

Ben Porter

e OpenShift Consultant with Red Hat

o Ask me about if you're interested!
o https://www.openshift.com/

S

OPENSHIFT

e Software Engineer, DevOps/Infrastructure for over 15 years
e Fedora Linux user, lover of open source

e Keybase: FreedomBen - https://keybase.io/freedomben

e Email: FreedomBen@protonmail.com

https://www.openshift.com/
https://keybase.io/freedomben
mailto:FreedomBen@protonmail.com

Ben Porter

e OpenShift Consultant with Red Hat

o Ask me about if you're interested!
o https://www.openshift.com/

S

OPENSHIFT

e Software Engineer, DevOps/Infrastructure for over 15 years
e Fedora Linux user, lover of open source

e Keybase: FreedomBen - https://keybase.io/freedomben

e Email: FreedomBen@protonmail.com

https://www.openshift.com/
https://keybase.io/freedomben
mailto:FreedomBen@protonmail.com

Outline

wk 'Hack the planet'’
awk 'Hack the planet’

Why learn awk?

What is awk?

History of awk

Super simple awk programs

Awk Patterns Overview

Awk Actions Overview

Dive a Little Deeper (functions, pipes)
Example programs

To make the graphic at the right (just kidding)

made with Peek and lolcat

Why Learn Awk?

This is an excellent question! There are many good reasons:

Awk is part of Posix, so it is installed everywhere

Many of the problems you face are text processing problems
Awk is the gold standard of text processing tools

People are impressed with those that use awk

Awk will make you powerful

All real hackers use awk

What is Awk?

e A powerful, succinct scripting language for text processing

e More formally, Awk is a data-driven scripting language consisting of a set of
actions to be taken against streams of textual data for purposes of extracting
or transforming text, such as producing formatted reports

e Written by Alfred Aho, Peter Weinberger, and Brian Kernighan

e |Initially developed in 1977

e Source: https://en.wikipedia.orag/wiki/AWK

https://en.wikipedia.org/wiki/AWK

What is Awk?

Awk was significantly revised and expanded in 1985-88 into GNU Awk

GNU Awk (gawk) written by Paul Rubin, Jay Fenlason, and Richard Stallman
gawk is most widely deployed version

gawk has been maintained solely by Arnold Robbins since 1994

Brian Kernighan's nawk (New AWK) source was first released in 1993
unpublicized, and publicly since the late 1990s;

e Many BSD systems use nawk to avoid the GPL license (but their users
always install gawk ;-))

e Source: https://en.wikipedia.org/wiki/AWK

https://en.wikipedia.org/wiki/AWK

Is awk a programming language”?

e Awk is a command line tool, but more so than grep and others it is also a

programming language!

It's not a general purpose language. It's optimized for text processing
e But, itis Turing complete!

History of Awk?

Before Awk:

Was preceded by sed, which was the scripting part of ed

Sed was the first powerful regex tool

Used main loop and current line variables (awk expanded on this)
Awk was an evolution in the sed line-oriented approach

After Awk:

e Awk’s powerful regexes and also its limitations inspired Perl,
e Perlin turn inspired beautiful languages like Ruby which inspired Elixir
e \We have a lot to thank awk for!

The Traditional “Hello World” in awk

e BEGIN { print "Hello, world!" }

Running an awk program

® awk ‘program’ 1input files
¢ awk —-f progfile input files

® some command | awk ‘program’

@ #!/usr/bin/env awk -f

¢ ./script.awk *.log

Structure of an awk program

® pattern { action }

e Awk scans a sequence of input lines one after another searching for lines that
are matched.

Every input line is tested against each pattern in turn

For each match, the { action } is executed

After every applicable { action } is executed, the next line is processed

Action are enclosed in braces to distinguish them from the pattern

Structure of an awk program

e Either the pattern or the action can be omitted
e If the pattern is omitted, every line will match

‘{ print $1 }’
e |[f the action is omitted, every matching line will be printed

‘/regex/"

Awk Patterns

Awk patterns are basically just “if” statements to decide to execute the action
Decide if a match is True or False

If True, execute the following Action
If False, skip the action and proceed to test the next pattern with current line

Summary of Patterns

BEGIN { statements }
The statements are executed once before any input has been read.

END { statements }
The statements are executed once after all input has been read.

expression { statements }
The statements are executed at each input line where the expression is true, that is,
nonzero or nonnull.

/regular expression/ { statements }
The statements are executed at each input line that contains a string matched by the
regular expression.

compound pattern { statements }

A compound pattern combines expressions with &8 (AND), {{ (OR), | (NOT), and
parentheses; the statements are executed at each input line where the compound
pattern is true.

pattern, , pattern, { statements }

A range pattern matches each input line from a line matched by pattern, to the next
line matched by pattern,, inclusive; the statements are executed at each matching
line.

Awk Patterns

TABLE 2-1. COMPARISON OPERATORS

OPERATOR MEANING
< less than
<= less than or equal to
== equal to
1= not equal to
>= greater than or equal to
> greater than
= matched by
1~ not matched by

Examples:

NF < 10 # Num Fields

NR <= 150 # Num Records

$1 == “SomeString”

$4 ~ /linux/
S5 1~ /Jawk/

$2/$3 >= 0.5

(or “1inux”)

Awk Patterns

String-Matching Patterns

1. /regexpr/ implies “$0 ~”
Matches when the current input line contains a substring matched by regexpr.

2. expression ~ /regexpr/
Matches if the string value of expression contains a substring matched by regexpr.

3. expression |~ /regexpr/
Matches if the string value of expression does not contain a substring matched by

regexpr.

Any expression may be used in place of /regexpr/ in the context of ~ and 1~.

Awk Patterns

TABLE 2-2. ESCAPE SEQUENCES

SEQUENCE MEANING
\b backspace
\f formfeed
\n newline (line feed)
\r carriage return
\t tab
\ddd octal value ddd, where ddd is 1 to 3 digits between 0 and 7
\¢ any other character c literally (e.g., \\ for backslash, * for ")

Awk Range Patterns

e Arange pattern consists of two patterns separated by a comma

e Arange pattern matches each line between an occurrence of pattern 1 and
the next occurrence of pattern 2 inclusive

e If no instance of the second pattern is subsequently found, then all lines to the
end of the input are matched

Awk Patterns Summary

TABLE 2-4. PATTERNS

PATTERN EXAMPLE MATCHES
BEGIN BEGIN before any input has been read
END END after all input has been read
expression $3 < 100 lines in which third field is less than 100
string-matching /Asia/ lines that contain Asia
compound $3 < 100 && lines in which third field is less than 100 and
$4 == "Asia" fourth field is Asia
range NR==10, NR==20 | tenth to twentieth lines of input inclusive

Awk Actions

Executed if the pattern matches (if if there was no pattern)
Are much like a typical language (such as C)

Have access to a number of built in variables

Can create variables or call functions (such as print)
Parenthesis in function calls are optional

Can override fields or create new fields

Actions

The statements in actions can include:
expressions, with constants, variables, assignments, function calls, etc.
print expression-list
printf (format, expression-list)
if (expression) statement
if (expression) statement else statement
while (expression) statement
for (expression; expression; expression) statement
for (variable in array) statement
do statement while (expression)
break
continue
next
exit
exit expression
{ statements }

The simplest awk programs

e You've probably seen this before:
o awk ‘{ print S$2 }’

e Or maybe this:
o awk $3 == 10"

The simplest awk programs

e Print every line (not really helpful in the real world)

o awk ‘{ print }’

e Equivalentto
o awk ‘{ print $0 }’

The simplest awk programs

e Print some columns
o awk ‘{ print $1, $3 }’

e Do some column math
o awk ‘{ print $1, $2 * $3 }’

TABLE 2-5. BUILT-IN VARIABLES

VARIABLE MEANING DEFAULT
ARGC number of command-line arguments -
ARGV array of command-line arguments -
FILENAME | name of current input file -
FNR record number in current file -

FS controls the input field separator "
NF number of fields in current record -
NR number of records read so far -
OFMT output format for numbers "%.6g"
OFS output field separator kB
ORS output record separator "\n*
RLENGTH length of string matched by match function -

RS controls the input record separator "\n"
RSTART start of string matched by match function -
SUBSEP subscript separator “"\034"

Magic variables!

e Print number of fields (columns)
© awk ‘{ print NF }’

e Print number of lines read (basically line numbers)
o awk ‘{ print NR, $0 }’

Add text to the output!

e Print number of fields (columns)

o awk ‘{ print $1 “makes” $3 “per hour” 1}’

e More control with printf instead of print
o awk ‘{ printf (“%s makes $%.2f per hour\n”, $1, S$3) }’

Combine with other tools like sort and uniq

e Sort the output by $ per hour (3rd column)

0 awk ‘{ print $1 “makes” $3 “per hour” }’ | sort -nk 3

e Filter on unique wages
o awk ‘{ print $1 “makes” $3 “per hour” }’ | unig -f 2

Expressions

1. The primary expressions are:
numeric and string constants, variables, fields, function calls, array elements.

2. These operators combine expressions:
assignment operators = += -= #= /= %= "=
conditional expression operator ?:
logical operators | ! (OR), && (AND), | (NOT)
matching operators ~ and |~
relational operators < <= == |= > >=
concatenation (no explicit operator)
arithmetic operators + - # / % °
unary + and -
increment and decrement operators ++ and -- (prefix and postfix)
parentheses for grouping

Built-in Math Functions

FUNCTION VALUE RETURNED

atan2(y,x) | arctangent of y/x in the range —7 to =

cos(x) cosine of x, with x in radians

exp(x) exponential function of x, e*

int(x) integer part of x; truncated towards O when x > 0
log(x) natural (base e) logarithm of x

rand() random number 7, where 0 < r < 1

sin(x) sine of x, with x in radians

sqrt(x) square root of x

srand(x) x is new seed for rand()

TABLE 2-7. BUILT-IN STRING FUNCTIONS

————

—

FUNCTION DESCRIPTION
gsub(r,s) substitute s for r globally in $0,
return number of substitutions made
gsub(r,s,t) substitute s for » globally in string ¢,
return number of substitutions made
index(s,?) return first position of string ¢ in s, or 0 if ¢ is not present
length(s) return number of characters in s
match(s,r) test whether s contains a substring matched by 7;
return index or 0; sets RSTART and RLENGTH
split(s,a) split s into array a on FS, return number of fields
split(s,a,fs) split s into array a on field separator fs,

sprintf (fmt ,expr -list)
sub(r,s)

sub(r,s,t)

substr(s,p)
substr(s,p,n)

return number of fields
return expr -list formatted according to format string fmt
substitute s for the leftmost longest substring of $0
matched by 7; return number of substitutions made
substitute s for the leftmost longest substring of ¢
matched by r; return number of substitutions made
return suffix of s starting at position p
return substring of s of length » starting at position p

String functions

Implicit argument is $0 (the whole line):

{ gsub (/USA/, "United States"); print }

More examples:
X = sprintf("%$10s, %o6d", $1, $2)

gsub (/ana/, "anda", "banana") # explicit argument

String Concatenation

Simply put two strings together:
Example: Concatenate fields 2 and 3:
print $2 $3
Concatenate:
print “hello” “world”

Outputs: “helloworld”

Types
Strings

“String literal”
Numbers:

+1 1. 0 1e0 0. le+ 1 10E-1 001

Types will be automatically coerced when needed.

TABLE 2-8. EXPRESSION OPERATORS

OPERATION OPERATORS EXAMPLE MEANING OF EXAMPLE
assignment = 4z == az= | X %= 2 X =x % 2
/= %= "=
conditional T xX?y:z if x is true then y else z
logical OR i x ity 1 if x or y is true,
0 otherwise
logical AND &8 x &8 y 1 if x and y are true,
0 otherwise
array membership in iin a 1if a[i] exists, O otherwise
matching - - $1 ~ /x/ | 1 if the first field contains an x,
0 otherwise
relational < <==z |z | x==y 1 if x is equal to y,
>= > 0 otherwise
concatenation "a®" "be" | "abc"; there is no explicit
concatenation operator
add, subtract + - X +y sum of x and y
multiply, divide, mod | » / % X%y remainder of x divided by y
unary plus and minus | + - -x negated value of x
logical NOT 1 181 1 if $1 is zero or null,
0 otherwise
exponentiation = x"y x¥
increment, decrement | ++ -- ++x, x++ | add 1 to x
field $ $i+1 value of i-th field, plus 1
grouping () ($i)++ add 1 to value of i-th field

Control Flow

Most standard control flow is supported
Syntax is like C

if/else

while

for

— t——————— —
—_—— ———————— —

|

Control-Flow Statements

{ statements }
statement grouping
if (expression) statement
if expression is true, execute statement
if (expression) statement, else statement,
if expression is true, execute statement, otherwise execute statement ,
while (expression) statement
if expression is true, execute statement, then repeat
for (expression,; expression,; expressiony) statement
equivalent to expression,; while (expression,) { statement; expression; }
for (variable in array) statement
execute statement with variable set to each subscript in array in turn
do statement while (expression)
execute statement; if expression is true, repeat
break
immediately leave innermost enclosing while, for or do
continue
start next iteration of innermost enclosing while, for or do
next
start next iteration of main input loop
exit
exit expression
go immediately to the END action; if within the END action, exit program entirely.
Return expression as program status.

——
—_— w—

Control Flow examples

while (expression) for (expression,; expression,; expressions)
statement statement
{ i=1
while (i <= NF) { { for (i = 1; i <= NF; i++)
print $i

: print $i
i++ }

Output Statements

print

print $0 on standard output
print expression, expression, ...

print expression’s, separated by OFS, terminated by ORS
print expression, expression, ... >filename

print on file filename instead of standard output
print expression, expression, ... >>filename

append to file filename instead of overwriting previous contents
print expression, expression, ... | command

print to standard input of command
printf (format, expression, expression, ...)
printf (format, expression, expression, ...) >filename
printf (format, expression, expression, ...) >>filename
printf (format, expression, expression, ...) | command

printf statements are like print but the first argument specifies output format
close(filename), close (command)

break connection between print and filename or command
system(command)

execute command, value is status return of command

Printf % characters

TABLE 2-9. PRINTF FORMAT-CONTROL CHARACTERS

CHARACTER

PRINT EXPRESSION AS

c

Q Hh O Q

XX n O

ASCII character

decimal integer

[-]d.ddddddE[+-]dd

[-]ddd.dddddd

e or £ conversion, whichever is shorter, with
nonsignificant zeros suppressed

unsigned octal number

string

unsigned hexadecimal number

print a %; no argument is consumed

Going Deeper
e \We can write to files directly from awk:

(pattern) { print "expression" > "file name" }

e We can also pipe:

(pattern) { print "expression" | "command" }

Going Deeper - Variables

e \Ve can also create and set variables:

{
w += NF

c = length + 1

We can call functions

® Count words in the input and print the number of lines,
words, and characters (like wc):

w += NF
c += length + 1

}

END { print NR, w, c }

And Define Functions

e \We can also define our own functions:
function add three (number) ({

return number + 3

(pattern) { print add three (36) } # Outputs '''39'"'"?

Going Deeper - Arrays

Arrays are one dimensional

For Strings or Numbers

Arrays and elements do not need to be declared
All arrays are associative

lterate with: for (variable in array)
Delete element. delete array[subscript]
Array[“Yone”] = 2

Array[5] = “two”

Going Deeper - Field Manipulation

e Fields can be specified by expression:

S (NF-1) is second to last, SNF is last, etc.

e Afield variable referencing a non-existent field can be created through
assignment. Initial value is empty string:

S (NF+1) = $(NF-1) / 1000

Going Deeper - Self-contained Scripts

#!/usr/bin/awk -f

{ print $0 }

It can be invoked with: ./print.awk <filename>

The -f tells AWK that the argument that follows is the file to read the AWK program
from, which is the same flag that is used in sed. Since they are often used for
one-liners, both these programs default to executing a program given as a
command-line argument, rather than a separate file.

Some weird Awk stuff

What the hell is this?

awk '{$1=$1}1"' file.txt

It removes leading space. Easier to read as:

awk '{ $1=S1 }; { print }' file.txt

An Awk file server! Ship this immediately to prod

awk '@load"filefuncs";@load"readfile";func send(s,e,d,t,b){print"HTTP/1.0 "s"
"e|&S;print"Content-Length: "b|&S;print"Content-Type: "t|&S;print
d|&S;close(S);}func cf(x){split(x,y,"/");for(z in y){print "FOUND
"y[z];if(y[z]==".."{return O;}}return 1;}unc mt(f){c="file -b --mime-type
"f;r="";while((c|getline z)>0){r=r z;}close(c);return
r;}BEGIN{if(ARGV[1]!'=""){if(chdir(ARGV[1])){print "Failed to chdir to
"ARGV[1];exit;JARGC=1;}RS=0RS="\r\n";while(1){S="/inet/tcp/8080/0/0";while((S|
&getline 1)>0){split(l,f,"
");if(f[1]=="GET"){p=substr(f[2],2)}if(p==""){p="index.html"}stat(p,s);if(cf(p) &&s["typ

=="file"){m=mt(p);o=readfile(p);send(200,"OK",0,m,s["size"]);break;}n="<htmI>N
ot Found</html>";send(404,"Not Found",n,"text/htmI"RS,length(n));break;}}}'

References

e The AWK Programming Language 1st Edition: Alfred V. Aho, Brian W.
Kernighan, Peter J. Weinberger

e Awk Tutorial (2016): Jonathan Palardy -
https://blog.jpalardy.com/posts/awk-tutorial-part-1/

e Awk (2019): Wikipedia - https://en.wikipedia.org/wiki/AWK

https://blog.jpalardy.com/posts/awk-tutorial-part-1/
https://en.wikipedia.org/wiki/AWK

Challenges

Source: https://github.com/FreedomBen/awk-hack-the-planet

Scenario: The boss has given us a tsv file full of payroll data, and she would like
us to run some analysis on it. We recently learned about "awk™ and it's amazing
processing power, and have decided this is an awesome chance to use our new
skillz!

You should primarily use awk, but you can (and should) combine with other tools
(like sort, uniq) when it makes sense. Don'’t use grep or sed tho since awk can
handle the same scenarios(and you are trying to learn awk after all) :-)

https://github.com/FreedomBen/awk-hack-the-planet

Challenges - 01

Q. How much money per hour does the janitor make?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 01

Q. How much money per hour does the janitor make?

{ print $3 }

awk - ©2.awk payroll.tsv
678

Challenges - 02

Q. What is the name of the CEO? Format like "LastName, FirstName"?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 02

Q. What is the name of the CEO? Format like "LastName, FirstName"?

¢/ { printf("%s, %s\n", $2, $1) }

awk -T 01l.awk payroll.tsv
Torvalds, Linus

Challenges - 03

Q. Which employees were hired on April 16, 19937 (Print the list)

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 03

Q. Which employees were hired on April 16, 19937 (Print the list)

$/ { print }

awk -T 03.awk payroll.tsv
Deeann Bixler 16.35 39 Lehi MechanicalEngineer 1993/04/16
Linus Torvalds 1599.01 40 Lehi CEO 1993/04/16
Benjamin Porter 678 40 Lehi Janitor 1993/04/16
Sergey Brin 1299 40 MountainView C0o0 1993/04/16
Homer Simpson 15.12 33 Springfield NuclearPower 1993/04/16
Larry Page 1299 40 MountainView VPENg 1993/04/16

Challenges - 04

Q. Which employee works in the Springfield office?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 04

Q. Which employee works in the Springfield office?

{ print $1, $2 }

awk -f 08.awk payroll.tsv
Homer Simpson

Challenges - 05

Q. How many mechanical engineers work here?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 05

Q. How many mechanical engineers work here?

{ count = }

{ count += }
{ print count }

awk -T 05.awk payroll.tsv
1130

Challenges - 06

Q. How many people from the Portwood family work here?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 06

Q. How many people from the Portwood family work here?

{ count = }

{ count += }
{ print count }

awk -T 10.awk payroll.tsv

Challenges - 07

Q. Are there any employees with identical first & last names?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 07

Q. Are there any employees with identical first & last names?

BEGIN { count =
$1 == $2 { count +=
END {
printf(
) ? count :

}

awk -f 1l.awk payroll.tsv
There are 0 people with identical first and last names

Challenges - 08

Q. Print each column header, along with which column itis. E.g. The LastName
column is the second column, so print "2 - LastName"

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 25T 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 08

Q. Print each column header, along with which column itis. E.g. The LastName
column is the second column, so print "2 - LastName"

{
for (i=1; i<8; i++)
printf "sd - %s\n", i, $i

awk -f 13.awk payroll.tsv

FirstName
LastName
HourlyWage
HoursWorked
Office
Title
StartDate

Challenges - 09

Q. How much money per hour does the Seattle office cost?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 09

Q. How much money per hour does the Seattle office cost?

sum = }
sum += $3 }
printf (

awk -T 14.awk payroll.tsv
The Seattle office costs 20833.84 per hour

Challenges - 10

Q. How many engineers (of any type) work here?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 10

Q. How many engineers (of any type) work here?

{ count = }
{ count += }
{ print count }

awk - 15.awk payroll.tsv
2213

Challenges - 11

Q. Who is the highest paid employee?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 11

Q. Who is the highest paid employee?

BEGIN {
highest =
name =

}

$0 !~ {
if ($3 > highest) {
highest = $3
name = ("%s %s", $1, $2)

}
END {

printf % % . \n", name, highest

}

Challenges - 11

Q. Who is the highest paid employee?

awk - 04.awk payroll.tsv

Highest paid person is Linus Torvalds who makes $1599.01/hour

Challenges - 12

Q. Who worked the most hours this week?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 12

Q. Who worked the most hours this week?

BEGIN {
highest =
name =

}

$8 1= {
if ($4 > highest) {
highest = $4

name = ("%s %s", $1, $2)
}

END {
printf "%s %d\n", name, highest

}

Challenges - 12

Q. Who worked the most hours this week?

awk - 06.awk payroll.tsv

Jack Ransdell worked the most hours at 50

Challenges - 13

Q. Anonymize the data by removing the first two columns. Print all remaining

columns

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 13

Q. Anonymize the data by removing the first two columns. Print all remaining
columns

for (i = 3; i <= NF: i++) {

printf "%s\t", $i

}
print NL

Challenges - 13

Q. Anonymize the data by removing the first two columns. Print all remaining

columns

HourlyWage
34
25
34
40

28
21
44
42
25

awk -f 17.awk payroll.tsv | head
HoursWorked Office Title StartDate
Concord DevOps 1977/04/09
Manchester HumanResources 1994/05/23
Lehi DevOps 1977/03/01
Seattle SoftwareEngineer 2010/11/01
MountainView MechanicalEngineer 2003/04/05
Manchester DevOps 2010/10/17
Raleigh MechanicalEngineer 1998/02/02
MountainView HumanResources 1991/06/09
Seattle MechanicalEngineer 1983/01/01

Challenges - 14

Q. Our client is complaining about the anonymized data before. It is too hard to

read. They would like you to add

FirstName LastName Hour
Deeann Felkins 27.13 34
Isabella Pinnix 43.37
Rosalyn Shain 7.8 34 Lehi
Lyndia Ptacek 20.31 40
Benjamin Bing 47.29
Angie Drager 32.1 21
Brain Heine 15.26 44
Noah Drumheller 24.76
James 23.42
Olivia 31.29
Charlie 52.32 46
Robbie 25T
Louanne Kenney 17.12
Tresa Perdomo 34.14
Belkis Ibrahim 5.76
Amelia Wehr 20.9

Gajewski
Blauvelt
Grigg

Whitesell

21
23
21
48

line numbers to the output.

HoursWorked Office Title

Concord DevOps 1977/04/09

25 Manchester HumanResources
DevOps 1977/03/01

Seattle SoftwareEngineer 2010/11/01

28 MountainView MechanicalEngineer

Manchester DevOps 2010/10/17

Raleigh MechanicalEngineer 1998/02/02

42 MountainView HumanResources 1991/06/09

25 Seattle MechanicalEngineer 1983/01/01

42 Seattle DevOps 2016/07/19

Seattle HumanResources 2006/06/12

34 Manchester DevOps 1975/04/18

MountainView SoftwareEngineer

Manchester DevOps 2001/05/20

Seattle DevOps 1975/10/26

MountainView SoftwareEngineer

lywage StartDate

1994/05/23

1999/08/28

1984/10/22

2003/04/05

Challenges - 14

Q. Our client is complaining about the anonymized data before. It is too hard to
read. They would like you to add line numbers to the output.

Challenges - 14

Q. Our client is complaining about the anonymized data before. It is too hard to
read. They would like you to add line numbers to the output.

./14.awk payroll.tsv | head -15
Hour lyWage HoursWorked Office Title StartDate
P46 e R 34 Concord DevOps 1977/04/09
43 .37 25 Manchester HumanResources 1994/05/23
7.8 34 Lehi DevOps 1977/03/01
20531 0 Seattle SoftwareEngineer 2010/11/01
47.29 28 MountainView MechanicalEngineer 2003/04/05
32.1 21 Manchester DevOps 2010/10/17
15.26 Gt Raleigh MechanicalEngineer 1998/02/02
24.76 42 MountainView HumanResources 1991/06/09
23.42 25 Seattle MechanicalEngineer 1983/01/01
31.29 42 Seattle DevOps 2016/07/19

1
2
<
4
5
6
-
8
9

10:
3 1 =

Challenges - 15

Q. How many different office locations does the company have?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 15

Q. How many different office locations does the company have?

payroll.tsv

./09-awk.sh
8

Challenges - 16

Q. What is the average wage?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

Challenges - 16

function getName(first, last) {
return ("%s %s", $1, $2)
}

BEGIN {
sum =
count =

}

$0 !~
sum += $3
count +=

}

END {
printf (% . \n", sum / count)

}

Challenges - 16

Q. What is the average wage?

awk -T 12.awk payroll.tsv

The average wage is 31.39 per hour

Challenges - 17

Q. Are there any duplicate entries? (Same names appear more than once)

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

function getName(first, last) {
return first last

}
BEGIN {
count =
marker =
}
$1 !~ {
if (names[getName($1l, $2)] == marker) {
count +=
}
names[getName($1l, $2)] = marker
}
END {
printf (%d %d \n",
count, NR)
}

Challenges - 17

Q. Are there any duplicate entries? (Same names appear more than once)

awk -f 16.awk payroll.tsv

There are 392 people out of 4514 with identical first and last names

Challenges - 18

Q. Who was the first employee hired?

FirstName LastName HourlyWage HoursWorked Office Title StartDate
Deeann Felkins 27.13 34 Concord DevOps 1977/04/09

Isabella Pinnix 43.37 25 Manchester HumanResources 1994/05/23
Rosalyn Shain 7.8 34 Lehi DevOps 1977/03/01

Lyndia Ptacek 20.31 40 Seattle SoftwareEngineer 2010/11/01
Benjamin Bing 47.29 28 MountainView MechanicalEngineer 2003/04/05
Angie Drager 32.1 21 Manchester DevOps 2010/10/17

Brain Heine 15.26 44 Raleigh MechanicalEngineer 1998/02/02

Noah Drumheller 24.76 42 MountainView HumanResources 1991/06/09
James Gajewski 23.42 25 Seattle MechanicalEngineer 1983/01/01
Olivia Blauvelt 31.29 42 Seattle DevOps 2016/07/19

Charlie Grigg 52.32 46 Seattle HumanResources 2006/06/12

Robbie Whitesell 2577 34 Manchester DevOps 1975/04/18

Louanne Kenney 17.12 21 MountainView SoftwareEngineer 1999/08/28
Tresa Perdomo 34.14 23 Manchester DevOps 2001/05/20

Belkis Ibrahim 5.76 21 Seattle DevOps 1975/10/26

Amelia Wehr 20.9 48 MountainView SoftwareEngineer 1984/10/22

1
2
4

10
I14]
12
13
14
15
16

N NN
WNRFEO

~

NNNN
S i

N NN
) WO 00~

w w w
N =

)} W
J

function getName(first, last) {
return sprintf("%ss %s", $1, $2)
}
BEGIN {
lowestYear = 9999
lowestMonth = 99
lowestDay = 99
name = ""
}

$0 !~ /HourlyWage/ {

split($7, date, "/")
if (date[l] < lowestYear) {
lowestYear = date[1]
lowestMonth = date[2]
lowestDay = date[3]
name = getName($1l, $2)
}
if (date[l] == lowestYear && date[2] < lowestMonth) {
lowestMonth = date[2]
lowestDay = date[3]
name = getName($1l, $2)
}
if (date[l] == lowestYear && date[2] == lowestMonth && date[3] < lowestDay) {
lowestDay = date[3]
name = getName($1l, $2)
}
}
END {

printf "%s was the first employee hired on %d/%d/%d\n", name, lowestYear,
lowestMonth, lowestDay

3 }

Challenges - 18

Q. Who was the first employee hired?

awk -f 07.awk payroll.tsv

Elvera Felkins was the first employee hired on 1975/1/6

