfUrdSiI7XQVolARhCEFjFlTB+uP6lXg5V9ReG7htXsTO3xeHjnnXeYN28excXFUft16dKFP/7xjxx99NEMGTIESZIiAUx6erroSC20SSKQEQShxRgMMhOPzYnZLm6xTly4M7XX62Xp0qU89dRT7Nq1K2qf9PR0br75ZiZNmoTBYGDTpk2RAEZ0pBbaOhHICILQ7DRNF1ddDlPNztTffvsts2fPZsOGDVH7WCwWrr32WqZMmUJaWihRWtM0rFYrWVlZZGZmio7UQpsnAhlBEJrVqm3FkQaQtfspiTyYhoV7IblcLtavX8/jjz/ON998E7WPLMtccskl3HrrrXTq1Ak42JHabrfj8XhEECMcMUQgIwhCs1m1rZi7F6/H5QuSYTNhUmTRTylBqqridDopLy9nx44dPPXUU3z44Ycx+5111lncdttt9OnTJ7LNYDCQlpZGeno6siyzZ8+e5hy6IDQpEcgIgtAsNE1n/so8XL4gndMskbtiLLLop1SfcGfq8vJyCgsLefbZZ3nrrbdibqUeMWIEd955J8OGDYtsUxQlEsCEO1KrqtqcwxeEJicCGUEQmsXGvRXkFbnIsJlibu1t6X5KmqazvsDJmn0+lAInQ7tltIpgqqqqitLSUkpKSvj3v//Niy++iNvtjtqnX79+3HHHHYwZMybyuoaXkDIyMiIBjCAcqUQgIwhCsyh1+wmoOial7rtjWqqfUs2cHbfPj23dmhbP2fH5fJSWllJWVsZbb73FvHnzKC0tjdqna9euzJgxg/Hjx0dyXURHaqE9EoGMIAjNItNmwqhI+FUNixybZNoS/ZRq5uw4rEbMkoRiVFosZycYDFJaWorT6WTJkiU89dRTMfksDoeDW265hSuvvDISrMiyHLkCIwIYob0RgYwgCM1icNc0+nS0s6mwks5pctTyUkv0U6qdswPgCUpYjAqdjUqz5uyEO1OXl5ezcuVKZs+eza+//hq1j8ViYfLkydx0002kpqYCBztSZ2RkYLVam3SMgtBaiUBGEIRmIcsSt4ztw92L17OvwofDZsSsyPhULaqfEsD6fGeT15ipmbMD4PGruAMaKCpWk9JsOTuVlZWUlpayevVqZs+ezXfffRf1uKIoXHrppUybNo2OHTsCoQDGarWSkZGBzWZrsrEJQlsgAhlBEJrNSX078PDE3EhOilPTo/opAVz30g/NUmMmnLPjD2oUOj34ghqapiN73JgNMlkpZgJNmLMT7ky9ZcsWnnjiCZYuXRqzz9lnn83MmTPp1asXEApgLBYLDodDdKQWhGoikBEEoVmd1LcDJ/bOiqns+7/tJc1aYybTZkLTNfY6/Wg6KDIoEiCBJ6Cx1+khzWJo9JydcGfqnTt38swzz/D2228TDAaj9hk5ciR33nknQ4cOBUIBTM2O1IIgHCQCGUEQmp0sS1HLNS1RY2Zg51RUHYKqjskQap6oS3qokaKs4w/qqHpov8YQ7kydn5/PggULePnll2Nupe7fvz933HEHp5xySqSho9lsxuFwkJqaKjpSC0IdRCAjCEKLa4kaM5v2VaJIEoosoWqhKzI6gE71zxKKJLFpX+VhnTPcmXr//v28/vrrPPvss5SVlUXtk5OTw2233cYFF1yALMtRHanT09NFACMI9Wj1gcy4ceMoKCiI2X7VVVdx3333tcCIhNaosZoQJnOc1lpELawpGzMmcuxkzt8SNWZK3X5kSSInw0qJy48vqKJpIMs6FqNClt2E268e1jldLhfFxcW8++67PPXUUzG/yzIyMvjDH/7AFVdcgckUCuKMRmMkgBEdqQWhYa0+kHn33XejSmpv3bqV66+/nnPOOacFRyW0Jo3VhDCZ47TGImrxxtfYSbOJHDvZ87dEjZnwOU2KzFEdbKG7ljxebFYLVpOCN6BhlLVDOqfH46GkpIRPPvmExx57jM2bN0c9brPZuP7667nhhhuw2+2Rho4Oh4P09HTRzFEQktDqw/3MzEyys7Mj/3355Zf06NGDkSNHtvTQhFYgXNBsU2EFKWYDHVPNpJgNkQTRVduKG/04Nfe1mRQyLBI2k5L0OZtKY70mdR47r6TBYx/K+cM1ZsrcAXRdj3osXGOmT0d7o9aYqXlOdLAaFWxGCatRAZ1DOqff72ffvn18/PHH/O53v+PGG2+MCmIMBgOTJk3i008/Zfr06djtdgwGAxkZGfTo0UN0pBaEQ9DqA5ma/H4/H3zwAZdccolYMxZiEkQtRgVZri5olmbG5VOZvzIPTdMb7Th17islf86m0livSZ3H1nWe/2p7vcd+dsU2nl2R/PnDNWbs5lAhOk9ARdN0PAGVfRW+SI2Zxly6q31Ob0BF03W8h3BOVVUpKSnh66+/ZvLkyVxyySV8//33Ufucf/75LF26lHvvvZcOHTqgKAoZGRl0796dDh06YDC0+gvkgtAqtal/OZ999hmVlZVMnDgx6ee2po6v4bG0pjE1tuaY4/oCJ3lFLhxWI0DMX/IOq4G8Ihfr8svIzYmfrJnMcYCofavTQ6v/V0r4nE2lsV6TmkK5QOUsy3OzeZ+PdIsh7rE376tE13WsRoVKbxCDLGExHqziW9/5T+iVwQMXDebZL7eyfm8lgaCG0SCT2zWVP5x2NCf0ymj0z1P4nM+t3M6W/ZV4fBpWc4D+nVK5eWzvBs8Z7ky9ZcsW5syZE7MUDjBq1Chuv/12Bg8eHNmWlpZGWlo6eSVeNuSVkGEzMbhL0xT+q038/jlyHOnzTHRebSqQee+99xgzZgydOnVK+rnr169vghEdntY4psbWlHNcs8+H2+fHLEl4grFfAJqu4/bp/LR+M+qB+P1nkjkOUOe+Ho8nqXM2lcZ6TcLWF/lYvLmKgoognqCOO6Dj8vrJsMjYjNEXdDVdx+VR8WtQTgAACTAq4Kjev6Hzv7q6nB92elGrYySfqvLDznLsK9Zjq3Qk/XokIq/IR2Wli2AgVMslGAhQWVlBXt42bJV76nyOwWDA7/ezd+9e3njjDT744AN8Pl/UPr179+bqq6/mmGOOQZIktm/fjt1uJzU1lZ92lfH2hgoKKoIEdTBIkJNmYOKAFHI7Ns/nRvz+OXK0l3nG02YCmYKCAlatWsXcuXMP6fm5ubmtZu1ZVVXWr1/fqsbU2JpjjkqBE9u6NShGBYsx9hzegIpNVxmRO6Deqw/JHAeota+Ox+Op7nMjJXzOptJYrwmE8mFe+mIjVV5w2C0YPV58qk5AhRKPjtlswm4++CuktMqPX1PRdVAUCVkKXafya3pkf4MsxT3/X/+7gU+3e2PGoerw6XYvWVkGHpow5NBemAbnKNEhzYoa8KEYzex1B3lpg48HL+rLSX2yop7j9XopLCzkrbfe4rnnnqO8vDzq8e7duzNjxgzOOeccZFlGURTsdjsOhwOz2cyqvBKe/zz8ulojhf8KqgJxz9mYxO+fI8eRPs/w/BrSZgKZRYsWkZWVxamnnnpIz1cUpdW90a1xTI2tKec4tFvGwSaERiW2CaEnyMAuqQ3eFp3McYCofUPXHIj8b6LnbCqN9Zpoms6/vt5BlS9I5/RQQ0UtKGMxSnj8KqquU+zyYTcbkCQJTdM44PKhyKG7gHxBDUmWkJGQZZ2ApnOg0ofFqDCoa1rM+f1+lXdXH7w1uWYKXHgF693VBfx9/BBMpsb5PNU1R0/Qj8VooLPRwL4KH//6egcn981GliUCgQAHDhxg4cKFdd5KnZWVxbRp07j00ksxmUyRjtQOhwOLxVLnOcPvj1WRsVQ3qqx5zqYkfv8cOdrLPONpE4GMpmksWrSICRMmiIQ4AThYo+SkPllsK3JR6PSSkWKqswlhQ18IiTYzDB8nal+rIZIgWu4JNklSal3zjlebJdm5xFOzQJ2qqexz+vD4gxgMSiQtyBvQcPtVZFmiuNKHpkPnNAsmg0xBmYegqqPIoaBEknTc1QFQx1Qza/aU4fKpkVyel1ftJFidACxxMHiJ/AwENZ1xT6xEliHHYWPBpGOxp5jivibBoMaSdYUUlLvJcdgYP7QLBoNc5xw9Xh95pdVLQ2UV9Mk047AZ2VPqZnOhk04Wlf/+97/885//5Lfffot6rWw2GzfeeCOTJ0/GbrcjyzIpKSk4HI6YjtQtUfivJleVn5te/4kd+530+ul7Xrh6BPaUxm3BIAjNLemowOfzYTbXvYZbVFQU6c7amFatWsXevXu55JJLGv3YQttTu0aJpuuouk5ZlQ9ZlqOaECZaM6WhZoY1j1N7X7dPx6arSZ/zcOcdrzZLMnOJJ1ygbq/TQ5WvRsJddfKdrIOOTkmVnxSTQrcMK3vKPDisRmQ5VGTuQKUPX1AlGNQjKdHegMZ7Pxfw3s8FGGUJWZbQ9ejE4dr3U9X8Ob88lIu0u9TDkAc+pWu6hT4d7TGvSY8MKx9t2EelJ4BG6PbM+z/cyLRT+zBlTJ+oOW4tcsXMf1e5nwybTtcUWPLhB7z34jP8+OOPUfsYjUauuOIKbrnlFrKyspBlGZvNhsPhiNuRuiUK/4Wd8fgKth2oivy8f0cZQx74lL7ZKXw269RGP58gNJekA5mJEyfy+OOPM3DgwKjty5cv57777uN///tfow0ubPTo0WzZsqXRjyu0PeEaJbUbC5a5/RgVmWtHHcXovh0OqYptvGaGdR0nvO+6/DJ+Wr+ZEbkDmnQ5Kd684zVUTGYudcm0majw+PGptcOKEA0wShIzz+zHcT0y0HSdW15fHSloZzcbSDEr7C5xU6EG6zxGQNNB01Gk6Cswydjr9LK/wkvvbHvkNfl5Vxlfbw3VqjEqEgYJNB2c7gCPLgv9Hpkypg+ZNhMHXNEJupIEGTYTdkWlcs9Gvvj0dT7IWx1z3gsuuIDbbruN7t27I8syVqsVh8NBSkpKveNticJ/EBvE1LTtQBVnPL5CBDNCm5V0IDNy5Eguu+wybr31VqZOnYrb7ebvf/87H3/8MTNnzmyKMQoC0FBjQQv7Knysyivm92N6H3JAUbuZYYP75qSjHjCTm5PepMtJh9JQMZm51NYn0xY3iAkLaDqXDcvBZjOiafrB3Jy06tutdajw1h3E1CRD9T1Oh0bVQwGLLEuYJRlPIHTVSAKU6saLsgSypOEP6sxbkcf1J/UixaRFHSfNYiDdLOEr2smGz96gbOPXoEfvM3r0aGbNmsWgQYMOqSN1uAhf1OtULVz4b2CX1EYt/Oeq8scNYsK2HajCVeUXy0xCm5R0IPO3v/2NU089lXvuuYcVK1Zw4MABbDYb//nPf+jXr19TjFEQgJbPL2gKfr/Kc19tZ1dpFT0zU7h5TO+YZNaa8wbw+FWCmoZBlrEY5bjzTuTY8Ty0bHPDOwFXvPg915/ci/FDu3DL2D78ZfF68ss92IwKHn9iNSA0CRSggbipXlv3u7CaFKov8gChJSlfUIukY8tS6IpLhTvA+7/s5c/v/QKEKvpm2hT0iiK2LH2L4p+Xo6vRodWQIUOYOXMWnow+bKjy49pdyfnH9cXhSEuqOGdj5TAlY8obPye835tTT2y087aUYFDjv2sLWL3ZxQ69gAnDukXlRglHnkPKnB0zZgxnnnkmb775JgaDgfnz54sgRmhyLZlf0BT+umgdb/+UH0lyBXj6i61cPqIbD108NLItPG9/UKPQ6cEX1ND10Jey2SCTlWImUGveiR47np2l9f8FH7auwMkd/1nL/R9u5PwhnUmzGCgs91LhCZBo8WBVO3jv16EKaDqBOq7+6BzMsak5nqc/34osyXRKM2L0VbDzk/co/O6/aD531POVtI6kHT+Byyb/jnlrCzGZCjDZU/HvKmPO9z8w9ZTekZybRDVGDlMyCsrdDe+UxH6t2YKv8pi3Ii+UG6XDOxvX8+DSzVG5UcKRJ+lAZvfu3cyaNYvi4mJefPFFfvjhB2655RauvfZaZs6cidFobPgggnAIWiq/oCn8ddE63vghtthaUNMj28MBR6bNhKZr7HX60XQwyBLVKzd4Ahp7nR7SLIbIvJM5djxHZabwLSUNzkMmdJXB6Q7wxg97sBllemRacflU9ld4YxJ342nOhg6KLKFqGp2tKvnffcCeFe8QdJVG7SNb00g99gJsA0ZjtZhY+msJdkcWqsFMqTeIN+AnqOpROTfJONwcpmTkOGzsLvUktF9btuCrPB5dtgVV0zEoEnJ1tF87N0o48iR9ve2iiy6iW7duvP/++5x88snMnDmTV199lU8//ZRLL720KcYoCEDLNBZsCn6/yts/5Ud+lqSD/4W9/VM+/uqlmYGdU1F1CKo6BhnkSN6HhEEObVf10H7JHjueWWf0TWguJoOMUuPL1xvUMCkSLl+gWYOTRDlsRrqkSFSs+4wfnryZHR8+FxXESEYLqSMuouPlD5J1zDhyOqST06kjpHagXFUoqQoSVMEgy5gMEqoWyrkJBrV6zlq3cA7T2H7Z5HZruhyrBZOObdT9WqNgUGPeijxUTcdkkFDkUF6UIkuH/T4JrV/Sgcx9993Hk08+SVrawS+LY489lsWLFzNo0KBGHZwg1NQSjQWbwnNfbT9YM6XWUMM/BzWd577aDsCmfZUoklR9JSHUCkCn+rZzLfTLWpEkNu2rTPrY8dz9/q8JzcWvaqiaHrV8s2mfC5evdfV+sZsNdEs3ou/8iTXPzmD9m//AV1qjoJ1sIGXI6XS84iGyjr+ArtkZ5HTuiDEtmwN+I/ucPnyBWo0uJRmDIlHpCbBkXWEzzyhx9hQTfbPrv5uqb3ZKm070XbKukEpPIHQlRor+Wmsr71Nr4ferPP3ZVma9s5anP9va4B89rUHSS0sTJkyoc7vdbufhhx8+3PEIQr2aO7+gKexKMP8kvF+p248shWqzlLj8+IIquhYKTCxGhSy7CbdfpdTtT/rY8exO8DiaDlqtLN3WdCXGYpTJtBrw7d3C+mX/piJvTa09JKx9TyB1xHisjo5k2i3YU1NRjTZKPCpVVQfzjvxqKMG65hUoWQKV1p9f8tmsUxn6t2VUeGO/lNIsSpu/9bqg3I1GqGdVXdrK+9TSDje3rqUcUrLv9u3bef3118nLywOgT58+TJo0iT59xPqj0PSaM7+gKfTMrP+v49r7hXODTIrMUR1seP3awbuWTDLegIZR1si0mZI+djw9MlP4tbAyoWMdLqtRxhNo3Ev+RkUKFedzFrD1/Zcp3vBVTLEac/chpB0/EWvH7mSkWEhLS0Mz2Cj1abjqSBjXdAioofJ64WBG00OJyq09v+Svi9bVGcQAVHhV/rpoXav+ompIjsOGTOj9qOvXQFt5n1pSY+TWtZSkl5aWL1/O+PHj2bhxIwMGDGDAgAH8+uuvXHjhhSxfvrwpxigIMZorv6Ap3DymN4bq8dYuBBf+2SBL3DymNxCdG4QOVpNCqsWI1RRqF1AzNyjZY8fz9/EDDm+SyTjUanh1kCXISjHRARcFH83lxyenUrx+ZdQ5jB170fWiO+h83nS6HHU0PbpkY8/qRLlmIb/Cj8sXv/ZNqFWChq7raLpGUNVJtRoZP7RLo82hsdWZN0XyeVOt2fihXUi1GgmqofelprbyPrWkxsqtaylJX5F57LHHmDp1KjNmzIja/vTTT/PYY49x9tlnN9rgBCGehvroNAe/X+XZldtYu62cYaXb+MPYvnXWaamrF9DlI7pF/sqp63v8suNyIsdKpvaIyaQ0eOzTB2azaX8l5Z5A3KtZM95puONsY/EEdQwKBA/zd2Sa1UCq5Kdg5avs+WZR7K3U6Z1IO34CqX2OpWuGHYPZAmY7Tr9OhTPxknyaHgpmwvlJt4ztw6Z9lXVeHWwNn9OaeVNQ4zNR47MRzpuafsbRzTq2xmIwyEw7tQ+PLtuCv/rzhA5oenXPL4lpp/YR9WTiaCi3Ttdb92ck6UDmwIEDdebJXHjhhbz44ouNMSZBqFdUrQjq7qPT1GqvJa/YtY1nvsyLWUuurz8SELMeDWAzKewp97JqW3Ek5yeZ3KDw+es6tlGW+HJzMSu2FGMxKqSYlDr7NeXV0X+oKZkNCkH10CKZFJOCwwhFPy1h8xcLCbjKoh6XbemkHjcee/+TyUqz0S3bQb8enVm5rZyyikBCF4TCjSvDNA3SbUbOH9KZb7YV88qqnTHv78a9zhb/nELyOVltVfg1rVlHRpZ00m1GUUemAW39M3JILQp++uknevbsGbV99erVjBgxotEGJgh1qV0rIl4fnaaU6FpyIv2RzhrUmRlvr8UTUEkxhVotBDS9zh5KyeQGPXTxUO67YDB3v7+BjzcUhr54rQqlVQFULXTp3a3p2M2GmHOt2laM09u8RQWrkrzL6eiOdsqrfKRaZCo3rGTt0pdwFxdE7SOZrNiPORt77ulkpqXiSLNzQr9u3HjaQAZ0TuW4Bz5NalXLKEuhwFCCi4/txoXHdOHe9zfW+f5OW/gzTk8oSGqpz2lYY+VNtQVTxvTh+pN68d+1+azevIPjBvQSlX0T0NY/I0kHMuPGjWP27Nls3LiRY445BoBffvmFZcuWceutt/L5559H9j399NMbb6RCu1e7VkT4Nsu6+ug01S+uutaS0YEajQ/f/imf/ztvUIP9kZ5dsQ2QMCgSR2fYI/soCnF7KCXTP8lgkNlf4cVqVOiUamZXqbu6L5EMUqj+jNMToGeWlf0VfuavzGPkUZnMX5mHL9ia7j2KZjXKaJqGad961n20gJJdtRrKygZSBp9G2vBzyMzMIiMtBcmSiisos+TXEh65NAVZlphyWir/XFpa90lqCeXG6MjVdXwKy93866sddb6/nVIlfi2sRAdMCihy839Oa7phVE+e+Oy3hPY7EhgMMhOH59BLOsCwYTkocSqBCwfdPKY3T3+xlaCmR6qGhyWTW9dSkg5k7r//fgAWLlzIwoUL63wMQr1vNm3adJjDE4SDataKkJBC9VT0cPKihEEhUiti4rE5h3SOuvJZal7xiLeWrNfKN/j7R7822Bdq875KdF3HIMscqPRhVGTSbYZIgGYxymwscPL+2r1cNKwrsizFHV9d29fsKWPN7tAyy95yLx6/Gtq3+g4ORZbwBVV8AT3Sr2nJusJmX1aqvWwTjyyBw2Yi1bmTNW8/R9nW2j2EJKxHn0jqcePJ6tSFzFQ7is1OlapQVhlA1UJJvPd/+CsPTBiScBATpgMyEtmpZrbsdyEhRb2/Ojpev0a5xx+Zj1RnTRPtsD+nyfj3d7sS3q815j8ITS+R3LrLR3RLuFdbc0s6kNm8ObFmcoLQ2MK1ImRdx1/9l0P1xRAkCZTqsv2HWiuivnyW8PJOXWvEdX0Jf7RhH+hEGj3WZlZkKr1BfLUqjRY6Ic1qJKBq+AIaQV3nwY9+ZdGafMYc3YGvthbHjK+u7ZquU1Tpq9FfKLR0o6qh7kPh10xCIqhppJgMODWdgnI3gcPp3ngIEjlbmsWA2XOA3e+9SNEvK2OelXX0cFJHTMCS3YOMtBSMVjtuzUC5K0CgVu7NojUF7C47tM9Ipt1EhtVEfrkHONj3y+ULcqDShy+ootbIS1I1HVmJDmSbu6ZJW89/EJpHvNw6gywdmXVkBKEl5DhsSDrUKrAaagxY3fVY5tBqRSSSz3JS3w4xa8Txcix8AZWAplPu8ZOZYo55fF+FJyaIgVAH6DJ3ABlQFAmFUPLvuvxyvssrwWZS6JRmiYzvlz1OvssrIcWs0DE1tH1PWVXcmiE1hX5X6aFCb9V9qnIcNoy1vnhbks2kYNer2PvJq+z9YSm6Gn1rtKlTbzJOuIRBxxyLxWymSrLg1owUufyomr/OIMlqlNmUZI0cpfpW1FSzMdTTq/qqoF/VCAZ0Cso8aHro7hjkg0UCg5qOLOlRRfSau6ZJW89/EJpPOLfuua+2s6u0ip6ZKdw8pnervRITJgIZoc04f0hn7nw3tIwCdS/tyLLE+UM6J3VcTdMbzGcJ56rUXkuOp3eHFLYecFFU6QsVZpMPLjGoqkppVeh23xopNtF3xQCSDlajgXSrkdIqP6qmo2o6ZoOMJEmYJRlVC7UICKo6ZqOMpmoJBTGRpQ9CCaj+oMbALmmMH9qFRWvy2ev0JvEKNj6zQSbNEODAN2+x5ev30PzRTQ8Njs6kHz+BTgNHkm63YU514EhPZeuucgKqr95jd3VYASh21b9fTZoeujvKbJDYX+lnQOdUQGLzvgo8fhVN1yNLnrWvFgU1DVkKvWfhmibptuaraTL5xB4J5chMPrFHM4xGaO1MJqXNLTGKLCihzdhS5MJW8y8DvcZ/1WwmhS1J5nhs3FvRYD5LXpGLjXsrImvJ9cm0GVEUmY6pFjQdCsq9UX2hdpeFukIbZDAa5Lg5IhKQnWrGG9BCV02qO397q6vgxmz3axS7Eq+HAqDI4AmomBSZW8aG6myEbw1vCQZZooNVQd+wlF8ev45dn78eFcTIKQ4yx17LsVMepf/IU+nUqSNSaha7K3R2l3lRahfBqCXTZkSqbrqZDKMikWY1sr/Sj92s8IdT+/KHU/tgVGQ8ATWS9K3pOkGNqHFoOqh6qBqzP9j8NU0e/aThICaZ/QShtRFXZIQ2o9Ttx2xQ6JSqUOzyo9a4JKJIEh3sJrTq/ZI9bkA9mO9Qm1mRcWp65LjhteI3f9xTIwclJNNmpKvDisevYpAlrEaFHIeFMneAsur8iciXnB7q2i1LoSWl2qwmBU3XKavyVxf1Cl152l7sQq9eRlMBsyHUTDKohQKbRMnVY5AluGbUUZzYO4v1+U4CtSfVDCQJ0i0G/Fu+YePyF/GWRjf3k0w27MPOocPwM8nt2YmszEwqNQPbi904XaFcILMvyPG9MjEpEit/K46poZNpM5KTcWjLOVaTAXRi6vZcO+oonvh0C+gQ1HUkKbR0lZ1qweNXKar0hgroqS1X02Rngrkvie53uBpKqBeEZIlARmgzwj2HJEkK9Rjyq5FlGYtJxqDI6LpOZpwE24aO61c1LHLsWrCvOn+k5nEfungolxzbjete+pGgGiTVaqZjqpkqv8rOkip8QS0U5Og6RoNMbrd0vtlaHLoyU/39GtSpO4KpVukNUuk9mBNSO6UmvIDkC4YSfA2yHDcYq0s47VeRoKjSy3Uv/RBJGG5OPTKsVOStJu+jBbj2bo1+UDFiH3waWSPOJzu7A3Z7GpmdsqnwqfiCGl0cFmwmBbdf5Z7zB0Xu7vL7Ve7/8FcWrSnAapTp6rAmfRUmTAKevnJ4nV+6o/t24NVVOzAoof5LBlnGYgwtI9nNBuxmheIqPxcM7cJxPTJbpLLvUZkpfEtJQvs1tUQS6gUhWUkHMldffTW/+93vOOecc7BYLE0xJkGo0+CuaWTZTWzcW4EEGBQ5Uj7b61cp9HsY3DWNwV3Tkj5un452NhVW0jlNjvrC03WdcneAgV1SY447rEcGx3RPZ8OeMrLtJqr8KgVlHlQ9dPUETcdkUNi6v5K1e5xAaDmpKS54BFQdi0nGpBgpSjD3IxRHhW79eu27XVGJxD6Xj4rGH2YUq1HB7NzF9iUvUvDrj9EPShK2fieRNfIiOnbuii01jaBiwWqWKK6qsXymgyegMahrWiSIgdA6/wMThrC7zF1nYq+u69iNkMhK3KczR9G3U2adjw3umkbfTqnVnx1z7GfHEyQ3J52/Xzikxa46/N95A3njh90J7deUEk2oF4RkJf2nwcCBA3n00Uc5+eSTueeee1i7dm0TDEsQGhD+TtBr/XwIwr2M7GaFfRW+qHyWfRW+qF5GtZ/3+zG9sRgl9lV42ef0ouoaihQqYa/IMp3STJHOzhJNE8SEOSvdCd3KXJtBlqISiWVZIiu96e5SMCkyDrWM0iWP8svcW2KCGEvPY+h62d8YcOHNHHX0AEyOjhQHjOyt8FPoUpN6f+p7XzPt1oTG2y09fmB8qJ+d5mSxGDh9QHa9+5w+IBuLpeku0NdOqLcYFWRZwmJU6JxmxuVTmb8yL5LILwjJSDqQ+etf/8rXX3/NI488QklJCVdffTXnnXceL774IsXFxU0xRkEAQkm5JS4/XdItWI1KdWKljqbroeq1aRYKnV5e+24X6/OdSf1SDPcyGtDZTrnbT365h3K3nwGd7XH/UnRV+Zn35TZ8gVDNF19QRddCwYrFqJCTYSWoHgxeqnvYNZk9FUF2FCef5xBQQ3fc+IIaJVV+PH6VHc7k+x5ZjHX/Ognfzi1LkC65ca94nnVPXk/RLyuomeZs6tSHThP+zMBL76DPoGOwZHSipDqAcVd33U21GnH7ghS5fLh9QQZ2Sa33L/nw+zqwS2rM847ulJrQvB5YWn9hz/rO0VquMrw4eWTcYOb0Adm8OHlkk54/mYR6QUjWIYXgBoOBs846i7POOouSkhLefvtt5syZw5NPPsmYMWO45pprGDVqVGOPVWjnwkm5HVPNZNhMeAOhO0EMskxQ0zhQGfqL+InPfovbDLFhB2+hDf1v3X9Jn/H4CrYdqBk0HPziD32dh76gA0kk3zYGb3VrgUSr5UJ1Z1tVRwf2V3ijap4kwmpUuPPsfvTrlMq8L35jbX4FwergaFi3NKaN64esernn74/wzeJXCHijC8F1P6o3XUdfirfTINLS0tEMNkp9Gq46kraP75nJ5JN7JZUoGq9H1TX//j6h+SWSBJtMH6yW8uLkkXi9Qe7/aCMbd+1ncM9O3Hf+4Ca9EhOWbEK9ICTjsD7B69at47333mPp0qVkZWUxceJE9u/fz80338xVV13Fn//858YapyBEJ+UaFawmBVBw+YLsLfeiahqyBFkpJhRZSmrtPd76/eZ9sceIDWKiqZqON6BRUOYhzdoy+fTJXPipua9BDt+anPgRMmxGTAaFe/67AZcvSLcMW+T121PqZsb/PcKOz16jrCT6im2XLl2YPn06F198MZ9ureTNdSWUeXVcntCXWV11gnpmpSTca6qmunpUNXYSbDJ9sFqKxWLgwQlDWLs2yLBhQ1CU5il0digJ9YKQqKR/y5aUlPD++++zaNEidu7cybhx43j88cc55ZRTIpcMJ06cyJQpU0QgIzSqupJydV3nQGUoNwXAYjRgMytISHEbL9aWTEE8tydQbxADoRBAkUMBjccfRJaadkmpsYSaGiZfY+WoLBvLNhRGvX4GSadq8zese28+lQeiu1Knp6dz8803c+2115KVlYXD4WDKUQae/HZ5vX2sGrtp3Z1nHp1QEuydZ7at4mCt0aEm1AtCIpIOZMaOHUv37t255JJLuPjii8nMjM3mHzBgAEOGDGmUAQpCWDix8u7F69lX4cNhM6JVX/1ADyXXZqeaq5eEYtfe4/21XHP9HqDM7SegahgVGYfVGHWMh5b+mtBYfcFQfRiPX0dRpEjJ+tYoEmjp4buYkhtr1wwbq7YVk2EzYVBkXNt/5pf35lFcqyu1yWxm8nXXcfPNN9OlSxcyMjIwGk2R5ZjTB3Zk+cb9QPM0rXvs060N71S930MX5zbaedujuv7tmhUZn6pR7g60iqRooe1KOpB5+eWXGTFiRL372O12XnvttUMelCDEE06sDNeiqKouD281KnRMs2A3R3+kE1l7D6/fV3gCFFe3AggrdHrpkBIqtPfNtgOs2VWe8FjDh9FUHbMi4a/OQ2mN7GYFj189pBoyuh5qkaCU7uSnxfPqvJU6c/AYHr7nT1w4ZjgZGRlYLJY6a4pk2IyUuWPviT59QHajN61rbYXijnS1/+06NR2jLMUUGRSEZCUdyDQUxAhCU6uZWLl6dxnzvthGus2A1Rj7cU5k7T3TZsIXVKmoLj5X829CVdPZX+nDZlJ49btdkSWsZAW0lgtiJCDdasAT0PAHQ69HxzQzQU3nQHWHbJdPRZaq7zDSSaq6r6+0kML/Ps6Pqz+PeaxD/xH0P+sqsrr14cQTRtClS0eg7pykco8fpycUxNjNBhRJqq5mrJN3oIpV24ob9cuuNRWKay/aQlK00PYcUibismXL+PjjjyksLCQQiP7rafHixY0yMEGoTzixcnDXND7ftJ9NhZVY0pRDWnvv39Eeub0XiI5kqr/P3X4Vq0Gme6pySLcmt1SOjCyFltiCmo5BlvAT6u/ksJlAApcviMtXPR891OpBkiUCWsNzNAcqqfzubebP/hCtVlfq9B4DGHLu1Rw1cDiVuoWc7HRye4Ru/60rJ0nXdZyeAJIE4cWj7llWJEKPJZLrlKzWUiiuvWkLSdFC25J0IPPqq6/y5JNPcvHFF/P5559z8cUXs2fPHtavX8+kSZOaYoxCO1WzJ4vDagSgyOVlxaYDVPkC7K/wYTKArsvI6GwrcoEEFoNMps1IhS/U70jXYcorP5HbPZ0/jOmDyaQQDGosWVdIQbmbwnJvVF+eeCkiPlVlry/5iCS5e4AajwSRW6k9fhUIXeHwBjWKKryhpFw53LEp1HFbQ29wsEbVi+fn98n/5l3UWl2pTVk5DDzrKgaOGINsS6XII6GqGif16cDX24rJtJnQdD2mpog3oOELatXjAW9ApdTlr74zDUyKxObCStYXODmmu+OQX5PafX5OG5DNl5sPxN2/qQvFtQRN08krC1Cx9QAd7FZxRURo85L+F7pw4UIeeOABLrjgAhYtWsSUKVPo3r07c+bMwel0NvoA9+/fz2OPPcbXX3+Nx+OhZ8+ePPzww+TmiuS7I1nN/Ikqv4o3oBJQtYSubHgDGuWeg1cI9lWESvZ/vqWIuZ9vZWi3dHaUuKn0BNAg4SjD5Tu0ZaWWWlLSOVgfJrJFD/1vkavunKFAUCfeIpiiBwn++im7vnyDQFV59GP2TLJPnEiPEadjTXWwN2hGc6o4bEYwKDz75bZIHkxmSqidQ0aN5b6gpqHroUBK1XQ0HfZVeCNBpVT9f/66eD13nzfwkJaY4vX5McoQiPPW3ji68e6Sag1WbSvm2RXb2FxQhqRUYlRk0etIaPOSruxbWFjI8OHDAbBYLFRVhRLhLrroIj766KNGHZzT6eTKK6/EaDSyYMECPvroI/785z+Tni4uSx7JwvkTmworkCQJty94sAnjYVJ1WLPHSbk7gCxLmBSJI/mP0WRfsrr31yDvW/a+cAu7P5wXFcRI5hQ6jL6C4X94in6nTkRP6cDeKp38Mg+DuqZR4QlQ6PSSYjbQMdVMitlAfpkHly9IuefgsrRBltEJVRmOJEnr4caWoatFEpBf5uHuxetZtS25KuI1P1M1x/LN1uK4QQzA1S9+n/S5Wqvwa7C5sBKLUSLbHnoNwvWWjpR5Cu1P0ldkOnTogNPpJCcnhy5durB27VoGDBhAfn4+epK3bTZkwYIFdO7cmUceeSSyrXv37o16DqF1qZk/0SnNzK6SUBPGpqDIoSq+RoOOWt+3WTsmFazjwBf/pmrvtujtipH0YWfR65SLsXfohBcz+zwBfEE/ZkVC0+HzTUWkWRS6OmxRtXlyHBZ+K3JRVOnFYTMgSzJmg1Tnmp5Ua3PXdDNFrkBS+TLx6gTJQbXBQE/TYc6nmzmx98ltevml9r8rr9cT6nWkyAnXWxKE1irpQObEE0/kiy++YNCgQVxyySU88sgjLF++nA0bNnDmmWc26uC++OILRo8ezfTp0/nxxx/p1KkTV111FZdddlnSx1LV5BM0m0p4LK1pTI3tUOe4vsBJXpELh9VYnTehHk4/yHqFyuiH/leIJhVvp2zlSzi3ran1gEzqoFPodeqlpHfuiV82s98dxBc82HFb1UMFAUMJxtUNG/RQI0VV01Hk0NWA/ZU+Csq8dLCbUOPc1RUV20ih+jwOq4G8Ihfr8svIzWn46mzNz1R4LAC7yhLrEr56jzPhc7VWNV+Dg/nweuT1TfY1be3aw+9YOPLnmei8JD3JyyiapqFpGgZDKAb66KOPWLNmDT179uTyyy/HZGq8EtPhPJjrr7+ec845h/Xr1/PQQw9x//33M3HixISOoaqq6NDdhqzZ5+OZH51kWCS8QSiqUqtzJxqfLBHJj2gLlXebSs1kZKliHxXfvEbp+pUx+9l6H0ev064gs2d/AoqFck+oE3VtshQ6pqqDwyxhNcqUezUC1fk6EmCQQ/9PF7uBSp+GJ6jjDugY5OrcnhpvuARU3xVOxxQZi0GizKvzx+PTGd7Z3OD8an6m5Bp3te0oCyb8ubrnlIyEztVaxXsNwjRdT+o1FYTmNGzYsHrbaSR9RUaWZWT5YGrN+eefz/nnn39oo2uArusMGTKE22+/HYBBgwaxdetW3nrrrYQDmbDc3Nxm6yvSEFVVWb9+fasaU2M71DkqBU5s69agGBVsRpA97lAX6yYINOTqW41lPdRB+0gVunspNjgIz9ioyARdpbj+9zbFPy1Fr3XrtaVrf3qOu5KORw9HNVop9qi4q+IXGJTDvZp0QFYo8YTymxRFjpw3oGogSVx3ytEM6+5gze4y5q3YjsNqRNN1dpe6Q+075YNj1XWwWaxIEth0lRG5AxK6elDzM2UxHvwsmipdeIMNhzIGmYTP1VpFvwYyHo8Hq9VKuNaAN6Am9Zq2du3hdywc+fMMz68hCQUymzdvTvjEAwYMSHjfhmRnZ9OnT5+obb1792b58uVJH0tRlFb3RrfGMTW2ZOc4tFtGpCdLpzQTZoOC2x9s+ImHwKCEcmQMClG3XzeW2vkdLUWSiJvQLAXcuH94n8Jv30Pze6MeM2Z1o/upV9A192R0k51Sr1pnR+raFAn8aqg3UmV1kUGjQY60jkDXoXpMn20q4tpRvRjaLYMvthRH3neL0YA3oKJIoUsxQU3HapSxGGX2V/oZ2CWVod0yEsrnqPmZ6mw8WGuoZ4aZLQc8DTwbjuuenvC5Wquof1eG8FVzKVLDp9wTTOo1bSvaw+9YaD/zjCehQGbChAmRD3x9JEli06ZNjTIwgGOPPZYdO3ZEbdu5cyc5OTmNdg6hdanZk2V/hZ90qxFfQG2SKyZqdYOhxk5SD2sNQYzNKBPUQrc017wKowUDBDYsp/ibNwlURZdNUFKzyBn9O3qMPBvdbKfcq1HpTCyfRAL8aigP5vSBHflsUxHo4VwMvXrZSEdGIt1q5Ne9Fby/di8XDeta5/seqL5iosgSaVYj+yv9SfflidfnR5WUBmv8yBLMOHNAm/9yj/p3VenDIumYNR2/JnodCW1fQoHM55/Hlh5vDtdddx1XXnklzz33HOeeey7r1q3jnXfe4e9//3uLjEdoHrV7stjMhqTqyISFOlDHbpchcqtvmASkVPcbqp37K0sHlzbaCkWC7FQzsiRR5Vfx+FUMEoCGa8NKSr56FV/Z/qjnZGRkMHbC1bh7n0qVYsfp06lwNnwFpiZZglSrkWmn9qFf5zT+l1dKUNPwq6E6MVK4DQLgdAcI6joPfvQri9bkc8vYPnW+77pOqDCeziH35YnX52f00R34da+TkqrY/k5GReKV60ceMfVVwq9BuI6Mz+XDqMii15HQ5iUUyLTUFZChQ4fyzDPP8MQTTzBv3jy6devG3XffzYUXXtgi4xGaT+2eLPVV9s2yW7l0eA4fbChkd6mbozJTOGNgR/724a+Uu/34g3okKVWpUbIfQl+8GTYTDqsBp1clw2rghD7Z6LpOz8wUpo7uxZYDLtbsKUfXdb7PK2HZr/vjjrspGRWJNKNEifdgdCYTCg5UPVTReERPByN7deDmMb0xGOTI65duMbBqxWc8+cj97N28Meq4VquNG2+8genTp9OjRw8Uxcgf31zDso37GhxTV4eF3w3vSresFIoqfOQ4bIwf2gWDQWZ9vpMUs4LNZAKkUEAT1Ch2+VD10GuvADaTEqll8vDEXF65fmTM+17uCRx2X576+vxUuHxc9eL37CyupEOalYcnDuHE3tlH3BWKk/p24PieDhav/InsbkeJyr7CEeGQam9v376d119/nby8PAD69OnD1VdfTe/ejV8F87TTTuO0005r9OMKrV+8nixnDuxc5/6j+h3s5XPdSz9Q5QvSLcPKrhIPBlnCoISWR33BUBBjUkDVJXxBFavJgtVkYF+Fj/0VXl65fmTkl/sx3R2RsvgX5XY+7EAm/J2RzNUlq1HCE9Ap03QUGYyyHFruJdR5OsUoYzUpSLLMH8f1jYw9t1s6P/zwAzP//GdWrFgRdUyDwcAVV1zBnXfeSb9+/bBYLJHHnrhkaEKBzGfTx2CzGet8bHDXtIO5KWlmQGanqwpVDyXQqhpYjAbSbUbSdaJqmTRVL554n6k0u5n3/3gya9eubfAOibZOliX6ZBgZdnT2ET1Pof1IOpBZvnw5t99+O0OGDGHYsGEA/PLLL4wfP54nnniCs88+u7HHKAgRtXvl1PXX5Ma9FZFePr6Aji+oRorfhWKH8P8NpZ96AxqegIrNZCDVLLNmdxlTXvmJY7o7uHlMKDh/7qvt7Cqt4vvtpYc/hySXqGwmhWy7ifwyT6hGS/UxdL36biCpupu1qkflnGzZsoUZd/yZT5d+EHPM888/n7vuuotjjz0Wm80W8/jyzUUN5o9IwMeb9tOvU2qd70ft3BSLUcYX0JCl0B1UsgR2s4LXr2ExyThsRvKKXKwvcCJLUrvsjuyq8jPljZ8pKHeT47CxYNKx2FMar6SFIDQmv1+N/G7smZnCzWN6YzI1f3CcdCDz2GOPMXXqVGbMmBG1/emnn+axxx4TgYzQZOL1yqm9vl/q9hNQdUyKTJU/GMrNqK4YUDPPpWaOTEF56KpNuBP051uK+HxLEU9+9lvoeU0/vbjcfpX8Mg9Gg4wa0FB1UNWDSbB2s8KBSj/eQBBNh3vf/Io7b3ub7d9+GHMr9dDjRvLI3+9j7NixpKSkxD1nQbk7oW6XT3++lYCqxX0/auambCxwEtR1JD20vKfpUOzyU1Llx2xQyLKHejDdvXg9ZVX+et/jI9EZj69g24GqyM+7Sz0MeeBT+man8NmsU1tuYIJQh78uWsfbP+VH3fH59BdbuXxENx66eGizjiXpXksHDhxgwoQJMdsvvPBCDhyI30VWEA5HvF45dfWJybSZMCoSfjXUTbnmbdDxGiJ6A1okiKkp3Ounpal6aIwQyvMxKVIoaVbXKXUHcPuDaD43Vd+8zq9zrifv6/ejgpjULr04bvK9DLr+H2QPPKHeIAYgx2FrMLlZB0qqfA2+Hyf17cAr14/k/y4YjN1siBTMCy/3yZKEN6Cyp9RNpTdAQZmnwWMeaWoHMTVtO1DFGY+vaN4BCUI9/rpoHW/8sCembEVQ03njhz38ddG6Zh1P0oHMyJEj+emnn2K2r169mhEjRjTKoAShptq9cixGJdQnxqjQOc2My6cyf2VeqHAeB3MzytwBzEYJs0GpLoGvJ9yOoDUvZGh6qOicIoeWyvSgH9dP77Nn/o0UffMWWuDgrdKm9GxGXX0Hv7v3RQaefC47nBpPf7Et8lrFc0qfjITG0tEqNfh+QGiZafzQLiiyhKqF7iiTpdBynyxJyJJevVwGOY6G3+MjiavKHzeICdt2oApXPUUIBaG5+P0qb/+UH/lZkg7+F/b2T/n4/c3XNiHppaVx48Yxe/ZsNm7cyDHHHAOEcmSWLVvGrbfeGnWr9umnn954IxXarZo5L1Kt8uqSJEVyKzburSC3W3rcWjT+oFbn1RWZ6BYICayotChZgoCmI+kqVRtWUP716/idRVH7KNY0eo69hB4nXUjH7I6UazoBTxC7xRD1WsVzxQs/JjSW/EqV/jUu7tT1foRt2leJIoUKEQY1MMgHa9uEC+xK1f2UrKbEjnkkmPLGzwnv9+bUE5t4NIJQv+e+2h65ElO720X46ndQ03nuq+1MP+PoZhlT0oHM/fffD8DChQtZuHBhnY9B4xfHE9qvmjkvdTErMk5Np7RG1dm6atG4/UE0VQ8tbYT/xUl115ppzewWA84t31P0xUt49u+MekwxWeg88gKOPv1yNFsGRa4AeqWPVEvozqK6Xqu6HKj01vt4WF1XuOKdo9TtR5ZkuqZbKany4QserC1jMsj4gxoSENQ0QinNDR/zSFBQ7m7U/QShKe0qrf/qYbL7NYakA5lk2hUIQmOomfNikWMz4n2qhlGWyLRF391Ru25IcaWPh5f+itmgYDMZMBskfEGdYpeXck/TtEE4XLWvDvkKNrFn1WuUba+1Bi0r9DrhbIaNn8wBKYMyn4anwo+mH+xADfFfq9qyUy04va4Gx2dQYhfh4p0j/D6aDDJHZaXgDWgEtVAek67r7Cp1A9HjTXbcbVGOw8bu0oZbJeQ4Yu8uE4Tm1jOz/vy6ZPdrDEnnyNSloqKiMQ4jCHWqmfNSu52AruuUuwP06WhncNe0mOeG64aM7ZfNxOE5DOqajl/VsRhDzU+tJoWu6ZboJ0mtI0cmHMTIEgRK9lD634fZ9/qdMUFM5sBRjL79ecbceA9yRlfKPCqV3gBBTcNsCPUngoZfq5renXpCQmPskR5dQ6a+c9R8HyFUrTfVYsRqCjUylKqvlJmNUsLHPBIsmHRso+4nCE3p5jG9MVSXQ6h9Q0D4Z4MsRUpXNIekA5l//etfLF26NPLz9OnTGTlyJKeccoq4WiM0iXDOi92ssK/Chyegommhar37KnwJ94mJdxy/Flq6CNObptl20nQgWFlM2fK57H1xGpVbVkU9nt33GE66dQ6Dr/s7gYyjyHf68fg00q3GSEuFNKsRXSfp18qRaiErpe5Cd2ESUO6XEn4/6nsf91f6yUwxkZliYn+F/5Df47bInmKib3b9f732zU4R9WSEVsFkUrh8RLfIz7p+8L+wy0d0a9Z6MkkvLb311lvMnj0bgG+//ZbvvvuOF154gY8//ph//vOf/Pvf/270QQpti6bprC9wsmafDym/HEVW6i0xX7PIXapJ4eutxewuc5OTZqbI5WdPuYcemTauHdWD91bvpaDcQyAYRNXBqMikWQy89s1Grnrh4FLIB38cwdBundhX5uLMp76hyqdiNsrcflZvTumbxfINe9le5COcjeGwyXSxWNhV6m0VQYzqdeH6/l2cP32AHozOC7F17kWfs68nc+AoemenMapvFl9s2s/a/Ar8QRVJhs6pZjJSTBRV+skv92BUJLplWDl7cBdSzAZ+2VPeYNn/1f93Fsc98EmdfYhSTTLH9Mhk414n+5weTIqExWigf6cUhnbP4OfdZeyv8EXaFYTF63kU7vcDMO/LbWwsrCAQ1DAaZAZ3SWPaaX0bpY5MvIKKNT8nKR98yqe3jaZzhj2hAoyN4bNZp8a9BVvUkRFam3CdmNp1ZAyy1CJ1ZCQ9yda/Q4cOZfny5XTp0oUHH3wQv9/P3//+d3bs2MFll13Gjz8mdrdDc1FVtdWVHW+NY2osNYvWOd0+ApqEJIHFqJBiUmKKm9Xcv9Ttj9RKaa+0gI+qNR/h/N9/UD2VUY+ZHJ3ofdY1ZB5zBhU+qPSF8nrMioQvzm3lNqMMhPKLZCkU+AVUvd73pKaj7voooXHLEvTNtlNU6aPSG0AjdLk33EByypg+0fOMEyAs+CqPZ77cRqUnWOMYBv54Wt+YYyQrXkHFVduKYxqFQqhez0l9OzRYgLExNUdl3yP5909Ye5gjtPw8m7qyb6LzS/qKTFpaGoWFhXTp0oWvv/6a2267DQitY6tq8903LrQ+4aJ1Ll8QkyLjU/VITotb07HXKG728MRcgMj+/qDWroMYXVOp2vAFFd++QaAiuvCbISWdnqdeQacTL6RSVSioiE5MjhfEALirWwKE7gYCv6pGfq7rPan5BZ1oEAOh2ja/FYWuiBkVCYMU2uZ0B3h02RaAqECkrp5HC77K49FlW1A1HYMiYaw+RoUnWOcxklHzs5lhM2FSZPyqxtdb4xfZU3X4emsxR3e0R/aP91o1FnuKSdxiLbQZJpPSbLdY1yfpQOass87ijjvuoGfPnpSXlzNmzBgANm3aRM+ePRt9gELbULNoXadUMztL3Oh66K4WSZIIqjpOT4CeWVb2V/h5dsU2QIrsv7GwssFzHIl0Xcez7QcqvnoFX/HuqMdkk4XuJ08kZ+wVuLCwtyqArid/d5Wmg1ECtTp7WNfBZJRj3pNww0ZZlvh176FX6ZZ0HVlWkCWQJQ1/UGfeijyuP6lX1DJTTcGgxrwVeaiajskgIVf3lEjmGHHnX6ugYrgWkeZN7FZuXQ0gGy1YZIXOaXJUc8sjMWdHENqapAOZv/zlL+Tk5FBYWMidd94ZKXV+4MABrrrqqkYfoNA2RDVqDOqRpQypunqrIoMvqOIL6DhsRjbvq0RCIsNmoth15NUGSYQ3fyPOla/gzf81arukGOgy4hy6n341PnMGez0BdD02TyUZugRa9QUvHVA1HUWWot6TmgXnznv6h0M+V80qMLIkY1A0Kj0BlqwrZOKxOXU+Z8m6Qio9geqWBdGBSqLHiCdeQcXtZYl97vJKfAzJCd3ZdqQX5xOEtijpQMZoNHLjjTfGbJ88eXJjjEdoo+pq1Fjz60iSQNdCxc5STIbqho169RJU+1pS8h/YhfPrV3BvrR0sSGTnnsJRZ99AMK0rRW4/mvvwApiw2i9xQNWRpVD/7/B70lgF52p3EZAlUKm/oFtBuRsNMMS5wJHIMeKJV1Ax0eTA2vsdycX5BKEtSiiQ+fzzzxkzZgxGozGqBUFdRFuC9qm+Ro1ApIKrQQ4FLkYldKXGr2qtomZLcwhWHMD5zRu4NnwRiupqcPQdTu9zb0LqeDQl7gBqI/fVqf1lLBEOOEJXzwyNWHCu9mqLFiqgXG9BtxyHLdQqQo99fqLHiCdeQcVEW1HUHs6RXJxPENqihAKZadOm8e2335KVlcW0adPi7ifaErRf4WJnmwor6ZQaSqb0BlTkSBsAHYtRwWyU2F/hZ0DnVEBi874KfIEjO0lc9VRS8b//ULl6CboafYUlpWtf+px3E6ajjqOsyk+wuZbZqr/FJUIJuf6gxsAuaZGCc0unjzzk5aWa1z00XSOo6qTbjIwf2iXuc8YP7cL9H27E6Q4gS1rU8lKix4in5mezc5ocWV7qnWEiL4HlpT5Z5sj/Hy7ON7BL6hFZnE8Q2qKEApmahe5E0TuhLlGNGiurGzUG1epePDqyJJFmUdhV6sEgS+R2c3BSryz+tGgd3uoeO62hfktj0gJeKlcvoeJ/76L5ouuDWDK70Ovs67ENHEuFV8VZ6YtzlKYRvlqmyKFieelWY1TBuUFdsw/92JKEpmtoeqgXkyJLTDu1T71JugaDzLRT+/Dosi34gzoGJZRjlcwx4qn52dxX4cNhM2JWZCSjCUggcFSMaJqOT9UodweO6OJ8gtAWNUqLAkGAg8XOBnZJBUL1TRRZxqDIKIpEodOHyxvE6Q7wr5V53Pr2GgZ0tqPIEgZZOmKWmHRNpfKX5RQu+D3lK1+JCmKMdgd9L/wjubf9G7X3aIqrAvgPM0fIXEe/ozCrUY68rhKhf/BS9X9KJBFb4ppRR8XcTrzzH+cnNY6u6RYcttCXfkDV0bTQVZQ/n9M/odump4zpw5/P6U/6YRwjnpqfTbcvSJHLh9sX5JSjOxDv5VMkOOXoDlH7D+yS2mS3XguCcGiSSvbVNI1Fixbx6aefUlBQgCRJ5OTkcM4553DRRRdF3REgtE/hRo3r8sv4af1mjh3SnyW/FPLqd7uAUI2R8F/aTneAr7aWYDPKOGwmFFlCQme/04s7GP/6TLrFgD8QxJPAitTATlbyy/1RlX0VjOSXuli1vYziKh8Oq4niSg/l3vgBhUUBWZaRJYlgUKWuXXVdx7P1O8q/epVASX7UY4rZRvdTLqHTyZdSrhoo9ajYjAq+GndTS8CILkbWFgUxKxKpFgNBTY90mFYUGUkNUObVsVuNdM+w8cb1x5NmN+P1BvnbRxtZvascm0nhypHduXhYNz7asI8HP/oVq0nBbJBDdytJUmS5L6jpqKrG6Dq+mBd8lYdBlqIqd9YWDoo0oKjSxx1n9qdTuiVS0K12Zd+GTBnTh+tP6sWSdYWHfIx4ajcRjVvZ16w0e2VfQRAOXcKBjK7r3HLLLaxcuZIBAwbQr18/dF0nLy+Pu+66i08++YRnn322KccqtBGyLJGbk456wMzgzmnc8MpqNJ249UE8AQ2TP0iXdCu6rscUeJMlMBlkfAENnVBF23q+W6Ns2u/h13vPwmaL3zfI7Q4w6O+f1Hscrwq//vUMgDr39e7ZQPmKl/HtjV56lRUDR508nqPOvA6/MZV0q5HsGgG/ruvsq/AxsEsqr1w/EoDrXvqBTYWVZNnNUX8chPaVGNU3tG/NL1SLxcA/LjkmZlwXDevKojX5bCqsxGE11nE8X535HjXrupgNoVpAalAjUOt1NxtlJEJLSf6gznNf5/HT3WccVuBhMMhJ32KdqLoK8QF0zrCz9t4zY6qIxttfEITWI+FAZtGiRfz444+8/PLLnHhidOXJ7777jmnTpvHf//6XCRMmNPYYhTamZq+lr0rzqPAECN35KqETuuUXDtYHUTUdSZLYV+EL3WZb68tSkiRUTcdYXV010SAm7IRHP0cCTEaFy47LYfpp/dhUVMlH6/ayqbCSbUWJFeM75sFPMNYqk+0/sJPyla/gyavVmkOS6Dp8HEefewN+WzZ5FX5STD4qPQF0wGxQ6JBqRJZC3ak3Fjh5f+1eLhrWlVvG9uEvi9aRX+bBalKwGhUkCZyeYNL5GfHyQxrK96hZ1yUUqOh1vu4BVUOWJNBD+TaHWuulppa4CuL1Brn/o41s3FXC4J0buO/8wVgsSVenEAShBST8L/Wjjz7i5ptvjgliAEaNGsXUqVNZsmSJCGTauZr9bCrcPjxqGZoeWkpSNS10C7Yih5Y3OFgf5LT+HdlX4WXN7rKYY6qaTmgV6dDSgSt91WtQPpVnV+7g2ZU7Duk4AQ0CWuhYQWcR5d+8QdWGL2LGldlvBD3PmUIwoyc7vUGoCCWUVvk1QoswAKG8C0UGGYmgrvPgR7+yaE0+Y47uQJrVyL4KHxXe0F1OBlmmf2c7fzl3YNL5GQ01aqzreOG6LrKu49fqDmIgVJ9GrTX/VXnFhxzIxOuH1JT9jW58+Qc+33ywkvG6onze/DGf0wdk8+LkkU1yTkEQGk/CgcyWLVu488474z4+ZswYXnvttUYZlNA21exnY1ZkPMHYL0BNh0BQA0MomAnXBzmpTwcuGtaVZ77YxpOf/dZq72BSPRU4v3sH188foqvR7QJSu/Wn13lToesQyrwBdG/D7QRUDTR0FBlsJoV1+eV8l1eCzaTQPdOKpoE3oOIOqFQkcLx46ssPqUuOw4akE7OUlIgvtxSxaltx0oFHvH5ITdnfqHYQU9Pnmw9w48s/iGBGEFq5hBeynU4nWVlZcR/PysrC6XQ2yqCEtieq11KaGWf1lQRTjVKtOgeLkAVVLVIfJNUaqg8iyxJTR/dqlUGM5vfi/O4d9j5/E5U//jcqiLF2yGHgpHvpfdMcKjP74/QESKanvA6YFJl0q5GgqoeuQGk6FoNCitlAlt1MN4eVKp/K/JV5aMmurVUL53uM7ZdNbrf0epdrzh/SOerxZPL4VVVLepy1+yFZjAqyLGExKnROM+M6zLnXxesNxg1iwj7ffADvYQSQgiA0vYSvyKiqisEQf3dFUUT363YsqtdSQMcXPNhrySATufMl/DWk6eAPxtYH+fjX/QnVlGmuujO6GsS1/lOc376J6iqNesyUmknPM64l9ZizKfdpuD2H/oVnMsh4A1qoym51FVpvQMNqCuXkhHv8bNtfyftr95JpNzVp/siWIhc2kxK5CpRoYCZLkGJJvhdRzc8PgMevEtRCVaItRrlJ+hs9sDSx4p0PLN3EQxfnNso5BUFofEndtXTXXXdhMtVdltvvF31H2rM6ey1Vf78aFRkdNabfj82kcNsZR0fVBykod4MUajpYO+m3prqSghuTruu4f1uF86tXCZQWRD2mWFLocerlZJxwMU6/REki94E3KNTzSK9OmlWr+1IdbL8YWpIrrvLz4Ee/IktSk+aPlLr9mA0KGVaJMk9i/Z6U6sBVkSR8mpZUL6Lw58cf1Ch0evAFtUhbC7NBJivFTKCR+xvtLK1qeKck9hMEoWUkHMhMnDixwX1Eom/71VCvJYMsI6GRaTMT1EJ3Hr10/fEM75ERdZxwzx1ZljAQSo3VNL2OO5lAQUJNZg0nQd7d6yhb8TL+wt+iz2kwkjPqQrLHTMKlWyjxajTWdSGTIkdeN61GX6owly/IXqcHVdOxmRTSLMYmzR/JtJnQdA2XP4gih66AqVrsbBU5VBdIkSV0HTRdR9X1pHsRhc+31+lH0wkVSAzdDIUnoLHX6SHNYmjU/kZHZabwLSUJ7ScIQuuVcCDzyCOPNOU4hDYuqtdSmgmzQcbjV1EIXd0IajpWo0J2qon9lX4Gd0nlmG6OmOPU7LljMkgYJBld1tGD0bdd64BBhsZczfQXbads5St4t6+OfkCS6DT8DLqeeT1VBgelwZp3HzWODnYjsiJjUmTcfhWbScFiDAUyuq5TVOElqIaCmHSbEQkJi6zQOU1mX4WP+SvzOLF3VqMtMw3snIpa3R7AVF1HRpY0glp0d2uDHLqNPvweW6rf90Fd05LqRVT7fHJ1Uo4EGGQdfzAUzA7snNoo8wP4v/MG8sYPuxPaTxCE1ksUSmgnwrU5iqt8lFcFSLcacHqCOFKMdEgx15troWk6n/+6l1sWriWogUGCeVcdg8VsRtE1/rxoPSVVfkwGmUBAZaPrYN8gNXDwC9/lU9lYGKrZ8vVWH73vXkqKScGiqpTUCEiyTaFAxRfUgbojlbpu+z1UQed+yr9+naqNK6h9zSFrwAl0O3sKvtQcSgMqBBs3gAnzBDQUDQxKqGWAIst4gxpmRcbpDeAJqCiyRMc0M16/djB/xNQ0+SMbCysiy4Oh96Hu17rme2SsHrvJIHNSn9AdUuHPVUO1YTbtq0SRQs9XQ/d9R67qqVroio8iSWzaV3lYc6w9jnH9O/DFluK4+58+ILvd1pMRVY2FtqJV/wudO3cuzzzzTNS2Xr16sWzZshYaUdsUrs3x614nFd4gqqZH8g8UWSLNYmBQ1/Q6cy1WbSvmqhe+j9oW1OH3b/wScx5vMPnLI1V+ldoZCAeaKd1KdTtxrnob19qlMbdSp/UYSM9zpqJ1Hki5LwhN3KF7V6mbDJuRod0cjDm6A19tLY7UfFFVDaV6qeZApR9fUK2RP6KQZTc1av7Iqm3FPLx0E5XeQFLFBwOqTopZwh/U+Pc3O3ntu1306WiPmk+82jClbj+yJJGTYaXEVT1HLTRHizE0R7dfPaw5xqtRYzPKuAOxAWqaRWm3t163RD0fQThUrTqQATj66KN56aWXIj8rtSqrCvUL1+YorfLjCaioNYqb6Tqg6VR4g/yyxxmTa1FXEHMk0PweKn78LxU/LEL3e6Ies2V356hzb0I+aiQVPpWoZkhNOSY9FAj8fkxvRh+dzY2je0f+Gi51hRJ8S6pCX+KKLCHJoffPG1ApKPOQbjU2Sv5I+PNS7vYnXUEZQv2z+na0R2rA1KyL0ynNErc2TDjHyqTIHNXBFnPVyRvQMMraIc8xXo2a7/JK4vaSqvCqTJz3DYunjT6kc7ZVLVHPRxAOR6sPZBRFITs7u6WH0SaFa3NUegPVAYweScAN374cSdDUNCq9wUiuBcATn25psbE3BV0N4vplOc5Vb6JWlUc9Zk7rQI8zr8Uy+Awq/Rq6r3GuwIQbZCai0htk/oo8TurTIarHTzCocf+HG1G1WvkjEhDJH9EPO3+kZi2XdBOUexp+Tm06IGlBZKMZsyxH1cUxG2Qkqe7cnpo5Vp3TzNW3nYf+aNF1nXJ3oM6eUMnOq3OaJdJvyoRcb0NMgDV7nLjdgXp7dR1J4r1WTZmPJQiHq9UHMrt27WL06NGYzWaGDRvGrFmz6Nq1a9LHaU01bsJjaeoxrS9wklfkwmoM1QORJQkNPdTpSAKp+ne4LIXuNsqozrVYlx9qE/DTrvImHV9z0XUN9+ZvKP/6NYJlhVGPGax2up96JanHXUhlUKLC17g5MMlc1dAJ1VNZl19Gbs7BPJANe50oEpFO1IqsRQJRVdMxyBKKBBv2lkc9L1nhz4vDamTbgUO/5Xh3uY++HU14AmpUXRyPX43UxQFwWA2Rz1tuTjpTT+nFPe9vZF+FF4fVGLkSUO4JYDcbmHpKL3RdSzrBu+a8IBQYAewpcyf0/JnvruXZSccmd9JWrL7fP/Feq7Da71lr1Vy/Y1vakT7PROfVqgOZoUOH8sgjj9CrVy8OHDjAvHnzmDRpEkuWLMFutyd1rPXr1zfRKA9dU49pzT4fbp8fsxL6Syv85SdBJHdTB3RNRwcCAT8+FX5avzneIdscz861lK98Gf++bVHbZYOJnJMnkHnyFVTqZpyHUou/CXgDQX5avxn1gDmybc0+H6qqkmWVcPp0AqoeeR9NCqSbJbyqGvO8ZEU+L8mU8a2DP6jj8bhxB3Q0TY9clXJ7PaAevKVc03XcPj0ybhtw/RAzizcHKajwENRDieU5aQYmDjBjq9zD2rV7DmtenuDBuXkDiS0b/lZQwtq1a5M+b2tX1++feK9VWO33rLVrjb/3m0J7mWc8rTqQGTt2bOT/HzBgAMcccwynnXYaH3/8MZdeemlSx8rNzW01+TWqqrJ+/fomH5NS4MS2bg2yBLIcupNIUqPXliRAkkP9qI1GE4oBRuQOCO3z9XdNNram5t+fR9mKl/HuXBP9gCTT+bgz6XjadbiN6ZSr8e/IaQkWo4ERuQOi/toNv482k0JWWihfJFh9JcZilENVlP1qzPOSFT6PYlQgJgU7cSaDhNVqA4OK7Ald9ZAlsFmsUVdkvAEVmx497mHApDN0NhZWUOb2k2EzMbjL4d0tU3NeFuPB81s8bvxqw8FMv5wshg0bdsjnb23q+/0T77UKq+s9a42a63dsSzvS5xmeX0NadSBTW1paGkcddRS7dzdc+6E2RVFa3Rvd1GMa2i2DPh3t/Lq3ApMiR+4q0gktK4X/qtf0UF8fT0BjUNc0hnYLFakb0dPR5paXAmWFlH/9Ou5NK2Meyxo0ipyzbsSb0hVnUGva0sDVwt+/iSwxSYTq8QztlhH1xR1+H8P5IzbzwX+2uq5T7gkysEtqzPOSVfM8RzmM7CxPrKJvbT0cZiRJwmpSouriWE1KJOeivnErCgzrkXnI86gt6vUzHhxD9wwbGwsrGnz+k78b1up+dzSGun7/xHutoHE/a82lNf7ebwrtZZ7xJNw0sjWoqqpiz549Ivk3QbIsccvYPqRaDCiyjCxJkeZ/4e9VSQrlyCiyTKrFwC1j+yDLErIscfuZ/Vts7MlSq8op/fQ59r5wc0wQk9ZzMLk3z6HjJffiNHfG10S1YOoiJ9EUymEzMu20vjFfEOH30W5W2FfhwxNQ0TQdT0BlX4UPu1mJvG+HNdYa53EFD+1XgwRosgFN0/EGtJi6OE0x7obEe/18qoahgXMP757ebhJ9ofk+a4LQmFp1IPPoo4/yww8/kJ+fz88//8wf//hHZFnmggsuaOmhtRkn9e3AgxOG0Ds7BatRQZZCJeUliJSWT7MYOKZ7esxtlSf17cDCm05oucEnQPO5Kf/mDQr+NYXKnz8E7WBymK1jTwZd9yDdr51NRXof3P7GuxOpIRJE2g0YDTK9OtjIzUkjzRL7V5MkQa8ONuZddWzc21pP6tuBhyfmMrBLKm5fkCKXD7cv9NdxY94OW/M8XdMtST03K8XI6KM7RI1vaDcHfz6nP8d0T2/ScTck3us3qk8WfbPrbkEwvHt6u7v1GprvsyYIjaVVLy3t27eP22+/nfLycjIzMznuuON45513yMxsvMvOR7pV24p5/qvt7Hd6kCWJVLNCdpqFC4/pSo7D1mBl35P6dmD7w+clVNnXbjZwYq8MPtxQlNQYsxSiKvtCw92tdTVA5dplVKx6C9XtjHrMnJ5Nz7Mm0/34swi4feyq0dTx8mEZdMvuQFaqiRWbD5Bf5qG7w8rYftls2udCC3r5YEMx3oCKIsuM6WWnImjAYpLJtJm56vjuGI0K5Z4AG/P38M9PDt4FlWOG+y45lk4ZVjRd55d8J5IOw3o4IvkEG/dWUOTysmGPkwMuHylmA+cO7szQ7o4G/8o9qW8HTuyd1eTVVmufp6zKxW1v/xp5fNmME+iamsqkl35kn9ND53Qrb1x/PGl2c9xqsDXr4rRUldj6Xj+3O8DMd9fyW0EJ/XKyePJ3w9rVlZjamuuzJgiNQdJr3193hFFVlbVr1zJsWOOtcx9O6e5gUOO/a/NZvXkHw/r3RJEU9lV4yXHYGD+0C5qm89xX29lVWkWOwwJIFJR76J5pY0zfDlT61YTPGS5sVeHxY1SUSDXYgKqRZjU2+l9X4fOVuf1U+UKXpBVFItBALkqaRWHd384BYH2+k9/N/xZfnOfouoZ709ehW6nL90U9ZrCmctmN0/j37L9hNjfPHRVN8flqjdrDPNvDHKF9zLM9zBGO/HkmOr9WfUWmNTqc0t0Lvspj3oo8Kv+/vTuPj6o6+wD+u8ssmewhgWwIITEBspAgyCKyulAVFLXF1ipWiwWpdW0RbatS96W2VfRVaq37xqIirqiAiopYAjFsElDIAtlnyWx3Oe8fNzOZSTLJZJ1k8nw/H5TMvXPvOfeGzJNzz3kehwSFAa9+Xwqg5THPyvV7ICssYDnCf2z5AUYdjwSTvtNzehJbVVuc2twE1rI6g+cAp6T2amIr30RacnMQIgqAO4gJtRangnqLAwkxEchMMAUMYhxHd2tLqU+W+b3O6wxIP2MREs64DAcMJgjC0P1NmhBChhoKZLqgJ6m7124vw4MfHISiMrRO08GgLaBRgvjQd0oqbC6503OWVlqw53hDuzVkVAbYJQV7jje0W2iwvRGnygYrznrsCzhlBh7Ab6YkY+X5hRBFHqWVFvzvpwbsr7KA57T6SV0197HtmJ6ZiJIKc5ttrqof0Ljtv3D+1Kq+E8cjedI5GDH3KtiFGDTIKiC78Zd3vofI8YgwCDg3dwREnkdDkxsNdimoIpnBcrsVPLntMIoPN6Kw/jCum5UFvb5rvxWFojBfV8+pqgwlFWbsPuGCUGEeNCtWCCFDAwUyQepJ6m5ZVrFmaxkUlUEnAD2dc2pxyhifbES1TQp4zmqbE1ZnxyeyOhVU25wAWgKZ9kacKs1Ov/epAJ795gSe/eYDJMcYwHMczA6pWwGMR6NDxnvf+z8qkuortKXUBz5vs39i7hnNS6mT0SipWonkZq/ubEma9sz2I1oeHY4DYwx8J0Uyg3XHhr14fVe5N8X91p8O44nPyrB4UjruvbggqGOEojBfV8/pu7/d5YZp724qHkgIGVAG9KqlgaS00oKyahviTXq/3AoAwHEc4prT+5dWts1LsWlvFawOCaLAeQoE9Fhtk9ThOUvLLZ2u+mXN+3l4Rpz2V1kQaRAxPNrQJohp7YTFhUaHBFc3Kl8HotgaUPfRk6h89ro2QUxsRj4Klj+O4Rf/GY364XC2M+LUmsoAuXkkTGX+RTJ3HK7tcvvu2LAXL+883qZOj6wyvLzzOO7YsLfTY7R3rSMNonekrTvt6u1z+u5v0guIN3Iw6YU+bSMhhHQVBTJBqre7ISkMeqH9S2YQeEgqQ73d3WZbRaMdKrS5Kb01tdqtqB2eM/hstdp+rUecjDoBtiZrUEewuxX0RmoW1WVH4+cvoeKZ38K2+z2/pdSRyaORd9W9GHnlQzDHZHRr9EdlWr0ilcGvSKbahYJIbreC13eVe7/muJal1h6v7yqHu4P2tXeteZ6DUScgOcYAm0vpcrs609Vztrs/17dtJISQ7qBAJkgJJj10zcXv2uNSVOh4DgkmfZttaXEm8NA+SHtYxsZLL/AdnhNBj/xo+7U34vSTpX8+pJgswbLrbVQ+81uYd7wGJrm82wxxw5Hzi5U4ddn/oSl5QqePyzqiMi2QFHkODrdW0PDbH+vxl7e+7zDw8PV/2494R2Ja30vP13LzyrNAejK6111dPWco2kgIId1BgUyQclNjkDk8Cg12qU1FWMYYGu0SModHITc1ps17FxSkIDpCB1lh4Hqprk9ipK7Dc+alxXQaynDN+wFtR5xsruAK6vUEYypspZ+h8t/L0PDJWij2lg9F0RSDzPN/h9wbnoOcORMNDrlLlaQDkRQGt6xCBWB1ynBKKl7eeQzj7/owqEdCP9UHV4Ooo/16MrrXXV09ZyjaSAgh3UGBTJB6krpbFHmsmJ0JgecgKcFlhu1IjFFEtU3q8JxJ0UZEG/3ncrfeK9ooIilay97qO+Jkc8moaHD0rJEdYIzBUbYLJ/57I+refRSy+aR3G68z4JTZl6Hw1hcgFF6IOidrMxelR+dG+w/dgp3fMiqh/SywXdmvJ6N73dXVc4aijYQQ0h0UyHRBT1J3L52ZiZXzcxBr0rUJKDgAAgfoBa7TG2LU8YgyiJ2eMzc1BhNGxiFSL3gDJ88HOM8BkXoBE0bGeUdzPCNO9U1uVFucUPooT6Kr8iBqXrsd1evugrva5/ELLyBl8s8w8dYXEHnmEtS4xH6ridSV+S3LZo7x1udpfYk8X4s8h2UzxwQ8Rk9G97qrq+cMRRsJIaQ7aPl1F/UkdffSmZn4zfSMPsvs2zo/yO9mjsGf3/oeVocEp6xCVlWIPA+BB3Q8hzqbC+c/vh0xBhF6gcORWgfqmvrmUYFUVw7z5y+i6eCXbbYl5p2BUedeA3dUKmqccs/Xp3eB5wpyzROxPfNb/nDWqe3ur9cLWDwpHS83L/H2fsb7fNZfeloaNn9/AhWNdu99FcWWENUzunf7xhKcsLgQZ9LB0DznqdHedqTN977GGkSU1Tahyuxo99iBdPWcbfaPEKEyBqekoNEhU/FAQsiAQYFMN/A81yaJXLBEkceiojRkcDUoLBzZbtrlQB+iHQmUHyTepMOPdXbvfi60BAl19uBWJfWEbK2DZcersO79CFD9R1hiMwqQcd5SYHg26hwSmLPv5+W00c7ncGfzYO69uAAnLE58cqCmzbaspEh8UHoSb+4q11aqAbj73VKsmJ2JpTMzvft5Rvc898ysMuh4DuNSov1ytPjeV7NTgt2teIMngWv/2IEEe85A+9tdDCamBNyfEEJCgQKZMBAo4/DOI/VwBZjj0NdUVxMs36yHZdfbfquQAMCUnIHMn10D/ZjT0WCXoNilXjmnp9CkSc9DUpg2ubq5wjcHbaIva7V/ezqbB7PjcC3KapoQHyEA4OCWZehFEQ63jMM1TeAAiAIHsbn6tdku4cEPDgJAm2Cmo9E93/vKGNDkaltZM9CxA+nqiKJn/73lDdhVcgCT8sdSZl9CyIBCgcwgFyjjsI4hJEEMk92w7t4My1dvQHH4j/gY4kYg45wliMqbB7NTgcXW+WMsfRcyIfMAwAFuWYUnTNEJHHhOe/TCcSpccqBilNr/O5vf4nu90+K1gMfhsMNgMOLASZt3Py144pqzCqtwywxrtpbhN9Mz2jxmam90z/c8I6IN3mP7VgVnDNAJWoDW3rEDXqcujijyPIf8tFgoNQbkp8VSEEMIGVAokBnkAuX7qLX1zihHsJiqwL5vK8xfvAzJXO23TTTFYNTsy5A45UI0ShxqmoJvm8r8P7w7bAMAncBDVlSojEHgOcgqIPKefMocOLSMyjDvf1osnpTeYb2k1tfbMxHW4vRfHu6pNA4APMdDFFRYHRI27a3CoolpnfbF9zxmp6zV6NK6oF0P5jkHD1FgXTo2IYSEEwpkBrlA+T4CLZvtbYwxOI7sgmX783BV/+i3jdcZkX7GRUiZdRlszIgTdhnBZxzWqCz4d6hombQLAAmRetjdMlyy6g0sIg2C9pim1TCPyHNB1UkKeL19RnoYmtvgM3DBc4ACLctzMHzPY3G2H/h5ztPVYxNCSDihQGaQ8833YeRbRhICJTLrTa6K/bBsfx72Y9/7b+AFpEw6ByPnLYHTEI8TDglA9yby8s3DMcGEZTz8R0IMIo/h0ZFwSi0rtow6Hk5ZhdXuwlnjU+CUFYxKiMSymWOCqlwd8HqLLVFL65IFQMvIUlqcKYie+J9HF+Bees7T1WMTQkg4oUBmkPPk+9hfZUVyDO99vJQYpUO1zdXJu7tHqj0O6xcvwHrwqzbbhuWegTHzr4YaNxI1TW6ojp494uI5AM0f1p3hAMiKCp7nEKkXYXcriI3QIUIvANCCDk8OlHEpsfjbRXldnu/R+np7xBhF8D7t9A1kVKZCVhhiTTosKEjp8nlGROtRxXPa4yWfESpt9EmFrKBLxyaEkHBCCfEGuUAZh92qlka+N8mWWjR++Dgq/7OiTRATk1GAouX/xJhf3oUGQzJqbe5eKSmgqAg+2OC0D/lhkXqsmJOJaKPY5SzMnWl9vZ2SApUxuBUGo9gyQqOoTAtgVG2ir8BzWDE7M6jJuK3Pc9LqRlyEDoD/YzaOAyQFXT42IYSEExqRGQTcbsWbJO+UeBPOPNU/MZ4n38eaz35AaaUFboVBL3DISY4Cz3HYW2HuUVChOG2wf7seDTvfBpP9VxpFjMhA1vyrEZU9BfUOGU5rz0eBRJ7DrOxEnLS4cPCkFZLCgprwy3HA2BHRuOP88ZielYjc1Nigc6Z0RaD8KqeNjscp8RHY/P0JWB0SFGijRLEmXcBcL7KsYtPeqnaT53nO8+TWwzhwwgqDjodL0h6ycdAuSEfHJoSQoYACmQHujg178fqucr96Q4998gOMOh4JJj0yh0dh+axMlFaaUVpphcWp5RyxAzBXWHpUolKVXHAUb0bDV2+2WUqtjxuBMWf9GglFZ8PsAiotPcsIrOeBnJQYnD0uGctmjsGuYw247719AFoCGJEHMoeZAJ5HeYMDLln1uy6KClQ0OlFaacb0rMQeZWHuTEf5Ve5emBcwOPG1dnsZ1mwtg9UhdZg8T1ttxcEoCog2iEiI1KMwPQ7TMhODzuxLCCHhigKZAeyODXu9qfBbc0paccf9VVaseOV/sDgkqAwQeMCzgKa7QQxTFTj3fYaGz1+GZPHPXiuYYjFq1i+QMv1C2FQdKq1Sm5pDXcUBkFRgf5UVCyekYtexBtz0RjFqrC5w0GpQgQMUheFQjR0817zMutUwEwPQ6PBPENeTLMydCZRfRRT5TpdBr91ehgc/OAhFZQGT5+Wmxrab6LC+ScLOH+txUVEaBTGEkCGPApkByu1W8Pqu8g73sThljBuhJWJjAAwiB0nRPtyDzb3iizEG6chONGx7Ac6an/y28foIpE5biFGzF8MpRqHKLkFReydXDQNgEDi4FYYnPjuMvNRY1De5wQHQiTw4TxYYXoVLYVAYoMg+j1h8llxz0OoldSVBXH+TZRVrtpZBURn0YkvCPt/keZ7r0DrRoZEXkBzD44TFhae2lWHqmGGUoI4QMqRRIDNA/d/2I21GHNpTYXZ6AxbVkyQNXQ9ipMr9MG97Dk3H9vlv4EWMmHg2Ms66HGr0CFQ3SXA7e7+wpMK0tP5Wh4y95WYwxiAKPBgDVKaVGmCBPq9b9VnkMaATxG3aWwWrQ4Lok3XYoyV5nozSKguSogx+iQ4BgOM4xJl0KKu2obTS0mcjToQQMhhQIDNAdVa40MO3DAFrXprLdSGSUeqOwfrFizAfaL2UmkP8+OnIOudKiEkZaHAocFj6Zjk3oDVX4LRsM25Fhapqy5a9fergfa2/5qDlnRmoCeIqGu1QAYgBOsU3XwdJVgPmAzIIPMwqQ729b6qVE0LIYEGBzADVWeFCD4Pgs5KFa1nN0hnVWoOmr15DffHHAPNPNxeVMQGnnnslTKfkwexksPZwIm8wOLQkduM5TkuA1/y15/M+2FEmTzAzUBPEpcWZwEPrb3tPhTzXQSfybRLvebgUFTqeQ4JJ3+ftJYSQgWzgTSAgAIBlM8dADGLuQ1qs0ftBz3PNSdI62F91WmH//L8of+Za1O/+0C+IMY4Yg9wr7kLR0gehpuShwiLB6upeRt6uEjhAVhiijAL0vvNaOPhHM0GQVSA6YuAmiFtQkILoCB1kRcs148uTPC86QkRuSgwa7JK3npOHJ6lf5vAo5KbG9GfTCSFkwKFApp/JsoqNuyuwbr8NG3dXQJbbT76v1wtYPCm9w2PFGEXUNEmIM+kgcFq9n0AriFTJCeeu9ah8+reo2bEOTG6ZqKuLS0bWxTdj8vWPw5g9HRVWBY32nq9GChYHwK1oSeMuPW0kRF5L8ga0FEfsSlsEDgM6QZwo8lgxOxMCz8EtM8iq2iZ53u/nZGHFnKw2iQ57I6kfIYSEE3q01I/88oYw4I3SEtzz3oGACc08BQxb55EBAKOOR5RB9OaRefjDA9h93NzmGExVoOz/FDXbX4LbUue3TYiMQ9qMS3DKtAVw6yJxokmCW+mbx0gxRgF2t9ruBGae00ZQVszORHZyDDbtqUJ6XAROWp1wSWq7I0y+5QB8cQB+Pil9wCeI87TP8/0QKHmeb+K93kzqRwgh4YICmX7SOm8I31zd0DdvSKBg5s4LcjvM7PuXt0raBDGMMbAfd6L20+fgqPVfxs3rIzBy2gKkzbgE+uhhqLdLsFhcYNBW/BgFgONF2N1acj2RB1TVv+zjcBMHvcEIl8uN0zKSYHVJGJ0QiTvmj8XeqkbctWkfqhubkJ0ch39fMQlRkXq/DMXp8RHNwYrLL2lcSbkZOoGDXuSRlRQFh6TA3lypmgdQZXFqAQwDdIK27lpl2qongdMCgcunjO69G9eHls7MxG+mZ3SYPK8vk/oRQkg4oECmH7TOG8JxHJjKwPEc+OZHQh3lPdHrBfzhrFPbPXbrfDMcB6BqH+o+fQ624/v99uUFHTKmzcdpF1wBhzERDU4Gi1vByGGRfkt8GWM4YXFhwsg4AAwHTtiQHGNod59xafF48vKJfh+sUzOTsPn6GSguLkZhYSEEQei0Hx7+RRkNMOlFmPTat6miKKhsjtd0ov/SZZVpj2VUBoxLju7wHANJMMnz+jKpHyGEDHYUyPSD1nlDmM/Dkpa8IW3zntia3Fj68v+8v62vvXwioiL1qKy34qzHvoRT0kYqPLNsuIZjaNz2PBoPftOqBRxixk1H1lmXIzJ5DA65ODQ22sFDG8moa2p5nMT7HO/Lwy4YRA5OmaHW5gIPgOe1RyACB0QbdZiZFY+Fj2/Hj/UOmHQCTok3AADKah1QFRkjv/wSr1w9BTFRBjidMv723n78WN+E0QmR+Mt542A0+n8Leool3r6xBCcsLsSZdNrKLEVFrdUFjtPaKCkMKlPaXGu7S8ad75TizgvGQ69vu9qnMx3VPmpzLruEm9YV41BFHbJL/4fHLi2EyaTr8jkJIYR036AKZJ555hk8+uijuPLKK3HHHXeEujlBCyZviAL/vCdnPboVh2tacskcq3cg728ft/t+oakGli9fRm3xJ21mxZpGT0DGvMsxbEwu7EyPSpvbO0+lbRjQEsQA2uonp8z8tqnNO0gAnE0S7n3/B+92m0tBtc1/jo250oqCe7bAIHBwKS3H+hJ1eHnnMcwbm4Rnrzrd7z2tizJ65oakx0fgeANgdUoBi2C6FYaXdx7D67uOY/GkdO88o2AEX/sIWLTmC7/HeUfN1Ri/+iMUjYzFxhUzgj4nIYSQnhk0gczevXvx2muvIScnJ9RN6bJg84Z48p60DmICEd1W2Ha+ieqv3wFT/JdJG0ZkYtTcX2LEuNPhFow4YZfhkvsuoV1nfIMYX58cqME1/93ZbjDTem6IyhgWPfllUJW8ZZV561QFE8wEU/vIE8y0DmJ87T5uxqI1X1AwQwgh/WRgrk9tpampCX/84x9xzz33IDZ28M0VCC5viJb3xNbk7jSIERU35O/W4ccnr8HJLzf4BTFiXApGLbwBk5Y/jKT8WaiVdDhhccMVYJn3QPDJgRo4nW3z1XjmhszKTkJ+eixGxRmDCmJ8vb6rHG53e2NPLVrPYRJ5Xnvkx/PQixyU5tpNsqzCbpcCBjEeu4+bYbf3Th0qQgghHRsUIzKrV6/GrFmzMH36dDz11FPdOoaidPxh1pc4Tktw98hHh+CWGUQB2nMblUFuzp+ybOYYcBzDb1/aFfA4IhTI+z/B8U9fhNvW4LeNj4zDiGkXI2PquRBMcWh0M1jMoRuB6aq7N5finovyOtzn18/t7PJxZZXhyW2Hcf3crID7vFVc4Z3DxHGc3xwmjuMgClrtpreKy/HxvpNBnfemdcV48vKJXW7vQOX59xPKf0d9bSj0ERga/RwKfQTCv5/B9mvABzKbN2/Gvn37sG7duh4dp6SkpJda1D2To4Ff5UViw4Em2CUtcR3HMUTqOVw8NhKTo80oLi7G0ZNtf9sXOABHv0HllmfhqKv028bpTRg26XyMmbEQhphhaFJFNFjcXR65CLXSn06iuLjjLMLldbZuHbv4cDmKEwK/97sDNu2xH2Ng7V04pj1m+u7AURyqcAR1zkMVdSguLu5WeweyUP876g9DoY/A0OjnUOgjMHT6GciADmSqqqpw77334j//+Q8MBkOPjpWfn+9dBhwqhYXAHbKKd/ZW4n8Hf8TEnNFYWJDqtyomY9c3OHlUG20ReA7iiVJUffwsrOUH/Q8m6BBbMA8ZZy5C9PA0OJgeVXYJUh8ltOtruaNGoLCw4xGZ9C+/RGOltcvHLsxKR2Fh4BGZo6wCb5SWABwHLsAkJp5jOG1sBurVkzhqru70nNlpw1BYWNjltg5UiqKgpKRkQPw76itDoY/A0OjnUOgjEP799PSvMwM6kCktLUVdXR0uvvhi72uKouDbb7/Fyy+/jJKSkqBvniAIA+JGC4KAiyemYwxfi8LC9DZt+vevJ6Hgno+htxxH9cfPouGHVo+aOA6ROWdg1KxLMSw1A7IYgWqHDKc0OAMYjzvPz+30/rxy9RQU3LOlS8cVeQ7Xzcrq8NgXFabjnvcOwGyXwHNok59GVhhiTTpcVJiO88anYPzqjzo972OXFg6I77feNlD+HfWlodBHYGj0cyj0ERg6/QxkQAcyU6dOxaZNm/xeW7VqFcaMGYOlS5eG5Y2rqa4A+/SfOLhzC1qXfzSOLkT6zMVIzsgBM0Si3slgsw/uAAYA5o1NapNPpj0xUQakxhpRaXYGfezFk9I7zSfjqX304AcHm+cwqd4SCJ45TJ7aTaLIo2hkbIcTfotGxlI+GUII6ScDOpCJiopCdna232smkwlxcXFtXh/sampqcNddd2Ht2rWQJP8VL/rkLKScuRhpOYXgI6JglXk0mgfXqpjWeWQ82ssj05Edq+bhtL99hLqmjvsv8lyX8sgEW/sIADaumBFwCTblkSGEkP41oAOZocBms+Ghhx7CY489BpvNf0JqZmYWhp/xcwwbOwmjU5Px89Mzcffm/eB6MR+MQeAQa+RhcSloZwW0V5SeR2qsETa3ipHxRkzJTMSEkXGIEDjc997+wJl9E6O7lNm3MzsO1yLaqIOiqLBLKhTP5FwG6EQep42Kw5SMRCybOabLmX2DqX3ksXHFDP/MvmnDKLMvIYSEwKALZF588cVQN6FXqKqKf/3rX7j//vtRU1Pjty0lJQU33HADLr30UgwbNgyxsbFgDFjy3E6YnRJSYyNgcdpaPsR74Lvbz4LRIGLSfVvgkiXoA9QwEkUB790wq90P9XdvGN7mNUVR2tRaMhpF3HtxfrfbqqoMT20rg80lIz2h/fpQPM/j93Ozul1UMZjaRx4mkw5PXj6xTT8JIYT0n0EXyAx2qqrilVdewapVq1BRUeG3LS4uDsuWLcMVV1yB4cOHIz4+3vvh+H2FGWXVNsSb9GhwSL0SxADA0pf/h0tPS4fFLoHnAYADY8wbJPjWgnp7TyWyR0SHrApzaaXFew0AwOFWIKsqRJ6HUccjzqRDWbUNpZUWKrJICCFDBAUy/ej999/HqlWrsGfPHr/XjUYjlixZgmuvvRapqalISEiAXq/326fe7oakMFQ12mFz916W3j0VjahsdGg1llQt0OI4QOR5CLwnmAFkBvzrkx8gKSokhUEncMgcHoXlszIxPSux19rTEc81cMsqqswOuGS1OR8PYBB5DIs0QFIZ6sNgAjQhhJDgUCDTD7755husXLkS27Zt83tdEARceumluP766zF69GgkJCQgIiKi3WMkmPSwOKVeLzVgdyk4IbesAmLQ6k5KilY2UeA5yKqW67a+yY3kWCP0Ag+3omJ/lRW3byzBfYvy+yWY0eotqag0awn/RJ4Dx2ltdkgqKs0OxBhFJJj0nR6LEEJIeKBApg8dOHAAt99+OzZu3Nhm25QpU3DnnXciNzcXCQkJiIqK6vBYmQmmPquX5FZalhtzaA5mAMiqNuKhqNrrpyREgNeeP8HIC0iO4XHC4sJT28owdcywPn/MNC45GkrzkmhtLo92Pg6AyDO4ZQaFafsRQggZGiiQ6QMVFRW488478fzzz0OW/ZcCnX766bj55psRGxuLyZMnIyEhwW/SaiD3fnCgr5oLBiDGqIPZIYGhJZhRm1PzA0BCpN4bxHhwHNev81L2n7BC4DgIPAdtwIhpIzLNwZbAcxA4DvtPWGmODCGEDBEUyPSihoYG3H///VizZg3sdrvftpycHNxyyy2YM2cOoqOjUVlZibi4uKCCGAD4sb7jitg9ZdTxiNAZUWNz+U0kNuh4iDyH5Bhju+8zCDzM/TQvpd7uBs9xSIuPQJ3NDZesgKnaHBmjTsCwKD3sboXmyBBCyBBCgUwvcDgc+Oc//4lHHnkEdXV1ftvS0tLwhz/8ARdddBFiYmIQHx8PURRRXl7epXOMTojEl6jrfMdu0gk84k16JEbp0eiQYHfLUBnw5/PG4e8fH4JbUWHk2y4vdikqdDzXL/NSEkx66AQOeoHH6EQTnG61ZdWSnodTUqHjVZojQwghQ0jbpCAkaKqqYu3atRg7dixWrVrlF8TExcVh1apV+PDDD/GrX/0K6enpSE5O7nbxy7+cN663mt0GByAuQkvkxnEc4iJ04Dke+WmxuKgwDZnDo9Bgl8CY/5Jvxhga7RIyh0chNzWmz9rnkZsa420LGBChFxBt1CFCLwAM/doWQgghAwMFMt307bff4rTTTsO1116LY8eOeV+PiIjAsmXL8Mknn+B3v/sdTjnlFKSnp8NkMvXofHq9gPg+yhpr0gtwyipUlcEhKThhcSHKIGD5LK2+0PJZmYgyCDhhccEhKe3u1x/5ZHieGzBtIYQQMjDQo6VuUBQFZ599Nszmllo7giDgF7/4Ba677jqkpqYiLi4OcXFx4HkeqspQWmlBvd2NuAgdVEXB7hMuCBVmFKTHg+c5uN0Kntxehr3lZsQZdbh82ikYGWvABU98BbNDmxuiqCrE5pwuvSXepENeWizKqm0wqww6nkN6fATOzU1GhF7A+u/KUWV24Gf5Kdh7vBFHa5u8+41Lie7XPDIAMD0rEfctyseazw6jtNICt6JCL/DITY3B8tmZiDbqsO1QTUgS9oWS7/fYUOs7IWRoo0CmG2RZhk7XMjoyf/583HjjjcjKykJ0dDQSEhIgitql3XG4Fk9tK0NZtQ1NLgUOSQHHATqOIWbvbmQOj4Je4LD1YA18aypuKK5oddZejF58qCrD8785HaWVFnxxuAYflp7ESbMDT3z6Ax76QPGuYuI5INqow6KJaZidMzykH5allWaUVlpgcUpgDHByCoqPN+Ivb38PlxS6hH2h4vs9NtT6TgghFMh0g8FgwCeffIJNmzYhNzcXeXl5iIyMREJCgt8cmB2Ha3H7xhLYXDIMIg+HJHtXBMkAYgF8e7Qezj7KDxOMJreCr49oc3te//Y4bC4ZYNrrHgzayiCzQ8KLX/2E1FijXzXo/rR2exke/OAgFJVBFDjwHKCoDE1uBUdr7UiM1GFETERIEvaFgu/3WLxJH7JkhYQQEioUyHRTQUEB8vLyUFFRgfj4+DYJ7XwLHI6INuCnejsUpq0OAgdIsopGhxTSIAYAZJVhzWeHwXEcbC4Zw6P1OHiipQq3b04ZvcjBLTOs2VqG30zPaLeAZJ+2VVaxZmsZFJV5i1syMKg+k5Ab7BJGxBhh1PV/wr7+5vs9lhxj9C7lD0WyQkIICRWa7NsDPM8jPT293ay8vgUOXTKDS1abU+q31C9ySEqb94VCaaUFB09YEW/Sw+JQvI+4OA4A1xzMMADgIAocrA4Jm/ZW9Xs7N+2tgtUhNY/EaN+6jGl/PB/TCgPMDrm5/f4J+8KN7/dY63xE4d53QgjxoECmhwIltPMUONQLvDfVP+f3Pk9wEHpuRfVOmtVqLLXlqcHEN9c2qmi0t7tfX6potEOF1gZvu1jz7CGf13z7YBD4sC0k6fs91p5w7jshhHhQINNHPMnb3IqWsM1T3NDDU7V5INALvHduhS7AhyIHrb2eekxpcT1bTt4daXEm8Ggpm4DmNnGA38X17UN/Juzrb77fY+0J574TQogHBTJ9xDd5m0HkYBB5rYp08zCMyoAIXdtMuaEwPiUaOcnRaLBLiIkQIDQHWKy5eqRnsi/AICsM0RE6LChI6fd2LihIQXSEDrLCoDLtw5vj4BckChwQGyE2t79/E/b1N9/vsVAnKySEkFChQKaHVJWhpNyMbYdqUFJuhto8XOCbvO2k1Y2YCB0ETnvsIcmqN5uusZ8nzLbGATivIBXXzdbaWm2VEO/zG7zn45HnALfMIPAcVszO7PeJvgAgijxWzM6EwGuTjrVHdszvUVOcSQeAGxJJ8ihBICGE0KqlHuksf4cneZtnnwi9CIe7OY8Mz8AATM5IaDePTH+J0AsYmWBq09ZIvQC7uyWPDGNArEmHFbMzQ7b0GoD33Gu2lsHqkKA0ty/KICAp2gCXpKLa5gpZwr7+1vq+hTJZISGEhAIFMt0UbP6O6VmJmDpmWJvMvt+VHsSk/LFdyuzrklUEu1hbgPYBLwfYrhM4MKaVJ/DMoWjd1hijiCM1TagyO5AWZ8KCgpSQjMS0tnRmJn4zPQOb9lahotHubRvPc0Myu23r+zaU+k4IIRTIdENX83fwPIf89Fjv+xVFgVpnQH5arPfDRq8XcONZ2W3OtfPPZwEA3G4F4+/60PvoKpBxIyJR0yRjbHI0GGPY+WM9VJVBJ/Lgmpf2MMYgqSp4jsPY5Gi/ORSt21p0Snw3r1LfEkUeiyamtXndt+1DSev7RgghQwUFMt3QlfwdwX64yLKKTXurUN7QBMY45KXFIFIU8NinP6CiwY66JjfkToIYAKi2uWHSiyirseGiojTsq7KgwS5BkdqO5cSbeFw3OwsAUFJuHlS/zXuul++IzEAYLSKEENK/KJDphmDyd5i7kL9j7fYyrNlaBotdCvrRUSB1TRLqmiRwAF766kdYXYGT7tXaFfz17e+REhcxqOr0eK6X1aFdLx7A3e+Whnz+DiGEkP5Hv8J2Q2/m7/DUDmrshSDGFwM6DGI8Dtc04auyOkQaRAyPNiDSIHrn+ew4XNuLLeodnutltkvgeQ56QXt0Z7ZLePCDg1i7vSzUTSSEENKPKJDpht7K3+GpHSSrDKF8kCOr2ugSz3PNNYoMsLkUPLWtrNM5Of2pda0lkefBczxEnode5KCoWh0oOcT1qwghhPQferTUDZ78HbdvLMEJiwtxJh0MAg+XoqLRLgWdv2NTSXPtIB4IMLjTb47VN2F0olYzqrN5Pr7zU1JiI5CZGAmzS+50fk1781q6stKovVpLHjzHQxRUbx2o9iYCE0IICT8UyHRTb+TvqDQ7oEK7CaEe92hyK7C5ZEQZtG+JQPN8fOen+BaXNOkFxBp13vk1UzLiA77PM6/lz2+XYHhz7pdg5ud4ai2JAeJDngMUhKYOFCGEkNCgQKYHepq/IzU2AjzQknSuLxvbCZUBFQ0OpMVHIMogtjvPxzM/RVEZeE/DoSXLa3IpMIqCd37N3y7Mhamd94kCB5HTHmc1uRQcddkxLFKP5Bhju3l4fPnWWmrvEoeyDhQhhJDQoDkyPeTJ3zErOwn56bFdWra8IL+5dtAAmNJhEDgojKHG6oSqqm3m+fjOT9EJ/pW7PT1udEgYEa2HzaXg6e1HoDLW7rwWDpzf+xsdEjgOnc7Paa/WkofK1JDWgSKEEBIaFMj0M1lWsXF3Bdbtt2FTSRWWz8yAyHMhf7SkAhB4wCmpqGh0tpnn4zs/heN4byDCcQCaK1ArKoPZKSPOpMORmiYcbZRb5gH5zGthaAmEPO9rdEjNx/Ofn+OrvVpLKlMhq2rI60ARQggJjQH9aOmVV17Bq6++ioqKCgDAqaeeiuuuuw6zZs0Kccu6x2+eCAPeKC1BdIQOs7IT8d2xxl7JI9MdHLTHMlC1+k/p8RG4/bxxfo92fOenMBb4MZikqIg16mBWVFhcKuyeeUA+A1XtvV/yme3cUR6eQLWWBkIdKEIIIf1vQAcyycnJuPXWWzFq1CgwxvDWW29hxYoV2LhxI0499dRQN69LWs8T4RkDOC3/ybZDtbj17ByMiDVi1091eOWb4x2O0HAAUuOMsDokSIoKh9zz8ZyUWCNUlUFSGO5dlI8JI+P8treenxJoTo+uefWWTuARY+AR1zwPyHdeC9fO+3U+yQU7y8MTqNYSjcQQQsjQM6B/8s+dOxezZs3C6NGjkZGRgZtuugkmkwnFxcWhblqXtJ4nIvAceA4QeM6b/+T/Pi/DgoIUrDpnbKePmRiAD68/E3vvno+Su+YjSt+zLDQMQIxBhFthGJsSjfy0tmUVfOenMKbCU5mBMe0ADFp/Yo0iGu0SxiRFIiNObJkH5DOvhQNa3t/8vrgIXfPxgsvD46m19Pu5p2LRxDQKYgghZIga0CMyvhRFwQcffAC73Y6ioqJuvT9U3iqu8Jlf0rY2kygAVoeEt4rL8fG+k0Ed85b1e/Dk5RPBccDv52bjgQ8O9qiNR2qbkBxrxLVnZoAxFa0vF8cBy2aOwSMfHYKktFq11LxPXISIk1YXogwils4YDb6pAhzHvO9zywyioIJvPp7njXERIlSVwa0oaHRIiDKIAdsx0Hi+r0L5/dUfhkI/h0IfgaHRz6HQRyD8+xlsvzjWOjXtAHPw4EFcdtllcLlcMJlMePTRR7s0R0ZRlJCP4Kzbb8Nr39sg8oGXDcsqcFleFL4+7sBRc+c3LyNWwCPnJHm/fvugDS/utXV70nCUjsOt0+OQP9zQ4X5vH7Rhw4Em2CUG1WfCrlHkEKnjkBYjYtHYyDbH8X1f81M16AUg3ihAUhhkps2jCfR+QgghQ1NhYSEEQQi4fcAHMm63G1VVVbBarfjwww/x5ptv4qWXXkJWVlZQ7/cEMvn5+R1eiL60cXcFVq4vAc9rj5UAgKkqOF57HKKoDKrK8OAl+fh430l8uK+602OeO344nrx8ot9rsqzijd3H8fTWo6hsdMIg8hA5FVap8zZeNikN9y7KD6o/sqxiU0kVKs0OJMcYkZkYBYtLQrxJj9wULY+OoigoKSnxu+6+70uNjcCC/ObMvlUWNNjdfu8fLNrrZzgaCv0cCn0EhkY/h0IfgfDvp6d/nQUyA/7Rkl6vx6hRowAAeXl5KCkpwQsvvIDVq1d36TiCIITsRl9UmI573jugFTrk4Pd4iTEGWWGINelwUWE6zhufgvGrP+r0mI9d2vbGCoKAK6aOweWnZ2DJczuxv8qKRJOAA9WdZ7q964K8oK+PIAi4dNIpQe/rOW6g9xWekhDUsQayUH5/9aeh0M+h0EdgaPRzKPQRGDr9DGTQzZBUVRVud9tluQNZ6/wniqo9llFU1ib/icmkQ9HItpNtfRWNjIXJpAu43VMLKsogoNauwKTr+DbPG5sEo3HAx7SEEEJIGwP60+vRRx/FzJkzkZKSgqamJrz77rvYuXMnnn322VA3rcs8+U2e+KwMFqfUPE+EISZCh9/PycTPi9Iw79GtOGFxIsYoYkyiCUdq246kJMcYkDMiGr98+iu4FRUJESIEUQDHcZg3djjOG5+MtV8eRXF5Q/NKIAZF4WAP8HhpQloMLihIw6f7T8LskBEXqUNipKFLpRZCQVVZt0tDEEIICR8DOpCpq6vDypUrUV1djejoaOTk5ODZZ5/FGWecEeqmdRtjassyH6Z9/djHh3Dvewe8+zS5Ak/2PWFx4bVd5e1ue//7E7gVe4NqBwcgyiBg3wkrbnmz2DsBV+A5xBhFjE+NDbr4ZX/bcbjWW6wzmGKThBBCwteADmTuu+++UDeh17ROiOeJHCzO0CybYwCsLsUvMR1rzu5rccrYc9wcsHhjKO04XIvbN5bA5pIRb9JDL/CdFpskhBASvgbdHJnBKFBCPEkJ/YIxTws8D2UYA1TGoKgqrE653eKNoaKqDE9tK4PNJSM5xgijTgDPc50WmySEEBK+KJDpB74FFz2FEwcSrvk/nM/XTlmFyHPtFm8MldJKC8qqbYg36dtNLBio2CQhhJDwNfA+VcOQp+DiYJiLyqAl51NUhhqbCzU2F744XBPqZgEA6u1uSAqDXmj/29Yg8JACFJskhBASniiQ6Qe+BRcHrHYqUvOcFtC88NVP2HG4NiTN8pVg0kMncHAr7dcI76zYJCGEkPBDgUw/8C246CmcOJA013304wm8InQC3LI6IOae5KbGIHN4FBrsElonpA622CQhhJDwQoFMH1JVhpJyM748UoeLi9LAc/BLiKcTQv+sKWALOEDkeQyPMSI+Uj8g5p74Jvo7YXHBISlQVQaHpOCExYUog4DlszIpnwwhhAwhA3r59WDWXq6TU4aZUG11welWoDKA5xjiTDo0OSVIIRioMem0OSWywvxGZAReG4lJijYiyqBVpjYPkLkn07MScd+ifO+1NasMOp7DuJRoyiNDCCFDEAUyfSBQrpMGu4TESAPmTxkBS30NThubgVqrhIc+OtD5QYNwQX4yHlpU4M3sC8YhLc6ILQeq0dCc2lfHc4gz6eGUFegEHldMHQVZYXjuyyPQiwKMOh46Qfu/Z2XQQJt7Mj0rEVPHDKPMvoQQQiiQ6W2tc514ggEjLyA5hscJiwullRbcUBiJgvwUnP7Ap0FNAjaKPJxy22EbngNEHpAU4IuyOuj1Am44O9vbliXP7YSsMpw6PKpNscoTFhe+OlKH55ZMxrc/1WN/lRXRRl2b/RrtEsalRA+ouSc8zyE/veOaVIQQQsIfzZHpZa1znTDG4HArsDolOCUVsREijtQ04WijjE0lVbA45aCOG2iljpYgmIcocLA6JGzaWwVAC2LeLq7EvkoLjDoBDklrg8OtgIH55V3Zf8I66OaeyLKKjf+rwBOf/oCN/6uA3E6QRwghJPzRiEwv8811YnPJqLE64ZJVby0jvcBD5DlYXCrsZgdYkAuBAo3aMGjBDM8BCrScNZ75OaUVZm2FT5M2qZfnOPA8YBAFJEUbYNIJ3rkvs7KTBs3ck7Xby7BmaxmsDknLzwPg7ndLsWJ2prc4JyGEkKGBAple5sl10uhwo8bqhsIYRJ4Dx2lBh1NSAI5DdZOC7BERPT4fBy1AUpn2d7tL8c7PEXjetz4lVMbAg4NTUlDR4EBStMFv7stgmHvSumaV2Nx3s13Cgx8cBAAKZgghZAihR0u9LDc1BmOSIlFtdUFh2iRZnuPAcVowA2ijJ1+XO/Gz8SMQIEltG4FCCY7TKmjLCkOUUcSe8kbYXDJGxBhgd/s/tmKANwBQVBXVVifGJPnnXfHMPZmVnYT89NgBFcS0rlkl8jx4jofI89CLHBSVYc3WMnrMRAghQwgFMr2M5znMz0vRHgUxT7I5BpUxSLI2N8UoCjjcIGH15gMQ+eBuQUdPoNyKFhxdMjEdR2ubEG/SwyUxuJtXG/mGIioD5ObnVCoD5uclD6hgpSMd1azi25knRAghJPzRo6U+MDLBhCiDCFlR4VZUqIr2WIcBAAOsLm2k5PXvyoM6HsfBG8m0DmjU5rk3pwwzISna4J2f0+SWvZWsW79HVhgEDogyiBiZYOpBT/uXp2aVGCDu8p0nRAghZGigQKYPJJj0iNQLMBn0sLsVVFtcHQ+pdILnOIyIMSBCL6DRLqHB7oZB5BGhF2DUCTDpBDQ6ZLzw1U9QmTYSI/I8FLVtEOOhMG2+zkDJDRMM35pV7Q0ieeYJpcUNnuCMEEJIz9CjpT7gqQnUaJdgtktgCBxQBIOpDBanDKPIw+KUIPAcxiRGIi3OhGGRBkToRSTHGOCWVSiMocHuhl7gOj2nS1aROYhGZDqqWaU2zxOKjtBhQUFKiFpICCGkv1Eg0wc8NYF0Ag+HpPRoNMbDKck4Vu+AyoDh0QbwrebWcByH+Eg9BA7QCTyO1DYFddx7P+idrML9QRR5rJidCYHn4JYZZFXVAhhVhVtmEHgOK2ZnQhTp25oQQoYK+onfR6ZnJeLKaaMh8J2PjHRGWzoNJETqEaUXERfR/uMgg8CD53lcOW00DDohqGP/WB9cwDNQLJ2ZiZXzcxBr0kFVGSSFQVUZYk06rJyfQ0uvCSFkiKE5Mn1oRlYiXthxFC5ZRX1zraPuiDSIMOp4/GHeqXj0o4NwKyqMfNtAxVMTaUZWIo7XNeGVb493euzRCZHdbleoLJ2Zid9Mz8CmvVWoaLQjLc6EBQUpNBJDCCFDEP3k70O5qTHIGhENoP3JqcHS8cC4lBhcOCEVmcOjtGy9rVICe2oiZQ7X8sL89fzxQR37L+eN637DQkgUeSyamIbfzz0ViyamURBDCCFDFP3070OeuTIxEToYxeAe9bRmEHjEmvRYPkub+xFsTSSjUcS8sUkdHnve2CQYjTQoRwghZPCiQKaPTc9KxH2L8nHa6HjEGIWAGXrbY9LxOH1MAu5blO+tdeQ53riUaNhdMqptLthdMsalRPvtBwDPXnV6wGBm3tgkPHvV6T3pGiGEEBJy9Ot4P/CtYVRtc6LkeCNOnKhC0akZqLI48d2xRhypsaDRLkNWtZGcUQlG/HpaBn51+iltMu92pSbSs1edDqdTxt/e248f65swOiESfzlvHI3EEEIICQv0adZPPDWMgFjMPjURxcU2FBam45ujDXhrTyVcCpAab4Je4OFWVNQ2Sfj350cwJjGy3crTLcfrnNEo4t6L83u5R4QQQkjo0aOlEFJVhqe2lcHmkpEcY4RRJ2jzW3QCkmMMsLkUPLWtDKraC4loCCGEkDBEgUwIlVZZUFZtQ7xJD47zfyzEcRziTDqUVdtQWmkJUQsJIYSQgY0CmRBqsLu9RR7bYxB4SCpDvd3dzy0jhBBCBgcKZEIo3qSHTuDgVtR2t3sS3A2mwo6EEEJIf6JAJoRyU2KCTnBHCCGEkLYokAkhT8I8LcGdE412NxrtLlRbnDhWb4dO4PC7mWPaXVZNCCGEkAEeyDz99NO45JJLUFRUhGnTpuG6667DkSNHQt2sXjU9KxGXTzkFsspQ0eDA8QYnTlpdsDplNLlkPL39CHYcrg11MwkhhJABaUAHMjt37sTll1+ON954A8899xxkWcY111wDu90e6qb1mh2Ha/HyN8egqip4ngPPASIPcBxgdyvYW96I2zeWUDBDCCGEtGNAJ8R79tln/b5+4IEHMG3aNJSWlmLy5MkhalXv8eSRsTolKCrAAOgFHhzHgYFBVrQ/NpeMp7aVYeqYYfSYiRBCCPExoAOZ1qxWKwAgNja4jLa+FEXp7eZ0m6ctJRWNKKu2IUInwOKUIfAAOIBBm/gr8NqKpnidHmXVNuwtb0B+Wtf7HgqePg6k694XqJ/hYyj0ERga/RwKfQTCv5/B9otjrZfLDFCqqmL58uWwWCx49dVXg36foigoLi7uu4b1wO4TLjzxrRkGAai1qxA47ZGSBwOgqECSiYdTAX4/ORZFyYaQtZcQQgjpb4WFhRAEIeD2QTMic/fdd+OHH37AK6+80q335+fnd3gh+pOiKCgpKcHE3GyY9u4BzwE87wI4+Gf4ZQDPM4h6A0wqw6T8sYNqRKakpGRAXfe+QP0MH0Ohj8DQ6OdQ6CMQ/v309K8zgyKQWb16NbZu3YqXXnoJycnJ3TqGIAgD7kbnp8Uhc3gU9lVaoBd4OGUVPA/vHBlFZTCIPJySgnEpMShIjx90c2QG4nXvC9TP8DEU+ggMjX4OhT4CQ6efgQzoVUuMMaxevRoff/wxnn/+eYwcOTLUTepVnjwy0UYRAs+D5wBJVSGrKiRZy/YrChyiDCKWz8ocdEEMIYQQ0tcGdCBz991345133sGjjz6KyMhI1NTUoKamBk6nM9RN6zXTsxJx36J8TBgZixijCJ7joKoMPM8hNkKHgvQ43LcoH9OzEkPdVEIIIWTAGdCPljyTeq+44gq/1++//35cfPHFoWhSn5ielYipY4ahtNKC2iYXGpskxJt0GBZlQG5qDI3EEEIIIQEM6EDm4MGDoW5Cv+F5Dvnpg2MiLyGEEDJQDOhHS4QQQgghHaFAhhBCCCGDFgUyhBBCCBm0KJAhhBBCyKBFgQwhhBBCBi0KZAghhBAyaFEgQwghhJBBiwIZQgghhAxaFMgQQgghZNAa0Jl9ewNjDIBWDnyg8LRlILWptw2FPgLUz3AyFPoIDI1+DoU+AuHfT0+/PJ/jgXCssz0GObfbjZKSklA3gxBCCCHdkJ+fD71eH3B72AcyqqpClmXwPA+Oo+KLhBBCyGDAGIOqqhBFETwfeCZM2AcyhBBCCAlfNNmXEEIIIYMWBTKEEEIIGbQokCGEEELIoEWBDCGEEEIGLQpkCCGEEDJoUSBDCCGEkEGLAhlCCCGEDFoUyBBCCCFk0KJAppu+/fZbLFu2DDNmzEBOTg62bNnit50xhn/+85+YMWMGCgoKcNVVV+HHH3/026exsRG33HILJk6ciEmTJuH2229HU1OT3z4HDhzAr371K+Tn52PWrFlYu3ZtX3fN6+mnn8Yll1yCoqIiTJs2Dddddx2OHDnit4/L5cLdd9+NKVOmoKioCNdffz1qa2v99qmsrMS1116LCRMmYNq0aXjwwQchy7LfPt988w0WLVqEvLw8nH322diwYUOf98/jlVdewYIFCzBx4kRMnDgRixcvxrZt27zbw6GPrT3zzDPIycnBvffe630tHPr5+OOPIycnx+/P/PnzvdvDoY8AcPLkSdx6662YMmUKCgoKsGDBAr9SLOHw82fu3Llt7mVOTg7uvvtuAOFxLxVFwT/+8Q/MnTsXBQUFOOuss7BmzRq/2kLhcC/7HCPdsnXrVvb3v/+dffTRRyw7O5t9/PHHftuffvppdtppp7GPP/6Y7d+/ny1btozNnTuXOZ1O7z7XXHMNW7hwISsuLmbffvstO/vss9nNN9/s3W61Wtn06dPZLbfcwg4dOsTeffddVlBQwF577bV+6ePVV1/N1q9fzw4dOsT279/Pli5dymbPns2ampq8+/z1r39ls2bNYjt27GAlJSXsF7/4BVu8eLF3uyzL7IILLmBXXXUV27dvH9u6dSubMmUKe/TRR737HDt2jE2YMIHdf//97PDhw+zFF19k48aNY9u3b++Xfn7yySds69at7OjRo+zIkSPs73//O8vNzWWHDh0Kmz762rNnD5szZw5bsGABu+eee7yvh0M///Wvf7Hzzz+fVVdXe//U1dWFVR8bGxvZnDlz2G233cb27NnDjh07xj7//HP2008/efcJh58/dXV1fvfxyy+/ZNnZ2ezrr79mjIXHvXzqqafY6aefzj777DN2/Phx9v7777PCwkL2/PPPe/cJh3vZ1yiQ6QWtAxlVVdkZZ5zB/v3vf3tfs1gsLC8vj7377ruMMcYOHz7MsrOz2d69e737bNu2jeXk5LATJ04wxhh7+eWX2eTJk5nL5fLu8/DDD7Nzzz23r7vUrrq6Opadnc127tzJGNP6lJuby95//33vPp5+7d69mzGmBXxjx45lNTU13n1eeeUVNnHiRG+/HnroIXb++ef7nevGG29kV199dR/3KLDJkyezN954I+z6aLPZ2DnnnMO+/PJL9utf/9obyIRLP//1r3+xhQsXtrstXPr48MMPs1/+8pcBt4frz5977rmHnXXWWUxV1bC5l9deey1btWqV32u///3v2S233MIYC9972dvo0VIfKC8vR01NDaZPn+59LTo6GhMmTMDu3bsBALt370ZMTAzy8/O9+0yfPh08z2Pv3r0AgOLiYkyaNMmv6ueMGTNw9OhRmM3mfupNC6vVCgCIjY0FAHz//feQJMmvn5mZmUhNTUVxcTEArQ/Z2dlITEz07jNjxgzYbDYcPnzYu8+0adP8zjVjxgzvMfqToijYvHkz7HY7ioqKwq6Pq1evxqxZs/z6A4TXvfzpp58wY8YMzJs3D7fccgsqKysBhE8fP/30U+Tl5eEPf/gDpk2bhosuughvvPGGd3s4/vxxu9145513cMkll4DjuLC5l0VFRfj6669x9OhRANrjn++++w4zZ84EEJ73si+IoW5AOKqpqQEADBs2zO/1YcOGeZ/h1tbWIiEhwW+7KIqIjY31vr+2thbp6el++3j+UdbW1noDiv6gqiruu+8+TJw4EdnZ2d426HQ6xMTE+O07bNgwvz74/iABWvrQ2T42mw1OpxNGo7FP+uTr4MGDuOyyy+ByuWAymbBmzRpkZWVh//79YdPHzZs3Y9++fVi3bl2bbeFyLwsKCnD//fcjIyMDNTU1WLNmDS6//HJs2rQpbPp4/PhxvPrqq/jNb36DZcuWoaSkBPfccw90Oh0WLVoUlj9/tmzZAqvVikWLFnnPHw738tprr4XNZsPPfvYzCIIARVFw0003YeHChX7tDKd72RcokCFBufvuu/HDDz/glVdeCXVT+kRGRgbeeustWK1WfPjhh1i5ciVeeumlUDer11RVVeHee+/Ff/7zHxgMhlA3p8/MmjXL+/exY8diwoQJmDNnDt5///1+CRb7A2MMeXl5uPnmmwEA48ePxw8//IDXXnvN+0EfbtavX4+ZM2dixIgRoW5Kr3r//fexadMmPProo95fnO6//34MHz48bO9lX6BHS30gKSkJAFBXV+f3el1dnTcKTkxMRH19vd92WZZhNpu9709MTGwzC9/zdevfIvrS6tWrsXXrVjz//PNITk72vp6YmAhJkmCxWPz2r6urC6oPne0TFRXVbx8+er0eo0aNQl5eHm655RaMHTsWL7zwQtj0sbS0FHV1dbj44osxfvx4jB8/Hjt37sSLL76I8ePHh00/W4uJicHo0aNx7NixsOljUlISMjMz/V4bM2aM9xFauP38qaiowI4dO3DppZd6XwuXe/nQQw/h2muvxfnnn4+cnBxcdNFFWLJkCZ5++mm/dobLvewrFMj0gfT0dCQlJeGrr77yvmaz2bBnzx4UFRUB0J6NWiwWfP/99959vv76a6iqioKCAgBAYWEhdu3aBUmSvPvs2LEDGRkZ/TIUyBjD6tWr8fHHH+P555/HyJEj/bbn5eVBp9P59fPIkSOorKxEYWGhtw+HDh3y+4e4Y8cOREVFISsry7vP119/7XfsHTt2eI8RCqqqwu12h00fp06dik2bNuGtt97y/snLy8OCBQu8fw+HfrbW1NSE48ePIykpKWz6OHHiRO+cCo8ff/wRaWlpAMLn54/Hhg0bMGzYMMyePdv7WrjcS6fTCY7j/F4TBMG7/Drc7mWfCfFk40HLZrOxffv2sX379rHs7Gz23HPPsX379rGKigrGmLZkbtKkSWzLli3swIEDbPny5e0umbvooovYnj172K5du9g555zjt2TOYrGw6dOnsz/+8Y/s0KFDbPPmzWzChAn9tmTuzjvvZKeddhr75ptv/JZBOhwO7z5//etf2ezZs9lXX33FSkpK2OLFi9tdAnn11Vez/fv3s+3bt7OpU6e2uwTywQcfZIcPH2YvvfRSvy6BfOSRR9jOnTvZ8ePH2YEDB9gjjzzCcnJy2BdffBE2fWyP76olxsKjnw888AD75ptv2PHjx9l3333HrrrqKjZlyhTvEuxw6OOePXvY+PHj2VNPPcV+/PFH9s4777AJEyawt99+27tPOPz8YYwxRVHY7Nmz2cMPP9xmWzjcy5UrV7IzzzzTu/z6o48+YlOmTGEPPfSQd59wuZd9iQKZbvr6669ZdnZ2mz8rV65kjGnL5v7xj3+w6dOns7y8PLZkyRJ25MgRv2M0NDSwm2++mRUWFrKJEyey2267jdlsNr999u/fz375y1+yvLw8duaZZ7Knn3663/rYXv+ys7PZ+vXrvfs4nU521113scmTJ7MJEyawFStWsOrqar/jlJeXs9/+9resoKCATZkyhT3wwANMkiS/fb7++mt24YUXstzcXDZv3jy/c/S1VatWsTlz5rDc3Fw2depUtmTJEm8Qw1h49LE9rQOZcOjnjTfeyM444wyWm5vLzjzzTHbjjTf65VcJhz4yxtinn37KLrjgApaXl8fmz5/PXn/9db/t4fDzhzHGPv/8c5adnd2m7YyFx720Wq3snnvuYbNnz2b5+fls3rx57O9//7vfMulwuZd9iWPMJ4UgIYQQQsggQnNkCCGEEDJoUSBDCCGEkEGLAhlCCCGEDFoUyBBCCCFk0KJAhhBCCCGDFgUyhBBCCBm0KJAhhBBCyKBFgQwhZFC74oorcO+994a6GYSQEKGEeISQoNx2223YuHGj9+u4uDjk5eXhj3/8I8aOHRv0cR5//HFs2bIFb7/9dq+0q7GxEaIoIioqqleO1x3z589HeXk5PvvsM2+hPkJI/6ARGUJI0M4880x88cUX+OKLL/Df//4Xoihi2bJlIWmL2+0GoAVUoQxidu3aBZfLhXPPPdcv0COE9A8KZAghQdPr9UhKSkJSUhLGjRuHpUuXoqqqCvX19d59Hn74YZx77rmYMGEC5s2bh3/84x/eqrsbNmzAE088gQMHDiAnJwc5OTnYsGEDAMBiseCOO+7A1KlTMXHiRFx55ZU4cOCA97iPP/44LrzwQrz55puYO3eut7Jv60dLb731Fi6++GIUFRXhjDPOwC233OJXAbk9c+fOxZNPPok//elPKCoqwpw5c/DJJ5+gvr4ey5cvR1FRERYsWICSkpI2712/fj0uuOACXHjhhVi/fn33Ly4hpFsokCGEdEtTUxPeeecdjBo1CnFxcd7XIyMjcf/992Pz5s2444478Oabb+K///0vAOC8887D1VdfjVNPPdU7snPeeecBAG644QbU1dVh7dq12LBhA3Jzc7FkyRI0NjZ6j33s2DF8+OGHeOKJJ/DWW2+12y5ZlnHDDTfgnXfewZo1a1BRUYHbbrut0/48//zzmDhxIjZu3IhZs2bhT3/6E/70pz9h4cKF2LBhA0455RSsXLkSvk/jbTYbPvjgAyxcuBBnnHEGbDYbdu3a1eVrSQjpPjHUDSCEDB5bt25FUVERAMButyMpKQlPP/00eL7ld6LrrrvO+/f09HQcPXoUmzdvxtKlS2E0GmEymSAIgt9ckl27dmHv3r346quvoNfrAQArV67Eli1b8OGHH2Lx4sUAAEmS8NBDDyEhISFgGy+99FLv30eOHIk77rgDl156KZqamhAZGRnwfTNnzsRll10GAFixYgVeffVV5Ofn42c/+xkAYOnSpVi8eDFqa2u9bX/vvfcwatQonHrqqQC0QG3dunWYNGlSEFeTENIbKJAhhARtypQpuOuuuwAAZrMZr776KpYuXYo333wTaWlpALQP9xdeeAHHjx+H3W6HLMudzmE5ePAg7HY7pkyZ4ve60+nEsWPHvF+npqZ2GMQAwPfff+99fGU2m70jKFVVVcjKygr4vpycHO/fExMTAQDZ2dne14YNGwYAqKur8wYy69evx8KFC737LFy4EFdccQX+/Oc/h3TeDiFDCQUyhJCgRUREYNSoUd6vc3NzMWnSJLzxxhu46aabsHv3btx66624/vrrMWPGDERHR2Pz5s147rnnOjxuU1MTkpKS8OKLL7bZFh0d7Xf+jtjtdlxzzTWYMWMGHnnkEcTHx6OqqgrXXHONd55OIKLY8uOQ4zgAgE6na/OaJzA6fPgwiouLsXfvXjzyyCPe/RRFwXvvvYdf/OIXHZ6PENI7KJAhhHQbx3HgOA4ulwsAsHv3bqSmpmL58uXefSorK/3eo9PpoKqq32u5ubmora2FIAhIT0/vdnuOHDmCxsZG3HrrrUhJSQGgjdD0hXXr1mHy5Mn461//6vf6hg0bsG7dOgpkCOknNNmXEBI0t9uNmpoa1NTUoKysDH/7299gt9sxZ84cAMCoUaNQVVWFzZs349ixY3jhhRewZcsWv2OkpaWhvLwc+/fvR319PdxuN6ZPn47CwkKsWLECX3zxBcrLy/G///0Pjz32WLsrhQJJTU2FTqfDiy++iOPHj+OTTz7Bk08+2avXANDm6rz99ts4//zzkZ2d7ffn5z//Ofbs2YMffvih189LCGmLAhlCSNA+//xzzJgxAzNmzMDPf/5zlJSU4J///Kd3bsu8efOwZMkSrF69GhdeeCF2797tNzoDAOeeey7OPPNMXHnllZg2bRreffddcByHZ555BpMnT8aqVaswf/583HzzzaioqPDOVwlGQkICHnjgAXzwwQc477zzsHbtWqxcubJXrwEAfPrpp2hsbMTZZ5/dZltmZiYyMzOxbt26Xj8vIaQtyuxLCCGEkEGLRmQIIYQQMmhRIEMIIYSQQYsCGUIIIYQMWhTIEEIIIWTQokCGEEIIIYMWBTKEEEIIGbQokCGEEELIoEWBDCGEEEIGLQpkCCGEEDJoUSBDCCGEkEGLAhlCCCGEDFoUyBBCCCFk0Pp/qlrDEI2lXRQAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Bateria=df.Battery\n",
"Display=df.Display_Size\n",
"\n",
"sns.regplot(x=Bateria,\n",
" y=Display,\n",
" line_kws={'color': 'black'})\n",
"\n",
"plt.title('Relacion Display X Bateria')\n",
"plt.xlabel('Bateria mA')\n",
"plt.ylabel('Display px')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eCUnSIFeKuBt"
},
"source": [
"Teniendo esta grafica, la cual presenta un diagrama de dispersion y su recta regresora, podemos concluir visualmente, que a mayor cantidad de pixeles en el display, requerira una mayor capacidad de batería. \n",
"\n",
"Cabe aclarar que para hacer un analisis aun mas profundo se requeriría tener en cuenta la tecnologia utilizada, pues hoy en dia se ha logrado una mayor calidad y cantidad de pixeles a menor coste energetíco que los primeros dispositivos del mercado. \n",
"\n",
"(Para nuestro caso, no nos interesa, pero nunca esta demás aclarar)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EjBUOElNMDGS"
},
"source": [
"## Tops"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YWhEgZZqG4mm"
},
"source": [
"### Sistemas Operativos más presentes"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pnrL0SeatgWh"
},
"source": [
"Una característica importante, es el **sistema operativo** quien se encarga de administrar tanto los recursos del dispositivo como las interacciones entre los distintos componentes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GvZhjWwTtCAr"
},
"outputs": [],
"source": [
"#Nuestro Dataframe contiene tanto el nombre del SO como su version, a nosotros solo nos interesa solo el nombre, ademas que nos permitira clasificar mejor.\n",
"#Se crea una lista que recorre los valores y los separa por espacios, tomando solo la primera palabra (Nombre del SO)\n",
"marcas = list(df_text[\"OS\"])\n",
"lista=[]\n",
"for i in marcas:\n",
" lista.append(str(i).split()[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LSsWu7h3t9kH"
},
"outputs": [],
"source": [
"#Se reemplaza la columna OS por la nueva lista sin las versiones\n",
"df_text.OS=lista"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"executionInfo": {
"elapsed": 10,
"status": "ok",
"timestamp": 1684158703185,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "lZbnYhb5uHhu",
"outputId": "0b29b4d9-6b77-49cb-ae7f-164de765d39c"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"\n",
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"px.bar(df_text.OS.value_counts().head(5),title=\"Top 5 Sistemas Operativos más usados\",labels={'value':'Cantidad de telefonos',\n",
" 'index':'Sistemas Operativos',\n",
" 'variable':''})"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pYqWk6qMULeh"
},
"source": [
"|Android|Windows|iOS|BlackBerry|Firefox|\n",
"|--|--|--|--|--|\n",
"|2612|149|27|11|5|"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "exjnNhXxagR4"
},
"source": [
"Con una simple visualizacion, podemos ver el interés de los fabricantes por utilizar Android. \n",
"Cabe aclarar que dentro de las alternativas, Android al ser un SO abierto,permitir adecuaciones personalizadas y de la mano de una gran comunidad, es la mejor opcion para muchos desarrolladores. \n",
"Caso diferente para los sistemas como Windows e iOS que ya dependen de una licencia para ser utilizados, ademas que suelen ser solo para uso exclusivo de sus fabricantes (iOS-Apple) \n",
"Aclarado esto, es entendible la gran diferencia de dispositivos que cuentan con estos SO "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "W9hIFWSxGUE-"
},
"source": [
"### Marcas con mayor aportes"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0ung9pxXK4J"
},
"source": [
"Como casi todo en la vida, las grandes marcas suelen ser quienes producen la gran mayoria de los productos que consumimos, por lo que es importante saber quienes han sido las marcas mas 'Aportantes' en cuestiones de datos en nuestro dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PJc2UH8D0BDo"
},
"outputs": [],
"source": [
"#Agrupamos los datos por marca y los ordenamos de mayor a menor según la cantidad de datos/dispositivos que presenten en este dataset\n",
"top_10_marcas=df_text.groupby(by='Brand').size().sort_values(ascending=False).head(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 452
},
"executionInfo": {
"elapsed": 10,
"status": "ok",
"timestamp": 1684158703630,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "dX80CsoTTUQk",
"outputId": "f978c477-7e29-41cb-f0c8-44b435caeda1"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGzCAYAAADpMYmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlRElEQVR4nO3deVxN+f8H8FddRXsiSyGRbkOlIllKdoYs2Y3JMLbs61TWMqIwjHUw6mswY9/GWGcyGIwlQ0R9w1iyppBWLbfz+8Ov83VV1L11b8vr+Xh4PJxzPuec93lXt1fnnHuuhiAIAoiIiIhIYZrqLoCIiIiorGOgIiIiIlISAxURERGRkhioiIiIiJTEQEVERESkJAYqIiIiIiUxUBEREREpiYGKiIiISEkMVERERERKYqAiomIjlUqxZs0adZch59KlS5BKpbh06ZJC69+4cQODBw+Gg4MDpFIpoqOji7lCKoiXlxe8vLw+OU7Zr3F+/Pz80KFDh2LbHpV/ldRdAFF5tH//fsyaNQsA8Msvv6B58+ZyywVBQLt27fD8+XO0a9cOGzduVEeZpdaaNWuwdu3aT45r0aIFtm3bVmJ1ZGVlYerUqdDW1sasWbNQpUoVmJmZldj+1Ck2NhYhISE4f/48Xrx4AS0tLVhbW+Pzzz/HoEGDUKVKlRLZ7927d3Hs2DF4enqiTp06JbIPIlVgoCIqQZUrV8bhw4fzBKrLly/j+fPn0NbWVlNlpVvnzp1Rr149cTotLQ0BAQHo3LkzOnfuLM6vXr16idYRGxuLJ0+eIDAwEAMGDCjRfanT6dOnMWXKFGhra6N3796wtrZGVlYW/vnnHyxbtgx3797FwoULS2Tfd+/exdq1a9GiRYs8gSo0NLRE9klUEhioiEqQu7s7jh8/jrlz56JSpf/9uB0+fBhNmjRBYmJise0rJycHWVlZqFy5crFtU11sbGxgY2MjTr969QoBAQGQSqXo3bu3yup49eoVAMDAwEBl+1S1R48eYdq0aTAzM8OWLVtQo0YNcdnQoUPx8OFDnD59Wi218Q8OKkt4DxVRCerRowcSExNx/vx5cV5mZiZOnDiBnj175rtOaGgoBg8eDBcXF9jb26Nv3744fvx4nnFSqRTffvstDh06hB49esDOzg5nz54FAMTFxWH27NlwdXWFra0tOnToAH9/f2RmZgIAEhMTsWTJEvTs2ROOjo5wcnLCqFGj8N///rdQx5WZmYnFixejZcuWcHR0hLe3N54/f57v2Li4OMyaNQutW7eGra0tevTogb179xZqP5/y77//YvLkyWjRogXs7OzQt29fnDx5slDrXr9+HSNHjkSzZs3QtGlTfPnll/jnn3/E5X5+fvjyyy8BAFOmTIFUKpW7n+fChQv44osv4ODggObNm2PcuHH4999/5faxZs0aSKVSPHz4EH5+fmjevDmaNWuGWbNmIT09XW5sdnY21q1bh06dOolfsxUrVohfs4K8fPkSLVu2hJeXFwRBEOc/fPgQDg4OmDp16kfXDwkJQVpaGhYtWiQXpnJZWFjgq6++Eqf37duHYcOGoVWrVrC1tUX37t2xffv2POt16NABY8eOxZUrV9C/f3/Y2dmhY8eOOHjwoDhm//79mDJlCgBg2LBhkEqlcvdC5XcP1fPnzzF+/Hg4ODigVatWWLx4cb49unLlCiZPnox27drB1tYW7u7uWLx4Md6+fZtnbFhYGDw8PGBnZwcPDw/88ccfH+0ZUX54hoqoBJmbm8PBwQFHjhyBu7s7AOCvv/5CcnIyunfvnu/9P1u3bkWHDh3Qs2dPZGVl4ciRI5gyZQo2btyIdu3ayY29ePEijh07hqFDh6Jq1aowNzdHXFwc+vfvj+TkZAwcOBANGjRAXFwcTpw4gbdv30JbWxuPHj1CWFgYunXrhjp16iAhIQG7du3Cl19+iSNHjqBmzZofPa45c+bg0KFD8PDwgJOTEy5evIgxY8bkGZeQkICBAwdCQ0MDQ4cOhYmJCf766y/MmTMHKSkpGD58uMK9vXPnDoYMGYKaNWti9OjR0NXVxbFjxzBhwgSsWbNG7tLghy5cuIDRo0fD1tYWEydOhIaGBvbv34+vvvoK27dvh729PQYNGoSaNWtiw4YN8PLygp2dnXiJ8e+//8bo0aNRp04dTJw4EW/fvsXPP/+MIUOGYP/+/XkuXU2dOhV16tTB9OnTERUVhT179sDExATffPONOGbu3Lk4cOAAunbtihEjRuDGjRvYuHEj/v33X6xbt67AY6lWrRoCAgIwZcoUbNu2DcOGDUNOTg78/Pygp6cHf3//j/bx1KlTqFu3LpycnArTduzYsQONGjVChw4dUKlSJZw6dQoLFiyAIAgYOnSo3NiHDx9iypQp6N+/Pzw9PbFv3z74+fmhSZMmaNSoEZydneHl5YVt27bB29sbDRo0AAA0bNgw332/ffsWX331FZ49ewYvLy/UqFEDv/76Ky5evJhn7PHjx/H27VsMGTIExsbGuHHjBn7++Wc8f/4cq1evFsedO3cOkyZNgpWVFWbMmIHXr19j1qxZqFWrVqH6QSQSiKjY7du3T7C2thZu3Lgh/Pzzz4Kjo6OQnp4uCIIgTJ48WfDy8hIEQRDat28vjBkzRm7d3HG5MjMzBQ8PD2HYsGFy862trQUbGxvhzp07cvN9fHwEGxsb4caNG3nqysnJEQRBEDIyMgSZTCa37NGjR4Ktra2wdu3ajx5bdHS0YG1tLQQEBMjNnz59umBtbS2sXr1anDd79myhTZs2wqtXr+TGTps2TWjWrFmeYy3Iy5cv82z7q6++Ejw8PISMjAy54xs0aJDQpUsXcd7FixcFa2tr4eLFi+KYLl26CF9//bXYD0F41/cOHToII0aMyLPusWPH5Orp3bu30KpVK+H169dyfbGxsRF8fHzEeatXrxasra2FWbNmya0/YcIEoUWLFnLrWltbC3PmzJEbFxwcLFhbWwsXLlz4ZI+mT58uNG3aVLh//74QEhIiWFtbC3/88cdH10lOThasra2FcePGfXL7ufL7mn399ddCx44d5ea1b99esLa2FsLDw8V5L1++FGxtbYXg4GBx3rFjx+S+Pu/78ssvhS+//FKc/umnnwRra2vh6NGj4ry0tDShc+fOebaRX50bN24UpFKp8OTJE3Fe7969hTZt2ghJSUnivHPnzgnW1tZC+/btC+wD0Yd4yY+ohH3++efIyMjAqVOnkJKSgtOnTxd4uQ+A3Lup3rx5g+TkZDRr1gxRUVF5xjo7O8PKykqczsnJQVhYGNq3bw87O7s84zU0NAC8uzdFU/Pdj79MJsPr16+hq6sLS0vLfPfzvjNnzgBAnksx718WAt69k/H3339Hhw4dIAgCXr16Jf5zdXVFcnIybt269dF9FSQxMREXL17E559/jpSUFHG7r1+/hqurKx48eIC4uLh8142OjsaDBw/Qs2dPvH79Wlw3LS0NrVq1Qnh4OHJycgrc94sXLxAdHQ1PT08YGxuL821sbNC6dWuxP+8bPHiw3HTz5s2RmJiIlJQUAP/r6YgRI+TGff3113LLP2bevHnQ19fH5MmTsWrVKvTu3RudOnX66Dq5+9fT0/vk9nO9//2ZnJyMV69eoUWLFnj06BGSk5PlxlpZWcm9IcPExASWlpZ49OhRoff3vr/++gumpqbo1q2bOE9HRwcDBw78aJ1paWl49eoVHB0dIQiC+D3+/tfy/fvk2rRpI/dzRVQYvORHVMJMTEzQqlUrHD58GG/fvoVMJkPXrl0LHH/q1CmsX78e0dHRcveG5Iah9314aenVq1dISUlBo0aNPlpTTk4Otm7diu3bt+Px48eQyWTisvdDQn6ePHkCTU1NuXfhARAv17xfS1JSEnbt2oVdu3blu63cm76LKjY2FoIgYNWqVVi1alW+Y16+fJnvpcsHDx4AAHx9fQvcfnJyMoyMjPJd9vTpUwCApaVlnmUNGzbEuXPnkJaWBl1dXXH+h49aMDQ0BPAuMOvr6xfYU1NTUxgaGuLJkycF1prL2NgYc+fOxZQpU1C9enXMnTv3k+vo6+sDAFJTUz85Ntc///yDNWvWICIiIs99YMnJyXLBpHbt2nnWNzIywps3bwq9v/c9efIEFhYWeX4W8vtaPH36FKtXr8aff/6ZZ3+5QTL3a2lhYZFn/cL8cUH0PgYqIhXw8PDAvHnzkJCQgLZt24q/UD905coVjBs3Ds7OzvD394epqSm0tLSwb98+HD58OM94RZ8NtGHDBqxatQr9+vXDlClTYGRkBE1NTSxevFjuxmZl5J7l6dWrFzw9PfMdI5VKldr2119/DTc3t3zHfBhOcuUen4+PDz777LN8x7wfhopD7tnAgmrJlV9oLopz584BeBfUnj9/XuD3WS59fX3UqFEDd+7cKdT2Y2NjMXz4cDRo0AB+fn6oXbs2tLS0cObMGfz00095zuxJJBLFDkRJMpkMI0aMwJs3bzBq1Cg0aNAAurq6iIuLg5+f30fPQBIpioGKSAU6d+4Mf39/RERE4Pvvvy9w3IkTJ1C5cmWEhobKvWV83759hdqPiYkJ9PX1P/kL8sSJE3BxccHixYvl5iclJaFq1aofXdfc3Bw5OTmIjY2VOyt17969PLXo6ekhJycHrVu3LlT9hVW3bl0AgJaWVpG3nbuuvr6+QnXlnm26f/9+nmX37t1D1apVixzIcnv68OFDuRuyExISkJSUBHNz809u46+//sKePXswatQo/Pbbb/Dz88Pu3bvlHteRn/bt22PXrl24du0aHB0dPzr2zz//RGZmJtavXy931k2ZJ5QXJUSam5vj9u3bEARBbr0Pvxa3b9/GgwcPsGTJEvTp00ec//67bYH/fS0fPnyYZ1/5fX2JPob3UBGpgJ6eHgICAjBp0qSPfpyFRCKBhoaG3CW4x48fF/pRAJqamujUqRNOnTqFyMjIPMtzz4hIJJI8Z0eOHTtW4H1H72vbti0A5HmH4pYtW/IcS9euXXHixAncvn07z3YUvdwHvHtnW4sWLbBr1y68ePGiSNu2tbVFvXr18J///CffS12fqqtGjRr47LPPcPDgQSQlJYnzb9++jfPnz4vv5iyK3HU+7OHmzZvllhckKSkJc+fOhb29PaZPn47AwEDcunULGzZs+OS+R40aBV1dXcydOxcJCQl5lsfGxop15Z5xev97Jzk5udCBPz86Ojridj6lbdu2ePHihdxjRNLT07F79265cblnBN+vUxAEbN26VW5c7tfywIEDcvs/f/487t69W/SDoQqNZ6iIVKSgy17vc3d3x+bNmzFq1Ch4eHjg5cuX2L59O+rVq4eYmJhC7Wf69Ok4f/48vLy8MHDgQDRs2BDx8fE4fvw4tm/fDkNDQ7Rr1w7r1q3DrFmz4OjoiNu3b+O3334Tz958zGeffQYPDw9s374dycnJcHR0xMWLF/P9K3/GjBm4dOkSBg4ciAEDBsDKygpv3rzBrVu3cOHCBVy+fLlQx5Qff39/fPHFF+jZsycGDhyIunXrIiEhAREREXj+/DkOHTqU73qampoIDAzE6NGj4eHhgb59+6JmzZqIi4vDpUuXoK+v/8kg4uPjg9GjR2PQoEHo37+/+NgEAwMDTJw4scjHYmNjA09PT+zatQtJSUlwdnZGZGQkDhw4gE6dOqFly5YfXX/RokVITEzE5s2bIZFI0LZtWwwYMAAbNmxAp06d5B6S+qF69erhu+++w7Rp09C9e3fxSemZmZm4du0ajh8/jr59+wJ4d7O2lpYWvL29MXjwYKSmpmLPnj2oVq0a4uPji3zcwLvvJ4lEgk2bNiE5ORna2tpo2bIlqlWrlmfswIED8csvv8DX1xe3bt2Cqakpfv311zyXvhs0aIB69ephyZIliIuLg76+Pk6cOCEXgHNNnz4dY8eOxRdffIF+/fohMTERP//8Mxo1aoS0tDSFjokqJgYqolKkVatWWLRoETZt2oTFixejTp06mDlzJp48eVLoQFWzZk3s3r0bq1atwm+//YaUlBTUrFkTbdu2FX/xeHt7Iz09Hb/99huOHj2Kxo0bY+PGjVi+fHmh9rF48WJUrVoVv/32G06ePAkXFxf8+OOPec6kVK9eHXv27MG6devwxx9/YMeOHTA2NoaVlRVmzpxZtOZ8wMrKCvv27cPatWtx4MABJCYmwsTEBI0bN8aECRM+uq6Liwt27dqFH374AT///DPS0tJgamoqPn/qU1q3bo2QkBCsXr0aq1evRqVKleDs7IxvvvmmUKE0P4GBgahTpw4OHDiAsLAwVK9eHWPHjv1kQDt58iQOHjwIPz8/ucuFfn5++Pvvv+Hr64u9e/dCS0urwG107NgRhw4dQmhoKE6ePIkdO3ZAW1sbUqkUfn5+4rvoGjRogNWrV2PlypVYsmQJqlevjiFDhsDExASzZ89W6LhNTU2xYMECbNy4EXPmzIFMJsPWrVvzDVQ6Ojr46aefsHDhQvz888+oUqUKevbsibZt22LUqFHiOC0tLWzYsAGBgYHYuHEjKleujM6dO2Po0KF5nrTftm1brFq1CitXrsTy5ctRr149BAUF4eTJk0oFfqp4NITiugOViIiIqILiPVRERERESmKgIiIiIlISAxURERGRkhioiIiIiJTEQEVERESkJAYqIiIiIiXxOVQlKCcnB9nZ2dDU1FT6M7qIiIhINQRBQE5ODipVqlTgZ3F+iIGqBGVnZ+f78R9ERERU+tnZ2cl9rurHMFCVoNxU27hx40J/QejdJ8VHRkbCzs5ObZ9WXxaxb4ph3xTDvimOvVOMKvuWu6/Cnp0CGKhKVO5lPolEwh8aBbBvimHfFMO+KYZ9Uxx7pxhV9q0ot+vwpnQiIiIiJTFQERERESmJgYqIiIhISQxUREREREpioCIiIiJSEgMVERERkZIYqIiIiIiUxEBFREREpCQGKiIiIiIlMVARERERKYmBioiIiEhJDFRERERESmKgolJJR0dH3SWUSewbEZF6VFJ3ARUBP028aCQSCRo3bqzuMsqcwvRNliNAoln4T08nIqLCYaBSAd991xH9PFXdZVAFZ1VDH6sGO6q7DCKicomBSgXuxafi1tMkdZdBREREJYT3UBEREREpiYGKiIiISEkMVERERERKYqAiIiIiUhIDFREREZGSGKiIiIiIlMRARVTBhIeHw9vbG66urpBKpQgLC5NbLggCVq1aBVdXV9jb22P48OF48OCB3JgOHTpAKpXK/fvxxx9VeBRERKVLmXwO1atXr7Bq1SqcOXMGCQkJMDIygo2NDcaPH49mzZqpuzyiUi0tLQ1SqRT9+vXDxIkT8yzftGkTtm3bhuDgYNSpUwerVq3CyJEjcfToUVSuXFkcN3nyZAwcOFCc1tPTU0n9RESlUZkMVJMmTUJWVhaCg4NRt25dvHz5EhcuXEBiYqK6SyMq9dzd3eHu7p7vMkEQsHXrVowbNw6dOnUCACxduhStW7dGWFgYevToIY7V09ODqampSmomIirtytwlv6SkJFy5cgUzZ85Ey5YtYW5uDnt7e4wdOxYdO3YEADx9+hTjxo2Do6MjnJycMGXKFCQkJIjbWLNmDXr37o2DBw+iQ4cOaNasGaZNm4aUlBQAwMGDB+Hi4oLMzEy5fY8fPx7ffPON6g6WSMUeP36M+Ph4tG7dWpxnYGCApk2b4tq1a3JjN23aBBcXF/Tp0wchISHIzs5WdblERKVGmTtDpaurC11dXYSFhcHBwQHa2tpyy3NycjB+/Hjo6upi27ZtkMlkWLBgAaZNm4Zt27aJ42JjY3Hy5Els2LABSUlJmDp1KjZt2oRp06ahW7duCAwMxMmTJ/H5558DAF6+fIkzZ84gNDRUpcdLVNxkMlme6dx5cXFxAICqVavKjTMxMUF8fLw4b+jQoWjcuDGMjIxw7do1rFy5Ei9evICvr6+KjqL45B7Th32hj2PfFMfeKUaVfVNkH2UuUFWqVAnBwcGYN28edu7cicaNG6NFixbo3r07bGxscOHCBdy+fRsnT55E7dq1Aby7ZNGjRw/cuHED9vb2AN5d2ggKCoK+vj4AoFevXrhw4QKmTZuGKlWqwMPDA/v37xcD1aFDh1C7dm24uLio58CJiklMTAzS09PF6fv37yMiIgIAcOfOHQDAzZs3UbVqVXFMYmIiNDQ0xHEODg4AgPT0dNjY2GDw4MEIDQ1Fhw4doKWlpZLjKG6RkZHqLqFMYt8Ux94pprT2rcwFKgDo2rUr2rVrhytXriAiIgJnz55FSEgIAgMDkZKSglq1aolhCgCsrKxgaGiIe/fuiYHK3NxcDFMAUKNGDbx8+VKcHjhwIPr374+4uDjUrFkT+/fvh6enJzQ0NFR3oEQlQCqVyk1bWlqKAalatWoAgFq1auGzzz4Tx8hkMtjY2IjjPqSnp4cff/wR1atXh6WlZYnUXVJkMhkiIyNhZ2cHiUSi7nLKDPZNceydYlTZt9x9FUWZDFQAULlyZbRp0wZt2rTBhAkTMGfOHKxZswYjRowo1PqVKuU9dEEQxP83btwYNjY2OHjwINq0aYO7d++ib9++xVY/kbp8+EIkkUjEeRYWFjA1NcXly5dha2sLAEhJScGNGzfwxRdfFPgidvv2bWhqasLU1LTM/oJ4vw9UeOyb4tg7xZTWvpXZQPUhKysrhIWFoWHDhnj+/DmePXsmnqW6e/cukpKS0LBhwyJts3///tiyZQvi4uLQunVrubNeRGVVamoqYmNjxenHjx8jOjoaRkZGMDMzw7Bhw7B+/XpYWFiIj02oUaOG+K6/a9eu4fr162jZsiX09PRw7do1BAUFoVevXjAyMlLXYRERqVWZC1SvX7/GlClT0K9fP0ilUujp6eHmzZsICQlBx44d0bp1a1hbW2PmzJmYPXs2ZDIZAgIC0KJFC9jZ2RVpXz179sTSpUuxe/duLF26tISOiEi1bt68iWHDhonTQUFBAABPT08EBwdj9OjRSE9Px/z585GUlIRmzZohJCREfAaVtrY2jh49irVr1yIzMxN16tTB8OHDC312mIioPCpzgUpPTw9NmzbFli1bEBsbi+zsbNSqVQsDBgyAt7c3NDQ08MMPP2DhwoX48ssvoaGhATc3N8ybN6/I+zIwMECXLl1w5swZ8a9zorLOxcUFMTExBS7X0NDAlClTMGXKlHyXN2nSBLt37y6p8oiIyqQyF6i0tbUxY8YMzJgxo8AxZmZmWL9+fYHLJ02ahEmTJsnNGz58OIYPH55nbFxcHHr27Jnn8QxEREREucrcgz1V5c2bN/jjjz9w+fJlfPHFF+ouh4iIiEqxMneGSlU8PT3x5s0bzJw5Ew0aNFB3OURERFSKMVAV4M8//1R3CURERFRG8JIfERERkZIYqIiIiIiUxEBFREREpCTeQ6UCDUz1kMEPFSc1s6qh/+lBRESkEAYqFVjSr2mp/NwhqnhkOQIkmvyAbyKi4sZLfiogk/H0VFHIZDJERUWxb0VUmL4xTBERlQwGKiqV0tPT1V1CmcS+ERGpBwMVERERkZIYqIiIiIiUxEBFREREpCQGKiqVdHR01F1CmcS+ERGpBx+boAJ8ZELRSCQSNG7cWN1llDmF6Rsfm0BEVDIYqFTAd991RD9PVXcZVMFZ1dDHqsGO6i6DiKhcYqBSgXvxqbj1NEndZRAREVEJ4T1UREREREpioCIiIiJSEgMVERERkZIYqIiIiIiUxEBFREREpCQGKqIKJjw8HN7e3nB1dYVUKkVYWJjcckEQsGrVKri6usLe3h7Dhw/HgwcP5MZ06NABUqlU7t+PP/6owqMgIipdSnWgunTpEqRSKZKS1P/IAS8vLyxatEjdZRApLS0tDVKpFP7+/vku37RpE7Zt24aAgADs3r0bOjo6GDlyJDIyMuTGTZ48GefOnRP/ffnll6oon4ioVFLbc6hkMhmGDh2K6tWrY+3ateL85ORkeHh4oE+fPpgwYQLOnTsHAwMDdZUpWrNmDSpV4mO7qOxzd3eHu7t7vssEQcDWrVsxbtw4dOrUCQCwdOlStG7dGmFhYejRo4c4Vk9PD6ampiqpmYiotFPbGSqJRIKgoCCcPXsWhw4dEucvXLgQRkZGmDBhArS1tWFqagoNDfV/VIaxsTH09fXVXQZRiXr8+DHi4+PRunVrcZ6BgQGaNm2Ka9euyY3dtGkTXFxc0KdPH4SEhCA7O1vV5RIRlRpqPeViaWmJGTNmIDAwEC1btsSNGzdw9OhR7N27F9ra2rh06RKGDRuG8PBwGBoa4vXr11i4cCHCw8ORlJSEevXqYezYsfDw8BC3mZmZiaVLl+LIkSNISUmBra0tZs2aBXt7ewAQtxkSEoLly5fj3r17cHBwwPfff4+bN28iODgYcXFxaN++PQIDA8UPm/Xy8oKNjQ3mzJmjll4RFReZTJZnOndeXFwcAKBq1apy40xMTBAfHy/OGzp0KBo3bgwjIyNcu3YNK1euxIsXL+Dr66uioyg+ucf0YV/o49g3xbF3ilFl3xTZh9qvYXl5eeGPP/6Aj48Pbt++jfHjx8PGxibfsZmZmWjSpAlGjx4NfX19nD59Gj4+PqhXr54YmJYuXYoTJ04gODgY5ubmCAkJwahRo/D777/D2NhY3NbatWsxb9486OjoYOrUqZg6dSq0tbWxfPlypKWlYcKECdi2bRvGjBmjijYQqUxMTAzS09PF6fv37yMiIgIAcOfOHQDAzZs3UbVqVXFMYmIiNDQ0xHEODg4AgPT0dNjY2GDw4MEIDQ1Fhw4doKWlpZLjKG6RkZHqLqFMYt8Ux94pprT2Te2BSkNDAwEBAejevTusra0/GmBq1qyJkSNHitNeXl44d+4cjh07Bnt7e6SlpWHnzp0ICgoS7xFZuHAhzp8/j71792LUqFHiulOnTkWzZs0AAP3798fy5csRFhaGunXrAgC6du2KS5cuMVBRuSOVSuWmLS0txYBUrVo1AECtWrXw2WefiWNkMhlsbGzEcR/S09PDjz/+iOrVq8PS0rJE6i4pMpkMkZGRsLOzg0QiUXc5ZQb7pjj2TjGq7FvuvopC7YEKAPbt2wcdHR08fvwYz58/R506dfIdJ5PJsGHDBhw/fhxxcXHIyspCZmYmqlSpAgCIjY1FVlYWnJycxHW0tLRgb2+Pf//9V25b7/9SqVatGnR0dMQwBQDVq1cvtSmYSBkfvhBJJBJxnoWFBUxNTXH58mXY2toCAFJSUnDjxg188cUXBb6I3b59G5qamjA1NS2zvyDe7wMVHvumOPZOMaW1b2oPVFevXsWWLVsQGhqK9evXY86cOfjpp5/yvRE9NDQUW7duxezZsyGVSqGjo4PFixcjKyuryPt9/x17Ghoaed7Bp6GhgZycnKIfEFEpl5qaitjYWHH68ePHiI6OhpGREczMzDBs2DCsX78eFhYWqFOnDlatWoUaNWqI7/q7du0arl+/jpYtW0JPTw/Xrl1DUFAQevXqBSMjI3UdFhGRWqk1UKWnp2PWrFkYMmQIWrZsiTp16qBnz57YsWMHvvjiizzjr169io4dO6J3794AgJycHDx48AANGzYEANSrVw9aWlq4evUqzM3NAQBZWVmIjIzEV199pboDIyrFbt68iWHDhonTQUFBAABPT08EBwdj9OjRSE9Px/z585GUlIRmzZohJCQElStXBgBoa2vj6NGjWLt2LTIzM1GnTh0MHz4cI0aMUMvxEBGVBmoNVMuXL4cgCJgxYwYAoE6dOvD19cWSJUvQtm3bPOMtLCxw4sQJXL16FUZGRti8eTMSEhLEQKWrq4shQ4Zg6dKl4l/bISEhePv2Lfr376/SYyMqrVxcXBATE1Pgcg0NDUyZMgVTpkzJd3mTJk2we/fukiqPiKhMUlugunz5MrZv346tW7eKjyYAgMGDB+OPP/7AnDlzMG7cOLl1xo0bh0ePHmHkyJHQ0dHBwIED0alTJyQnJ4tjZs6cCUEQ4OPjg9TUVNja2iIkJISXIoiIiKjEaAiCIKi7iPJKJpMhIiICiy6m4eoj9X98DlVsTcwMcWSym7rLKHVyf04dHBxK5Y2upRX7pjj2TjGq7Jsi+yrVn+VHREREVBYwUBEREREpiYGKiIiISEkMVERERERKYqAiIiIiUpLan5ReETQw1UMGP1Sc1Myqhr66SyAiKrcYqFRgSb+mfGsslQqyHAESzbwf60RERMrhJT8VkMl4eqooZDIZoqKi2LciKkzfGKaIiEoGAxWVSunp6eouoUxi34iI1IOBioiIiEhJDFRERERESmKgIiIiIlISAxWVSjo6OuouoUxi34iI1IOPTVABPjKhaCQSCRo3bqzuMsqcstI3PrqBiMojBioV8N13HdHPU9VdBpHaWdXQx6rBjuoug4io2DFQqcC9+FTcepqk7jKIiIiohPAeKiIiIiIlMVARERERKYmBioiIiEhJDFRERERESmKgIiIiIlISAxURqVx4eDi8vb3h6uoKqVSKsLAwcVlWVhaWLVuGnj17wsHBAa6urvDx8UFcXFye7Zw+fRoDBgyAvb09nJ2dMX78eFUeBhGRiI9NICKVS0tLg1QqRb9+/TBx4kS5ZW/fvkVUVBTGjRsHGxsbJCUlYdGiRRg3bhz2798vjjtx4gTmzZuHadOmoWXLlpDJZLh9+7aqD4WICEA5DFSXLl3CsGHDClzeokULXL58+aPbiImJgZ+fHw4cOJBnmaurK0JDQ5Wuk6gic3d3h7u7e77LDAwMsHnzZrl58+bNw4ABA/D06VOYmZkhOzsbixYtwjfffIMBAwaI46ysrEq0biKigpS7QOXo6Ihz587lmf/nn3/C398f/fr1w4oVK8T5/fv3x8CBAzFw4MA867i5uSEoKEhunra2dvEXTUQflZKSAg0NDRgaGgIAoqKiEBcXB01NTfTp0wcJCQmwsbGBj48PrK2t1VwtEVVE5S5QaWtrw9TUVG7ev//+iyVLlmDs2LHo06eP3DKJRAI9Pb086xS0LSJSrYyMDHz33Xfo0aMH9PX1AQCPHj0CAKxduxZ+fn4wNzfH5s2b4eXlhRMnTsDY2FiNFRNRRVTuAtWHkpKSMH78eLRo0QJTp05VdzlEBEAmk+WZ/nAe8O4G9alTpyInJwfz588Xx2RnZwMAxowZg06dOgEAAgMD0b59exw9ehSDBg0qci357Z8Kxr4pjr1TjCr7psg+ynWgysnJwYwZMyCRSPDdd99BQ6Non3B/+vRpODrKf5Dr2LFj4e3tXZxlElU4MTExSE9PF6fv37+PiIgIuTHZ2dlYvXo1Xrx4gTlz5uDu3bvisjdv3gB49zP+/nomJiaIiIiAVCotck2RkZFFXofYN2Wwd4oprX0r14FqxYoViIiIwJ49e8RLBUXh4uKCgIAAuXlGRkbFVB1RxfVh4LG0tISDg4M4nZWVhenTpyMxMRHbt2+HiYmJ3HgrKyssW7YMWlpa4npZWVlITEyEo6Oj3LY+RSaTITIyEnZ2dpBIJIoeUoXDvimOvVOMKvuWu6+iKLeB6siRI/jPf/6DjRs3on79+gptQ0dHBxYWFsVbGBHh7du3iI2NFaefPXuG27dvw8jICKamppg2bRqioqKwceNGAMCrV68AvPuDRltbG0ZGRhg8eDDWrl0LMzMzmJmZie++7d69u0IvthKJhL/cFMC+KY69U0xp7Vu5DFTR0dGYM2cOZsyYATc3N3WXQ0QfuHnzptzjTXLfTevp6YmJEyfizz//BAD07t1bbr2tW7fCxcUFAODj44NKlSrBx8cHb9++RdOmTbFlyxaeRSYitSh3gerVq1eYMGECWrRogV69eiE+Pl5uuUQiyXP5oCCZmZlKrU9E+XNxcUFMTEyByz+2LJeWlhZ8fX3h6+tbnKURESmk3AWqM2fO4MmTJ3jy5AlcXV3zLDc3Nxf/+v2Us2fP5tmGpaUljh8/Xiy1EhERUflQ7gKVp6cnPD09Cz2+oHAVHByM4ODg4iqLiIiIyjF+ODIRERGRkhioiIiIiJTEQEVERESkJAYqIiIiIiUxUBEREREpqdy9y680amCqhwx+BiYRrGoU/SOgiIjKAgYqFVjSr2mpfEw+kTrIcgRINIv2QeVERKUdL/mpgEzG01NFIZPJEBUVxb4VUVnpG8MUEZVHDFRUKqWnp6u7hDKJfSMiUg8GKiIiIiIlMVARERERKYmBioiIiEhJDFRUKuno6Ki7hDKJfSMiUg8+NkEF+MiEopFIJGjcuLG6yyhzykrf+NgEIiqPGKhUwHffdUQ/T1V3GURqZ1VDH6sGO6q7DCKiYsdApQL34lNx62mSussgIiKiEsJ7qIiIiIiUxEBFREREpCQGKiIiIiIlMVARERERKYmBioiIiEhJDFRERERESmKgKqTHjx9DKpUiOjpa3aUQlXnh4eHw9vaGq6srpFIpwsLCxGVZWVlYtmwZevbsCQcHB7i6usLHxwdxcXF5tnP69GkMGDAA9vb2cHZ2xvjx41V5GEREIpUHKj8/v3xf9C5dugSpVIqkpNL5vKbatWvj3LlzaNSokbpLISrz0tLSIJVK4e/vn2fZ27dvERUVhXHjxmH//v1Yu3Yt7t+/j3HjxsmNO3HiBHx8fNC3b1/8+uuv2LFjBzw8PFR1CEREcvhgz0KSSCQwNTVVdxlE5YK7uzvc3d3zXWZgYIDNmzfLzZs3bx4GDBiAp0+fwszMDNnZ2Vi0aBG++eYbDBgwQBxnZWVVonUTERWkVF7yW7NmDXr37i0376effkKHDh3E6Rs3bmDEiBFwcXFBs2bN8OWXX+LWrVvi8iVLlmDs2LFy60ulUvz111/ivM6dO2PPnj3i9J49e/D555/Dzs4O3bp1wy+//CIu4yU/IvVJSUmBhoYGDA0NAQBRUVGIi4uDpqYm+vTpA1dXV4waNQq3b99Wc6VEVFGV2TNUqamp6NOnD+bOnQsA+M9//oMxY8bgxIkT0NfXh7OzM/bs2QOZTAaJRILw8HBUrVoVly9fRtu2bREXF4fY2Fi0aNECAHDo0CGsWrUK8+fPx2effYbo6GjMmzcPurq68PT0VOehEpU7Mpksz/SH83JlZGRg2bJl6N69O3R0dCCTyfDw4UMA7/748vX1hbm5OX766Sd4eXnh6NGjMDY2LnItBe2f8se+KY69U4wq+6bIPtQSqE6fPg1HR/kPSC1q8a1atZKbXrhwIZo3b47w8HC0b98ezZs3R2pqKqKiomBra4srV65g5MiR4s2vly5dQs2aNWFhYQHg3Quzn58funTpAgCoW7cu7t69i127djFQERWzmJgYpKeni9P3799HREREnnHZ2dlYuXIl0tLS4OnpKY65f/8+AKB79+6oUaMGsrKyMHDgQPz1118IDQ1Fx44di1xTZGSkQsdS0bFvimPvFFNa+6aWQOXi4oKAgAC5edevX8c333xT6G0kJCRg5cqVuHz5Ml6+fImcnBykp6fj6dOnAABDQ0PY2Njg8uXL0NLSgpaWFgYOHIjVq1cjNTUV4eHhcHZ2BvDuBtnY2FjMmTMH8+bNE/eRnZ0NAwMD5Q+YiORIpVK5aUtLSzg4OMjNy8rKwvTp05Gamort27fLnXXKyMgAALRr105uvfr160MikeTZ1sfIZDJERkbCzs4OEomkqIdSYbFvimPvFKPKvuXuqyjUEqh0dHTEM0O5nj9/Lv5fQ0MDgiDILc/Ozpab9vX1RWJiIubMmQMzMzNoa2tj0KBByMrKEse0aNECly9fhra2NpydnWFsbIyGDRvin3/+weXLl/H1118DeBeogHdnuZo2bSq3H03NUnmbGVGZ9uGLoUQikZuXlZWFGTNmIDY2Flu3boWJiYnceHt7e2hra+Phw4fiZfusrCw8ffoUderUUejF9sMaqHDYN8Wxd4oprX0rlfdQmZiYICEhAYIgQENDAwDy3Ax+9epV+Pv7i+8UevbsGV6/fi03xtnZGfv27YNEIoGbmxuAdyHryJEjePDggfhCXL16ddSoUQOPHj1Cr169SvrwiCq81NRUxMbGitOPHz9GdHQ0jIyMYGpqismTJyMqKgobN26ETCZDfHw8AMDIyAja2trQ19fH4MGDsWbNGtSuXRtmZmYIDQ0FAHTr1k0tx0REFVupDFQuLi749ttvsWnTJnTr1g1nz57F2bNnoa+vL46pX78+Dh06BDs7O6SkpGDp0qWoUqWK3HacnZ2RmpqK06dPY8aMGeK2J0+eDFNTU1haWopjJ0+ejMDAQBgYGMDNzQ2ZmZm4efMmkpKSMGLECNUcOFEFcfPmTQwbNkycDgoKAgB4enpi4sSJ+PPPPwEgz7t9t27dChcXFwCAj48PKlWqBB8fH7x9+xZNmzbFli1bYGRkpKKjICL6n1IZqBo2bAh/f39s3LgR69evR5cuXfD1119j9+7d4phFixZh3rx58PT0RO3atTFt2jQsXbpUbjtGRkawtrbGy5cv0bBhQwBA8+bNkZOTI56dyjVgwABUqVIFoaGhWLp0KXR1dWFtbY2vvvqq5A+YqIJxcXFBTExMgcs/tiyXlpYWfH194evrW5ylEREpREP48GYlKjYymQwRERFYdDENVx+VzifAE6lSEzNDHJnspu4y5OT+nDo4OJTK+zJKK/ZNceydYlTZN0X2xTuuiYiIiJTEQEVERESkJAYqIiIiIiUxUBEREREpiYGKiIiISEkMVERERERKKpXPoSpvGpjqIYMfKk4Eqxr6nx5ERFQGMVCpwJJ+TfmsEaL/J8sRINHUUHcZRETFipf8VEAm4+mpopDJZIiKimLfiqis9I1hiojKIwYqKpXS09PVXUKZxL4REakHAxURERGRkhioiIiIiJTEQEVERESkJAYqKpV0dHTUXUKZxL4REakHH5ugAnxkQtFIJBI0btxY3WWUORWtb3z8AhGVJgxUKuC77zqin6equwyicsOqhj5WDXZUdxlERCIGKhW4F5+KW0+T1F0GERERlRDeQ0VERESkJAYqIiIiIiUxUBEREREpiYGKiIiISEkMVERERERKKrFA5eXlhUWLFpXU5omIAADh4eHw9vaGq6srpFIpwsLC5JavWbMG3bp1g4ODA5ydnTF8+HBcv35dbsyzZ88wYcIEuLi4wMnJCUOGDMHFixdVeRhEVMYVKVD5+flBKpVi/vz5eZYtWLAAUqkUfn5+AN69iE2ZMqV4qiQiKkBaWhqkUin8/f3zXV6/fn3Mnz8fv/32G7Zv3w5zc3N8/fXXePXqlThm2bJlkMlk2LJlC/bv3w8bGxt4e3sjPj5eVYdBRGVckc9Q1a5dG0ePHsXbt2/FeRkZGTh8+DDMzMzEecbGxtDX11eoKEEQkJ2drdC6RFSxuLu7Y9q0aejcuXO+y3v27InWrVujbt26aNSoEWbNmoWUlBTExMQAAF6/fo3nz59j1KhRsLGxQf369TFjxgykp6fjzp07qjwUIirDihyoGjdujNq1a+P3338X5/3++++oXbs2PvvsM3Heh5f8MjMzsWzZMri7u8PW1hadO3fGnj17AACXLl2CVCrFmTNn0LdvX9jZ2eGff/5BZmYmAgMD0apVK9jZ2WHIkCG4ceOGuM3c9c6ePYs+ffrA3t4ew4YNw8uXL3HmzBl8/vnncHJyEl8cc/31118YMmQImjdvDhcXF4wdOxaxsbHi8oMHD8LR0REPHjwQ5wUEBKBbt25y2yGisiUzMxO7du2CgYEBpFIpgHd//NWuXRuHDh1CWloasrOzsWvXLlSrVg1NmjRRc8VEVFYo9KT0fv36Yf/+/ejVqxcAYN++fejbty8uX75c4Do+Pj6IiIjA3LlzYWNjg8ePH+P169dyY5YvXw5fX1/UrVsXhoaGWLp0KU6cOIHg4GCYm5sjJCQEo0aNwu+//w5jY2NxvbVr12LevHnQ0dHB1KlTMXXqVGhra2P58uVIS0vDhAkTsG3bNowZMwYAkJ6ejhEjRkAqlSItLQ2rVq3ChAkT8Ouvv0JTUxN9+vTBqVOnMHPmTOzcuRPnzp3D3r17sXPnTn74LFEpIpPJ8p334fzTp09jxowZePv2LUxNTRESEgIjIyPIZDLk5ORg9uzZWL9+PZycnKCpqQkTExNs3LgR+vr6+e6D/td79qfo2DvFqLJviuxDoUDVq1cvLF++HE+ePAEAXL16FStWrCgwUN2/fx/Hjh3D5s2b0bp1awBA3bp184ybPHky2rRpA+DdfRE7d+5EUFAQ3N3dAQALFy7E+fPnsXfvXowaNUpcb+rUqWjWrBkAoH///li+fDnCwsLEfXTt2hWXLl0SA1XXrl3l9rt48WK0atUKd+/ehbW1NQDg22+/Ra9evRAYGIg//vgDEydOhK2trSLtIqISEhMTk+es8f379xERESE3r0qVKli0aBGSk5Nx6tQpTJw4Ed9++y2MjIwgCAJ++uknaGlpYf78+dDW1sapU6cwZswYLFy4EFWrVlXhEZU9kZGR6i6hzGLvFFNa+6ZQoDIxMUG7du1w4MABCIKAdu3awcTEpMDx0dHRkEgkcHZ2/uh27ezsxP/HxsYiKysLTk5O4jwtLS3Y29vj33//lVsv99Q9AFSrVg06Ojpyga169epyX4AHDx5g9erVuH79Ol6/fg1BEAC8e6dPbqAyMjLCokWLMHLkSDg6OophjIhKj/d/9nNZWlrCwcGhwHUGDBiAbt26ISYmBmPGjMH58+dx9epV/P333zAyMgIAeHp6olu3brh79y5Gjx5dUuWXaTKZDJGRkbCzs4NEIlF3OWUKe6cYVfYtd19FofCHI/fr1w/ffvstABT47ppcVapUKdQ2Fb2cVqnS/w5DQ0NDbjp3Xk5Ojjjt7e0Nc3NzBAYGokaNGsjJyYGHhweysrLk1gsPD4dEIkF8fDzS0tIUvsmeiEpGfi+qEonkky+2uW98kUgkyMzMBPDudeT99TQ1NQvcB/1PYfpN+WPvFFNa+6bwc6jc3NyQlZWF7OxsuLq6fnSstbU1cnJyEB4eXujt16tXD1paWrh69ao4LysrC5GRkbCyslK0bLx+/Rr379/HuHHj0KpVKzRs2BBv3rzJM+7q1asICQnB+vXroauri4ULFyq8TyIqOampqYiOjkZ0dDQA4PHjx4iOjsbTp0+RlpaGFStWICIiAk+ePMHNmzcxa9YsxMXFoVu3bgAABwcH6OnpYfbs2fjvf/+L+/fvY8mSJXjy5AnatWunxiMjorJE4TNUEokEx44dE///MXXq1IGnpydmz56NuXPnQiqV4unTp3j58iW6d++e7zq6uroYMmQIli5dCiMjI5iZmSEkJARv375F//79FS0bRkZGMDY2xq5du2BqaoqnT59i+fLlcmNSUlLg4+MDLy8vuLu7o1atWujfvz/at28vvggTUelw8+ZNDBs2TJwOCgoC8O6y3YIFC3Dv3j0cOHAAr1+/hrGxMezs7PDLL7+gUaNGAICqVavCz88Px44dw1dffYWsrCw0atQI69atg42NjVqOiYjKHoUDFYAiXQILCAjAihUrEBAQgMTERJiZmWHs2LEfXWfmzJkQBAE+Pj5ITU2Fra2t+O4cRWlqauL7779HYGAgPDw8YGlpiblz58LLy0scs2jRIujo6GD69OkA3t2nMX36dPj7+8PR0RE1a9ZUeP9EVLxcXFzEZ0rlZ+3atZ/cRoMGDbBp06ZSeRmBiMoGDSH3jmwqdjKZDBEREVh0MQ1XHyWpuxyicqOJmSGOTHYrlm3l/pw6ODgwUBUB+6Y49k4xquybIvvihyMTERERKYmBioiIiEhJDFRERERESmKgIiIiIlISAxURERGRkhioiIiIiJSk1HOoqHAamOohgx8qTlRsrGrwY6CIqHRhoFKBJf2a8lkjRMVMliNAoqmh7jKIiADwkp9KyGQ8PVUUMpkMUVFR7FsRVbS+MUwRUWnCQEWlUnp6urpLKJPYNyIi9WCgIiIiIlISAxURERGRkhioiIiIiJTEQEWlko6OjrpLKJPYN8Wwb0SkLD42QQX4yISikUgkaNy4sbrLKHPYN8Woum983ANR+cRApQK++64j+nmqussgIjWzqqGPVYMd1V0GEZUABioVuBefiltPk9RdBhEREZUQ3kNFREREpCQGKiIiIiIlMVARERERKYmBioiIiEhJDFRERERESmKgIiJSsfDwcHh7e8PV1RVSqRRhYWF5xvz777/w9vZGs2bN4ODggH79+uHp06cAgMePH0Mqleb779ixY6o+HCICH5sAALh06RKGDRuG8PBwGBoaqrscIirn0tLSIJVK0a9fP0ycODHP8tjYWHzxxRfo168fJk+eDH19fdy5cweVK1cGANSuXRvnzp2TW2fXrl0IDQ1F27ZtVXIMRCSv2M5Q+fn5QSqVYv78+XmWLViwAFKpFH5+foXa1qVLlyCVSpGUxGc3EVH54+7ujmnTpqFz5875Lv/+++/Rtm1b+Pj4oHHjxqhXrx46duyIatWqAXj3dHdTU1O5f2FhYfj888+hp6enykMhov9XrJf8ateujaNHj+Lt27fivIyMDBw+fBhmZmbFuatCEQQB2dnZKt8vEZGicnJycPr0adSvXx8jR45Eq1atMGDAgHwvC+a6efMmoqOj0b9/fxVWSkTvK9ZA1bhxY9SuXRu///67OO/3339H7dq18dlnn4nzMjMzERgYiFatWsHOzg5DhgzBjRs3ALy7N2DYsGEAAGdnZ7kzWx9bD/jfma0zZ86gb9++sLOzwz///PPJ9T70+vVrTJ8+HW5ubmjatCl69uyJw4cPF2eriIjy9fLlS6SlpWHTpk1wc3PDf/7zH3Tu3BkTJ07E5cuX811n7969aNiwIZycnFRcLRHlKvZ7qPr164f9+/ejV69eAIB9+/ahb9++ci8ES5cuxYkTJxAcHAxzc3OEhIRg1KhRYvhas2YNJk2ahOPHj0NfXx9VqlT55HrGxsbi9pcvXw5fX1/UrVsXhoaGhV4vV2ZmJpo0aYLRo0dDX18fp0+fho+PD+rVqwd7e/vibhkRVTAymSzPdO683LPqHTp0gJeXFwDA2toaV69exY4dO9CsWTO5dd++fYvDhw/D29s7z3ZLUu6+VLnP8oK9U4wq+6bIPoo9UPXq1QvLly/HkydPAABXr17FihUrxECVlpaGnTt3IigoCO7u7gCAhQsX4vz589i7dy9GjRoFIyMjAEC1atXEm8QLs16uyZMno02bNkVeL1fNmjUxcuRIcdrLywvnzp3DsWPHGKiISGkxMTFIT08Xp+/fv4+IiAgA7wKVRCKBrq6uOA8A9PX1ERMTIzcPAM6ePYu0tDQ0bNgwzzJViIyMVPk+ywv2TjGltW/FHqhMTEzQrl07HDhwAIIgoF27djAxMRGXx8bGIisrS+7UtJaWFuzt7fHvv/8WuN2irGdnZ6fU/mQyGTZs2IDjx48jLi4OWVlZyMzMFM+UEREpQyqVyk1bWlrCwcFBnLazs8Pbt2/l5oWGhqJRo0Zy84B3N7B37NhR5e/uk8lkiIyMhJ2dHSQSiUr3Xdaxd4pRZd9y91UUJfLYhH79+uHbb78FAPj7+5fELj5KR0dHqfVDQ0OxdetWzJ49G1KpFDo6Oli8eDGysrKKqUIiqsjevn2L2NhYcfrZs2e4ffs2jIyMYGZmhlGjRmHatGlo0aIFXFxccPbsWZw+fRpbt26V+0Xy8OFDXLlyBT/++KPafjFLJBKGAgWxd4oprX0rkQd7urm5ISsrC9nZ2XB1dZVbVq9ePWhpaeHq1avivKysLERGRsLKygrAuzNIgPw1zMKslx9F1rt69So6duyI3r17w8bGBnXr1sWDBw8K3wAioo+4efMm+vTpgz59+gAAgoKC0KdPH6xevRoA0LlzZwQEBCAkJAQ9e/bEnj17sHr1ajRv3lxuO/v27UOtWrXyvM4SkeqVyBkqiUQiPq33wxSpq6uLIUOGYOnSpeJfYyEhIXj79q34ll9zc3NoaGjg9OnTcHd3R+XKlaGnp/fJ9fJTmP19yMLCAidOnMDVq1dhZGSEzZs3IyEhAQ0bNiymDhFRRebi4oKYmJiPjunfv/8nH4Mwffp0TJ8+vThLIyIFldiT0vX19QtcNnPmTAiCAB8fH6SmpsLW1hYhISHizeg1a9bEpEmTsHz5csyaNQt9+vRBcHDwJ9dTdH8fGjduHB49eoSRI0dCR0cHAwcORKdOnZCcnKx4Q4iIiKjc0hAEQVB3EeWVTCZDREQEFl1Mw9VHfOo7UUXXxMwQRya7qbuMYpH7+ubg4FAq72cpzdg7xaiyb4rsix+OTERERKQkBioiIiIiJTFQERERESmJgYqIiIhISQxUREREREoqsccm0P80MNVDBj8Dk6jCs6pR8ONkiKhsY6BSgSX9mvKtsUQEAJDlCJBoaqi7DCIqZrzkpwLvf4QOfZpMJkNUVBT7VkTsm2JU3TeGKaLyiYGKSqX09HR1l1AmsW+KYd+ISFkMVERERERKYqAiIiIiUhIDFREREZGSGKioVNLR0VF3CWUS+6YY9o2IlMXHJqgAH5lQNBKJBI0bN1Z3GWUO+6aY0tA3PkqBqOxjoFIB333XEf08Vd1lEFEpZFVDH6sGO6q7DCJSEgOVCtyLT8Wtp0nqLoOIiIhKCO+hIiIiIlISAxURERGRkhioiIiIiJTEQEVERESkJAYqIiIiIiUxUBEREREpiYGKiKgUCA8Ph7e3N1xdXSGVShEWFia3XCqV5vsvJCREHJOYmIgZM2bAyckJzZs3x+zZs5GaymfgEalCuXoOlZ+fH5KSkvDDDz/Izb906RKGDRuGjh074uTJkwWub25ujj///BMpKSnYtGkTTpw4gSdPnsDQ0BCNGjXCF198gc6dO0NDg080JqLilZaWBqlUin79+mHixIl5lp87d05u+q+//sKcOXPQtWtXcd7MmTMRHx+PzZs3IysrC7Nnz8b8+fOxfPnyEq+fqKIrV4HqU+bMmYMFCxaI066urggKCoKbmxuAdx9BkZSUhC+++ALJycmYOnUq7OzsIJFIEB4ejmXLlqFly5YwNDRU1yEQUTnl7u4Od3f3ApebmprKTZ88eRIuLi6oW7cuAODff//F2bNnsXfvXtjZ2QEA5s6dizFjxsDHxwc1a9YsueKJqGIFKgMDgzxhyNDQUO6FKiAgAE+ePMHx48flXoAsLS3Ro0cPVK5cWWX1EhHlJyEhAWfOnEFwcLA479q1azA0NBTDFAC0bt0ampqauHHjBjp37qyOUokqjAoVqD4lJycHR48eRc+ePfP9a05PT08NVRFRRSCTyfJMfzgv1/79+6Grq4uOHTuKY168eAETExO5dTQ0NGBkZIQXL14UuC1l6y3u7VYE7J1iVNk3RfZR7gLV6dOn4ego/0GjhW3M69ev8ebNGzRo0KAkSiMiKlBMTAzS09PF6fv37yMiIiLfsdu3b0fLli0RHR0tznv27BkyMjLyrJOdnY1Hjx4VuC1lRUZGlsh2KwL2TjGltW/lLlC5uLggICBAbt7169fxzTfffHJdQRBKqCoioo+TSqVy05aWlnBwcMgz7sqVK3j27BnWrVsHGxsbcf6///6L48ePy62TnZ2N1NRUODo65rstZchkMkRGRor3mVLhsXeKUWXfcvdVFOUuUOno6MDCwkJu3vPnzwu1romJCQwNDXHv3r2SKI2IqEAf/oKQSCT5/tI4cOAAmjRpgiZNmsjNb9asGZKSkhAdHQ1bW1sAwIULF5CTkwMHB4cS+wVUUJ30aeydYkpr3/gcqvdoamqie/fu+O233xAXF5dneWpqKrKzs9VQGRGVd6mpqYiOjhYv4z1+/BjR0dF4+vSpOCYlJQXHjx/HgAED8qzfsGFDuLm5Yd68ebhx4wb++ecfLFy4ED169OA7/IhUgIHqA9OmTUOtWrUwcOBAHDx4EHfv3sWDBw+wd+9eeHp6Ii0tTd0lElE5dPPmTfTp0wd9+vQBAAQFBaFPnz5YvXq1OObIkSMQBAEeHh75buO7775DgwYN8NVXX2HMmDFwcnLCt99+q4ryiSq8cnfJT1nGxsbYvXs3fvzxR6xfvx5PnjyBkZERrK2t4ePjAwMDA3WXSETlkIuLC2JiYj46ZtCgQRg0aFCBy42NjfkQTyI1KVeB6v1nsryvoBeqgl68DAwMMGPGDMyYMaNY6yMiIqLyiZf8iIiIiJTEQEVERESkJAYqIiIiIiUxUBEREREpiYGKiIiISEkMVERERERKKlePTSitGpjqIYMfKk5E+bCqoa/uEoioGDBQqcCSfk1L5ecOEVHpIMsRINHUUHcZRKQEXvJTAZmMp6eKQiaTISoqin0rIvZNMaWhbwxTRGUfAxWVSunp6eouoUxi3xTDvhGRshioiIiIiJTEQEVERESkJAYqKpV0dHTUXUKZxL4phn0jImXxXX4qwHf4FY1EIkHjxo3VXUaZw74ppiz3je8OJCo9GKhUwHffdUQ/T1V3GURUjljV0MeqwY7qLoOI/h8DlQrci0/FradJ6i6DiIiISgjvoSIiIiJSEgMVERERkZIYqIiIiIiUxEBFREREpCQGKiIiIiIlMVARERERKYmBioioDAsPD4e3tzdcXV0hlUoRFhYmt1wqleb7LyQkRBxz69YtjBgxAs2bN4eLiwvmzZuH1FQ+O4+oKMpdoPLz85N70XBxccHIkSPx3//+VxyT34sOADx+/BhSqRTR0dF5lnl5eWHRokUlWjsRUVGlpaVBKpXC398/3+Xnzp2T+7d48WJoaGiga9euAIC4uDiMGDEC9erVw+7du7Fp0ybcuXMHs2bNUuVhEJV55fLBnm5ubggKCgIAJCQkYOXKlfD29sbp06fVWxgRUTFzd3eHu7t7gctNTU3lpk+ePAkXFxfUrVsXAHD69GlUqlQJ/v7+0NR89zf2ggUL0KtXLzx8+BAWFhYlVzxROVLuzlABgLa2NkxNTWFqaorPPvsMo0ePxrNnz/Dq1St1l0ZEpDYJCQk4c+YM+vfvL87LzMyElpaWGKYAoEqVKgCAf/75R+U1EpVV5fIM1ftSU1Nx6NAhWFhYwNjYWN3lEBEVK5lMlmf6w3m59u/fD11dXXTs2FEc4+zsjODgYPz444/w8vJCeno6vvvuOwDvLgcWtK3c+QUtp4Kxd4pRZd8U2Ue5DFSnT5+Go+O7Dw1NS0uDqakpNm7cKPcXGBFReRATE4P09HRx+v79+4iIiMh37Pbt29GyZcs894mOHTsWISEh+P7776GpqYmuXbvCyMgIz58/L3BbuSIjI5U9hAqLvVNMae1buQxULi4uCAgIAAC8efMGO3bswOjRo7Fnzx6Ym5urtzgiomIklUrlpi0tLeHg4JBn3JUrV/Ds2TOsW7cONjY2csscHBwwYcIEJCQkQEdHBxoaGmjRogVatGiR77aAd3/BR0ZGws7ODhKJpLgOp0Jg7xSjyr7l7qsoymWg0tHRkbuRskmTJmjevDl2796NadOmFbievr4+ACA5OTnPsqSkJBgYGBR/sURESvjwF4tEIsn3l82BAwfQpEkTNGnSpMBt1axZEwCwd+9eVK5cGW5ubp/8xVXQ/ujT2DvFlNa+lctA9SENDQ1oaGggIyPjo+OMjY1RtWpV3Lp1Cy1atBDnp6SkIDY2FvXr1y/hSomIiiY1NRWxsbHi9OPHjxEdHQ0jIyOYmZkBePcadvz4cfj6+ua7jZ9//hmOjo7Q1dXF33//jaVLl2LGjBkwNDRUyTEQlQflMlBlZmYiPj4ewLszSz///DPS0tLQvn17cUzui877LCwsMGLECGzYsAHVqlWDg4MDEhMT8cMPP6Bq1aro0qWLSo+DiOhTbt68iWHDhonTuY+M8fT0RHBwMADgyJEjEAQBHh4e+W7jxo0bWLNmDVJTU9GgQQMsWLAAffr0KfHaicqTchmozp49C1dXVwCAnp4eGjRogFWrVsHFxUUck/ui875ffvkFo0aNgq6uLjZt2oRHjx7ByMgITk5O2Lp1q/hWYiKi0sLFxQUxMTEfHTNo0CAMGjSowOVLly4t7rKIKpxyF6iCg4PFv8oK8qkXHy8vL3h5eRVnWURERFSO8TkCREREREpioCIiIiJSEgMVERERkZIYqIiIiIiUxEBFREREpCQGKiIiIiIllbvHJpRGDUz1kMEPFSeiYmRVQ1/dJRDRexioVGBJv6al8nOHiKhsk+UIkGhqqLsMIgIv+amETMbTU0Uhk8kQFRXFvhUR+6aYstw3himi0oOBikql9PR0dZdQJrFvimHfiEhZDFRERERESmKgIiIiIlISAxURERGRkhioqFTS0dFRdwllEvumGPZNMewb0f/wsQkqwEcmFI1EIkHjxo3VXUaZw74phn1TjKr6xkdDUFnBQKUCvvuuI/p5qrrLICIqU6xq6GPVYEd1l0FUKAxUKnAvPhW3niapuwwiIiIqIbyHioiIiEhJDFRERERESmKgIiIiIlISAxURERGRkhioiIiIiJTEQEVERKXaxo0b0a9fPzg6OqJVq1YYP3487t27Jzdm165d8PLygpOTE6RSKZKS8n9n9enTpzFgwADY29vD2dkZ48ePV8UhUAXAQEVERKXa5cuXMXToUOzevRubN29GdnY2Ro4cibS0NHFMeno63Nzc4O3tXeB2Tpw4AR8fH/Tt2xe//vorduzYAQ8PD1UcAlUAFfI5VH5+fkhKSsIPP/yQ7/KoqCj8+OOPuHLlChITE2Fqagpra2sMGjQI7du3h4YGn9pLRKQqoaGhctPBwcFo1aoVbt26BWdnZwDA8OHDAQCXLl3KdxvZ2dlYtGgRvvnmGwwYMECcb2VlVTJFU4VTIQPVx4SFhWHq1Klo3bo1goODYWFhgczMTFy9ehUrV65E8+bNYWhoqO4yiYgqrOTkZACAkZFRodeJiopCXFwcNDU10adPHyQkJMDGxgY+Pj6wtrYuqVKpAmGgek9aWhrmzJmDdu3aYe3atXLLGjZsiAEDBkAQBDVVR0RUMclkMvH/OTk5WLRoEZycnNCwYUO5ZbnLc9d5f9nDhw8BAGvWrIGvry/Mzc3x008/wcvLC0ePHoWxsXHJH8j/y63rw9rp41TZN0X2wUD1nvPnzyMxMRGjRo0qcAwv9xERqVZMTAzS09MBvLv8d+vWLfj7+yMiIiLP2Lt37wIAIiMjoaenJ86/f/8+AKB79+6oUaMGsrKyMHDgQPz1118IDQ1Fx44dS/5APhAZGanyfZYHpbVvDFTvyf2Bs7S0FOfduHEDX331lTi9YsUKtG/fXuW1ERFVVFKpFAAQGBiIW7duYfv27ahTp06+YzMzMwEAdnZ2crdnZGRkAADatWsHBwcHcX79+vUhkUjk5pU0mUyGyMhI2NnZQSKRqGy/ZZ0q+5a7r6JgoPoEGxsbHDx4EADQpUsXnqIlIlIxTU1NLFy4EGFhYdi2bRssLCw+OhYAJBKJ3C9de3t7aGtr4+HDh2jRogUAICsrC0+fPkWdOnXUEmw+rJEKp7T2jYHqPfXr1wfw7kxV7l8r2traH/3hJSKikrVgwQIcPnwYP/zwA/T09BAfHw8AMDAwQJUqVQAA8fHxSEhIQGxsLADg9u3b0NPTQ+3atWFsbAx9fX0MHjwYa9asQe3atWFmZia+e7Bbt27qOTAqVxio3tOmTRsYGxtj06ZNWLdunbrLISIiADt27AAAeHl5yc0PCgpC3759AQA7d+6UezPR0KFD84zx8fFBpUqV4OPjg7dv36Jp06bYsmVLkd4tSFSQChuokpOTER0dLTfP2NgYgYGBmDZtGsaMGQMvLy/Ur18fqampOHv2LID/nU4mIiLViImJ+eSYSZMmYdKkSR8do6WlBV9fX/j6+hZXaUSiChuoLl++jD59+sjN69+/PxYtWoQdO3Zg06ZN8PX1xZs3b6Cvrw9bW1t8//33vCGdiIiI8qiQgSo4OBjBwcEFLrezs8Pq1atVWBERERGVZbx+RURERKQkBioiIiIiJTFQERERESmJgYqIiIhISQxUREREREqqkO/yU7UGpnrI4CfWEBEViVUNfXWXQFRoDFQqsKRf01L5uUNERKWdLEeARFND3WUQfRIv+akAP1C5aGQyGaKioti3ImLfFMO+KUZVfWOYorKCgYpKpfT0dHWXUCaxb4ph3xTDvhH9DwMVERERkZIYqIiIiIiUxEBFREREpCQGKiqVdHR01F1CmcS+KYZ9Uwz7pjj2TjGluW8agiAI6i6ivJLJZIiIiICDgwMfm0BERFSMSvKRGor8/uZzqFTAd991RD9PVXcZRERE5YJVDX2sGuyo7jLkMFCpwL34VNx6mqTuMoiIiKiE8B4qIiIiIiUxUBEREREpiYGKiIiISEkMVERERERKYqAiIiIiUhIDFREREZVJ27dvR8+ePeHk5AQnJycMGjQIZ86cEZdnZGRgwYIFcHFxgaOjIyZNmoSEhARx+X//+19Mnz4d7u7usLe3x+eff44tW7YoVAsfm0BERERlUq1atTBz5kxYWFhAEAQcPHgQEyZMwIEDB9CoUSMsXrwYZ86cwcqVK2FgYICFCxdi4sSJ2LlzJwDg5s2bMDExwbJly1C7dm1cvXoV8+fPh4aGBpo0aVKkWpQKVK9evcKqVatw5swZJCQkwMjICDY2Nhg/fjyaNWumzKaJiIiIPqpDhw5y09OmTcOOHTsQERGBWrVqYd++ffjuu+/QqlUrAMDixYvRvXt38Sno/fv3l1u/bt26iIiIQFhYmGoD1aRJk5CVlYXg4GDUrVsXL1++xIULF5CYmKjMZomIiIiKRCaT4fjx40hLS4OjoyNu3ryJrKwstG7dWhzTsGFDmJmZiYEqP8nJyTAyMiry/hW+hyopKQlXrlzBzJkz0bJlS5ibm8Pe3h5jx45Fx44dAQCbN29Gz5494eDgAHd3dwQEBCA19X8fwbJ//340b94cp06dQteuXdG0aVNMnjwZ6enpOHDgADp06ABnZ2cEBgZCJpOJ6/3yyy/o0qUL7Ozs0Lp1a0yePFlc1qFDB/z0009ytfbu3Rtr1qwRp6VSKfbs2YMJEyagadOm6NKlC06ePCm3zsmTJ8V9eHl54cCBA5BKpUhK4hPPiYiISouYmBg4OjrCzs4O/v7+WLduHaysrJCQkAAtLS0YGhrKja9WrRri4+Pz3dbVq1dx7NgxDBgwoMh1KByodHV1oauri7CwMGRmZuY7RkNDA3PmzMHhw4cRHByMixcvYtmyZXJj3r59i23btuH7779HSEgILl26hIkTJ+LMmTP48ccfsXTpUuzcuRMnTpwAAERGRmLRokWYPHkyjh8/jpCQEDRv3rzI9a9duxaff/45Dh06hLZt22LmzJnimbVHjx5hypQp6NixI3799VcMHjwY33//fZH3QURERCVHJpOhXr162LdvH3bu3IlBgwbB19cXMTExyMnJEce8/w8ABEHIM/+///0vxo8fj/Hjx6Nly5ZFrkXhS36VKlVCcHAw5s2bh507d6Jx48Zo0aIFunfvDhsbGwDA8OHDxfF16tTB1KlT4e/vj4CAAHF+VlYWAgICUK9ePQBA165dcejQIZw/fx56enqwsrKCi4sLLl68iO7du+PZs2fQ0dFBu3btoK+vD3NzczRu3LjI9Xt6esLDwwMAMH36dGzbtg03btxA27ZtsWvXLlhaWsLX1xcA0KBBA9y+fRsbNmxQsFtERERU3GJiYpCeni5Od+jQARcuXMDKlSvRqlUrZGVliXki17Nnz5CRkYGIiAhx3uPHjxEYGIj27dujZcuWiIyMLHItSt1D1bVrV7Rr1w5XrlxBREQEzp49i5CQEAQGBqJv3774+++/sXHjRty7dw8pKSmQyWTIyMhAeno6dHR0AAA6OjpimAKA6tWrw9zcXO7gq1evjlevXgEAWrduDTMzM3Tq1Alubm5wc3ND586dxe0VllQqFf+vq6sLfX19cR/379+Hra2t3Hh7e/uiNYeIiIhK1Pu/y3Pp6+vD0NAQvXr1wpIlS5Camoo2bdoAePf7PSEhAT169EDTpk0BAHfu3MGSJUvQv39/zJw5E8C7s1pFDVVKP4eqcuXKaNOmDSZMmICdO3fC09MTa9aswePHjzF27FhIpVKsWbMG+/fvx/z58wG8OyuVq1Il+UynoaGR77zcU3f6+vo4cOAAVqxYAVNTU6xevRq9e/cW723S0NDIU2N2dnaeeVpaWgXug4iIiEq/lStX4urVq3j27Bnu3r2LlStX4vLly+jVqxeMjY3Rv39/LF26FOHh4YiOjsbcuXPh6OgIJycnSCQS/PvvvxgxYgTatGmDr7/+Gq9evcKrV6/w5s2bItdS7M+hsrKyQlhYGG7dugVBEODn5wdNzXe57dixY8Wyj0qVKqF169Zo3bo1Jk6cCGdnZ1y8eBFdunSBiYkJXrx4IY5NSUnB48ePi7R9S0tLuQeDAVDo9B8RERGVnJcvX8LX1xcvXryAgYEBpFIpQkNDxTNSs2fPhqamJiZPnozMzEy4urrC399fXP/EiRN49eoVDh06hEOHDonzzczM8N133xWpFoUD1evXrzFlyhT069cPUqkUenp6uHnzJkJCQtCxY0dYWFggKysL27ZtQ4cOHfDPP/+ID9JSxqlTp/Do0SM4OzvD0NAQZ86cQU5ODiwtLQEALVu2FN8haGBggNWrV4uBrrAGDRqEn376CcuWLUP//v0RHR2NAwcOAMj/DBgRERGp3uLFiz+6vHLlyvD395cLUe+bNGkSJk2alGe+TCaTu8eqMBQOVHp6emjatCm2bNmC2NhYZGdno1atWhgwYAC8vb1RpUoVzJo1C5s2bcKKFSvQvHlzTJ8+XbzRW1EGBgb4448/sHbtWmRkZMDCwgLLly9Ho0aNAABjx44VLzcaGBhgypQpRT5DVbduXaxatQpLlizB1q1b4eDgAG9vbwQEBEBbW1up+omIiKj80RAEQVB3EWXB+vXrsXPnzjyXAj8mN+EuupiGq4/4/CoiIqLi0MTMEEcmu5XY9nN/fzs4OEAikRRqHX6WXwF++eUX2NnZoWrVqvjnn38QGhqKoUOHqrssIiIiKoUYqArw8OFDrF+/Hm/evIGZmRlGjBiBsWPHqrssIiIiKoUYqAowe/ZszJ49W91lEBERURmg9HOoiIiIiCo6BioiIiIiJfGSnwo0MNVDhkzdVRAREZUPVjX01V1CHgxUKrCkX9NCv+2SiIiIPk2WI0CiWXoets1Lfiogk/H0VFHIZDJERUWxb0XEvimGfVMM+6Y49k4xH/atNIUpgIGKSqn09HR1l1AmsW+KYd8Uw74pjr1TTGnuGwMVERERkZIYqIiIiIiUxEBFREREpCQGKiIiIiIlMVARERERKYmBioiIiEhJDFRERERESmKgIiIiIlISAxURERGRkhioiIiIiJTEQEVERESkJAYqIiIiIiUxUBEREREpqZK6CyjPBEEAAMhkMshkMjVXU3bk9oo9Kxr2TTHsm2LYN8Wxd4pRZd9y95H7e7wwNISijKYiyczMRGRkpLrLICIiIgXY2dlBW1u7UGMZqEpQTk4OsrOzoampCQ0NDXWXQ0RERIUgCAJycnJQqVIlaGoW7u4oBioiIiIiJfGmdCIiIiIlMVARERERKYmBioiIiEhJDFRERERESmKgIiIiIlISAxURERGRkhioiIiIiJTEQEVERESkJAYqIiIiIiUxUJWQX375BR06dICdnR0GDBiAGzduqLukUmXNmjWQSqVy/7p16yYuz8jIwIIFC+Di4gJHR0dMmjQJCQkJaqxYPcLDw+Ht7Q1XV1dIpVKEhYXJLRcEAatWrYKrqyvs7e0xfPhwPHjwQG5MYmIiZsyYAScnJzRv3hyzZ89GamqqCo9CPT7VOz8/vzzfgyNHjpQbU9F6t3HjRvTr1w+Ojo5o1aoVxo8fj3v37smNKczP5tOnTzFmzBg0bdoUrVq1wpIlS5Cdna3KQ1G5wvTOy8srz/fc/Pnz5cZUtN5t374dPXv2hJOTE5ycnDBo0CCcOXNGXF6Wvt8YqErA0aNHERQUhAkTJuDAgQOwsbHByJEj8fLlS3WXVqo0atQI586dE/9t375dXLZ48WKcOnUKK1euxLZt2/DixQtMnDhRjdWqR1paGqRSKfz9/fNdvmnTJmzbtg0BAQHYvXs3dHR0MHLkSGRkZIhjZs6cibt372Lz5s3YsGEDrly5kudFvDz6VO8AwM3NTe57cMWKFXLLK1rvLl++jKFDh2L37t3YvHkzsrOzMXLkSKSlpYljPvWzKZPJMHbsWGRlZWHnzp0IDg7GgQMHsHr1anUcksoUpncAMHDgQLnvOR8fH3FZRexdrVq1MHPmTOzfvx/79u1Dy5YtMWHCBNy5cwdAGft+E6jY9e/fX1iwYIE4LZPJBFdXV2Hjxo1qrKp0Wb16tdCrV698lyUlJQlNmjQRjh07Js67e/euYG1tLVy7dk1FFZY+1tbWwh9//CFO5+TkCG3atBFCQkLEeUlJSYKtra1w+PBhQRD+17cbN26IY86cOSNIpVLh+fPnqitezT7snSAIgq+vrzBu3LgC12HvBOHly5eCtbW1cPnyZUEQCvezefr0acHGxkaIj48Xx2zfvl1wcnISMjIyVFq/On3YO0EQhC+//FIIDAwscB327h1nZ2dh9+7dZe77jWeoillmZiZu3bqF1q1bi/M0NTXRunVrXLt2TY2VlT4PHz6Eq6srOnbsiBkzZuDp06cAgJs3byIrK0uuhw0bNoSZmRkiIiLUVG3p8/jxY8THx8v1ycDAAE2bNhW/165duwZDQ0PY2dmJY1q3bg1NTU1ehsa7swqtWrVC165d4e/vj9evX4vL2DsgOTkZAGBkZASgcD+bERERsLa2RvXq1cUxrq6uSElJwd27d1VXvJp92Ltcv/32G1xcXODh4YHly5cjPT1dXFbReyeTyXDkyBGkpaXB0dGxzH2/VVLp3iqA169fQyaToVq1anLzq1Wrlud6ekVmb2+PoKAgWFpaIj4+HuvWrcPQoUPx22+/ISEhAVpaWjA0NJRbp1q1aoiPj1dTxaVPbi/y+17LvccgISEBJiYmcssrVaoEIyOjCt9LNzc3dO7cGXXq1MGjR4+wYsUKjB49Grt27YJEIqnwvcvJycHixYvh5OQEa2trACjUz2ZCQoLcLzcA4nRF6BuQf+8AwMPDA2ZmZqhRowZiYmLw3Xff4f79+1i7di2Aitu7mJgYDB48GBkZGdDV1cW6detgZWWF6OjoMvX9xkBFauHu7i7+38bGBk2bNkX79u1x7NgxVKlSRY2VUUXRo0cP8f+5Nwh36tRJPGtV0S1YsAB37tyRu7eRCqeg3g0aNEj8v1QqhampKYYPH47Y2FjUq1dP1WWWGpaWljh48CCSk5Nx4sQJ+Pr64ueff1Z3WUXGS37FrGrVqpBIJHluQH/58mWeFE3/Y2hoiPr16yM2NhbVq1dHVlYWkpKS5Ma8fPkSpqamaqqw9Mntxce+16pXr45Xr17JLc/OzsabN2/Yyw/UrVsXVatWxcOHDwFU7N59++23OH36NLZs2YJatWqJ8wvzs1m9evU878LKnS7vfQMK7l1+mjZtCgBy33MVsXfa2tqwsLCAra0tZsyYARsbG2zdurXMfb8xUBUzbW1tNGnSBBcuXBDn5eTk4MKFC3B0dFRjZaVbamoqHj16BFNTU9ja2kJLS0uuh/fu3cPTp0/h4OCgviJLmTp16sDU1FSuTykpKbh+/br4vebo6IikpCTcvHlTHHPx4kXk5OTA3t5e5TWXZs+fP0diYqL4IlwReycIAr799lv88ccf2LJlC+rWrSu3vDA/mw4ODrh9+7Zc0P/777+hr68PKysrlRyHOnyqd/mJjo4G8L9f/BW1dx/KyclBZmZmmft+4yW/EjBixAj4+vrC1tYW9vb22LJlC9LT09G3b191l1ZqLFmyBO3bt4eZmRlevHiBNWvWQFNTEx4eHjAwMEC/fv0QHBwMIyMj6OvrIzAwEI6OjhUuUKWmpiI2Nlacfvz4MaKjo2FkZAQzMzMMGzYM69evh4WFBerUqYNVq1ahRo0a6NSpE4B3N3C6ublh3rx5WLBgAbKysrBw4UL06NEDNWvWVNdhqcTHemdkZIS1a9eia9euqF69Oh49eoRly5bBwsICbm5uACpm7xYsWIDDhw/jhx9+gJ6enngPioGBAapUqVKon01XV1dYWVnBx8cH33zzDeLj47Fy5UoMHToU2traajy6kvWp3sXGxuK3336Du7s7jI2NERMTg6CgIDg7O8PGxgZAxezd8uXL0bZtW9SuXRupqak4fPgwLl++jNDQ0DL3/aYhCIKg0j1WED///DNCQ0MRHx+Pzz77DHPnzhVP7xIwbdo0hIeHIzExESYmJmjWrBmmTZsm3keQkZGB4OBgHDlyBJmZmXB1dYW/v3+5Pu2dn0uXLmHYsGF55nt6eiI4OBiCIGD16tXYvXs3kpKS0KxZM/j7+8PS0lIcm5iYiIULF+LPP/+EpqYmunTpgrlz50JPT0+Vh6JyH+tdQEAAJkyYgKioKCQnJ6NGjRpo06YNpkyZIndpvqL1TiqV5js/KChI/IOwMD+bT548QUBAAC5fvgwdHR14enpixowZqFSp/P4N/6nePXv2DN988w3u3LmDtLQ01K5dG506dcL48eOhr68vjq9ovZs9ezYuXryIFy9ewMDAAFKpFKNHj0abNm0AlK3vNwYqIiIiIiXxHioiIiIiJTFQERERESmJgYqIiIhISQxUREREREpioCIiIiJSEgMVERERkZIYqIiIiIiUxEBFREREpCQGKiIiIiIlMVARERERKYmBioiIiEhJ/wfpbPAy8F4+uQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"barras = ax.barh(top_10_marcas.index, top_10_marcas.values)\n",
"plt.title('Marca de Telefono x Cantidad')\n",
"ax.bar_label(barras) #Muestra la cantidad acumulada de valores de la categoria\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FaEkmJnUyCa8"
},
"source": [
"# Proceso de KMeans y hallazgos de grupos"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "w5cMNlQLV93Z"
},
"source": [
"## Clusterizacion"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Xn2JoCLnL2DA"
},
"source": [
"Ahora teniendo la informacion general y bien visualizada acerca de nuestro dataset, se continua con el objetivo principal de nuestro proyecto"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 423
},
"executionInfo": {
"elapsed": 9,
"status": "ok",
"timestamp": 1684158703630,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "3npPLv3EM1xN",
"outputId": "c55c5ed0-6c8a-43e4-8697-6fe90d34a46e"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Battery
\n",
"
Memory
\n",
"
Primary_Storage
\n",
"
Display_Size
\n",
"
Primary_Camera
\n",
"
Front_Camera
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1950.0
\n",
"
0.5
\n",
"
4.000000
\n",
"
4.0
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
1
\n",
"
1500.0
\n",
"
0.5
\n",
"
34.296597
\n",
"
4.0
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
2
\n",
"
1400.0
\n",
"
0.5
\n",
"
4.000000
\n",
"
4.0
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
3
\n",
"
1680.0
\n",
"
0.5
\n",
"
34.296597
\n",
"
4.5
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
4
\n",
"
1850.0
\n",
"
0.5
\n",
"
4.000000
\n",
"
4.5
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
4532
\n",
"
5000.0
\n",
"
3.0
\n",
"
32.000000
\n",
"
6.3
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
4533
\n",
"
5000.0
\n",
"
4.0
\n",
"
128.000000
\n",
"
6.5
\n",
"
16.0
\n",
"
16.0
\n",
"
\n",
"
\n",
"
4534
\n",
"
3260.0
\n",
"
4.0
\n",
"
64.000000
\n",
"
6.2
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
4535
\n",
"
4030.0
\n",
"
2.0
\n",
"
32.000000
\n",
"
6.2
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
4536
\n",
"
4030.0
\n",
"
4.0
\n",
"
64.000000
\n",
"
6.2
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
" \n",
"
\n",
"
2816 rows × 6 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" Battery Memory Primary_Storage Display_Size Primary_Camera \\\n",
"0 1950.0 0.5 4.000000 4.0 5.0 \n",
"1 1500.0 0.5 34.296597 4.0 5.0 \n",
"2 1400.0 0.5 4.000000 4.0 5.0 \n",
"3 1680.0 0.5 34.296597 4.5 5.0 \n",
"4 1850.0 0.5 4.000000 4.5 5.0 \n",
"... ... ... ... ... ... \n",
"4532 5000.0 3.0 32.000000 6.3 13.0 \n",
"4533 5000.0 4.0 128.000000 6.5 16.0 \n",
"4534 3260.0 4.0 64.000000 6.2 13.0 \n",
"4535 4030.0 2.0 32.000000 6.2 13.0 \n",
"4536 4030.0 4.0 64.000000 6.2 13.0 \n",
"\n",
" Front_Camera \n",
"0 0.3 \n",
"1 0.3 \n",
"2 0.3 \n",
"3 0.3 \n",
"4 0.3 \n",
"... ... \n",
"4532 8.0 \n",
"4533 16.0 \n",
"4534 8.0 \n",
"4535 8.0 \n",
"4536 8.0 \n",
"\n",
"[2816 rows x 6 columns]"
]
},
"execution_count": 226,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_num"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"executionInfo": {
"elapsed": 4837,
"status": "ok",
"timestamp": 1684158708459,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "04z6cAeYOyDM",
"outputId": "41937ca0-b422-4eea-ebd9-a7a06cbbbab8"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXz0lEQVR4nO3deVhU9f4H8PfMMCwDyK6oICDCuCGLCmkoubSoeXPLLJfyurRY3Syz9Na9aZbWVe+9mW2mlkt6LZdbLljeX5olCi4omokhIJvKvg0ww8z5/QGMEqCAM5yZw/v1PD4wZ875ns9noHx7zvecIxMEQQARERGRRMjFLoCIiIjIlBhuiIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYbojIKCEhAR9++CFKS0vFLoWIqNUYbogIAJCVlYV58+bByckJzs7ObbLPEydOQK1W48SJE2bdz65du6BWq5GZmdnibdesWQO1Wm2GqlrOkmohsmQMN0RWru4vbrVajZMnTzZ4XxAExMTEQK1W4+mnn250DJ1Oh/nz52P8+PF46qmnGry/detW7Nq1y9SlExGZBcMNkUTY2dlh7969DZbHx8fj2rVrsLW1bXLb33//HaNHj8brr7/e6Pvbtm3D7t27TVYrEZE5MdwQSURMTAxiY2NRXV1db/nevXvRp08feHl5Nbltr1698NRTT0Emk5m7TCIis2O4IZKIMWPGoKioCL/88otxmVarxcGDBzF27NhGtzEYDPjiiy8wZswYhISEYPDgwfjb3/6G4uJi4zrDhw/H5cuXER8fbzz9NX36dOP7GRkZePHFFxEZGYnQ0FBMnjwZhw8fbrCva9eu4bnnnkNYWBgGDRqEd999F1qtttG6Dhw4gAkTJqBfv36IiorCggULcP369WZ9DpcvX8aMGTPQr18/DB06FB999BEMBkOj6x45cgRPPPEEwsLCEB4ejrlz5+Ly5cvN2k9jzp49izlz5mDgwIEICwvD2LFj8eWXX9ZbJy4uzrjPAQMG4Nlnn0VKSkqDsU6ePImJEyciJCQEI0eOxPbt2xvdZ3V1NdauXYuRI0eib9++GD58OFavXt3kZ0vUHtiIXQARmUbXrl0RFhaGffv2ISYmBgDw008/obS0FKNHj8bmzZsbbPO3v/0Nu3fvxoQJEzB9+nRkZmZi69at+PXXX7Ft2zYolUosXrwYb7/9NlQqFZ555hkAgKenJwAgLy8PU6ZMQUVFBaZPnw43Nzfs3r0bzz77LD744APcf//9AIDKyko8+eSTyMnJwfTp09GxY0f897//xfHjxxvUtGvXLixatAghISF4+eWXkZ+fj02bNuH06dPYs2cPOnTo0ORnkJubixkzZkCv12Pu3LlwcHDAjh07YGdn12DdPXv24PXXX0d0dDQWLFiAiooKbNu2DU888QR2794NHx+fFn3+v/zyC55++ml07NgRM2bMgKenJ1JSUnD48GE8+eSTAIBjx45hzpw58PHxwfPPP4/Kykps2bIFjz/+OHbt2mXc56VLlzBr1iy4u7vjhRdeQHV1NdasWQMPD48G+33jjTewe/duPPjgg5g5cybOnTuHTz/9FCkpKVi7dm2LeiCSDIGIrNrOnTuF4OBg4dy5c8KWLVuE8PBwoaKiQhAEQXjxxReF6dOnC4IgCMOGDRPmzp1r3C4hIUEIDg4Wvv3223rj/fTTTw2WjxkzRpg2bVqDfb/zzjtCcHCwkJCQYFxWVlYmDB8+XBg2bJig1+sFQRCEL774QggODhb2799vXE+j0Qj333+/EBwcLBw/flwQBEHQarXCoEGDhIcffliorKw0rvvjjz8KwcHBwr///e/bfhZ19Zw9e9a4LD8/X+jfv78QHBwsZGRkGGscMGCA8MYbb9TbPjc3V+jfv3+95R988IEQHBx82/1WV1cbey4uLq73nsFgMH7/yCOPCIMGDRIKCwuNyy5evCj07NlTWLhwoXHZc889J4SEhAhZWVnGZb///rvQq1everVcvHhRCA4OFv7617/W2+eKFSuE4OBgIS4u7rZ1E0kVT0sRScioUaNQVVWFH3/8EWVlZTh8+HCTp6RiY2Ph7OyMe++9FwUFBcY/ffr0gUqlatbl2UeOHEG/fv0wYMAA4zJHR0c89thjyMrKwu+//w6g5giSl5cXHnroIeN6Dg4OmDx5cr3xzp8/j/z8fDz++OP1jrbcd9996N69e6Onu/5YT1hYGPr162dc5u7u3uAzOHbsGEpKSjBmzJh6vcvlcoSGhrb40vRff/0VmZmZmDFjRoMjS3XzmG7cuIGLFy9i/PjxcHV1Nb7fs2dPDB48GEeOHAEA6PV6/Pzzzxg5ciS6dOliXC8wMBDR0dEN+gWAmTNn1lv+5z//ud77RO1Nuz4tlZCQgPXr1+P8+fPIzc01nrduif379+PTTz9FWloa3N3dMXXqVMyePdtMFRPdnru7OwYNGoS9e/eisrISer0eDz74YKPrpqeno7S0FIMGDWr0/fz8/DvuLzs7G6GhoQ2Wd+/e3fh+cHAwsrKy4Ofn12DCckBAQIPxGlteN+apU6daVc8fx0tLSwMA4+miP3Jycrrtfv4oIyMDABAcHHzb2hqrBagJLj///DM0Gg3Ky8tRWVkJPz+/BusFBATUCyxZWVmQy+Xo1q1bvfW8vLzQoUMHZGVltagPIqlo1+FGo9FArVZj4sSJeP7551u8/ZEjR/Dqq6/ijTfeQHR0NFJSUvDGG2/A3t4e06ZNM0PFRHf28MMP480330ReXh6GDh3a5BwVg8EADw8PrFy5stH33d3dzVmmqARBAAC8//77jV5FplAo2rqku8Kr3Ijqa9fhJiYmxjjxsjFarRb//Oc/sXfvXpSWliIoKAgLFixAVFQUAODbb7/FiBEj8PjjjwMAfH198fTTT2PdunWYOnUq/4dDorj//vvx97//HYmJifjnP//Z5HrdunVDXFwcIiIiYG9vf9sxm/pd7tKlC1JTUxssv3LlivF9oGayc3JyMgRBqDfWH7etWz81NbXBEaXU1NR6p2maqic9Pb3B8j/ux9fXFwDg4eGBwYMH33bM5qgbLzk5ucnxbu3tj65cuQI3NzeoVCrY2dnB3t6+WX107doVBoMB6enpCAwMNC7Py8tDSUkJunbt2uqeiKwZ59zcxtKlS3HmzBn885//xLfffouHHnoIs2fPNh7S1mq1Da7CsLe3x7Vr13g4mETj6OiIt956Cy+88AKGDx/e5HqjRo2CXq/HRx991OC96upqlJSUGF87ODjUe10nJiYG586dw5kzZ4zLNBoNduzYga5du6JHjx4AgKFDh+LGjRuIjY01rldRUYEdO3bUG69v377w8PDA9u3b613KfOTIEaSkpOC+++67be8xMTFITEzEuXPnjMsKCgrw3Xff1VtvyJAhcHJywqeffgqdTtdgnIKCgtvu54/69OkDHx8fbNq0qcHnVHeUqGPHjujVqxf27NlTb53k5GT88ssvxn9oKRQKREdH49ChQ8ZTWQCQkpKCn3/+uUG/ABpcbr5x48Z67xO1N+36yM3tZGdnY9euXfjxxx/RqVMnAMCsWbNw9OhR7Nq1Cy+//DKio6OxfPlyxMXFISoqCunp6diwYQOAmktSW3opKZGpjB8//o7rREZG4rHHHsOnn36Kixcv4t5774VSqURaWhpiY2Px17/+1TgBuE+fPti2bRs++ugj+Pn5Gef2zJ07F/v27cOcOXMwffp0uLi4YM+ePcjMzMSaNWsgl9f8+2ny5MnYunUrXnvtNVy4cAFeXl7473//2+CIkVKpxIIFC7Bo0SJMmzYNY8aMMV4K3rVr10YfDXGr2bNn47///S9mz56NGTNmGC8F79KlCy5dumRcz8nJCW+99RYWLlyICRMmYPTo0XB3d0d2djaOHDmCiIgI/O1vf2v25y2Xy/HWW2/h2Wefxbhx4zBhwgR4eXnhypUr+P3337F+/XoAwMKFCzFnzhw89thjmDRpkvFScGdn53qnxl944QUcPXoUU6dOxeOPPw69Xo8tW7agR48e9fro2bMnxo8fj//85z8oKSnBwIEDkZSUhN27d2PkyJG45557mt0DkZQw3DQhOTkZer2+3tUdQM3RmrorHSZPnoyrV6/i6aefRnV1NZycnDBjxox6/1MnsmRLly5F3759sX37dvzzn/+EQqFA165d8ac//QkRERHG9ebNm4fs7Gx8/vnnKC8vR2RkJAYNGgRPT09s374d//jHP7BlyxZUVVVBrVbjk08+qXeUxcHBAV988QXefvttbNmyBfb29hg7diyGDh3aYAL+hAkTYG9vj3Xr1mHlypVQqVQYOXIkXn311dve4waoOTqyadMmLFu2DJ999hlcXV0xZcoUdOzYEX/961/rrTt27Fh07NgRn332GdavXw+tVotOnTphwIABmDBhQos/yyFDhuDLL7/E2rVrsWHDBgiCAF9f33pXhA0ePBiff/45PvjgA3zwwQewsbHBwIED8eqrrxpPbQE1oWX9+vVYvnw5PvjgA3h7e+OFF15Abm5uvXADAMuWLYOPjw92796NQ4cOwdPTE08//XSr5hESSYVMqDtm2s6p1ep6V0vt378fCxYswN69extMLlSpVPUmIer1euTl5cHNzQ1xcXGYO3cu4uLiJD0hk4iIyFLxyE0TevXqBb1ej4KCgnr38GiMQqEwnrrat28fwsPDGWyIiIhE0q7DTXl5Oa5evWp8nZmZiYsXL8LFxQUBAQEYO3YsFi5ciNdffx29evVCYWEh4uLioFarcd9996GgoAAHDx5EZGQktFotdu7cidjYWGzZskXEroiIiNq3dn1a6sSJE5gxY0aD5ePHj8eKFSug0+nw8ccfY8+ePbhx4wZcXV0RFhaGF154AWq1GgUFBXj22WeNl7iGhYVh/vz5jd5EjIiIiNpGuw43REREJD28pIeIiIgkheGGiIiIJKXdTSg2GAyorq6GXC7n4xGIiIishCAIMBgMsLGxueO95NpduKmurkZSUpLYZRAREVErhISEwNbW9rbrtLtwU5f2QkJCTP7kX71ej6SkJLOMbQmk3h8g/R7Zn/WTeo/sz/qZq8e6cZvzBACLCTefffYZVq1ahRkzZjS4TfqtDhw4gH//+9/IysqCv78/FixY0KKHw9WdilIoFGb7xTLn2JZA6v0B0u+R/Vk/qffI/qyfuXpszpQSi5hQfO7cOWzfvh1qtfq2650+fRqvvPIKJk2ahD179mDEiBGYN28ekpOT26hSIiIisnSih5vy8nK8+uqrWLZsGVxcXG677qZNmzBkyBDMnj0bgYGBeOmll9C7d2/eEZiIiIiMRD8ttXTpUsTExGDw4MH4+OOPb7tuYmIinnrqqXrLoqOjcejQoRbvV6/Xt3ib5o5pjrEtgdT7A6TfI/uzflLvkf1ZP3P12JLxRA03+/btw6+//opvvvmmWevn5eXB09Oz3jIPDw/k5eW1eN/mvGJK6ldjSb0/QPo9sj/rJ/Ue2Z/1E7NH0cJNTk4O3nnnHWzYsAF2dnZtvn9eLdVyUu8PkH6P7M/6Sb1H9mf9zH21VHOIFm4uXLiA/Px8TJgwwbhMr9cjISEBW7duRVJSUoMPxdPTs8FRmvz8/AZHc5qDV0u1ntT7A6TfI/uzflLvkf1ZPzF7FC3c3HPPPfjuu+/qLVu0aBG6d++OOXPmNPqBhIWF4fjx4/Xm3Rw7dgxhYWFmrpaIiIishWjhxsnJCcHBwfWWqVQquLq6GpcvXLgQnTp1wiuvvAIAmDFjBqZPn44NGzYgJiYG+/fvx/nz57F06dI2r5+IiIgsk+iXgt9OTk4OcnNzja8jIiKwcuVK/Oc//8EjjzyCgwcPYu3atQ1CEhEREbVfol8KfqvNmzff9jUAjBo1CqNGjWqrkoiIiMjKWPSRGyIiIqKWYrghIiIiSWG4MaEqnR6CIIhdBhERUbvGcGMiheVaDH7vMP4RVyR2KURERO0aw42JVFUbUFShQ0J2FcqqqsUuh4iIqN1iuDERbxd7+Lo5wCAAZ64WiV0OERFRu8VwY0ID/N0AAPFpBSJXQkRE1H4x3JhQpL87AOBkWqHIlRAREbVfDDcmNLD2yE1iZjEqdXqRqyEiImqfGG5MyN9DBVc7ObTVBpzLLBa7HCIionaJ4caEZDIZennZAgASOO+GiIhIFAw3JtbbSwkAOJHKcENERCQGhhsT6+1Zc+TmVFoBqvUGkashIiJqfxhuTMzXxQYd7G1QrtXjYk6p2OUQERG1Oww3JqaQyTDAr+aqqROp+SJXQ0RE1P4w3JiB8WZ+nHdDRETU5hhuzKDuZn4JaQV8SjgREVEbY7gxgz5dOsBBqUChRoffb5SJXQ4REVG7wnBjBrY2coR3cwXAS8KJiIjaGsONmUQG1Jya4rwbIiKitsVwYya3hhvOuyEiImo7DDdmEu7rBqVChmsllcgsrBC7HCIionaD4cZMHGwVCOnqAoDzboiIiNoSw40ZRQZ4AAASGG6IiIjaDMONGUXVzbvhE8KJiIjaDMONGUX4uUEmA1LzynGjtFLscoiIiNoFhhszcnFQopd3BwBAQmqhyNUQERG1Dww3ZnbzknA+RJOIiKgtMNyYWV244RVTREREbYPhxswG1j5E89L1UhRrdCJXQ0REJH0MN2bm5WyH7l6OEATgZDqP3hAREZkbw00biPTnc6aIiIjaCsNNG4jk/W6IiIjajI2YO//qq6+wbds2ZGVlAQCCgoLw3HPPISYmptH1d+3ahUWLFtVbZmtri6SkJLPXejfqwk1SZjE02mqobEX92ImIiCRN1L9lvb29sWDBAvj5+UEQBOzZswfz5s3D7t27ERQU1Og2Tk5OiI2NNb6WyWRtVW6r+bip0MXFHtnFlThztQj39vAUuyQiIiLJEvW01PDhwxETEwN/f38EBARg/vz5UKlUSExMbHIbmUwGLy8v4x9PT+sICrwknIiIqG1YzPkRvV6P2NhYaDQahIeHN7meRqPBsGHDYDAY0Lt3b7z88stNHuW50/5MrW7MxsYe4OeGPYnZiE/NN8u+28Lt+pMKqffI/qyf1Htkf9bPXD22ZDyZIAiCSffeQpcuXcKUKVNQVVUFlUqFVatWNTnn5syZM0hPT4darUZpaSk2bNiAhIQE7Nu3D97e3s3an16vv+2RIXPJLKnGXw7mwVYObBrfCUq55Z9OIyIisjRhYWFQKBS3XUf0cKPVapGTk4PS0lIcPHgQX3/9NbZs2YIePXrccVudTofRo0djzJgxeOmll5q1v7pwExIScscPp6X0ej2SkpIaHVsQBEQu/xEF5VrsmBuF/n5uJt13W7hdf1Ih9R7Zn/WTeo/sz/qZq8e6cZsTbkQ/LWVraws/Pz8AQN++fZGUlIRNmzZh6dKld9xWqVSiV69euHr1aov3q1AozPaL1dTYkf7uiL1wDaeuFiOyu3XMFWqMOT87SyH1Htmf9ZN6j+zP+onZo8Xd58ZgMECr1TZrXb1ej+TkZHh5eZm5KtPgQzSJiIjMT9QjN6tWrcLQoUPRuXNnlJeXY+/evYiPj8f69esBAAsXLkSnTp3wyiuvAAA+/PBDhIWFwc/PDyUlJVi/fj2ys7Px6KOPitlGs9WFm5NphdAbBCg474aIiMjkRA03+fn5eO2113Djxg04OztDrVZj/fr1uPfeewEAOTk5kMtvHlwqKSnBm2++idzcXLi4uKBPnz7Yvn17s+bnWIJenTvAyc4GpVXV+O1aCfp0cRG7JCIiIskRNdy8++67t31/8+bN9V4vXrwYixcvNmdJZqWQyzDA3w2HL+UiPrWA4YaIiMgMLG7OjdQN5EM0iYiIzIrhpo1F1c67SUgrgMhX4RMREUkSw00bC/FxgZ2NHHllWlzJKxe7HCIiIslhuGljdjYKhPm6AuCpKSIiInNguBGB8dQUww0REZHJMdyIIDLAAwCfEE5ERGQODDciCO/mCoVchqyiCmQWasQuh4iISFIYbkTgaGeDvl1r7nGTkMajN0RERKbEcCOSKONzpgpFroSIiEhaGG5EEunPh2gSERGZA8ONSAb4uwEAUnLLkVdWJXI1RERE0sFwIxJXlS16ejsDAE5y3g0REZHJMNyIKLJ23g0vCSciIjIdhhsR8SGaREREpsdwI6K6IzcXc0pQUqkTuRoiIiJpYLgRUacO9vD3UMEgAKfSeUk4ERGRKTDciIynpoiIiEyL4UZkkXyIJhERkUkx3IgsqvYhmmczi1Cp04tcDRERkfVjuBGZr7sDOnWwg04v4MzVIrHLISIisnoMNyKTyWSIrD16w4doEhER3T2GGwsQGcBJxURERKbCcGMB6h6ieSq9EDq9QeRqiIiIrBvDjQUI6ugEV5USFTo9zmcVi10OERGRVWO4sQByucx4vxvOuyEiIro7DDcWIorzboiIiEyC4cZC3DxyUwiDQRC5GiIiIuvFcGMh+nTpAJWtAsUVOiTfKBW7HCIiIqvFcGMhbBRy9PdzA8BTU0RERHeD4caC1F0SfoLhhoiIqNUYbizIrQ/RFATOuyEiImoNhhsLEurrCluFHDdKq5CerxG7HCIiIqvEcGNB7JUKhPq6AOC8GyIiotYSNdx89dVXGDt2LCIiIhAREYHHHnsMR44cue02Bw4cwEMPPYSQkBCMHTv2jutbG+NzpngzPyIiolYRNdx4e3tjwYIF2LVrF3bu3Il77rkH8+bNw+XLlxtd//Tp03jllVcwadIk7NmzByNGjMC8efOQnJzcxpWbT90TwnnkhoiIqHVEDTfDhw9HTEwM/P39ERAQgPnz50OlUiExMbHR9Tdt2oQhQ4Zg9uzZCAwMxEsvvYTevXtjy5YtbVu4GUV0c4VcBlwt0OBacaXY5RAREVkdG7ELqKPX6xEbGwuNRoPw8PBG10lMTMRTTz1Vb1l0dDQOHTrUqv2ZWt2YdzO2SilH784dcD67BMev5GFsv86mKu+umaI/Syf1Htmf9ZN6j+zP+pmrx5aMJ3q4uXTpEqZMmYKqqiqoVCqsXbsWPXr0aHTdvLw8eHp61lvm4eGBvLy8Fu83KSmpVfW2xdj+jtU4D+DAyWT4Gq6bpigTMudnZymk3iP7s35S75H9WT8xexQ93AQEBGDPnj0oLS3FwYMH8dprr2HLli1NBhxTCQkJgUKhMOmYer0eSUlJdz32GNvr2Hv5DK6UKhAWFma6Au+SqfqzZFLvkf1ZP6n3yP6sn7l6rBu3OUQPN7a2tvDz8wMA9O3bF0lJSdi0aROWLl3aYF1PT88GR2ny8/MbHM1pDoVCYbZfrLsdO6p7TT+Xb5ShpFIPN0dbU5VmEub87CyF1Htkf9ZP6j2yP+snZo8Wd58bg8EArVbb6HthYWE4fvx4vWXHjh2zqKMbpuDuaIugjk4AgAReEk5ERNQiooabVatWISEhAZmZmbh06RJWrVqF+Ph4jB07FgCwcOFCrFq1yrj+jBkzcPToUWzYsAEpKSlYs2YNzp8/j2nTponVgtkY73fDS8KJiIhaRNTTUvn5+Xjttddw48YNODs7Q61WY/369bj33nsBADk5OZDLb+aviIgIrFy5Ev/617+wevVq+Pv7Y+3atQgODharBbOJDHDH1hNXeTM/IiKiFhI13Lz77ru3fX/z5s0Nlo0aNQqjRo0yV0kWY2DtE8IvZJegrKoaTnaiT48iIiKyChY354ZqdHF1gK+7A/QGAafTC8Uuh4iIyGow3FiwuqM3nHdDRETUfAw3FiyKD9EkIiJqMYYbC1b3EM3EjCJU6qR7q24iIiJTYrixYP4eKng62UFbbcC5zGKxyyEiIrIKDDcWTCaTGU9N8WZ+REREzcNwY+HqbuZ3gpOKiYiImoXhxsLVXTF1Kq0A1XqDyNUQERFZPoYbC6f2dkYHexuUa/W4mFMqdjlEREQWj+HGwinkMuPRmxOp+SJXQ0REZPkYbqwAH6JJRETUfAw3VmDgLVdMCYIgcjVERESWjeHGCvTt4gIHpQKFGh1+v1EmdjlEREQWjeHGCtjayBHh5wqAl4QTERHdCcONleBDNImIiJqH4cZK3DqpmPNuiIiImsZwYyXCfd2gVMhwraQSmYUVYpdDRERksRhurISDrQIhXV0AcN4NERHR7TDcWJHIAA8AQALDDRERUZMYbqxI3RPC4/mEcCIioiYx3FiRCD83yGRAal45bpRWil0OERGRRWK4sSIuDkr08u4AAEhILRS5GiIiIsvEcGNlbl4SzodoEhERNYbhxsrUhRteMUVERNQ4hhsrU3en4kvXS1Gs0YlcDRERkeVhuLEyXs526O7lCEEATqbz6A0REdEfMdxYoagAPmeKiIioKQw3Vsj4EE3e74aIiKgBhhsrVDepOCmzGBpttcjVEBERWRaGGyvk46ZCV1cHVBsEnLlaJHY5REREFoXhxkoN9HcDwEvCiYiI/ojhxkrxIZpERESNY7ixUnXzbk5fLYS22iByNURERJbDRsydf/rpp/j+++9x5coV2NvbIzw8HAsWLED37t2b3GbXrl1YtGhRvWW2trZISkoyd7kWJdDLER6Otsgv1yIpqwj9/dzFLomIiMgiiBpu4uPjMXXqVISEhECv12P16tWYNWsW9u3bB5VK1eR2Tk5OiI2NNb6WyWRtUa5FkclkGOjvjtgL1xCfWshwQ0REVEvUcLN+/fp6r1esWIFBgwbhwoULGDhwYJPbyWQyeHl5mbs8ixcZUBdu8vHsfYFil0NERGQRRA03f1RaWgoAcHFxue16Go0Gw4YNg8FgQO/evfHyyy8jKCioLUq0KHXzbk6mFUJvEKCQt78jWERERH9kMeHGYDDg3XffRUREBIKDg5tcLyAgAO+++y7UajVKS0uxYcMGTJkyBfv27YO3t3ez96fX601RdqNjmmPsxgR3dISTnQKlVdX4NasIvbt0MOv+2ro/MUi9R/Zn/aTeI/uzfubqsSXjyQRBEEy691b6+9//jqNHj+Krr75qUUjR6XQYPXo0xowZg5deeumO6+v1eiQmJra+UAuz7GgBzlzT4s9hzhgT5Ch2OURERGYVFhYGhUJx23Us4sjN0qVLcfjwYWzZsqVFwQYAlEolevXqhatXr7Zou5CQkDt+OC2l1+uRlJRklrGbMqI4BWeuXUa2ToWwsDCz7kuM/tqa1Htkf9ZP6j2yP+tnrh7rxm0OUcONIAh4++238cMPP2Dz5s3w9fVt8Rh6vR7JycmIiYlp0XYKhcJsv1jmHPuP7unuCeAyTqYXQi6Xt8mVY23Zn1ik3iP7s35S75H9WT8xexQ13CxZsgR79+7FRx99BEdHR+Tm5gIAnJ2dYW9vDwBYuHAhOnXqhFdeeQUA8OGHHyIsLAx+fn4oKSnB+vXrkZ2djUcffVS0PsQU4uMCOxs58sq0uJJXjkAvJ7FLIiIiEpWo4Wbbtm0AgOnTp9dbvnz5ckyYMAEAkJOTA7n85o2US0pK8OabbyI3NxcuLi7o06cPtm/fjh49erRd4RbEzkaB8G6uOH6lAPGpBQw3RETU7okabi5dunTHdTZv3lzv9eLFi7F48WJzlWSVIv3dcfxKARJSC/B4ZDexyyEiIhIVny0lAXUP0eQTwomIiBhuJCHCzxU2chmyiiqQWagRuxwiIiJRMdxIgMrWBn261tzVOSGNR2+IiKh9Y7iRiKjaRzHEpxaKXAkREZG4GG4kItK/Ltzki1wJERGRuBhuJGKAvxsAICW3HHllVSJXQ0REJB6GG4lwVdmip7czAOAk590QEVE7xnAjIZG18254STgREbVnDDcSMtA474bhhoiI2i+GGwmpO3JzMacEJZU6kashIiISB8ONhHTqYA9/DxUMAnAqnZeEExFR+8RwIzE8NUVERO0dw43E1J2aSmC4ISKidorhRmKiah+ieTazCJU6vcjVEBERtT2GG4nxdXeAdwd76PQCzlwtErscIiKiNsdwIzEymQwD605N8WZ+RETUDjHcSFBkACcVExFR+8VwI0F1Twg/lV4Ind4gcjVERERti+FGgnp4OcFVpUSFTo8L2SVil0NERNSmGG4kSC6X3XK/m3yRqyEiImpbDDcSFcV5N0RE1E7ZtHbDa9eu4X//+x9ycnKg09V/jtGiRYvuujC6O3VHbhLSCmEwCJDLZSJXRERE1DZaFW7i4uLw7LPPwtfXF1euXEFQUBCysrIgCAJ69+5t6hqpFfp06QCVrQLFFTok3yhFT+8OYpdERETUJlp1WmrVqlX485//jO+++w62trZYs2YNDh8+jIEDB+Khhx4ydY3UCjYKOfr7uQHgqSkiImpfWhVuUlJSMG7cOACAjY0NKisr4ejoiL/85S/4/PPPTVkf3YXI2lNTJxhuiIioHWlVuFGpVMZ5Nl5eXrh69arxvcLCQtNURnft1odoCoIgcjVERERto1VzbkJDQ3Hq1CkEBgYiJiYG7733HpKTk/HDDz8gNDTU1DVSK4X6usJWIceN0iqk52vg7+kodklERERm16pws2jRIpSXlwMAXnjhBZSXl2P//v3w9/fH66+/btICqfXslQqE+rogIa0Q8akFDDdERNQutCrc+Pr6Gr9XqVRYunSpyQoi04oMcK8JN2kFmDzQ984bEBERWTnexE/iIgM8APCKKSIiaj+afeQmMjISsbGxcHd3x8CBAyGTNX1TuPj4eJMUR3evv58b5DLgaoEG14or4e1iL3ZJREREZtXscLNo0SI4OTkZv79duCHL4WRngz5dXJCUVYz4tAL8KbSL2CURERGZVbPDzfjx443fT5gwwSzFkHlEBrjXhJvUfIYbIiKSvFbNuTly5AiOHj3aYPnPP/+MI0eONHucTz/9FBMnTkR4eDgGDRqE5557DleuXLnjdgcOHMBDDz2EkJAQjB07tkX7bI8i+RBNIiJqR1oVblauXAmDwdBgucFgwKpVq5o9Tnx8PKZOnYodO3Zg48aNqK6uxqxZs6DRaJrc5vTp03jllVcwadIk7NmzByNGjMC8efOQnJzcmlbahbqHaCZfL0NhuVbkaoiIiMyrVeEmPT0dgYGBDZZ379693t2K72T9+vWYMGECgoKC0LNnT6xYsQLZ2dm4cOFCk9ts2rQJQ4YMwezZsxEYGIiXXnoJvXv3xpYtW1rTSrvg7miLoI4186US0nj0hoiIpK1V4cbZ2RkZGRkNll+9ehUODg6tLqa0tBQA4OLi0uQ6iYmJGDRoUL1l0dHRSExMbPV+2wOemiIiovaiVTfxGzFiBN59912sXbsW3bp1A1BzNGfFihUYPnx4qwoxGAx49913ERERgeDg4CbXy8vLg6enZ71lHh4eyMvLa9H+9Hp9q+pszpjmGPtuDfBzxdYTV3EiNb/V9Vlyf6Yi9R7Zn/WTeo/sz/qZq8eWjNeqcPPqq69i9uzZGDVqFDp16gQAuH79Ovr374/XXnutNUNiyZIluHz5Mr766qtWbd9SSUlJVjl2a6k0Nb8UF7JLEJdwGg7K1t+/0RL7MzWp98j+rJ/Ue2R/1k/MHlsVbpydnbF9+3b88ssv+O2332Bvbw+1Wo2BAwe2qoilS5fi8OHD2LJlC7y9vW+7rqenZ4OjNPn5+Q2O5txJSEgIFApFi2u9Hb1ej6SkJLOMbQq+x44go7AC1a7dEBbUss8LsPz+TEHqPbI/6yf1Htmf9TNXj3XjNkeLw41Op0NoaCj27NmD6OhoREdHt7jAOoIg4O2338YPP/yAzZs313tmVVPCwsJw/PhxPPXUU8Zlx44dQ1hYWIv2rVAozPaLZc6x78bAAHdkFGbhZHoR7uvZqdXjWGp/piT1Htmf9ZN6j+zP+onZY4vPTSiVSnTu3LnRS8FbasmSJfj222+xatUqODo6Ijc3F7m5uaisrDSus3DhwnqXl8+YMQNHjx7Fhg0bkJKSgjVr1uD8+fOYNm3aXdcjdVF1k4p5xRQREUlYqyZePPPMM1i9ejWKioruaufbtm1DaWkppk+fbjwKFB0djf379xvXycnJQW5urvF1REQEVq5cif/85z945JFHcPDgQaxdu/a2k5CpRt1DNBMzilCpk+5kNiIiat9aNedm69atSE9Px5AhQ9ClSxeoVKp67+/evbtZ41y6dOmO62zevLnBslGjRmHUqFHNK5aM/D1U8HSyQ15ZFc5lFhsvDyciIpKSVoWbkSNHmroOagMymQxRAe7Yl5SDhLQChhsiIpKkVoWb559/3tR1UBuJrA03J1ILMG+Y2NUQERGZXqtvdlJSUoKvv/4aq1atMs69uXDhAq5fv26q2sgM6o7WnEorQLX+7ieFExERWZpWhZvffvsNDz74INatW4cNGzYYH5vw/ffft+jBmdT21J2c0cHeBuVaPS7mlIpdDhERkcm1KtysWLEC48ePx/fffw9bW1vj8piYGJw8edJkxZHpyeUy41PCT6Tmi1wNERGR6bUq3CQlJWHKlCkNlnfq1KneZdtkmfgQTSIikrJWhRtbW1uUlZU1WJ6WlgZ3d16BY+kG1oabhLQCCIIgcjVERESm1apwM3z4cKxduxY6nc64LDs7GytXrsQDDzxgsuLIPPp2cYGDUoFCjQ6/32gYUomIiKxZq8LN66+/Do1Gg8GDB6OqqgrTp0/HAw88AEdHR8yfP9/UNZKJ2drIEeHnCgA4wVNTREQkMa1+KvjGjRtx8uRJXLp0CRqNBn369MHgwYNNXR+ZyUB/d/zyez7iUwsw7R4/scshIiIymVaFmzoDBgzAgAEDTFULtaFbJxULggCZTCZyRURERKbR6nATFxeHuLg45OfnN3hC+PLly++6MDKvcF83KBUyXCupRGZhBXzdVXfeiIiIyAq0Ktx8+OGHWLt2Lfr27QsvLy/+q98KOdgqENLVBaevFuFEagHDDRERSUarws327duxfPlyjBs3zsTlUFuKDPDA6atFSEgtwKT+PmKXQ0REZBKtulpKp9MhIiLC1LVQG4uqm3eTxiumiIhIOloVbiZNmoTvvvvO1LVQG+vv7waZDEjNK8eN0kqxyyEiIjKJVp2Wqqqqwo4dOxAXFwe1Wg0bm/rDLFq0yCTFkXl1sFeil3cH/JpTgoTUQozp11nskoiIiO5aq8LNpUuX0LNnTwBAcnKySQuithUZ4I5fc0oQn5rPcENERJLQqnCzefNmU9dBIokKcMcXx9J4p2IiIpKMFoWb559//o7ryGQyrFmzptUFUdsa4F8zqfjS9VIUa3RwUSlFroiIiOjutCjcODs7m6sOEomXsx26ezniSm45TqYXYESvTmKXREREdFdaFG5452Fpigpwx5XccsSnMtwQEZH1a9Wl4CQtA/15vxsiIpIOhhsyPkQzKbMYGm21yNUQERHdHYYbgo+bCl1dHVBtEHDmapHY5RAREd0VhhsCAAz0dwMAXhJORERWj+GGANQ8RBMAEhhuiIjIyjHcEICb825OXy2EttogcjVEREStx3BDAIBAL0d4ONqiqtqApKwiscshIiJqNYYbAlBzZ2njJeGphSJXQ0RE1HoMN2RUd2oqPjVf5EqIiIhaj+GGjOrCzcm0QugNgsjVEBERtQ7DDRn16twBznY2KK2qxm/XSsQuh4iIqFUYbshIIZehf+39buJ5STgREVkpUcNNQkICnnnmGURHR0OtVuPQoUO3Xf/EiRNQq9UN/uTm5rZRxdJ3c94Nww0REVmnFj0V3NQ0Gg3UajUmTpyI559/vtnbxcbGwsnJyfjaw8PDHOW1S5G1V0wlpBVAEATIZDKRKyIiImoZUcNNTEwMYmJiWrydh4cHOnToYIaKKMTHBXY2cuSVaXElrxyBXk533oiIiMiCiBpuWmvcuHHQarUICgrC888/j/79+7d4DL1eb/K66sY0x9htxUYGhPm64kRqAY6n5MHf3cH4nhT6uxOp98j+rJ/Ue2R/1s9cPbZkPJkgCBZxza9arcbatWsxcuTIJte5cuUK4uPj0bdvX2i1Wnz99df49ttvsWPHDvTp06dZ+9Hr9UhMTDRR1dK07XwpvrlYjhg/e7wY6Sp2OUREREZhYWFQKBS3Xceqjtx0794d3bt3N76OiIhARkYGvvjiC/zjH/9o0VghISF3/HBaSq/XIykpySxjt6Vypzx8c/Ekfi+u+SWqI5X+bkfqPbI/6yf1Htmf9TNXj3XjNodVhZvGhISE4PTp0y3eTqFQmO0Xy5xjt4UBAR6wkcuQVVSJa6VadHV1qPe+tffXHFLvkf1ZP6n3yP6sn5g9Wv19bn777Td4eXmJXYakqGxt0KerCwAggZeEExGRlRH1yE15eTmuXr1qfJ2ZmYmLFy/CxcUFXbp0wapVq3D9+nW8//77AIAvvvgCPj4+CAoKQlVVFb7++mscP34cGzZsEKsFyYoKcMfZjCKcSC3AuPCuYpdDRETUbKKGm/Pnz2PGjBnG18uXLwcAjB8/HitWrEBubi5ycnKM7+t0Orz33nu4fv06HBwcEBwcjI0bN+Kee+5p89qlLtLfHZ/9dIUP0SQiIqsjariJiorCpUuXmnx/xYoV9V7PmTMHc+bMMXdZBGBA7WMYUnLLkVdWBU8nO5ErIiIiah6rn3ND5uGqskVPb2cAwMk0zrshIiLrwXBDTap7ztQJTiomIiIrwnBDTeJDNImIyBox3FCT6h6ieTGnBCWVOpGrISIiah6GG2pSxw728PdQwSAAp9ILxS6HiIioWRhu6LZ4aoqIiKwNww3d1sDaU1O8UzEREVkLhhu6ragADwDA2cwiVOpM+/h6IiIic2C4odvydXeAdwd76PQCEjOKxC6HiIjojhhu6LZkMhkG1s67SUjjpGIiIrJ8DDd0R5EMN0REZEUYbuiOomrDzemrRag2CCJXQ0REdHsMN3RHPbyc4KpSokKnR2oRb+ZHRESWjeGG7kgulxkvCf81l+GGiIgsG8MNNUvdqalfc7UiV0JERHR7DDfULHVHbn7L08LAeTdERGTBGG6oWfp06QCVrQJlOgH7zl8TuxwiIqImMdxQs9go5Hh8oC8A4NVvzuHHSzdEroiIiKhxDDfUbK89pMa9vjV3K35m8ykcv5IvdklEREQNMNxQsynkMrwY6YLhai9UVRsw+8uTOMtHMhARkYVhuKEWsZHLsObxMAzq7oGyqmrM2BCP366ViF0WERGREcMNtZi9UoHPnxyA8G6uKK7QYdrn8UjNKxe7LCIiIgAMN9RKjnY2+OKpSPTq3AF5ZVWYuu44sooqxC6LiIiI4YZaz0WlxOZZkeju5Yjs4kpMXXccN0orxS6LiIjaOYYbuiueTnbYOjsKXV0dkJavwYz18SjS8C7GREQkHoYbumudXRzw1ZwodHS2w2/XSvHkhniUVVWLXRYREbVTDDdkEn4ejtgyOwpuKiXOZhZj1hcJqNDqxS6LiIjaIYYbMpngTs7Y9OcoONvZ4ERqAZ7degraaoPYZRERUTvDcEMmFeLjgg0zB8JeKcfhS7n4y/YzqNYz4BARUdthuCGTG+jvjs+mD4CtQo4D56/htZ1JfJI4ERG1GYYbMouhwV5Y80Q4FHIZdp7OxJLvLkAQGHCIiMj8GG7IbB7s442Vj/aDTAZ8GZeOfxy8JHZJRETUDjDckFmND/fBsnF9AQAfHU7B2h9/F7kiIiKSOlHDTUJCAp555hlER0dDrVbj0KFDd9zmxIkTGD9+PPr27Yv7778fu3btaoNK6W5MjfLD4tE9AQD/OHgJXx5LE7cgIiKSNFHDjUajgVqtxt///vdmrZ+RkYGnn34aUVFR+O9//4snn3wSb7zxBo4ePWrmSuluzR0aiBeH9wAA/P3bC/j6ZIbIFRERkVTZiLnzmJgYxMTENHv97du3w8fHB6+//joAIDAwEKdOncIXX3yBIUOGmKtMMpH59wejrEqPDb+k4rWd5+BoZ4PRIZ3FLouIiCRG1HDTUomJiRg0aFC9ZdHR0Xj33XdbPJZeb/q759aNaY6xLYEp+ls8KhhllTrsOJWJv2w/A1uFDMPUXqYq8a7xZ2jdpN4fIP0e2Z/1M1ePLRnPqsJNXl4ePD096y3z9PREWVkZKisrYW9v3+yxkpKSTF1em4xtCe62v0kBArJu2OOXjEo8t+UU3hjqjj5etiaqzjT4M7RuUu8PkH6P7M/6idmjVYUbUwoJCYFCoTDpmHq9HklJSWYZ2xKYsr/1/Qx4busZ/N+lXLx3rBib/zwQob6upin0LvBnaN2k3h8g/R7Zn/UzV4914zaHVYUbT09P5OXl1VuWl5cHJyenFh21AQCFQmG2Xyxzjm0JTNGfQqHAR9P6489fJOBYSj5mfnkK2+feg16dO5ioyrvDn6F1k3p/gPR7ZH/WT8wereo+N2FhYTh+/Hi9ZceOHUNYWJg4BdFdsVcqsG7GAIR3c0VxhQ7T18fjSm6Z2GUREZGVEzXclJeX4+LFi7h48SIAIDMzExcvXkR2djYAYNWqVVi4cKFx/SlTpiAjIwPvv/8+UlJSsHXrVhw4cABPPfWUGOWTCTja2eCLpyLRu3MH5JVVYdrnJ5BZqBG7LCIismKihpvz589j3LhxGDduHABg+fLlGDduHD744AMAQG5uLnJycozr+/r64tNPP8WxY8fwyCOPYOPGjVi2bBkvA7dyLiolNs2KRHcvR2QXV2La5ydwo7RS7LKIiMhKiTrnJioqCpcuNf28oRUrVjS6zZ49e8xYFYnB08kOW2dH4dFP4pCWr8H0z+Oxfe49cHO0rKuoiIjI8lnVnBuSts4uDtg6Owodne1w6XopntoYj9JKndhlERGRlWG4IYvi5+GIrbOj4KZS4mxmMWZ9eRIVWune7IqIiEyP4YYsTlAnZ2z6cxSc7WwQn1qAZ7acQlU1Aw4RETUPww1ZpBAfF2yYORD2SjmOJOfipe2JqNYbxC6LiIisAMMNWayB/u5YN2MAbBVyHDh/DQt3noPBIIhdFhERWTiGG7JoQ4K8sOaJcCjkMuw6nYW3vrsAQWDAISKipjHckMV7sI83Vj0aCpkM2BSXjvcPNn37ACIiIoYbsgrjwrti2bi+AICPD6dg7Y+/i1wRERFZKoYbshpTo/yweHRPAMA/Dl7CF7+kilwRERFZIoYbsipzhwbixRFBAIC3vvsVO05miFwRERFZGoYbsjrzRwbhz/cGAABe33kO+87l3GELIiJqTxhuyOrIZDK8+XAvTBnoC4MA/GX7Gfz42w2xyyIiIgvBcENWSSaT4Z3xIRgb2gXVBgHPbDmFuJR8scsiIiILwHBDVkshl2H15FCM7NURVdUGzP4yAWeuFopdFhERiYzhhqyaUiHHh09EYHCgB8q1ejy1MQEXc0rELouIiETEcENWz16pwLoZAxDRzRXFFTpMX38CV3LLxC6LiIhEwnBDkuBoZ4ONMyPRu3MH5JVpMe3zE8gs1IhdFhERiYDhhiTDxUGJTbMiEejliOziSkz9/ARulFSKXRYREbUxhhuSFE8nO2yZHQUfNwek52swbf0JFJZrxS6LiIjaEMMNSU5nFwdsnR2Fjs52SL5ehic3xqO0Uid2WURE1EYYbkiS/DwcsXV2FNxUSpzLLMasL06iQqsXuywiImoDDDckWUGdnLF5VhSc7WwQn1aAp7ecQlU1Aw4RkdQx3JCk9e3qgo0zB8JBqcBPybn4y7ZEVOsNYpdFRERmxHBDkjfA3x2fzegPW4UcsReuYeE352AwCGKXRUREZsJwQ+3CkCAvfPhEOBRyGXadycLfv70AQWDAISKSIoYbajce6OONVY+GQiYDNh9Px3uxlxhwiIgkiOGG2pVx4V3xzrgQAMAnR1Lw0eEUkSsiIiJTY7ihdueJqG746+heAIB/HLyEjb+kilwRERGZEsMNtUtzhnbHiyOCAABLvvsVOxIyRK6IiIhMheGG2q35I4MwKzoAAPD6rnPYey5b5IqIiMgUGG6o3ZLJZHhjTC9MGegLgwC8tD0RP/52Q+yyiIjoLjHcULsmk8nwzvgQjA3tgmqDgOe2JWLb+VKcTC/kzf6IiKyUjdgFEIlNIZdh9eRQVGircejiDXxzsRzfXDwBZ3sbRPfwxNBgLwwN9kJXVwexSyUiomawiHCzdetWrF+/Hrm5uejZsyfefPNN9OvXr9F1d+3ahUWLFtVbZmtri6SkpLYolSRKqZDj42n9sft0JvacuIwL+XoUV+hw4Pw1HDh/DQAQ6OWImOCOGBrsiXu6e8BeqRC5aiIiaozo4Wb//v1Yvnw5lixZgtDQUHz55ZeYNWsWYmNj4eHh0eg2Tk5OiI2NNb6WyWRtVS5JmFIhx8SIrgiU5yKkXygu5JTip+Q8HEm+gcSMIqTkliMlNxUbfkmFrY0cUQHuiKk9qhPU0Ym/h0REFkL0cLNx40ZMnjwZEydOBAAsWbIEhw8fxs6dOzF37txGt5HJZPDy8mrLMqmdUchlCO/mhvBubvjLyCAUa3T4JSUPPyXn4qfkXGQXV+Lo5TwcvZwH7LuIzi72GBLkiZjgjoju4QkXlVLsFoiI2i1Rw41Wq8WFCxfw9NNPG5fJ5XIMHjwYZ86caXI7jUaDYcOGwWAwoHfv3nj55ZcRFBTUon3r9fpW132nMc0xtiWQen9A0z062cnxYO+OeLB3RwiCgN9zy3H0ch5+upyH+NQC5BRXYsfJTOw4mQm5DAj1ccHQIC8MCfJEPx8XKOSWcVRH6j9DqfcHSL9H9mf9zNVjS8aTCSI+XOf69esYOnQotm/fjvDwcOPy999/HwkJCfj6668bbHPmzBmkp6dDrVajtLQUGzZsQEJCAvbt2wdvb+877lOv1yMxMdGUbVA7V6UX8GuuFonXqpB4XYvMkup67zspZQjpZIcwb1uEd7KDh4pzdYiIWissLAwKxe3/Pyr6aamWCg8PrxeEwsPDMXr0aGzfvh0vvfRSs8cJCQm544fTUnq9HklJSWYZ2xJIvT+g9T1G3fJ9dlFFzSmr3/Pwy+/5KKmsRlxmJeIyKwEAQR2dMDTIE0OCPBHp7wa7NpyYLPWfodT7A6TfI/uzfubqsW7c5hA13Li5uUGhUCA/P7/e8vz8fHh6ejZrDKVSiV69euHq1ast2rdCoTDbL5Y5x7YEUu8PuLsefT2c8ISHE564xx/VegPOZhbjp+RcHEnOxbnMIly+UYbLN8qw/pc02CvliArwwNBgL8QEeyLQq20mJkv9Zyj1/gDp98j+rJ+YPYoabmxtbdGnTx/ExcVh5MiRAACDwYC4uDhMmzatWWPo9XokJycjJibGnKUStYqNQo7+fm7o7+eG+fcHo0ijxc+/5xnDzvWSKhyp/f5tAF1dHTA02BNDg7wwuIcnXBw4MZmIqKVEPy01c+ZMvPbaa+jbty/69euHL7/8EhUVFZgwYQIAYOHChejUqRNeeeUVAMCHH36IsLAw+Pn5oaSkBOvXr0d2djYeffRRMdsgahZXlS0e7tcFD/frAkEQkHy9rOYKrMu5OJFagKyiCmyLz8C2+IyaK7Z8XY03EQzpajkTk4mILJno4Wb06NEoKCjABx98gNzcXPTq1Quff/658bRUTk4O5PKbT4koKSnBm2++idzcXLi4uKBPnz7Yvn07evToIVYLRK0ik8mg9naG2tsZc4Z2R4VWj+Op+cbLzVNyy3EyvRAn0wux+odkuKqUiO7haby3TqcO9mK3QERkkUQPNwAwbdq0Jk9Dbd68ud7rxYsXY/HixW1RFlGbcrBVYJi6I4apOwIAMgs1OHo5D0cu5eKXlDwUaXTYey4He8/lAAB6ejvXztXxwgB/N9jZSPv8PRFRc1lEuCGihnzcVHg8shsej+yGar0BiRlFNycmZxXjt2ul+O1aKT776QoclArc093dGHYCPB15x2QiarcYboisgI1CjgH+7hjg746XH1CjoPzmxOSfknNxo7QKP17KxY+XcgEAPm4ONXN1grxwbw8PONtzYjIRtR8MN0RWyN3RFn8K7YI/hdZMTP7tWqlxYnJCaiEyCyvw1Ymr+OrEVSjkMvTv5oahwZ64N9ADBvHu20lE1CYYboisnEwmQ6/OHdCrcwc8HRMIjbYax6/k46fkmiM7V/LKEZ9WgPi0AqwEoLKRIfR0PEJ93RDm64J+Pq7o7GLP01hEJBkMN0QSo7K1wfCenTC8ZycAQEaBBkdqT18dS8lDWZUecVcKEHelwLiNl7MdQn1cEOrjin6+rgj1cYGrylasFoiI7grDDZHE+bqrMO0eP0y7xw9VWh32Hj2FKkdvJGWX4mxGES5dL0VuaRUOXbyBQxdvGLfz81Chn09N0An1dUXfLi5wsOUVWURk+RhuiNoRG4Uc/q5KhIX54ona26JXaPX4NacYZzOKcTazCOcyi5GaV470fA3S8zX47mw2AEAhlyGooxPCfF1rQo+vC4I7OUOpkN9ul0REbY7hhqidc7BVoL+fO/r7uRuXFWt0OJdVE3QSM4pwNqMIN0qrjJefb0/IAADY2cjRt6sL+tWe0gr1dYW/h4rzd4hIVAw3RNSAi0qJIUFeGBLkZVx2rbgSZzNrgs65zJqjPKWV1TiVXohT6YXG9TrY2yDU17Ve4OHdlImoLTHcEFGzeLvYw9vFGw/28QYAGAwC0vLLjUd3zmUW4Xx2CUoqq3H0ch6OXs67uW0H+5qw4+uKUB9XhPi48KGgRGQ2DDdE1CpyuQzdvZzQ3csJ48K7AgB0egMuXSutmbtTO4cn+XoprpVU4tqvlfj+1+vG7bt7OhqP8PTzcUWfLh1gr+SEZSK6eww3RGQySkXNHJy+XV0wNapmmUZbjfNZJTiXWYSzmcU4m1GEqwUaXMkrx5W8cuw+kwUAsJHXPEg01PfmFVpBHZ35JHQiajGGGyIyK5WtDSID3BEZcHPCckG5Fudqr8w6m1ETevLKqnAhuwQXskvw1Yma9RyUCoTUTViuPaXl6+7ACctEdFsMN0TU5twdbXGfuiPuq30CuiAIyC6uxLmMIiTWntJKyipGWVW18e7KddxUynr33+nn4wovZzuxWiEiC8RwQ0Sik8lk6OrqgK6uDhgV0hlAzYTlK3llSMwoNp7SuphdgkKNDkdqn45ep6urA/r5uCCkawfYV1TBvUCDrm6OsLXhPXiI2iOGGyKySHK5DD06OqNHR2dM6u8DAKiq1tdMWM64OX/n99wyZBVVIKuoAgfOXwMALP3pJ8hlQKcO9vBxc4CPmwo+bjXhqe77zq72sLPhBGYiKWK4ISKrYWejQD+fmlNR02uXlVVVIymz9uhORhES03ORXyGgqtqAnOJK5BRXIiGtsMFYMhnQ0dnOGHZqws/N77u4OvDqLSIrxXBDRFbNyc4GgwI9MCjQA3q9HomJiQgNDUVhhR5ZRRXILNQgs/Dm16zCCmQWVqBCp8f1kipcL6mqdxPCW3V0tkPXW478/PHoD8MPkWViuCEiyZHJZPBytoOXsx3CfF0bvC8IAgrKtTVhp14Auvm9RqvHjdIq3CitwpmrRY3ux9OpLvw43Dz95VobgtwcoLLl/2KJxMD/8oio3ZHJZPBwsoOHkx1Cmwg/RRqdMezUBKD6Iaisqhp5ZVXIK6vC2YyiRvfj4Wh7S/hpePrL0Y7/CyYyB/6XRUT0BzKZDG6OtnBztEWIj0uD9wVBQElFNTJuOeV1MwDVvC6trEZ+uRb55VqcyyxudD9uKiV83FS1p7puhqC6QORsz0dUELUGww0RUQvJZDK4qJRwUdXcjbkxxRW62vk9N4/2ZBXd/L64QodCjQ6Fmpp7+jTGxUHZ8CovFzsU5GnRIbcM7k72cHFQwkbBS96JbsVwQ0RkBi4OSrg4KNG7S4dG3y+t1NUc7Sm4ZbLzLae/CjU6FFfU/LmQXdJwgB9/Nn7rbG8DV5USbipbuDjUfHVVKeGqsoWrg/Lme7VfXR2U6OCg5KMtSLIYboiIROBsr0RPbyV6ejcefsqqqpH1h6M9mYUaZBVW4FphGTR6GUorqwEApZXVKK2sRkZBRbP3L5MBHeyV9UKQW933KmVtKLoZktxUSrg62MLZ3gZyhiKycAw3REQWyMnOBmpvZ6i9nestr7vcPSwsDAJkKK7QoahChyKNFkWamlNdRRpt7WmvmmVFGh2KKrQoLK85ElRWVQ1BgPHIUHq+ptl1yWUwHh1yqQ1B9Y4KNXHEyNnOhs8EozbDcENEZKVsFHLjVV8todMbUKTRobhCWxuGaoJQce3Xogrdze9rw1JRhQ4arR4GAbVzhXQt2qdCLjMGnpvhx7Y2ACnhUrvMxV6BnAIdVNdL4WRvC3ulAg62CjgoFTyNRs3GcENE1M4oFXLjfYBaoqpaXxt6bgaeW48YFdceHSqqqH/EqFJngN4gGK8eA8rvvLP//dJgka2NHA7KmqDjYKuAvVIBVW3wuRmCataxt1VApbSBg638D+838rV2fQelAkpOzpYEhhsiImoWOxsFOnZQoGMH+xZtV6nTG48O/fGI0c1wVBOWCsu1KCzTwAAFNDo9KnUG4zjaagO01QYUV7TsqFFLKBWymiB0S/ipF6JuCUR/DFgN35fDQWlTL0QpFTW3EiDzYrghIiKzslcq4O2igLfLnUPRrXOKFAoFDIaa54RV6PQ1f7R6VOr00Gjrv677vt5XnR6Vt3z/x/cra7/X6PSoyxs6vQCdvto4Wdsc5ADsv/0BdjZy2CsV9b7a/eF1S782ur1SDnsbBZQKWbuZ98RwQ0REFksul9Uc+bA133O8BEGAVm9oIvzUBCuNttoYhip0hvrhqJGAVfdao60JWBqdHnpDTYIyANDUbgeY7yjUH8lkgL3NzbDT2Fe7O7xvXxug7GvXrftaL1DZyEQ/OsVwQ0RE7ZpMJqv9C1oBVzPuR6c3oLxSi4Qz59BD3QvVBqBSZ0BVtb7FX6tasH4dQYDxKJa5Q9WYIBXCw826i9tiuCEiImoDSoUczvZKuDso0M1dBYXC/E+Vrzsq1aJQpNOjstqAKp0BlbXb/PFrVRPLK6v1qNYL8HQwf2+3w3BDREQkUbcelQLa5llldfOmxGQR17xt3boVw4cPR0hICB599FGcO3futusfOHAADz30EEJCQjB27FgcOXKkjSolIiIiSyd6uNm/fz+WL1+OefPmYffu3ejZsydmzZqF/Pz8Rtc/ffo0XnnlFUyaNAl79uzBiBEjMG/ePCQnJ7dx5URERGSJRA83GzduxOTJkzFx4kT06NEDS5Ysgb29PXbu3Nno+ps2bcKQIUMwe/ZsBAYG4qWXXkLv3r2xZcuWNq6ciIiILJGoc260Wi0uXLiAp59+2rhMLpdj8ODBOHPmTKPbJCYm4qmnnqq3LDo6GocOHWrRvvV6fYvrbe6Y5hjbEki9P0D6PbI/6yf1Htmf9TNXjy0ZT9RwU1hYCL1eDw8Pj3rLPTw8cOXKlUa3ycvLg6enZ4P18/LyWrTvpKSklhVrIWNbAqn3B0i/R/Zn/aTeI/uzfmL22G6vlgoJCTH5ZXh6vR5JSUlmGdsSSL0/QPo9sj/rJ/Ue2Z/1M1ePdeM2h6jhxs3NDQqFosHk4fz8/AZHZ+p4eno2OEpzu/WbolAozPaLZc6xLYHU+wOk3yP7s35S75H9WT8xexR1QrGtrS369OmDuLg44zKDwYC4uDiEN3Frw7CwMBw/frzesmPHjiEsLMycpRIREZGVEP1qqZkzZ2LHjh3YvXs3UlJS8NZbb6GiogITJkwAACxcuBCrVq0yrj9jxgwcPXoUGzZsQEpKCtasWYPz589j2rRpYrVAREREFkT0OTejR49GQUEBPvjgA+Tm5qJXr174/PPPjaeZcnJyIJffzGARERFYuXIl/vWvf2H16tXw9/fH2rVrERwcLFYLREREZEFEDzcAMG3atCaPvGzevLnBslGjRmHUqFHmLouIiIiskOinpYiIiIhMieGGiIiIJIXhhoiIiCTFIubctCVBEADw8QutIfX+AOn3yP6sn9R7ZH/Wz9yPX6j7e/x2ZEJz1pIQrVbbLm57TUREJEUhISGwtbW97TrtLtwYDAZUV1dDLpdDJpOJXQ4RERE1gyAIMBgMsLGxqXeLmMa0u3BDRERE0sYJxURERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3JpCQkIBnnnkG0dHRUKvVOHTokNglmdSnn36KiRMnIjw8HIMGDcJzzz2HK1euiF2WyXz11VcYO3YsIiIiEBERgcceewxHjhwRuyyz+eyzz6BWq/HOO++IXYrJrFmzBmq1ut6fhx56SOyyTOr69etYsGABoqKi0K9fP4wdO1ZSj5IZPnx4g5+hWq3GkiVLxC7NJPR6Pf71r39h+PDh6NevH0aOHIm1a9c26zlJ1qKsrAzvvPMOhg0bhn79+mHKlCk4d+6cKLW0uwdnmoNGo4FarcbEiRPx/PPPi12OycXHx2Pq1KkICQmBXq/H6tWrMWvWLOzbtw8qlUrs8u6at7c3FixYAD8/PwiCgD179mDevHnYvXs3goKCxC7PpM6dO4ft27dDrVaLXYrJBQUFYePGjcbXCoVCxGpMq7i4GI8//jiioqKwbt06uLm5IT09HS4uLmKXZjLffPNNvQctXr58GTNnzpRMSF23bh22bduG9957Dz169MD58+exaNEiODs7Y8aMGWKXZxJvvPEGLl++jPfffx8dO3bEt99+i5kzZ2L//v3o1KlTm9bCcGMCMTExiImJEbsMs1m/fn291ytWrMCgQYNw4cIFDBw4UKSqTGf48OH1Xs+fPx/btm1DYmKipMJNeXk5Xn31VSxbtgwff/yx2OWYnEKhgJeXl9hlmMW6devg7e2N5cuXG5f5+vqKWJHpubu713v92WefoVu3boiMjBSpItM6c+YMRowYgfvuuw8A4OPjg3379ol2ZMPUKisr8f333+Ojjz4y/r3wwgsv4Mcff8RXX32F+fPnt2k9PC1FLVZaWgoAkvpXYx29Xo99+/ZBo9EgPDxc7HJMaunSpYiJicHgwYPFLsUs0tPTER0djREjRuCVV15Bdna22CWZzP/93/+hb9++ePHFFzFo0CCMGzcOO3bsELsss9Fqtfj2228xceJEyTzgODw8HMePH0dqaioA4LfffsOpU6cwdOhQkSszjerqauj1etjZ2dVbbmdnh9OnT7d5PTxyQy1iMBjw7rvvIiIiAsHBwWKXYzKXLl3ClClTUFVVBZVKhbVr16JHjx5il2Uy+/btw6+//opvvvlG7FLMol+/fli+fDkCAgKQm5uLtWvXYurUqfjuu+/g5OQkdnl3LSMjA9u2bcPMmTPxzDPPICkpCcuWLYNSqcT48ePFLs/kDh06hNLSUkn1NnfuXJSVlWHUqFFQKBTQ6/WYP38+/vSnP4ldmkk4OTkhPDwcH330Ebp37w5PT0/s3bsXiYmJ6NatW5vXw3BDLbJkyRJcvnwZX331ldilmFRAQAD27NmD0tJSHDx4EK+99hq2bNkiiYCTk5ODd955Bxs2bGjwryqpuPW0cM+ePREaGophw4bhwIEDePTRR0WszDQEQUDfvn3x8ssvAwB69+6Ny5cvY/v27ZIKAHV27tyJoUOHtvk8DXM6cOAAvvvuO6xatQo9evTAxYsXsXz5cnTs2FEyP8P3338fixcvxtChQ6FQKNC7d2+MGTMGFy5caPNaGG6o2ZYuXYrDhw9jy5Yt8Pb2Frsck7K1tYWfnx8AoG/fvkhKSsKmTZuwdOlSkSu7excuXEB+fj4mTJhgXKbX65GQkICtW7ciKSlJUpNvAaBDhw7w9/fH1atXxS7FJLy8vBAYGFhvWffu3XHw4EGRKjKfrKwsHDt2DGvWrBG7FJN6//33MXfuXIwZMwYAoFarkZ2djU8//VQy4aZbt27YsmULNBoNysrK0LFjR7z00kuizA9juKE7EgQBb7/9Nn744Qds3rxZchMZG2MwGKDVasUuwyTuuecefPfdd/WWLVq0CN27d8ecOXMkF2yAmsnTGRkZkplgHBERYZyrUSctLQ1du3YVqSLz2bVrFzw8PIwTb6WisrKywfwhhUIhqUvB66hUKqhUKhQXF+Pnn3/Gq6++2uY1MNyYQHl5eb1/IWZmZuLixYtwcXFBly5dRKzMNJYsWYK9e/fio48+gqOjI3JzcwEAzs7OsLe3F7m6u7dq1SoMHToUnTt3Rnl5Ofbu3Yv4+PgGV4lZKycnpwbzo1QqFVxdXSUzb+q9997DsGHD0KVLF9y4cQNr1qyBXC7Hww8/LHZpJvHkk0/i8ccfxyeffIJRo0bh3Llz2LFjhySOLN7KYDBg165dGDduHGxspPXX07Bhw/DJJ5+gS5cuxtNSGzduxMSJE8UuzWSOHj0KQRAQEBCAq1ev4v3330f37t3rHTVuKzJBirGxjZ04caLR+xSMHz8eK1asEKEi02rqnijLly8X5ZfW1BYvXozjx4/jxo0bcHZ2hlqtxpw5c3DvvfeKXZrZTJ8+HT179sRf//pXsUsxifnz5yMhIQFFRUVwd3dH//79MX/+fFEmMprLjz/+iNWrVyMtLQ0+Pj6YOXMmJk+eLHZZJvXzzz9j1qxZiI2NRUBAgNjlmFRZWRn+/e9/49ChQ8jPz0fHjh0xZswYzJs3D7a2tmKXZxL79+/H6tWrce3aNbi6uuKBBx7A/Pnz4ezs3Oa1MNwQERGRpPA+N0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEZJWmT5+Od955R+wyiMgCMdwQUZt65plnMGvWrEbfO3nyJNRqNX777bc2ruqmzMxMqNVqXLx40bisrKwM06dPx+jRo3Ht2jXRaiOi5mG4IaI2NWnSJBw7dqzRkLBz50707dsXPXv2NHsder0eBoPhjusVFBRgxowZqKiowNatW+Ht7W322ojo7jDcEFGbuu++++Du7o5du3bVW15eXo7Y2FhMmjQJhYWFePnllzFkyBCEhoZi7Nix2Lt3723HLS4uxsKFCzFw4ECEhoZi9uzZSEtLM76/a9cuDBgwAP/73/8wevRohISEIDs7+7Zj5uTk4IknnoCzszO+/PJLuLm5tbpvImo7DDdE1KZsbGzwyCOPYPfu3bj10XaxsbEwGAx4+OGHodVq0adPH3z22WfYu3cvJk+ejIULF+LcuXNNjvv666/j/Pnz+Pjjj/Gf//wHgiBg7ty50Ol0xnUqKyuxbt06LFu2DHv37oWHh0eT46WmpuLxxx9Hjx49sG7dOjg6OprmAyAis2O4IaI2N3HiRFy9ehXx8fHGZbt27cIDDzwAZ2dndOrUCbNmzUKvXr3g6+uL6dOnY8iQIThw4ECj46WlpeH//u//sGzZMgwYMAA9e/bEypUrcf36dRw6dMi4nk6nw1tvvYWIiAh0794dDg4OTda4cOFCdOvWDf/+978l89RmovbCRuwCiKj9CQwMRHh4OHbu3ImoqCikp6fj5MmT2LRpE4Ca+TCffPIJYmNjcf36deh0Omi1Wtjb2zc6XkpKCmxsbBAaGmpc5ubmhoCAAKSkpBiXKZVKqNXqZtU4fPhw/O9//8P333+PUaNG3UW3RNTWeOSGiEQxadIkfP/99ygrK8OuXbvQrVs3REZGAgDWr1+PTZs2Yfbs2di0aRP27NmD6OjoeqeYWsPe3h4ymaxZ6z777LN47rnnsGDBAuzfv/+u9ktEbYvhhohEMWrUKMhkMuzduxd79uzBxIkTjcHj9OnTGDFiBB555BH07NkTvr6+9SYH/1FgYCCqq6tx9uxZ47LCwkKkpqaiR48era5x3rx5eP755/Hqq68y4BBZEZ6WIiJRODo6YvTo0Vi9ejXKysowfvx443t+fn44ePAgTp8+DRcXF2zcuBF5eXkIDAxsdCx/f3+MGDECb775JpYsWQInJyesXLkSnTp1wogRI+6qzmeffRYKhQILFiwwTngmIsvGcENEopk0aRK++eYbxMTEoFOnTsblzz77LDIyMjBr1iw4ODhg8uTJGDlyJEpLS5sca/ny5XjnnXfwzDPPQKfTYcCAAfjss8+gVCrvus65c+dCJpNh4cKFEAQBY8eOvesxich8ZMKt12ISERERWTnOuSEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIkn5fxkpgsUiwh73AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Utilizamos el método del codo para encontrar la cantidad de agrupaciones optimas para clasificar a nuestro dataset\n",
"inercia = []\n",
"K = range(1,10)\n",
"for clusters in K :\n",
" kmeans = KMeans(n_clusters=clusters)\n",
" kmeans.fit(df_num)\n",
" inercia.append(kmeans.inertia_)\n",
"\n",
"plt.plot(K,inercia)\n",
"\n",
"plt.title('Método del codo')\n",
"plt.xlabel('Valor K') \n",
"plt.ylabel('Inercia') \n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pZPWeeguAQqY"
},
"source": [
"::En esta caso elegimos 3 agrupaciones por observacion del codo y tambien por tratar de segmentar un poco más a los datos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 423
},
"executionInfo": {
"elapsed": 10,
"status": "ok",
"timestamp": 1684158708459,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "CM-D9GPpQfaw",
"outputId": "abca56c4-f7d8-453b-9ff8-5bb641d3e4a3"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Brand
\n",
"
Model
\n",
"
OS
\n",
"
Battery
\n",
"
Processor
\n",
"
Memory
\n",
"
Primary_Storage
\n",
"
External_Storage
\n",
"
Display_Size
\n",
"
Display_Resolution
\n",
"
Primary_Camera
\n",
"
Front_Camera
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
ARCHOS
\n",
"
40 Cesium
\n",
"
Windows
\n",
"
1950.0
\n",
"
Qualcomm Snapdragon 200
\n",
"
0.5
\n",
"
4.000000
\n",
"
microSDXC
\n",
"
4.0
\n",
"
800 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
1
\n",
"
ARCHOS
\n",
"
40 Titanium
\n",
"
Android
\n",
"
1500.0
\n",
"
MediaTek
\n",
"
0.5
\n",
"
34.296597
\n",
"
microSDHC
\n",
"
4.0
\n",
"
800 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
2
\n",
"
ARCHOS
\n",
"
40b Titanium
\n",
"
Android
\n",
"
1400.0
\n",
"
MediaTek
\n",
"
0.5
\n",
"
4.000000
\n",
"
microSD
\n",
"
4.0
\n",
"
800 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
3
\n",
"
ARCHOS
\n",
"
45 Titanium
\n",
"
Android
\n",
"
1680.0
\n",
"
MediaTek
\n",
"
0.5
\n",
"
34.296597
\n",
"
microSDHC
\n",
"
4.5
\n",
"
854 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
4
\n",
"
ARCHOS
\n",
"
45b Helium 4G
\n",
"
Android
\n",
"
1850.0
\n",
"
Qualcomm Snapdragon 410
\n",
"
0.5
\n",
"
4.000000
\n",
"
microSDXC
\n",
"
4.5
\n",
"
854 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
4532
\n",
"
vivo
\n",
"
Y11
\n",
"
Android
\n",
"
5000.0
\n",
"
Qualcomm Snapdragon 439
\n",
"
3.0
\n",
"
32.000000
\n",
"
microSDXC
\n",
"
6.3
\n",
"
1544 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
4533
\n",
"
vivo
\n",
"
Y19
\n",
"
Android
\n",
"
5000.0
\n",
"
MediaTek Helio P65
\n",
"
4.0
\n",
"
128.000000
\n",
"
microSDXC
\n",
"
6.5
\n",
"
2340 x 1080
\n",
"
16.0
\n",
"
16.0
\n",
"
\n",
"
\n",
"
4534
\n",
"
vivo
\n",
"
Y83 Pro
\n",
"
Android
\n",
"
3260.0
\n",
"
MediaTek Helio P22
\n",
"
4.0
\n",
"
64.000000
\n",
"
microSDXC
\n",
"
6.2
\n",
"
1520 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
4535
\n",
"
vivo
\n",
"
Y91
\n",
"
Android
\n",
"
4030.0
\n",
"
MediaTek Helio P22
\n",
"
2.0
\n",
"
32.000000
\n",
"
microSDXC
\n",
"
6.2
\n",
"
1520 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
4536
\n",
"
vivo
\n",
"
Y93
\n",
"
Android
\n",
"
4030.0
\n",
"
MediaTek Helio P22
\n",
"
4.0
\n",
"
64.000000
\n",
"
microSDXC
\n",
"
6.2
\n",
"
1520 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
\n",
" \n",
"
\n",
"
2816 rows × 12 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" Brand Model OS Battery Processor \\\n",
"0 ARCHOS 40 Cesium Windows 1950.0 Qualcomm Snapdragon 200 \n",
"1 ARCHOS 40 Titanium Android 1500.0 MediaTek \n",
"2 ARCHOS 40b Titanium Android 1400.0 MediaTek \n",
"3 ARCHOS 45 Titanium Android 1680.0 MediaTek \n",
"4 ARCHOS 45b Helium 4G Android 1850.0 Qualcomm Snapdragon 410 \n",
"... ... ... ... ... ... \n",
"4532 vivo Y11 Android 5000.0 Qualcomm Snapdragon 439 \n",
"4533 vivo Y19 Android 5000.0 MediaTek Helio P65 \n",
"4534 vivo Y83 Pro Android 3260.0 MediaTek Helio P22 \n",
"4535 vivo Y91 Android 4030.0 MediaTek Helio P22 \n",
"4536 vivo Y93 Android 4030.0 MediaTek Helio P22 \n",
"\n",
" Memory Primary_Storage External_Storage Display_Size \\\n",
"0 0.5 4.000000 microSDXC 4.0 \n",
"1 0.5 34.296597 microSDHC 4.0 \n",
"2 0.5 4.000000 microSD 4.0 \n",
"3 0.5 34.296597 microSDHC 4.5 \n",
"4 0.5 4.000000 microSDXC 4.5 \n",
"... ... ... ... ... \n",
"4532 3.0 32.000000 microSDXC 6.3 \n",
"4533 4.0 128.000000 microSDXC 6.5 \n",
"4534 4.0 64.000000 microSDXC 6.2 \n",
"4535 2.0 32.000000 microSDXC 6.2 \n",
"4536 4.0 64.000000 microSDXC 6.2 \n",
"\n",
" Display_Resolution Primary_Camera Front_Camera \n",
"0 800 x 480 5.0 0.3 \n",
"1 800 x 480 5.0 0.3 \n",
"2 800 x 480 5.0 0.3 \n",
"3 854 x 480 5.0 0.3 \n",
"4 854 x 480 5.0 0.3 \n",
"... ... ... ... \n",
"4532 1544 x 720 13.0 8.0 \n",
"4533 2340 x 1080 16.0 16.0 \n",
"4534 1520 x 720 13.0 8.0 \n",
"4535 1520 x 720 13.0 8.0 \n",
"4536 1520 x 720 13.0 8.0 \n",
"\n",
"[2816 rows x 12 columns]"
]
},
"execution_count": 228,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 951,
"status": "ok",
"timestamp": 1684158709402,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "fJkhYMSYAhCh",
"outputId": "6895e7a8-1864-49e0-9c42-cdfceb77d45e"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n"
]
}
],
"source": [
"#Entrenamiento y asignacion de los grupos encontrados con sus respectivos valores\n",
"kmeans=KMeans(n_clusters=3,random_state=42)\n",
"kmeans.fit_transform(df_num)\n",
"df_text['Cluster']=kmeans.labels_"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 6,
"status": "ok",
"timestamp": 1684158709402,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "6Pr2Up3_RBRU",
"outputId": "607f8eda-0fca-44b8-ae08-059baab7b911"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
":1: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
"\n"
]
}
],
"source": [
"df_cluster=df_text.groupby(['Cluster','Brand']).mean().round(2).reset_index()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 5,
"status": "ok",
"timestamp": 1684158709403,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "cUo7c8HCS6jY",
"outputId": "4d2e51c9-7042-4cbc-8b61-d73dd969b5c8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cantidad de Marcas entrantes en cluster 0 = 67\n",
"Cantidad de Marcas entrantes en cluster 1 = 48\n",
"Cantidad de Marcas entrantes en cluster 2 = 62\n"
]
}
],
"source": [
"print(f'Cantidad de Marcas entrantes en cluster 0 =',len(df_cluster.where(df_cluster.Cluster==0).dropna().Brand.unique()))\n",
"print(f'Cantidad de Marcas entrantes en cluster 1 =',len(df_cluster.where(df_cluster.Cluster==1).dropna().Brand.unique()))\n",
"print(f'Cantidad de Marcas entrantes en cluster 2 =',len(df_cluster.where(df_cluster.Cluster==2).dropna().Brand.unique()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RMt4Bmui1Qck"
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ctA9GeT1WCyN"
},
"source": [
"## Cluster 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 574
},
"executionInfo": {
"elapsed": 1992,
"status": "ok",
"timestamp": 1684158711392,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "nLAvwLdQeKU6",
"outputId": "0a6cd136-8c6c-4cf6-cfb3-1fa0dec34b65"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaIAAAItCAYAAADL3A19AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClsElEQVR4nOzdeVyU9fr/8TeMiChLipiRZi6BIiC4ZCCGmmW55XJaTatDlpaplSdtOe4JlZmaa2qWmpodl+OWlZnVKUw7aeFySDO3rERKEUHFmfv3hz/m6wgqAzPMwuv5ePiQudfrumfg87mvue/P7WMYhiEAAAAAAAAAAJzE19UBAAAAAAAAAAC8G4VoAAAAAAAAAIBTUYgGAAAAAAAAADgVhWgAAAAAAAAAgFNRiAYAAAAAAAAAOBWFaAAAAAAAAACAU1GIBgAAAAAAAAA4FYVoAAAAAAAAAIBTUYgGAAAAAAAAADgVhWgAAAAAAACUmxEjRqhDhw6uDgNAOaMQDZTAihUrFBkZafMvISFBffv21RdffFGqbc6aNUsbN24sMv3777/XW2+9pZycnLKGDQAALnFxm/7dd98VmW8YhpKTkxUZGaknnnjCBRECAOD+Lj1HjomJUadOnTR27FgdP37c1eG5he+++06PPfaY2rZtq5iYGLVr104DBgzQmjVrrMvk5+frrbfe0rfffuvCSIHyU8nVAQCeZPDgwapTp44Mw1B2drZWrlypxx9/XLNmzVL79u3t2tbs2bPVqVMndezY0Wb69u3bNW3aNPXs2VPBwcGODB8AAPx//v7+Wrt2rVq2bGkzfevWrfr9999VuXJlF0UGAIDnKDxHPnfunP773/9qyZIl+uKLL7R27VoFBARcdr1x48bJMIxyjLR8ffTRR3rmmWfUpEkT9evXTyEhITpy5Ii2bdumZcuWqVu3bpIuFKKnTZumQYMGqXXr1i6OGnA+CtGAHW699VbFxMRYX//tb39TmzZttHbtWrsL0eUtPz//ih0BAAAqkuTkZG3YsEEvv/yyKlX6vy7x2rVr1bRpU504ccJ1wZVSXl6eqlat6uowAAAVyMXnyPfcc4+uueYazZ8/X5999pm6du1aZPnCtsrPz6+8Q70iR58vT5s2TY0aNdIHH3xQ5Mvt7Oxsh+3ncugTwF0xNAdQBsHBwfL397c5gZ03b57uv/9+tW7dWrGxserVq5c2bNhgs15kZKTy8vK0cuVK661MI0aM0FtvvaXXXntNknTbbbdZ5x05csS67r///W/16tVLsbGxuvnmm/XMM8/ot99+s9l+37591bVrV+3cuVN9+vRRs2bNNGnSJA0fPlytW7dWQUFBkVz+/ve/q1OnTo48PAAAuK0uXbroxIkT+vrrr63Tzp07p48//th6ldLFLBaL3n33XXXp0kUxMTFKTEzUyJEjdfLkSZvlOnTooCeeeELffvuttb3u1q2b9ZbbTz75RN26dVNMTIx69eql3bt3F9lXenq6HnzwQcXFxally5YaOHCgfv75Z5tl3nrrLUVGRmrfvn167rnn1KpVKz344INavny5IiMji93urFmz1KRJE/3xxx+lOmYAAFzNLbfcIkk6cuSIRowYofj4eB06dEj9+/dXfHy8hg0bJqnoGNFHjhxRZGSk5s2bp/fff1+33XabmjVrpr///e/67bffZBiGpk+frltvvVWxsbEaOHBgkS+NN27cqMcff1xJSUmKjo5Wx44dNX36dJnNZpvlyuN8+dChQ4qJiSn2DqvQ0FBrzgkJCZIuFK4Lz//feust67Jl6RNI0v/+9z+NGDFCt912m2JiYtSmTRu98MIL+uuvv4rEVdh3iYmJUceOHbV06VLrti9VkroEUByuiAbskJubqz///FPShW8xFy5cqLy8PHXv3t26zIIFC9ShQwd169ZNBQUFWrdunYYMGaLZs2erXbt2kqTXXntNL7/8smJjY3XvvfdKkm644QYFBATowIEDWrt2rV544QVVr15dklSjRg1J0syZMzVlyhTddddd+tvf/qY///xTixYtUp8+fbRq1SqboTxOnDih/v37q0uXLurevbtCQ0NVtWpVrVq1Sv/5z39sruDOysrSli1b9NRTTzn1+AEA4C6uv/56xcXFad26dUpOTpYkffnllzp16pQ6d+6shQsX2iw/cuRIrVy5Ur169VLfvn115MgRvf/++9q9e7eWLFlic2XXwYMH9dxzz+n+++9X9+7d9c4772jAgAEaM2aM3nzzTT3wwAOSpLfffltDhw7Vhg0b5Ot74fqQb775Rv3791edOnU0aNAgnTlzRosWLdIDDzygFStWqE6dOjZxDRkyRPXq1dMzzzwjwzCs43OuWbNGUVFRNsuuWbNGN998s6699lqHH08AAKQLBVhJuuaaayRJ58+fV0pKilq0aKHhw4erSpUqV1x/zZo1KigoUN++fXXixAnNnTtXQ4cO1S233KJvv/1W/fv318GDB7Vo0SK9+uqrSk1Nta67cuVKVa1aVY8++qiqVq2qLVu2aOrUqcrNzdXw4cNt9uPs8+Xw8HClp6fr999/V+3atYtdpkaNGho9erRGjx6t22+/XbfffrskWQu/Ze0TFG7j8OHD6tWrl8LCwrR3714tW7ZM+/bt07Jly+Tj4yNJ2r17tx577DGFhYXp6aeflsVi0fTp0621iIvZU5cAijAAXNXy5cuNiIiIIv+io6ONFStW2Cybn59v8/rcuXNG165djX79+tlMj4uLM4YPH15kX3PnzjUiIiKMw4cP20w/cuSI0aRJE2PmzJk20zMzM42oqCib6Q899JARERFhLFmyxGZZs9ls3HrrrcbQoUNtps+fP9+IjIw0Dh06dJUjAQCAZyts03/88Udj0aJFRnx8vLXtHjx4sNG3b1/DMAyjffv2xuOPP24YhmFs27bNiIiIMFavXm2zrS+//LLI9Pbt2xsRERHG999/b5321VdfGREREUZsbKzx66+/WqcvXbrUiIiIMLZs2WKddvfddxsJCQnGX3/9ZZ22Z88eo3Hjxsbzzz9vnTZ16lQjIiLCePbZZ4vk+OyzzxpJSUmG2Wy2Ttu1a5cRERFhLF++3K7jBQBAcQrb02+++cbIzs42fvvtN2PdunXGzTffbMTGxhq///67MXz4cCMiIsKYOHFikfWHDx9utG/f3vr68OHDRkREhHHLLbcYOTk51ulvvPGGERERYXTv3t0oKCiwTn/22WeNpk2bGmfPnrVOu/Rc3DAM45///KfRrFkzm+XK43z5ww8/NCIiIoymTZsaffv2NSZPnmxs27bNpm02DMPIzs42IiIijKlTpxbZhiP6BMUdk7Vr1xoRERHGtm3brNOeeOIJo1mzZsbvv/9unXbgwAEjKirKiIiIsE6zpy4BFIehOQA7jBw5UvPnz9f8+fP1+uuvq3Xr1nr55Zf1ySefWJe5+BvekydP6tSpU2rRokWxt8ja49NPP5XFYtFdd92lP//80/qvZs2aqlevXpGn7FauXFm9evWymebr66tu3bpp06ZNys3NtU5fvXq14uPjVbdu3TLFCACAJ7nrrrt09uxZff7558rNzdXmzZuLHZZjw4YNCgoKUps2bWza4KZNm6pq1apF2uBGjRopPj7e+rpZs2aSLtyuHB4eXmT64cOHJUnHjh3Tnj171LNnT+uVZJLUuHFjJSYm6osvvigS2/33319k2t13361jx47ZxLVmzRpVqVJFd9xxR0kODQAAJfLII48oISFBycnJeuaZZ1StWjVNmzbN5u6bwjuBSuLOO+9UUFCQ9XVsbKwkqXv37jZDYsbGxqqgoMBmuKmLz8UL72Zu2bKl8vPztX//fpv9OPt8+W9/+5vmzp2r1q1b6/vvv9eMGTPUp08f3XHHHfr++++vur6j+gQXH5OzZ8/qzz//tPY/du3aJUkym81KT0/XbbfdZvO+1atXT23btrXZnr11CeBSDM0B2CE2NtbmYYVdu3ZVjx49NHbsWLVr106VK1fW559/rpkzZ2rPnj06d+6cddnCW15K68CBAzIM47InkBc3ypJ07bXXFjseVY8ePTRnzhxt3LhRPXr00P79+7Vr1y6NGTOmTPEBAOBpatSooYSEBK1du1ZnzpyR2WwudvzHgwcP6tSpU9ZxHC916UOHrrvuOpvXhSfUl96aGxgYKEnKycmRJB09elSSVL9+/SL7aNiwof7zn/8UefjQpbflSlKbNm0UFham1atXKyEhQRaLRWvXrtVtt91m3ScAAI4wcuRI1a9fXyaTSTVr1lT9+vWtw01JF85TLzc0RXEu14ZebvrJkyetBeK9e/dq8uTJ2rJli00hWZJOnTpl87o8zpfbtm2rtm3bKj8/X7t27dL69eu1dOlSDRgwQB999JF1rOjiOKpPcOLECU2bNk3r168v0l8pPCbZ2dk6c+aM6tWrV2T9S6fZW5cALsUnBCgDX19ftW7dWgsWLNDBgwd18uRJDRw4UK1atdKoUaMUFhYmPz8/LV++XGvXri3TviwWi3x8fDRnzhyZTKYi8y99Iu7lxt5q1KiRmjZtqtWrV6tHjx5avXq1/Pz8dNddd5UpPgAAPFHXrl31z3/+U8ePH9ett95a7LiGFotFoaGhmjhxYrHbuHT8xOLa6StNN/7/OI6l4e/vX+x+unXrpmXLlmn06NH6/vvvdezYMZtnWgAA4AiXXqx1qcqVK9sUpq/mcm3l5bZR2Ibm5OTooYceUmBgoAYPHqwbbrhB/v7+2rVrlyZOnCiLxWKzXnmeLwcEBKhly5Zq2bKlqlevrmnTpunLL79Uz549S73N4hTXJxg6dKi2b9+ulJQUNWnSRFWrVpXFYtFjjz1Wqv6HvXUJ4FIUooEyKnwCb15enj7++GP5+/tr3rx5Nt+uLl++vMTbu9yV0zfccIMMw1CdOnWK/VbUHj169FBaWpqOHTumtWvXql27dgoJCSnTNgEA8ES33367Ro0apR07dujNN98sdpkbbrhB6enpat68+VUfslQWhcN2/PLLL0Xm7d+/X9WrVy/xCd7dd9+td955R5s2bdKXX36pGjVqKCkpyaHxAgDgLrZu3Wq9+rdVq1bW6UeOHLF7W848X46OjpZ04QGI0uXP/x3RJzh58qTS09P19NNPa9CgQdbpBw4csFkuNDRU/v7+OnjwYJFtXDrNkXUJVEyMEQ2UQUFBgb7++mv5+fmpYcOGMplM8vHxsRanpQsN32effVZk3apVq1pvxb1YQECApKK3Dt1xxx0ymUyaNm1akW8uDcPQX3/9VeK4u3btKh8fH73yyis6fPgwV0gBACqsatWqafTo0Xr66afVoUOHYpe56667ZDabNWPGjCLzzp8/X2x7Xhq1atVSkyZNtGrVKptt/vTTT/r666+VnJxc4m01btxYkZGR+te//qVPPvlEXbp04XZZAIDXKrxi+uJz5XPnzmnx4sV2b8sR58vp6enFTi8c27mwiFt4/n9pX8IRfYLLXV3+3nvvFVkuMTFRn332mc2Y2wcPHtRXX31ls6wj6xKomOiNAnb48ssvrQ85+PPPP7VmzRodOHBAjz/+uAIDA5WcnKz58+frscceU9euXZWdna3FixfrhhtuUGZmps22mjZtqvT0dM2fP1+1atVSnTp11KxZMzVt2lSS9Oabb6pz587y8/NT+/btdcMNN2jo0KF644039Ouvv6pjx46qVq2ajhw5oo0bN+ree+9VSkpKifKoUaOG2rZtqw0bNig4OFjt2rVz6HECAMCTXO3W2Jtvvln33XefZs+erT179qhNmzby8/PTgQMHtGHDBr300ku68847HRLL888/r/79++u+++7T3/72N505c0aLFi1SUFCQzdVMJdGjRw+9+uqrksSXzgAArxYfH6+QkBCNGDFCffv2lY+Pj/7973+XavgJR5wvP/nkk6pTp47at2+vunXrKj8/X998840+//xzxcTEqH379pIuDBHSqFEjffTRR7rxxht1zTXX6KabblJERESZ+wSBgYFq1aqV5s6dq4KCAl177bX6+uuvi71KfNCgQfrPf/6jBx54QA888IAsFosWLVqkm266SXv27LEu58i6BComCtGAHaZOnWr92d/fXw0aNNDo0aOtT6dNSEjQK6+8ojlz5mjChAmqU6eOhg0bpl9//bVIIXrEiBEaOXKkJk+erDNnzqhnz55q1qyZYmNjNWTIEC1dulRfffWVLBaLPvvsM1WtWlWPP/64brzxRr377ruaPn26pAsPPmrTps1lr+K6nLvvvluff/657rrrrmIf0gAAAP7P2LFjFR0draVLl+rNN9+UyWTS9ddfr+7du6t58+YO209iYqLmzp2rqVOnaurUqapUqZJatWqlf/zjH9aHMZVUt27dNHHiRNWtW1exsbEOixEAAHdTvXp1zZo1S6+++qomT56s4OBgde/eXQkJCaUqjJb1fHn8+PH67LPP9NFHH+nYsWMyDEN169bVgAED1L9/f5u7lMaPH69x48YpNTVVBQUFGjRokCIiIhzSJ3jjjTc0btw4LV68WIZhqE2bNpozZ47atm1rs1x0dLTmzJmj1157TVOmTNF1112nwYMHa//+/daL8Qo5si6BisfHKMvTUQB4rI0bN+qpp57S+++/r5YtW7o6HAAA4GB//vmn2rZtqyeffFJPPfWUq8MBAMBjcL58wZNPPql9+/bpk08+cXUo8BKMEQ1UUB9++KHq1q2rFi1auDoUAADgBCtXrpTZbNbdd9/t6lAAAPAoFfF8+cyZMzavDxw4oC+//FI333yziyKCN2JoDqCCWbdunTIzM7V582a99NJLl31KLwAA8Ezp6en6+eefNWvWLHXs2FF16tRxdUgAAHiEq50vnzp1qkjB9lJhYWHODNFpOnbsqJ49e6pu3br69ddftXTpUvn5+emxxx5zdWjwIgzNAVQwkZGRqlq1qjp37qwxY8bYjE0FAAA8X9++fbV9+3bFx8dr4sSJuvbaa10dEgAAHuFq58sjRozQypUrr7iNS58P5SleeOEFffvtt8rKylLlypUVFxenZ599Vk2bNnV1aPAiFKIBAAAAAACAq9i3b5+OHTt2xWUSExPLKRrA81CIBgAAAAAAAAA4ldvdk2+xWHT+/Hn5+voydi0AVGCGYchisahSpUry9eXZup6O9h0AING+exvadwCAPW272xWiz58/r4yMDFeHAQBwEzExMapcubKrw0AZ0b4DAC5G++4daN8BAIVK0ra7XSG6sHIeExMjk8nk4mjsYzablZGR4ZGx24tcvU9FyVMiV09RGDtXS3kHR7XvnvyZLuQNOUjk4W7Iw314Qw6S8/KgffcujmjfveV3prTIn/zJn/w9PX972na3K0QX3s5jMpk89k3w5NjtRa7ep6LkKZGrp+A2T+/g6Pbdkz/ThbwhB4k83A15uA9vyEFyXh60797Bke27t/zOlBb5kz/5k7+nK0nbztfQAAAAAAAAAACnohANAAAAAAAAAHAqCtEAAAAAAAAAAKeiEA0AAAAAAAAAcCoK0QAAAAAAAAAAp6IQDQAAAAAAAABwKgrRAAAAAAAAAACnohANwCogIMDVIQDAVfn5+bk6BAAA4EC07QBQMVCIBtyU2WKU6/5MJpOioqJkMplcHgsAXEmTqKbF/q1yBf4+AgBQdu7Utku07wDgLJVcHQCA4pl8fTRk6XbtO5br0jga1QrUlPvjXRoDAFzMr5KJv48AAHgRd2nbJdp3AHAmCtGAG9t3LFe7jua4OgwAcDv8fQQAwLvQtgOA92NoDgAAAAAAAACAU1GIBgAAAAAAAAA4FYVoAAAAAAAAAIBTUYgGAAAAAAAAADgVhWgAAAAAAAAAgFNRiAYAAAAAAAAAOBWFaAAAAAAAvMzixYvVrVs3NW/eXM2bN9d9992nL774wjr/7NmzGjNmjFq3bq34+Hg9/fTTOn78uAsjBgB4OwrRAAAAAAB4mdq1a2vYsGFasWKFli9frltuuUVPPfWU9u7dK0maMGGCPv/8c02ePFkLFy7UsWPHNGjQIBdHDQDwZpVcHQAAAAAAAHCsDh062Lx+5plntGTJEu3YsUO1a9fW8uXLNXHiRCUkJEi6UJju3LmzduzYobi4OLv2ZTabSx2nxWKRyWQq9frOUpacSrOf8tqfuyF/8r/4/4rGW/K3J34K0QAAAAAAeDGz2awNGzYoLy9P8fHx2rlzpwoKCpSYmGhdpmHDhgoPDy9VITojI6PUsQUEBCgqKqrU6ztLZmam8vPzy21/ZTmG3oD8yb8iq0j5U4gGAAAAAMALZWZm6v7779fZs2dVtWpVTZ8+XY0aNdKePXvk5+en4OBgm+VDQ0OVlZVl935iYmJKfVWzxWIp1XrOFhkZWS77MZvNysjIKNMx9GTkT/7k7/n5F+ZREhSiAQAAAADwQvXr19eqVat06tQpffzxxxo+fLgWLVrk8P2YTCaPLqIUp7zz8cZjaA/yJ3/yrxj587BCAACgP/74Q8OGDVPr1q0VGxurbt262XyrbRiGpkyZoqSkJMXGxuqRRx7RgQMHXBcwAAC4qsqVK6tevXqKjo7Wc889p8aNG2vBggWqWbOmCgoKlJOTY7N8dna2wsLCXBQtAMDbUYgGAKCCO3nypB544AH5+flpzpw5WrdunYYPH66QkBDrMnPmzNHChQs1evRoLVu2TAEBAUpJSdHZs2ddGDkAALCHxWLRuXPnFB0dLT8/P6Wnp1vn7d+/X0ePHrV7fGgAAEqKoTkAAKjg5syZo9q1ays1NdU6rW7dutafDcPQggULNHDgQHXs2FGS9NprrykxMVEbN25Uly5dSryvsj4R2mKxuN1ta/bm5G1PxyYP90Ae7sMbcpCcl4enHxdP8sYbb+jWW2/Vddddp9OnT2vt2rXaunWr5s2bp6CgIPXu3VtpaWkKCQlRYGCgxo8fr/j4eArRAACnoRANAEAFt2nTJiUlJWnw4MHatm2brr32Wj344IO69957JUlHjhxRVlaWEhMTresEBQWpWbNm2r59u12F6LI+ETogIEBRUVFl2oajZWZmKj8/3+71vOXp2OThXsjDfXhDDpL35FERZWdna/jw4Tp27JiCgoIUGRmpefPmqU2bNpKkF198Ub6+vho8eLDOnTunpKQkjRo1ysVRAwC8GYVoAAAquMOHD2vJkiV69NFHNWDAAGVkZGj8+PHy8/NTz549lZWVJUkKDQ21WS80NFTHjx+3a19lfSK0xWIp9brOEhkZadfy3vZ0bPJwD+ThPrwhB8l5eRRuF843YcKEK8739/fXqFGjKD4DAMoNhWgAACo4wzAUHR2tZ599VpIUFRWlvXv3aunSperZs6dD9+WNT4QubT7ecizIw72Qh/vwhhwk78kDAAC4Hg8rBACgggsLC1PDhg1tpjVo0EBHjx61zpcu3OJ7sezsbNWsWbN8ggQAAAAAeDQK0QAAVHDNmzfXL7/8YjPtwIEDuv766yVJderUUVhYmNLT063zc3Nz9cMPPyg+Pr5cYwUAAAAAeCYK0QAAVHAPP/ywfvjhB82aNUsHDx7UmjVrtGzZMj344IOSJB8fH/Xr108zZ87UZ599pszMTD3//POqVauWOnbs6OLoAQAAAACegDGiAQCo4GJjYzVt2jRNmjRJ06dPV506dfTiiy+qe/fu1mX69++v/Px8jRw5Ujk5OWrRooXmzp0rf39/F0YOAAAAAPAUFKIBAIDat2+v9u3bX3a+j4+PhgwZoiFDhpRjVAAAAAAAb8HQHAAAAAAAAAAAp6IQDQAAAAAAAABwKgrRAAAAAAAAAACnohANAAAAAAAAAHAquwvR27Zt04ABA5SUlKTIyEht3LjRZv6IESMUGRlp8y8lJcVhAQMAAAAAAAAAPEsle1fIy8tTZGSkevfurUGDBhW7TNu2bZWammp9Xbly5dJHCAAAAAAAAADwaHYXopOTk5WcnHzFZSpXrqywsLBSByVJZrO5TOu7QmHMnhi7vcjV+UwmU7nu72q86b3m8+sZPDFmAAAAAABQPLsL0SWxdetWJSQkKDg4WLfccouGDh2q6tWr27WNjIwMZ4RWLjw5dnuRq3MEBAQoKiqq3PZXEpmZmcrPz3d1GA7F5xcAAAAAAKB8OLwQ3bZtW91+++2qU6eODh8+rEmTJql///764IMP7LrCMyYmxu2uCL0as9msjIwMj4zdXuRa8URGRro6BIepSO+pJ+daGDsAAAAAAPB8Di9Ed+nSxfpz4cMKO3bsaL1KuqRMJpPHFU0KeXLs9iLXisMbc69I72lFyhUAAAAAALgfX2fvoG7duqpevboOHjzo7F0BAAAAAAAAANyQ0wvRv//+u06cOFHmhxcCAAAAAAAAADyT3UNznD59WocOHbK+PnLkiPbs2aOQkBCFhIRo2rRp6tSpk2rWrKnDhw/r9ddfV7169dS2bVuHBg4AAAAAAAAA8Ax2F6J37typfv36WV+npqZKknr27KnRo0frp59+0qpVq3Tq1CnVqlVLbdq00ZAhQ1S5cmXHRQ0AAAAAAAAA8Bh2F6Jbt26tzMzMy86fN29emQICAAAAAAAAAHgXuwvRAAAAAADAvc2ePVuffPKJ9u/frypVqig+Pl7Dhg1TgwYNrMv07dtXW7dutVnvvvvu09ixY8s7XABABUAhGgAAAAAAL7N161b16dNHMTExMpvNmjRpklJSUrRu3TpVrVrVuty9996rwYMHW18HBAS4IlwAQAVAIRoAAAAAAC9z6bCZaWlpSkhI0K5du9SqVSvr9CpVqigsLKxM+zKbzaVe12KxyGQylWn/zlCWnEqzn/Lan7shf/K/+P+Kxlvytyd+CtEAAAAAAHi5U6dOSZJCQkJspq9Zs0arV69WWFiY2rdvryeffNLuq6IzMjJKHVdAQICioqJKvb6zZGZmKj8/v9z2V5Zj6A3In/wrsoqUP4VoAAAquLfeekvTpk2zmVa/fn1t2LBBknT27FmlpaVp/fr1OnfunJKSkjRq1CjVrFnTFeECAAA7WSwWTZgwQc2bN1dERIR1eteuXRUeHq5atWopMzNTEydO1C+//FKkX3A1MTExpb6q2WKxlGo9Z4uMjCyX/ZjNZmVkZJTpGHoy8id/8vf8/AvzKAkK0QAAQDfddJPmz59vfX1xR2jChAn64osvNHnyZAUFBWncuHEaNGiQli5d6opQAQCAncaMGaO9e/dq8eLFNtPvu+8+68+RkZEKCwvTI488okOHDumGG24o8fZNJpNHF1GKU975eOMxtAf5kz/5V4z8KUQDAACZTKZix4c8deqUli9frokTJyohIUHShcJ0586dtWPHDsXFxZVzpAAAwB5jx47V5s2btWjRItWuXfuKyzZr1kySdPDgQbsK0QAAlASFaAAAoIMHDyopKUn+/v6Ki4vTc889p/DwcO3cuVMFBQVKTEy0LtuwYUOFh4eXqhBd1gdxuOMDjezNydseSkIe7oE83Ic35CA5Lw9PPy6exDAMjRs3Tp9++qkWLlyounXrXnWdPXv2SFKZH14IAEBxKEQDAFDBxcbGKjU1VfXr11dWVpamT5+uPn36aM2aNTp+/Lj8/PwUHBxss05oaKiysrLs3ldZH8Thjg80Ku3DjLzloSTk4V7Iw314Qw6S9+RREY0ZM0Zr167VjBkzVK1aNWu7HRQUpCpVqujQoUNas2aNkpOTdc011ygzM1Opqalq1aqVGjdu7OLoAQDeiEI0AAAVXHJysvXnxo0bq1mzZmrfvr0++ugjValSxaH7KuuDONzxgUb2PszI2x5KQh7ugTzchzfkIDkvD3seaISyWbJkiSSpb9++NtNTU1PVq1cv+fn5KT09XQsWLFBeXp6uu+463XHHHXryySddES4AoAKgEA0AAGwEBwfrxhtv1KFDh5SYmKiCggLl5OTYXBWdnZ1dqtt2vfFBHKXNx1uOBXm4F/JwH96Qg+Q9eVREmZmZV5x/3XXXadGiReUUDQAAkq+rAwAAAO7l9OnTOnz4sMLCwhQdHW29YqrQ/v37dfToUR5UCAAAAAAoMa6IBgCggnv11VfVvn17hYeH69ixY3rrrbfk6+urrl27KigoSL1791ZaWppCQkIUGBio8ePHKz4+nkI0AAAAAKDEKEQDAFDB/f7773r22Wd14sQJ1ahRQy1atNCyZctUo0YNSdKLL74oX19fDR48WOfOnVNSUpJGjRrl4qgBAAAAAJ6EQjQAABXcm2++ecX5/v7+GjVqFMVnAAAAAECpMUY0AAAAAAAAAMCpKEQDAAAAAAAAAJyKQjQAAAAAAAAAwKkoRAMAAAAAAAAAnIpCNAAAAAAAAADAqShEAwAAAAAAAACcikI0AAAAAAAAAMCpKEQDAAAAAAAAAJyKQjQAAAAAAAAAwKkoRAMAAAAAAAAAnIpCNAAAAAAAAADAqShEAwAAAAAAAACcikI0AAAAAAAAAMCpKEQDAAAAAAC4SEBAgKtDAIByQSEaAAAAAABAUligv8wWo9z2ZzKZFBUVJZPJVOz88owFAJytkqsDAAAAAAAAcAfBAZVk8vXRkKXbte9YrktjaVQrUFPuj3dpDADgSBSiAQAAAADwMrNnz9Ynn3yi/fv3q0qVKoqPj9ewYcPUoEED6zJnz55VWlqa1q9fr3PnzikpKUmjRo1SzZo1XRi5e9h3LFe7jua4OgwA8CoMzQEAAAAAgJfZunWr+vTpo2XLlmn+/Pk6f/68UlJSlJeXZ11mwoQJ+vzzzzV58mQtXLhQx44d06BBg1wYNQDAm3FFNAAAAAAAXmbevHk2r9PS0pSQkKBdu3apVatWOnXqlJYvX66JEycqISFB0oXCdOfOnbVjxw7FxcW5IGoAgDejEA0AAAAAgJc7deqUJCkkJESStHPnThUUFCgxMdG6TMOGDRUeHm53IdpsNpc6LovFctkH9eGCshxfd1eYmzfneCXkT/4X/++p7ImfQjQAALDx9ttv64033lC/fv300ksvSWIMSQAAPJnFYtGECRPUvHlzRURESJKOHz8uPz8/BQcH2ywbGhqqrKwsu7afkZFR6tgCAgIUFRVV6vUrgszMTOXn57s6DKcqy2fIG5A/+VcUFKIBAIDVjz/+qKVLlyoyMtJm+oQJE/TFF19o8uTJCgoK0rhx4zRo0CAtXbrURZECAICSGjNmjPbu3avFixc7ZfsxMTGlvqrZYrE4OBrvc2m/zJuYzWZlZGSU6TPkycif/L0h/8I8SoJCNAAAkCSdPn1a//jHPzR+/HjNnDnTOp0xJAEA8Fxjx47V5s2btWjRItWuXds6vWbNmiooKFBOTo7NVdHZ2dkKCwuzax8mk8mjiyjuriIc24r+GSJ/8q8o+VOIBgAAki6cqCYnJysxMdGmEO0uY0hK7jmOpL05edtYcOThHsjDfXhDDpLz8vD04+JJDMPQuHHj9Omnn2rhwoWqW7euzfzo6Gj5+fkpPT1dnTp1kiTt379fR48e5UtmAIBTUIgGAABat26ddu/erX/9619F5rnLGJKSe44jWdpxG71lLDjycC/k4T68IQfJe/KoiMaMGaO1a9dqxowZqlatmrXNDgoKUpUqVRQUFKTevXsrLS1NISEhCgwM1Pjx4xUfH08hGgDgFBSiAQCo4H777Te98soreuedd+Tv7+/UfZV1/DN3HEfS3nEbvW0sOPJwD+ThPrwhB8l5edgzjiTKZsmSJZKkvn372kxPTU1Vr169JEkvvviifH19NXjwYJuHEQMA4AwUogEAqOB27dql7Oxs60mpdKFQsG3bNr3//vuaN28eY0heQWnz8ZZjQR7uhTzchzfkIHlPHhVRZmbmVZfx9/fXqFGjKD4DAMoFhWgAACq4W265RWvWrLGZ9sILL6hBgwbq37+/rrvuOsaQBAAAAACUCYVoAAAquMDAQEVERNhMq1q1qq655hrrdMaQBAAAAACUBYVoAABwVYwhCQAAAAAoCwrRAACgiIULF9q8ZgxJAAAAAEBZ+Nq7wrZt2zRgwAAlJSUpMjJSGzdutJlvGIamTJmipKQkxcbG6pFHHtGBAwccFS8AAAAAAAAAwMPYXYjOy8tTZGTkZa+ImjNnjhYuXKjRo0dr2bJlCggIUEpKis6ePVvmYAEAAAAAAAAAnsfuoTmSk5OVnJxc7DzDMLRgwQINHDhQHTt2lCS99tprSkxM1MaNG9WlS5cS78dsNtsbmssVxuyJsdurIuVqsVgUEBAgi8VSrvs1mUzlur+r8ab3uiJ9fj05V0+MGQAAAAAAFM+hY0QfOXJEWVlZSkxMtE4LCgpSs2bNtH37drsK0RkZGY4MrVx5cuz28qZc/fz81CSqqfwq2RaATSaToqKiXBSV+8jMzFR+fr6rw3Aob/r8Xk1FyhUAAAAAALgfhxais7KyJEmhoaE200NDQ3X8+HG7thUTE+N2V4RejdlsVkZGhkfGbi9vzdVkMmnI0u3adyzXpXG0iwzTPzo1dmkMl4qMjHR1CA7jrZ/f4nhyroWxAwAAAAAAz+fQQrQjmUwmjyuaFPLk2O3ljbnuO5arXUdzXBpDw7BqLt1/cbztfZa88/N7ORUpVwAAAAAA4H7sfljhlYSFhUmSsrOzbaZnZ2erZs2ajtwVAAAAAAAAAMBDOLQQXadOHYWFhSk9Pd06LTc3Vz/88IPi4+MduSsAAAAAAAAAgIewe2iO06dP69ChQ9bXR44c0Z49exQSEqLw8HD169dPM2fOVL169VSnTh1NmTJFtWrVUseOHR0aOAAAAAAAAADAM9hdiN65c6f69etnfZ2amipJ6tmzp9LS0tS/f3/l5+dr5MiRysnJUYsWLTR37lz5+/s7LmoAAAAAAAAAgMewuxDdunVrZWZmXna+j4+PhgwZoiFDhpQpMAAAAAAAAACAd3DoGNEAAAAAAAAAAFyKQjQAAAAAAAAAwKkoRAMAAAAAAAAAnIpCNAAAAAAAAADAqShEAwAAAAAAAACcikI0AAAAAAAAAMCpKEQDAAAAAOBltm3bpgEDBigpKUmRkZHauHGjzfwRI0YoMjLS5l9KSoqLogUAVASVXB0AAAAAAABwrLy8PEVGRqp3794aNGhQscu0bdtWqamp1teVK1cur/AAABUQhWgAAAAAALxMcnKykpOTr7hM5cqVFRYWVk4RAQAqOgrRAABUcIsXL9aSJUv066+/SpJuuukmPfnkk9aT17NnzyotLU3r16/XuXPnlJSUpFGjRqlmzZquDBsAAJTR1q1blZCQoODgYN1yyy0aOnSoqlevbvd2zGZzqWOwWCwymUylXr8iKMvxdXeFuXlzjldC/uR/8f+eyp74KUQDAFDB1a5dW8OGDVO9evVkGIZWrVqlp556SitXrtRNN92kCRMm6IsvvtDkyZMVFBSkcePGadCgQVq6dKmrQwcAAKXUtm1b3X777apTp44OHz6sSZMmqX///vrggw/sLgxnZGSUOo6AgABFRUWVev2KIDMzU/n5+a4Ow6nK8hnyBuRP/hUFhWgAACq4Dh062Lx+5plntGTJEu3YsUO1a9fW8uXLNXHiRCUkJEiSJkyYoM6dO2vHjh2Ki4tzQcQAAKCsunTpYv258GGFHTt2tF4lbY+YmJhSX9VssVhKtV5FEhkZ6eoQnMZsNisjI6NMnyFPRv7k7w35F+ZREhSiAQCAldls1oYNG5SXl6f4+Hjt3LlTBQUFSkxMtC7TsGFDhYeHl6oQXdbbztzx9l17c/K2W/DIwz2Qh/vwhhwk5+Xh6cfFm9WtW1fVq1fXwYMH7S5Em0wmt2ufvUlFOLYV/TNE/uRfUfKnEA0AAJSZman7779fZ8+eVdWqVTV9+nQ1atRIe/bskZ+fn4KDg22WDw0NVVZWlt37KettZ+54+25pb5f1llvwyMO9kIf78IYcJO/JA1f3+++/68SJEzy8EADgNBSiAQCA6tevr1WrVunUqVP6+OOPNXz4cC1atMjh+ynrbWfuePuuvbfLetsteOThHsjDfXhDDpLz8rDn9l2UzenTp3Xo0CHr6yNHjmjPnj0KCQlRSEiIpk2bpk6dOqlmzZo6fPiwXn/9ddWrV09t27Z1YdQAAG9GIRrAFYUF+stsMWTy9XF1KFbuFg/gDSpXrqx69epJkqKjo5WRkaEFCxborrvuUkFBgXJycmyuis7Ozi7VFVPeeNtZafPxlmNBHu6FPNyHN+QgeU8eFdHOnTvVr18/6+vU1FRJUs+ePTV69Gj99NNP1i+ha9WqpTZt2mjIkCGqXLmyq0IGAHg5CtEArig4oJJMvj4asnS79h3LdXU4alQrUFPuj3d1GIDXs1gsOnfunKKjo+Xn56f09HR16tRJkrR//34dPXqUBxUCAODGWrdurczMzMvOnzdvXjlGAwAAhWgAJbTvWK52Hc1xdRgAnOCNN97Qrbfequuuu06nT5/W2rVrtXXrVs2bN09BQUHq3bu30tLSFBISosDAQI0fP17x8fEUogEAAAAAJUYhGgCACi47O1vDhw/XsWPHFBQUpMjISM2bN09t2rSRJL344ovy9fXV4MGDde7cOSUlJWnUqFEujhoAAAAA4EkoRAMAUMFNmDDhivP9/f01atQois8AAAAAgFLzdXUAAAAAAAAAAADvRiEaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGqUWEBDg6hAAAAAAAAAAeAAK0RWQ2WKUeRsmk0lRUVEymUxuEQ/gKu70+XWnWAAAAAAAAC5WydUBoPyZfH00ZOl27TuW6+pQ1KhWoKbcH+/qMIBSc5ffJ36XAAAAAACAO6MQXUHtO5arXUdzXB0G4BX4fQIAAAAAALgyhuYAAAAAAAAAADgVhWgAAAAAAAAAgFNRiAYAAAAAAAAAOBWFaAAAAAAAAACAU1GIBgAAAAAAAAA4FYVoAAAAAAAAAIBTUYgGAAAAAAAAADgVhWgAAAAAAAAAgFNRiIZLhQX6y2wxXB0GAAAAAAAAACeq5OoAULEFB1SSyddHQ5Zu175juS6NpV1kmP7RqbFLYwAAAAAAR9i2bZvmzZunnTt3KisrS9OnT1fHjh2t8w3D0NSpU/Xhhx8qJydHzZs31+jRo3XjjTe6LmgAgFejEA23sO9YrnYdzXFpDA3Dqrl0/wAAAADgKHl5eYqMjFTv3r01aNCgIvPnzJmjhQsXKi0tTXXq1NGUKVOUkpKi9evXy9/f3wURAwC8HYVoAAAquNmzZ+uTTz7R/v37VaVKFcXHx2vYsGFq0KCBdZmzZ88qLS1N69ev17lz55SUlKRRo0apZs2aLowcAABcTnJyspKTk4udZxiGFixYoIEDB1qvkn7ttdeUmJiojRs3qkuXLuUZKgCggqAQDQBABbd161b16dNHMTExMpvNmjRpklJSUrRu3TpVrVpVkjRhwgR98cUXmjx5soKCgjRu3DgNGjRIS5cudXH0AADAXkeOHFFWVpYSExOt04KCgtSsWTNt377d7kK02WwudSwWi0Umk6nU61cEZTm+7q4wN2/O8UrIn/wv/t9T2RM/hWgAACq4efPm2bxOS0tTQkKCdu3apVatWunUqVNavny5Jk6cqISEBEkXCtOdO3fWjh07FBcXV+J9lbWT5Y4nq/bm5G0dTvJwD+ThPrwhB8l5eXj6cfEWWVlZkqTQ0FCb6aGhoTp+/Ljd28vIyCh1LAEBAYqKiir1+hVBZmam8vPzXR2GU5XlM+QNyJ/8KwoK0QAAwMapU6ckSSEhIZKknTt3qqCgwOaqqYYNGyo8PNzuQnRZO1nueLJa2pNDb+lwkod7IQ/34Q05SN6TB5wrJiam1F8UWywWB0fjfSIjI10dgtOYzWZlZGSU6TPkycif/L0h/8I8SoJCNAAAsLJYLJowYYKaN2+uiIgISdLx48fl5+en4OBgm2VDQ0OtV1SVVFk7We54smrvyaG3dTjJwz2Qh/vwhhwk5+Vhz8kqnCcsLEySlJ2drVq1almnZ2dnq3HjxnZvz2QyefTn3d1VhGNb0T9D5E/+FSV/hxei33rrLU2bNs1mWv369bVhwwZH7woAADjYmDFjtHfvXi1evNgp2/fGTlZp8/GWY0Ee7oU83Ic35CB5Tx6wVadOHYWFhSk9PV1NmjSRJOXm5uqHH37QAw884OLoAADeyilXRN90002aP3++9TUdFwAA3N/YsWO1efNmLVq0SLVr17ZOr1mzpgoKCpSTk2NzVXR2drb1iioAAOBeTp8+rUOHDllfHzlyRHv27FFISIjCw8PVr18/zZw5U/Xq1VOdOnU0ZcoU1apVSx07dnRh1AAAb+aUQrTJZOLEFAAAD2EYhsaNG6dPP/1UCxcuVN26dW3mR0dHy8/PT+np6erUqZMkaf/+/Tp69Khd40MDAIDys3PnTvXr18/6OjU1VZLUs2dPpaWlqX///srPz9fIkSOVk5OjFi1aaO7cufL393dVyKigAgICXB0CgHLilEL0wYMHlZSUJH9/f8XFxem5555TeHi4XdvwxKcpe8oTsrlCHd6gLL9nFotFAQEBDhlr1t1+ny49Lp7yd6k4nhizpxozZozWrl2rGTNmqFq1atZxn4OCglSlShUFBQWpd+/eSktLU0hIiAIDAzV+/HjFx8dTiAYAwE21bt1amZmZl53v4+OjIUOGaMiQIeUYFTyZ2WLI5Ovj0G2aTKZSPYjaGbEAcD6HF6JjY2OVmpqq+vXrKysrS9OnT1efPn20Zs0aBQYGlng7nvwAC3eOPSAgoFR/5AF3ERbof6HTUYYCcGk7O54gMzNT+fn5Raa7898luN6SJUskSX379rWZnpqaql69ekmSXnzxRfn6+mrw4ME6d+6ckpKSNGrUqHKPFQAAAK5h8vXRkKXbte9YrkvjaFQrUFPuj3dpDABKx+GF6OTkZOvPjRs3VrNmzdS+fXt99NFHuueee0q8HU98yrS3PCEbcGfBAZXcpgPULjJM/+hk/1PFnSkyMtLmtSf/XSqMHc53paulCvn7+2vUqFEUnwEAACqwfcdytetojqvDAOChnDI0x8WCg4N144032jwkoSQ8+enMnhw74CncoQPUMKyaS/dfnMv97eHvEgAAAAAAcCVfZ+/g9OnTOnz4MA8vBAAAAAAAAIAKyuFXRL/66qtq3769wsPDdezYMb311lvy9fVV165dHb0rAAAAAAAAAIAHcHgh+vfff9ezzz6rEydOqEaNGmrRooWWLVumGjVqOHpXAAAAAAAAAAAP4PBC9JtvvunoTQIAAAAAAAAAPJjTx4gGAAAAAAAAAFRsFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAAAOBUFKIBAAAAAAAAAE5VydUBeJuAgABXhwAAAAAAwBW99dZbmjZtms20+vXra8OGDS6KCADg7by6EG22GDL5+pTb/kwmk6KiotwiFgAASmrbtm2aN2+edu7cqaysLE2fPl0dO3a0zjcMQ1OnTtWHH36onJwcNW/eXKNHj9aNN97ouqABAECZ3XTTTZo/f771tclkcmE0AABv59WFaJOvj4Ys3a59x3JdGkejWoGacn+8S2MAAOBy8vLyFBkZqd69e2vQoEFF5s+ZM0cLFy5UWlqa6tSpoylTpiglJUXr16+Xv7+/CyIGAACOYDKZFBYWVubtmM3mUq9rsVgogF9FWY6vI7nb++Qux6UsCnPwhlxKg/y9I3974vfqQrQk7TuWq11Hc1wdBgAAbis5OVnJycnFzjMMQwsWLNDAgQOtV0m/9tprSkxM1MaNG9WlSxe79lXWTpY7nqzam5O3dTjJwz2Qh/vwhhwk5+Xh6cfF2xw8eFBJSUny9/dXXFycnnvuOYWHh9u9nYyMjFLHEBAQcNk7i3FBZmam8vPzXRqDO75P7nBcHKUsv0PegPwrTv5eX4gGAACld+TIEWVlZSkxMdE6LSgoSM2aNdP27dvtLkSXtZPlTSdB3tLhJA/3Qh7uwxtykLwnDxQVGxur1NRU1a9f3zo0V58+fbRmzRoFBgbata2YmJhSf1FssVhKtV5FEhkZ6eoQ3JI3HBez2ayMjIwy/Q55MvL3jvwL8ygJCtEAAOCysrKyJEmhoaE200NDQ3X8+HG7t1fWTpY7nqzaexLkbR1O8nAP5OE+vCEHyXl52HOyCue6+G6oxo0bq1mzZmrfvr0++ugj3XPPPXZty2QyefTn3d1xbIvnTcelov8OkX/FyZ9CNAAAKDfe2MkqbT7ecizIw72Qh/vwhhwk78kDVxccHKwbb7xRhw4dcnUoAAAv5evqAAAAgPsqfIBRdna2zfTs7GzVrFnTFSEBAAAnOH36tA4fPuyQhxcCAFAcCtEAAOCy6tSpo7CwMKWnp1un5ebm6ocfflB8fLwLIwMAAGXx6quvauvWrTpy5Ii+//57DRo0SL6+vurataurQwMAeCmG5gAAoII7ffq0zW24R44c0Z49exQSEqLw8HD169dPM2fOVL169VSnTh1NmTJFtWrVUseOHV0YNQAAKIvff/9dzz77rE6cOKEaNWqoRYsWWrZsmWrUqOHq0AAAXopCNAAAFdzOnTvVr18/6+vU1FRJUs+ePZWWlqb+/fsrPz9fI0eOVE5Ojlq0aKG5c+fK39/fVSEDAIAyevPNN10dAq4iLNBfZoshk6+Pq0MBAIegEA0AQAXXunVrZWZmXna+j4+PhgwZoiFDhpRjVAAAABVbcEAlmXx9NGTpdu07luvSWNpFhukfnRq7NAYAno9CNAAAAAAAgJvadyxXu47muDSGhmHVXLp/AN6BhxWWg8LbaQAAAAAAAACgIuKK6HLA7TQAAAAAAAAAKjIK0eWI22kAAAAAAAAAVEQMzQEAAAAAAAAAcCoK0QAAAAAAAAAAp6IQDQAAAAAAAABwKgrRAAAAAAAAAACnohANAAAAAAAAAHAqCtEAAAAAAAAAAKeiEA0AAAAAAAAAcCoK0QDg5QICAlwdAgAAAAAAqOAoRAOAFwgL9JfZYhSZbjKZFBUVJZPJVK7xFBcLAAAAAACouCq5OgAAQNkFB1SSyddHQ5Zu175juS6NpVGtQE25P96lMQAAAAAAAPdCIRoAvMi+Y7nadTTH1WEAAAAAAADYYGgOAAAAAAAAAIBTUYgGAAAAAAAAgHIWEBDg6hDKFUNzAAAAAAAAAEA5MVsMmUwmRUVFuTqUC7H4+pTLvihEAwAAAAAAAEA5Mfn6aMjS7dp3LNelcTSqFagp98eX2/4oRAMAAAAAiqhotwsDAFCe9h3L1a6jOa4Oo1w5bYzo999/Xx06dFBMTIzuuece/fjjj87aFQAAKCe07wBQvswWwyX7Lbxd2GQyuTwWOBdtOwCgvDjliuj169crNTVVY8aMUbNmzfTee+8pJSVFGzZsUGhoqDN2CQAAnIz2HQDKX0W9dRflg7YdAFCenFKInj9/vu6991717t1bkjRmzBht3rxZy5cv1+OPP37FdQ3jwrfs586ds/n2vTRMJpOa1K4m/7JtpsxuDA2Q2WwmFjePh1jcPxZ3i4dYitcgrJrMZrPMZnOZtlO4fmG7ANdzh/bdYrFIkkd/1i0Wi6pUqaKCgoIy/564Enm4F/JwH47OwWQyyc/XcPnfPD9fg/bdC5WlbZcc0767U9suuVe/mliK56jzDXfgDe1eWVTk/N2lZumI3yd72nYfw8E9gHPnzikuLk5Tp05Vx44drdOHDx+unJwczZw586rrZ2RkODIkAIAHi4mJUeXKlV0dRoVH+w4AcCTad9cra9teuA3adwCAVLK23eFXRP/1118ym81FbuMJDQ3V/v37r7p+pUqVFBMTI19fX/n4+Dg6PACAhzAMQxaLRZUq8Vxdd0D7DgBwBNp391HWtl2ifQcA2Ne2u13r7+vryzfjAAB4Gdp3AAC8D+07AMAevo7eYPXq1WUymZSdnW0zPTs7WzVr1nT07gAAQDmgfQcAwLvQtgMAypvDC9GVK1dW06ZNlZ6ebp1msViUnp6u+HiesgwAgCeifQcAwLvQtgMAyptThuZ49NFHNXz4cEVHRys2Nlbvvfee8vPz1atXL2fsDgAAlAPadwAAvAttOwCgPDmlEN25c2f9+eefmjp1qrKystSkSRPNnTuX23sAAPBgtO8AAHgX2nYAQHnyMQzDcHUQAAAAAAAAAADv5fAxogEAAAAAAAAAuBiFaAAAAAAAAACAU1GIBgAAAAAAAAA4FYVoAAAAAAAAAIBTUYi+xLZt2zRgwAAlJSUpMjJSGzdutM4rKCjQ66+/rm7duikuLk5JSUl6/vnn9ccff9hs48SJE3ruuefUvHlztWzZUi+++KJOnz5ts8z//vc/Pfjgg4qJiVFycrLmzJlTLvld7Eq5XmrkyJGKjIzUu+++azPdm3L9+eefNWDAALVo0UJxcXHq3bu3jh49ap1/9uxZjRkzRq1bt1Z8fLyefvppHT9+3GYbR48e1eOPP65mzZopISFBr776qs6fP+/0/ApdLc/Tp09r7NixuvXWWxUbG6vOnTtryZIlNst4Qp6SNHv2bPXu3Vvx8fFKSEjQk08+qf3799ss46hcvv32W/Xs2VPR0dG6/fbbtWLFCqfnV+hqeZ44cULjxo1Tp06dFBsbq3bt2mn8+PE6deqUzXbcPU+gJN5//3116NBBMTExuueee/Tjjz+6OqQrctTfKXfy9ttvKzIyUq+88op1mqfk8Mcff2jYsGFq3bq1YmNj1a1bN2VkZFjnG4ahKVOmKCkpSbGxsXrkkUd04MAB1wVcDLPZrMmTJ6tDhw6KjY1Vx44dNX36dF387HF3zONq/ZOSxFySPqezldd5givzuFRZzgGAkvK09r20vLFfUFqe3J8oLW/oh5SWp/ZfSstb+j3OQiH6Enl5eYqMjNSoUaOKzDtz5ox2796tgQMHasWKFZo2bZp++eUXDRw40Ga5YcOGad++fZo/f75mzZql7777TiNHjrTOz83NVUpKisLDw7VixQo9//zzmjZtmj744AOn53exK+V6sU8//VQ//PCDatWqVWSet+R66NAhPfjgg2rQoIEWLlyo1atX68knn5S/v791mQkTJujzzz/X5MmTtXDhQh07dkyDBg2yzjebzXriiSdUUFCgpUuXKi0tTStXrtTUqVOdnl+hq+WZlpamr776Sq+//rrWr1+vhx9+WOPGjdNnn31mXcYT8pSkrVu3qk+fPlq2bJnmz5+v8+fPKyUlRXl5eQ7N5fDhw3riiSfUunVr/fvf/9bDDz+sl19+WV999ZVb5Hns2DEdO3ZMw4cP19q1a5WamqqvvvpKL730kkflCVzN+vXrlZqaqqeeekorV65U48aNlZKSouzsbFeHdlmO+DvlTn788UctXbpUkZGRNtM9IYeTJ0/qgQcekJ+fn+bMmaN169Zp+PDhCgkJsS4zZ84cLVy4UKNHj9ayZcsUEBCglJQUnT171oWR25ozZ46WLFmikSNHav369Ro2bJjmzp2rhQsX2izjbnlcrX9Skpiv1ucsD+VxnlAeyuMcACgpT2zfS8vb+gWl5cn9idLyln5IaXlq/6W0vKXf4zQGLisiIsL49NNPr7jMDz/8YERERBi//vqrYRiGsW/fPiMiIsL48ccfrct88cUXRmRkpPH7778bhmEY77//vtGqVSvj7Nmz1mVef/11o1OnTk7IomQul+vvv/9utG3b1vjpp5+M9u3bG/Pnz7fO86Zchw4dagwbNuyy6+Tk5BhNmzY1PvroI+u0wvy3b99uGIZhbN682WjcuLGRlZVlXWbx4sVG8+bNbfIvL8Xl2aVLF2PatGk203r27GlMmjTJMAzPzLNQdna2ERERYWzdutUwDMfl8tprrxldunSx2dfQoUONv//9707OqHiX5lmc9evXG02bNjUKCgoMw/DMPIFL/e1vfzPGjBljfW02m42kpCRj9uzZLozKPqX5O+UucnNzjTvuuMP4+uuvjYceesgYP368YRiek8Prr79uPPDAA5edb7FYjDZt2hhz5861TsvJyTGio6ONtWvXlkeIJfL4448bL7zwgs20QYMGGc8995xhGJ6Rx6X9k5LEXJI+Z3lz1nlCeXPWOQBQUt7QvpeWJ/cLSsvT+xOl5S39kNLyhv5LaXlLv8eRuCK6jHJzc+Xj46Pg4GBJ0vbt2xUcHKyYmBjrMomJifL19bXeYrRjxw61bNlSlStXti6TlJSkX375RSdPnizfBK7AYrHoH//4h1JSUnTTTTcVme8tuVosFm3evFk33nijUlJSlJCQoHvuucfm9omdO3eqoKBAiYmJ1mkNGzZUeHi4duzYIelCrhEREapZs6Z1maSkJOXm5mrfvn3lls+VxMfHa9OmTfrjjz9kGIa2bNmiX375RUlJSZI8O8/CoSgKv1V2VC47duxQQkKCzb6SkpKs2yhvl+ZZnNzcXAUGBqpSpUqSPDNP4GLnzp3Trl27bH6ffX19lZiYqO3bt7swMvuU5u+Uuxg7dqySk5NtYpU8J4dNmzYpOjpagwcPVkJCgnr06KFly5ZZ5x85ckRZWVk2eQQFBalZs2Zu9RmLj4+3tt3SheHP/vvf/+rWW2+V5Dl5XKwkMZekz+mOSnOe4A4ccQ4AlIS3tO+l5cn9gtLy9P5EaXlLP6S0vLH/Ulre3O8pqUquDsCTnT17VhMnTlSXLl0UGBgoSTp+/Lhq1Khhs1ylSpUUEhKirKws6zJ16tSxWaawQHT8+PErFpjK05w5c1SpUiX169ev2Pnekmt2drby8vI0Z84cDR06VMOGDdNXX32lQYMGacGCBbr55pt1/Phx+fn5WU8kCoWGhtrkenGhT/q/XAuXcbV//vOf+uc//6lbb71VlSpVko+Pj8aPH69WrVpJksfmabFYNGHCBDVv3lwRERGSHJfL5ZbJzc3VmTNnVKVKFafkVJzi8rzUn3/+qRkzZui+++6zTvO0PIFL/fXXXzKbzQoNDbWZHhoaWmRsRXdV2r9T7mDdunXavXu3/vWvfxWZ5yk5HD58WEuWLNGjjz6qAQMGKCMjQ+PHj5efn5969uxpjbW4z5g7jU/5+OOPKzc3V3fddZdMJpPMZrOeeeYZde/eXZI8Jo+LlSTmkvQ53U1pzxPcgSPOAYCS8Ib2vbQ8uV9QWt7Qnygtb+mHlJY39l9Ky1v7PfagEF1KBQUFGjJkiAzD0JgxY1wdjsPt3LlTCxYs0IoVK+Tj4+PqcJzKYrFIkm677TY98sgjkqQmTZro+++/19KlS3XzzTe7MDrHWrhwoXbs2KGZM2cqPDxc3333ncaMGaNatWoV+Vbak4wZM0Z79+7V4sWLXR2KU10tz9zcXD3xxBNq2LCh14ynBngLT/079dtvv+mVV17RO++8Y/PcBE9jGIaio6P17LPPSpKioqK0d+9eLV26VD179nRxdCX30Ucfac2aNXrjjTfUqFEj7dmzR6mpqapVq5ZH5eHtPPk8oSKdAwCu5Kn9gtLylv5EaXlLP6S06L/gYgzNUQoFBQUaOnSojh49qnfeecd6lYN04QrCP//802b58+fP6+TJkwoLC7Muc+m3OoWvL70i0VW+++47ZWdnq3379oqKilJUVJR+/fVXvfrqq+rQoYMk78m1evXqqlSpkho2bGgzvWHDhjp69KikC7EWFBQoJyfHZpns7OwS5Vq4jCudOXNGb775pl544QV16NBBjRs31kMPPaTOnTtr3rx5kjwzz7Fjx2rz5s167733VLt2bet0R+VyuWUCAwPL9Srhy+VZKDc3V4899piqVaum6dOny8/PzzrPk/IEilO9enWZTKYiDy7Kzs52m7bkSsryd8rVdu3apezsbPXq1cvaH9i6dasWLlyoqKgoj8hBuvC37tJ2vkGDBtZ2vjBWd/+Mvfbaa3r88cfVpUsXRUZGqkePHnr44Yc1e/ZsSZ6Tx8VKEnNJ+pzuoqznCa7mqHMAoCQ8vX0vLU/uF5SWt/QnSstb+iGl5Y39l9Lytn5PaVCItlNh5/LgwYN69913Vb16dZv58fHxysnJ0c6dO63TtmzZIovFotjYWElSXFycvvvuOxUUFFiX+eabb1S/fn23GKpCku6++26tXr1aq1atsv6rVauWUlJSNHfuXEnek2vlypUVExNjHa+o0IEDB3T99ddLkqKjo+Xn56f09HTr/P379+vo0aOKi4uTdCHXn376yeYPyjfffKPAwEA1atTI+Ylcxfnz51VQUFDk6haTySTDMCR5Vp6GYWjs2LH69NNP9d5776lu3bo28x2VS1xcnLZs2WKz7W+++ca6DWe7Wp7ShSJ0SkqK/Pz8NHPmzCJXGXhCnsCVVK5cWU2bNrX5fbZYLEpPT1d8fLwLI7syR/ydcrVbbrlFa9assekPREdHq1u3btaf3T0HSWrevPkV2/k6deooLCzMJo/c3Fz98MMPbvUZO3PmzBXbcU/J42IlibkkfU534IjzBFdz1DkAUBKe2r6Xljf0C0rLW/oTpeUt/ZDS8sb+S2l5U7+ntBia4xKnT5/WoUOHrK+PHDmiPXv2KCQkRGFhYRo8eLB2796t2bNny2w2W8dnCQkJUeXKldWwYUO1bdtW//znPzVmzBgVFBRo3Lhx6tKli6699lpJUrdu3TR9+nS99NJL6t+/v/bu3asFCxbohRdecJtcw8PDi3Se/fz8VLNmTTVo0ECSvCrXlJQUPfPMM2rVqpVat26tr776Sp9//rkWLFgg6cLg8b1791ZaWppCQkIUGBio8ePHKz4+3towJiUlqVGjRnr++ef1j3/8Q1lZWZo8ebL69Olj87BGV+Z588036/XXX1eVKlUUHh6ubdu2adWqVRoxYoRH5SlduJ1t7dq1mjFjhqpVq2b9XQwKClKVKlUclsv999+v999/X6+99pp69+6tLVu26KOPPrJ+e+vqPHNzc/X3v/9d+fn5ev3115Wbm6vc3FxJUo0aNWQymTwiT+BqHn30UQ0fPlzR0dGKjY3Ve++9p/z8fPXq1cvVoV2WI/5OuVpgYGCRMemrVq2qa665xjrd3XOQpIcfflgPPPCAZs2apbvuuks//vijli1bprFjx0qSfHx81K9fP82cOVP16tVTnTp1NGXKFNWqVUsdO3Z0cfT/p3379po1a5bCw8Ott7bOnz9fvXv3luS+eVytf3K1mEvS53R1Ho46T3B1Ho46BwBKyhPb99Lyhn5BaXlLf6K0vKUfUlqe2n8pLW/p9ziNARtbtmwxIiIiivwbPny4cfjw4WLnRUREGFu2bLFu46+//jKeffZZIy4uzmjevLkxYsQIIzc312Y/e/bsMR544AEjOjraaNu2rTF79uzyTvWKuRanffv2xvz5822meVOuH374oXH77bcbMTExRvfu3Y1PP/3UZhtnzpwxRo8ebbRq1cpo1qyZ8dRTTxnHjh2zWebIkSPGY489ZsTGxhqtW7c20tLSjIKCgnLJ0TCunuexY8eMESNGGElJSUZMTIzRqVMn45133jEsFotH5WkYxmV/F5cvX+7wXLZs2WLcfffdRtOmTY3bbrvNZh/OdrU8L/eeR0REGIcPH/aYPIGSWLhwodGuXTujadOmxt/+9jdjx44drg7pihz1d8rdPPTQQ8b48eOtrz0lh02bNhldu3Y1oqOjjTvvvNP44IMPbOZbLBZj8uTJRmJiohEdHW08/PDDxv79+10UbfFOnTpljB8/3mjXrp0RExNj3HbbbcakSZOMs2fPWpdxxzyu1j8pScwl6XO6Mg9Hnie4Mo/ilPYcACgpT2vfS8tb+wWl5an9idLyhn5IaXlq/6W0vKXf4yw+hvH/r4UHAAAAAAAAAMAJGCMaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoV3ltvvaXIyEinbX/EiBHq0KGD07bvSEeOHFFkZKRWrFjh6lAAAJDkWe0oAAAAgMur5OoAAEdbsWKFXnjhBevrypUrKyQkRJGRkUpOTlavXr0UGBjowghdY9OmTXrnnXf0888/Ky8vTzVr1lR0dLR69+6tW2+91dXhAQC8VHHtcnh4uNq0aaMnn3xSNWvWdGF07mPPnj2aN2+etm3bpuzsbFWtWlVRUVHq1q2bevToIZPJ5OoQAQAotUv7Axfr37+/hg0bVi5x5Ofna+7cubr55pvVunXrUm0jNzdX7777rj755BMdPnxYZrNZN9xwg5KTk9WvXz9de+21Do4a8B4UouG1Bg8erDp16uj8+fM6fvy4tm7dqgkTJujdd9/VjBkz1LhxY0nSwIED9fjjj7s4WueaN2+eXnvtNd1888164oknVKVKFR08eFDp6elav369tRB9/fXX68cff1SlSvxpAAA4VmG7fO7cOf33v//VkiVL9MUXX2jt2rUKCAi47Hrjxo2TYRjlGGn5+/DDDzVq1CiFhobq7rvvVr169XT69Glt2bJFL730krKysjRgwABXhwkAQJkV9gcuFhERUW77z8/P17Rp0zRo0KBSFaIPHz6sRx55RL/99pvuvPNO3XffffLz81NmZqb+9a9/aePGjfr444+dEDngHag2wWvdeuutiomJsb5+4oknlJ6ergEDBujJJ5/U+vXrVaVKFVWqVMmrC6/nz5/XjBkz1KZNG73zzjtF5mdnZ1t/9vHxkb+/f3mGBwCoIC5ul++55x5dc801mj9/vj777DN17dq1yPJ5eXmqWrWq/Pz8yjvUK8rPz79i4dxeO3bs0KhRoxQXF6e3337b5q6tRx55RBkZGdq7d6/D9lceCt87AAAudel5+uWcPXtWfn5+8vV1nxFlz58/r0GDBik7O1sLFixQy5YtbeY/88wzmjNnjouiK53z58/LYrGocuXKrg4FFYT7/EYD5SAhIUFPPvmkfv31V61evVpS8WNEf/3113rggQfUsmVLxcfHq1OnTpo0aZJ1/rfffqvIyEitX79ekyZNUps2bRQXF6cBAwbot99+u2oc8+bN0/3336/WrVsrNjZWvXr10oYNG2yWeeihh9S9e/di1+/UqZNSUlJKlPNff/2l3NxcNW/evNj5oaGh1p8vHSO6MM/i/l06XucXX3yhBx98UHFxcYqPj9fjjz/ucSfOAIDyc8stt0i60PaMGDFC8fHxOnTokPr376/4+HjrLbqXjhFd2FbNmzdP77//vm677TY1a9ZMf//73/Xbb7/JMAxNnz5dt956q2JjYzVw4ECdOHHCZt8bN27U448/rqSkJEVHR6tjx46aPn26zGazzXJ9+/ZV165dtXPnTvXp00fNmjXTpEmTNHz4cLVu3VoFBQVF8vr73/+uTp06lfg4TJs2TT4+Ppo4cWKxQ4fFxMSoV69e1tcl6UNIUmRkpMaOHauPPvpInTt3VmxsrO677z5lZmZKkpYuXarbb79dMTEx6tu3r44cOVJkGz/88INSUlLUokULNWvWTA899JD++9//2ixT2I/at2+fnnvuObVq1UoPPvigJOl///ufRowYodtuu00xMTFq06aNXnjhBf31118lPj4AAO9XeN65bt06vfnmm2rbtq2aNWum3NxcSdJHH32kXr16KTY2Vq1bt9awYcP0xx9/2GyjsC/xxx9/6Mknn1R8fLxuueUWvfrqq9b2/ciRI0pISJB0of0tPLd96623ShTnJ598ov/9738aMGBAkSK0JAUGBuqZZ56xvv7uu+80ePBgtWvXTtHR0UpOTtaECRN05syZYmM/evSonnjiCcXHx6tt27Z6//33JUmZmZnq16+f4uLi1L59e61Zs6bIvnNycvTKK68oOTlZ0dHRuv322/X222/LYrFYl7m4D/Xuu++qY8eOiomJ0c8//6xz585pypQp6tWrl1q0aKG4uDg9+OCD2rJlS4mODVBS3nsZKHAZd999tyZNmqT//Oc/uvfee4vM37t3r5544glFRkZq8ODBqly5sg4ePKjvv/++yLIzZ86Uj4+P+vfvr+zsbL333nt65JFH9O9//1tVqlS5bAwLFixQhw4d1K1bNxUUFGjdunUaMmSIZs+erXbt2lnjfPnll/XTTz/Z3Kr0448/6sCBAxo4cGCJ8g0NDVWVKlW0adMmPfTQQ7rmmmtKtJ4kNWzYUK+99prNtFOnTiktLU01atSwTlu1apVGjBihpKQkDRs2TPn5+VqyZIkefPBBrVy5ssitVwAAHDp0SJKs7dL58+etRc/hw4dfsR2VpDVr1qigoEB9+/bViRMnNHfuXA0dOlS33HKLvv32W/Xv318HDx7UokWL9Oqrryo1NdW67sqVK1W1alU9+uijqlq1qrZs2aKpU6cqNzdXw4cPt9nPiRMn1L9/f3Xp0kXdu3dXaGioqlatqlWrVuk///mP2rdvb102KytLW7Zs0VNPPVWiY5Cfn68tW7aoZcuWCg8PL9E6JelDFPruu++0adMma2H47bff1oABA/TYY49p8eLFevDBB3Xy5EnNnTtXL774ohYsWGBdNz09Xf3791d0dLQGDRokHx8frVixQg8//LAWL16s2NhYm30NGTJE9erV0zPPPGMdSuWbb77R4cOH1atXL4WFhWnv3r1atmyZ9u3bp2XLlsnHx6dEOQMAvEdubq7+/PPPYufNmDFDfn5+SklJ0blz5+Tn52cdWzomJkbPPvus9Wrk77//XqtWrVJwcLB1fbPZrJSUFMXGxur5559Xenq63nnnHdWtW1cPPvigatSoodGjR2v06NG6/fbbdfvtt0tSkQvTLuezzz6TdOFcvSQ2bNigM2fO6IEHHtA111yjH3/8UYsWLdLvv/+uqVOn2ixrNpvVv39/tWzZUsOGDdOaNWs0duxYBQQE6M0331S3bt10xx13aOnSpRo+fLji4uJUt25dSRf6Ew899JD++OMP3X///bruuuu0fft2TZo0SVlZWXrppZds9rVixQqdPXtW9957r/WZWrm5ufrwww/VtWtX3XPPPTp9+rT+9a9/6bHHHtOHH36oJk2alChn4KoMwMssX77ciIiIMH788cfLLtOiRQujR48ehmEYxtSpU42IiAjrvPnz5xsRERFGdnb2ZdffsmWLERERYbRt29Y4deqUdfr69euNiIgI47333rNOGz58uNG+fXub9fPz821enzt3zujatavRr18/67ScnBwjJibGeP31122WHTdunBEXF2ecPn36svFdasqUKUZERIQRFxdnPPbYY8bMmTONnTt3Flnu8OHDRkREhLF8+fJit2OxWIwnnnjCiIuLM/bu3WsYhmHk5uYaLVu2NF5++WWbZbOysowWLVoUmQ4AqFgK2+VvvvnGyM7ONn777Tdj3bp1xs0332zExsYav//+uzF8+HAjIiLCmDhxYpH1L21HC9uqW265xcjJybFOf+ONN4yIiAije/fuRkFBgXX6s88+azRt2tQ4e/asddql7bBhGMY///lPo1mzZjbLPfTQQ0ZERISxZMkSm2XNZrNx6623GkOHDrWZPn/+fCMyMtI4dOhQiY7Nnj17jIiICGP8+PElWr642IvrQxiGYURERBjR0dHG4cOHrdOWLl1qREREGG3atLHpvxQeu8JlLRaLcccddxh///vfDYvFYrPvDh06GI8++qh1WmE/6tlnn71qrIZhGGvXrjUiIiKMbdu2lThnAIDnK+wPFPev8Pz6tttus2k7zp07ZyQkJBhdu3Y1zpw5Y53++eefGxEREcaUKVOs0wr7EtOmTbPZb48ePYyePXtaX2dnZxsRERHG1KlT7c6hR48eRosWLUq8fHHt4OzZs43IyEjj119/LRL7rFmzrNNOnjxpxMbGGpGRkca6deus03/++eci8U+fPt2Ii4szfvnlF5t9TZw40WjSpIlx9OhRwzD+rw/VvHnzIvWO8+fP2/SBCmNITEw0XnjhhRLnDFwNQ3OgQqpatapOnz5d7LzCb1Q/++wzm9tYitOjRw+b22jvvPNOhYWF6Ysvvrjiehdf5XXy5EmdOnVKLVq00O7du63Tg4KCdNttt2ndunXWK4vMZrM++ugj3XbbbXaNvTh48GC98cYbatKkif7zn//ozTffVK9evdSzZ0/9/PPPJd7O9OnT9fnnnystLU2NGjWSdOFqp5ycHHXp0kV//vmn9Z+vr6+aNWumb7/9tsTbBwB4r0ceeUQJCQlKTk7WM888o2rVqmnatGk2T5Z/4IEHSry9O++8U0FBQdbXhVfodu/e3ebZD7GxsSooKLC5hffidrjwyqyWLVsqPz9f+/fvt9lP5cqVbYbGkCRfX19169ZNmzZtst42LEmrV69WfHy89Qqlqylct1q1aiVa/tLYL9eHKJSQkGBzV1KzZs0kSXfccYdN/6Xw2B0+fFiStGfPHh04cEDdunXTX3/9ZW3b8/LylJCQoG3bthXpI91///1XjPXs2bP6888/rTHs2rWrxDkDALzHyJEjNX/+fJt/hXr06GHTduzcuVPZ2dl64IEHbJ5l1K5dOzVo0ECbN28usv1L+xItWrQodvip0sjNzS11m52Xl6c///xT8fHxMgyj2Hb7nnvusf4cHBys+vXrKyAgQHfddZd1eoMGDRQcHGxts6ULV163aNFCwcHBNufkiYmJMpvN2rZtm81+7rjjDps7nCXJZDJZx4m2WCw6ceKEzp8/r+jo6GJjBUqLoTlQIeXl5dmMjXyxzp0768MPP9TLL7+sN954QwkJCbr99tt15513FnlQQr169Wxe+/j4qF69evr111+vuP/PP/9cM2fO1J49e3Tu3Dmb9S/Wo0cPrV+/Xt99951atWqlb775RsePHy/xrUAX69q1q7p27arc3Fz98MMPWrFihdauXasBAwZo7dq1V31I4Zdffqnp06friSeesBn78sCBA5Kkhx9+uNj1ihvvEgBQ8YwcOVL169eXyWRSzZo1Vb9+fZt2tVKlSqpdu3aJt3fdddfZvC4sSl9u+smTJ60F4r1792ry5MnasmWLTSFZujAE1cWuvfbaYh/g06NHD82ZM0cbN25Ujx49tH//fu3atUtjxowpcQ6FbeTlvhwvTkn7EFLRY1G4v0uPc+ExysnJkfR/bfulw5Rc7NSpUwoJCbG+Lm4YrhMnTmjatGlav369zcORC9cHAFQ8sbGxRR5WWHjx0qVtydGjRyVJ9evXL7KdBg0aFHlugb+/f5ECa0hIiE6ePFnmuKUL7ejFBeCrOXr0qKZOnapNmzYVieHS/kdxsQcFBal27dpF2vigoCBrmy1JBw8eVGZmpnX860tdOhTK5YbOXLlypd555x398ssvNs/BYKhNOBKFaFQ4v//+u06dOqUbbrih2PlVqlTR+++/r2+//VabN2/WV199pfXr1+uDDz7QO++8I5PJVKb9f/fddxo4cKBatWqlUaNGKSwsTH5+flq+fLnWrl1rs2xSUpJq1qyp1atXq1WrVlq9erXCwsKUmJhY6v0HBgaqTZs2atOmjfz8/LRy5Ur98MMPuvnmmy+7zuHDh/WPf/xDiYmJGjp0qM28wqu1X3vtNYWFhRVZt6zHCwDgHYo78bxY5cqVi3zheyWXa18ut43C9ionJ0cPPfSQAgMDNXjwYN1www3y9/fXrl27NHHixCJX+l5urOpGjRqpadOmWr16tXr06KHVq1fLz8/P5qqlq6lXr54qVaqkn376qUTL29OHkC5/jC43vfAYFf7//PPPX3ZMyEvvzCruC+2hQ4dq+/btSklJUZMmTVS1alVZLBY99thj1n0AAFDoas+HuBpnn3s2aNBAu3fv1m+//Vbky95Lmc1mPfroozp58qQee+wxNWjQQFWrVtUff/yhESNGFOlvlLbNli5cwdymTRs99thjxS5744032rwu7jj/+9//1ogRI9SxY0elpKQoNDRUJpNJs2fPtqv4DlwNhWhUOP/+978lXSjyXo6vr68SEhKUkJCgF154QbNmzdKbb76pb7/91qYIfPDgQZv1DMPQwYMHr/iwg48//lj+/v6aN2+ezRVWy5cvL7KsyWRS165dtXLlSg0bNkwbN27Uvffe67AGNjo6WitXrlRWVtZllzlz5oyefvppBQUFadKkSUVO8AuvLgsNDS1TgRwAgPKwdetW65W6rVq1sk4vzW27PXr0UFpamo4dO6a1a9eqXbt2NlcJX01AQIBuueUWbdmypUQntfb0IcqisG0PDAwsddt+8uRJpaen6+mnn9agQYOs0wuvtgYA4GoKH+T7yy+/FLna95dffinxg34vVpYH5bZv315r167V6tWr9cQTT1xx2Z9++kkHDhzQq6++qh49elinf/3116Xe/+XccMMNysvLK9P5+Mcff6y6detq2rRpNsfo0ocqAmXFGNGoUNLT0zVjxgzVqVNH3bt3L3aZEydOFJlWeDXQxbfAStKqVatsbqnZsGGDsrKydOutt142BpPJJB8fH5nNZuu0I0eOWJ/Ae6m7775bJ0+e1MiRI5WXl3fZuC8nPz9f27dvL3bel19+Kan4W50KjRo1SgcOHNC0adOKPblu27atAgMDNXv2bJvbdwpd7onIAAC4QuEXqhdfSXTu3DktXrzY7m117dpVPj4+euWVV3T48GG722hJeuqpp2QYhp5//vlih+jYuXOnVq5cKcn+PkRpRUdH64YbbtA777xTbEwladsv96X5e++9V+b4AAAVQ3R0tEJDQ7V06VKbc/EvvvhCP//8s9q1a2f3NgMCAiTJZmiLkurUqZMiIiI0a9asYs+xc3Nz9eabb0oqvr9hGIYWLFhg936v5q677tL27dv11VdfFZmXk5Oj8+fPX3Ubhe32xfH+8MMP2rFjh8PiBCSuiIYX+/LLL7V//36ZzWYdP35c3377rb7++muFh4dr5syZlx0Tefr06fruu++UnJys66+/XtnZ2Vq8eLFq166tFi1a2CwbEhKiBx98UL169VJ2drbee+891atXT/fee+9l40pOTtb8+fP12GOPqWvXrtbt33DDDcrMzCyyfFRUlCIiIrRhwwY1bNhQTZs2tes45Ofn6/7771dcXJzatm2r2rVr69SpU9q4caO+++47dezYUVFRUcWuu3nzZq1atUqdOnVSZmamTXzVqlVTx44dFRgYqNGjR+v5559Xr1691LlzZ9WoUUNHjx7VF198oebNm2vkyJF2xQwAgLPEx8crJCREI0aMUN++feXj46N///vfpRoqokaNGmrbtq02bNig4ODgUp0QF7aTY8aM0V133aW7775b9erV0+nTp7V161Zt2rTJOiyWvX2I0vL19dX48ePVv39/de3aVb169dK1116rP/74Q99++60CAwM1a9asK24jMDBQrVq10ty5c1VQUKBrr71WX3/9tcMeGAUA8H5+fn4aNmyYXnjhBT300EPq0qWLsrOztWDBAl1//fV65JFH7N5mlSpV1KhRI3300Ue68cYbdc011+imm25SREREieKZNm2aHn30UT300EO688471bx5c/n5+Wnv3r1au3atgoOD9cwzz6hBgwa64YYb9Oqrr+qPP/5QYGCgPv7441IVwK8mJSVFmzZt0oABA9SzZ081bdpU+fn5+umnn/Txxx/rs88+KzL+9KXatWunTz75RE899ZTatWunI0eOaOnSpWrUqJHy8vIcHjMqLgrR8FqFt5D4+fnpmmuuUUREhF588UX16tXrig/Q69Chg3799VctX75cf/31l6pXr66bb77ZOjzFxQYMGKDMzEy9/fbbOn36tBISEjRq1Cjrt6zFSUhI0CuvvKI5c+ZowoQJqlOnjoYNG6Zff/31sieRd999t15//fVSPaQwODhY48eP1+bNm7VixQplZWXJZDKpfv36ev7559W3b9/Lrlt4xdPHH3+sjz/+2Gbe9ddfr44dO0qSunXrplq1auntt9/WvHnzdO7cOV177bVq2bKlevXqZXfMAAA4S/Xq1TVr1iy9+uqrmjx5soKDg9W9e3clJCQoJSXF7u3dfffd+vzzz3XXXXcV+1DDkrj//vsVExOjd955R6tWrdJff/2lqlWrKioqSqmpqdYrrUvThyit1q1b64MPPtCMGTO0aNEi5eXlKSwsTLGxsbrvvvtKtI033nhD48aN0+LFi2UYhtq0aaM5c+aobdu2Do0VAOC9evXqpSpVqmjOnDmaOHGiqlatqo4dO+of//iHgoODS7XN8ePHa9y4cUpNTVVBQYEGDRpUokK0dOH5DqtWrdK7776rTz/9VJ999pksFovq1aune+65x3p+7efnp1mzZmn8+PGaPXu2/P39dfvtt6tPnz6lOq+/koCAAC1cuFCzZ8/Whg0btGrVKgUGBurGG28sto5RnF69eun48eP64IMP9J///EeNGjXS66+/rg0bNmjr1q0OjRcVm4/Bk0IAu3377bfq16+fpkyZojvvvNPp+3vvvfeUmpqqTZs2lWocLAAA4BwbN27UU089pffff18tW7Z0dTgAAACA22KMaMDNGYahf/3rX2rVqhVFaAAA3MyHH36ounXrFhm+CwAAAIAthuYA3FReXp42bdqkb7/9Vj/99JNmzJhRZJkTJ04U+4DAQiaT6apjQQEAAPutW7dOmZmZ2rx5s1566SWbJ8xL0qlTp3TmzJkrbiMsLMyZIQIAgBI4d+6cTp48ecVlgoKCVKVKlXKKCPBeFKIBN/Xnn3/queeeU3BwsAYMGKDbbrutyDJPP/30Fcdruv7667Vp0yZnhgkAQIX07LPPqmrVqvrb3/6mBx98sMj8V155RStXrrziNhw9rjMAALDf9u3b1a9fvysuk5qayvOPAAdgjGjAg+3cufOKT9319/fnVmEAAFxg3759Onbs2BWXSUxMLKdoAADA5Zw8eVK7du264jKNGjVSrVq1yikiwHtRiAYAAAAAAAAAOJXbDc1hsVh0/vx5+fr6FhlrDwBQcRiGIYvFokqVKsnXl2frejradwCARPvubWjfAQD2tO1uV4g+f/68MjIyXB0GAMBNxMTEqHLlyq4OA2VE+w4AuBjtu3egfQcAFCpJ2+52hejCynlMTIxMJlOpt2M2m5WRkVHm7biat+QheU8u5OF+vCUX8ih+O1wt5R0c1b67grf8bpZERcm1ouQpkau38uRcad+9S+H7GBUVpd27d3vkZ7I4nvw7djnk5P68LR+JnDyBI/Kxp213u0J04e08JpPJIW+oo7bjat6Sh+Q9uZCH+/GWXMjDFrd5egdHt++u4Mmx26ui5FpR8pTI1Vt5cq60797h4va98H9P/UwWx9vykcjJE3hbPhI5eQJH5FOStp2voQEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAAAOBUdhWiZ8+erd69eys+Pl4JCQl68skntX//fptlzp49qzFjxqh169aKj4/X008/rePHjzs0aAAAAAAAcHnbtm3TgAEDlJSUpMjISG3cuNE6r6CgQK+//rq6deumuLg4JSUl6fnnn9cff/zhwogBAN7OrkL01q1b1adPHy1btkzz58/X+fPnlZKSory8POsyEyZM0Oeff67Jkydr4cKFOnbsmAYNGuTwwAEAAAAAQPHy8vIUGRmpUaNGFZl35swZ7d69WwMHDtSKFSs0bdo0/fLLLxo4cKALIgUAVBSV7Fl43rx5Nq/T0tKUkJCgXbt2qVWrVjp16pSWL1+uiRMnKiEhQdKFwnTnzp21Y8cOxcXFOSxwAAAAAABQvOTkZCUnJxc7LygoSPPnz7eZ9s9//lP33HOPjh49qvDw8PIIEQBQwdhViL7UqVOnJEkhISGSpJ07d6qgoECJiYnWZRo2bKjw8HC7C9Fms7ksoVnXL+t2XM1b8pC8JxfycD8Wi0UBAQGyWCyuDqVMvOU9cVQenn4cAAAAPElubq58fHwUHBxs97re0o8t5G35SOTkCbwtH4mcPIEj8rFn3VIXoi0WiyZMmKDmzZsrIiJCknT8+HH5+fkVabhCQ0OVlZVl1/YzMjJKG5pTtuNq3pKH5D25kIdr+Pn5qUlUU/lVMlmnmUwmRUVFuSSegvNm7dm9SwUFBQ7bpqe9J5fjLXkAsJ/ZYsjk6+PqMKzcLR4AcDdnz57VxIkT1aVLFwUGBtq9/u7duyV5X//P2/KRSp9TcedhrlRw3qz//e9/krzvffK2fCRy8gTllU+pC9FjxozR3r17tXjxYkfGYxUTEyOTqfR/4MxmszIyMsq8HVfzljwk78mFPFzPZDJpyNLt2ncs16VxNKoVqCn3x6tp06YO2Z4nvycXc1QehdsB4HlMvj5u8Xda+r+/1QCA4hUUFGjIkCEyDENjxowp1TaioqK0e/duj+/HFvKWfvnFHJGTu52HNWnSRD/++KPXvE987jyDt+XkiHzsOXcvVSF67Nix2rx5sxYtWqTatWtbp9esWVMFBQXKycmxuSo6OztbYWFhdu3DZDI55A111HZczVvykLwnF/JwrX3HcrXraI6rw5Akhx8/T31PLuUteQAoHXf6Ow0AKF5BQYGGDh2qo0eP6r333ivV1dDS//WHva3/5235SGXPyZ3ad19fX0ne9z55Wz4SOXmC8srH156FDcPQ2LFj9emnn+q9995T3bp1beZHR0fLz89P6enp1mn79+/X0aNHeVAhAAAAAABuorAIffDgQb377ruqXr26q0MCAHg5u66IHjNmjNauXasZM2aoWrVq1nGfg4KCVKVKFQUFBal3795KS0tTSEiIAgMDNX78eMXHx1OIBgAAAACgnJw+fVqHDh2yvj5y5Ij27NmjkJAQhYWFafDgwdq9e7dmz54ts9lsPb8PCQlR5cqVXRU2AMCL2VWIXrJkiSSpb9++NtNTU1PVq1cvSdKLL74oX19fDR48WOfOnVNSUpJGjRrloHABAAAAAMDV7Ny5U/369bO+Tk1NlST17NlTgwYN0qZNmyRJd999t816CxYsUOvWrcsvUABAhWFXITozM/Oqy/j7+2vUqFEUnwEAAAAAcJHWrVtf8Ry+JOf3AAA4kl1jRAMAAAAAAAAAYC8K0QAAAAAAAAAAp6IQDQAAAAAAAABwKgrRAAAAAAAAAACnsuthhQAAwPvMnj1bn3zyifbv368qVaooPj5ew4YNU4MGDazL9O3bV1u3brVZ77777tPYsWPLO1wAAAAAgAeiEA0AQAW3detW9enTRzExMTKbzZo0aZJSUlK0bt06Va1a1brcvffeq8GDB1tfBwQEuCJcAAAAAIAHohANAEAFN2/ePJvXaWlpSkhI0K5du9SqVSvr9CpVqigsLKy8wwMAAAAAeAEK0QAAwMapU6ckSSEhITbT16xZo9WrVyssLEzt27fXk08+afdV0Waz2WFxlpfCmD0xdns5KleTyeSIcBzq4px4T70TuXoGT4wZAAA4BoVoAABgZbFYNGHCBDVv3lwRERHW6V27dlV4eLhq1aqlzMxMTZw4Ub/88oumTZtm1/YzMjIcHXK58eTY7VWWXAMCAhQVFeXAaBwjMzNT+fn5NtN4T70TuQIAALgnCtEAAMBqzJgx2rt3rxYvXmwz/b777rP+HBkZqbCwMD3yyCM6dOiQbrjhhhJvPyYmxi2vlr0Ss9msjIwMj4zdXt6ca2RkpPVnb87zUuTqnTw518LYAQBAxUMhGgAASJLGjh2rzZs3a9GiRapdu/YVl23WrJkk6eDBg3YVok0mk8cVTQp5cuz28sZci8vHG/O8HHL1ThUpVwAA4PkoRAMAUMEZhqFx48bp008/1cKFC1W3bt2rrrNnzx5J4uGFAAAAAIASoRANAEAFN2bMGK1du1YzZsxQtWrVlJWVJUkKCgpSlSpVdOjQIa1Zs0bJycm65pprlJmZqdTUVLVq1UqNGzd2cfQAAAAAAE9AIRoAgApuyZIlkqS+ffvaTE9NTVWvXr3k5+en9PR0LViwQHl5ebruuut0xx136Mknn3RFuAAAAAAAD0QhGgCACi4zM/OK86+77jotWrSonKIBAAAAAHgjX1cHAAAAAAAAAADwbhSiAQAAAAAAAABORSEaAAAAAAAAAOBUFKIBAAAAAAAAAE5FIRoAAAAAAAAA4FQUogEAAAAAAAAATkUhGgAAAAAAAADgVBSiAQAAAAAAAABORSEaAAAAAAAvs23bNg0YMEBJSUmKjIzUxo0bbeYbhqEpU6YoKSlJsbGxeuSRR3TgwAHXBAsAqBAoRAMAAAAA4GXy8vIUGRmpUaNGFTt/zpw5WrhwoUaPHq1ly5YpICBAKSkpOnv2bDlHCgCoKCq5OgAAAAAAAOBYycnJSk5OLnaeYRhasGCBBg4cqI4dO0qSXnvtNSUmJmrjxo3q0qVLeYYKAKggKEQDAAAAAFCBHDlyRFlZWUpMTLROCwoKUrNmzbR9+3a7C9Fms9nmf0/nbflIksViUUBAgCwWS6m3YTKZHBhR2TkiJ3fijZ87b8yJz93lt1ESFKIBAAAAAKhAsrKyJEmhoaE200NDQ3X8+HG7t7d7925JUkZGRtmDcyOuzsfPz09NoprKr1LZC8Amk0lRUVEOiMr1wgL9ZbYY8vPzc5ucCs6btWf3LhUUFJR5W67+3DmDq3Nyx98lR35mHKG83iMK0QAAAAAAoNSioqK0e/duxcTEuN1Vs6VhNpuVkZHhFvmYTCYNWbpd+47lujSOdpFh+kenxi6NoVBwQCWZfH3c4rhIUqNagZpyf7yaNm1apu240+fOUdwpJ3f5XZIc95lxBEe8R4XbKAkK0QAAAAAAVCBhYWGSpOzsbNWqVcs6PTs7W40b219sLCxemEwmlxebHMld8tl3LFe7jua4NIaGYdVcuv/iuMNxuZijPivu8rlzJHfJyVs/M45QXu+Rr9P3AAAAAAAA3EadOnUUFham9PR067Tc3Fz98MMPio+Pd2FkAABvxhXRAAAAAAB4mdOnT+vQoUPW10eOHNGePXsUEhKi8PBw9evXTzNnzlS9evVUp04dTZkyRbVq1VLHjh1dGDUAwJtRiAYAAAAAwMvs3LlT/fr1s75OTU2VJPXs2VNpaWnq37+/8vPzNXLkSOXk5KhFixaaO3eu/P39XRUyAMDLUYgGAAAAAMDLtG7dWpmZmZed7+PjoyFDhmjIkCHlGBUAoCJjjGgAAAAAAAAAgFNRiAYAAAAAAAAAOBWFaAAAAAAAAACAU1GIBgAAAAAAAAA4FYVoAAAAAAAAAIBTUYgGAAAAAAAAADiV3YXobdu2acCAAUpKSlJkZKQ2btxoM3/EiBGKjIy0+ZeSkuKwgAEAAAAAAAAAnqWSvSvk5eUpMjJSvXv31qBBg4pdpm3btkpNTbW+rly5cukjBAAAAAAAAAB4NLsL0cnJyUpOTr7iMpUrV1ZYWFipgwIAAOVn9uzZ+uSTT7R//35VqVJF8fHxGjZsmBo0aGBd5uzZs0pLS9P69et17tw5JSUladSoUapZs6YLIwcAAAAAeAq7C9ElsXXrViUkJCg4OFi33HKLhg4dqurVq9u1DbPZXKYYCtcv63ZczVvykLwnF2/Jw2KxKCAgQBaLxdWh2M1kMrk6BBuO+ix4y2fLUXl4+nHwJFu3blWfPn0UExMjs9msSZMmKSUlRevWrVPVqlUlSRMmTNAXX3yhyZMnKygoSOPGjdOgQYO0dOlSF0cPAAAAAPAEDi9Et23bVrfffrvq1Kmjw4cPa9KkSerfv78++OADu4pHGRkZDonHUdtxNW/JQ/KeXJyZh5+fn5pENZVfJecVXE0mk6Kiokq0bMF5s/bs3qWCggKnxVNSAQEBJY67vGRmZio/P99h2+N3BOVt3rx5Nq/T0tKUkJCgXbt2qVWrVjp16pSWL1+uiRMnKiEhQdKFwnTnzp21Y8cOxcXFlXhfnvgFg7d8SVQSjsrV3b4wlGxz4j31TuTqGTwxZgAA4BgOL0R36dLF+nPhwwo7duxovUq6pGJiYsp0EmM2m5WRkVHm7biat+QheU8u5ZWHyWTSkKXbte9YrtP2URKNagVqyv3xatq0qUvjcGeRkZEO2Q6/I8VvB+Xv1KlTkqSQkBBJ0s6dO1VQUKDExETrMg0bNlR4eLjdhWhPfk89OXZ7lSVXd/zCUCr+S0PeU+9ErgAAAO7JKUNzXKxu3bqqXr26Dh48aFch2mQyOaQQ46jtuJq35CF5Ty7lkce+Y7nadTTHqfsoKW94z5zF0ceG3xG4ksVi0YQJE9S8eXNFRERIko4fPy4/Pz8FBwfbLBsaGqqsrCy7tu+JX7R4y5dEJeHNuV78paE353kpcvVOnpwrXzQDAFBxOb0Q/fvvv+vEiRM8vBAAAA8wZswY7d27V4sXL3bK9j35CwpPjt1e3phrcfl4Y56XQ67eqSLlCgAAPJ/dhejTp0/r0KFD1tdHjhzRnj17FBISopCQEE2bNk2dOnVSzZo1dfjwYb3++uuqV6+e2rZt69DAAQCAY40dO1abN2/WokWLVLt2bev0mjVrqqCgQDk5OTZXRWdnZ/NFMwAAAACgROwuRO/cuVP9+vWzvk5NTZUk9ezZU6NHj9ZPP/2kVatW6dSpU6pVq5batGmjIUOGqHLlyo6LGgAAOIxhGBo3bpw+/fRTLVy4UHXr1rWZHx0dLT8/P6Wnp6tTp06SpP379+vo0aN2jQ8NAAAAAKi47C5Et27dWpmZmZedP2/evDIFBAAAyteYMWO0du1azZgxQ9WqVbOO+xwUFKQqVaooKChIvXv3VlpamkJCQhQYGKjx48crPj6eQjQAAAAAoEScPkY0AABwb0uWLJEk9e3b12Z6amqqevXqJUl68cUX5evrq8GDB+vcuXNKSkrSqFGjyj1WAAAAAIBnohANAEAFd6U7nQr5+/tr1KhRFJ8BAAAAAKXi6+oAAAAAAAAAAADejUI0AAAAAAAAAMCpKEQDAAAAAAAAAJyKQjQAAAAAAAAAwKkoRAMAAAAAUMGYzWZNnjxZHTp0UGxsrDp27Kjp06fLMAxXhwYA8FKVXB0AAAAAAAAoX3PmzNGSJUv06quvqlGjRtq5c6deeOEFBQUFqV+/fq4ODwDghShEAwAAAABQwWzfvl233Xab2rVrJ0mqU6eO1q1bpx9//NHubZnNZpv/PZ075WMymVwdAkqorJ8Xd/rcOYo75eSOv0vucFwc8R7Zsy6FaAAAAAAAKpj4+HgtW7ZMv/zyi+rXr6///e9/+u9//6sRI0bYva3du3dLkjIyMhwdpku5Op+AgABFRUW5NAaUXGZmpvLz88u8HVd/7pzB1Tm56++Soz4zjlBe7xGFaAAAAAAAKpjHH39cubm5uuuuu2QymWQ2m/XMM8+oe/fudm8rKipKu3fvVkxMjFtedWgvs9msjIwMr8kH5SMyMrJM63vj584bc3Kksn5mHMER71HhNkqCQjQAAAAAABXMRx99pDVr1uiNN95Qo0aNtGfPHqWmpqpWrVrq2bOnXdsqLF6YTCavKjZ5Wz5wLkd9Vrzxc+eNOTmCOx2T8nqPKEQDAAAAAFDBvPbaa3r88cfVpUsXSReuzDt69Khmz55tdyEaAICS8HV1AAAAAAAAoHydOXNGPj4+NtNMJpMMw3BRRAAAb8cV0QAAAAAAVDDt27fXrFmzFB4ebh2aY/78+erdu7erQwMAeCkK0QAAAAAAVDAvv/yypkyZojFjxig7O1u1atXSfffdp6eeesrVoQEAvBSFaAAAAAAAKpjAwEC99NJLeumll1wdCgCggmCMaAAAAAAAAACAU1GIBgAAAAAAAAA4FYVoAAAAAAAAAIBTUYgGAAAAAAAAADgVhWgAAAAAAAAAgFNRiAYAAAAAAAAAOBWFaAAAAAAAAACAU1GIBgAAAADg/7V378FR1ff/x1/JSYCFQAphI6VxuIhsCCQQmA6C0Rib1gtiRYpKqVGGgYHqGAsqtVMvoWDwUtoIiAjIACppRtEpIlqpY/+odGBalIXQCKPcGjUxrQ0JqfA9u78/nORnIJDs5uyeyz4fM47s2d1zXp/97Lm99+RzAABATFGIBgAAAAAAAADEFIVoAAAAAABgGzMUtjtCe0nJSk1NtTsFAHhOit0BAAAAAABA4jKSk1RauU9H6prsjqIRmWmquCNfKSmUSwDAamxZAQAAAACArY7UNelgbaPdMQAAMcTQHAAAJLi9e/dq/vz5KigoUCAQ0K5du9o9/8tf/lKBQKDdf3PmzLEpLQAAAADAjbgiGgCABHf69GkFAgFNnz5d9957b4evueqqq1ReXt72uEePHvGKBwAAAADwAArRAAAkuMLCQhUWFl70NT169JDf7+/2skzT7PY84q01sxuzR8qqthqGYUUcS327TfSpN9FWd3BjZgAAYA0K0QAAoFN79uzRpEmT1K9fP11xxRW6//771b9//4jnEwwGY5AuPtycPVLdaavP51NOTo6FaaxRU1OjlpaWdtPoU2+irQAAAM5EIRoAAFzUVVddpR/+8IfKysrSiRMntGLFCs2dO1d/+MMfIr7yNTc315FXy16MaZoKBoOuzB4pL7c1EAi0/dvL7TwXbfUmN7e1NTsAAEg8FKIBAMBFTZkype3frTcrLC4ubrtKOhKGYbiuaNLKzdkj5cW2dtQeL7bzQmirNyVSWwEAgPsl2x0AAAC4y6WXXqr+/fvr2LFjdkcBAAAAALgEhWgAABCRzz//XF999ZUlNy8EAAAAACQGhuYAACDBNTc36/jx422PT548qUOHDik9PV3p6elatWqVrrvuOg0cOFAnTpzQ008/rSFDhuiqq66yMTUAAAAAwE0oRAMAkOAOHDigkpKStsfl5eWSpGnTpunxxx/Xxx9/rDfeeEOnTp1SZmamrrzySpWWlqpHjx52RQYAAAAAuAyFaAAAEtzEiRNVU1Nzwec3bNgQxzQAAAAAAC+KeIzovXv3av78+SooKFAgENCuXbvaPR8Oh1VRUaGCggLl5eXp7rvv1tGjR63KCwAAAAAALPDFF1/ogQce0MSJE5WXl6epU6cqGAzaHQsA4FERF6JPnz6tQCCgxx57rMPn161bpy1btujxxx9XVVWVfD6f5syZo6+//rrbYQEAAAAAQPf997//1cyZM5Wamqp169Zpx44dWrx4sdLT0+2OBgDwqIiH5igsLFRhYWGHz4XDYW3evFkLFixQcXGxJOmpp57S5MmTtWvXLk2ZMqXLyzFNM9JoHb6/u/Oxm1faIXmnLfFqh2EYMZ1/pJzUb179bFhHOp4PAAAArLdu3ToNGjSo7d4QknTppZdGNa/uHv857fheknr16qVQKGR3DEd+NugYdazzOalNTlyXnPC5WNFHkbzX0jGiT548qfr6ek2ePLltWt++fTV27Fjt27cvokK0VX8O5JU/K/JKOyTvtCWW7fD5fMrJyYnZ/KNRU1OjlpYWu2MkxGfDOgIAAIBYe++991RQUKD77rtPe/fu1SWXXKKf/vSnuu222yKeV3V1taTojv+cdnzvT+spMxTW8OHD7Y4Cl7HqvNCL51F2t8lp25lWTqmzSPHrI0sL0fX19ZKkjIyMdtMzMjL05ZdfRjSv3Nzcbv1aYZqmgsFgt+djN6+0Q/JOW7zSjkgFAgG7IziWVZ+NV75bVrWjdT4AAACw3okTJ7R161bNnj1b8+fPVzAY1NKlS5Wamqpp06ZFNK+cnBxVV1e7/jhWkvr5UmQkJ6m0cp+O1DXZmuWagF8PXpdtawZ0XXfPC71yPvhtXmyTlZxQZ7GijyI5d7e0EG0lwzAs+ZJaNR+7eaUdknfa4pV2dFUitTVSVn82XvlueaUdAAAAXhQOhzVmzBgtXLhQ0jfF5MOHD6uysjLiQnTrMZ+Xjv+O1DXpYG2jrRku8/exdfmIjFXffS+tR6282CYrOOkziVcfRXyzwovx+/2SpIaGhnbTGxoaNHDgQCsXBQAAAAAAouT3+3XZZZe1mzZ8+HDV1tbalAgA4HWWFqKzsrLk9/u1e/futmlNTU366KOPlJ+fb+WiAAAAAABAlMaPH69PP/203bSjR4/qe9/7nk2JAABeF/HQHM3NzTp+/Hjb45MnT+rQoUNKT0/X4MGDVVJSojVr1mjIkCHKyspSRUWFMjMzVVxcbGlwAAAAAAAQnbvuukszZ87U888/rxtuuEH79+9XVVWVlixZYnc0AIBHRVyIPnDggEpKStoel5eXS5KmTZum5cuXa+7cuWppadGjjz6qxsZGTZgwQevXr1fPnj2tSw0AAAAAAKKWl5enVatWacWKFVq9erWysrL0q1/9SjfffLPd0QAAHhVxIXrixImqqam54PNJSUkqLS1VaWlpt4IBAAAAAIDYKSoqUlFRkd0xAAAJwtIxogEAAAAAAAAAOBeFaAAAAAAAAABATFGIBqLg8/nsjgAAAAAAAAC4BoVo4FvMULjT1xiGoZycHBmGEYdE9vOn9ezS5wIAgJvwozIAAAAQXxHfrBDwMiM5SaWV+3SkrsnWHNcE/HrwumxbM7Tq50txzOciOeuzAQA4X+sPqkZyUtu01h+V7XBuFgAAACBRUIgGznGkrkkHaxttzXCZv4+ty++IEz4XyZmfDQDAuZz0g+qIzDRV3JFvawYAAADALhSiAQAA4HlO+UEVAAAASFSMEQ0AAAAAAAAAiCkK0QAAAAAAAIDNuJkyvI5CNAAAAAAAABCF1hsjd1frzZQNw+jWfKzIAsQKY0QDAAAAAAAAUeDGyEDXUYgGAAAAAAAAuoEbIwOdY2gOAAAAAAAAAEBMUYgGAAAAAAAAAMQUhWgAAAAAAAAAQExRiAYAIMHt3btX8+fPV0FBgQKBgHbt2tXu+XA4rIqKChUUFCgvL0933323jh49ak9YAAAAAIArUYgGACDBnT59WoFAQI899liHz69bt05btmzR448/rqqqKvl8Ps2ZM0dff/11nJMCAAAAANwqxe4AAADAXoWFhSosLOzwuXA4rM2bN2vBggUqLi6WJD311FOaPHmydu3apSlTpsQzKgAAAADApShEAwCACzp58qTq6+s1efLktml9+/bV2LFjtW/fvogL0aZpWh0x5lozuzF7pKxqq2EYVsTxrHh+l0KhkHw+n0KhUNyWaRfWVXdwY2YAAGANCtEAAOCC6uvrJUkZGRntpmdkZOjLL7+MeH7BYNCSXHZwc/ZIdaetPp9POTk5FqbxDn9aT5mhcFwL9YZhXLA/zv6fqUPVB3X27Nm45YkH1lUAAABnohANAADiJjc313VXy5qmqWAw6MrskUqkttqhny9FRnKSSiv36Uhdk61ZRmSmqeKOfI0ePdrWHFZKpO+vm9vamh0AACQeCtEAAOCC/H6/JKmhoUGZmZlt0xsaGpSdnR3x/AzDcF3RpJWbs0cqkdpqhyN1TTpY22h3DEneHEYlkb6/idRWAADgfsl2BwAA/H8+n8/uCEA7WVlZ8vv92r17d9u0pqYmffTRR8rPz7cxGQAAAADATShEA0CUWsf6tErrOJ7RXtlkZRYklubmZh06dEiHDh2S9M0NCg8dOqTa2lolJSWppKREa9as0Z///GfV1NTooYceUmZmpoqLi21ODgAArPLCCy8oEAho2bJldkcBAHgUQ3MAQJScONYnEI0DBw6opKSk7XF5ebkkadq0aVq+fLnmzp2rlpYWPfroo2psbNSECRO0fv169ezZ067IAADAQvv371dlZaUCgYDdUQAAHkYhGgC6yUljfQLRmDhxompqai74fFJSkkpLS1VaWhrHVAAAIB6am5v14IMPaunSpVqzZk1U8zBNs93/I8VY54C1ol0XrdbdbYOVnLidccLnYkUfRfJeCtEAAAAAACSoJUuWqLCwUJMnT466EF1dXS1JCgaDEb/X5/MpJycnquUC6FhNTY1aWlrsjtEmmm2DlZy6nXFSP8WrjyhEAwAAAACQgHbs2KHq6mq9+uqr3ZpPTk6OqqurlZub68irDoFE45RhdkzTVDAYZNtwAU7oJyv6qHUeXUEhGgAAAACABPPZZ59p2bJlevHFF7t934fW4oVhGBSbAAdw2nrItqFjTvpM4tVHFKIBAAAAAEgwBw8eVENDg2699da2aaZpau/evXr55ZcVDAYdVSQBALgfhWgAAAAAABLMFVdcoe3bt7eb9vDDD2v48OGaO3cuRWgAgOUoRAMAAAAAkGDS0tI0cuTIdtN69+6t73znO+dNBwDACsl2BwAAAAAAAAAAeBtXRAMAAAAAAG3ZssXuCAAAD+OKaAAAAAAAAABATFGIBgAAAAAAAADEFIVoAAAAAAAAAEBMUYgGAAAAAAAAAMQUhWgAAAAAAAAAQExRiAYAAAAAAAAAxFSK1TNcuXKlVq1a1W7asGHD9Pbbb1u9KAAAAAAAAACAC1heiJakyy+/XBs3bmx7bBhGLBYDAAAAAAAAAHCBmBSiDcOQ3+/v1jxM07Tk/d2dj9280g7JHW3hRxO4nRPWL6vWdSe0BQAAAAAAWCMmhehjx46poKBAPXv21Lhx47Ro0SINHjw4onkEg0FLslg1H7t5pR2Sc9vi8/mUk5NjdwygW2pqatTS0mJ3DEnOXdcBAAAAwIv8aT1lhsIykpPsjvKNpGSlpqbanQIOYnkhOi8vT+Xl5Ro2bJjq6+u1evVqzZo1S9u3b1daWlqX55Obm9utq1NN01QwGOz2fOzmlXZI3moL4FSBQMDuCJat663zAQAAAAB0rp8vRUZykkor9+lIXZOtWUZkpqnijnylpMTkGli4lOXfhsLCwrZ/Z2dna+zYsSoqKtLOnTs1Y8aMLs/HMAxLipVWzcduXmmH5K22AE7jpHWLdR0AAAAA4u9IXZMO1jbaHQM4T3KsF9CvXz8NHTpUx48fj/WiAAAAAAAAAAAOFPNCdHNzs06cONHtmxcCAAAAAAAAANzJ8qE5nnzySRUVFWnw4MGqq6vTypUrlZycrJtuusnqRQEAAAAAAAAAXMDyQvTnn3+uhQsX6quvvtKAAQM0YcIEVVVVacCAAVYvCgAAAAAAAADgApYXon/3u99ZPUsAAAAAAAAAgIvFfIxoAAAAAAAAAEBioxANAAAAAAAAAIgpy4fmAAAA3rNy5UqtWrWq3bRhw4bp7bfftikRAAAAAMBNKEQDAIAuufzyy7Vx48a2x4Zh2JgGAAAAAOAmFKIBAECXGIYhv99vdwwAAAAAgAtRiAYAAF1y7NgxFRQUqGfPnho3bpwWLVqkwYMHRzQP0zRjlC52WjO7MXukQqGQfD6fQqFQt+bD1fLu4aXvdSKtq25uqxszAwAAa1CIBgAAncrLy1N5ebmGDRum+vp6rV69WrNmzdL27duVlpbW5fkEg8EYpowtJ2dPTU3VqJzRSk3pXgHYMAzl5ORYlApuUFNTo5aWFrtjWMrJ66rVEqmtsN7atWv1pz/9SZ988ol69eql/Px8PfDAAxo+fLjd0QAAHkUhGgAAdKqwsLDt39nZ2Ro7dqyKioq0c+dOzZgxo8vzyc3Ndd3VsqZpKhgMOj67YRgqrdynI3VNtua4JuDXg9dl25oBXRcIBOyOYBm3rKtWcHNbW7PDfnv27NGsWbOUm5sr0zS1YsUKzZkzRzt27FDv3r3tjgcA8CAK0QAAIGL9+vXT0KFDdfz48YjeZxiG64omrdyQ/Uhdkw7WNtqa4TJ/H1uXj8g4/TsdDTesq1ZJpLbCehs2bGj3ePny5Zo0aZIOHjyo73//+xHNq7vDxfA9BryrV69e3R72zQpO3M44YbiqUCik1NTUbmWJ5L0UogEAQMSam5t14sQJbl4IAIBHnDp1SpKUnp4e8Xurq6slRTdcjM/nY1gowIP8aT1lhsIM99OB1s/GCcVxwzA0Kme0DlUf1NmzZ2O+PArRAACgU08++aSKioo0ePBg1dXVaeXKlUpOTtZNN91kdzQAANBNoVBITzzxhMaPH6+RI0dG/P6cnBxVV1e7crgYALHRz5ciIzmJoeM64KTPZkRmmiruyNeoUaOUnJwc1TwiGXaLQjQAAOjU559/roULF+qrr77SgAEDNGHCBFVVVWnAgAF2RwMAAN1UVlamw4cP65VXXonq/a3FZ4aLAXAuho67MCd8Nq2Sk5Pjsv2mEA0AADr1u9/9zu4ItvL5fHZHAAAgJpYsWaL3339fL730kgYNGmR3HACAh0V3zTVgITMUtjsCAMBF4r3fMAxDOTk5HV4hwD4MAOBW4XBYS5Ys0bvvvqtNmzbp0ksvtTsSAMDjuCIatnPKuDhOGzMIANAxp+w3WsdTAwDAjcrKyvTmm2/queeeU58+fVRfXy9J6tu3r3r16mVzOgCAF1GIhiM4YVwcp44ZBAA4nxP2GwAAuNnWrVslSXfeeWe76eXl5br11lvtiAQA8DgK0QAAAAAAJJiamhq7IwAAEgxjRAMAAAAAAAAAYopCNAAAAAAAAAAgpihEAwAAAAAAAABiikI0AAAAAAAAACCmKEQDAABEwZ/WU2YobHcMICpO+/46KQsAAABiI8XuAOicz+ezOwIAADhHP1+KjOQklVbu05G6JluzXBPw68Hrsm3NAHdx0vd3RGaaKu7ItzUDAAAAYo9CdJyYobCM5KSI32cYhnJychyRBQAAnO9IXZMO1jbamuEyfx9blw/3csL3FwAAAImBQnSccMUJAAAAAAAAgERFITqOuOIEAAAAAAAAQCLiZoUAAAAAAAAAgJiiEA0AAAAALsMNzQEAgNtQiAYAAAAAhzJD4fOmtd7Q3DAM27MAAAB0FWNEAwAAAIBDcdNzAADgFRSiAQAAAMDBuOk5AADwAobmAAAAAAAAAADElKcL0ampqXZHAICExPYXAAAAAAB8m6cL0aNyRsf9Bh4AYAd/Wk/H3EDIMAyNyhltdwwAAAAAAOAgnh4jOjXFcMSNPa4J+PXgddm2ZgDgbf18KY67mZFpmrbmAAAAAAAAzuHpQrTkjBt7XObvY+vyASQOJ2zzAAAAAAAAzuXpoTkAAAAAIFJOGe4KAADASzx/RTQAAAAARMIpw10xxB8AAPASCtEAAAAAcA4nDHfFEH8AAMBLGJoDAAAAAAAAABBTMStEv/zyy7r22muVm5urGTNmaP/+/bFaFAAAiBP27wAAeAv7dgBAvMSkEP3WW2+pvLxc99xzj15//XVlZ2drzpw5amhoiMXiAABAHLB/BwDAW9i3AwDiKSZjRG/cuFG33Xabpk+fLkkqKyvT+++/r9dee03z5s276HvD4W/uUH3mzBkZhhF1hlAoJEkaNaiPekY/G0sMzfDJNE1HZBnu7yPTNGWaZtyXHQqF1KtXL509e7bd8g3DcMRn46R+Ios78pClY63bmXPX9Ui1vrd1vwD7OWH/LrHfIIt785ClY1Ydn17oWDMabGfOZ1U/sX93lu7s26X2+/fW/0ezn3fKOic5a70ji/OzOC0PWZyfxWl5rDh/j2TfnhS2+AjgzJkzGjdunJ599lkVFxe3TV+8eLEaGxu1Zs2aTt8fDAatjAQAcLHc3Fz16NHD7hgJj/07AMBK7N/t1919e+s82L8DAKSu7dstvyL6P//5j0zTVEZGRrvpGRkZ+uSTTzp9f0pKinJzc5WcnKykpCSr4wEAXCIcDisUCiklJSZ/vIMIsX8HAFiB/btzdHffLrF/BwBEtm933N4/OTmZX8YBAPAY9u8AAHgP+3cAQCQsv1lh//79ZRjGeTc3aGho0MCBA61eHAAAiAP27wAAeAv7dgBAvFleiO7Ro4dGjx6t3bt3t00LhULavXu38vPzrV4cAACIA/bvAAB4C/t2AEC8xWRojtmzZ2vx4sUaM2aM8vLytGnTJrW0tOjWW2+NxeIAAEAcsH8HAMBb2LcDAOIpJoXoG2+8Uf/+97/17LPPqr6+XqNGjdL69ev58x4AAFyM/TsAAN7Cvh0AEE9J4XA4bHcIAAAAAAAAAIB3WT5GNAAAAAAAAAAA30YhGgAAAAAAAAAQUxSiAQAAAAAAAAAxRSEaAAAAAAAAABBTrixEr127VtOnT1d+fr4mTZqkn//85/rkk086fd/OnTt1/fXXKzc3V1OnTtVf/vKXOKS9sGjasW3bNgUCgXb/5ebmxinxhb3yyiuaOnWqxo8fr/Hjx+v222/v9PN1Wn9IkbfDqf1xrhdeeEGBQEDLli276Ouc2Cff1pV2OLVPVq5ceV6u66+//qLvcWJ/RNoOp/YH0BXRHm+4XVf3GW71xRdf6IEHHtDEiROVl5enqVOnKhgM2h3LcqZp6ve//72uvfZa5eXlqbi4WKtXr5YX7lO+d+9ezZ8/XwUFBQoEAtq1a1e758PhsCoqKlRQUKC8vDzdfffdOnr0qD1hu+Fi7Tx79qyefvppTZ06VePGjVNBQYEeeughffHFFzYmRqJ6+eWXde211yo3N1czZszQ/v377Y4Utc62L27kteOZaGoPbuOFY7Fozn+dzmvHkNdee+15fRQIBFRWVhbT5abEdO4xsmfPHs2aNUu5ubkyTVMrVqzQnDlztGPHDvXu3bvD9/zjH//QokWLtHDhQhUVFWn79u265557tG3bNo0cOTLOLfhGNO2QpLS0NL399tttj5OSkuIR96IGDRqkBx54QEOGDFE4HNYbb7yhe+65R6+//rouv/zy817vxP6QIm+H5Mz++Lb9+/ersrJSgUDgoq9zap+06mo7JOf2yeWXX66NGze2PTYM44KvdXJ/RNIOybn9AXQm2v20m0WyrXWj//73v5o5c6YmTpyodevWqX///jp27JjS09Ptjma5devWaevWrXryySc1YsQIHThwQA8//LD69u2rkpISu+N1y+nTpxUIBDR9+nTde++95z2/bt06bdmyRcuXL1dWVpYqKio0Z84cvfXWW+rZs6cNiaNzsXb+73//U3V1tRYsWKDs7Gw1NjZq2bJlWrBggbZt22ZTYiSit956S+Xl5SorK9PYsWO1adMmzZkzR2+//bYyMjLsjhexzrYvbuS145loztndxEvHYpGeNzqZF48hX331VZmm2fb48OHDmj17dux/MAh7QENDQ3jkyJHhPXv2XPA1paWl4Xnz5rWbNmPGjPAjjzwS63hd1pV2vPbaa+EJEybEMVX0vv/974erqqo6fM4N/dHqYu1wen80NTWFf/SjH4X/+te/hn/2s5+Fly5desHXOrlPImmHU/vk2WefDd98881dfr1T+yPSdji1P4BodGU/7WaRbGvd6umnnw7PnDnT7hhxMW/evPDDDz/cbtq9994bXrRokU2JYmPkyJHhd999t+1xKBQKX3nlleH169e3TWtsbAyPGTMm/Oabb9oR0RLntrMjH330UXjkyJHhf/3rX3FKBYTDP/nJT8JlZWVtj03TDBcUFITXrl1rYyprdGW9cyMvHs9c7JzdTbx0LBbpeaPTJcIx5NKlS8PFxcXhUCgU0+W4cmiOc506dUqSLvpLxIcffqhJkya1m1ZQUKAPP/wwltEi0pV2SN/8SltUVKTCwkItWLBAhw8fjke8LjNNUzt27NDp06eVn5/f4Wvc0B9daYfk7P5YsmSJCgsLNXny5E5f6+Q+iaQdknP75NixYyooKNAPfvADLVq0SLW1tRd8rZP7I5J2SM7tDyBSXd1Pu1Wk21o3eu+99zRmzBjdd999mjRpkm655RZVVVXZHSsm8vPz9be//U2ffvqpJOmf//yn/v73v+vqq6+2OVlsnTx5UvX19e2+x3379tXYsWO1b98+G5PFXlNTk5KSktSvXz+7oyBBnDlzRgcPHmy3viUnJ2vy5MmeX9/czEvHM109Z3cLrx2LRXre6GReP4Y8c+aM/vjHP2r69Okx/wtmVw7N8W2hUEhPPPGExo8ff9E/V//yyy81cODAdtMyMjL05Zdfxjpil3S1HcOGDdMTTzyhQCCgU6dO6cUXX9Qdd9yhHTt2aNCgQXFMfL6amhrdcccd+vrrr9W7d2+tXr1aI0aM6PC1Tu6PSNrh5P7YsWOHqqur9eqrr3bp9U7tk0jb4dQ+ycvLU3l5uYYNG6b6+nqtXr1as2bN0vbt25WWlnbe653aH5G2w6n9AUSqq/tpt4p0W+tWJ06c0NatWzV79mzNnz9fwWBQS5cuVWpqqqZNm2Z3PEvNmzdPTU1NuuGGG2QYhkzT1C9+8QvdfPPNdkeLqfr6ekk6b0gAJ+xDY+nrr7/WM888oylTpnS4PwZi4T//+Y9M0+xwfXPzGMRe5pXjmUjO2d3Ca8dikZ43Op3XjyF37dqlU6dOxaUtri9El5WV6fDhw3rllVfsjtItXW1Hfn5+u1/68vPzdeONN6qyslL3339/jFNe3LBhw/TGG2/o1KlTeuedd7R48WK99NJLrtshRNIOp/bHZ599pmXLlunFF1901ViI54qmHU7tk8LCwrZ/Z2dna+zYsSoqKtLOnTs1Y8YM23JFKtJ2OLU/gEh55XijI17ZZ3RFOBzWmDFjtHDhQklSTk6ODh8+rMrKSk+cRHzbzp07tX37dv32t7/ViBEjdOjQIZWXlyszM9NzbU10Z8+eVWlpqcLhcMxvMATA3bxyPOOV2kMrLx6LeeX8t5XXjyFfe+01XX311brkkktivixXF6KXLFmi999/Xy+99FKnV9YNHDjwvKsgGhoazrvi0A6RtONcqampGjVqlI4fPx6jdF3Xo0cPDRkyRJI0ZswYBYNBbd68WUuWLDnvtU7uj0jacS6n9MfBgwfV0NCgW2+9tW2aaZrau3evXn75ZQWDwfNuFODEPommHedySp+cq1+/fho6dOgFczmxPzrSWTvO5dT+AC6mO/tpN7BiW+sWfr9fl112Wbtpw4cP1zvvvGNToth56qmnNG/ePE2ZMkWSFAgEVFtbq7Vr13rihOlC/H6/pG/2mZmZmW3TGxoalJ2dbVesmDl79qzuv/9+1dbWatOmTa68ygzu1b9/fxmGoYaGhnbTnXjMCm8dz3TnnN2JEuFYLNLzRqfx8jHkv/71L33wwQdauXJlXJbnykJ0OBzWb37zG7377rvasmWLLr300k7fM27cOP3tb3/T3Xff3Tbtgw8+0Lhx42IXtBPRtONcpmnq448/bvdrk1OEQiGdOXOmw+ec2B8XcrF2nMsp/XHFFVdo+/bt7aY9/PDDGj58uObOndvhTsyJfRJNO87llD45V3Nzs06cONF2wnwuJ/ZHRzprx7mc2h9AR6zYT7uBFdtatxg/fnzbmMmtjh49qu9973s2JYqd//3vf+eN8WcYhsLhsE2J4iMrK0t+v1+7d+/WqFGjJH0zdvJHH32kmTNn2pzOWq1F6GPHjmnz5s3q37+/3ZGQYHr06KHRo0dr9+7dKi4ulvTNudPu3bv1s5/9zOZ0aJUIxzORnLM7USIci0V63ug0Xj6G3LZtmzIyMnTNNdfEZXmuLESXlZXpzTff1HPPPac+ffq0jQXXt29f9erVS5L00EMP6ZJLLtGiRYskSSUlJbrzzjv14osvqrCwUG+99ZYOHDhg6y9m0bRj1apVGjdunIYMGaLGxkZt2LBBtbW1tv9pw29/+1tdffXV+u53v6vm5ma9+eab2rNnjzZs2CDJHf0hRd4Op/ZHWlraeWN+9e7dW9/5znfapruhT6Jph1P75Mknn1RRUZEGDx6suro6rVy5UsnJybrpppskuaM/pMjb4dT+ALqiK/tpL+jKttYr7rrrLs2cOVPPP/+8brjhBu3fv19VVVW2b1tjoaioSM8//7wGDx7cNjTHxo0bNX36dLujdVtzc3O7K6pOnjypQ4cOKT09XYMHD1ZJSYnWrFmjIUOGKCsrSxUVFcrMzGwrlLnFxdrp9/t13333qbq6WmvXrpVpmm3bqPT0dPXo0cOu2Egws2fP1uLFizVmzBjl5eVp06ZNamlpaXdlp5t0tn1xI68dz3R2zu5GXjwW6+y80W28egwZCoW0bds23XLLLUpJiU+J2JWF6K1bt0qS7rzzznbTy8vL23Z4n332mZKTk9ueGz9+vJ555hn9/ve/14oVKzR06FCtXr3a1pU6mnY0NjbqkUceUX19vdLT0zV69GhVVlbaPhZSQ0ODFi9erLq6OvXt21eBQEAbNmzQlVdeKckd/SFF3g6n9kdXuKVPOuOWPvn888+1cOFCffXVVxowYIAmTJigqqoqDRgwQJJ7+iPSdji1P4Cu6Mp+Gu6Sl5enVatWacWKFVq9erWysrL0q1/9ypM38Pv1r3+tiooKlZWVtQ1Tcfvtt+uee+6xO1q3HThwQCUlJW2Py8vLJUnTpk3T8uXLNXfuXLW0tOjRRx9VY2OjJkyYoPXr17tu3M2LtfPee+/Ve++9J0n68Y9/3O59mzdv1sSJE+MXFAntxhtv1L///W89++yzqq+v16hRo7R+/XrXDs3R2fbFjbx2PNPZOTucobPzRrfx6jHkBx98oNra2rheqJAU9vrf5wEAAAAAAAAAbJXc+UsAAAAAAAAAAIgehWgAAAAAAAAAQExRiAYAAAAAAAAAxBSFaAAAAAAAAABATFGIBgAAAAAAAADEFIVoAAAAAAAAAEBMUYgGAAAAAAAAAMQUhWgAAAAAAAAAQExRiAYAAAAAAAAAxBSFaAAAAAAAAABATFGIBgAAAAAAAADE1P8D+nbdYJI4lb4AAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.scatterplot(x=df.Battery,y=df.Memory)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hQnxArV6d6bn"
},
"source": [
"Sin la necesidad de realizar una clusterizacion, podemos visualizar como hay un comportamiento de densidad en la seccion inferior del gráfico, lo que podria indicar que hay un comportamiento radial o de rango aceptable para valores entre la memoria y bateria que mantienen las empresas telefónicas.\n",
"Uno de los aspectos importantes que trae esta nueva visualizacion, es que no es tan lineal como la inicial, dando a entender que hay un mayor dinamica que del que se cree a simple vista"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E6QeNmHnfiSE"
},
"source": [
"En conclusion, por medio de este tratamiento alternativo de los datos, se podria visualizar los datos sin la necesidad de producir algoritmos de clustering"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zfhFXMXIJ3rd"
},
"source": [
"# Feature Selection - Agrupacion con menos columnas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZQx6gFyxQb4n"
},
"outputs": [],
"source": [
"from sklearn.preprocessing import RobustScaler"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 423
},
"executionInfo": {
"elapsed": 382,
"status": "ok",
"timestamp": 1684158949921,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "exFgKhwQNt-N",
"outputId": "81dee209-996a-4ec7-aa5f-db1df769ac83"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Brand
\n",
"
Battery
\n",
"
Processor
\n",
"
Memory
\n",
"
Primary_Storage
\n",
"
Display_Size
\n",
"
Display_Resolution
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
1950.0
\n",
"
135
\n",
"
0.5
\n",
"
4.000000
\n",
"
4.0
\n",
"
111
\n",
"
\n",
"
\n",
"
1
\n",
"
0
\n",
"
1500.0
\n",
"
46
\n",
"
0.5
\n",
"
34.296597
\n",
"
4.0
\n",
"
111
\n",
"
\n",
"
\n",
"
2
\n",
"
0
\n",
"
1400.0
\n",
"
46
\n",
"
0.5
\n",
"
4.000000
\n",
"
4.0
\n",
"
111
\n",
"
\n",
"
\n",
"
3
\n",
"
0
\n",
"
1680.0
\n",
"
46
\n",
"
0.5
\n",
"
34.296597
\n",
"
4.5
\n",
"
112
\n",
"
\n",
"
\n",
"
4
\n",
"
0
\n",
"
1850.0
\n",
"
140
\n",
"
0.5
\n",
"
4.000000
\n",
"
4.5
\n",
"
112
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
4532
\n",
"
85
\n",
"
5000.0
\n",
"
147
\n",
"
3.0
\n",
"
32.000000
\n",
"
6.3
\n",
"
17
\n",
"
\n",
"
\n",
"
4533
\n",
"
85
\n",
"
5000.0
\n",
"
80
\n",
"
4.0
\n",
"
128.000000
\n",
"
6.5
\n",
"
50
\n",
"
\n",
"
\n",
"
4534
\n",
"
85
\n",
"
3260.0
\n",
"
75
\n",
"
4.0
\n",
"
64.000000
\n",
"
6.2
\n",
"
16
\n",
"
\n",
"
\n",
"
4535
\n",
"
85
\n",
"
4030.0
\n",
"
75
\n",
"
2.0
\n",
"
32.000000
\n",
"
6.2
\n",
"
16
\n",
"
\n",
"
\n",
"
4536
\n",
"
85
\n",
"
4030.0
\n",
"
75
\n",
"
4.0
\n",
"
64.000000
\n",
"
6.2
\n",
"
16
\n",
"
\n",
" \n",
"
\n",
"
2816 rows × 7 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" Brand Battery Processor Memory Primary_Storage Display_Size \\\n",
"0 0 1950.0 135 0.5 4.000000 4.0 \n",
"1 0 1500.0 46 0.5 34.296597 4.0 \n",
"2 0 1400.0 46 0.5 4.000000 4.0 \n",
"3 0 1680.0 46 0.5 34.296597 4.5 \n",
"4 0 1850.0 140 0.5 4.000000 4.5 \n",
"... ... ... ... ... ... ... \n",
"4532 85 5000.0 147 3.0 32.000000 6.3 \n",
"4533 85 5000.0 80 4.0 128.000000 6.5 \n",
"4534 85 3260.0 75 4.0 64.000000 6.2 \n",
"4535 85 4030.0 75 2.0 32.000000 6.2 \n",
"4536 85 4030.0 75 4.0 64.000000 6.2 \n",
"\n",
" Display_Resolution \n",
"0 111 \n",
"1 111 \n",
"2 111 \n",
"3 112 \n",
"4 112 \n",
"... ... \n",
"4532 17 \n",
"4533 50 \n",
"4534 16 \n",
"4535 16 \n",
"4536 16 \n",
"\n",
"[2816 rows x 7 columns]"
]
},
"execution_count": 257,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_2=df.drop(columns=['Primary_Camera','Front_Camera','External_Storage'])\n",
"df_2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ASSTQwM8Of15"
},
"outputs": [],
"source": [
"df_standar=RobustScaler().fit_transform(df_2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 8,
"status": "ok",
"timestamp": 1684158949922,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "TsmpmGbbPPZM",
"outputId": "8cec011b-6426-4064-92c7-eabc0a4b1711"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"0.0\n",
"1\n",
"0.94\n",
"2\n",
"0.973\n",
"3\n",
"0.983\n",
"4\n",
"0.992\n",
"5\n",
"0.996\n"
]
}
],
"source": [
"#Se toma 4 debido a que ya se consigue un 0.99 de recreacion de los datos\n",
"for i in range(0,6):\n",
" print(i)\n",
" print(PCA(i,random_state=0).fit(df_standar).explained_variance_ratio_.round(3).sum())\n",
" i+=i"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ncf2uPVcQvFt"
},
"outputs": [],
"source": [
"df_standar_2=PCA(4,random_state=0).fit_transform(df_standar)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0PzBfGLfRDok"
},
"source": [
"Realizo el metodo de la silueta para encontrar la cantidad adecuada de Agrupaciones"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 5919,
"status": "ok",
"timestamp": 1684158955835,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "HCY4IO88Q-9d",
"outputId": "8432294b-422e-4811-b87e-94f0e2395e9d"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n"
]
}
],
"source": [
"silhouette=[]\n",
"for i in range(2,10):\n",
" kmeans=KMeans(n_clusters=i)\n",
" kmeans.fit_transform(df_standar_2)\n",
" silhouette.append(silhouette_score(df_standar_2,kmeans.labels_))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 448
},
"executionInfo": {
"elapsed": 824,
"status": "ok",
"timestamp": 1684158956656,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "Sh7Q0CdaRa3c",
"outputId": "a576d4bc-bcb6-49e7-a0b9-f09eb432a353"
},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 262,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9wUlEQVR4nO3de3xU1b338e9cMhkCJOTCReQiIRhuiQRRJFApaE8rVlvhQLVGLQ8qWmyf4gVba0+NSmM5xUexeLygSBG1HBGqQq2ttVYgKiCYiIiQgCAECEnIPZlkZp4/ciGBAJlkZnZm9uf9euVFsrP32r+1Oq/m695rr23xer1eAQAAGMRqdAEAAMDcCCMAAMBQhBEAAGAowggAADAUYQQAABiKMAIAAAxFGAEAAIYijAAAAEPZjS6gPTwej+rr62W1WmWxWIwuBwAAtIPX65XH45HdbpfVeubrHyERRurr65Wbm2t0GQAAoANSUlLkcDjO+PuQCCNNaSolJUU2m81v7brdbuXm5vq93VBi9jEwe/8lxoD+m7v/EmMQyP43tX22qyJSiISRplszNpstIB+UQLUbSsw+Bmbvv8QY0H9z919iDALZ/3NNsfB5AuuWLVt0xx13aNKkSUpOTtY//vGPcx7z8ccf67rrrtPo0aP1ne98R2+88YavpwUAAGHK5zBSVVWl5ORk/fa3v23X/gcPHtTcuXM1fvx4/eUvf9Ett9yiBx98UB9++KHPxQIAgPDj822ayZMna/Lkye3e/7XXXtOAAQP0y1/+UpI0dOhQbdu2TS+99JK+9a1v+Xp6AAAQZgK+zsiOHTs0YcKEVtsmTZqkHTt2BPrUAAAgBAR8Auvx48eVkJDQaltCQoIqKipUU1Mjp9PZ7rbcbrdfa2tqz9/thhKzj4HZ+y8xBvTf3P2XGINA9r+9bYbE0zRNArXWCGuYMAZm77/EGNB/c/dfYgyM7H/Aw0hCQoKOHz/eatvx48fVo0cPn66KSKwzEghmHwOz919iDOi/ufsvMQbBWGfkXAIeRsaMGaN///vfrbZt3rxZY8aM8bkt1hkJHLOPgdn7LzEG9N/c/ZcYAyP77/ME1srKSu3atUu7du2SJH3zzTfatWuXDh8+LElavHixFixY0Lz/9ddfr4MHD2rRokXKy8vTqlWr9Ne//lU/+clP/NMDAAAQ0ny+MvL555/r5ptvbv45KytLknTdddfpscceU2FhoQoKCpp/P3DgQD377LPKysrSn/70J/Xr10+PPvooj/UCAABJHQgj48eP1+7du8/4+8cee6zNY9atW+frqQAAgAkEfJ0RAACAswmpR3v9bVdBmVbmlOvD4r2K7R6pmG4RiukWoejGfxu+tyvSbt4JTQAABJqpw8hT7+fpb7srpd17z7qfM8LaHE7aCixn+oruFiFnBEEGAICzMXUYuec7wxTlrpCjR6zKa+tVWl138quqTuW19fJ6pZo6j2rqanW0rNbnc0TarWcMMecKNM4I6zlfuwwAQKgzdRgZ2ruHMlJ6asyY0W0+W+3xeFVeczKklNXUtQ4sLb7K2vjZ45Vq6z06Vl6rY+W+BxmHzdoYWOxnvPJyplAT5bARZAAAIcHUYeRcrFaLYqIiFBMV4fOxHo9XFa56lVa1HVZOhpv6NgON2+OVy+3R8YpaHa/wPchE2CyKdrbnCoxd3es8PrcPAIC/EEYCxGptCAPRzggN9PFYr9erSpe7+XbRma6+nBpsmn5f5/aqzu1VUaVLRZWuc55v4kCnJlzSsX4CANBZhJEuyGKxqEekXT0i7Tq/VzefjvV6vaquc7ea+3Km20mFFbXatLdInxbUqt7tMfUyyAAA4xBGwozFYlGUw64oh13nxZw9yHg8Xo195O86UV2nnEOlumRIQpCqBADgJBY9MzGr1aIJQ+MkSZv2FhlcDQDArAgjJpc+NF6StDmPMAIAMAZhxOSawsj2gydU5ao3uBoAgBkRRkxucFyUekdZVef26pN9xUaXAwAwIcKIyVksFqX0iZTErRoAgDEII1BqX4ckaeOe4wZXAgAwI8IIlNKnIYx8UVCmog6s9goAQGcQRqBeTpuS+/aQJGXnc6sGABBchBFIkiYmNTxVs2kvt2oAAMFFGIEkKT2xKYxwZQQAEFyEEUiSLhkSJ7vVogPFVTpQVGV0OQAAEyGMQJLUI9KuMQN7SZI25XGrBgAQPIQRNJuY1PCiPOaNAACCiTCCZpOGNYSRzXlF8ni8BlcDADALwgiaXTSgl6IcNhVXuvTlkXKjywEAmARhBM0cdqvGD4mTxK0aAEDwEEbQStO8kY2EEQBAkBBG0EpTGPlkX7Fc9R6DqwEAmAFhBK0k9+2phB4OVde5tf1AidHlAABMgDCCVqxWiyYMbXzEN4/VWAEAgUcYwWkm8Z4aAEAQEUZwmvTGKyM7Dp5QeU2dwdUAAMIdYQSnGRgXpcHxUXJ7vPpkX7HR5QAAwhxhBG3iEV8AQLAQRtCmiY23ajbvZRIrACCwCCNo04Sh8bJYpN1Hy3WsvMbocgAAYYwwgjbFdXdo5HnRkrg6AgAILMIIzmhS47wRHvEFAAQSYQRnNLFFGPF6vQZXAwAIV4QRnNElF8TJYbPqcGmN9hdVGV0OACBMEUZwRt0cNo0d3EsSj/gCAAKnQ2Fk1apVmjp1qlJSUjRz5kzl5OSccd+6ujr98Y9/1JVXXqmUlBRde+21+ve//93hghFcTY/4btpDGAEABIbPYWTDhg3KysrSvHnztHbtWg0fPlxz5sxRUVHbT1w88cQT+vOf/6zf/OY32rBhg66//nrddddd+uKLLzpdPAJv4rCGMJKdXyS3h3kjAAD/8zmMLF++XLNmzdKMGTOUlJSkzMxMOZ1OrVmzps39//KXv+iOO+7Q5MmTNXDgQP34xz/W5MmT9eKLL3a6eARe6vkx6hlpV2l1nXYeLjW6HABAGLL7srPL5dLOnTs1d+7c5m1Wq1Xp6enavn17m8fU1dXJ4XC02hYZGalPP/3U52LdbrfPx7SnPX+3G0rONQYWSeOHxOkfXx7Txj2FGnVezyBWF3h8BhgD+m/u/kuMQSD73942fQojJSUlcrvdio+Pb7U9Pj5e+fn5bR4zadIkvfTSS7rkkks0aNAgZWdn6+9//3uHOp2bm+vzMUa2G0rONgaDndWSpHe279f46LJglRRUfAYYA/pv7v5LjIGR/fcpjHTEr3/9az344IO66qqrZLFYNHDgQE2fPv2Mt3XOJiUlRTabzW+1ud1u5ebm+r3dUNKeMejev0Iv7Nio3cX1GjEqRZER4TNWfAYYA/pv7v5LjEEg+9/U9rn4FEZiY2Nls9lOm6xaVFSkhISENo+Ji4vT008/rdraWp04cUJ9+vTRH/7wBw0cONCXU0uSbDZbQD4ogWo3lJxtDJL7RatPz0gdK6/Vjm/KlJ7U9v/WoYzPAGNA/83df4kxMLL/Pk1gdTgcGjVqlLKzs5u3eTweZWdnKy0t7azHRkZGqm/fvqqvr9e7776rK664omMVI+gsFkvz0vCsNwIA8Defb9PMnj1b999/v0aPHq3U1FStWLFC1dXVmj59uiRpwYIF6tu3r+655x5J0meffaajR49qxIgROnr0qJ566il5PB7deuut/u0JAio9KUFvbD+kTXm8NA8A4F8+h5Fp06apuLhYS5YsUWFhoUaMGKFly5Y136YpKCiQ1Xrygkttba2eeOIJHTx4UFFRUZo8ebIWLVqk6Oho//UCATcxqWHScu43J1RaVaeYqAiDKwIAhIsOTWDNyMhQRkZGm79buXJlq58vvfRSbdiwoSOnQRdyXkw3JfburvzCSmXnF+l7o/sZXRIAIEzwbhq0W9O8kc15zBsBAPgPYQTtNpFJrACAACCMoN0uS4yX1SLlF1aqoLTa6HIAAGGCMIJ2i+kWoZQBvSRJm/byVA0AwD8II/DJxKENT9Vs4lYNAMBPCCPwSdMk1k17j8vr9RpcDQAgHBBG4JOxg2MVabfqWHmt9h6rMLocAEAYIIzAJ84Imy65IE4St2oAAP5BGIHPTj7iyyRWAEDnEUbgs6al4T/OL1K922NwNQCAUEcYgc9G9Y9RTLcIldfWK+dQqdHlAABCHGEEPrNZLUpvesR3D/NGAACdQxhBh6Q3PeLLe2oAAJ1EGEGHNK038unXJ1Tlqje4GgBAKCOMoEMuiI9S/xinXG6PtuwvMbocAEAII4ygQywWS/MjvptZbwQA0AmEEXTYpGFN640QRgAAHUcYQYdNaHyi5ouCMhVXugyuBgAQqggj6LA+PZ1K7ttTXq+UncdqrACAjiGMoFPSG1dj5VYNAKCjCCPolKZHfDez3ggAoIMII+iU8Ynxslkt+rqoSgeLq4wuBwAQgggj6JQekXaNGdhLEldHAAAdQxhBpzWtN7JxL5NYAQC+I4yg0yY2PuK7ee9xeTxeg6sBAIQawgg6LW1QrLpF2FRU6dLuo+VGlwMACDGEEXSaw27V+MQ4SdImHvEFAPiIMAK/mDi0Yd4IYQQA4CvCCPyiaRLrx/uK5ar3GFwNACCUEEbgF8P79VRcd4eqXG7tOHjC6HIAACGEMAK/sFotSm98qoZbNQAAXxBG4DdNS8MTRgAAviCMwG+a5o3sOHhCFbX1BlcDAAgVhBH4zcC4KA2Ki1K9x6tP9rEaKwCgfQgj8KuJSQ3zRjbuIYwAANqHMAK/arpVw0vzAADtRRiBX6U3Ln725ZFyFZbXGlwNACAUEEbgV3HdHRp5XrQkro4AANqHMAK/mzSMR3wBAO1HGIHfnVz8rEher9fgagAAXV2HwsiqVas0depUpaSkaObMmcrJyTnr/i+99JK++93vKjU1VZMnT9bvfvc71dYynyBcXTokThE2iw6dqNbXRVVGlwMA6OJ8DiMbNmxQVlaW5s2bp7Vr12r48OGaM2eOiorafpTzrbfe0uLFi3XXXXdpw4YNWrhwoTZs2KDHH3+808Wja4py2DV2UKwkaSO3agAA5+BzGFm+fLlmzZqlGTNmKCkpSZmZmXI6nVqzZk2b+2/fvl1jx47VNddcowEDBmjSpEn6/ve/f86rKQhtPOILAGgvuy87u1wu7dy5U3Pnzm3eZrValZ6eru3bt7d5TFpamt58803l5OQoNTVVBw8e1AcffKAf/OAHPhfrdrt9PqY97fm73VASqDGYkNhwZWTz3iK56upls1r82r6/8BlgDOi/ufsvMQaB7H972/QpjJSUlMjtdis+Pr7V9vj4eOXn57d5zDXXXKOSkhL9+Mc/ltfrVX19va6//nrdcccdvpxakpSbm+vzMUa2G0r8PQZej1fd7BadqK7Tug+2amhshF/b9zc+A4wB/Td3/yXGwMj++xRGOuLjjz/Ws88+q9/+9rdKTU3VgQMHtHDhQi1dulTz5s3zqa2UlBTZbDa/1eZ2u5Wbm+v3dkNJIMcgfec2vfdloY7b4jVjTKJf2/YXPgOMAf03d/8lxiCQ/W9q+1x8CiOxsbGy2WynTVYtKipSQkJCm8c8+eSTuvbaazVz5kxJUnJysqqqqvRf//VfuvPOO2W1tn/ais1mC8gHJVDthpJAjMGkYb313peFys4v1k+nDPNr2/7GZ4AxoP/m7r/EGBjZf58msDocDo0aNUrZ2dnN2zwej7Kzs5WWltbmMTU1NacFjqbOsgZFeGuaxLplf7Fq6sx5LxYAcG4+P00ze/ZsrV69WmvXrlVeXp4eeughVVdXa/r06ZKkBQsWaPHixc37T5kyRa+++qrWr1+vgwcPatOmTXryySc1ZcoUUydQMxjWp4d694xUTZ1Hnx4oMbocAEAX5fOckWnTpqm4uFhLlixRYWGhRowYoWXLljXfpikoKGh1JeTOO++UxWLRE088oaNHjyouLk5TpkzR/Pnz/dcLdEkWi0UTh8Zr3Y7D2rT3ePNL9AAAaKlDE1gzMjKUkZHR5u9WrlzZ+gR2u+666y7dddddHTkVQtzEpITGMFKk+75rdDUAgK6Id9MgoJrmjeR8c0Kl1XUGVwMA6IoIIwio/r26KTGhuzxe6eP8tl8ZAAAwN8IIAq7p6sgm3lMDAGgDYQQBNzGpYcVeXpoHAGgLYQQBNyExQRaLlFdYqSOlNUaXAwDoYggjCLiYqAilnB8jiVs1AIDTEUYQFM3zRvIIIwCA1ggjCIpJLSax8hoAAEBLhBEExcWDY+WwW3W0rFZ5hRVGlwMA6EIIIwgKZ4RNl1wQK0natJf1RgAAJxFGEDRN76bhEV8AQEuEEQRN07yRj/KLVO/2GFwNAKCrIIwgaEafH6Nop13lNfXKPVRqdDkAgC6CMIKgsVktmjC0YTVW1hsBADQhjCCoTj7iyyRWAEADwgiCKr0xjGz7ukTVLrfB1QAAugLCCIIqMaG7zotxyuX2aOvXxUaXAwDoAggjCCqLxdK8NDyP+AIAJMIIDDAxiUmsAICTCCMIuomNi5/tPFymkkqXwdUAAIxGGEHQ9Yl2alifHvJ6pex8nqoBALMjjMAQE1u8xRcAYG6EERhiEmEEANCIMAJDjE+Mk81q0f6iKn1TUmV0OQAAAxFGYIiezghdNCBGkrSZ1VgBwNQIIzAM640AACTCCAzUFEY25x2X1+s1uBoAgFEIIzBM2qBe6hZh0/EKl3YfLTe6HACAQQgjMEyk3aZLhsRJkjbu4VYNAJgVYQSGmtS4NPzmPCaxAoBZEUZgqPTGpeE/zi9SndtjcDUAACMQRmCokedFKzYqQpUutz47eMLocgAABiCMwFBWq0XpPOILAKZGGIHhmt7iy9LwAGBOhBEYruk9NdsPnFBlbb3B1QAAgo0wAsMNio/SgNhuqvd49cm+YqPLAQAEGWEEXQJv8QUA8yKMoEvgPTUAYF6EEXQJ6UMbFj/78ki5jlfUGlwNACCYOhRGVq1apalTpyolJUUzZ85UTk7OGfe96aablJycfNrX7bff3uGiEX7ie0RqxHnRkliNFQDMxucwsmHDBmVlZWnevHlau3athg8frjlz5qioqO0/IE899ZQ2btzY/PX222/LZrPpe9/7XqeLR3iZ2Hh1ZBPvqQEAU/E5jCxfvlyzZs3SjBkzlJSUpMzMTDmdTq1Zs6bN/Xv16qXevXs3f23atElOp5MwgtNMHHZy3ojX6zW4GgBAsPgURlwul3bu3Kn09PSTDVitSk9P1/bt29vVxpo1a3T11VcrKirKt0oR9i69IE4RNosOnajWgeIqo8sBAASJ3ZedS0pK5Ha7FR8f32p7fHy88vPzz3l8Tk6OvvrqKy1cuNC3Khu53e4OHXeu9vzdbijpSmPgtFs0ZmAvbdlfon9/dUw/vnRQwM/ZlfpvFLOPAf03d/8lxiCQ/W9vmz6Fkc56/fXXdeGFFyo1NbVDx+fm5vq5osC2G0q6yhgkdq/TFkkbtuVrpCN4C6B1lf4byexjQP/N3X+JMTCy/z6FkdjYWNlsttMmqxYVFSkhIeGsx1ZVVWn9+vX6+c9/7nuVjVJSUmSz2Tp8/Kncbrdyc3P93m4o6WpjUB9boj/v/FhfFruVmnqRrFZLQM/X1fpvBLOPAf03d/8lxiCQ/W9q+1x8CiMOh0OjRo1Sdna2rrzySkmSx+NRdna2MjIyznrsO++8I5fLpWuvvdaXU7Zis9kC8kEJVLuhpKuMwdjBcerusKmkqk67j1Vq9PkxQTlvV+m/kcw+BvTf3P2XGAMj++/z0zSzZ8/W6tWrtXbtWuXl5emhhx5SdXW1pk+fLklasGCBFi9efNpxr7/+uq688krFxsZ2vmqErQibVZclNj7iy2qsAGAKPs8ZmTZtmoqLi7VkyRIVFhZqxIgRWrZsWfNtmoKCAlmtrTNOfn6+tm3bphdffNE/VSOspScl6L0vj2nj3uOaO3mo0eUAAAKsQxNYMzIyznhbZuXKladtS0xM1O7duztyKphQ00vztuwvVm29W5F28142BQAz4N006HIu7NtDCT0iVVPn0adfnzC6HABAgBFG0OVYLBZNTGqYN7I5j3kjABDuCCPokiYmnVwaHgAQ3ggj6JKawshnB0+orKbO4GoAAIFEGEGXdH6vbhqS0F0er/RxfvBWYgUABB9hBF1W+lDWGwEAMyCMoMtqesSXMAIA4Y0wgi5rwtB4WSzSnmMVOlpWY3Q5AIAAIYygy+oV5dDo/g3vpuHqCACEL8IIurSJzbdqis6xJwAgVBFG0KU1LX62ae9xeb1eg6sBAAQCYQRd2iUXxMlht+pIWY3yj1caXQ4AIAAII+jSnBE2jRscK4l5IwAQrggj6PKal4bfQxgBgHBEGEGX1xRGsvOL5PYwbwQAwg1hBF1eyvkx6um0q7ymXrmHSo0uBwDgZ4QRdHk2q0UTElkaHgDCFWEEIWHSMJaGB4BwRRhBSEgf2hBGtn5dopo6t8HVAAD8iTCCkDC0d3f1i3bKVe/R1v0lRpcDAPAjwghCgsViUXrjaqwbuVUDAGGFMIKQManxEd/NeYQRAAgnhBGEjKb1RnIPlepElcvgagAA/kIYQcjoG+1UUp8e8nql7Dze4gsA4YIwgpDSdKtmE7dqACBsEEYQUtKHNi1+xpURAAgXhBGElMuGxstqkfYdr9ShE9VGlwMA8APCCEJKtDNCFw3sJYnVWAEgXBBGEHImDmVpeAAIJ4QRhJymR3w37S2S1+s1uBoAQGcRRhByxg7uJWeEVccravXV0QqjywEAdBJhBCEn0m7TJRfESeJWDQCEA8IIQtLJWzWEEQAIdYQRhKSmxc8+yi9SndtjcDUAgM4gjCAkjTwvWr2iIlTpcivnmxNGlwMA6ATCCEKS1WppXo114x5WYwWAUEYYQciayHtqACAsEEYQspoWP9t+oESVtfUGVwMA6CjCCELW4Pgond+rm+rcXn2yv9jocgAAHUQYQciyWCzNT9Vs5hFfAAhZHQojq1at0tSpU5WSkqKZM2cqJyfnrPuXlZUpMzNTkyZN0ujRo/Xd735XH3zwQYcKBlpKT2qcxLqXSawAEKrsvh6wYcMGZWVlKTMzUxdddJFWrFihOXPm6J133lF8fPxp+7tcLs2ePVvx8fF68skn1bdvXx0+fFjR0dF+6QDMLb1x3siugjIVVdQqvkekwRUBAHzl85WR5cuXa9asWZoxY4aSkpKUmZkpp9OpNWvWtLn/mjVrVFpaqqVLl+riiy/WgAEDdOmll2r48OGdLh7o3TNSw/v1lCRtzuPqCACEIp+ujLhcLu3cuVNz585t3ma1WpWenq7t27e3ecw///lPjRkzRg8//LDee+89xcXF6fvf/75uu+022Ww2n4p1u90+7d/e9vzdbigJhzFIHxqnL4+U68M9hZo2uq9Px4ZD/zvL7GNA/83df4kxCGT/29umT2GkpKREbrf7tNsx8fHxys/Pb/OYgwcP6qOPPtI111yj5557TgcOHFBmZqbq6+t11113+XJ65ebm+rS/0e2GklAeg36WWknSv3YVaMeQjj3iG8r99xezjwH9N3f/JcbAyP77PGfEV16vV/Hx8XrkkUdks9k0evRoHT16VC+88ILPYSQlJcXnqyln43a7lZub6/d2Q0k4jMGwEfVatPk9Hat0K27QhRoUF9XuY8Oh/51l9jGg/+buv8QYBLL/TW2fi09hJDY2VjabTUVFre/NFxUVKSEhoc1jevfuLbvd3qqDiYmJKiwslMvlksPhaPf5bTZbQD4ogWo3lITyGERH2ZQ2qJe27C/RR/tKNKR3T5/bCOX++4vZx4D+m7v/EmNgZP99msDqcDg0atQoZWdnN2/zeDzKzs5WWlpam8eMHTtWBw4ckMdz8s2q+/fvV+/evX0KIsDZND1Vs5H1RgAg5Pj8NM3s2bO1evVqrV27Vnl5eXrooYdUXV2t6dOnS5IWLFigxYsXN+9/ww036MSJE1q4cKH27dunf/3rX3r22Wd14403+q8XML1Jw04ufubxeA2uBgDgC5/njEybNk3FxcVasmSJCgsLNWLECC1btqz5Nk1BQYGs1pMZ57zzztMLL7ygrKwsXXvtterbt69uvvlm3Xbbbf7rBUxvzMBe6u6wqaSqTruOlGlU/xijSwIAtFOHJrBmZGQoIyOjzd+tXLnytG1paWlavXp1R04FtEuEzapLh8Tp/d2F2rT3OGEEAEII76ZB2JjY+J6aTSwNDwAhhTCCsNEURj7ZV6zaenMuXgQAoYgwgrCR3LenEno4VF3n1vYDJ4wuBwDQToQRhA2r1dL8iO9mHvEFgJBBGEFYmZjU8KoC1hsBgNBBGEFYaZo38tk3pSqvqTO4GgBAexBGEFYGxEZpcHyU3B6vPs4vNrocAEA7EEYQdpqujnCrBgBCA2EEYWdSYxjZnEcYAYBQQBhB2JmQGC+LRfrqaIWOldUYXQ4A4BwIIwg7sd0dGtU/WpK0OY/VWAGgqyOMICxNHMq8EQAIFYQRhKWT76k5Lq/Xa3A1AICzIYwgLF1yQZwcNqsKSmu073il0eUAAM6CMIKw1M1h09jBvSQ1XB0BAHRdhBGErUnNt2qYxAoAXRlhBGErvcV6I24P80YAoKsijCBspZ4fo56RdpXV1OvzQ6VGlwMAOAPCCMKW3WbVZUMb3uK7idVYAaDLIowgrE1sCiNMYgWALoswgrA2aVjDvJEt+0tUU+c2uBoAQFsIIwhrQ3v3UJ+ekXLVe7Tt6xKjywEAtIEwgrBmsViaH/FlaXgA6JoIIwh7TUvDbyaMAECXRBhB2GsKIzmHSlVaVWdwNQCAUxFGEPb6xTg1tHd3eb1Sdj6rsQJAV0MYgSm0fIsvAKBrIYzAFAgjANB1EUZgCpclxstqkfKPV+rwiWqjywEAtEAYgSnEdItQyoBekrg6AgBdDWEEpjEpqWFp+M15TGIFgK6EMALTmDj05OJnXq/X4GoAAE0IIzCNsYNjFWm3qrC8VnuOVRhdDgCgEWEEpuGMsOnSIXGSmDcCAF0JYQSmkj6UR3wBoKshjMBUml6a91F+serdHoOrAQBIhBGYzMj+0YrpFqGK2np99k2p0eUAAEQYgcnYrBalD214xJdbNQDQNRBGYDosDQ8AXQthBKbTFEY+PVCiKle9wdUAADoURlatWqWpU6cqJSVFM2fOVE5Ozhn3feONN5ScnNzqKyUlpcMFA511QXyUzu/VTXVur7Z+XWJ0OQBgej6HkQ0bNigrK0vz5s3T2rVrNXz4cM2ZM0dFRWdeYrtHjx7auHFj89f777/fqaKBzrBYWs4bYWl4ADCaz2Fk+fLlmjVrlmbMmKGkpCRlZmbK6XRqzZo1ZzzGYrGod+/ezV8JCQmdKhrorEnDGj6DvKcGAIxn92Vnl8ulnTt3au7cuc3brFar0tPTtX379jMeV1VVpSlTpsjj8WjkyJG6++67NWzYMJ+LdbvdPh/Tnvb83W4oMesYXDYkVpL0RUG5ymq7ma7/LZn1M9CE/pu7/xJjEMj+t7dNn8JISUmJ3G634uPjW22Pj49Xfn5+m8cMGTJEv/vd75ScnKzy8nK9+OKLuv7667V+/Xr169fPl9MrNzfXp/2NbjeUmHEMBkXbdaCsXrnHahVtwv6fyoyfgZbov7n7LzEGRvbfpzDSEWlpaUpLS2v187Rp0/Taa6/pF7/4hU9tpaSkyGaz+a02t9ut3Nxcv7cbSsw8Blcc2qXlm79W7jGX7ph2qen638TMnwGJ/pu9/xJjEMj+N7V9Lj6FkdjYWNlsttMmqxYVFbV7HkhERIRGjBihAwcO+HJqSZLNZgvIByVQ7YYSM47BpGG9tXzz18o56jJl/09l9jGg/+buv8QYGNl/nyawOhwOjRo1StnZ2c3bPB6PsrOzW139OBu3262vvvpKvXv39q1SwM/GJ8bLbrXoaKVbf9t5xOhyAMC0fH6aZvbs2Vq9erXWrl2rvLw8PfTQQ6qurtb06dMlSQsWLNDixYub9//jH/+ojRs36uDBg9q5c6fuu+8+HT58WDNnzvRfL4AO6BFpV8ZlgyRJ9/xvrj4/xLtqAMAIPs8ZmTZtmoqLi7VkyRIVFhZqxIgRWrZsWfNtmoKCAlmtJzNOWVmZfvOb36iwsFAxMTEaNWqUXnvtNSUlJfmvF0AH/ep7ydqeV6DPjrp064qt+stdE9U32ml0WQBgKh2awJqRkaGMjIw2f7dy5cpWPz/wwAN64IEHOnIaIODsNqvuuayXMjdXKq+wUrf9aav+fPsEdXOY974xAAQb76aB6XV3WPX8TRcrNipCOd+U6t7//Uwej9fosgDANAgjgKTB8VF6JuNiRdgsWp9boCf+8ZXRJQGAaRBGgEbjE+O18LqGlzgu+ederdt+yOCKAMAcCCNAC7PGDdTcyxMlSQvW5Ggbb/UFgIAjjACnWPC94frOyL5y1Xs0d+VWfVNSZXRJABDWCCPAKWxWi5740RiNOC9axytcmvPSVlXU1htdFgCELcII0IbukXa9cMs49e4Zqd1Hy/XzV7fLzRM2ABAQhBHgDPr36qbnbx6nSLtV//zymLI27DK6JAAIS4QR4CzGDOylP8y8SJK0bOM+vfqJ7y94BACcHWEEOIdrLuqv+VdeKEn6zbrPtTnvuMEVAUB4IYwA7fDzK5J07UX9Ve/x6s6XP1V+YYXRJQFA2CCMAO1gsVi06D9TNWZgL5VW1+nWFVtVWlVndFkAEBYII0A7OSNseu7mi9U/xqn845W6c9U21bk9RpcFACGPMAL4oE9Pp174ySXq7rBpc16R/usvO+X18sgvAHQGYQTw0YjzovXk9WmyWKRXPzmgFzftN7okAAhphBGgA64c2VcPXDVCkrRw/Rd6/8tjBlcEAKGLMAJ00K3fGqIfjRsoj1f62avbtftIudElAUBIIowAHWSxWPTID0dr/JA4VdTW6/+8tEXHK2qNLgsAQg5hBOgEh92qZzIu1gXxUTp0olq3/2mraurcRpcFACGFMAJ0Umx3h174ySWKdtr16YET+uWaHJ6wAQAfEEYAPxjau4eevvFi2awWrdtxWEvf32t0SQAQMggjgJ9MGpagzGtHSZL+8O5X2pBbYHBFABAaCCOAH2VcNlg/Sb9AknT36h3K+eaEofUAQCggjAB+9uDVI/Tt5N6qqfPo1hVbVVBabXRJANClEUYAP7PbrHrqhjRd2LeHjpXX6tYVW1Xlqje6LADosggjQAD0dEbohVsuUVx3h3YeLtPdf/5MHg9P2ABAWwgjQIAMjIvSczddLIfNqnd2HtEf3t1tdEkA0CURRoAAGndBnB6bkSJJevpfeVqz7RuDKwKArocwAgTY9LEDNG/KUEnSL9/I0Zb9xQZXBABdC2EECIJ7vpOsq0b3U53bq7krt+lAUZXRJQFAl0EYAYLAarVo8ayLNPr8aBVXujRnxRaV1dQZXRYAdAmEESBIohx2Lbv5EvWNjtSeYxX62SvbVe/2GF0WABiOMAIEUb8Yp5bdfImcEVZ98FWhHl2/y+iSAMBwhBEgyFIGxOj/zRojSXpp836t/OhrYwsCAIMRRgADXJVynu77brIk6aE3d+rDPYUGVwQAxiGMAAb56beHanra+XJ7vPrpqk+191iF0SUBgCEII4BBLBaLsmak6OLBsSqvqdecFVtUUukyuiwACDrCCGCgSLtNz950sQbEdtPXRVW64+VtctXzhA0AcyGMAAZL6BGpF265RD0i7fp4X7EeXJcrr5eX6gEwjw6FkVWrVmnq1KlKSUnRzJkzlZOT067j1q9fr+TkZP30pz/tyGmBsJXcr6ee+nGarBZp9dZv9PyH+UaXBABB43MY2bBhg7KysjRv3jytXbtWw4cP15w5c1RUVHTW47755hv9/ve/17hx4zpcLBDOpiT30YNXj5QkZf31S/39i6MGVwQAweFzGFm+fLlmzZqlGTNmKCkpSZmZmXI6nVqzZs0Zj3G73br33nv1s5/9TAMHDuxUwUA4mz3xAv14/CB5vdL/fW27vjhcZnRJABBwPoURl8ulnTt3Kj09/WQDVqvS09O1ffv2Mx63dOlSxcfHa+bMmR2vFDABi8WizGtHaWJSvKpcbt26YouOldcYXRYABJTdl51LSkrkdrsVHx/fant8fLzy89u+x71161a9/vrrWrduXYeLbOJ2uzvdRlvt+bvdUGL2MeiK/bdKeur6MZrxTLb2Ha/SbSu26pVbL5UzwhaQ83XFMQgm+m/u/kuMQSD73942fQojvqqoqNCCBQv0yCOPKC4urtPt5ebm+qGq4LUbSsw+Bl2x/3ePi9Kv3qvWZ9+U6vYXPtT88TGyWCwBO19XHINgov/m7r/EGBjZf5/CSGxsrGw222mTVYuKipSQkHDa/gcPHtShQ4d05513Nm/zeBrWUBg5cqTeeecdDRo0qN3nT0lJkc3mv/86dLvdys3N9Xu7ocTsY9CV+z9GUtz5Rbpl+VZtOlijccMG6OdXJPn9PF15DIKB/pu7/xJjEMj+N7V9Lj6FEYfDoVGjRik7O1tXXnmlpIZwkZ2drYyMjNP2T0xM1FtvvdVq2xNPPKHKykr9+te/Vr9+/Xw5vWw2W0A+KIFqN5SYfQy6av8nDuujR384Wr98I1dP/nOvkvr21DUX9Q/IubrqGAQL/Td3/yXGwMj++3ybZvbs2br//vs1evRopaamasWKFaqurtb06dMlSQsWLFDfvn11zz33KDIyUhdeeGGr46OjoyXptO0A2nb9pYOUV1ih5z/cp3v/9zMNiO2mtEGxRpcFAH7jcxiZNm2aiouLtWTJEhUWFmrEiBFatmxZ822agoICWa0s7Ar40y+vGqH8wkq99+Ux3fanbfrLXRN1fq9uRpcFAH7RoQmsGRkZbd6WkaSVK1ee9djHHnusI6cETM1mtejJG9L0n/+zWV8eKdetK7bq9TsmqHtkQOegA0BQcAkDCBE9Iu1adss4JfRwaFdBmf7vazvk9vAOGwChjzAChJABsVF67uZxctit+seuo1r0zpdGlwQAnUYYAULM2EGx+u//TJUkPfvvfK3ectDgigCgcwgjQAj6wZjz9fMrhkmSHlibq4/yz/6iSgDoyggjQIj6xRXDdHXqear3eHXHy9u0/3il0SUBQIcQRoAQZbVatHjmRbpoQIxOVNVpzootKq2uM7osAPAZYQQIYc4Im56/eZzOi3Eqr7BSd73yqerdHqPLAgCfEEaAENcn2qllt4xTlMOmD/cc10Nv7ZTXyyO/AEIHYQQIA6P6x+iJH42RxSK9/NEBrdi83+iSAKDdCCNAmPiPUf10//eGS5IefvsL/Wv3MYMrAoD2IYwAYWTu5YmaefEAebzSz17Zrj1Hy40uCQDOiTAChBGLxaKF16Xo0gviVF5br/+zYouKKmqNLgsAzoowAoQZh92qZ266WIPionSwuFp3vLxNtfVuo8sCgDMijABhKK67Qy/+ZJx6Ou3asr9Ev3ojlydsAHRZhBEgTCX16amlPx4rm9WiNz49pP/5IM/okgCgTYQRIIxdfmFv/faakZKkRe/s1jufHzG4IgA4HWEECHM3T7hAN08YLEma/+cd+vxQqcEVAUBrhBHABP7r+yP1rWEJqq5z69YVW3W0rMbokgCgGWEEMAG7zaqlN45VUp8eOlJWo1tXbFW1iydsAHQNhBHAJKKdEXrhlnGKjYpQ7qFS3fO/O+Tx8IQNAOMRRgATGRzfXc/eNE4RNos25B7R//vHV0aXBACEEcBsLh0Sp99dlyJJeuqfe/WXHYcNrgiA2dmNLgBA8M0cN1B5hZV65oM8/fKNXKX2cajf7h2KctgV5bDLGWFTtwibohw2OR02RUXY1M3R+NW4vVuETc6m7x02Oe02Wa0Wo7sGIAQRRgCTWvDdZOUXVujdL45qa0GtVND5NUicEVZFOeyNQeXk9y1DjLPl9y2CTbcW/578XevjI2wWWSwEHiDcEEYAk7JaLXr6xrF6b9dR7di1V/H9+qu23qtql1vVdW5VudyqqXOrylWv6jqPql31qq5zN/y+xT619Z7mNmvqPKqpcwWsZpvVoqiIxqs1p4aYNkJPVIRd3RzWxt/ZTw9BDpscVqmkxq3S6jp1czS828fGFR4gqAgjgInZbVZdOaKPEmoPa8yYC2Sz2Xxuw+PxNoSUupMhpdrVMsw0batvDjDVdW7VuFr+7tQA1GKfOrfcjU/9uD1eldfWq7y23t9DIb31XvO3NqtFETaLHDarHHabIu1WOezWxp/b+N5uVWSLnyNsrfc51/GRdqscNluL4y2NbZ7cRkBCOCOMAOgUq9Wi7pF2dY8MzP+deL1e1blbXrGpPy34tAxAbYWb6sZQ0xBu6s96dUdqCD1uj1c1dR5JAQg+HWCzWk4LM5H208NNhK3tgHRqeGo63m616OjhatVEF6l/bHf1i3aqm8P3UAp0BmEEQJdmsVjksDdcKYhRhN/bd7vd2r59u0alXCS3LHLVe05+uRuCSp3b22qbq96j2uafPa2OqXN7VHvKtlb7uFsc27j/qW00Hd+qTo9X1Z6GABUQH29p/jbaaVe/GKf6xXRTv+hI9Yt2qm+Ms+HfaKf6xTgVF+VgwjL8hjACwPQaAo+14TZVpNHVNGi6ItQyqNS5zxCC2ghIdafsc6aAVFvn1tHiUlV57TpaVqsql1tlNfUqq6nQV0crzlhfhM2iPj0bgsnJkBLZ8G9jYOkb7ZQzgqssODfCCAB0QS2vCAUyILndbu3YsUNjxoyR1WpVeW29jpbW6EhZjY6U1uhoWdP3tc3fH6+oVZ3bq0MnqnXoRPVZ2+8VFXEyrLS4wtIyuMR1d/CUlMkRRgAAkhoCULQzQtHOCA3r2/OM+9W5PSosr9WRshodLa1RQavQcvL7mjqPTlTV6URVnb48Un7G9hw2q/qccjvo1O/7REdylSWMEUYAAD6JsFnVv1c39e/V7Yz7eL1elVXXNwSUxtBy6vdHy2p0vMIll9ujb0qq9U3J2a+yxEZFNM9ZaTl/peX3sVERXGUJQYQRAIDfWSwWxURFKCYqQsn9znyVxVXv0bHyxqsppbXNIeVIi8BypLRGtfUelVTVqeRcV1nsVvVtusrSYv5Ky9DSN9rZcPsrDHm9Xnm9ksfrlaf535Pfez0N/7obt3u9Ul29W7VuY1+aSRgBABjGYbdqQGyUBsRGnXEfr9er0uq61reBTgkuR8tqVFTpkqveo4PF1TpYfParLPHdHc1XU3r3cKj8RJniD3whr0VyexrO2eoPuqfFH/TGf92N207b1+uVx3PKvt5T9vW0ERS8amyzZaDwtruept93RPcIiz4Y4VJCzzNf7QokwggAoEuzWCzqFeVQryiHhveLPuN+tfVuHSurPSW0tLjCUlajo2W1ctV7VFTpUlGlS18UlJ1sYO+BIPSm67BaJKvFIqtFiu/WsLifUQgjAICwEGm3aWBclAbGnf0qS0lVXesnhU5U61BBgc7r1082m1U2i0VWq0WWFn+sG/5t/N7a8I4kq0UN+1pa7GttuW/DPhaLRTbryXYsLduzql37Nm2ztKyjsc7T9m2qyXqG+hv3bZpb0/REVZTDuEhAGAEAmIbFYlFcd4fiujs0sn/DVZaGP8YVGjNmWIdeiYDOC88ZPAAAIGQQRgAAgKEIIwAAwFAdCiOrVq3S1KlTlZKSopkzZyonJ+eM+7777ruaPn26xo0bpzFjxugHP/iB1q1b19F6AQBAmPF5AuuGDRuUlZWlzMxMXXTRRVqxYoXmzJmjd955R/Hx8aftHxMTozvvvFOJiYmKiIjQ+++/rwceeEDx8fH61re+5ZdOAACA0OXzlZHly5dr1qxZmjFjhpKSkpSZmSmn06k1a9a0uf/48eP1ne98R0OHDtWgQYN0yy23KDk5Wdu2bet08QAAIPT5dGXE5XJp586dmjt3bvM2q9Wq9PR0bd++/ZzHe71effTRR9q3b5/uvfden4t1u90+H9Oe9vzdbigx+xiYvf8SY0D/zd1/iTEIZP/b26ZPYaSkpERut/u02zHx8fHKz88/43Hl5eW6/PLL5XK5ZLVa9dvf/lYTJ0705dSSpNzcXJ+PMbLdUGL2MTB7/yXGgP6bu/8SY2Bk/4Oy6Fn37t21bt06VVVVKTs7W4899pgGDhyo8ePH+9ROSkqKXxekcbvdys3N9Xu7ocTsY2D2/kuMAf03d/8lxiCQ/W9q+1x8CiOxsbGy2WwqKipqtb2oqEgJCQlnPM5qtWrw4MGSpBEjRigvL0/PPfecz2HEZrMF5IMSqHZDidnHwOz9lxgD+m/u/kuMgZH992kCq8Ph0KhRo5Sdnd28zePxKDs7W2lpae1ux+PxyOVy+XJqAAAQpny+TTN79mzdf//9Gj16tFJTU7VixQpVV1dr+vTpkqQFCxaob9++uueeeyRJzz77rEaPHq1BgwbJ5XLpgw8+0JtvvqmHHnrIrx0BAAChyecwMm3aNBUXF2vJkiUqLCzUiBEjtGzZsubbNAUFBbJaT15wqaqqUmZmpo4cOSKn06nExET993//t6ZNm+a/XgAAgJDVoQmsGRkZysjIaPN3K1eubPXz/PnzNX/+/I6cppnX65XEo72BYPYxMHv/JcaA/pu7/xJjEIxHe5v+jp+JxXuuPboAl8tl+keuAAAIVSkpKXI4HGf8fUiEEY/Ho/r6elmtVlksFqPLAQAA7eD1euXxeGS321tN4ThVSIQRAAAQvjr01l4AAAB/IYwAAABDEUYAAIChCCMAAMBQhBEAAGAowggAADAUYQQAABiKMAIAAAxlyjDy7LPPasaMGUpLS9OECRP005/+VPn5+UaXFTSvvPKKrrnmGo0dO1Zjx47Vj370I33wwQdGl2WY5557TsnJyVq4cKHRpQTNU089peTk5FZf3/ve94wuK6iOHj2qe++9V+PHj1dqaqquueYaU712YurUqad9BpKTk5WZmWl0aUHhdrv1xBNPaOrUqUpNTdWVV16ppUuXnvMdKuGmoqJCCxcu1JQpU5Samqrrr79eOTk5Qa+jQy/KC3WffPKJbrzxRqWkpMjtduvxxx/XnDlztH79ekVFRRldXsD169dP9957rwYPHiyv16t169Zp3rx5Wrt2rYYNG2Z0eUGVk5Oj1157TcnJyUaXEnTDhg3T8uXLm3+22WwGVhNcpaWluuGGGzR+/Hg9//zzio2N1ddff62YmBijSwua119/vdWL0fbs2aPZs2ebJpQ+//zzevXVV/X73/9eSUlJ+vzzz/WrX/1KPXv21M0332x0eUHz4IMPas+ePVq0aJH69OmjN998U7Nnz9aGDRvUt2/foNVhyjDywgsvtPr5scce04QJE7Rz505dcsklBlUVPFOnTm318/z58/Xqq69qx44dpgojlZWVuu+++/Too4/qf/7nf4wuJ+hsNpt69+5tdBmGeP7559WvXz9lZWU1bxs4cKCBFQVfXFxcq5+fe+45DRo0SJdeeqlBFQXX9u3bdcUVV+jb3/62JGnAgAFav369IVcFjFJTU6N3331XTz/9dPPfvp/97Gd6//339corr2j+/PlBq8WUt2lOVV5eLkmm+q+iJm63W+vXr1dVVZXS0tKMLieoHn74YU2ePFnp6elGl2KIr7/+WpMmTdIVV1yhe+65R4cPHza6pKD55z//qdGjR+vnP/+5JkyYoB/+8IdavXq10WUZxuVy6c0339SMGTNM8zLStLQ0ffTRR9q3b58k6csvv9S2bdt0+eWXG1xZ8NTX18vtdisyMrLV9sjISH366adBrcWUV0Za8ng8+t3vfqexY8fqwgsvNLqcoNm9e7euv/561dbWKioqSkuXLlVSUpLRZQXN+vXr9cUXX+j11183uhRDpKamKisrS0OGDFFhYaGWLl2qG2+8UW+99ZZ69OhhdHkBd/DgQb366quaPXu27rjjDuXm5urRRx9VRESErrvuOqPLC7p//OMfKi8vN1Xfb7/9dlVUVOiqq66SzWaT2+3W/Pnzde211xpdWtD06NFDaWlpevrpp5WYmKiEhAS9/fbb2rFjhwYNGhTUWkwfRjIzM7Vnzx698sorRpcSVEOGDNG6detUXl6uv/3tb7r//vv18ssvmyKQFBQUaOHChXrxxRdP+y8Cs5g8eXLz98OHD9dFF12kKVOm6K9//atmzpxpYGXB4fV6NXr0aN19992SpJEjR2rPnj167bXXTPUHucmaNWt0+eWXB3WOgNH++te/6q233tLixYuVlJSkXbt2KSsrS3369DHVZ2DRokV64IEHdPnll8tms2nkyJG6+uqrtXPnzqDWYeow8vDDD+tf//qXXn75ZfXr18/ocoLK4XBo8ODBkqTRo0crNzdXf/rTn/Twww8bXFng7dy5U0VFRZo+fXrzNrfbrS1btmjVqlXKzc011WROSYqOjtYFF1ygAwcOGF1KUPTu3VtDhw5ttS0xMVF/+9vfDKrIOIcOHdLmzZv11FNPGV1KUC1atEi33367rr76aklScnKyDh8+rGeffdZUYWTQoEF6+eWXVVVVpYqKCvXp00e/+MUvgj6HypRhxOv16pFHHtHf//53rVy50nQT19ri8XjkcrmMLiMoLrvsMr311luttv3qV79SYmKibrvtNtMFEalhMu/BgwdNM6F17NixzXMFmuzfv1/nn3++QRUZ54033lB8fHzzRE6zqKmpOW1+jM1mM92jvU2ioqIUFRWl0tJSbdy4Uffdd19Qz2/KMJKZmam3335bTz/9tLp3767CwkJJUs+ePeV0Og2uLvAWL16syy+/XOedd54qKyv19ttv65NPPjntKaNw1aNHj9PmB0VFRalXr16mmTf0+9//XlOmTFH//v117NgxPfXUU7Jarfr+979vdGlBccstt+iGG27QM888o6uuuko5OTlavXq1Ka4MtuTxePTGG2/ohz/8oex2c/05mDJlip555hn179+/+TbN8uXLNWPGDKNLC6oPP/xQXq9XQ4YM0YEDB7Ro0SIlJia2unIcDOb69DV69dVXJUk33XRTq+1ZWVlB/x/ACEVFRbr//vt17Ngx9ezZU8nJyXrhhRc0ceJEo0tDkBw5ckR33323Tpw4obi4OF188cVavXr1aY97hqvU1FT98Y9/1OOPP66lS5dqwIABeuCBB0w1eVGSNm/erMOHD5vuD7DUsL7Gk08+qczMTBUVFalPnz760Y9+pHnz5hldWlCVl5fr8ccf15EjR9SrVy/9x3/8h+bPn6+IiIig1mHxmvWaFAAA6BJYZwQAABiKMAIAAAxFGAEAAIYijAAAAEMRRgAAgKEIIwAAwFCEEQAAYCjCCAAAMBRhBAAAGIowAgAADEUYAQAAhiKMAAAAQ/1/ktW37GdGRakAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(range(2,10),silhouette)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1I7ACTuOR-HN"
},
"source": [
"igual que en el caso principal del desafio, tenemos que con 3 clusters, ya podemos separar de forma prolija al Dataframe"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 6,
"status": "ok",
"timestamp": 1684158956656,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "bKUrlSNURulh",
"outputId": "83a902a9-c584-4f8e-daa7-e31458f231d4"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:\n",
"\n",
"The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
"\n"
]
},
{
"data": {
"text/plain": [
"array([[ 1.81833402, 170.51414296, 85.19486617],\n",
" [ 1.87303065, 170.51830693, 85.20189672],\n",
" [ 2.02132657, 170.51755821, 85.19979706],\n",
" ...,\n",
" [ 1.53285042, 169.35194826, 84.03958689],\n",
" [ 1.68833241, 170.02069192, 84.71023624],\n",
" [ 1.7557332 , 169.35643209, 84.04916715]])"
]
},
"execution_count": 263,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" kmeans=KMeans(n_clusters=3)\n",
" kmeans.fit_transform(df_standar_2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 6,
"status": "ok",
"timestamp": 1684158956657,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "6cv3jeRZVO0r",
"outputId": "ab90a229-906d-49b1-a349-767eb1eef377"
},
"outputs": [
{
"data": {
"text/plain": [
"0 2809\n",
"1 4\n",
"2 3\n",
"Name: Cluster, dtype: int64"
]
},
"execution_count": 264,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_2['Cluster']=kmeans.labels_\n",
"df_2.Cluster.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IY-GyU8GWg_V"
},
"source": [
"Utilizando menos columnas de las iniciales, siendo los componentes de la camara y el almacenamiento externo como datos sin uso, podemos visualizar en la segmentacion, que no se ha logrado dividir de una forma mas equilibrada al Dataframe. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 603
},
"executionInfo": {
"elapsed": 44307,
"status": "ok",
"timestamp": 1684159000958,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "qlTGFcZmXdEa",
"outputId": "fb7afda2-aff3-4cba-a862-131d9798de16"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAJOCAYAAABYwk4SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPuUlEQVR4nOzdd3wUZeLH8W9200kjofeagCQkIbRAAAEr4omgoCLoqaeeKN55FvTuVBRRPO8E9BQ8/VlRLIgnigUFERFROUKVXgUJSSgppO7O7w/cdXezk0aSTcLn/Xr5kszOzj4z88wzz3zn2Vk/wzAMAQAAAAAAAACAMiy+LgAAAAAAAAAAAPUVIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AABADYmLi9Mzzzzj62L4zNq1axUXF6e1a9f6uigVmjRpkiZNmuTrYlTL+++/r7i4OG3atKnCeWt7PUeMGKFp06bV6DKfeeYZxcXF1egyz1RDqtt1rTbqAAAAQH1DiA4AABqdBQsWKC4uTldeeaWvi9IoLViwQO+//76vi+HkCDg//fRTr69PmzZNycnJdVwqeCoqKtIrr7yiK6+8UikpKUpISNCFF16oRx55RHv37q2zcixZskSvvPJKnX3emXLcNHH8l5CQoLS0NN1444167bXXlJeX5+siAgAANHr+vi4AAABATVuyZInatm2rjRs3av/+/erYsaOvi9SovPXWW2ratKnGjh3rNr1fv37auHGjAgICfFSyynvppZd8XYQ6UV/W89ixY7rpppu0ZcsWDR8+XKNHj1ZoaKj27t2rpUuX6p133tHmzZvrpCwfffSRdu7cqeuvv77S76kPdXvq1Klq166dSktLlZWVpe+//14zZ87UK6+8oueee049evTwWdkAAAAaO0J0AADQqBw8eFDr16/Xs88+qwcffFBLlizR7bff7uti1VuGYaioqEjBwcFnvCyLxaKgoKAaKFXtCwwMrLFl2e12lZSUnNG618QyvKnJ9TwT999/v3766SfNnTtXF154odtrf/rTn/T000/7qGTlKyoqUkBAQL2o20OHDlVCQoLz71tuuUVr1qzRrbfeqttuu01Lly6tkeO4Npw6dUqhoaF18lmu+wwAAKCm0LMAAACNypIlSxQZGalhw4bpwgsv1JIlS7zOd/z4cd1zzz3q06eP+vbtq/vuu0/btm1TXFxcmUeVfPLJJxo1apQSEhI0evRoLVu2TNOmTdOIESMqLM/WrVt10003qU+fPkpOTtZ1112n9PR0t3kcj2v48ccfNWPGDA0cOFB9+/bVgw8+qOLiYuXk5Ojee+9Vv3791K9fPz355JMyDMNtGXa7Xa+88oouueQSJSQkaNCgQXrwwQd18uRJt/lGjBihW265RatWrdLYsWPVu3dvLVy4UJK0aNEiTZ48WampqYqPj9eoUaP05ptvlnn/zp079f333zsfL+F45rbnc6MfeeQRJScnq6CgoMx2ueuuuzR48GDZbDbntJUrV+qaa65RUlKSkpOTdfPNN2vnzp0VbuPq8Pas8OLiYs2dO1fnn3++4uPjNWzYMD355JMqLi52my8uLk6PPPKIPvzwQ+f2XrVqlaTTI7+vuuoqDRgwQL1799bYsWO9PmamvGVkZGTogQceUFpamuLj4zVixAg99NBDZcpRXFysxx9/XAMHDlRSUpKmTJmiY8eOVbieRUVFeuaZZ3ThhRc6Hw1y++2368CBA855KrselbFhwwZ99dVXuuKKK8oE6NLpoP++++4zff/PP//s9biUyv4OQV5enh577DGNGDFC8fHxSk1N1e9//3tt2bJF0unt8dVXX+nQoUPO+us4jh319+OPP9bTTz+tIUOGKDExUXl5eV6fiT5p0iSNHj1au3bt0qRJk5SYmKghQ4boP//5T5lyHjp0SLfeequSkpKUmpqqmTNnatWqVWf8nPXU1FTddtttOnTokD788EO313bv3q2pU6eqf//+SkhI0NixY/Xll1+6zeNoe9atW1dhXTIMQ88995yGDh2qxMRETZo0yevx6Vjm999/r4cfflipqakaNmyY8/UFCxbokksuUXx8vNLS0jR9+nTl5OSUWc6CBQs0cuRI9e7dW1dccYV+/PHHMvW5vH124sQJzZo1S5deeqmSk5PVp08f3XTTTdq2bZvb5ziWsXTpUj377LMaMmSIkpOTNXXqVOXm5qq4uFiPPfaYUlNTlZycrPvvv7/MsQgAABo/RqIDAIBGZcmSJTr//PMVGBio0aNH66233tLGjRvVu3dv5zx2u11//OMftXHjRl199dXq0qWLvvzyS69B3ldffaU///nPio2N1V/+8hedPHlSf/3rX9WyZcsKy7Jz505NnDhRTZo00U033SR/f3+9/fbbmjRpkt544w0lJia6zT9jxgw1a9ZMd9xxhzZs2KC3335b4eHhWr9+vVq3bq0///nP+vrrr/XSSy8pNjZWY8aMcb73wQcf1OLFizV27FhNmjRJP//8sxYsWKCtW7fqrbfecnsMxd69e/WXv/xFEyZM0Pjx49W5c2dJpx/T0r17d40YMUL+/v5asWKFpk+fLsMwNHHiREnSAw88oEcffVShoaG69dZbJUnNmjXzuv6jRo3SggUL9NVXX+niiy92Ti8oKNCKFSt0+eWXy2q1SpI++OADTZs2TWlpabr77rtVUFCgt956S9dcc40WL16sdu3aVbi98/PzywR/kioVeDnqxLp16zR+/Hh17dpVO3bs0Kuvvqp9+/bpueeec5v/u+++0yeffKKJEyeqadOmatu2rSTptdde04gRI3TppZeqpKREH3/8se68807Nnz9f5557boXLyMjI0BVXXKHc3FyNHz9eXbp0UUZGhj777DMVFha6jSyfMWOGIiIidPvtt+vQoUN69dVX9cgjj2j27Nmm62mz2ZwjmC+55BJNnjxZ+fn5Wr16tXbs2KEOHTpUeT0qsnz5cknSZZddVqX3VcdDDz2kzz77TNdee626du2qEydOaN26ddq9e7d69eqlW2+9Vbm5uTpy5Ijuv/9+SVKTJk3clvHcc88pICBAN954o4qLi8t9hMvJkyd100036fzzz9fFF1+szz77TE899ZRiY2OdwfGpU6d03XXXKTMzU5MnT1azZs300Ucf1diPlF522WX617/+pW+++Ubjx4+XdLrtufrqq9WyZUv94Q9/UGhoqD755BNNmTJFzzzzjM4//3y3ZVSmLs2ZM0fPP/+8hg0bpmHDhmnLli264YYbVFJS4rVc06dPV3R0tKZMmaJTp05JOv2jsc8++6wGDRqkq6++Wnv37tVbb72lTZs2ubVTb775ph555BH17dtX119/vQ4dOqQpU6YoIiJCrVq1KvNZ3vbZrl279MUXX+iiiy5Su3btlJWVpbffflvXXnutPv744zJt+AsvvKDg4GDdfPPN2r9/v9544w35+/vLz89POTk5uv3227Vhwwa9//77atu2Ld9wAgDgbGMAAAA0Eps2bTJiY2ON1atXG4ZhGHa73Rg6dKgxY8YMt/k+++wzIzY21njllVec02w2mzF58mQjNjbWWLRokXP66NGjjaFDhxp5eXnOaWvXrjViY2ON4cOHuy03NjbWmDt3rvPv2267zejVq5dx4MAB57SMjAwjOTnZmDhxonPaokWLjNjYWOOGG24w7Ha7c/qECROMuLg448EHH3ROKy0tNYYOHWpce+21zmk//PCDERsba3z44Ydu5fn666/LTB8+fLgRGxtrfP3112W2X0FBQZlpN9xwgzFy5Ei3aZdcconb5zt89913RmxsrPHdd98ZhnF6+w8ZMsS444473OZbunSpERsba/zwww+GYRhGXl6e0bdvX+Nvf/ub23yZmZlGSkpKmelmn1vef0lJSW7vufbaa93W4YMPPjB69OjhLJPDW2+9ZcTGxhrr1q1zTouNjTV69Ohh7Ny5s0xZPLdhcXGxMXr0aGPy5Mlu082Wce+99xo9evQwNm7cWGbZjrrhqC/XX3+9W32ZOXOm0bNnTyMnJ8d0Pd977z0jNjbWePnll02XX5X1GD58uHHfffeVWZarKVOmGLGxscbJkyfLnc9h7ty5RmxsrPPvgwcPljkuHTyPuZSUFGP69OnlLv/mm28uc+waxm/1aOTIkWXW37NuG8bpbRsbG2ssXrzYOa2oqMgYPHiwW53/v//7PyM2NtZYtmyZc1phYaFx0UUXlVmmN4797a1OOKSkpBhjxoxx/n3dddcZo0ePNoqKipzT7Ha7MWHCBOOCCy4os+yK6lJ2drbRq1cv4+abb3ab71//+pcRGxvrVgccy7z66quN0tJS53THMm644QbDZrM5p7/xxhtGbGys8d577zm3Yf/+/Y1x48YZJSUlzvnef/99IzY21q0+l7fPioqK3D7HME7Xpfj4eOPZZ58ts4zRo0cbxcXFzul33XWXERcXZ9x0001uy5gwYYLX+gMAABo3HucCAAAajSVLlqhZs2YaMGCAJMnPz0+jRo3S0qVL3R4bsmrVKgUEBDhHbUqnn+ftGG3tkJGRoR07dmjMmDFuo1X79++v2NjYcstis9m0evVqnXfeeWrfvr1zeosWLTR69GitW7dOeXl5bu+54oor5Ofn5/y7d+/eMgxDV1xxhXOa1WpVfHy8Dh486Jz26aefKjw8XIMHD9axY8ec//Xq1UuhoaFlRry2a9dOQ4YMKVNm1+cp5+bm6tixY+rfv78OHjyo3NzcctfXGz8/P1100UVauXKl8vPzndM/+eQTtWzZUikpKZKkb7/9Vjk5Obrkkkvcym+xWJSYmFjpEbtTpkzRyy+/XOa/tLS0Ct/76aefqmvXrurSpYtbGQYOHChJZcrQr18/devWrcxyXLfhyZMnlZubq5SUFG3durXMvJ7LsNvt+uKLLzR8+HC3Z187uNYNSRo/frzbtL59+8pms+nQoUOm6/n555+radOmuvbaa8tdflXWoyKOeu454rs2REREaMOGDcrIyKj2MsaMGVPpZ4uHhoa6jbAPDAxUQkKC2/G5atUqtWzZUiNHjnROCwoKcmt/zlRoaKjzGDtx4oS+++47XXzxxcrLy3PW5ePHjystLU379u0rs30qqkvffvutSkpKdO2117rNd91115mWafz48c5vmrguY/LkyW7PK7/yyisVFhamlStXSpI2b96sEydOaPz48fL3/+2L05deeqkiIyO9fpa3fRYYGOj8HJvNpuPHjys0NFSdO3f2Wo8vu+wyt28dONrfcePGuc3Xu3dv/fLLLyotLTVddwAA0PjwOBcAANAo2Gw2ffzxxxowYIB+/vln5/TevXvr//7v/7RmzRpnmHr48GE1b95cISEhbstwPMrC4fDhw16nS1LHjh3LDRSPHTumgoIC56NSXHXt2lV2u12//PKLunfv7pzepk0bt/nCw8MlSa1bty4z3fVZ5/v371dubq5SU1O9liU7O9vtb7NHo6xbt07PPPOM0tPTyzzHPDc311meqhg1apReffVVLV++XJdeeqny8/O1cuVKTZgwwRnG7du3T5J5IBcWFlapz4qNjdWgQYPKTPd8VrQ3+/fv1+7du894G65YsULPP/+8fvrpJ7fHyHgG4N6WcezYMeXl5bnVifJ41peIiAhJ8vp8aYcDBw6oc+fObuGkN1VZj4o49l9+fr6zjLXl7rvv1rRp03TuueeqV69eGjZsmMaMGeN2I6silXl0kEOrVq3KbJPIyEht377d+fehQ4fUoUOHMvN5a1eq69SpU4qJiZF0eh8bhqE5c+Zozpw5XufPzs52e5xJRXXJ0RZ26tTJbb7o6GjTYNtzOzqW0aVLF7fpgYGBat++vTOwN2t3/f39nY9NquizpNM3pV577TW9+eab+vnnn91upEZFRZWZvyrtr91uV25urpo2beq1PAAAoPEhRAcAAI3Cd999p8zMTH388cf6+OOPy7y+ZMmSSo1I9iXX0ZmVme5gt9sVExOjp556yuvr0dHRbn97G2V74MABXX/99erSpYumTZum1q1bKyAgQCtXrtQrr7wiu91eybVwl5SUpLZt2+qTTz7RpZdeqhUrVqiwsFCjRo1yzmP8+iOpTz75pJo3b15mGa6jWWuL3W5XbGys8znZnjyfw+xtG/7444/64x//qH79+umhhx5S8+bNFRAQoEWLFumjjz4qM39lRzubMasXhsePzlZVVdejIo7QdMeOHerbt2+V328W3LuGog6jRo1S3759tWzZMq1evVovvfSS/vOf/+iZZ55x+3HL8lRlv9RF3azIkSNHlJub6wydHcfqDTfc4PUbJ1LZgLo26lJQUFC131tV3vbZvHnzNGfOHI0bN0533nmnIiMjZbFYNHPmTK/rVdX290yPMwAA0LAQogMAgEZhyZIliomJ0YMPPljmtWXLlmnZsmWaPn26goOD1aZNG61du1YFBQVuo9EPHDjg9j7HyETP6dLpkcvliY6OVkhIiPbu3VvmtT179shisZQZ4VhdHTp00Jo1a9SnT59qB7PLly9XcXGxnn/+ebcRmd4epVLV0cgXX3yxXnvtNeXl5Wnp0qVq27atkpKSnK87RgnHxMR4HUleFzp06KBt27YpNTW1WqOtJemzzz5TUFCQXnrpJbcfAF20aFGl3h8dHa2wsDDt3LmzWp9fGR06dNCGDRtUUlJi+oOZZ7oenoYPH6758+frww8/rFaI7hjp7DnC3jFi2VOLFi00ceJETZw4UdnZ2br88ss1b948Z4he3f1bXW3bttWuXbtkGIbbZ3trV6rjv//9ryQ5bxI6jqeAgIAaO54cbcK+ffvcRvUfO3bM7VsxlVnGnj173JZRXFysn3/+2VlW13bX8TglSSotLdWhQ4cUFxdXqc/77LPPNGDAAM2cOdNtek5ODiPIAQBAlfFMdAAA0OAVFhbq888/17nnnquLLrqozH8TJ05Ufn6+li9fLul02FRSUqJ33nnHuQy73a4FCxa4Lbdly5aKjY3VBx984PZM7++//147duwot0xWq1WDBw/Wl19+6fZ4maysLH300UdKSUmp9GNKKnLxxRfLZrPpueeeK/NaaWlpuY/3cC2v5D66Mjc312twGhISUqllOowaNUrFxcVavHixVq1apYsvvtjt9SFDhigsLEzz589XSUlJmfcfO3as0p9VXRdffLEyMjLc6oRDYWGhTp06VeEyrFar/Pz83EZI//zzz/ryyy8rVQaLxaLzzjtPK1as0KZNm8q8XhMjXy+44AIdP368TF13Xf6Zroen5ORkDRkyRO+++66++OKLMq8XFxdr1qxZpu8PCwtT06ZN9eOPP7pNf/PNN93+ttlsZZ7dHxMToxYtWrg9kiYkJKRaz/ivrrS0NGVkZLhtv6KiIq91rarWrFmj5557Tu3atdPvfvc7SafXuX///nr77bd19OjRMu+pzvE0aNAgBQQE6I033nCrh6+++mqVl/H666+7LeO9995Tbm6u8yZHfHy8oqKi9M4777g9d3zJkiWVDuyl0/XY85j55JNPzuh5+QAA4OzFSHQAANDgLV++XPn5+RoxYoTX15OSkhQdHa0PP/xQo0aN0nnnnafevXtr1qxZOnDggLp06aLly5c7AxrX0aJ//vOfddttt+nqq6/W2LFjlZOTowULFig2NtYtWPfmT3/6k7799ltdc801uuaaa2S1WvX222+ruLhY99xzT42tf//+/TVhwgTNnz9fP/30kwYPHqyAgADt27dPn376qf7617/qoosuKncZjvfceuutuuqqq5Sfn693331XMTExyszMdJu3V69eeuutt/Tcc8+pY8eOio6ONn2WuGP+jh076umnn1ZxcbHbo1yk0yHpww8/rHvvvVdjx47VqFGjFB0drcOHD2vlypXq06eP128Y1KTLLrtMn3zyiR566CGtXbtWffr0kc1m0549e/Tpp5/qxRdf9Ppjn66GDRuml19+WTfddJNGjx6t7Oxsvfnmm+rQoYPbM7LLc9ddd2n16tWaNGmSxo8fr65duyozM1Offvqp3nzzzTN+pviYMWP0wQcf6PHHH9fGjRuVkpKigoICrVmzRldffbXOO++8GlkPT08++aRuuOEG3X777Ro+fLhSU1MVEhKi/fv3a+nSpTp69Kjuu+8+0/dfeeWVeuGFF/TXv/5V8fHx+vHHH8t8yyM/P1/Dhg3ThRdeqB49eig0NFTffvutNm3apGnTpjnn69Wrl5YuXarHH39cCQkJCg0NNW07asKECRP0xhtv6C9/+YsmT56s5s2ba8mSJc7HnVR2ZPzXX3+tPXv2yGazKSsrS2vXrtXq1avVpk0bPf/8826PT3nooYd0zTXX6NJLL9X48ePVvn17ZWVlKT09XUeOHKnU7wS4io6O1g033KD58+frlltu0bBhw7R161Z9/fXXlR7VHR0drVtuuUXPPvusbrrpJo0YMUJ79+7Vm2++qYSEBOdNgMDAQN1xxx169NFHdd111+niiy/WoUOH9P7771fpOfLnnnuu/v3vf+v+++9XcnKyduzYoSVLllTp+fgAAAAOhOgAAKDB+/DDDxUUFKTBgwd7fd1isejcc8/VkiVLdPz4cTVt2lTz58/XY489psWLF8tisej888/XlClTdPXVV7uFUSNGjNC//vUvPfPMM/rnP/+pTp066fHHH9cHH3xQ4WM3unfvrgULFuif//yn5s+fL8Mw1Lt3b/3jH/9QYmJijW6DRx55RPHx8Vq4cKGefvppWa1WtW3bVr/73e/Up0+fCt/fpUsXzZ07V7Nnz9asWbPUrFkzXX311YqOjtYDDzzgNu+UKVN0+PBhvfjii8rPz1f//v3LDdGl0yO9582bp44dO6pXr15lXr/00kvVokULvfDCC3rppZdUXFysli1bqm/fvho7dmzVNkY1WCwW/fvf/9Yrr7yi//73v1q2bJlCQkLUrl07TZo0yesPxHpKTU3VY489pv/85z+aOXOm2rVrp7vvvluHDh2qdPjcsmVLvfPOO5ozZ46WLFmivLw8tWzZUkOHDj3jZ6hLp0fn/uc//9Hzzz+vjz76SJ9//rmioqLUp08f52MyamI9PEVHR2vhwoV68803tXTpUj399NMqKSlR27ZtNWLECE2ePLnc90+ZMkXHjh3TZ599pk8++URDhw7Viy++6FbvgoODdfXVV2v16tX6/PPPZRiGOnTo4AyUHa655hr99NNPev/99/XKK684y1BbmjRpoldffVUzZszQa6+9ptDQUI0ZM0bJycm64447Kv3s8Llz50o6/ZiWqKgoxcbG6oEHHtDYsWPLfKulW7duWrRokZ599lktXrxYJ06cUHR0tM455xxNmTKlWuvxpz/9SYGBgVq4cKHWrl3r/NHmW265pdLLuOOOOxQdHa033nhDjz/+uCIjIzV+/Hjdddddbo8Xuvbaa2UYhl5++WXNmjVLPXr00PPPP68ZM2ZUenvdeuutKigo0JIlS7R06VKdc845mj9/vv75z39Wed0BAAD8DH4RBQAAQJL0xRdfaMqUKXrzzTeVkpJS7ryXXXaZoqOj9fLLL9dR6QA0Jq+88ooef/xxff3112rZsqWvi1Pv2e12paam6vzzz9eMGTN8XRwAAHCW4ZnoAADgrFRYWOj2t81m0+uvv66wsDC3kdIlJSVuz+WVTv/Y5rZt29S/f/86KSuAhs2zvSkqKtLbb7+tTp06EaB7UVRUVOZ55h988IFOnDhBuwsAAHyCx7kAAICz0qOPPqrCwkIlJyeruLhYn3/+udavX6+77rrL7bEZGRkZ+v3vf6/f/e53atGihfbs2aOFCxeqefPmuuqqq3y4BgAaittvv11t2rRRjx49lJeXpw8//FB79uzRU0895eui1Uvp6el6/PHHddFFFykqKkpbt27Ve++9p9jY2Ap/3wEAAKA2EKIDAICz0sCBA/Xyyy/rq6++UlFRkTp27Ki///3vuvbaa93mi4yMVK9evfTuu+/q2LFjCg0N1bBhw3T33XdX+gf1AJzd0tLS9N5772nJkiWy2Wzq1q2bnn766TI/sovT2rZtq1atWun111/XyZMnFRkZqcsuu0x33323AgMDfV08AABwFuKZ6AAAAAAAAAAAmOCZ6AAAAAAAAAAAmCBEBwAAAAAAAADABM9El2S321VaWiqLxSI/Pz9fFwcAAAAAAAAAUAsMw5Ddbpe/v78slsqNMSdEl1RaWqpNmzb5uhgAAAAAAAAAgDqQkJBQ6R8t53EuUqXvOAAAAAAAAAAAGr6qZMKkxxKPcAEAAAAAAACAs0hVMmFCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMOHTEP2ZZ55RXFyc238XXXSR8/WioiJNnz5dAwYMUHJysu644w5lZWW5LePw4cO6+eablZiYqNTUVM2aNUulpaV1vSoAAAAAAAAAgEbI39cF6N69u15++WXn31ar1fnvmTNnauXKlZo9e7bCw8P16KOP6vbbb9fChQslSTabTbfccouaNWumhQsX6ujRo7rvvvsUEBCgu+66q87XBQAAAAAAAADQuPj8cS5Wq1XNmzd3/hcdHS1Jys3N1aJFizRt2jSlpqYqPj5eM2fO1Pr165Weni5J+uabb7Rr1y794x//UM+ePTVs2DDdeeedWrBggYqLi324VgAAAAAAAACAxsDnIfr+/fuVlpamkSNH6i9/+YsOHz4sSdq8ebNKSko0aNAg57xdu3ZVmzZtnCF6enq6YmNj1axZM+c8aWlpysvL065du+p0PQAAAAAAAAAAjY9PH+fSu3dvPf744+rcubMyMzP173//WxMnTtSSJUuUlZWlgIAARUREuL0nJiZGmZmZkqSsrCy3AF2S82/HPAAAnK0Mw1CRzfB1MQAAAAAAqBeCrH7y8/Or8vt8GqIPGzbM+e8ePXooMTFRw4cP1yeffKLg4GAflgwAgIbNMAz9dcUxbc8u8XVRAAAAAACoF3rEBGjG8OgqB+k+f5yLq4iICHXq1EkHDhxQs2bNVFJSopycHLd5srOz1bx5c0mnR51nZWW5ve742zEPAABnoyKbQYAOAAAAAICLbdkl1frGtk9HonvKz8/XwYMH1bx5c8XHxysgIEBr1qzRhRdeKEnas2ePDh8+rKSkJElSUlKS5s2bp+zsbMXExEiSvv32W4WFhalbt26+Wg0AAOqV/7u0uYL8q/51NQAAAAAAGoOiUkM3LKn+4799GqLPmjVLw4cPV5s2bXT06FE988wzslgsGj16tMLDwzVu3Dg98cQTioyMVFhYmGbMmKHk5GRniJ6WlqZu3brp3nvv1T333KPMzEzNnj1bEydOVGBgoC9XDQCAeiPI30/B/vXqy2cAAAAAANQh+xm926ch+pEjR3TXXXfpxIkTio6OVkpKit555x1FR0dLkh544AFZLBZNnTpVxcXFSktL00MPPeR8v9Vq1bx58/Twww9rwoQJCgkJ0eWXX66pU6f6apUAAAAAAAAAAI2In2EYVX8ITCNjs9mUnp7u62IAAFBjCkvtmrj4qCRpweUtGIkOAAAAADhrebtGTkpKktVqrdT7uaIGAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgIl6E6K/8MILiouL02OPPeacVlRUpOnTp2vAgAFKTk7WHXfcoaysLLf3HT58WDfffLMSExOVmpqqWbNmqbS0tK6LDwAAAAAAAABohOpFiL5x40YtXLhQcXFxbtNnzpypFStWaPbs2Xr99dd19OhR3X777c7XbTabbrnlFpWUlGjhwoV64okntHjxYs2dO7euVwEAAAAAAAAA0Aj5PETPz8/XPffcoxkzZigyMtI5PTc3V4sWLdK0adOUmpqq+Ph4zZw5U+vXr1d6erok6ZtvvtGuXbv0j3/8Qz179tSwYcN05513asGCBSouLvbRGgEAAAAAAAAAGgufh+iPPPKIhg0bpkGDBrlN37x5s0pKStymd+3aVW3atHGG6Onp6YqNjVWzZs2c86SlpSkvL0+7du2qk/IDAAAAAAAAABovf19++Mcff6ytW7fqvffeK/NaVlaWAgICFBER4TY9JiZGmZmZznlcA3RJzr8d8wAAAAAAAAAAUF0+C9F/+eUXPfbYY/q///s/BQUF+aoYAAAAAAAAAACY8lmIvmXLFmVnZ2vs2LHOaTabTT/88IMWLFigl156SSUlJcrJyXEbjZ6dna3mzZtLOj3qfOPGjW7LzcrKkiTnPAAAAAAAAAAAVJfPQvSBAwdqyZIlbtPuv/9+denSRX/4wx/UunVrBQQEaM2aNbrwwgslSXv27NHhw4eVlJQkSUpKStK8efOUnZ2tmJgYSdK3336rsLAwdevWrU7XBwAAAAAAAADQ+PgsRA8LC1NsbKzbtNDQUEVFRTmnjxs3Tk888YQiIyMVFhamGTNmKDk52Rmip6WlqVu3brr33nt1zz33KDMzU7Nnz9bEiRMVGBhY16sEAAAAAAAAAGhkfPrDohV54IEHZLFYNHXqVBUXFystLU0PPfSQ83Wr1ap58+bp4Ycf1oQJExQSEqLLL79cU6dO9WGpAQAAAAAAAACNhZ9hGIavC+FrNptN6enpvi4GAAA1prDUromLj0qSFlzeQsH+Fh+XCAAAAAAA3/B2jZyUlCSr1Vqp93NFDQAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJjwaYj+5ptv6tJLL1WfPn3Up08fTZgwQStXrnS+XlRUpOnTp2vAgAFKTk7WHXfcoaysLLdlHD58WDfffLMSExOVmpqqWbNmqbS0tK5XBQAAAAAAAADQCPk0RG/VqpXuvvtuvf/++1q0aJEGDhyoKVOmaOfOnZKkmTNnasWKFZo9e7Zef/11HT16VLfffrvz/TabTbfccotKSkq0cOFCPfHEE1q8eLHmzp3rq1UCAAAAAAAAADQiPg3RR4wYoWHDhqlTp07q3Lmz/vznPys0NFTp6enKzc3VokWLNG3aNKWmpio+Pl4zZ87U+vXrlZ6eLkn65ptvtGvXLv3jH/9Qz549NWzYMN15551asGCBiouLfblqAAAAAAAAAIBGoN48E91ms+njjz/WqVOnlJycrM2bN6ukpESDBg1yztO1a1e1adPGGaKnp6crNjZWzZo1c86TlpamvLw87dq1q65XAQAAAAAAAADQyPj7ugDbt2/XVVddpaKiIoWGhurf//63unXrpp9++kkBAQGKiIhwmz8mJkaZmZmSpKysLLcAXZLzb8c8AAAAAAAAAABUl89D9M6dO+uDDz5Qbm6uPvvsM91333164403fF0sAAAAAAAAAAB8H6IHBgaqY8eOkqT4+Hht2rRJr732mi6++GKVlJQoJyfHbTR6dna2mjdvLun0qPONGze6LS8rK0uSnPMAAAAAAAAAAFBd9eaZ6A52u13FxcWKj49XQECA1qxZ43xtz549Onz4sJKSkiRJSUlJ2rFjh7Kzs53zfPvttwoLC1O3bt3quugAAAAAAAAAgEbGpyPR//nPf2ro0KFq3bq18vPz9dFHH+n777/XSy+9pPDwcI0bN05PPPGEIiMjFRYWphkzZig5OdkZoqelpalbt2669957dc899ygzM1OzZ8/WxIkTFRgY6MtVAwAAAAAAAAA0Aj4N0bOzs3Xffffp6NGjCg8PV1xcnF566SUNHjxYkvTAAw/IYrFo6tSpKi4uVlpamh566CHn+61Wq+bNm6eHH35YEyZMUEhIiC6//HJNnTrVV6sEAAAAAAAAAGhE/AzDMHxdCF+z2WxKT0/3dTEAAKgxhaV2TVx8VJK04PIWCvavd09wAwAAAACgTni7Rk5KSpLVaq3U+7miBgAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBxxiF6UVFRTZQDAAAAAAAAAIB6p1ohut1u17///W8NGTJEycnJOnjwoCRp9uzZevfdd2u0gAAAAAAAAAAA+Eq1QvTnnntOixcv1j333KOAgADn9NjYWL333ns1VjgAAAAAAAAAAHypWiH6f//7Xz366KP63e9+J4vlt0XExcVpz549NVY4AAAAAAAAAAB8qVohekZGhjp06FBmumEYKi0tPeNCAQAAAAAAAABQH1QrRO/WrZt+/PHHMtM//fRT9ezZ84wLBQAAAAAAAABAfeBfnTfddtttmjZtmjIyMmQYhj7//HPt3btXH3zwgebPn1/TZQQAAAAAAAAAwCeqNRL9vPPO07x587RmzRqFhIRo7ty52r17t+bNm6fBgwfXdBkBAAAAAAAAAPCJao1El6S+ffvq5ZdfrsmyAAAAAAAAAABQr1RrJPrGjRu1YcOGMtM3bNigTZs2nXGhAAAAAAAAAACoD6oVoj/yyCP65ZdfykzPyMjQI488csaFAgAAAAAAAACgPqhWiL5792716tWrzPSePXtq165dZ1woAAAAAAAAAADqg2qF6IGBgcrKyiozPTMzU/7+1X7MOgAAAAAAAAAA9Uq1QvTBgwfrX//6l3Jzc53TcnJy9PTTT2vQoEE1VjgAAAAAAAAAAHypWsPG77vvPk2cOFHDhw9Xz549JUnbtm1TTEyMnnzyyRotIAAAAAAAAAAAvlKtEL1ly5b68MMPtWTJEm3btk3BwcEaN26cLrnkEgUEBNR0GQEAAAAAAAAA8IlqP8A8NDRUEyZMqMmyAAAAAAAAAABQr1Q7RN+3b5/Wrl2r7Oxs2e12t9duv/32My4YAAAAAAAAAAC+Vq0Q/Z133tHDDz+spk2bqlmzZvLz83O+5ufnR4gOAAAAAAAAAGgUqhWiP//88/rTn/6km2++uabLAwAAAAAAAABAvWGpzptOnjypiy++uKbLAgAAAAAAAABAvVKtEP2iiy7SN998U9NlAQAAAAAAAACgXqnW41w6duyoOXPmaMOGDYqNjZW/v/tiJk+eXCOFAwAAAAAAAADAl6oVor/99tsKDQ3V999/r++//97tNT8/P0J0AAAAAAAAAECjUK0Qffny5TVdDgAAAAAAAAAA6p1qPRMdAAAAAAAAAICzQbVGokvSkSNH9OWXX+qXX35RSUmJ22v333//GRcMAAAAAAAAAABfq1aIvmbNGv3xj39U+/bttWfPHnXv3l2HDh2SYRg655xzarqMAAAAAAAAAAD4RLUe5/LPf/5TN9xwg5YsWaLAwEA988wz+uqrr9SvXz9ddNFFNV1GAAAAAAAAAAB8oloh+u7duzVmzBhJkr+/vwoLC9WkSRPdeeedevHFF2uyfAAAAAAAAAAA+Ey1QvTQ0FDnc9CbN2+uAwcOOF87fvx4zZQMAAAAAAAAAAAfq9Yz0RMTE7Vu3Tp17dpVw4YN06xZs7Rjxw4tW7ZMiYmJNV1GAAAAAAAAAAB8oloh+v3336/8/HxJ0h133KH8/HwtXbpUnTp10rRp02q0gAAAAAAAAAAA+Eq1QvT27ds7/x0aGqpHHnmkxgoEAAAAAAAAAEB9Ua1noo8cOdLrs89zcnI0cuTIMy4UAAAAAAAAAAD1QbVC9EOHDslut5eZXlxcrIyMjDMuFAAAAAAAAAAA9UGVHufy5ZdfOv+9atUqhYeHO/+22+1as2aN2rZtW3OlAwAAAAAAAADAh6oUok+ZMkWS5OfnV+YHRP39/dW2bVt+WBQAAAAAAAAA0GhUKUTftm2bJGnEiBF67733FB0dXSuFAgAAAAAAAACgPqhSiO6wfPnyMtNycnIUERFxxgUCAAAAAAAAAKC+qNYPi77wwgtaunSp8++pU6eqf//+GjJkiHO0OgAAAAAAAAAADV21QvSFCxeqVatWkqTVq1drzZo1evHFFzV06FA9+eSTNVpAAAAAAAAAAAB8pVqPc8nKylLr1q0lSStWrNDFF1+stLQ0tW3bVuPHj6/RAgIAAAAAAAAA4CvVGokeERGhX375RZK0atUqpaamSpIMw5DNZqu50gEAAAAAAAAA4EPVGol+wQUX6O6771bHjh114sQJDR06VJL0008/qWPHjjVaQAAAAAAAAAAAfKVaIfr999+vtm3b6pdfftE999yjJk2aSJIyMzN1zTXX1GgBAQAAAAAAAADwlWqF6AEBAbrxxhvLTL/++uvPtDwAAAAAAAAAANQblQ7Rv/zySw0dOlQBAQH68ssvy5135MiRZ1wwAAAAAAAAAAB8rdIh+pQpU7R69WrFxMRoypQppvP5+fnpp59+qpHCAQAAAAAAAADgS5UO0bdt2+b13wAAAAAAAAAANFZVfia63W7X+++/r2XLlunQoUPy8/NTu3btdOGFF+qyyy6Tn59fbZQTAAAAAAAAAIA6V6UQ3TAM/fGPf9TKlSvVo0cPxcbGyjAM7d69W9OmTdPnn3+u5557rrbKCgAAAAAAAABAnapSiP7+++/rhx9+0CuvvKKBAwe6vbZmzRpNmTJFH3zwgcaMGVOTZQQAAAAAAAAAwCcsVZn5448/1q233lomQJek1NRU3XzzzVqyZEmNFQ4AAAAAAAAAAF+qUoi+fft2DRkyxPT1oUOH8qOjAAAAAAAAAIBGo0oh+smTJxUTE2P6ekxMjE6ePHnGhQIAAAAAAAAAoD6oUohus9nk72/+GHWr1SqbzXbGhQIAAAAAAAAAoD6o0g+LGoahadOmKTAw0OvrxcXFNVIoAAAAAAAAAADqgyqF6JdffnmF84wZM6a6ZQEAAAAAAAAAoF6pUoj++OOP11Y5AAAAAAAAAACod6r0THQAAAAAAAAAAM4mhOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAmfhujz58/XuHHjlJycrNTUVN12223as2eP2zxFRUWaPn26BgwYoOTkZN1xxx3Kyspym+fw4cO6+eablZiYqNTUVM2aNUulpaV1uSoAAAAAAAAAgEbIpyH6999/r4kTJ+qdd97Ryy+/rNLSUt144406deqUc56ZM2dqxYoVmj17tl5//XUdPXpUt99+u/N1m82mW265RSUlJVq4cKGeeOIJLV68WHPnzvXFKgEAAAAAAAAAGhGfhugvvfSSxo4dq+7du6tHjx564okndPjwYW3ZskWSlJubq0WLFmnatGlKTU1VfHy8Zs6cqfXr1ys9PV2S9M0332jXrl36xz/+oZ49e2rYsGG68847tWDBAhUXF/tw7QAAAAAAAAAADV29eiZ6bm6uJCkyMlKStHnzZpWUlGjQoEHOebp27ao2bdo4Q/T09HTFxsaqWbNmznnS0tKUl5enXbt21V3hAQAAAAAAAACNTr0J0e12u2bOnKk+ffooNjZWkpSVlaWAgABFRES4zRsTE6PMzEznPK4BuiTn3455AAAAAAAAAACoDn9fF8Bh+vTp2rlzp958801fFwUAAAAAAAAAAEn1ZCT6I488oq+++kqvvvqqWrVq5ZzerFkzlZSUKCcnx23+7OxsNW/e3DlPVlaW2+uOvx3zAAAAAAAAAABQHT4N0Q3D0COPPKJly5bp1VdfVfv27d1ej4+PV0BAgNasWeOctmfPHh0+fFhJSUmSpKSkJO3YsUPZ2dnOeb799luFhYWpW7dudbIeAAAAAAAAAIDGyaePc5k+fbo++ugjPffcc2rSpInzGebh4eEKDg5WeHi4xo0bpyeeeEKRkZEKCwvTjBkzlJyc7AzR09LS1K1bN91777265557lJmZqdmzZ2vixIkKDAz04doBAAAAAAAAABo6n4bob731liRp0qRJbtMff/xxjR07VpL0wAMPyGKxaOrUqSouLlZaWpoeeugh57xWq1Xz5s3Tww8/rAkTJigkJESXX365pk6dWncrAgAAAAAAAABolPwMwzB8XQhfs9lsSk9P93UxAACoMYWldk1cfFSStODyFgr2rxc/gwIAAAAAQJ3zdo2clJQkq9VaqfdzRQ0AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAGi0DMP7vyuLEB0AAAAAAAAA0CgZhqEn9z3p/HvOgTlVXoZ/TRYIAAAAAAAAAID6otgo1t6ibQrvOU2StK8ouMrLYCQ6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADDh0xD9hx9+0K233qq0tDTFxcXpiy++cHvdMAzNmTNHaWlp6t27t66//nrt27fPbZ4TJ07oL3/5i/r06aO+ffvqgQceUH5+fh2uBQAAAAAAAACgsfJpiH7q1CnFxcXpoYce8vr6f/7zH73++ut6+OGH9c477ygkJEQ33nijioqKnPPcfffd2rVrl15++WXNmzdPP/74ox588MG6WgUAAAAAAAAAQCPm0xB92LBh+vOf/6zzzz+/zGuGYei1117TH//4R5133nnq0aOHnnzySR09etQ5Yn337t1atWqVZsyYocTERPXt21d/+9vf9PHHHysjI6OuVwcAAAAAAAAA0MjU22ei//zzz8rMzNSgQYOc08LDw5WYmKj169dLktavX6+IiAglJCQ45xk0aJAsFos2btxY52UGAAAAAAAAADQu9TZEz8zMlCTFxMS4TY+JiVFWVpYkKSsrS9HR0W6v+/v7KzIy0vl+AAAAAAAAAACqq96G6AAAAAAAAAAA+Fq9DdGbN28uScrOznabnp2drWbNmkmSmjVrpmPHjrm9XlpaqpMnTzrfDwAAAAAAAABAddXbEL1du3Zq3ry51qxZ45yWl5enDRs2KDk5WZKUnJysnJwcbd682TnPd999J7vdrt69e9d5mQEAAAAAAAAAjYu/Lz88Pz9fBw4ccP79888/66efflJkZKTatGmjyZMn6/nnn1fHjh3Vrl07zZkzRy1atNB5550nSeratauGDBmiv//975o+fbpKSkr06KOP6pJLLlHLli19tVoAAAAAAAAAgEbCpyH65s2bNXnyZOffjz/+uCTp8ssv1xNPPKE//OEPKigo0IMPPqicnBylpKToxRdfVFBQkPM9Tz31lB599FFdd911slgsuuCCC/S3v/2tztcFAAAAAAAAAND4+BmGYfi6EL5ms9mUnp7u62IAAFBjCkvtmrj4qCRpweUtFOxfb5/gBgAAAABArSmyF+mWrbc4/w62BGveOfOUlJQkq9VaqWVwRQ0AAAAAAAAAgAmfPs4FqBLDkMVW6OtSAECDYCk1XP5dKIv8fFgaAGg47NZgyY82EwAAAL8hREfDYBiKWz1VYce3+LokANAgnDKCJL0sSUr8fJxC/Yp8WyAAaCDymsZr++A5BOkAAABwIkRHg2CxFRKgA0AVhPoVaV/wNb4uBgA0OGHHN8tiK5TdP8TXRQEAAEA9QYiOBmfDBYtOf80WAAAAqCEWW6ESPx/n62IAAACgHiJER4NjtwYzMggAAAAAAABAnbD4ugAAAAAAAAAAANRXhOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACYIEQHAAAAAAAAAMAEIToAAAAAAAAAACYI0QEAAAAAAAAAMEGIDgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgghAdAAAAAAAAAAAThOgAAAAAAAAAAJggRAcAAAAAAAAAwAQhOgAAAAAAAAAAJgjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJf18XAAAANGKGIYut0NelAIAKWUoLvf4bAOo7uzVY8vPzdTEAoFEjRAcAALXDMBS3eqrCjm/xdUkAoEoSl43zdREAoNLymsZr++A5BOkAUIt4nAsAAKgVFlshAToAAEAtCzu+mW/+AUAtYyQ6AACodRsuWHT6q8YAAACoERZboRI/55szAFAXCNEBAECts1uDZfcP8XUxAAAAAACoMh7nAgAAAAAAAACACUJ0AAAAAAAAAABMEKIDAAAAAAAAAGCCEB0AAAAAAAAAABOE6AAAAAAAAAAAmCBEBwAAAAAAAADABCE6AAAAAAAAAAAmCNEBAAAAAAAAADBBiA4AAAAAAAAAgAlCdAAAAAAAAAAATBCiAwAAAAAAAABgwt/XBUAtMwxZbIW+LsUZs5QWev13Q2a3Bkt+fr4uBgAAAAAAAIByEKI3ZoahuNVTFXZ8i69LUqMSl43zdRFqRF7TeG0fPIcgHQAAAAAAAKjHCNEbMYutsNEF6I1J2PHNstgKZfcP8XVRAAAAAFRWI/m2Lxq+xviNbTR8fOsejRUh+lliwwWLTjdk8DmLrVCJnzeO0fQAAADAWaWRftsXDV9j+cY2Gj6+dY/GihD9LGG3BjPiGWioGO2EBorRUWgMGE0FwBXf9gWA8vGtezRWhOgAUJ8x2gmNBKOj0FAxmgqAGb7tCwC/4Vv3aOwI0QGgHmO0EwD4FqOpAJjh274AAJw9CNEBoIFgtBMA1B1GUwEAAABwIEQHgAaC0U4AAAAAAAB1z+LrAgAAAAAAAAAAUF8RogMAAAAAAAAAYIIQHQAAAAAAAAAAE4ToAAAAAAAAAACY4IdFgdpmGLLYCp1/Wkq9/9vBbg2W/PzqpGgAAAAAAAAAykeIDtQmw1Dc6qkKO77F68uJy8aVmZbXNF7bB88hSAcAAAAAoC55DIJD5VU0YBCVx+DK+okQHahFFluhaYBuJuz4ZllshbL7h9RSqQAAAAAAgJsKBsGh8rwNGETlMbiyfiJEB+rIhgsWnb6baMJiK1Ti55xoAAAAAACoa9UZBAfUBgZX1k+E6EAdsVuDaQABAAAAAKjnKhoEB9QGBlfWb4ToAAAAAAAAwK8YBAfAEyE6AABAQ8WPX9Uafhyr9vGjWQAAAGgoCNEB+B4hkClCnMohiMFZiR+/qjP8OFbt4EezAAAA0FAQogPwLUKgSiPEMUcQg7MRP36Fho4fzQIAAEBDQYh+purxCNqGMIKV0aMgBEJNIIjB2Y4fv0JDwo9mAQAAn6jHGZ7UMHI86ezN8gjRz0QDGkFbX0ewnrWjR7003BU1lmdDI0UIhKoiiAFO48evzkL1/CKwXMZv/6zPF4gVORv6ZjWiIddVLxpKwFEd1GmYamTHsZnGfHyX56w59htQhifV3xxPOnuzPEL0M8AI2jN3Vo4erUTD7a2xPBsaKUIgAAAqoYFdBJanPl8gVuRs6JudsUZUV71pyPXXG+o0vGrkx7GZxnZ8l+dsOfbJ8GrOWZnliRC9xjTKEbSGIYutqFYWbbEVKmH5xNP/ruU7vPXtrmp1G+6w45vlX3RCdv+y9ay+rSMAAKg9XATWD2frBWRVUFcbFuo0vOE4bvzOxmO/UWZ4deBs/yY4IXoNaXQjaOvwbnNt3+Gtz3dVnQ23Yaj7d/co7MRP5c5vtq3q8zoCAIDaw0Vg3TvbLyCri7paf1GnUVkcx43L2XzsN7oMD3WCEB1eNaa7zfX5rqqj4baUFlQYoJfH2yh1RqejRtXT5yDW9+cWchw2AvW07kv1v/47cBzULi4C0VBQV4GGj+O4nqip/mkt/UaJz/p+FWyXyvadG3zftRavX+ry+qM+7gdCdFSood5tbqh3VU23dwWj1T1Hqdfq6PQabJRrqxGujw1ug9VAnoNYH59byLdEGrgGUvel+ln/HTgOAACohnpyI78+3rQ/q6/1aql/WpN9ybym52jngCfL3Uc1vg+ruF3KW98G3XflqRK1ihDdVRVPUtU9mTS0Bp+7zdVkGO71wjDM53Vhtr2rOlq91kbg12KjXLMn7vrX4DZUjembKXWtPn8TBhWj7tcMjgPUiToMm3wVKDW0awjUMEYWnl3q6Y38+nLT/my+1msI/dOw41uV/Onocuep6X1Yk9ulIfddG0L9qKz6uB8I0V10++5eRWatq9Z7q3IyqcxdOYfauDtXmc5Xg7hBUN66GIb8i086//QvOiG7yXp4+6FOr/NVZd28dHq6f3evtqc9U7n3V2DDBYtktwR5/eHXyv5oa3X3VUNplMv7IdbqotPfQL+ZUos/kmymLn882Rvqas1rkHXfxxrqN8LQAPkwbKrLQKnOQqN6/o3Ds/Icx8jCs05Duebyldq41nNoSG1MXfVPLaWFNd421GZAWma7VPJ6sDrXcPW5vtTb65cK9kdV9kNdb39CdBdn8kzqKn1OJe7KOZgF7tWqKNXsfNXEDQJff1XHcQCeiap0+Lx1esJObK2xCxK7JUjd195X4frXyFeUPC6kXBuxTSMWuDXKdmtQteplZX5UtTpq+kRflRtg1eGTE3AlLpTdv1FRucXWm85EPRjF44sRO5Wqq1W8uVDVi5T6Wp+rojp1vzLqzfHhqjZGONbSczYd6uV2LE89DyalBrhNf3W2hE2VCY3OeB82gG8cnkl/jDrue/VxZGF9V2+DMDO1eH3nqrb62D4d9FhFvnhqQJXqo5frjYoC0mpvU5dv/tstQb9tl1rOweokA6tCH7JMH7Gy1+9VuNY7o3WrwcfuSHV/Y7bRhOgLFizQSy+9pMzMTPXo0UN///vf1bt372ota9OIBSoNjPS+EypoBGqaWeDueqCaVmAv4Wdtd74qU15XDWk0tNmFS0XrsGnEG0pYfu3pPwzDbV5HA2d2MWy2bIut6IzX33V9yqtD5TVwnvW+Og3Ymf6oal2qyg2w6qjzi8JqdCjOtDPhTY11MLx0Luqi3auParuuVkadjzSr5RsmdfGcyFq5EKtMp7sOLnZr40K3IV3kNoRgUmoY35b0xusNfsOQxV61byFVJ6Sq1gACT1U4Biu+mKzENUI5GkJYeybnuDJ1vIIbyhWFCr5oW3waqJ7Bt/tcr5nL+5ZwZbjtl2qWqd4MDjBp+yoKwszK77O+hAuLrajBXN95U7VBj3X/O2SVuZF+piGnt2uq316v5OdVou/j7ZxWrX7yr+dRh+7f3aPtac9Kfn61fl6rSgZW1acbWGyFZ9RPr62csqL+YnnrWdP7o7wBBrXRHvoZRiUf1FyPLV26VPfee6+mT5+uxMREvfrqq/r000/16aefKiYmpsL322w2paenK+mT0bKWnpIk5UWdo919H5E9IMTZSbGUFlS58uZF9tDePn9z3gXz7GjXxNdiyjTchlGlsuZF9dDOAf+QLBbzmX59PEpNH4TVbVgsJaecDdWG89+T3Rrs7Dy5dtA2D3tJxq/7z27xfpHj2Qmr8j72cuK0lBYo+ZNLJEn5kXFqcnL76Xkje2h3vxlK/OKKSi07P6qHdgx8Snb/EFlshc5lbjjvPecyNg1/w3mh5PVCzm5X9+/uVtivZfC+Dqf3g90/5PT7f22wq1M/N5y/SKVBUZUYAfvbDQTHZ7iObHdblzoazdCQlXciM+vU+BedqBfPNayRzmc1A6q8qHO0c2ANfbuAelrGhvMXnflFXhUeQ1Yf6vOZyGt6jnb2nyWLvdg5rao3bt3Ug29i1Bdn0tmvtHLqamOon57OqO323FYNuP2sUmhdTiBSKzeaPK9n3ILjiuuq2Q0JzwC3whsJHiFnbQ5AqmuebUtNn9scXPeL27n1DG4CVLndO8vPKVXua5enBsKxypazUmWr4DGpddk+50X10O6+MzzygUrerKzjAY8Onv3dmupTnMnx5mj/3bZjZfqU1b2m8lLvXPOLmlBe3XbNXxzWX7RE9oAmbq9V5yZkTZ6jK51/NfD2trw+omuWZzqA+dffF+z6w1/LzbEqLod7H63IKNYtW29xvh5sCda8c+YpKSlJVqu1UstsFCH6lVdeqYSEBD344IOSJLvdrmHDhmnSpEm6+eabK3y/txDdVX5knAw/q8JObD3jsuZH9tA2xx2x0gIFnDqi+K9vkiRtOvd1yWJRaUCELPZiWWyF8rMVKn7ljRUud9O5r8ke0ESlARGK+3ZqlU9y+ZGx2tX3sdOV18/PfXSy3a641XeUWebp98yQ3T9I/sU5SlgxqUqfaV6WHtqbeLeMX288OA8qw5BkyG4JOl0eRzAdESdZLBWuc35UD+1J/ptzvezWX58p/uvocLt/sGS3Kfmz31W5zJuHvSRbQKTsASHOmxiJX1xZ5eWYyWt6jnb2e0LJn58uW15Ed4Xl7CwzX35UD+0Y8A9Z7MUqDYyUxVao7mv+UumGJy+ql3b2f1yxa+9xBv/lsVmCZbWX7XDlRZ2j3SnTT9dnR6Bexc6i67HiX3BMiV/W3PZ0K2tknPb2+bv87EUyLEGnT/i/Xig6b0zo9IgKS2mBOv/v0TNqyH0hP7KH9vT52+k6YS+W3Vr2cUD5Ed20p89DksXifiNDv657LXdAN41YIBmG/OxFp48l/99ujDmPVansNyfO4IaPw4bz3nOOUjj91b/g06MtXNtCne6EW0oKfms/Sgt/qyuWIFlLTlaqva5JzgsNSRZ7kfxshW712HHz0G4N+vXYM7+hlh/RTfsS/izDGiTDGvzrMRH46/r7uW3zM+3QSKfbq10pj56+gevSDrtub18Ga/mRsdrT58Hfzj+unV1LUNl2wtHOlRbWal1wnq8tFuex4fy/y/bzLzwui73Ip0FVXmQP7Uu8+/TNbD8/53Zzq5e/bjf/ohNKWHGtz8rq1keQXC7Qgtzag9PTfhtc4V988nQdsASq+9p7z6iu5kfEam/iPfIzSmRYg2QLiDz9ObbCsjfLfw0KHKHH6d9JKZTfr/XSsAQ5/12b7dKm4a+f/myjRJJO92FtRZKf3+nz/6/ld4xgc5xXGmpgXhFnaGEYv/WB9Ouo2zOoI85BOb+GEnZrsLr++PcqDvo4R9tT58hiK/i1HNuqXA7TZUedo50Dfr0B6GjPrafPH5bSQsV+d3el+pV5kXHal3iPDGuwc13l5+esVzVx7qltjpvzjgFUzkEjJQWnzxu/Xnp3+d+jldomtck5kEAqey6xBP3avv12veSLfk5D4XoOcV4PmpyfLSWnKn1M1ARHu2SxFzlzBsd1on/xSZX6hyl27b0+r4/lcbQxjt88s1uCZA8MdT8fF51Q5/WPnfG5JS+yh/b1/osM/xCX81jVrgNdsxWLvejXtrDgdN/aGnw635DMrzdKT/eBKzvwrrryo3poR79ZsqhUpYGR8i86IWvRccWv+kONLHtXyiNK/HK8JGnDeW//ur6WGs2NdvV91DkY1PNacMN5757+h2E4y+HIbRysJSdl849w21fO/p4lSP5Fx2UpPaWEr66TJG0Z8qJzf1mLTzizvDNbjzjtTbxHtsCo365DpQr3f35EN+0Y+C9Z7MWyFp9Q5/RZauIlI3Kdf2/StN+u86yn23pJzvOTn61QfvZi9frmtjNer81DX5QtMOq3PlFgxG/tn0s58yN7aFe/GSoNbnq6LNUYvFwZeVE9tSX5Ad2076/OaWdliF5cXKykpCTNnTtX5513nnP6fffdp5ycHD3//PMVLqOiEL2y8iO6y5C8hpuuKgp9bdYQWW0F1SqDWajpVs7IWO1J/psSvppcfjl/HRFX0SjmmihTfZYXGSdJPu+0V3U7VlSPbH5Bshq1/2OLeU3jTwfz392lJifLPzY85Yd3l+EfoLDj7jew8iNjtTfxXtkCo2r9giovqqfkZ/HJXWBf1728qF6S7NU+geVHdJdh8a/xE2B+VA/t+jU4NgsRTrdzf1fn9TPOePud6XYoj6OT3e37e9Ukd2+NL98hL6qnpOr/9ofrN2pqW15UL/nZi8vtBNY3jv3Y9X8P+3zEyOkb/xXfWD49b6x2DPznGZ/nq8txI6XrugfLLW9NHs81wafnBUff7AwD+4o46/SPf6v2Nj/TdsfrMiN7ys8orfP2obp92aocj3XBZg2WtaZ/+6AOVPfayGYJkdVevWsqt+X4BctqVG271Ub9r0tV3eb5Ed0lqdaPzZq8fskP76bg/J/r7Dq1Js8d1amTbu8/g7yhqvIjumlXv8fP6Hxipjb76JKUHxEnoxKD9Wrks6rSf4vofnreGtyelWkv8yO619n5tyaO9TM95/n63FOpzzrDYzk/Mu709Xo12qWavo6oTp+pqsdCvp+fBnZq7/z7rAzRMzIyNHToUC1cuFDJycnO6U8++aR++OEHvfvuuxUuo7S0VBs2bFDCsitlLa2byo7as2Xoi+pVA3cEAQANA+1+9W0a/nqNjQgCAAAAcHZoaNcRp/z8NKJDW+ffwZZgze4xW4mJifL3r9xPhjaaHxY9E3a7XZK06fyKA3c0DOkXf+TrIgAA6hDtfvWx7QAAAABUVUO7jpjnZZojE66MBh+iN23aVFarVdnZ2W7Ts7Oz1axZs0otw9/fXwkJCbJYLPKr419XBwAAAAAAAADUDcMwZLfbKz0KXWoEIXpgYKB69eqlNWvWOJ+JbrfbtWbNGl17beV+oMpisSgwMLA2iwkAAAAAAAAAaIAafIguSb///e913333KT4+Xr1799arr76qgoICjR071tdFAwAAAAAAAAA0YI0iRB81apSOHTumuXPnKjMzUz179tSLL75Y6ce5AAAAAAAAAADgjZ9hGIavCwEAAAAAAAAAQH1k8XUBAAAAAAAAAACorwjRAQAAAAAAAAAwQYgOAAAAAAAAAIAJQnQAAAAAAAAAAEwQogMAAAAAAAAAYMLf1wXwtVWrVik3N1dFRUUaMWKEVq5cqYyMDIWEhGjjxo3av3+/zj33XO3atUsTJkxQ//79ne/dsWOHVq9erd///vdel11QUKD9+/crNjZWK1asUExMjEJCQhQXF1fp8uXk5GjHjh3as2ePPv30U8XGxmro0KEaNGiQ23xFRUX67LPPdOjQIe3evVtFRUVq0aKF8vPzdfjwYXXr1k0pKSk6fPiw+vfvrxUrVqhXr17avn27Tp48qS1btujQoUNq27at9u/fr6CgII0YMUIjR45Ur169tHDhQrVq1Up+fn5auHChioqK1KVLF7Vt21b/+9//FBUVJavVqsTERC1dulS9e/fWsWPHFB8fr7CwMNlsNv3www9q1aqVUlNTZbFY1KFDB0VERGjPnj1avny51q9fr5iYGNlsNjVv3lyHDh3SqVOn1KdPH7Vv317r1q1TcHCw8vLy5O/vr759++rYsWNq37692rdvrx9++EElJSU6dOiQIiMjVVhYqK1bt8rf31+nTp1SUVGR4uPj1apVK6WkpCgxMVHr16/XgAED9O6772rdunXavXu3wsPDlZOToxYtWuiuu+7St99+q+PHj2vLli3Kzc1VVFSUbDabioqKFBkZqW3btsnf31+GYWjkyJHatGmTgoODdeONNzr3U1ZWloKCgjR9+nQdP35cvXr1UvPmzXXy5EkdPXpUR48eVZMmTVRQUKBzzjlHH374oZo1a6ZBgwapTZs26t27t7p166bc3FytWLFCGRkZ6tKlizp06KDu3btr7dq1ys/PV0pKiiIjI531Yvv27crJydH//vc/tW7dWpmZmWrZsqV69Oihf/3rX+rXr59iY2O1fv16BQQEKDY2Vrt371ZMTIy+//57bdmyRSdOnFBCQoLi4uIUGhqqoqIi/fDDD8rLy9Ptt9+uOXPmqKCgQN26dZPFYpG/v7/sdrvsdrsCAwN1+PBhDR8+XFlZWQoPD9euXbsUHR2tvXv3KjAwUJLk5+en3/3ud8rMzFRsbKwOHz6srVu3KjExUYZhKD8/X6Wlpdq6dauaNm2q7t27a9OmTdq6datat26tPXv2aNy4ccrIyFBgYKC6d++ukydPav/+/Tpx4oSKi4uVkZGhiIgINWnSRJGRkdq8ebPOOeccHTp0SH/4wx/07rvvKj8/Xzt37lRKSoo2bdqkZs2aKTExUQMGDNDGjRvVunVrlZSUKDQ0VJmZmTp27JgiIiJUUFCglJQUFRQUaMWKFcrKylKXLl00cuRIZWRkqHPnztq5c6fefvttRUVFqU2bNjrvvPMUFBSkTz/9VMXFxQoNDdVll12mBQsWqH379mrSpIkiIiL0/fffq0ePHurQoYOioqJ04MABDR06VPfdd5+OHDmi48ePq3///jr33HP11ltvqV+/flq6dKl69OihkJAQRUdHq7S0VOeee65atWqlF154QYZhKCUlRRdeeKHWr1+vLl26aMmSJcrPz9e+ffvk5+enli1b6tprr1VhYaG6d+/urMeRkZH68MMPderUKY0ePVoWi0Xp6elKSUnRF198oZ49eyouLk6GYWjdunWKiIjQqVOn1Lp1a4WEhGj//v3q3LmzvvjiCw0dOlTR0dGVbg8d9u3bp06dOqmgoECbNm1SeHi4vvzyS+3cuVOdOnXSrl27FBYWpoyMDGVnZysuLk69e/dWnz599Nprr2nPnj3q3LmzSktLNWjQIDVt2lQvvvii9u/fr44dO6pt27bq06ePPvroI8XExGjs2LHq2bOnWrdurZycHBUVFal58+blljE7O1urVq3Sxo0b9c033+iGG25Qfn6+UlNT1aJFC0VFRSk9PV1xcXEKDw93e+/Jkyf1ww8/6NixY/r666/Vrl07RUVF6ZtvvlFBQYHi4+O1d+9e7d69W0FBQQoICFBqaqrCw8MVEhKin3/+WceOHVNeXp7atGkjq9WqAQMGqFOnTkpKSvJ67nC0KYmJic59/O677+qCCy7QkSNH1K5dO+Xn5+uHH35QRESEwsLCNHDgQP3vf/9TcXGxBg0apL1792rr1q0aPHiwdu3apTZt2ujnn39Ws2bNFBUVpRdffFFdunRRVFSUOnbsqP379ysvL08XX3yx3nnnHRmGoY4dO6p9+/Y6dOiQxo8fr1mzZqmkpESdOnXSkSNHnG1Gz549tW7dOh0/flytW7dW8+bNFRcXp4iICLVu3VoDBw5UYWFhperb0aNH9fXXX+vkyZNavny5jh8/rn79+ikrK0tZWVkKCwtTz549dcEFF+ill15STk6OAgIC1LFjRxUWFsput2vfvn0aMmSIli9froiICB06dEhdunRRRkaG+vbtq8zMTBmGoejoaH388cdq3ry5c5vu379f/fv3d7ZvAwYM0Geffabg4GCdc845iomJUe/evfX8888rODhYhw8fVseOHZWfn6+IiAi1atVKK1euVGBgoBISEuTv76+EhARdccUVCg4OrtQxNWfOHPn7+ys6Olrvv/++goOD1axZMzVr1kzff/+9kpOT1aZNG504cUJjxozR3r17VVpaqmPHjmn79u06duyYSktLnesYERGhgIAARUVFadeuXTpy5IhOnTql1NRUbd++XTfddJOefPJJ2Ww2de/eXR07dlR4eLiWL1+ubt26qVWrVlq1apUOHDig1q1bq0+fPtq3b5/y8vJ06tQpJSQkKCYmRgcPHpTNZtOePXt04sQJBQYGym63KzQ0VD169FCzZs20atUqtWnTRldccYWGDx9uug0KCwv17rvvasuWLWrXrp2sVqskqV+/furbt6/p+zIyMrR582alpqbqvffeU58+fRQfH+91XsfxtnbtWg0fPlznnXeeDhw4oCeeeEIWi0V79uxRy5Ytdf7552vZsmUaOHCgrrvuOgUHB2v16tUaNGiQ/Pz8JEkvvPCCVqxYofz8fB04cEB+fn5KTU3VVVddpR07digoKEijR49W06ZNy3y+43gfOXJkufXCc90WLVqkyy67TOPGjdMXX3zhPA84PmPhwoUaNWqU87hbvHixzj33XM2ePVsHDx7U1VdfrSNHjujEiRPq37+/rFar3n33XY0fP17h4eH65ptvdOjQIa1evVpBQUEyDEOTJk2SJC1dulStW7dWcHCw7rrrLuXm5jrPTQsXLpRhGFq1apUOHjyo7t27a+rUqerUqVOl1u2NN95QmzZtdO6555bbVnjug/I4zlMrV67UsmXL1Lt3bzVr1kxHjhzRNddc4zbvkiVLtHz5clksp8c2DR06VIMHD9aqVav0448/6qqrrlJCQkKFn+lp3bp1Sk9PV5MmTXTllVfqxIkTWrt2rUpLSzV48GDZbDb973//U0ZGhn788UfnMZ+QkKAjR45o9erVSkhIUEZGhtLS0lRUVKRDhw6pf//++umnn2S1WrVs2TKlpKQoJiZGW7duVZs2bVRcXKzExETt3LlT+fn5Cg4O1kcffaTU1FRlZmYqPz9f2dnZuuWWW5Sdna2TJ09q1KhR2r17t2JjY/XLL7+oc+fOWrt2rVJTU3Xo0CEFBATo+++/l7+/v7Pt3Llzp0pLS9WtWzcdOnRIW7duVe/evXXVVVfp3//+t5o2baqoqCgdPHhQeXl52rJli7p3764ePXro6NGjatmypYqKiiRJu3bt0v79+3X06FGNGjVKw4cP17x58xQZGanWrVurS5cuOn78uLp166aXXnpJVqtVkydP1oYNG5Sfn68TJ07IarWqQ4cOMgxDOTk5ioiIUHFxsdq3b6+UlBTNnz9fSUlJ+uGHH9S7d2/l5eUpNDRUa9askcViUWhoqDp37qzAwED1799fH374oaKjo9WpUyd17NhRoaGhWrt2rbZu3aqMjAzt379f559/vlq1auXcjkeOHNGVV16pwsJC+fv7q0ePHvrf//6nLVu2KCIiQvv371diYqKKioqUmJiobdu2qbi4WBaLRb1799b69et17NgxjRgxQgcPHtSePXtkt9vVrFkzBQUF6cCBA85zz+bNm9W8eXNt3LhRzZs31/Hjx9WqVSs1bdpUV155paKjo2UYhhYsWKBffvlF7dq1U/fu3ZWfn69vvvlGTZo0Ufv27ZWfn68mTZpo69atSkhI0JAhQ7R7924VFxdr3bp1uvbaa2W32/XOO+8oISFBJSUlatq0qdLT03Xs2DG1bNlSLVq00C+//CLDMBQeHq7+/ftr37592rdvn/r37y+LxaIjR46oT58+ysvL08aNGzVmzBjt27dPq1at0qpVq5z9e4vFotatW2vv3r2aNGmSdu/ercDAQPXs2VPbt29XTEyMAgMDFRoaKkk6//zz9dVXXyknJ0cHDhxQRESEJOmTTz5R27Zt1aJFC23btk0FBQWKiYlx1uktW7YoODhYV1xxhQICArRkyRIdP35cF154obp06aLw8HA99dRT2rFjh2JiYnTBBRcoLCxMvXv31pw5c3T8+HG1a9dOBQUFOnXqlPr3768tW7YoOjpaTZs21dVXX62wsDDNnTtXubm5Kikp0fbt29W1a1dNnjxZu3bt0tixYxUREaHMzEzTfq2j3cvOzlZubq6mT5+ukJAQlZaW6qKLLlJxcbHS09M1cOBAXX755ZKklStX6u2331ZGRoZKSkoUHh6uyZMnKyAgwNlvys7OVlFRkVq1aqULLrhAwcHBOnLkiLKzs/X8889r586d6tGjhwICAtSzZ08FBAToiy++kM1mU0FBgYqKihQXF6egoCBt27ZNnTp10v79+1VcXKwmTZooJSVF1113nWbPnq2mTZuqSZMm+vbbb5WTk6OBAwfqxhtv1PXXX69jx47p3HPP1alTp2SxWNS5c2edPHlSQ4cO1eHDh3Xttddq48aN6t27t9t2KS0t1fHjx1VcXKwvvvhCWVlZ+vnnn3XixAmdOnVKAwcOdGYS3bp1U0xMjFJSUmS327Vjxw698847io2N1alTp/TZZ5/Jz89PI0eO1NGjR9WhQwfddtttWrdunXJzc/XTTz/piiuu0HfffaeMjAxdffXVOnnyZJlzXE5OjvLz8xUQECCLxaIvvvhCaWlpmj9/viIjI1VUVCTDMBQaGqqEhATnuX3AgAHOa7ejR49qx44dWrlypUpLS+Xn56ehQ4d67T85rgufeuoptWvXTqNHj9bWrVsrfZ50ZVYH16xZo2XLlslmsyklJUVdunRRfHx8mfPx119/LavVqkGDBqmoqEgfffSRvvzyS508eVITJkzQf//7X4WFhenEiRO6/PLLlZubq19++UU7duzQ6NGjdfnll+v999/Xhx9+qJiYGIWHh8vPz08pKSlq2rSpdu3apVdffVWGYWjo0KE6duyYQkNDNWDAAJ1zzjk6ePCg9u/fr4yMDB0/flwDBw5Uv379tGvXLh0/flxWq1Xh4eHq1q2bNm7cqFOnTik8PFwFBQU6fvy43nvvPXXt2lVt27ZVVFSUmjdvrt69e6tp06Zq0aKFDh48qK+//lqff/65LBaLWrZsqREjRujrr79W27Zt9Yc//EEBAQFV2uaSdOLECT399NM6dOiQTpw4oZiYGP3ud7/TsWPHFB0drcWLFys1NVUbNmyQxWLRxo0b1apVK7Vt21b9+vVTcnKy5s+fr4KCAuXn58tiscgwDP3yyy9q1aqVDh8+7Mz9LrnkEq1atUr9+vVTUVGRmjVrpg0bNmjnzp0aOHCgtm/frpSUFHXr1k3p6enasmWLWrZsqVOnTqlnz55KT09XeHi4CgsLlZSUpJ49e+rVV19VeHi4iouLdcUVV+jtt9/WkSNHdO+992rBggVq3bq1OnfurKioKC1cuFDjxo3TG2+84dzWPXv21J49ezRmzBgFBQVVerv5GYZhVHlrNwL/+c9/9Nxzz8lisaioqEglJSVur1ssFtntdufffn5+MgxDVqtVhmG4vebJz89PAQEBKi4urnR5AgICnGUIDQ3VqVOnnMuSJNfdZLVanR3tkpISZ1kdZcRv6sM2qakylLecgIAAGYah0tLSMq951uWa+Dw0fFarVTabzfR1z/3v7+8vi8Uii8WiwsLCKn+ev7+/bDabaZ0KDAxUaWmpW121Wq1q0qSJioqKnBe6FZW7JlX1GHB0HIKDg1VUVFThecJischms8nf39/rsVtT/Pz85Ofn5yxPdduEhsoRTuTn58swDLf1d+zjmm7v6tM2tlgsio6OVnZ2tnMd66J8DeUcUlE5vb0eFBTkbJOqutzKbhfXfqEnzzajvGW2adNGQUFB2r9/v+x2u3Pfe2tLy2uLAgMDy/RrW7Vq5bxBbbfblZub67Xs3vqy1eXt+DX7HIvFIj8/P7f1dJ3HarXKbreblst1G3m7LggICHCet4KDg1VYWOh1X4SHh8tut6tJkybKysryuv0d59eoqChlZWW5fY5jeY4BG67rb7YtUHVsw7Jqc5ucTdcnjmt3sza9qly3QXnbozLbytEWhYSEqKCgoEbK5DldMm//AwICZLfb66xvfyYc58i67uN5O1/7+fnJ399f/v7+KikpcTt3e57bHOX1dh4LCwtTXl5emazJ2/5o1aqVMjMzK7WvwsLCnDdMDMNwDpQ5ePCgc8CDo0/hrX8RGBjoPIcXFhaWW4+91d2q9jvqU7/dldk+qux7vb2nLq+lG4KAgAC1bNlSX375ZaXfc9Y+zmXv3r1q06aNbDZbmcZEUpmDyFEBXef3vFvhuCNtGEaZhqCiu3GOk6pj1LTr53pWfpvNppKSEud7HI2i68m0Kp/tydFgOd7n+L9jVJZjHn9/f7fXXT/H8z2VKUNYWFiZz6kM12U7bi6EhIRIcr+QcnCU23MZrvN4m89zPR3zO/5vVm7P/efv7+8snyRFRERUuH0q6gSVlJSYNoYVnRBc19txEecot7dt5SiPg+d6O15zjBitLsc+cSzfUT+87SvPdSiP5+tVPT4qy2q1ltl+niOOzcrh+e/K1A9vx6GD45h2/FtShSdPz/pWWlqq4uLiagXojve7LtNzPxQXF5epqzabzTny23Wao+NY3X3nrY44tqHrtjJrU729V5LzZmZBQYFb6OE5n2PZjvV1dHw92xTPfdq5c+cydcr1GDErW3mhi7f1MFs/1890jHZw3ZYVLc8xr2MdqnLH3/OzXDmW5/q6Y9mO9XXtfLrWM8c0s7rp+ZmO9XZ8puPmUmW2pesx6LmPXf9dmXrt2S54W56D3W5XVlaW2zp6Hmtm7UZleauD5V0wu35meedes21RUTvuCDg9X/O2PMdNFLOyemsHKgrQHcutynTJfTuW10Z7Bt3e1sHx9+HDh7V3717nPnf83zUc9rZcz/robWDIkSNHZBiGTp486XYB6xkUefZhKjtayjGi0zF/SEhImePXtfyufWbHse+5HV3ncdzYNWurXN/rbWCN63nLcW701u/Mzc1Vfn6+jh49Wmb7uy6/tLTUGaB7CwBKS0vdbkZ7a8u8qUyfwnW6o01zrEN5+6sq7UR55arOe8u7/jDbp976YY7+amUDCs9t6PqZZtcI3srirQze5vXWJp7ptvP8t7frNbNrD0d5POtFRWVy9OMdqhuEe7tx5vh3YGBgpa8jXa/FJCkqKkrSb+2Ot3NsdTmu3au6HM9+k4Oj3TK7keh6Lec63ds1lKMtKigo8HqsV6Zv6K2uuLZhVbmGtVqtzn6+Z9k916G8Pqgn136SZ/+gsseT4xxZ3rW1ax/PsT5mn1GZa2U/Pz+v/QHDMFRSUqKCggJnuRyf4XqecATqjnJ7Xovk5uaWOW85Ps+z7EeOHJHNZqvUsZ+Xl+e8yexYvuNmfmFhoVufwlv/wnHN6bimKu+awdH/8Fw3z2mubYNnmSvTL/ac7jlPecs3m+56zJr1pR0DFBzzBgQEVKrOmh13jmtpz8+rTN/M7JjxLJPrtVFlt4WrquSBnudIs+sLz89r3ry5LBaLunTpUu43Vb05a0N06fRFtmvDIpUd8e3KtdGV5Pz6m4PrBYTnex3L9WwAHMt0DWE8X3d0+DwDHldNmjRx/tvzxOB6onW87tpoO05WDq53DF3L7nkx4fjbcRHjbXu5zuNaJtfPdsjLyyvzOX5+fgoJCSm30+E6Mt+x/Twv4Fy3q7cQytu3C1y3m9Vqde47z+3ieWHqWnbXz3BwXAQ5Xs/JySn3It71BkllOLaHox446oYj1PU8YXuONnZ93Wxku4NrUNWyZUu35bneGPLkeQKyWq3O/1zrrWs9c9QPb/vK8xgu74LRc6Sz50W4K39/f0VERFTY6fW272w2m3M/Ox6x4zgJOkabub4vODjYNODx5LkPXTuv3pbh+Fq85L3jV9GJynFh4jnNrLPg+BqhY9kVhYxmAZ7ndndsR8Mw3DoAriGqt8/yvKhy3QYWi8Xt2HYdrV1e+RzrZsZxcebasfUMJMw6hK4ht6OOSqc7n65th2NexzHi7VhzrReex4Jn3fJ2UeL6+a7nKdebuNLpdsbz2PNcvudNg5KSEgUEBLhdyFqtVkVGRrptW8f+87ZvpN/OGa771RFyNmnSxHQ/eV4ceJ5HHP92jGR3lNl1HVxH+7iuu81mc9u/rseL43FXnrwF+q7nN895vYXi3i5ivfU7vPHshFZlRI7NZvPaWXVsN1eObehtfT3LZ3buMxvo4LoMb8v3drPEMbrXG9f+SHnnacn7xZPn/N6OUdf67/g81+3vel50XV5QUJBatWrlFgD6+fk5AyDH3577wLMMFe1nz3Oka1123MwMCgoqczOwvM9w7aN5uynuaKscX693DXk8t4Nnu+UIwjwDGLP3OdbRrOzl8QybXbn2IUNCQip94W0WXHu7WeiYbnbh6uC6LNe2w+wGhOPfZtcmrhebnqGMp8oOcnC0dWFhYW7bw/OGret50dtx6+h/mJ1/HI+EdNW+ffsyZfF2o94sFPTW1pR3XHl7rbyBMI5jy/WmnlmQ7DrN7JrRwTHS07VMrsGbWaDiKKvncex5PVFRSOWt3fZW5uDgYNO647kfiouLvY7Ydf2/Q5s2bdymOa4zcnJyyizb8e0R136U6810T4467Fluz+OlRYsWCgsL87qfgoOD3fpNgYGBCgwMdKuHnlzrh+O6ynO6Y5mOc4dr+b0NsnDsE9fHhXp+vuu/HY+R8yxfeX0Rz/O+Yfz27WrPOu9YBz8/P7f8wzMs9ez7lTeAIjo6usw+cB2Y520wkiP7aNKkidu6efbxystCXM/Pnn1013J4Ti8vUHbM61j/mJgYt3KXF8B61mVvN9slOR8vVl5ddJTTcQ70rOeu//Z2vnat65LKfLvNM79yLYfrNY/jWHBdH9c+omM/eq5jZQZCuLaXrst3vObtHOK5jR370ttNf9fH3rqed0pKSryWrzLnW8+cxXMbO7ZbeQMWpd9uNjp4ftvc9eaJZ1nNBiB5Ls+M57Hoeq3t2n9xHIfR0dFe+wW5ubny9/dXx44dq3xT96x9nMvevXvVsWNHbdiwQdHR0bruuuuUm5urc845Ry1btlRISIimTJmiZ599Vv7+/jp69Ki2b9+u0tJSPf/887r11lvVpk0bZWZmqrS0VEeOHJF0+sTheC5PbGyssv+/vTMPb6s68/9XsnbJsmRZtmVb3tckTuJ4yb5CmoSEAE1atpYphNJO6XSB3zzTZabQGdrSYfhNp+2vlBQK6VAY9pJANrI5ux1ncRw7jvd9l7VZliXb0u8PP+/h+lqynRAKHc7nefI4ku5y7jnnnvOe95zzfW02bNmyBa+++irTBU5LS8OZM2cwMjKC5ORkrF69Gm+88QYiIyORlZWF2NhY7N+/H0ajEXl5eWhsbITBYEBkZCR+8pOf4Ny5c3jhhRfgcDhgt9shk8mQnZ2N1atXY9++fVi9ejW+/vWvAwAOHjyI1atXM4eey+VCIBBg2r51dXVIT09nWs8qlQputxulpaXYunUrKioqkJubixdffBFpaWlQqVRoa2tDZGQk0xl+7733kJWVhZKSElRWVqK7uxsFBQXo7OxEfn4+Tp06Ba1Wi7KyMmzcuBGXL19GTk4OSktLsXjxYkgkEuzatQtFRUXYtm0bPvjgA5SUlECj0aC+vh7z58+HQqHA2bNnmX5SZGQkfvSjH8HpdOKWW27BQw89hL/85S+oqqqCTCbD008/jfr6ejidTsTHx6Ovrw8mkwkulwt2ux3d3d24fPkyenp6sHbtWuzbtw/Lli3DP/zDP+DixYtwOp2Ijo5GREQEKisrsXnzZkRHR6O9vR1xcXE4ffo0li1bhvPnz0Or1WLOnDkYHx/HwYMH8cYbb8DlckGpVMJgMCAYDKK+vh4ZGRmora1lOtsLFiyAxWJBTEwM+vv7kZ+fD71eD4fDgfr6egSDQTQ2NsLlcuH8+fPo6uqC3W5HYmIient74ff7kZGRgbGxMRgMBigUCly+fBlGoxGPP/44KisrUV5ejgcffBBKpZLps/v9fpw8eRKNjY2IiYlBS0sLvF4vEhMTceedd8Ln82F4eBhGoxGDg4NQKpUYGRmBSqWC0+lEbGws9u3bh5UrV8JisWB4eBgajQYKhQJerxcffPABzpw5g6KiIixevBjd3d2IiYmBy+VCV1cXli1bBoPBgKNHj2LdunVMnzM5ORlnzpzB7bffjtbWVpSWlmLhwoVoampCbW0thoaGUFJSArlcjujoaPT29uKWW26B0+lEVFQUjEYjLl++zDS8T548Cb/fj9TUVMyZMwfDw8NMuzgxMRFerxcdHR3w+XwoKipCQ0MDmpqakJubi8WLF6OtrY05KDo6OnDy5EmmuXz16lWcO3eOaT0bDAYUFhYiNjYWdXV1TK/aZDJhdHQUGzZswLFjxwAAnZ2dWLp0KeLi4pCQkIAjR45ArVZj7dq18Pv9OHjwIBISEmAymXD16lX09/fjlltuQX19PXw+H9Nn/vOf/4yioiKmn37hwgWUlpbi0UcfBfDRJFZ1dTXi4+MhlUrhdDpx8OBBpn//zDPPsBUI4gEZOU60Wi1iYmJQVFSEuro6WCwWNgi9cuUKlEol9Ho903EmzdBdu3bh7rvvhl6vh9lsxsqVK/Haa6/B4XBAIpFg3rx5OH/+PEZHR5GQkACdTgeXywWHw8Haq2XLluHOO+/Ez3/+c7S0tGDt2rXsvQ4EAvjqV7+KzMxMlJSU4ODBg0hKSsLixYvR3t4Oo9GI8fFxNDc3Y8mSJbDZbIiOjkZVVRWb8JHL5dDpdFAoFBgcHGSyMX19fSguLsY//dM/oby8HJs2bUJdXR26urqgVCrhcrngdrvh9/vZ+xcVFQWJZGIVem5uLp588kns378fWq0WpaWl+MY3voEnn3wSTU1NuP3223Hu3DlERETA5/NBo9Hg2rVr0Gg0iIyMhMViQW1tLW699VYUFxejubkZqampWLduHTN+R0dHmUFaU1ODqKgopgfZ2dkJnU6HhoYG1NbWor+/H21tbejo6IDL5UJqaioCgQDbkjlnzhzY7Xamzzp37ly4XC488sgjTHN4fHwcHo+HbRnV6/Xo6OhAf38/WltbsWLFClRXV6O5uRk2mw39/f3o6enB9u3bcfToUXz5y1+G2+3G5s2bMTg4CLfbjcLCQnR0dECr1UKj0aC2thYNDQ3Yvn07xsfHERERgebmZhgMBhiNRgSDQVRUVKC4uBhOpxP79u3D6Ogoli1bBp1OhxMnTuAPf/gD0w50Op0oLCxEQkICRkdHUVpayt4h2mI6Z84ceL1erF+/HomJicjOzobFYkFVVRUKCwtRWVmJhQsXsrgaNTU1UKvVsFqt6OrqQnJyMmpqanD48GEkJSXBYrHg1ltvhc/ng9frZW314OAglixZAoPBAJvNBpPJhMbGRhw5cgRWqxW33nor6uvrkZ2djf7+fjQ2NiIvLw/R0dGw2+1oaGhAdXU1srOzMXfuXKjVajidThYnAQCqq6tx4MABNDY2wul0YmhoCFarFTqdDoFAAFeuXIFcLse6devQ3d2N1tZWxMTE4Ec/+hEuXLiARx99FIcPH0ZJSQkuXbqE/Px8tLS0QKlUwuv1IiMjA01NTSgoKMDrr78Os9kMlUqF1tZWpmEbERGB4uJinDx5EvPmzUNMTAw6OjqQmpqKd955B0ajERqNBosWLcIrr7yC1atXQy6XIyoqCn6/H7W1tVi5ciVaWloQHR2NQCAAg8EAu92O0dFRHDlyBMnJyZBKpSgrK8N9990HqVSK8+fPY+3atbh48SIkEgmKi4sBAC+99BLGxsbQ19eHy5cvw263Y2xsDDqdDl1dXTCZTDAYDOjp6YHFYsGCBQsQHR2NhoYGxMfHM/3bgwcPYnh4GDKZDMnJyQgEAkzHUqVSsdgY1DaRpvzw8DBiYmLQ29vLnDCjo6MYGhpiEw/UVgvRarUYHx+H3+/H4sWLUVZWxuKNaDQaJhuSlZUFn8/HbEGyRQ0GAxuQ/f73v8evfvUrNDc3w2g0wuPxwOl0Ynx8HGNjY9BoNDAYDLjnnnvwpz/9CQMDA1Cr1TAYDPD7/Wx3pN/vZzI2JE8yPDzMZAAkkokt13FxcXA6nfD5fGyxCa2mHRkZgVQ6IS80MjKC8fFxKBQKjIyMsGtkZmaivr4e0dHRaG1thcFggM/ng8fjgUKhgMlkQldXF2QyGXQ6HTweD0pKSpg9cvXqVXR2drJ8j46OxuDgIDIzMzEyMsL0OamfvXjxIoLBIFJTU9He3s4GkHK5nMltqdVq+Hw+OJ1OaLVapvupVqthNpuZ3TQ8PAydTofh4WFYrVam+Qt8tEghMzMTw8PDaGxsZBPCcrkcCxYsQHV1NcbGxpgzjwb35CwaHx9Hfn4+6urqkJCQgOrqaiQmJkKtVjMdVq1WC5lMBo/HA+CjgXJcXByysrIwPj6OBx54AGazGefOnYPRaMTZs2dhtVqxYMECtLW14d5778XVq1cxPDyMiooK9PX1wWq1wmQy4YMPPsDzzz+PS5cuYWxsDNeuXcNtt92GCxcuICEhARUVFYiPj4fT6UR5eTlycnKwYsUKZGRksHdg7969iIuLg8vlwtGjR7F8+XLExMSgrq4O2dnZyMnJwYEDB1BTU4OVK1eira0Nbrcbg4ODTDO3u7sbLS0tWLBgAbZv3840kRsaGrBq1Sr09PSgvLwckZGR0Gq1MBqNOHDgALZu3crGPvT7fffdh7q6OkilE3rIw8PDLO6Nw+Fg7TzF2rhw4QKsVivS09NRWloKj8eD/v5+xMTEYP78+ZBKpXj11Vdx7do1LFmyBNu3b0dVVRVOnz6Nf/7nf8aePXuQlpaGU6dOQSqVori4GBKJBAMDA5BKpejv72e7VNPT0yGVSlFZWYlVq1ahrKwMVVVVWLRoEWQyGRYvXgyZTIaBgQHExcXh2LFjyMzMRExMDM6cOYO2tjbk5uZCoVCgp6cHzc3NsFgskEqlLCbU5s2bkZaWhv7+fpSWliIhIYH1MydOnMDg4CCWL1/O+hGDwQC3243U1FQkJCSwMeqHH34IqXRCsmTRokWorKxEW1sbfD4fJBIJenp6kJKSggULFsDlcmHevHno7OyE1+tlO+3cbjc6OjqY/ntDQwMeeOABAGC6uVevXkV6ejp+//vfY968efD7/QgGgxgYGIDb7UZGRga2bNmCF154AUlJSXjggQcwNDSEyspK9Pf3AwCGh4cxZ84cJiPR0tKC22+/He+88w5MJhOioqJQVFSE8vJyZn8vXboUPT09aGlpQUZGBurr65GVlcXGkT6fD++++y42bNgAi8WCkpISHDlyBOvWrWOxZXbv3o3s7GxERkaiq6sLS5cuxfj4OM6ePYs///nPWL58OdRqNWpqarBp0yY4HA6MjY3BYrFAIpEgPj4ebW1tsNvtWLRoESQSCV566SWkp6dj48aNOHLkCN555x1873vfw/z589lY0mazITIyEidOnMC5c+cwb948Fnfjww8/hN/vx9atW/H+++/D7XYzeSq1Wo34+HhkZGSgsLAQixcvRmtrK4LBIEpLS5kufWFhIZqbm9HS0gKdTof09HSo1WoMDAzg7rvvxtGjRxEfH4/R0VE0NTXB6XRCpVKhuLgYwWAQtbW1qKurwx133IGrV69i8+bNKCoqQmpqKioqKlBYWIjOzk74fD6o1WpcvXoVpaWl+OUvfwmv14vjx49j3bp1zLna0dEBlUqFV199FQCYXXLp0iV8+9vfRnFxMdxuNy5cuIBAIIAvfOELACYWq/T398NiseDEiRN4+eWXsWTJErS0tKCrqwtOpxMRERFITExk+vnz58/HvffeC6VSiWPHjiEtLQ0jIyNMDz0tLQ3Hjx9HZ2cnXC4Xvv/976OnpwcXL17E/fffj+PHj+P8+fM4e/YshoaG0N7ePmksJhyTkVPQbDazuCc7d+5kzx0VFQWHw8H6PXI8m0wmbNq0Ce+//z7rY5RKJRYvXowrV64gMjISPT09uPPOO+HxeFh/kpmZidraWlgsFni9XjQ1NcHr9U6SSBSmz2g0or+/H9HR0dDpdIiLi0NPTw9ycnIQFxcHg8GAsrIy2O12GAwGXLx4EREREVCpVHC5XKzv1Wq1MJlMUCqVqK6uZj42sn0yMzMREREBt9uNrq4u1tfJ5XIolUpm965atQrf//732YLFS5cuYWBgACtWrGBxD+rr67Fq1SokJCTg0qVLaGxshNVqRV9fH7MLL168iPr6eiQmJiIuLg5msxlvv/029Ho9YmNjERsbi5MnT0KtVsNiscDhcAAACgoK8OGHH2JsbAyFhYW4cuUKtm3bhrfeeostIpo7dy4MBgMOHTqEDRs2QCaT4YUXXsDVq1exbt06bN68GQ8++CCMRiMsFgvuv/9+HD58GDU1Nejq6kJubi4GBwcxODiI7u5uREVFIRgMYvXq1Th8+DDTXne73dDr9cwW6ejogMViwRNPPIFdu3Zh2bJlCAaDWLhwIbRaLdLT02Gz2bBr1y585zvfYQ5nGsfodDpUVVUhOjqa2e4jIyOw2WzQarWor69nbVRUVBT6+vrgcDhQU1ODrKwspr8eGxsLrVaLt99+G/fddx+OHDmCt956C4WFhVixYgXkcjnq6+vh9Xpx8eJFpq3ucDgwNDSEd955B1FRUViyZAny8/Oxe/duzJs3DxaLBb29vbBarWhtbUVGRgaee+45fO1rX8PJkyeRnZ3N4gpGRUUhPz//ulQUPrdO9IaGBrz33nsoLS1lzlWdTofa2lo2+CUMBgNrRBISEtDd3c1e4MrKSjaDcc8992Dv3r342c9+hpdeegkNDQ1wOp1wuVyw2WwAJpw2VqsVGRkZyM/PR1VVFb761a/izTffxIULF6BUKuF2u6FWq5GdnQ2Px4Py8nJmhNMK1pdeegl1dXXYu3cv4uPjcfr0aTgcDkilUrjd7imzoBEREdDr9bDb7VPyglZiBoNBdh/xaq1AIIDIyMhJhn24GSLh7F4oyClAqxwor3U6HUZHR8NukxZfVyaTISoqCitWrMChQ4cmaRALVyyGWw0SGxvLBpJGo5ENrsV5QwMqjUYDr9cbUs8u1DNHREQgMzMTixcvxp49e+D3+zE6Ojply9J0ulT0m1QqhdlsxvDwMEZGRhAfHw+73c5W7PT19TFnnlarhUQigdPpnLRFKxwKhYLdY6Yt2KHSJ5FIwq5Yp/dFqVRidHQUgUCAOefFq22jo6NZ0LhQ9xUOaslhr1KpWL2lvCItVto9IJRHCpVGunY4XVSpVMr0usfGxtiqA7/fD7PZDJvNNuUecrkcJpMJfX19bGJEDD23cOaW6tnw8DD7jlZ00FZxqo/ireVGoxFjY2NsBQ2VT6gVObTKyu/3Qy6XT8o/Oi8zMxPt7e1Qq9UsyF5iYiI8Hg/cbjf6+/sRERHB2jhasWs2m7F69Wp88MEHGBkZYcFoCYPBgNjYWNhsNsTHxzODr6WlhekMUl2m+uLz+aBQKLB+/XpUVFTAYrEgISEBL730ErxeL5PBEga1DYXYIBXWMzLOwhEdHQ2/3w+JRAKDwQCn08mMCYlEgr6+PqhUKqSkpGD16tX43e9+x9o2qv/AxIoWGpwdPXoUBoMBIyMjiIyMhMfjQUFBAU6cOAG/34+IiAg2OBSnV1yewucWtnsqlYqlW6lUYvXq1bDZbNi4cSNefvll1u4ZDAa4XC4mFUYDS/HqB6ofwNRdQ3ROMBiEQqFgKxpkMhkiIiKYpiG1OcIVUUQoXUS6vrg9F0/8REREIDc3F9XV1cyBOTY2BrlczhxhZrOZGf4ejwcSiYQFxRTvWCLHlcPhYGVI9fNGCVWG4bSvxc8rXsETrp5TkMeMjAzm3Fm1ahV6e3thMplw+PBhyOVyREZGsuCgVG4ztfm0gob6b5qcFK5sodUewjRSXprNZjQ3N095vlD3FW9HDwaDiIuLw8DAwHVpOQr1XqVSKebOnYslS5bg0qVLGBkZQXt7OwuqTXYUtaOULnIyq1Qq7N69GxKJhAXha2trg0ajwdjYGHMWZWZmskknasOpjNeuXYvdu3cjIyMDlZWVbHAjzoeMjAyMjo5i3rx52LFjB37729+iqKgI9fX1WL58OXbu3Amj0Yiqqio2sKTy8fv9yMvLg8PhQGZmJrq6upiskUajYQGGOzo68IMf/AB/+ctfcPLkSTaw3bJlC5KTk/Fv//ZvbKJx4cKFOHToENRqNW655RZmE586dQpxcXHMJhkcHERiYiKTLvH7/aw9oz45JSUFXq8XVqsVfr8fQ0NDKCoqwoEDB+DxeFhbTpNeXq93ygovg8GAmJgYLFy4EPv27WPvMEmHSaVSLF26FC6XC+Pj42hpaUFWVhZiYmJQXV3NYhcVFhbizJkz8Hq9uP3229HZ2YmrV68iMTERCxcuxOjoKMxmMyorK1FdXc0C+FosFly8eBEymQxxcXEwmUxoaWmB0+lEUlISysrKYDKZWJ2KiYnB4OAg5HI5Nm7ciM7OTlRVVSE9PR233347ysrKEBcXh7GxMbzyyitIS0vDlStXsGzZMtTU1EChUGDjxo1sG/zJkycBAHFxccjMzGTPPXfuXNTU1KC8vJzZBhqNhjkrqP0VSksI2zTarUoTHhERETCZTLDb7WzihcqA8pmCBRI0yeL1etm1xJBDsLe3l5WFTqeDVqvFggULUFdXh7a2NrZCkMqXdgYNDQ1NmYCKiIhAXFwcq3uhdogK7S1hnxUKaqMUCgUiIyPZJJn4umQnUpB4iUTCHA70T6FQwOFwTGojaYWkRCJBbGwsk0qgSSeyI4PBiVgrGo1mkl6+OJ3iZxW+L9MhtivFcZbo+uK+n/rJUCsoQ6VRIpFApVKxCZ5wxwltmXD1h36nXQnCOiycnBSu7qUgd1FRUfB4PAgEAqx8yI4PNyZTKpXw+/1QqVTwer2THIek6U32bCgbQa1WT9L+DqU9Lo61IZPJ2G66wcHBKccL67OwH6HnCDWuEdu/UVFRUKvViIuLg81mg0ajwcqVK6FQKHDt2jU0NTWhs7MTCoWCBQkeGRmBXq9nC8aWLFkCt9vNxnC0yILGzNQ3BYMTMqEU5NPpdGJsbIxNTgMTK0N9Ph/a29tntRuObMPp6p9CoWD9tbCtms72oglvjUaDQCAAnU7HFqk999xzyMrKwuHDh5nPhcZUBGlYE1FRUaze0IR0REQEvF4vW6hAdY+C4vb398NgMLBJ2cbGRjz++ON47bXXmLywwWBAUlISqqur4Xa72TiJdi44nU4MDw8zZzY512nsbjKZYDabMT4+zoJcdnZ2AgCTQaQ8jo+Ph06nQ1paGvR6PUpLS1k/PTw8DLPZjK1bt+Lo0aNYsWIFPvzwQ7jdbqSlpbHAtklJScxm8ng8SElJQWtrKxtPf/Ob38Tq1atx4MABxMTE4LnnnkNvby/mzJmDM2fOID8/H9euXcOWLVtw9OhRDA0NIRAI4NFHH8Xly5dx+vRppKSkwGw2Qy6X4+jRo5PqEfkRCgoKcOHCBQBTd3+K35tQkxih6oxwvC/czUTBXOk44TViYmLgcDiYn83pdLI2i8ZOsbGxiIuLw+XLl+Hz+SCXy6HRaFgwawDMeZ+SksJ27vT09LD8onvk5ubC4/Ggq6uLlXlbWxsGBgbYuypcXS98r6aL00OEi6sTLu/EYz5aJELH00JOYTmJxwtyuRzx8fHweDxwuVxswQbZw9TuBINBPPbYY3jrrbfQ3Nw8yedBE3rPP//8tM8n5HPrRL/11lths9kwf/58nD17dooDZaaB5P8GbvYzTucMvtHzxGmkl+pG0j5d4ydmpiCIodJ2Pfe6nrTMlnDpoWAbQiN4uvwOZYyIG05x+j+J57kebrTuhUI4uBFyM96X6TpnMTMFm5zJ6Svkr92eXc/g7ePe57PaTv+10jYb4+5mpSfcNW7m+/dJXvOTQJwnwonPj9MmhnOK/LXy/5NGOJCfbkLgeq711zrvs8SN1rO/dp99I3lNzl6aTKTrAKH7FRoc38hzfRJ14W/xvfy4zCYfw9lYN8Js6/F0jrZPux24Wfef7t34a6dlJmZytIj/3ig3u527nnf6k2hjaSx2PeX0adfv6ZgpbeHsq3B83P7w4+bVTOO2Twpxuj8rZf5ZSIfRaITf75924g6YOsE6m0Ul4fi06sHHZbr3R5gXwuOETvC/VVtcIpHAarVCJpNh3759sz7vc6uJ/uqrr0Iul7NZKLEzigqTtssLdYCEs9pCZ5Hw83QarOJzxNehra/C76YT+pdIPtKjDpVGo9EY8p60ukOszSTU56TzxNqulCfilXHh0keQvrtQT2x8fJyt1BKeQzPBQoQaoeHuL0yr8Bix05f+hiorob4rpYXyRazbFer8mRqD6RopMdPpEgrPi4+PD3kt2ppC9wxlgAjrtzBtYh1ggp6P8iLUaknhFu5Q9xLqBYbaPhMqL4S6osI6LqwXwr/TITxfiNDJLVzZJ5yZDZVGcRsh/o6uLW47xIZPqGPFvwGT2yzx+yN+/pmMVJ1OB5lMBpVKxWa+6Teqe1FRUVOeRxh/QXjPGx0gC+8Xrj0BwgfqEueXuO0W/yZEqOMeLmgp1elQkMyKsG2h76dLt/B7oc4w/Z0pEDLpys3WkSBG+Kx0L3rPxMeHK1Px96GCMpPmv/CfME3ivjHUDgqFQsGeV4xQ4zFc/zxbhNenekHvh/CaSUlJU9IinvQVEqqdE/YzQmaahJ3pWOEx4uOpHgvb4HDt8EzppLoo7qPEWoliG2W69M9kXxHh2opQdpYw/eK2N1SfEupZwrUJ4vPC3Vv8O2k0koY3ybIpFArk5uaG1dQVQmUWGRkJhUIBvV7P5NVIvzbU/Wdrg4TS6hY/L0lZGQyGsFqrZLPRX2E8FbKt6B3Pzc2FRCJhuweEMS3E7Ty1kRKJhO12k8vlSEtLm9Rei9sdcbnRimBhOsTPDXy0y4POo0CJQr1yuq64flF9JZ1X8fd0PtVfof0Uyr6g/4eyd8RlQLacsL0P9Vessyu2e0PZc8LvZtPvk40V6p0JFXQ4XDsQqh4LfxP312Jba7r+QfhbKG3lcMfPps0XnkO7KcX5KiyncHZHqPSHsydD5aH4GcXnE3K5PGwdE9a/cPkprN+kXy3cgQRMjUcS7vdQY1HxM86k7y2uW9O1r0I7S3g9AEzKI1x/Jd5tK76/GPGzKhQKZtuLy0c89gjXxwjPEX4v/J00q4mZ4liJIXklIUKdckrjjdhj4voYbhJMXH/EJCQkTElPKP9AqHHe9TDdKmVxmqeLM0W/U/tL7aywPwsVbFj8LtLxiYmJAKYG6haWnbDfEZ4bGxsL4KNYI0KNbrpPdnY2y0/hc822zGdqj4lQ/U+4do7K3G63Y3h4mD2H+PmE7YbQHgiXJnEaQrV/tANW/Izi84THkARNuLpH71S49upGxzvC8gzVXlJaw6Ur1M7h2ULPQu+dUqmc9Hxi34YQ4bH0nlB+CsfjlG+h4j8I0+Dz+Wa9MJH43K5EB4BnnnkGp06dgsvlQnR0NNv27nK50NzcDJVKxeRGyCkkdNbRFjPKQpohplUWdD1hUAbhTCf9Fc+4R0REIDIyEhqNBuPj4+jt7WWzWiqVCsnJyXA4HOjr64NEIkF0dDSTZCBZhczMTDgcDrjdbhiNRrbNi5yh9MybN2/G8ePHkZiYiNraWqhUKkRFRaGnp4dtZ161ahWOHTuG22+/HVVVVejo6IBEMqFpXFdXh6GhIURERLABIDAx0Ghvb8fw8DAb2GRmZiIxMREOhwO1tbWT5ApkMhkyMzNht9sxMDAApVLJAqrQ+cFgkG2VDgaD0Ov18Pv9mDNnDiorK9kWkO9973t47rnnEAgEoNfrmZatUG+LJCbIeSiTydDd3Q3goxkxuVyOmJgY9t2mTZtgNBrx1ltvYXx8HA6HA3l5edDr9bh27Rq6u7vZNj/hDCQF3BseHkZUVBTcbjfTfzaZTEy6w2AwQCqVwmazYWxsDBKJhAXY6+vrm1R3aauzWq1m2r7CVzkyMhJWqxW1tbWQSD7S0qQtvNTQUCO+atUqHDhwgN1XqVTCaDSyuu9yudj2f4lEwmRi5s+fD71ej97eXrS3t0Mul8Nms0GhUCAhIQEJCQnQarWoqamBy+WC1+vF0qVLcf78eZZXNEgmDVWtVouoqCj09vYiPj4e3d3dGB0dhVKpRE5ODlJTU3Hs2DHI5XK2LWxoaAharZblrUQiYdvNa2troVarJ23VVCgUiImJgc1mQ0lJCWw2G2pra5k0iEKhYPIdwMRAubu7G36/H1arFXK5HF1dXUhPT8fw8DBaWlpYnVq4cCFsNhusVit8Ph8qKyvZFj6pVMokS9avX4/m5mb09vbC6XRCp9NBLpcjNzcX9fX1cLlczNmQmpqKy5cvs0knvV7P9GHlcjl+/vOf4/z583j77bcxOjrKJlRsNhvGx8eZ9qx4dtxiscDpdGLZsmVQq9V45JFHsGPHDqb9SmkeHx+H2WyGXq9He3s7gsHgpIkV4eoQofEmbDOF3wnfsXAdcKhVhSqVCj6fjzn8yPhfvXo1Dh06hE2bNqGlpYUF4LzrrrvwzjvvICUlBQMDAzAYDFCr1ejo6IBSqcRtt92GP/3pT5BKpVizZg1Onz4NqXRCkoZ0PIVSKKQHPh0qlQo6nY5pwlG9o+emjp+knaZzgG/btg0OhwPt7e0YGBjA2NgYPB4PFi1ahPb2dixduhRpaWk4dOgQmpqaMDo6ivT0dDgcDvT39yMqKgrp6emoqKhg7UNUVBScTue0zwBMtDFJSUmw2+2YO3cuKioqEB0dDa/Xi6KiIpSVlbEdLuSAoq3+MplsklQX9WmBQAAPP/wwpFIpSktLWdtMW+AjIyMxOjrKtLXnzZuHkZERDA4OwuVyITc3F06nE3PmzEFHRwfOnz/P6lhqairTcRTXu+kQGos0KFapVEhKSoJarcbmzZvR2NiIs2fPwuVyITk5mW2V1el0MJlM6O/vZ+0w6XgPDQ0hPj6e9c0dHR2Ij49nGtROpxMajQZKpRIKhQJtbW1skGS1WtHZ2Qm9Xg+1Wg2Xy8UkMjweD5OnoT6dnoG2FYu3hBPiuqZSqZg81dy5c9HY2AiJRMK0wpVKJfr6+lh7mJiYiObmZjbYGBsbw/DwMEwmE3p6epidZLVaERUVhfr6eiaxlZeXh56eHvh8PlY37XY7FAoFSkpKcOHCBWYvzZkzBwMDA/B4PMjLy0NdXR2TnNu+fTt++9vfssl3nU6HgYEByOVyJlVEfWh/fz8bmJJMkbjshf2mRqPBmjVrcOHCBWYr0OolchKTnANtDb2elcbC9lT4nUKhQGxsLLPTAoEA1q1bh3feeYfZB8K2m9612NhYZGdnY2BgADabDfn5+aivr2eSEOEmMykdZHeQxisFqqIBulwuh9FoZHIbJKtF6RgbG2M2CNUvcX4YDAaWhwkJCSx2CT0P2cT0TyaT4dZbb4Varca7774LrVbL3kmNRsPqI0nxARMDqLGxMURGRjLJA9qBNx1mszmkjJ8YYd5TfRJLeojfLeFgXCaTsb6KZMeAqYNPKhM6R9iGiscL4dBqtZNkhYRpoHcxGAwiOTmZbdlfuXIlDh8+zMYhkZGRTKaJ9F4tFgsuXbrEbEVqdzQaDR555BEcOHAAPT09kEgkTLaGZPsMBgMGBwcRExMDqVSKvr4+GAwGyGQymM1m9PT0MJk/v9+PQCDA2v6enh4YDAb09/fD5XJBo9Ewe1Ao50L9NsmsqdVqJimhVquhVquZbBflp1KphFqthtFoRE9PD5N1MZlMCAQmNOQdDgf8fj/WrVuHEydOwOFwsHeSnB7p6ekYGhrCtWvX2DNRLAyNRsNiKAwPD6Onp4c5JGJiYpg97nK5kJOTg7KyMqZpPzw8zN63mJgYJpVB55CjJiYmhslykX1J7xKNDej7ULIGy5YtYzIBPp8P0dHRbCxAdXR0dJTFxyGt6fHxceTk5CA6OhonT56Ez+dDbGws0wd3OBxQKBQIBALQarUYGhqCSqWCQqFgMhdkw7rdbigUCiQlJaGnp4fJklAMB5JolMlkTM6A5DNot4pEImFtvPBZqW5IJBImSUSSjADw+9//Hj/96U/R19eHiIgIGI1GuN1uFpOB7FS1Wo1Fixbh+PHj7J1SKBQYHh5mjhqTyYTe3l4AYLEjVq5ciaamJhYj6dq1a5DL5XA6nUwShdJO7zhNHPr9fmRmZiIlJQVlZWXsGUj+g/KQ8onyVSaTwWq1oru7m7UJwoUA1F/TuIDaYXqXqB2w2+0sL5VKJUwmE5YuXYo9e/YwfwfZAyMjI6wc0tPT0dLSwvJ4w4YNKC8vh0ajQXd3Nysbsa1C0jz0e3p6OotlJJVKmf8DmJAaSUhIgFKpxPLly1FeXg6n08kkS8bGxpiELTmAqWxITsZqtaKlpQUjIyNwOBzQarWIj49nY8GOjg7WhgJgk7Q0NqG+IC8vD4ODg8ymuf3229HS0oILFy7A5/Nh0aJF6OjoYFJ00dHRyMvLY3GF1qxZg+PHj2Pp0qW4ePEiFi5cyPrVkydPsnY1OTkZ58+fZ/lF/abQ+RkMBpmvgd4RGndQ3yn0Q9HzCX1UVIdozCXsq8L1QWTLCMtTOD4gOVShv8JsNmNgYIC9TyqVapIEzooVK5CUlIT/+Z//ATAhcRcVFYXLly+zNkpo48TGxjJ/SXR0NGJiYuB0OqFQKPD3f//36O7uxv79+5k+dkNDA0uzcKJu3rx5GBoaQmNjI3w+H+Li4pg0LS18UKlUsNlsGBoaYv4RkrUJBoOsHaH2jmwHao+BiTaYpIXlcjl+8pOf4MiRI6ioqIDD4WD9uNCXJZVOyJmtWLECJ06cYGN8apOlUikbW5KclbAOkx9HKE9M6SCbIDk5GePj4xgcHGSye/Qc/f39UKvVSE1NRVdXF5MjioyMRGRkJItFRv41tVoNm83GpIvkcjmTDxXKYkkkEvz2t79FZWUlXn75Zfh8PshkMsTHx6Ozs5PZrWQX0diJ/IpUDlarFR6Ph/VP3d3duHLlCtvZ+MMf/hBlZWUoLS1ldSg5ORlOpxMPPfQQHnzwwSl1OxyfWye63++HQqHAN77xDTQ2NrIgDkRUVBSioqIwNDTEGuGZsoqcng6HY1JjQB3SjW7toEZSo9Fg6dKlOHbsGDNoxNtTsrOz2cB2zpw5KCwsRFdXFy5fvozh4WEYDAbodDo0NTUxh3tiYiJsNhvT4x0fH8eaNWswMDAArVaLqqoqJCQkME2w06dPw263IyEhAYmJiairq4PBYGDBQqmBHB4eRmpqKiQSCbZv346IiAiUlJTgF7/4BZKSkpCQkIC2tjZWsa9cuYKrV6+ylTjUSGdmZiIvL4/pP5KBOm/ePDidTly9ehUxMTHIzs5GUVERBgYGUFdXB51Oh7lz56K2thZf/OIXsX//fixbtoy9uFVVVUhOTmb5QYZzT08PqqqqMGfOHJSUlODtt99GcnIyDh06hISEBLS0tCAyMhK33norTp8+jYyMDPT29uK73/0ufD4ffvjDH8LpdE5x5FADmp6eDqPRiOHhYRZUggJr0kCjrq4OGzduRE9PD+bPnw+/348jR47g9OnTU5z04k4E+EiLy2Qy4V/+5V/Q1dWF3bt3s+A9CoUCZrOZDTyDwSA6OzsRHx+PoaEhXLlyhQ2qPR4PC+ZaV1eHxx57DDt37oTP50N8fDwL3jVv3jwWVCMQCLCGVq/XIzk5mUUvJ0f0tWvX0NHRgYyMDBw/fhzx8fHIzc1FYWEhsrKycObMGaSnp6O7uxtmsxn79++HVCrFpk2bsGzZMjzxxBM4c+YMsrKy2POvWrUK165dg9VqxcGDB9mApra2FhqNBnq9Ho2NjdDr9SyPsrOzmQacw+Fg7xQ5/rKystikzpw5c7Bs2TIcO3YMERERyMnJQXp6Ovbv34+rV6/CZrNh06ZNOHfuHLxeLwuEk5WVhc7OTvT29jLd/+zsbFRXV6Ouro5pNUdHR2PHjh0YGBhgAYX7+vqQmpqKpKQk1NbWYtmyZXjttddw5MgRZoQrlUoUFhairKwMgUAAdrudaTfKZDIUFBTA7XZj7ty5zIna29uLwcFBaDQaNmB54YUXsHbtWgwMDLCBPk2kiGehSVNSqJEqdIRQR0bBK6eD9PjCaT4CE86BkZERpvP3xS9+Effffz9qa2tx4sQJNDc3Iy8vDxKJhGkEq1SqSXrfAJj+bmxsLHQ6HQwGA5qbm9lEm8lkQkdHB/Ly8nDkyBE2UCDdvpmeRfg+Go3GKVqWNFABwPTvCaEThQzSqKgo1vZScLvc3FxkZWWhoKAAv/vd73Dt2jWmI5yQkACbzcb6HdIdtNvtU9oJiUTCYlEIHWEymYyt2iBnqdVqxdDQECwWC7q6urB161YEg0G0traygLCkuyd8RkKj0eC+++6DzWZDQ0MDcyo4nU4olUqsWbMG69atw9GjRyGVSnHs2DFoNBrWl46MjKC7uxtjY2PIzMxEMBhEXl4em1zKysrC3r172UTh9aJSqaBSqZCamgqv18t0jPPz8/Htb38b9fX1aG1tRXZ2NioqKnDs2DEUFhbC5XLh7NmzyM7ORnFxMVwuFwuiTEY16fSeOXMGJpMJfr8fMTEx6O7uZpOUVqsVGo0GlZWVyMnJQXNzM2JiYliAa4rJ4HA4kJOTg8zMTOTm5uLkyZO4ePEicxxT33M9z03BbAsLC1FXV4eamhpWZqTZHxERgfz8fDZR2d7eztrF9evXY9euXWyw8qUvfQnvv/8+rFYrYmNj0dDQgMjISLS3t7N+wuVyQa1WsxXXDz30EP7t3/6NDbQWLlyIzZs3Iz09Hc8//zycTic8Hg+8Xi8GBgYgkUjYwgGKQbFp0yaUl5ezOBWDg4NITU1lCxFIW3gmxI7SmRyXdDzpMNJ34bZXCwepZO+MjY0hKioK3/rWt3DfffehtLQUr732Gk6cOMFigEgkEzrs165dY5qR1FZER0fjW9/6FhITE3Hp0iXs2bNnil0rZqbnojQCEysAaSKD2mDScKb3LTo6GsXFxWxgR05jcnjdddddMJlMeOONNyY5fICPNJgNBgPuvfdeXLp0CSaTiS1g+OlPf4rCwkJ8+OGHzMEhXNRCDmLhxKQw/4XyZ6FsplDfAWCT4zTxSfcTX386NBoNHnvsMdhsNrz88svM5vZ6vZO0eclmpABX58+fZxryoVZIaTQabN26FQcPHmSOJbHeOT1XXl4euru74Xa7sWHDBjz++OPMqXfy5EmcP3+e9TNyuRwdHR3o6upiE2p33HEH7rvvPuzZswfl5eUwGAysf1QoFLDb7ZBIJvTXMzIyMDQ0xAJu19fXIz4+HhcvXkR/fz+USiUbP1AgVJPJxNrgpKQkXLt2DSUlJejs7GQOJppAoev6/X44nU4sXboUu3btYrsCHnzwQbz66qtQqVQ4efIkYmNjWaC9vr4+FBUV4Ytf/CLefPNNXLlyhU1Qq9Vq1k7Q+0jt4/3334/GxkZ0d3fD5XJBr9cjGAzCbrdDrVZj3rx5kMlksNvtsFqtAICamhqMjIzgrrvuwrx58/Duu+/C5XLBbrfD6XSiq6sLCxYsYOWQl5eH5ORkKBQKNDU1IRgMYt++fcwR43Q6kZiYCLPZDIfDgTlz5iA/Px9HjhyB1+vF3LlzkZaWhsrKSuZM9Hq9WLZsGeLj49HR0QGbzQaDwQCNRgOXy8WcqqdPn4bP54Ner8eiRYvw7rvvIicnBzqdDr29vZg7dy7OnDmDQCAAs9mMxsZG9PX14cEHH8Tbb7+NtrY2lifJycnw+XwoKipiEzIXL15ETEwMkpKSsHLlSuzZs4ctsCkqKkJPTw8uX74Mh8OBuLg4FmxvbGwMo6OjqKyshFQqRW5uLlJTU1FVVYW8vDxoNBpoNBrU1NRAr9djzZo1uHr1KhwOBzIyMuB0OpGdnY0DBw7AbDbD7/ejv78fwWAQq1atwqlTp+B0OjEwMIDLly/D6/VCp9MhOjqa2WIPP/ww9u/fj/z8fABgwYWHhoawZMkSvPLKKxgbG0NxcTHy8/Oxf/9+DA4OsnFUfHw8C24+OjoKr9fLFmd88YtfxJ///GcWpLW6uhpRUVHo7u5mExC0SM3j8UCr1TKHHi2O0Wq1SEpKYprkLpcLWq0WX/rSl5CcnIzXX3+dOeO/8IUv4Be/+AWLq0CTtuEQ9hFKpZIFpO3v75/iXA0H7SCkyS9qn8Q+EYlkIi5AVlYWfv3rX+M///M/0draira2NhiNRoyOjqK/vx8ej4cFV/Z6vTCZTNDr9cyxPTQ0hKGhIeh0OiQlJeHy5ctsQUN7ezsMBgPy8vKgUqkwODiItrY2WCwWNk4bHByEx+OBUqlkti3ZX+HQ6/XYtGkTC/hME/wHDx6E0+mEVCplweAB4LbbbmO2NJUFObBdLhc6Ojrg9/uRmJjIFiNQbBAAk2L40CQtBbsGJpz91OeR45YmUim+G/VfNAkVavdnYmIii6cSColEwib0KC4M8NFOaZpU2b59O86dO8fibNHEfU5ODurq6tgOPAq4ThMDwn6ZbBHhc23duhV79+5lDlepVDppTEUTHmazGYsXL8bf/d3f4ZVXXmF+nJGRERiNRqSkpLB4JwaDAY2NjUhNTYVOp8Mdd9yBP//5z4iLi8PFixdRW1vL+hpgIs5CXFwc5s6dC6fTifb2duYzo/hfycnJyMrKYv4Jo9GIS5cuobe3F5WVlWhqamLjj6amJmbr0kSXcKKEnmvjxo04efIkIiIiQsbJuBGkUil7xzUaDXJycqDX63HixAmUlJSwRSTBYBBarRY6nQ5HjhxhE5sUjJ7qDi26MxqNcDqdsFgsKCgowLlz57BhwwY0NTUBmJhwLC0tRUTERPyV1atXs8WtCoUCra2tWLhwIct7mnBfsmQJkpKS8Pbbb0MikaCoqAjf/OY3cfz4cRw7dgzHjh1jiywLCgqwZcsWlJeXswVCNGluMBgQERGBe+65Z8ou2un43DrRn376aSgUCrzzzjuTHEmz1TEKZ3DPFvHqc/EAS7jyaDZC/p8lPm7ezOb64gblZhNqgmK2zOb5Z9KzFu5KmO1KN/GxoerW9XI9535S5R5uoP9xJ6c+q4jz8a+lqyqRSPCFL3wBp06dgkajgd1un3W7I57pDvX7zawbs3H+fFKEcqCESg+12+TsCbXtXLh1NFTwlnD5RoZpqEDIN5ovN7uMPul+YDpmkw+fZts221WlNytd4Zx+N/O5rudZPqm6MVs9evpdrOUYyq64keea7vnCOdfVajUSEhJYAHLaUTEbNBrNpAG5+LzZTALMZpFIqGMogPB051NfLWwHxYPjcAsDhAEOZ2P70TF0/mz6UrE9frMg50W4HQHTcT2O/hvl0+xHOVP5NPtMzscnnK13I3zcunC95wuPD7eTLRR/i20ITXp/3LEjOY8/qXdWKpVizpw5uHLlCtuBQ2MyYXlNVwZ0XHFxMc6dO8f6Wvp+NjbTbI75JNsusT3wcf1hf6vt7HS+AHHZhPJlhrMpaILrRvk02gBa7BVqEo9UQK7H7pJIJqTV4uLicODAgdmnY9ZH/i9jdHQUf/jDH9iWUFqJKZReIccQbfsTEqpghDo7arV60kyVGLHuW6hr0wsQrnJT+kLdnwYSQoQ6QzR7GOpa4f4/W8R5E0pfzWQyAfgoIi6lL5zWk/j6s3lhZ3Mt0okknU4ilAOdfg+lCyU8l5wjQsT5KA5iG077XbztW6vVhi0TceM6XWcnZDrtt+vpaK6nsboewukKBgKBSVuViJm07KarF7OpM9MhrOskbTRdeoQ63IQ4H2/UgU5tQLj3mbatpqenIzMzExkZGfj1r3+N+Ph46PV6ZGVlQa/Xs/eSNMdoK7JYB1WYboPBMEmvbLoyF+vCCd9FuodQ41ihUMBkMrF00bHi9kPchhO09VT4OzA17kS4OAShAg6Heteo3RauGBEivIa4jOlzuHdKuPp/pnSEg/Jrtlqv9Hc2ZQrM3B7MpBEaqt+gY8VpCNd+fpz0hTtWmB+zacuEx5Ckg3BrcDhCaQEK3wdxuqZjpiDZ4vyUSj/SEaR7htL2JQ1uIPSzkN6muJxmSkuoPhEAk1ejrdli6L0JNWElhH4XGuBCu0J4fCiJDoK23NMqKnoukiCh5xHajxaLhdlftOpJpVKhqKgIcrkcSqUSK1aswB133MF2sgBgv1GfQWVE7bFcLodcLscdd9yBRx55hNkKEokESUlJ7P4k1UZQ+oW/0wCFZNno2dVqNaxW66S4OSSHJ5VKceedd07a3k+QrJROp8OZM2egUqlYGkiOguybqKgofOUrX4Fer8f27duRnZ0No9EItVqN+Ph4pKensx0q9E+r1cJisUCj0UAul0OlUiE7O3tSHlAZ0z2pbIROeaVSyWKCGI3GKX3E9UKLGLRaLdvqrNfrp4wNQuWZeNeC8Dt6BlrhbzQaQ2qJCp9B2D/SNcNtyRenLZxdJGwvqA6J++NQ7ZgwX8NprYuvR98JbQGJRMLePWBqHIZQ1xfHSyAZRb1eP+l7Sn84jf9QaRVCeS6MMSNGXL9C9TPh+lux7RiuvwxVfnTf6caI4a71cRHnVTg7SxwPhv4vLqPpri1+p4TlQDYs1SG6NsWRoDY7VD0MdT0gvK0nzmeqG9PFuhLWhVAxZq7X/go1Jg13jXA+B7qGUA50NosVhEynt06rUIXjDeG9KM3CZxG+z2IfRyjNcACT5DSmY6b6Tg50sT9FeE/yMcxmnCoev9BuL+qj5HI54uPjWRwFYKL9mj9/Prsm2RVUvzMzMyGRSNDf3w8A+MpXvgKpVIpt27ZNej9C2T6E2F4V2iQAmK2wdevWkO8k7ail8YbQl0LvmVQ6IR8Uqr0V2jFxcXHM4alUKrF48WL2LtHONWEeUloTEhJC2p/TlbFSqWTn0HFCn5HwHaI2leqcMLaH+B7CukL9j06nm9R3Co+jNIgXSQoRv4fC+k3HhrK7g8HJ0qzCe4vHh+L6Kb63sK8SnhfO10iI34XZ9EuBQCDsLphQEsfidAiJioqCXC5HcnLyFF/vTITudT8HLF++HLt372ZyEUNDQ2x7kVQ6WdeRBlcWiwUjIyMYHh5GWloa25bV39+PJ598EqWlpejs7ERdXR2WLFmCc+fOse2v69evxwcffMBmbKKjo6HVatHZ2YnY2FikpqaitrYWkZGR8Hg8TNuRtgfTYKurq4utvt20aRO8Xi8uXryI4eFhJCcns23y4g5Y2LlTGoQvjvD4YDDItGnJ2ZuSkoLe3t5Jzl96weh+wkZYODChbT4ajYZtOSF5A9LpJsdCqJecGiEqk8jISBgMBqb7GQgE2EBieHiYOcDpe9JyI027YDDIjqHnEWqb0bNZLBYMDAywrbxixzbNCtKAiDSOIyIikJ2djebmZrY1UKPRwGazsZlr0poT5j01FMI0CFfMaTQa5ObmorOzE52dnSzN5OjU6/Xo7u5GbGws2/JGdb2srGySViBB+Q98FDxodHR0kr61eLZbmBc0SBgdHWV5S/ko3C5G16e6ERERwbZcCa8nkUhgMplgNpvR1NTE8pNWRtCWW3pXQw06ZnIsiTubUHVY+Bt9Tx23z+djz0kGgXCLHUHbymmlXiijLdQqBtLelkg+ksSgzjwYDIbUeRW/c+HyQbjygM579tlnJwUB+sd//Ed0dnYy2YrDhw9jfHwcK1euRENDA5YvXw5gQpvu2WefZdvo7HY7cnNz0drain/913/F3r178frrr7P2h95B2h7W1tYGl8uFLVu2MM1+qr8XL14EALbtOBAIsG3BJGl17tw5FBcXsy3GQi0/cTkL84LKgfKCdNWGh4cn1UWSeurt7WXadna7nckokH79yMgI25qoVqtht9uZVh61WxKJBGlpaRgaGkJXVxfkcjm2bdsGt9uN3bt3My1unU6Hu+++GwcPHoTL5WJ6lrRVX1hHJJKJaOJNTU2zmmhRq9VsC3JUVBT0ej1MJhNycnJw4sQJFhMCAAtuQ3rBoa4v1D6Mjo5m7Y24vSQnIg02RkZGprTpNFFtNpshk8nQ0tLC2gkqU2G5CVf7kuGalpaGhoYGlj6VSgWz2YzBwUH2DsfExMDj8bD+UPge0zZSkqMSbkeNjIyE0+lEVlYW2tvbp7RtwETgJqlUCo/Hg4SEBHzhC1/A//t//4/lUagJM3p2iWRCjkO4JTPUTiXKg7S0NNhsNqZ16fF4Jq0co4FUSkoK+vr62M4nakdJ1iAyMhJDQ0NsSzeVaSAQYOUpnswXth9jY2NMa5a0DgFM6l+prIPBINLT09HZ2Ynh4WFWfuJdF8J6k5mZidbWVqY7T9cl45l2jFF9Ix1sYTtgMpmgUCjQ1dUFALBarWyXjUqlYnrN1O/R7j+hgR4RMaEbT7qrEokEBQUFyM/Px9GjR+H1evF//s//wZtvvom2tjZ87Wtfw7lz53D69GkUFRUhKysLx44dg9vtxo4dO3Ds2DHW7hQWFqKvrw9f/vKX8d5778FkMmHBggUAgPz8fFRXV6OmpgZ33nknamtrMTAwgAULFqCzsxP33nsvysvL0dfXxyQk1q1bx6SBPvjgA6SkpOCxxx7DL3/5S7S0tGDDhg3IyMjAhx9+iOrqasTHx2PdunUoLS1Fd3c3vvKVr6Czs5PpVq9duxYOhwOHDh2C0WjE2rVrUV5ejrKyMiQnJ6OkpIRJCn37299GamoqOjo6UFtbi4KCApw9e5bFEdm+fTuio6Oxa9cu7N+/H++//z6KioqQmJiImpoaFBQUIBgMYunSpbj11luRm5sLAHj33XdRWVmJtWvXsjgxVVVVUCqVrDx++MMf4tSpUxgYGIDb7cbixYtRX1/PpI70ej36+/sxODiIn//853j66aeRlZUFv98PnU6HlpYWrF69Gv39/WhqasKKFSvgcDhQV1cHm80GpVKJ6OhoOBwOZodnZ2ejoaEBY2NjcLvdSEpKQkREBItFEh8fD4VCgc2bN6OhoQFSqRQbN27E1atX4fP58PLLLyMmJgZGo5HJo1G9NBqNOHnyJCwWC5uMstvtTJZEGChv69atuHjxIpxOJ7q7u3HhwgVYrVb867/+K15++WU0NDQw2TkAk2LpiAk3QUzORmE7I3Su0PtCsaLovFAOOeF9hfr6QmgsJv5O3K+TNjoAJtkm7H/E1xdOmPh8Pta30rniNJJdMd3q3FDa9kKbkrRqhb+LJ0mEi29IFkGYj+JyEear0PYzGAwYGhqa9Lxip4TQThdeN9Tko7Cfvt7VhqFWQ9IYSFg/hOMMQiwRGErTPdTuP2FZqFQqJicll8snLY4SjjvpnGAwyOQ2qKynkysRlik5X2hMGm5H03RjXcov0kkX5wXlBzA15gPFtqBnFjoMQ6UnGAwyvf1AIMCkiyhtkZGRcDgcuOWWW7Bnzx6WbpIVEj9/VFQUhoeH2fNTOVNw1OXLl2P//v0IBoMs8LXb7cb4+Diys7MRExOD9vZ2fOc738Ef/vAHxMTEoLy8fIrdR/+nvBDWYXHbQCuudTodVCoVcyRLJBMa0xSXRij/IYSuFxkZCa/Xy/KRZFgpdhLpQzc1NU2SKAPAri1e7atWq+HxeKY4dDdt2oSysjIMDg7ia1/7GhYvXgy73Y7MzEzIZDJ4PB586Utfwk9+8hN0d3cjISEBr7/+Om677TZIJBKkpKQgPz8fhw4dgsViQVJSEgoKCrBp0yb84Ac/gEqlwvz58/HQQw9h3rx5sFqtePTRR1kMvnnz5kGj0eDo0aOQy+WYO3cumpqa4HA4EBMTg4GBAdx1111MgrWjowNGoxFyuRwbNmzAj3/8Y3z1q19lmvsmk4lpfb/yyiuwWq2w2Wxoa2uD1WrFggULsGvXLsTFxbH+XiKR4NKlS0zyz+v1wu12Y+fOnSgtLcWePXsQERGB2NhYbNiwgcXs+dGPfoQ//elP+OMf/8h2AdN7TOkRtzUzLWQhySQ6RxjjSnwd8s0BH7XPwvEKPZvwPLK9qd4I7WvyXZGkm8lkYhIkwWCQLV4g+VSKtZCYmIihoSF4PB4kJibi9ttvZxrjCQkJrI9wOBzMz2ixWNDU1DSlXQ7V3tIkl3ixqbCvErYN4r6KjqE2UVwGFAtPfN1wE860o5SuFy7uF51DPhn67u67776u1edCPrdyLqdOncKzzz6LwcFBPP744xgeHkZFRQWeeeYZdszOnTtx9uxZ+Hw+Niv6wgsvTLnWww8/HPJ7MTt27MDixYsRCATwzW9+87rTvHPnThZYhHR/wvHwww+H/a29vR09PT1ISkqC2WxmwZXEx3R0dLBOn178iIgIREdHw+VyseA2FFjH7/ejtbWVGR3j4+PM4QhgkvEgbEjoxdDpdEhMTGQ6zxTohzRlo6KiMDg4yBxYUqmUObSEQV7FzvxQiNMhlUqZ9isFcpBIJgJ55OTkMG3s8vLyWZbWR/fZvn07Tp06hdTUVJSVlTG9ZplMhpycHMTHx6OkpAR//OMfWZ7TueQkt1qtsFgsWLJkCe699152/Z07d+KRRx6ZVO6LFy/Giy++yJ5FLpdj3rx5SExMRGtrK3p6elggD2r4yeCiwLIDAwPMaUvOXNKLtNlsSEpKwvj4OAoKClBcXIw9e/ZMWp3W39/PNN3ISAs1yy50MFO9mW5mWFhnyHlGAebICUKOFVoBFAgEJjm+ExMT4XK5mA4dGY6jo6OIjo4GMOF46ezsZBNJoVaFidMk/l3ctAo7UmDyLDzpPgonLGjAGur6pFXW39+P7u5uFrwjPT0dHo+HBfCj+5AOO31OTk5GYmIiVCoVfvOb34TN75kQ1z8gfHv48MMPT2m3Qp1/vQSDQfzyl7/EuXPnJq2wFBIIBOBwOFiAMTqPHG7CuhsIBOB0Otm1gsEgRkZGoFarJz3XbNNOx1GbXFJSAgDs3Nn0Hw8//DCKi4tx7Ngx+P3+sM8ppKSkJGR7VVJSMm26Q7UpwEf5QIYlDdaof6RJNABYvHgxysvL8cILL7C0b9y4Ef/zP/+DysrKKXkuRJjf4u+F/QY5soX3DwQC7LmlUumUfJ2uzILBIJ555hnU1dWF/Z363vLycjbpQr8JV09RPpeVlU3JI/H1hBQWFrK4EsLjqJ4qlcqwdTPU55nKmggEAigrK8NvfvObKc8iLHdheshBLix7YToTEhLQ3d09KTCi8JqUlxT0Vli24vKnNNDzU19NZS6RSJCVlcUWEYj7/uLiYhw9ehSjo6MwGo2zstd27tyJ8vJyBAIBLFmyhNVnDudvkV/96ld47bXXmD0TyrlN7y5NXlLQRqGUDvDR4gKpVMoCPprNZrjdbuZsEg5YMzIymH5qf38/W2ASzrkQyqkqPDbc4gmh7UifhbIN5KAQOuPofL1ej7y8PAQCAdTU1DAHAWnqhnN8hkqv2FEabhwS6jpCQjnAZ8oD8TgrVPqmuz89L9mNNJlNY4D4+Hj09vayiWdgwl52u93Izc1FZWXlpCD2wslucspHRERMmnQROjSovIT1jWxh+k64YzzUcwnt6HD1iJ6LNLgbGxsnjYtoMkulUsFut7PnEaaXFtGQLUSOeVo0JpfL0dvby+plXFwcm3iWSqVs8YSwvLxeL9asWYOzZ88yG2bnzp04cOAAOjo6WOyH7Oxs1u8ODQ1h9erVzD8QDE7IdwCYFFRe2GeKx1l0n+nshWAwiPb2djz55JOT/CLBYBCLFy9m5+7YsQMvvvjipOsJ/Rd0v+effx52ux3R0dF45JFHJh1P99q3bx+OHz8+yb70er1sRTDwka1LY73pbMtgMIiSkhJ885vfxI4dO6aM2abzGczG9/Lggw8yzftQNh/x4osvYseOHSxNlG4qP6oHH3d8dDOgsvs4/qtPE6pXZNOFQ1z+drsdLS0trE+TSqXIyclhizUpPp1w7C5sv8SQU1rc15H/aXh4mMV56OnpQX9/P2JjY1nw1d27d095LnqekpKSSW3Gx2XHjh2svRC2T7Pty4Cp4xFhftLzU3Bu0qcnf4awnyZ7hNJAeUz9BTniqc+iHXqRkZFsIRUFmxWWMdkvSqUS2dnZsFgsAHBdPpHPrRP9sccew/nz57Fy5UqcO3cOBoOBrSgJp1Utk8lQXV2N1atXs++CwSBsNhuqq6unHL969WoW2R2YMIg0Gg3MZjMOHjw4Yxq/+93v4tixY1PSI5FMRJIVXmP16tXo6+u77pUCf+uEMig/S8hkMmzYsAE+nw9Hjx4NucVkJsihSgHm5s6dC2DimQ8dOsRWKQWDQfT19bFVn6QJxeGIiYiYCFRkNBrxwQcfzPq87373u+z/wWAQtbW1U1amUXtI7R99T0blqlWrJp0/m7YwVDpCtY2fJBKJBBs2bAAwfdopj8Klj4wms9kctv+gvLvZzxeq7xCX6aFDhyZNRn4cxCvH/prIZDLceuut7HOoMvs06tFfi1BlLebzaDeQHSdmurpARnyo8zicvwXWrl2LsbExDA4Ohlz9xeFwPp9IJBPxkMLZtLOxE0hKhGz92NjYaQN5085U2qm4cuVK1NbWIi8v7zNrk/01fS+zsd8+KcgWomCnxPX4rz5NaExz6dKl/zX2LY1nZno3wtm3M/F5HAsQwomM6/WJfG7lXLRaLTQaDZ566in8x3/8B1555RX4/X62JRYAbDYb4uLippyrUqkmLf3fvHlzyHuoVCps2bIFAPCzn/0MmzdvRlFR0azTqNPpEB8fDwAoKiqCTCZDRUUF+yy+V3JyMvvc2dk5q3vQSoNwenp0TChoVkq88lu82gO4fie3eJZcuKpDKLEhXH1ysxzGtBpDOLtIW8Jm07GnpKRM+qzVaqFWq5GcnIzBwUE2i+50Oiet1qHtR8DkPKdZatp+/1//9V/st6KiIpSWlrLPxcXFTDcWAFpaWqY0ijTjR9vuxM9O9wy1fZdWTQjLXagFS1uvxsbGIJPJoFKp4PF4ZmyYb6azLdS1wq3eCbViKNSM63SrkG4WNzohRCt7hAFnwr2HdHwgEMDg4GDYbYzh0Ol0+NnPfsY+P/HEEzh79mzI9pDaPzp+8+bNCAQCk+rvE088cV33F6aD2kZgoq3+JIxu4bvc19c3q7RTHpHDXSqVYtGiRbh06RIAoLe3F5s3b8ZPf/pTAKH7D8o7au87OztnDEYs3t5Lx6vVasTGxrLvxX2HuEyLiopYzAq690zQvVNSUtDa2gqr1QqpVIqFCxfivffeg0qlgslk+kTKSfjcKSkpbHVzqGcTl9ls6lG4fJ0uHdMd93HPmel605W1mBu1G8Lde6ZnuZnPO921xL9t27aN1YlwiO2tAwcOMPtPWKc4nL9FaCeJTqdDZ2fnrAIHhrKRZntOKHtOPNYIZYN+FiCb6rOavk8b4U5QsdyJcHfvbPJOHCxvplXzs11VfyNERkZCIpFMklKZ7nnC7UAQHyN+H8S7OsQ2TCAQQHt7O4AJmTixXUIr3mlVa0REBKxWKwYGBth16H0P17+S1BvZC7/+9a/D2rSh7AShrdHa2opt27ZhbGyM+ToWLlyIAwcOMFtyyZIl2Lt3L7vGuXPnsGnTJrYz86c//SmeeOIJjI2N3TSbTHh8bGwsWltb2fG023gmZrKpZmtDkW1MJCYmTjn2eu23Twqyhej+5Hv6tNJzvZDd/+Mf/xgVFRWw2Wwfe/wh7guEO+GFO5s+LsI25J577kFFRQXa29sxNjYW0kYdGRmZMu65EW7mWCAc5BcCpu/7SZ5lJmbT/gIf+RPF/ZXw+Bv1iXxuV6IfOnQIlZWVePzxxwEA//3f/43S0tJJW2c8Hg/S09MnnZeSkoLy8nLW8AMTHYjYcQoA5eXlbHuA1WpFa2srC1oSLjCWkPb2dqYLZLFYmC4rMKE/JryGeItKb29v2OuKG8PXX38dd99995RjgIntZ729vSgrKwMwsWWkqqoKXq8XarUa69evR09PD5qamlh65syZAwA4c+bMpGuSHlkoSK/X4/FAq9XCYDBgzpw5OHPmDNLT0xEMBtHc3Iz+/n4YDAbccccd2LVrFwAgLy8PDoeD5ZXZbJ72XqFISkqCzWaD2+2GTCbDqlWrIJfLUVFRwXRed+zYMUXvLBQU5IOor69HTk4OTp06BQA4cOAA7rzzTpw/fx4A0NTUhNzcXNjt9kkBp06fPg2TyTSpU83MzMR3vvMd9vno0aNYu3Yt+3z27Fl2H2BC16+pqYl1HHa7HcuXL2cDqLq6OgSDQQwMDCAyMhJKpRLx8fGora2F2WxGSkoKuru7ERkZifr6esTGxiIqKgoxMTFwu93o7OxEbm4u03ClvL9y5cokDd66urpJkkEGgwFutxsKhQJer5fFG5DJZLMuOzKkDAYDfD4fdDodhoaGYDAYWLyBxMRENDQ0sNX6aWlpqKqqAjCxJXDr1q2orq6Gy+VCMBhEVFQUTCYTqqqqsH79elb/mpqaAExfh68X4TY/r9fL0ggAQ0NDk4xEYZ2mdwUABgYGkJGRgblz58JqteL111+HwWBAMBhkOxZqamom6YOtXLkSV65cYZ9//etfzzrN7e3tkyYaSTM2VHtI7R8d39raCo/Hw9oHOn82bWGodAg10zwez6zezetF+C53d3djyZIl7HO4tFMeUZtMW9XIYGhqakJBQQE7N1T/QXlHz9jb28vqdzjE7R4dbzabWT8ETO07xGV69OjRSRr50/Ul4nvPnz8fly9fZtv3pVIpLl26BJ1Ox9r3m11OwueeP3/+JD08qVQ6pb6Kn32mehQuX6dLx3THfdxzZrredGUt5nrshtnce6ZnuZnPO921xL+tXLlyUhsYyl4T21ukIw2A1alQ53E4fws8++yzkz5/+OGHU45Rq9WTtL91Ot0kXev+/n5md9Ff2lFFu3mBCTmvpqYm9Pf3T1rUAQDLli2b1M7QcZ8EQmebWq1mcjJAeJvK4/Ewicq4uDicOXMm5Dn/GwlVtkNDQ9DpdGyRD8XgkEgk2Lp1K44ePQqJRMLkEam+ULwIcdA4g8GAgYEB5kwpKirCqVOnmLShxWJBR0cHO098vPj3j0NSUhIbG/X09OD++++HSqVCRUUFWlpaYDAYEAgE0NHRgaSkJERFRaG2tpadb7FYMDo6OimWydatW/Hhhx9Cq9ViYGAAmZmZcDqd+PKXv4w//vGPyM/PR1NTE+6++24W10dsw3g8HjQ2NgKYGIN7PB5cvXqV3cNqtaK2thZutxvAxOKpjIwMuFwudh0aS4brX+fPn4/u7m5mL6SkpIS1aUPZCUJb4/Lly1i5ciXcbjfzdUilUjQ0NLD3Kjs7e1LeLVmyBDU1NSy2g8FggMPhgNvtvmk2mfB4i8WCy5cvs+O1Wu2sbdvpbKrZ2lBkGxPkW7mee/21IFuI0kK+p+vxX32a0JiGnoP8Stc7/mhvb59URsFgEE1NTUzqa/369ejt7WX+Ab1ez95bYPb9BWnNU3t0991347/+67/w1ltvMbv1F7/4BX784x9PsVGHhoamjHtuxE69mWOBcJBfiHA6naivr4fFYoHNZmMTf/n5+bh69Sp6enqmTDIK+3Fqn2nSk/oGk8kEn88HrVYLu92O2NhYjI2N4bbbbsObb77JHOV0fF5e3qR0Xo9P5HPrROdwOBwOh8PhcDgcDofD4XA4HA5nJsJH8ONwOBwOh8PhcDgcDofD4XA4HA7ncw53onM4HA6Hw+FwOBwOh8PhcDgcDocTBu5E53A4HA6Hw+FwOBwOh8PhcDgcDicM3InO4XA4HA6Hw+FwOBwOh8PhcDgcThi4E53D4XA4HA6Hw+FwOBwOh8PhcDicMMg+7QRwOBwOh8PhcDic6env78fzzz+P0tJS9PT0IDIyEsnJydi6dSvuuusuqNXqTzuJHA6Hw+FwOBzO/1q4E53D4XA4HA6Hw/kM097ejnvvvReRkZH4/ve/j5ycHCgUCly7dg1vvPEG4uLicMstt0w5b3R0FHK5/FNIMYfD4XA4HA6H878LSTAYDH7aieBwOBwOh8PhcDih2bFjBxoaGrBv3z5oNJopvweDQUgkEuTk5OCJJ57A8ePHcfbsWezYsQOJiYn4+c9/joqKCnb8oUOH8Oijj+LatWsAgN/85jc4dOgQ7r33Xjz33HNwOBxYs2YNnnrqKURGRgIAAoEAfve73+GNN97A4OAgMjIy8Pjjj2PVqlUAAL/fj6effhoHDx6E0+lETEwM7rnnHnzjG9/4K+QQh8PhcDgcDofzycI10TkcDofD4XA4nM8odrsdp06dwv333x/SgQ4AEomE/f+3v/0t1q9fjz179mDbtm2zvk9bWxv27duH3//+93jhhRdw9epVPPnkk+z3P/3pT3jppZfwT//0T9i9ezdWrFiBb33rW2hpaQEA/Pd//zeOHDmCX/3qV9i/fz+eeeYZJCYm3tAzczgcDofD4XA4nzW4E53D4XA4HA6Hw/mM0tbWhmAwiLS0tEnfL168GAUFBSgoKMAzzzzDvt+yZQu2bdsGq9WKhISEWd/H5/Ph3//935GXl4fi4mL88z//M/bu3Yv+/n4AwIsvvoivf/3r2Lx5M9LT0/GP//iPyM3Nxa5duwAA3d3dSElJQWFhIRITE1FUVIQtW7bchBzgcDgcDofD4XA+fbgTncPhcDgcDofD+Rvjrbfewl/+8hdkZmbC7/ez7+fNm3dD17NYLIiLi2OfCwoKEAgE0NzcjKGhIfT19WHRokWTzlm0aBEaGxsBAHfddRdqa2uxceNGPPXUUzh58uQNpYPD4XA4HA6Hw/kswp3oHA6Hw+FwOBzOZ5Tk5GRIJBI0NzdP+t5qtSIlJQUqlWrS92LJF6lUCnEIpNHR0Zuezrlz5+Lw4cP47ne/i5GREXzve9/Dd77znZt+Hw6Hw+FwOBwO59OAO9E5HA6Hw+FwOJzPKEajEcuXL8crr7yC4eHhGzrf4/FMOre2tnbKcd3d3ejt7WWfL126BKlUirS0NOh0OsTGxuLChQuTzrlw4QIyMzPZZ51Oh9tuuw1PPfUU/vM//xMHDhyAw+G47jRzOBwOh8PhcDifNbgTncPhcDgcDofD+QzzxBNPYHx8HNu2bcPevXvR2NiIpqYmvPfee2hqakJERETYcxcsWAC1Wo3/+3//L9ra2rBnzx688847U45TKpX4wQ9+gNraWlRUVOCpp57Cpk2bYDabAQA7duzAH/7wB+zduxdNTU34j//4D9TW1uKBBx4AALz00kt4//330djYiObmZuzfvx9msxl6vf6TyRQOh8PhcDgcDueviOzTTgCHw+FwOBwOh8MJT3JyMt599108//zzePbZZ9Hb2wu5XI7MzEw89NBDuO+++8KeazAY8Mwzz+Df//3f8eabb2Lp0qX4h3/4B/zLv/zLlHusX78eX//61+F0OrFmzRo88cQT7PcHHngAQ0NDePrppzE4OIiMjAz87ne/Q2pqKgBAq9XihRdeQGtrK6RSKfLz87Fz505IpXzNDofD4XA4HA7nbx9JUCySyOFwOBwOh8PhcD43/OY3v8GhQ4fw3nvvfdpJ4XA4HA6Hw+FwPpPwpSEcDofD4XA4HA6Hw+FwOBwOh8PhhIE70TkcDofD4XA4HA6Hw+FwOBwOh8MJA5dz4XA4HA6Hw+FwOBwOh8PhcDgcDicMfCU6h8PhcDgcDofD4XA4HA6Hw+FwOGHgTnQOh8PhcDgcDofD4XA4HA6Hw+FwwsCd6BwOh8PhcDgcDofD4XA4HA6Hw+GEgTvRORwOh8PhcDgcDofD4XA4HA6HwwkDd6JzOBwOh8PhcDgcDofD4XA4HA6HEwbuROdwOBwOh8PhcDgcDofD4XA4HA4nDNyJzuFwOBwOh8PhcDgcDofD4XA4HE4YuBOdw+FwOBwOh8PhcDgcDofD4XA4nDBwJzqHw+FwOBwOh8PhcDgcDofD4XA4Yfj/Fsf5IWBKxggAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Se realiza otro modo de clustering (Agrupacion jerarquica)\n",
"from scipy.cluster.hierarchy import linkage, dendrogram\n",
"from scipy.spatial.distance import pdist\n",
"\n",
"link = linkage(df_standar_2, metric = 'euclidean', method = 'ward')\n",
"\n",
"plt.figure(figsize = (15,6))\n",
"plt.title('Agglomerative Hierarchical Clustring Dendrogram')\n",
"plt.xlabel('Grupos')\n",
"plt.ylabel('Distance')\n",
"dendrogram(link)\n",
"plt.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 16,
"status": "ok",
"timestamp": 1684159000959,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "k4XtZ7_4dCop",
"outputId": "d519bd16-6ec8-43cf-a86d-9fb3fc4b5752"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_agglomerative.py:983: FutureWarning:\n",
"\n",
"Attribute `affinity` was deprecated in version 1.2 and will be removed in 1.4. Use `metric` instead\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" count percent\n",
"0 2809 99.75\n",
"1 4 0.14\n",
"2 3 0.11\n"
]
}
],
"source": [
"from sklearn.cluster import AgglomerativeClustering as agc\n",
"\n",
"AGC = agc(n_clusters = 3, affinity = 'euclidean', linkage = 'ward')\n",
"AGC.fit(df_standar_2)\n",
"Cluster_AGC = pd.Series(AGC.labels_)\n",
"print(pd.concat({'count' : Cluster_AGC.value_counts(), \n",
" 'percent' : round(Cluster_AGC.value_counts(normalize = True)*100, 2)}, \n",
" axis = 1 ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eHEbRpbFd4nT"
},
"source": [
"Ya desde un primer vistazo, tenemos que este algoritmo, encontro la misma solucion que el KMeans para agrupar los datos, al menos en cantidad para cada grupo, por lo que ambos Score de comparacion seran identicos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 457,
"status": "ok",
"timestamp": 1684159001404,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "ihHrjG45b4YE",
"outputId": "668bca80-ecf1-4bf1-ac55-63b062c8e4fc"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Silhouette Score: 0.97\n",
"Davies Bouldin Score: 0.02\n"
]
}
],
"source": [
"from sklearn.metrics import silhouette_score as sil_score\n",
"from sklearn.metrics import davies_bouldin_score\n",
"print('Silhouette Score:', '%.2f'%sil_score(df_standar_2, df_2['Cluster']))\n",
"print('Davies Bouldin Score:', '%.2f'%davies_bouldin_score(df_standar_2, df_2['Cluster']))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 21,
"status": "ok",
"timestamp": 1684159001405,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "0ycAhdclb40y",
"outputId": "c1a7d749-1ec6-4ef4-d730-a2efc6d56fec"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Silhouette Score: 0.97\n",
"Davies Bouldin Score: 0.02\n"
]
}
],
"source": [
"print('Silhouette Score:', '%.2f'%sil_score(df_standar_2, Cluster_AGC))\n",
"print('Davies Bouldin Score:', '%.2f'%davies_bouldin_score(df_standar_2, Cluster_AGC))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4PT1cPBneRpP"
},
"source": [
"Por lo que se concluye, que esta segmentancion de los datos, aunque parezca dispareja, es la mejor forma que ambos algoritmos presentan para clasificar los datos del comienzo (Recordando que para esta ocasion, se eliminaron columnas importantes para los telefonos como la Cámara)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XWCYjScdpGfS"
},
"source": [
"# DataFrame Final"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 659
},
"executionInfo": {
"elapsed": 16,
"status": "ok",
"timestamp": 1684159001406,
"user": {
"displayName": "Marcos R",
"userId": "09728663719733664511"
},
"user_tz": 180
},
"id": "D3UhRT--pJ5H",
"outputId": "7f19a211-65f5-4155-ab7f-4d90f2e2c075"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Brand
\n",
"
Model
\n",
"
OS
\n",
"
Battery
\n",
"
Processor
\n",
"
Memory
\n",
"
Primary_Storage
\n",
"
External_Storage
\n",
"
Display_Size
\n",
"
Display_Resolution
\n",
"
Primary_Camera
\n",
"
Front_Camera
\n",
"
Cluster
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
ARCHOS
\n",
"
40 Cesium
\n",
"
Windows
\n",
"
1950.0
\n",
"
Qualcomm Snapdragon 200
\n",
"
0.5
\n",
"
4.000000
\n",
"
microSDXC
\n",
"
4.0
\n",
"
800 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
Gama Baja
\n",
"
\n",
"
\n",
"
1
\n",
"
ARCHOS
\n",
"
40 Titanium
\n",
"
Android
\n",
"
1500.0
\n",
"
MediaTek
\n",
"
0.5
\n",
"
34.296597
\n",
"
microSDHC
\n",
"
4.0
\n",
"
800 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
Gama Baja
\n",
"
\n",
"
\n",
"
2
\n",
"
ARCHOS
\n",
"
40b Titanium
\n",
"
Android
\n",
"
1400.0
\n",
"
MediaTek
\n",
"
0.5
\n",
"
4.000000
\n",
"
microSD
\n",
"
4.0
\n",
"
800 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
Gama Baja
\n",
"
\n",
"
\n",
"
3
\n",
"
ARCHOS
\n",
"
45 Titanium
\n",
"
Android
\n",
"
1680.0
\n",
"
MediaTek
\n",
"
0.5
\n",
"
34.296597
\n",
"
microSDHC
\n",
"
4.5
\n",
"
854 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
Gama Baja
\n",
"
\n",
"
\n",
"
4
\n",
"
ARCHOS
\n",
"
45b Helium 4G
\n",
"
Android
\n",
"
1850.0
\n",
"
Qualcomm Snapdragon 410
\n",
"
0.5
\n",
"
4.000000
\n",
"
microSDXC
\n",
"
4.5
\n",
"
854 x 480
\n",
"
5.0
\n",
"
0.3
\n",
"
Gama Baja
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
4532
\n",
"
vivo
\n",
"
Y11
\n",
"
Android
\n",
"
5000.0
\n",
"
Qualcomm Snapdragon 439
\n",
"
3.0
\n",
"
32.000000
\n",
"
microSDXC
\n",
"
6.3
\n",
"
1544 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
Gama Alta
\n",
"
\n",
"
\n",
"
4533
\n",
"
vivo
\n",
"
Y19
\n",
"
Android
\n",
"
5000.0
\n",
"
MediaTek Helio P65
\n",
"
4.0
\n",
"
128.000000
\n",
"
microSDXC
\n",
"
6.5
\n",
"
2340 x 1080
\n",
"
16.0
\n",
"
16.0
\n",
"
Gama Alta
\n",
"
\n",
"
\n",
"
4534
\n",
"
vivo
\n",
"
Y83 Pro
\n",
"
Android
\n",
"
3260.0
\n",
"
MediaTek Helio P22
\n",
"
4.0
\n",
"
64.000000
\n",
"
microSDXC
\n",
"
6.2
\n",
"
1520 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
Gana Media
\n",
"
\n",
"
\n",
"
4535
\n",
"
vivo
\n",
"
Y91
\n",
"
Android
\n",
"
4030.0
\n",
"
MediaTek Helio P22
\n",
"
2.0
\n",
"
32.000000
\n",
"
microSDXC
\n",
"
6.2
\n",
"
1520 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
Gama Alta
\n",
"
\n",
"
\n",
"
4536
\n",
"
vivo
\n",
"
Y93
\n",
"
Android
\n",
"
4030.0
\n",
"
MediaTek Helio P22
\n",
"
4.0
\n",
"
64.000000
\n",
"
microSDXC
\n",
"
6.2
\n",
"
1520 x 720
\n",
"
13.0
\n",
"
8.0
\n",
"
Gama Alta
\n",
"
\n",
" \n",
"
\n",
"
2816 rows × 13 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" Brand Model OS Battery Processor \\\n",
"0 ARCHOS 40 Cesium Windows 1950.0 Qualcomm Snapdragon 200 \n",
"1 ARCHOS 40 Titanium Android 1500.0 MediaTek \n",
"2 ARCHOS 40b Titanium Android 1400.0 MediaTek \n",
"3 ARCHOS 45 Titanium Android 1680.0 MediaTek \n",
"4 ARCHOS 45b Helium 4G Android 1850.0 Qualcomm Snapdragon 410 \n",
"... ... ... ... ... ... \n",
"4532 vivo Y11 Android 5000.0 Qualcomm Snapdragon 439 \n",
"4533 vivo Y19 Android 5000.0 MediaTek Helio P65 \n",
"4534 vivo Y83 Pro Android 3260.0 MediaTek Helio P22 \n",
"4535 vivo Y91 Android 4030.0 MediaTek Helio P22 \n",
"4536 vivo Y93 Android 4030.0 MediaTek Helio P22 \n",
"\n",
" Memory Primary_Storage External_Storage Display_Size \\\n",
"0 0.5 4.000000 microSDXC 4.0 \n",
"1 0.5 34.296597 microSDHC 4.0 \n",
"2 0.5 4.000000 microSD 4.0 \n",
"3 0.5 34.296597 microSDHC 4.5 \n",
"4 0.5 4.000000 microSDXC 4.5 \n",
"... ... ... ... ... \n",
"4532 3.0 32.000000 microSDXC 6.3 \n",
"4533 4.0 128.000000 microSDXC 6.5 \n",
"4534 4.0 64.000000 microSDXC 6.2 \n",
"4535 2.0 32.000000 microSDXC 6.2 \n",
"4536 4.0 64.000000 microSDXC 6.2 \n",
"\n",
" Display_Resolution Primary_Camera Front_Camera Cluster \n",
"0 800 x 480 5.0 0.3 Gama Baja \n",
"1 800 x 480 5.0 0.3 Gama Baja \n",
"2 800 x 480 5.0 0.3 Gama Baja \n",
"3 854 x 480 5.0 0.3 Gama Baja \n",
"4 854 x 480 5.0 0.3 Gama Baja \n",
"... ... ... ... ... \n",
"4532 1544 x 720 13.0 8.0 Gama Alta \n",
"4533 2340 x 1080 16.0 16.0 Gama Alta \n",
"4534 1520 x 720 13.0 8.0 Gana Media \n",
"4535 1520 x 720 13.0 8.0 Gama Alta \n",
"4536 1520 x 720 13.0 8.0 Gama Alta \n",
"\n",
"[2816 rows x 13 columns]"
]
},
"execution_count": 269,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Para mayor legibilidad, se reemplaza los valores cluster con la conclusion de las características\n",
"df_text.Cluster.replace([0,1,2],['Gama Baja','Gama Alta','Gana Media'],inplace=True)\n",
"df_text"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "f_zq-uuco_0u"
},
"source": [
"# Conclusion Final - Cierre"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Y28KtaUrtLJS"
},
"source": [
"Se ha logrado realizar una clasificacion de los dispositivos en 3 grupos. \n",
"Cabe aclarar que los resultados finales son en base a todo el DataFrame sin hacer distincion de fechas de lanzamientos y los procesadores asociados,\n",
"ya que no se cuenta con los datos asociados. \n",
"Por lo que a final de cuentas, esta presentacion final nos sirve para hacer una rapida comparacion entre dispositivos para la toma de decision con respecto a compra/venta o simplemente de modo informativo. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2oJGDFeAuS0p"
},
"source": [
"Se pudo observar que hay ciertos componentes que respetan una cierta linealidad / correlacion entre ellas (aspecto muy importante si se busca fabricar) y otros que permanecen con valores mas constantes o valores optimos que satisfacen en general la demanda de los usuarios."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dQqI72yaurLJ"
},
"source": [
"Otra informacion obtenida y de gran importancia, es la importancia de la camara del mismo (al menos en gran medida la trasera).\n",
"Siendo de vital importancia para decidir catalogar un dispositivo como competidor de baja, media o alta gama."
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyMb7kqagMDQtMhJnwEkr6ja",
"collapsed_sections": [
"P6u7Ga5bifsz",
"LeLWTySlWXN5",
"HASLP2tiwgw7",
"1WNUaSkPgVzh",
"alqgzCxOScbK",
"FaEkmJnUyCa8",
"ctA9GeT1WCyN",
"g5s8e9onWGmI",
"ZCtXSDmGWIZP",
"TofZ2WT0hz6A",
"CGoGZl5IKO7e",
"zfhFXMXIJ3rd",
"XWCYjScdpGfS",
"f_zq-uuco_0u"
],
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}