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1 Introduction

The prevalence of green subsidies raises several questions.1 First, how do the subsidies impact

the labor market? Answering this question is important to manage potential job losses from

the subsidies. However, few studies (Shimer, 2013; Bistline, Mehrotra and Wolfram, 2023)

have addressed this question in general equilibrium, and no study has used a microfounded

model with search frictions. Second, how do green subsidies compare to carbon prices in terms

of labor market outcomes and welfare? Carbon prices are widely advocated by economists,

but can face public opposition (Dechezleprêtre et al., 2022; Douenne and Fabre, 2022). When

carbon prices cannot be used, it is valuable to know the implications of adopting green sub-

sidies instead. Third, how do green subsidies interact with the tax system? No study has

investigated this issue in a setting with involuntary unemployment, as the literature (e.g.,

Fullerton, 1997; Parry, 1998) has only allowed for voluntary unemployment.

In this paper, I build a search model to examine the impact of green subsidies on the labor

market and welfare. I perform the analysis by comparing a green subsidy to a carbon price

for different ways of financing the subsidy and for various tax systems. The contributions are

fourfold. First, I study the employment impact of green subsidies in a microfounded model

with search frictions (Pissarides, 1985; Mortensen and Pissarides, 1994). The model allows

for both voluntary and involuntary unemployment, and is characterized by firms recruiting

workers through an endogenous matching process. Green subsidies increase the value of

recruitment for green firms and shift demand towards their goods. Green firms hire more

workers while other firms recruit less. The net change in employment depends on a subsidy’s

financing mechanism. A subsidy decreases unemployment if financed in a non-distortionary

manner, but increases unemployment if paid for by payroll taxes.2

Second, I compare green subsidies to carbon prices. The relative performance of green

subsidies depends on the financing mechanism. A non-distortionary mechanism makes a

subsidy generate higher employment and, for low levels of abatement, higher welfare compared

to a carbon price. However, a subsidy is less preferable if a non-distortionary mechanism is

1The United States, the European Union, and China all provide green subsidies. In the U.S., the Inflation
Reduction Act contains tax credits worth hundreds of billions of dollars for low-carbon electricity production
and investment, carbon capture and storage, clean fuels, electric vehicle purchases, clean energy manufacturing,
and private investments in energy efficiency and clean energy (Bistline, Mehrotra and Wolfram, 2023, CRFB,
2022). The EU has given more than e800 billion in renewable electricity subsidies since 2008 (European
Commission, 2022) and finances low-carbon projects through the Green Deal Industrial Plan. China also
supports low-carbon sectors, as exemplified by its renewable electricity subsidies exceeding $100 billion since
2020 (IEA, 2024).

2The “non-distortionary” financing mechanism in my framework is a lump sum tax on households. Such
a tax is non-distortionary to the extent that it does not affect a firm’s decision to assign a worker to either
recruitment or production. However, to be sure, such a tax produces an income effect for households which
distorts their leisure decision.
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unavailable. A subsidy then generates lower employment and welfare relative to a carbon

price.

Third, I show that the tax system can affect the performance of green subsidies. This is

only the case, however, if the financing mechanism is distortionary. A subsidy financed in

this manner generates more unemployment and lower welfare if the tax system is initially

distortionary. A subsidy financed in a non-distortionary manner, however, performs equally

well irrespective of the initial distortion level. Such a subsidy is therefore especially valuable

in the presence of preexisting taxes.

Fourth, I empirically estimate the number of green, fossil, and remaining “neutral” jobs,

as well as job transitions, in the U.S. The estimates indicate that fossil workers rarely start

green jobs and more often reallocate to neutral jobs. An implication is that neutral jobs are

relevant for the low-carbon transition. I use the empirical estimates to calibrate the search

model. In the following, I describe the model and elaborate on the findings.

The model is similar to the framework in Hafstead and Williams (2018).3 It represents

unemployment as an equilibrium concept that results from two processes: endogenous recruit-

ment by firms and exogenous job loss. Climate policy affects firms’ recruitment effort which

changes the unemployment rate. My framework differs in a number of ways from Hafstead

and Williams (2018). First, I account for an empirically relevant “neutral” job type that is

not directly affected by climate policy. This allows me to study movements between three

job types: green, fossil, and neutral jobs. Second, I apply my model to a different context by

focusing on green subsidies. Third, I provide an empirical basis for the distribution of jobs

and degree of labor mobility in the model. In particular, I use occupational survey data for

the U.S. to estimate the number of green, fossil, and neutral jobs, as well as job transitions.

I use the job transition estimates to calibrate the ease at which workers move between jobs.

This enables me to study green subsidies for a more realistic degree of labor mobility.4

The first contribution of the paper is to show that a green subsidy can reduce unemploy-

ment. This result is conditional, however, on using a non-distortionary financing mechanism.

A subsidy financed in a non-distortionary manner has three effects. First, the subsidy in-

creases the return on hiring workers for green firms. This counteracts search frictions and

labor market taxes, and makes green firms hire more workers. Second, the subsidy lowers the

cost of green goods which shifts demand to these goods. Green firms respond by hiring more

3Hafstead and Williams (2018) model a clean and a dirty sector. They extend the one-sector model of
Shimer (2010).

4There are three other differences with Hafstead and Williams (2018). First, I do not model an abatement
activity. Abatement in my framework stems only from reductions in fossil firms’ output. Second, I use a
nested consumption structure. Third, I allow for a heterogeneous degree of labor mobility by relaxing the
assumption that all firms face the same level of friction when matching with workers of a different type.
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workers, while firms elsewhere reduce recruitment. Third, the revenue to finance the subsidy

produces a negative income effect for consumers. However, because the revenue is raised in

a non-distortionary manner, recruitment decisions are not distorted. The subsidy therefore

offsets recruitment costs for green firms (from the first effect) without changing the economy-

wide distortion level. This explains why employment expands. If distortionary payroll taxes

instead finance the subsidy, recruitment costs increase. This eliminates the net employment

gains and leads to an increase in unemployment.

The second contribution is to illustrate the implications of using green subsidies over

carbon prices. The implications vary depending on the financing mechanism. A subsidy

financed by payroll taxes generates more unemployment and lower welfare compared to a

carbon price. However, given a non-distortionary financing mechanism, a subsidy generates

higher employment and, for low abatement levels, higher welfare. The reason is that such a

subsidy offsets recruitment costs for green firms without affecting the economy-wide distortion

level. A carbon price, in contrast, reduces the value of recruitment for fossil firms which

decreases hiring. Recycling the carbon pricing revenue via lower payroll taxes counteracts

some of the employment losses, but not all, meaning the carbon price performs worse compared

to the subsidy.

The third contribution is to show that preexisting tax distortions can impact outcomes

from a green subsidy. The impact is heterogeneous across financing mechanisms. While a

subsidy financed in a non-distortionary manner is unaffected by the tax system, a subsidy

paid for by payroll taxes generates higher unemployment and lower welfare in the presence

of preexisting distortions. This suggests that a distortionary financing mechanism such as

payroll taxes is especially disadvantageous if the tax system is already distortionary.

The fourth contribution comes from the empirical analysis. I find that few jobs are green

and most jobs are neutral in the U.S. With regard to job transitions, the data shows that

workers rarely move from fossil to green jobs. This reinforces the insight from previous studies

that workers in emissions-intensive sectors can find it difficult to exploit job opportunities

created by the green transition (Walker, 2013; Saussay et al., 2022; Colmer, Lyubich and

Voorheis, 2023; Curtis, O’Kane and Park, 2023; Colmer et al., 2024). However, my results

also show that many fossil workers reallocate to neutral jobs. Neutral jobs should therefore

not be overlooked in the context of the green transition. While the discussion on jobs and the

green transition typically revolves around enabling fossil workers to reallocate to green jobs,

the abundance of neutral jobs means many displaced workers will start these jobs.

Inserting the job transition estimates in the search model, I calibrate the degree of friction
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firms face when matching with workers of a different type. The degree of friction is low,

implying that firms and workers of different types can easily match in the model.

Related literature

The paper relates to four strands of literature. The first strand examines the impact of

environmental regulation on employment. A subset of studies use econometric methods (e.g.,

Chen et al., 2020; Popp et al., 2021 for green subsidies and Greenstone, 2002; Morgenstern,

Pizer and Shih, 2002; Walker, 2011, 2013; Yip, 2018 for carbon pricing). A challenge for

these studies is that employment in counterfactual (unregulated) sectors can be endogenous

to environmental regulation due to workers moving between regulated and unregulated sectors

(Hafstead and Williams, 2018). Econometric estimates of employment changes therefore risk

being biased. An alternative approach is to employ general equilibrium methods. Such

methods are well-suited for studying labor movement across sectors. They have generally been

used, however, to analyze carbon pricing as opposed to green subsidies. A common result is

that carbon pricing reallocate labor from fossil to green sectors and lead to a small increase in

unemployment (Hafstead and Williams, 2018; Aubert and Chiroleu-Assouline, 2019; Carbone

et al., 2020; Fernández Intriago, 2021; Heutel and Zhang, 2021; Hafstead, Williams and Chen,

2022; Finkelstein Shapiro and Metcalf, 2023; Castellanos and Heutel, 2024).

A study that does focus on green subsidies is Bistline, Mehrotra and Wolfram (2023).

Using a reduced form approach, they find that the Inflation Reduction Act (IRA) generates a

small increase in long run unemployment. Shimer (2013) analyzes the effect of a green subsidy

and carbon tax on worker reallocation and unemployment in a theoretical framework.5 I

complement these studies by studying green subsidies in a tractable numerical model. The

tractability allows me to study the channels through which green subsidies affect the labor

market. By using a three-job framework, I can also analyze the labor movement across jobs

directly affected (green and fossil jobs) and unaffected (neutral jobs) by climate policy.

The second related literature strand looks at the interaction between environmental reg-

ulation and the tax system. A large body of work has examined the impact of environmental

regulation on voluntary labor supply and welfare in the presence of labor market distor-

tions. These studies typically assume full employment and focus on environmental taxes

(e.g., Bovenberg and de Mooij, 1994; Bovenberg and van der Ploeg, 1994; Goulder, 1995a,b;

Parry, 1995; Bovenberg and Goulder, 1996; Goulder et al., 1999; Williams, 2002; Bento and

5In contrast to my paper, Shimer (2013) fixes the unemployment rate and does not model search frictions.
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Jacobsen, 2007; Carbone and Smith, 2008; Kaplow, 2012; Goulder, Hafstead and Williams,

2016; Barrage, 2019). Some attention has also been paid to green subsidies (e.g., Fullerton,

1997; Parry, 1998; Fullerton and Metcalf, 2001; Kaplow, 2012). These studies emphasize two

opposing effects of a subsidy in the presence of full employment and preexisting labor taxes:

a revenue-financing effect and a tax-interaction effect (Parry, 1998). The revenue-financing

effect corresponds to the welfare loss from financing a subsidy with distortionary as opposed

to lump sum taxes. The tax-interaction effect denotes the welfare gain from the subsidy in-

creasing voluntary labor supply of green workers. The manner in which these effects trade off

influences a subsidy’s impact on total labor supply and welfare.

I contribute to this literature by relaxing the full employment assumption. In particular,

I examine how green subsidies affect involuntary unemployment given various levels of preex-

isting distortions. No study has, to my knowledge, investigated this issue in a microfounded

model of unemployment. By focusing on subsidies, my paper complements previous work on

the interplay between carbon taxes, preexisting distortions, and unemployment resulting from

search frictions (Bovenberg, 1997; Bovenberg and van der Ploeg, 1998a; Wagner, 2005; Haf-

stead and Williams, 2018), wage bargaining (Carraro, Galeotti and Gallo, 1996; Koskela and

Schöb, 1999), wage rigidity (Bovenberg and van der Ploeg, 1996, 1998b), and union monopoly

power (Nielsen, Pedersen and Sørensen, 1995).

Third, my paper relates to the search literature. Search models are a well-established

theory of equilibrium unemployment and have been used to investigate a range of labor

market and macroeconomic issues (e.g., Hall, 2005; Shimer, 2005; Hagedorn and Manovskii,

2008; Hall and Milgrom, 2008; Ljungqvist and Sargent, 2017). They have also been applied in

the context of environmental regulation (Hafstead and Williams, 2018; Aubert and Chiroleu-

Assouline, 2019; Fernández Intriago, 2021; Hafstead, Williams and Chen, 2022; Finkelstein

Shapiro and Metcalf, 2023). A key feature of search models is the matching function that

determines the number of hires. Shimer (2010) develops a one-sector matching function of

recruitment effort and the unemployment rate. Hafstead and Williams (2018) extend this

function to allow for differentiated matching within and across sectors.6 A key parameter in

their matching function is the degree of friction associated with matching between firms and

workers of different types. I calibrate this parameter on the basis of survey data and allow it

to vary by firm type to reflect differences in labor mobility throughout the economy.

The final literature strand to which my paper relates empirically measures the number

6Most studies use a one-sector matching function. Two exceptions are Hafstead and Williams (2018) and
Yedid-Levi (2016) who extend the function to multiple sectors. Hafstead and Williams (2018) represent a
clean and a dirty good, while Yedid-Levi (2016) models a consumption and an investment good.
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of green jobs. A challenge for these studies is that no standard definition of green jobs

exists. One approach is to use a sector-based definition (Curtis and Marinescu, 2022; Colmer,

Lyubich and Voorheis, 2023; Curtis, O’Kane and Park, 2023) by calling jobs related to, for

instance, wind or solar power green. A limitation of this approach is that it ignores jobs

in non-green sectors, even if these jobs benefit from the low-carbon transition. One way to

also capture these jobs is to look at the task content of occupations. Tasks are commonly

used as the unit of analysis in the labor economics literature when assessing the incidence of

labor market events (Acemoglu and Autor, 2011; Autor, 2013). A seminal example is Autor,

Levy and Murnane (2003) who show that the impact of computerization on jobs depends

on whether tasks are complements or substitutes to computers. The green transition can be

analyzed through a similar task-based lens. The transition has created a need for new tasks

and this will benefit jobs involving these “green” tasks. The defining feature of a green job

can therefore be viewed as the share of green tasks it involves. A recent literature strand has

adopted such a task-based approach by defining green jobs on the basis of their task content

(e.g., Vona et al., 2018; Vona, Marin and Consoli, 2019; Chen et al., 2020; Popp et al., 2021).

I use a task-based approach to measure the number of green jobs in the U.S. In particular,

I define green jobs as jobs involving a high share of green tasks and use this definition to

quantify green employment. By also measuring the number of fossil and neutral jobs, I

estimate the distribution of jobs and job transitions. The job transition estimates are used to

calibrate the degree of labor mobility in the search model.

The paper is structured as follows. Section 2 estimates the distribution of jobs and job

transitions in the U.S. Section 3 describes the search model. Section 4 details the calibration

procedure, including how the job transition estimates from Section 2 are used to calibrate the

degree of labor mobility. Section 5 presents the numerical results. Section 6 concludes.

2 Estimating the distribution of jobs and job transitions

This section empirically estimates the distribution of jobs and job-to-job transitions in the

U.S. Section 2.1 gives an overview of the data, while Section 2.2 describes the job classification

procedure. Section 2.3 presents the estimates.

2.1 Occupation data

To measure job patterns over time, I obtain longitudinal data on occupations from the Survey

of Income and Program Participation (SIPP). SIPP is a representative longitudinal survey of

the U.S. population that is administered annually by the U.S. Census Bureau. The survey
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follows individuals over four years and asks them about their monthly occupation.7 I make

use of two panels: one for the period 2013-2016 and another for 2017-2020.8 This gives me

monthly employment data over an eight-year span (2013-2020).9,10

The next step is to classify the occupations in SIPP as “green”, “fossil” or “neutral”. I

describe the classification procedure in the following section.

2.2 Classifying jobs by type

2.2.1 Defining green jobs

Distinguishing green jobs is challenging since no standard definition exists (Peters, Eathington

and Swenson, 2011; Deschenes, 2013; Consoli et al., 2016; Vona, 2021). One approach is to

define them as jobs contributing to a greener production process. This definition encompasses

jobs related to improving energy efficiency, reducing pollution, and managing waste. An

alternative is to focus on the product or service associated with a job. Elliott and Lindley

(2017) define jobs as green if they are involved in producing goods and services that create

environmental benefits or conserve natural resources. Curtis and Marinescu (2022) call solar

and wind power jobs green, while Curtis, O’Kane and Park (2023) also count jobs associated

with electric vehicle production. Colmer, Lyubich and Voorheis (2023) focus on the energy

sector and base their definition on whether a firm is engaged in green energy activities.

I adopt a different approach by defining green jobs on the basis of their task content.

In particular, I consider jobs involving a high share of green tasks to be green. A task-

based approach has been used by a number of recent studies (Consoli et al., 2016; Bowen,

Kuralbayeva and Tipoe, 2018; Vona et al., 2018; Vona, Marin and Consoli, 2019; Chen et al.,

2020; Rutzer, Niggli and Weder, 2020; Popp et al., 2021; Saussay et al., 2022) and offers

several advantages (Vona, Marin and Consoli, 2019; Vona, 2021). First, the unit of analysis is

the tasks carried out by a worker. The definition therefore centers around the characteristics

of a job, as opposed to a broader unit such as a sector. Second, it accounts for green jobs

that are present in multiple sectors. For instance, energy engineers work in both polluting

7Some respondents report multiple jobs in a month. I determine their main job based on the highest
average number of hours worked. If there is a tie, I choose the job with the highest income or, if a tie remains,
the first job that month.

8The 2013-2016 and 2017-2020 panels surveyed 42,323 and 30,441 persons respectively.
9The sample changes across panels and I can therefore only observe an individual’s employment history

over a four-year period.
10The occupations in the 2013-2016 and 2017-2020 panels use Census Occupation codes (versions 2010

and 2018 respectively). I translate these codes to the 6-digit 2010 Standard Occupational Classification
(SOC) system using crosswalks from the U.S. Census Bureau, available at https://www.census.gov/topics/

employment/industry-occupation/guidance/code-lists.html. 42 out of 518 occupations in the 2017-2020
panel have a one-to-many mapping that would give respondents multiple jobs in a given month. To achieve
a one-to-one mapping from each Census code, I choose the modal SOC code in the 2013-2016 panel (see the
first SOC code per Census category in Table A.1 in Appendix A).
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and non-polluting sectors. Restricting the scope of green jobs to non-polluting sectors would

overlook some of these positions. Third, it allows for a non-binary definition of green jobs.

This is advantageous since not all green jobs are fully green. A task-based approach allows

for a proportional relationship between the degree to which an occupation is green and the

share of tasks devoted to green activities. Fourth, it captures jobs indirectly created by the

green transition, including jobs outside of energy and manufacturing (e.g., in construction).

Capturing these jobs can be difficult due to a lack of green production data.

I define an occupation as green if its share of green tasks equals or exceeds a threshold α.11

I assume α = 50% in the main specification and conduct sensitivity on this value in Section

2.3. I operationalize the green job definition using the U.S. Occupational Information Network

(O*NET) database. O*NET is funded by the U.S. Department of Labor and is the main source

of occupational information in the U.S. Version 24.1 of the database contains detailed task

information for 974 occupations on an 8-digit O*NET-SOC level.12 The information includes

task descriptions, task importance scores, and a classification of tasks as green or non-green.13

Following Vona, Marin and Consoli (2019), I take a weighted average of the green tasks using

the importance scores as weights. This gives the share of green tasks by 8-digit occupation

κ:14

GreenShareκ =

∑
ν ινκ 1ν∈green∑

ν ινκ
,

where ι ∈ {1, 2, 3, 4, 5} is an importance score for task ν and 1 is an indicator variable for

green tasks.15 I aggregate the shares to a 6-digit level by taking an average across the 8-digit

11This approach is similar to Vona et al. (2018) who define an occupation as green if it contains more than
10% of green tasks.

12O*NET collects the information by surveying a random sample of employees from a representative sample
of U.S. firms. The surveys are complemented with input from expert panels and desk research by occupational
analysts (Peterson et al., 2001).

13O*NET classified the tasks as follows (Dierdorff et al., 2009; O*NET, 2010). Job titles relating to the green
economy were first identified in the literature, where the “green economy” was defined as “encompass(ing) the
economic activity related to reducing the use of fossil fuels, decreasing pollution and greenhouse gas emissions,
increasing the efficiency of energy usage, recycling materials, and developing and adopting renewable sources
of energy” (Dierdorff et al., 2009, p. 3). The job titles were grouped into occupations and the occupations
were sorted into three groups:

1. Occupations experiencing more demand, but no change in task content, from green economy activities
and technologies;

2. Occupations seeing changes in task content from green economy activities and technologies; and

3. Occupations created from green economy activities and technologies.

Green task research was thereafter conducted. The research consisted of reviewing the literature and online
sources (e.g., job descriptions, employment databases, and career information websites) to identify tasks
affected by green economy activities and technologies. These tasks were labeled green. Occupations in the
first group were assigned zero green tasks since their tasks are by definition not directly affected by the green
economy. Occupations in the third group were created from the green economy and thus all their tasks were
labeled green. For occupations in the second group, only tasks affected by green economy activities and
technologies were labeled green.

14GreenShareκ ≥ 0.5 for 41 occupations (see Table A.2 in Appendix A).
15O*NET assigns the importance scores on the basis of employee surveys and occupational experts. The
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occupations (see Appendix B for the aggregation procedure). 11 occupations on a 6-digit

level have a green task share of at least 50%. I call these occupations “green” (see Table A.3

in Appendix A for a list of these occupations).

2.2.2 Defining fossil jobs

The green transition will shift demand away from emissions-intensive (“dirty”) sectors. I

define fossil jobs as jobs disproportionately found in these sectors. The fossil workers in my

analysis represent the workers likely to become displaced from the green transition as a result

of their sector.16 I use a two-step procedure to identify the fossil jobs.17

First, I identify a set of dirty sectors. To do this, I obtain facility-level greenhouse gas

emissions data for the year 2019 from the Greenhouse Gas Reporting Program (GHGRP) of

the Environmental Protection Agency.18 I aggregate the data to a sector-level and combine

them with employment data from the Occupational Employment and Wage Statistics program

of the Bureau of Labor Statistics (BLS).19 This allows me to calculate emissions intensity by

sector. I call a sector dirty if it lies in the top five percent of the employment-weighted

emissions intensity distribution. Table C.4 in Appendix C lists the sectors that are classified

as dirty.

Second, I define fossil jobs by taking advantage of sector-level information in SIPP. Each

survey respondent reports both their occupation and sector in which they work.20 I classify

an occupation as fossil if it is at least eight times more likely than the average occupation to

scores range from 1 (not important) to 5 (very important). 24 occupations lack scores for some tasks. I assign
these tasks the minimum score for that occupation in line with Vona, Marin and Consoli (2019).

16Data on dirty tasks does not exist. With a task-based definition, the fossil jobs would have been the
jobs most vulnerable to the green transition. Instead, with my sector-based approach, the fossil jobs represent
the jobs in the most vulnerable sectors. While workers in dirty sectors are likely to become displaced, some
will be able to transition to jobs with similar tasks in non-dirty sectors. Thus, while a sector-based approach
captures the workers likely to become displaced, a task-based approach captures the workers likely to struggle
to find a new job with a similar task profile.

17The procedure bears similarities with Vona et al. (2018).
18The GHGRP requires large emitters to report direct (scope 1) emissions on a facility-level. The emitters

are power plants, oil and gas systems, and industrial sectors (including underground coal mines). The emissions
are CO2, Methane, Nitrous Oxide, HFC, PFC, SF6, NF3, and other greenhouse gas emissions (that account
for less than 0.05% of total emissions).

19Specifically, I aggregate the emissions data to a 4-digit North American Industry Classification System
(NAICS) level.

20The sectors in the 2013-2016 and 2017-2020 SIPP panels use versions 2012 and 2017 respectively of the
Census Industry system. I convert the codes in the 2013-2016 panel to version 2017 using a crosswalk from
the U.S. Census Bureau, available at https://www.census.gov/topics/employment/industry-occupation/

guidance/code-lists.html.
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be found in a dirty sector.21 This gives 63 fossil jobs (see Table A.4 in Appendix A).22

2.3 Estimation results

I apply the classification scheme to the jobs in SIPP and call any job that is neither green nor

fossil neutral. Section 2.3.1 shows the distribution of jobs. Section 2.3.2 presents job-to-job

transition estimates.

2.3.1 Distribution of jobs

Fig. 1 shows the evolution of green and fossil jobs in the U.S. The share of green jobs

increased from 1.5% to 1.7% during 2013-2020. The shares are similar in magnitude to

Saussay et al. (2022) and broadly in line with the range of 2-3% in Deschenes (2013); Elliott

and Lindley (2017); Cedefop (2019); Vona, Marin and Consoli (2019).23 The share of fossil

jobs, in contrast, decreased from 5.5% to 4.9% during 2013-2020. Green and fossil jobs

accounted for less than 10% of all jobs in every year. Most jobs are therefore neutral.
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Figure 1: Green and fossil jobs over time
Note: The figure shows the percent of green and fossil jobs in the U.S. during 2013-2020.

21Before classifying the occupations, I harmonize the sector codes. SIPP uses the Census Industry system
while the dirty sector classification uses NAICS. I convert the dirty sector classification to the Census In-
dustry system using crosswalks from the U.S. Census Bureau, available at https://www.census.gov/topics/

employment/industry-occupation/guidance/code-lists.html. A challenge when crosswalking is that not all
dirty sectors map to a unique Census code. Some have a many-to-one mapping, while others are not explicitly
in the crosswalk. Appendix C explains how these issues are resolved.

22Two jobs are both green and fossil: “17-2141 - Mechanical Engineers” and “51-9199 - Production Workers,
All Other”. I classify them as green in line with Vona et al. (2018).

23The green job shares in Fig. 1 are higher than two recent studies for the U.S. Both studies use a narrower
definition of green jobs. Curtis, O’Kane and Park (2023) find that jobs related to electric vehicle production,
solar power, and wind power accounted for 0.8% of jobs on average during 2005-2019. Curtis and Marinescu
(2022) estimate that 0.2% of job postings in 2019 were solar and wind jobs.
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I conduct a number of sensitivity tests on these findings. First, I vary the green task share

threshold α in the green job definition. I have so far assumed that green jobs involve at least

50% of green tasks. Panel (a) of Fig. D.1 and Panel (a) of Fig. D.2 in Appendix D show

how changing this threshold impacts the share of green and fossil jobs respectively. Using a

lax threshold of α = 10% gives unrealistically many green jobs and fewer fossil jobs. Using a

restrictive threshold of α = 100% does not drastically change the job distribution relative to

the main specification (α = 50%). The green job definition in the main specification is thus

already restrictive.

While changing the green job definition affects the composition of jobs, the trends over

time are qualitatively robust. The share of clean jobs increases and the share of fossil jobs

decreases. In addition, the vast majority of jobs are neutral. The share of neutral jobs exceeds

80% in all years and specifications.

The remaining sensitivity tests are as follows. Panel (b) of Figs. D.1-D.2 restricts occu-

pations’ tasks to those classified as “core” by O*NET.24 The green task shares are thereby

calculated on the basis of the most important tasks for each occupation. Panel (c) counts

green jobs in dirty sectors as neutral. Workers vulnerable to climate policy, owing to their

sector, but that can potentially transition to green sectors, thanks to their green job, are not

considered green as a result. Panels (d)-(e) use stricter definitions of a fossil job. Panel (d)

removes all fossil jobs in non-dirty sectors (by counting these jobs as neutral). This restricts

the fossil jobs to those that are most vulnerable to climate policy (i.e., those in dirty sectors).

Panel (e) assumes fossil jobs are above 10 times (as opposed to 8 times) more likely than the

average job to be found in a dirty sector. Panels (f)-(g) test the implications of using a less

strict fossil job definition. Panel (f) counts neutral jobs in dirty sectors as fossil. Panel (g)

assumes fossil jobs are above 6 times (as opposed to 8 times) more likely than the average job

to be found in a dirty sector. Finally, Panel (h) restricts dirty sectors to sectors in the top

1% (as opposed to top 5%) of emissions intensity.

In all cases, the qualitative insights from before hold: the share of clean jobs increases

over time, the share of fossil jobs decreases over time, and the majority of jobs are neutral.

24O*NET classifies tasks as “core” and “supplemental”. Core tasks are critical to an occupation. They are
tasks for which job incumbents report a relevance score of at least 67% and for which the mean importance
score is at least 3 (see https://www.onetonline.org/help/online/scales).
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2.3.2 Job-to-job transitions

Fig. 2 shows job-to-job transition probabilities by worker and job type.25 Fossil workers have

a low probability (5%) of starting a green job. They are more likely to start a neutral job, as

this probability exceeds 40%.26 The high probability highlights the relevance of neutral jobs

for the green transition and suggests that many displaced workers will start neutral jobs.27
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Figure 2: Job finding probability by type of worker and job
Note: The figure shows the probability of starting a green job, fossil job, neutral job, or unemployment by

worker type (green, fossil, or neutral) in the U.S. during 2013-2020.

I conduct a similar sensitivity analysis as in Section 2.3.1. Fig. D.3 in Appendix D shows

how the job transition probabilities vary with α. Fig. D.4 repeats this exercise assuming only

core tasks. Fig. D.5 restricts green jobs to non-dirty sectors. Figs. D.6-D.7 use more narrow

definitions of a fossil job, while Figs. D.8-D.9 use looser definitions. Fig. D.10 employs a

more narrow definition of a dirty sector. In all figures, fossil workers are more likely to start

25A job transition in SIPP occurs when the occupation code changes. Some transitions, however, occur
between jobs sharing an occupation code. For instance, a waiter switching restaurants is a job change although
the occupation code does not change. I need to account for such job changes to avoid underreporting the
number of transitions between jobs of the same type. I do this in four ways. First, I assume that a worker
moving from one sector to another reflects a job change (e.g., because a worker has moved to another company).
Second, I exploit the fact that SIPP reports the month in which a job starts and ends in each year. SIPP
assigns January as the starting month if a job continues from the previous year. I assume a job change takes
place if the starting month is not January. For instance, a job ending in February and another starting in
March implies a job change. Third, occupations in SIPP are assigned unique identifiers to allow tracking a
job over multiple years. I assume that any change in the identifier corresponds to a job change. Finally, I
assume the first job following an unemployment spell constitutes a job change, irrespective of whether the job
has the same occupation code as the job preceding the unemployment spell.

26Panel (b) of Fig. D.11 in Appendix D shows that the probability of starting a neutral job is much smaller
when correcting for differences in employment shares. The high likelihood of starting a neutral job in Fig. 2
is therefore driven by the abundance of neutral jobs.

27Table A.5 lists the most common neutral occupations that fossil workers transition to and the percentage
of cases when the neutral job is in a dirty sector. Table A.6 repeats this exercise for fossil to green transitions.
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a neutral job compared to a green job, which corroborates the qualitative insights from the

main specification.

Finally, I estimate the distribution of workers starting each job. The results are shown in

Table 1. 14% of workers starting a green job were green (i.e., previously had a green job),

while 18% were fossil and 68% were neutral. The diagonal elements of the table correspond to

the transitions between jobs of the same type. Green workers accounted for 14% of new green

jobs, and fossil workers started 39% of new fossil jobs. The vast majority (95%) of neutral

jobs were absorbed by neutral workers, due in part to the prevalence of these workers.

Table 1: Distribution of workers starting each job

New job

Worker type Green Fossil Neutral

Green 0.14 0.06 0.01

Fossil 0.18 0.39 0.03

Neutral 0.68 0.56 0.95

Note: The table shows the distribution of workers (green, fossil, or neutral) starting a

green, fossil, or neutral job in the U.S. during 2013-2020. The share of green, fossil,

and neutral workers was 1.6%, 5.4%, and 93.1% respectively during 2013-2020. These

shares, as well as some columns in the table, sum imperfectly to unity due to rounding.

The diagonal elements of Table 1 are used to provide an empirical basis for the degree of

labor mobility in the search model. This procedure is elaborated on in Section 4. I describe

the search model in the following section.

3 Search model

I employ a search model to study the effects of green subsidies. The model builds on Hafstead

and Williams (2018) and is characterized by search frictions in the labor market. The search

frictions imply that it takes time for job searchers to match with firms. Unemployment in

equilibrium is determined by the amount of hiring and job loss. Hiring takes the form of an

endogenous job matching process. Once a worker and firm match, they negotiate wages and

hours worked according to a Nash bargaining process. The worker then joins the firm in the

following period. An exogenous number of workers π lose their job at the end of each period.

I assume that only unemployed workers search for jobs. I elaborate on the model below.
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3.1 Basic set-up

The model is characterized by t = {0, 1, 2, ...} months.28 There are three firm types i, j, k ∈

J = {f,g,z}. Fossil firms (j = f) generate emissions in production, while green firms (j = g)

and neutral firms (j = z) are emissions-free.

A worker’s type is given by their most recent workplace. This gives three worker types

i, j, k ∈ J = {f,g,z}. There are nj workers employed at firm j and ui unemployed workers

that previously worked for firm i. Total employment is given by n :=
∑
j nj and total

unemployment is u :=
∑
i ui. The overall workforce is normalized to unity, meaning n+u = 1.

3.2 Firms

Firms recruit workers and assign them to either a production technology or a matching tech-

nology. The production technology generates revenue while the matching technology allows

the firm to recruit more workers. I refer to workers using the production technology as “pro-

duction workers” and workers using the matching technology as “recruiters”. Workers are

identical meaning firms are indifferent between assigning them to either technology. Let lj

denote the number of production workers and nj − lj = υj the number of recruiters employed

by a firm. Both production workers and recruiters are paid wage wj and work hj hours.

3.2.1 Production

The production technology exhibits constant returns to scale and converts labor into output

yj according to

yj = ζljhj , (1)

where ζ is labor productivity. The output is sold at net price pyj . Fossil firms generate ε

emissions from each unit of output. Total emissions e are given by

e = εyf.

3.2.2 Matching

Recruiters use a constant-returns-to-scale matching technology

mij = µjυjhjui

[
ξj

(∑
k

υkhk

)
︸ ︷︷ ︸

Total
recruitment

effort

−γ

u︸︷︷︸
Total
unem.

γ−1 + (1− ξj) (υjhj)︸ ︷︷ ︸
Firm j’s

recruitment
effort

−γ
ui︸︷︷︸

Unem.
of i

γ−1δij

]
,

(2)

28I suppress the time subscript henceforth to simplify the notation.
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where µj is matching efficiency, γ is the elasticity of matching with respect to unemployment,

δij equals 1 for i = j and 0 otherwise, and ξj ∈ [0, 1] controls the degree of matching between

firms and workers of different types. The number of matches mij between unemployed worker

i and firm j depends positively on the firm’s own recruitment effort and the unemployment

rate of worker i. Conversely, it depends negatively on the aggregate recruitment effort in the

economy (as more effort by other firms reduces the likelihood of a match for firm j) and the

total unemployment rate (as more competition from other job-seekers makes a match less

likely for worker i).

The parameter ξj controls the degree of friction associated with cross-type matching.29 If

ξj = 0, firm j can only recruit workers of type j, meaning there is no cross-type matching.

If ξj = 1, matching does not depend on a worker’s type, implying that workers i and j 6= i

are equally likely to match with firm j. For values of ξj in between zero and one, the share

of cross-type matches for firm j is proportional to ξj .

The degree of labor market tightness determines the ease at which workers can find a

job and the amount of recruitment effort that firms must exert to hire workers. There are

three measures of labor market tightness: the ratio of firm j’s recruitment effort to the

number of unemployed workers of type i (θij), the ratio of firm j’s recruitment effort to total

unemployment (θj), and the ratio of total recruitment effort to total unemployment (θ):

θij =
υjhj
ui

,

θj =
υjhj
u

,

θ =

∑
j υjhj

u
.

Recruitment productivity qj corresponds to the number of matches from a unit of recruit-

ment effort, and the probability φij of worker i matching with firm j equals the number of

matches between them divided by the number of unemployed workers of type i:

qj =

∑
imij

υjhj
, (3)

φij =
mij

ui
. (4)

Inserting Eq. 2 into Eqs. 3 and 4 gives the recruitment productivity and job-finding proba-

bility as functions of labor market tightness:

qj = µj

[
ξjθ
−γ + (1− ξj)θ−γjj

]
, (5)

φij = µj

[
ξjθjθ

−γ + (1− ξj)θ1−γ
ij δij

]
. (6)

29I let ξj vary by firm j in contrast to Hafstead and Williams (2018).
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Recruitment productivity qj is decreasing in labor market tightness: a tighter labor market,

from either an increase in recruitment effort or a decrease in unemployment, means recruiters

have to exert more effort to hire a given number of workers. The probability of finding a job

φij is increasing in labor market tightness measures θj and θij since a worker i is more likely

to find a job at firm j if the firm’s recruitment increases or competition from other workers

decreases. The probability of finding a job at firm j is, in contrast, decreasing in θ because

higher recruitment effort by other firms means worker i can more easily find a job outside of

firm j.

3.2.3 Firm’s problem

Firms must decide how to divide workers between production and recruitment. Let υj be

the recruitment ratio, equal to the share of workers assigned to recruitment (Shimer, 2010;

Hafstead and Williams, 2018):

υj =
υj
nj
. (7)

The firm’s problem is to choose the recruitment ratio that maximizes its value. The value

corresponds to revenue from selling output minus after-tax labor costs plus expected future

profits. Denoting values in the next period with an apostrophe, the Bellman equation is

J(nj) = max
υj

[
pyj ζhjnj

(
1− υj

)
−
(
1 + τP

)
njhjwj + E

[
paJ(n′j)

]]
, (8)

where τP is a payroll tax, pa is the firm’s discount rate and the price of an Arrow security,

and employment in the next period n′j equals current employment minus layoffs plus new

hires:

n′j = nj − πnj + qjυjhjnj . (9)

Denoting partial derivatives with subscripts, the first-order condition with respect to υj gives

pyj ζ = qjE
[
paJ ′nj

]
, (10)

where J ′nj := ∂J(n′j)/∂nj is the value in the next period of employing a worker today. The left-

hand side of Eq. 10 is a production worker’s output. The right-hand side is the present value

of the profits that a recruiter indirectly generates from hiring more workers. The equality sign

in Eq. 10 implies that a firm must be indifferent between assigning a worker to production

and recruitment.

I obtain Jnj by differentiating Eq. 8 with respect to the number of workers nj . This gives

the envelope condition

Jnj = pyj ζhj −
(
1 + τP

)
hjwj + (1− π)E

[
paJ ′nj

]
.
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The condition states that the value of a worker equals the marginal product minus after-tax

wage payments plus the present value of the worker in the following period given that they

remain with the firm.

3.3 Household

The workers own the firms and belong to a representative household. The household pools

workers’ income together and fully insures workers against temporary income shocks (e.g.,

from unemployment or wage changes).30 The assumption of full insurance, dating back to

Merz (1995), is common in the search literature and simplifies the household’s problem (Hall,

2009). It implies that the household equalizes the marginal utility of consumption across

workers in order to maximize their combined utility.

Workers get utility from consumption C and disutility from work. Consumption is sepa-

rable from leisure and identical across employed and unemployed workers. Utility is

U(C, hj) = log
(
C
)
− ψχ

1 + χ
h

1+ 1
χ

j ,

where ψ is a parameter representing disutility from work and χ is the Frisch elasticity of labor

supply. Consumption of the aggregate good C is a nested constant elasticity of substitution

(CES) aggregate of consumption goods r ∈ R = {f,g,z,fg}. Fig. 3 displays the nesting

structure. The fossil and green goods trade-off in a bottom nest with elasticity σfg. The

aggregate good is produced in a top nest by combining the fossil-green composite good (r =

fg) with the neutral good and elasticity σC . Consumption cr of good r takes the form of

cr = %r

(
pfg
pr

)σfg
cfg ∀r ∈ {f,g}, (11)

cr = %r

(
pC

pr

)σC
C ∀r ∈ {fg, z}, (12)

where %r are (scaled) CES share parameters and pr is the gross price of good r. The gross

price of the fossil-green composite pfg and of the aggregate good pC are defined by

pfg =
(
%fp

1−σfg
f + %gp

1−σfg
g

) 1

1−σfg
,

pC =
(
%fgp

1−σC
fg + %zp

1−σC
z

) 1

1−σC
.

An employed worker receives gross labor income wjhj and pays labor income tax τL. An

unemployed worker gets fixed unemployment benefits bi. All workers receive an equal transfer

30Blundell, Pistaferri and Preston (2008) find evidence that all households besides the poorest insure
themselves against temporary income shocks.
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Figure 3: Consumption structure

Note: The figure shows the consumption structure. The fossil and green goods produce a composite good in

a bottom nest. The composite good combines with the neutral good in an upper nest to create the aggregate

consumption good.

amount from the government. The total transfer amount summed across workers is T . The

unemployment benefits and transfers are valued at pC . Workers own assets and the total

assets of the representative household is a.

The household’s problem is to choose the level of consumption C and the value of the next

period’s assets a′ that maximize lifetime utility subject to an intertemporal budget constraint

and laws of motion for employment and unemployment. The Bellman equation is

V
(
a, nJ , uJ

)
= max

C,a′

[∑
j

njU
(
C, hj

)
+
∑
i

uiU
(
C, 0

)
+ βE

[
V
(
a′, n′J , u

′
J
)]]

, (13)

subject to

pCC + paa′ ≤
∑
j

(1− τL)njwjhj +
∑
i

uip
Cbi + a+ pCT,

n′j = nj − πnj +
∑
i

φijui ∀j, (14)

u′i = πni + ui(1−
∑
j

φij) ∀i. (15)

Eq. 14 states that employment in the next period corresponds to current employment minus

layoffs plus the number of unemployed workers that find a job. Eq. 15 indicates that unem-

ployment in the next period corresponds to layoffs plus the number of unemployed workers

that do not find a job.

The first-order condition with respect to consumption is

1

C
= λpC ,

where λ is the Lagrange multiplier for the budget constraint. The marginal utility of con-

sumption, in other words, equals the cost (in terms of utility) of paying price pC for a unit of

consumption.
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The first-order condition with respect to next period’s assets a′ equates the present value

of one unit of future assets with the cost of this unit, such that

βE
[
V ′a′
]

= λpa. (16)

Differentiating Eq. 13 with respect to current assets gives the envelope condition

Va = λ,

which holds in every period implying

V ′a′ = λ′. (17)

Combining Eqs. 16 and 17 gives the Euler equation

pa = β
λ′

λ
.

The equation states that the price of an Arrow security must equal the discounted intertem-

poral ratio of the marginal utility of income.

To obtain VnJ and VuJ , I differentiate Eq. 13 with respect to the employment and

unemployment of each worker type to get the envelope conditions

Vnj = U
(
C, hj

)
+ λ
(
1− τL

)
wjhj + β

(
(1− π)E

[
V ′nj

]
+ πE

[
V ′uj

])
∀j, (18)

Vui = U
(
C, 0

)
+ λpCbi + β

(
E
[
V ′ui

]
+
∑
j

φij

(
E
[
V ′nj

]
− E

[
V ′ui

]))
∀i. (19)

Eq. 18 states that the value (for the household) of having a worker employed at firm j

corresponds to the worker’s utility plus the value of after-tax labor income plus the discounted

expected value in the next period if the worker is employed with probability 1 − π and

unemployed with probability π. Eq. 19 indicates that the value of having an unemployed

worker of type i corresponds to the worker’s utility plus the value of unemployment benefits

and the discounted expected value in the next period if the worker is unemployed or finds a

job with probability
∑
j φij .

3.4 Wages and hours

Upon matching, a worker and firm divide the match surplus according to Nash bargaining.

The match surplus is the value to the firm of an additional worker Jnj plus the value to the

worker of being hired Vnj − Vuj . The Nash bargaining problem is to choose the wage and

hours that maximize a Cobb-Douglas function of the match surplus components:

max
wj ,hj

Jηnj

[
Vnj − Vuj

]1−η
∀j,
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where η ∈ [0, 1] denotes the firm’s bargaining power. Solving gives the following respective

equilibrium conditions for hours and wages:31

(1 + τP )ψh
1
χ

j = (1− τL)λpyj ζ ∀j, (20)

(1− τL)hjwj = (1− η)

[
1− τL

1 + τP
pyj ζhj

]

+ η

[
ψχh

1+ 1
χ

j

λ(1 + χ)
+ pCbj + β

∑
i φji

(
V ′ni − V

′
uj

)
λ

]
∀j. (21)

Eq. 20 states that the disutility from working one hour equals the after-tax value that

this hour generates in production. The equation implies that hours in equilibrium maximize

the value of the match surplus.

Eq. 21, meanwhile, implies that the match surplus is split between the worker and firm

according to a constant share rule. A worker’s after-tax wage income equals a weighted

average of the marginal product of labor (first square bracket) and the marginal rate of

substitution between consumption and leisure (second square bracket), where the weights

correspond to the bargaining powers of the worker and firm. The marginal product of labor

typically exceeds the marginal rate of substitution as a result of the search frictions in the

labor market (Shimer, 2010). Eq. 21 implies that a worker captures a larger share of this

difference if their bargaining power 1− η increases.

3.5 Government, climate policy, and market clearing

The government has access to two climate policy instruments. The first is a subsidy s on

green firms’ output and the second is a carbon price τE on fossil firms’ emissions. The net

price pyj corresponds to the gross price pj adjusted for any subsidy receipts and carbon pricing

payments, meaning

pyj =


pj + s for j = g,

pj − τE for j = f,

pj for j = z.

The government collects revenue from a labor income tax, payroll tax and carbon price,

and returns the revenue as lump sum transfers, unemployment benefits, and subsidy payments.

The government’s budget constraint is

(
τL + τP

)∑
j

njwjhj + τEe = T +
∑
i

uip
Cbi + syg.

31The derivations of Eqs. 20 and 21 are analogous to the derivations for a one-good framework in Shimer
(2010). They are therefore omitted here for the sake of conciseness.
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Finally, the market for each good clears implying

yj ≥ cj ⊥ pj ∀j, (22)

where ⊥ indicates complementarity between the market clearing condition and gross price pj .

4 Calibration

I calibrate the model to the U.S. economy in 2019. Some parameter values are based on the

literature and data sources (Section 4.1), while others are estimated using the search model

in the business as usual benchmark (Section 4.2). Table 2 summarizes the calibration.

Table 2: Calibration overview

Direct calibration

Quit rate π 0.037

Bargaining power of employer η 0.5

Matching elasticity γ 0.5

Discount rate β 0.997

Frisch elasticity of labor supply χ 1

Elasticity in the bottom consumption nest σfg 0.75

Elasticity in the top consumption nest σC 0.5

Labor income tax τL 0.29

Payroll tax τP 0.15

Benchmark calibration

Cross-type matching friction for firm j ∈ {f,g,z} ξj 0.58, 0.87, 1

Matching efficiency for firm j ∈ {f,g,z} µj 4.18, 3.87, 3.84

Labor productivity ζ 3.20

Disutility of work ψ 5.93

CES share of good r ∈ {f,g,z,fg} %r 0.73, 0.27, 0.93, 0.07

Unemployment benefits for worker i ∈ {f,g,z} bi 0.25, 0.27, 0.28

Emissions factor of fossil firms ε 0.0075

Note: The table lists the parameter values. The values are either based on the literature and data sources

(“Direct calibration”) or estimated using the search model in the benchmark.

4.1 Direct calibration

The average job separation rate in the U.S. was 3.7% in 2019 according to the Job Openings

and Labor Turnover Survey of the BLS.32 I set π equal to this value. The bargaining power

is split equally across firms and workers (η = 0.5), which is standard in the literature (see

e.g. Finkelstein Shapiro and Metcalf, 2023; Ljungqvist and Sargent, 2017; Mortensen and

Pissarides, 1999). Regarding the elasticity of matches with respect to unemployment γ,

Petrongolo and Pissarides (2001) recommend a value of 0.5−0.7 based on a literature review,

32Available at https://data.bls.gov/timeseries/JTS000000000000000TSR.
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while Hall (2005) and Shimer (2005) estimate values of 0.235 and 0.72 respectively using

survey data. I adopt a middle value of γ = 0.5, which is also the approach of Yedid-Levi

(2016) and Hafstead and Williams (2018).

The average real interest rate in the U.S. was 3.43% in 2019,33 which translates into a

monthly discount rate β of 1.0343−1/12 = 0.997. The Frisch elasticity of labor supply χ is

equalized to unity in line with Hall and Milgrom (2008). I set the elasticity of substitution

between the green-fossil composite and the neutral good σC to 0.5, which is a standard value

in aggregated CES consumption structures (see e.g. Landis, Fredriksson and Rausch, 2021).

The elasticity between the fossil and green good σfg is set to a higher level (0.75) in order

to reflect the larger switch in consumption from fossil to green goods as a result of climate

policy.

Tax data for the U.S. in 2019 were obtained from the OECD.34 The average marginal

rate of federal and state labor income taxes was 29%, while the average marginal payroll tax,

consisting of social security contributions of employers and workers, was 15%. I therefore set

τL = 0.29 and τP = 0.15.

4.2 Calibration using the benchmark

I make five assumptions in the benchmark. First, I set u = 5.9% to mirror the average

unemployment rate in the U.S. during 2000-2019.35 This implies n = 1−u = 94.1%. Second,

I distribute total employment n and total consumption C in proportion to the employment

shares in 2019 in Fig. 1. The green, fossil, and neutral employment shares are 1.8%, 4.9%, and

93.3% respectively. Third, without loss of generality, I normalize prices, total consumption,

and workers’ time endowment to unity. Fourth, I assume that one third of the time endowment

(i.e., eight hours per day) is spent working, meaning hj = 1/3. Fifth, I assume that the shares

of within-type matches correspond to the diagonal elements of Table 1. In particular, let ωj

denote the share of matches for firm j with workers of type j such that

ωj =
mjj∑
imij

. (23)

I set ωj equal to the diagonal elements of Table 1, such that ωf = 0.39, ωg = 0.14, and

ωz = 0.95. The values of ωj correspond to the share of workers starting job j that previously

had the same job i = j.

33See the World Bank at https://data.worldbank.org/indicator/FR.INR.RINR?view=chart.
34See “Table I.4. Marginal personal income tax and social security contribution rates on gross labour

income”, available at https://stats.oecd.org/index.aspx?DataSetCode=TABLE_I4#.
35See the Current Population Survey of the BLS, available at https://data.bls.gov/timeseries/

LNS14000000.
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4.2.1 Calibrating ξj

To estimate ξj , I first rearrange Eqs. 3 and 4 and substitute them into Eq. 23 to get36

ωj =
ujφjj
υjhjqj

∀j.

Substituting for φjj using Eq. 6 and then for µj using Eq. 5 gives

ωj =
uj

[
ξjθjθ

−γ + (1− ξj)θ1−γ
jj

]
υjhj

[
ξjθ−γ + (1− ξj)θ−γjj

] ∀j. (24)

In the steady state, Eq. 24 links ξj to the variables {uf, ug, uz} and to exogenous parameters.

To see why υj is exogenous, I first note that Silva and Toledo (2009) find that the cost

of recruiting one worker is approximately 4% of a quarterly wage. Assuming this cost is

borne in terms of hours, recruitment productivity qj = 1/( 1
3 × 3 × 0.04) = 25 by Eq. 3.

Since employment in the steady state is constant, Eqs. 7 and 9 imply that υj is determined

exogenously by υj = njπ/(qjhj).

To define the three unknowns {uf, ug, uz}, I recall that employment and unemployment

are constant in the steady state. Eqs. 14 and 15 therefore imply

uj =

∑
i uiφij∑
i φji

∀j,

which, using Eq. 6, can be rewritten as

uj =

∑
i uiµj

[
ξjθjθ

−γ + (1− ξj)θ1−γ
ij δij

]
∑
i µi

[
ξiθiθ−γ + (1− ξi)θ1−γ

ji δij

] ∀j. (25)

Eqs. 24 and 25 contain two unknowns (ξj and uj) in the benchmark.37 Solving for ξj and uj

using both equations gives

ξj =


0.58 for j = f,

0.87 for j = g,

1 for j = z, 38

uj =


0.002 for j = f,

0.001 for j = g,

0.056 for j = z.

36No empirically-based estimate exists, to my knowledge, for ξj . Most studies implicitly assume zero cross-
type matching (ξj = 0, whereby Eq. 2 reduces to a Cobb-Douglas function of firm j’s recruitment effort and
the number of unemployed workers of type j) or frictionless cross-type matching (ξj = 1). Values in between
are scarce. Hafstead and Williams (2018) conduct a sensitivity analysis on ξj , but do not take a stance on
the empirical value.

37Note that µj is determined by ξj and {uf, ug, uz} by Eq. 5.
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The high values of ξj for neutral and green firms imply that they can easily match with outside

workers. This is especially the case for neutral firms, as they face no matching friction with

outside workers. Fossil firms, on the other hand, face some friction due to a smaller ξj . While

this restricts the ability of neutral and green workers to obtain fossil jobs, the overall degree of

labor mobility in the model is high. Turning to the values of uj , we see that most unemployed

workers in the benchmark are of the neutral type. This largely stems from the prevalence of

these workers.

4.2.2 Calibrating the remaining parameters

The matching efficiency µj is pinned down by rearranging Eq. 5 to µj = qj/(ξjθ
−γ + (1 −

ξj)θ
−γ
jj ). Labor productivity ζ is obtained by rearranging Eq. 1 to ζ = yg/(lghg) and setting

yg = ng, lg = ng − υg, and hg = 1/3.39 I pin down the disutility of work ψ by the hour

bargaining condition in Eq. 20. The CES consumption shares %r are obtained from Eqs. 12

and 11. Similarly to Hafstead and Williams (2018), unemployment benefits bi are endoge-

nously determined by the wage bargaining condition in Eq. 21. I get bf = 0.25, bg = 0.27 and

bz = 0.28.40 The values imply replacement rates of 38%, 41%, and 42% for fossil, green, and

neutral workers respectively. These are similar to the 41% in Hafstead and Williams (2018)

and lie in between the 25% and 50% in Hall and Milgrom (2008) and Finkelstein Shapiro and

Metcalf (2023) respectively.

The emissions factor ε is parametrized using a similar procedure as in Hafstead and

Williams (2018). First, I note that total personal consumption expenditure in the U.S. was

$14.4 trillion in 2019,41 while carbon dioxide emissions were 5.262 billion tons.42 The emis-

sions per dollar of consumption were therefore 0.0004 tCO2. Second, I adjust this number for

the fact that only fossil firms emit in my model. Consumption of the fossil good accounts for

38I restrict ξj to a maximum value of 1 as this represents an extreme whereby matching does not depend
on a worker’s employment history.

39I pin down ζ using j = g. The choice of firm type is arbitrary since yj/lj and 1/hj are identical across
firm types in the benchmark.

40 In contrast to Hafstead and Williams (2018), my unemployment benefits vary across workers because of
the firm-specific ξj . This implies different fundamental surplus ratios (0.12, 0.09, 0.08) for the fossil, green,
and neutral types respectively. As shown by Ljungqvist and Sargent (2017), the fundamental surplus ratio
determines the magnitude of the employment change from a productivity shock. A lower fundamental surplus
ratio implies larger employment changes from climate policy, while a higher ratio implies smaller changes. The

ratio is defined as
ŷnj−Ẑj
ŷnj

where ŷnj is the after-tax marginal product of labor 1−τL
1+τP

pyj ζhj and Ẑj is the flow

value of unemployment, equal to the value of leisure plus unemployment benefits
ψχh

1+ 1
χ

j

λ(1+χ)
+ pCbj . I examine

the implications of varying the unemployment benefits (and the fundamental surplus ratios) in Section 5.5.
41See “Table 2.3.5U.” under “Section 2 Personal Consumption Expenditures”, available from the Bureau

of Economic Analysis at https://apps.bea.gov/iTable/?isuri=1&reqid=19&step=4&categories=flatfiles&
nipa_table_list=1.

42See the “Inventory of U.S. Greenhouse Gas Emissions and Sinks”, available from the EPA at https:

//www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks.
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4.9% of total consumption (that equals one) in the initial steady state, meaning the emissions

factor of fossil firms is 0.0075 tCO2 per unit of output.

5 Numerical analysis

This section presents the labor market outcomes from a green subsidy and a carbon price.

Section 5.1 assumes the government finances the subsidy and recycles the carbon pricing

revenue in a non-distortionary manner. Section 5.2 relaxes this assumption. Section 5.3 looks

at the effects of changing the level of preexisting distortions in the economy. Section 5.4

depicts welfare outcomes. Section 5.5 presents a sensitivity analysis. The abatement level is

fixed throughout unless stated otherwise. It is set such that the 10-year subsidy expenditure

in Section 5.1 equals $781 billion, which is the estimated size of the IRA tax credits in the

main scenario of Bistline, Mehrotra and Wolfram (2023).43

5.1 Climate policy with lump sum taxes

5.1.1 Total employment impact

Fig. 4 shows the change in employment from a subsidy and a carbon price when the gov-

ernment balances its budget with lump sum (LS) taxes.44 A subsidy increases steady state

employment by 0.10 percentage points. A carbon price, in contrast, reduces it by 0.03 per-

centage points. A subsidy therefore outperforms a carbon price and generates employment

gains when financed in a non-distortionary manner.

5.1.2 Impact by job type

5.1.2.1 Subsidy

To see why a green subsidy reduces unemployment, Panel (a) of Fig. 5 decomposes the

employment change by job type. Two key insights emerge from the figure.

First, a green subsidy increases the number of green jobs and reduces the number of fossil

and neutral jobs. The subsidy switches consumption demand to green goods by making them

cheaper. Green firms respond to the higher demand by hiring more workers and creating

green jobs in the process. Firms producing fossil and neutral goods, in contrast, reduce their

recruitment because their goods become comparatively more expensive. This reduces the

number of fossil and neutral jobs.

43This reduces steady state emissions by 1.7%. The sensitivity analysis in Section 5.5 increases the abate-
ment level.

44The lump sum taxes are negative (i.e., equivalent to a transfer) for a carbon price.
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Figure 4: Employment change from a green subsidy and carbon price with lump sum taxes
and transfers

Note: The figure shows the employment change from a green subsidy financed by lump sum (LS) taxes and

from a carbon price with transfer recycling. The employment change is given in percentage points relative to

the benchmark.
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Figure 5: Employment change by job type from a green subsidy and carbon price

Note: The figure shows the change in the number of green, fossil, and neutral jobs (in percentage points

relative to the benchmark) from a green subsidy financed by lump sum taxes (Panel (a)) and a carbon price

with transfer recycling (Panel (b)).

Table 3 shows these effects. A subsidy reduces the relative price of the green good. Green

firms respond by increasing (steady state) output, hiring more recruiters, and expanding

recruitment.45 Other firms, in contrast, reduce output and recruitment relative to green

firms.46

45Green firms reduce output immediately after the subsidy is introduced. The reason is that they switch
some workers from production to recruitment. Table 3 shows that the number of recruiters at green firms
expand by 345% immediately after the subsidy is introduced. In the steady state, green firms increase both
output and the number of recruiters.

46Table 3 shows that neutral firms hire more recruiters. Neutral recruitment contracts, however, because
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Second, the green subsidy produces disproportionately large green jobs gains. The gains

outweigh the job losses elsewhere in the economy, which explains why unemployment falls.

The green job gains are so large because a subsidy increases the return on hiring workers for

green firms without introducing additional distortions. The last column of Table 3 shows that

the value of hiring a worker increases by 97% for green firms immediately after the subsidy is

introduced. The subsidy means a green worker generates pg + s as opposed to pg per unit of

output. Green firms take advantage of this by hiring more workers, which creates green jobs.

Meanwhile, the subsidy is financed by lump sum taxes that do not distort firms’ recruitment

decisions. The green subsidy therefore counteracts green firms’ recruitment costs (stemming

from search frictions and preexisting payroll taxes) without distorting recruitment. This leads

to net job gains.

Table 3: Changes from a green subsidy by firm and time period (in % vs. benchmark)

Gross Recruiting Match
Time price Output Recruiters productivity Recruitment value

Firm period pj yj υj qj υjqjhj Jnj

Green
t = 0 0 -4.3 345 -8.6 356.7 97

SS 0 19.8 21.6 -1.9 19.5 33

Fossil
t = 0 15.1 -13.9 -21.0 3.5 -18.7 9

SS 30.1 -1.7 -0.2 -1.9 -1.9 33

Neutral
t = 0 15.9 -13.4 -2.5 -1.9 -4.3 17

SS 30.1 0.0 1.5 -1.9 -0.2 33

Note: The table shows the impact of a lump sum tax-financed green subsidy on various outcomes by firm and

time period, where the time periods are the first period (t = 0) and the steady state (SS). The impacts are

given in percent relative to the benchmark. The gross price of the green good does not change as it is the

numeraire.

5.1.2.2 Carbon price

Panel (b) of Fig. 5 displays the impact of a carbon price on each job type. Two points stand

out with respect to how the carbon price compares to the subsidy.

First, the two instruments have opposite effects on the number of neutral jobs. A subsidy

decreases neutral employment while a carbon price increases it slightly. The discrepancy

stems from how the instruments affect the neutral good’s price. A subsidy makes the neutral

good more expensive relative to an average consumption basket, which reduces recruitment of

neutral firms.47 A carbon price, conversely, makes the neutral good relatively cheaper (Table

4) and increases recruitment of neutral firms.

recruitment productivity declines from a tighter labor market (stemming from the green subsidy increasing
economy-wide employment).

47Changes in recruitment qjυjhj equal changes in employment nj .
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Table 4: Changes from a carbon price by firm and time period (in % vs. benchmark)

Gross Recruiting Match
Time price Output Recruiters productivity Recruitment value

Firm period pj yj υj qj υjqjhj Jnj

Green
t = 0 0 0.3 7.4 0.0 7.6 1

SS 0 0.5 0.0 0.6 0.6 -1

Fossil
t = 0 1.7 -0.9 -21 5.1 -17.9 -9

SS 3.0 -1.7 -2.2 0.6 -1.6 -1

Neutral
t = 0 -0.2 0.1 0.0 0.5 0.4 -1

SS 0.0 0.0 -0.5 0.6 0.0 -1

Note: The table shows the impact of a carbon price with transfer recycling on various outcomes by firm and

time period, where the time periods are the first period (t = 0) and the steady state (SS). The impacts are

given in percent relative to the benchmark. The gross price of the green good does not change as it is the

numeraire.

Second, a subsidy produces much larger green employment gains compared to a carbon

price. A subsidy, when financed in a non-distortionary manner, reduces hiring costs for green

firms and increases their recruitment. A carbon price, in contrast, does not reduce hiring costs

when the carbon pricing revenue is recycled in a lump sum fashion. Fig. 5 therefore highlights

a key advantage of a subsidy financed by lump sum taxes, namely that it counteracts search

frictions and preexisting distortions for green firms by making it cheaper for them to recruit

workers.

The previous paragraph touches on an important issue, namely that the performance of

subsidies and carbon pricing depends on how distortionary they are. I have assumed until

now that the government finances subsidies and recycles carbon revenue in a non-distortionary

manner. This assumption might be unrealistic since governments in practice use distortionary

labor taxes. If such taxes are used to finance subsides and recycle carbon revenue, the climate

policy instruments might perform differently. I turn to this issue next.

5.2 Climate policy with labor taxes

The black lines in Fig. 6 show the employment impact of a subsidy given different financing

methods. The solid black line is the same as in Fig. 4 and represents a situation in which the

government finances a subsidy with lump sum taxes. Employment increases in this case. The

dashed black line depicts the employment change if the government instead increases payroll

taxes to finance the subsidy. The job gains thereby disappear and employment falls. The

choice of financing mechanism therefore has a considerable impact on employment.

The financing mechanism affects a subsidy’s relative performance to a carbon price. Fig. 6

shows that while a subsidy outperforms a carbon price when financed by lump sum taxes, the
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inverse is true when payroll taxes are used for financing and revenue recycling. An implication

is that subsidies are especially advantageous when lump sum taxes are available. If this is not

the case, Fig. 6 suggests that a carbon price generates more favorable employment outcomes.
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Figure 6: Employment change from a green subsidy and carbon price by financing or recy-
cling mechanism

Note: The figure shows the change in employment from various instruments. The instruments are a green

subsidy financed by lump sum taxes, a green subsidy financed by payroll taxes, a carbon price with transfer

recycling, and a carbon price with payroll tax recycling. The employment change is given in percentage points

relative to the benchmark.

Fig. 7 decomposes the employment change from a subsidy by job type and financing

mechanism.48 A subsidy increases the number of green jobs, irrespective of the financing

mechanism. However, the increase is smaller when the subsidy is paid for by payroll taxes.

The reason is twofold. First, higher payroll taxes increase distortions for green firms by making

it costlier to hire workers. This reduces green output and recruitment relative to a subsidy

financed by lump sum taxes.49 Second, a payroll tax-financed subsidy offsets distortions for

green firms by less because it induces a lower subsidy rate.50 The subsidy rate is lower because

each dollar in subsidy payments increases production costs for fossil firms (from the higher

payroll taxes). Their output, and consequently emissions, therefore contract by more for a

given subsidy level when payroll taxes finance the subsidy. The lower subsidy rate further

slows down recruitment of green firms and contributes to the smaller green job gains.51

48Fig. D.12 in Appendix D performs an analogous decomposition for a carbon price.
49Output of green firms increases by 19.8% if a subsidy is financed by lump sum taxes, but only by 15.9%

if a subsidy is financed by payroll taxes.
50The subsidy decreases from 30 to 25 cents per dollar of green output when switching from lump sum to

payroll taxes.
51While switching from lump sum to payroll taxes decreases green and neutral employment in Fig. 7, it

increases fossil employment slightly. The payroll taxes decrease green recruitment which reduces the reallo-
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Figure 7: Employment change from a green subsidy by job type and financing mechanism

Note: The figure shows the change in employment, by job type, from a green subsidy financed by either lump

sum taxes (“LS tax”) or payroll taxes. The employment change is given in percentage points relative to the

benchmark.

A take-away from the above is that the financing mechanism matters because it influences

the level of distortion in the labor market. A question is whether the discrepancy across

financing mechanisms changes with the degree of preexisting distortions. I investigate this

issue in the following section.

5.3 Preexisting distortions

Fig. 8 shows the employment impact of a subsidy given various financing mechanisms and

benchmark labor tax rates. A higher level of preexisting distortions (represented by a 50%

increase in τP and τL in the benchmark) has heterogeneous effects across financing mecha-

nisms. Employment is lower if the subsidy is financed by payroll taxes but unchanged if lump

sum taxes are used. Financing a subsidy via payroll taxes is therefore less attractive if the

labor market is already distorted. This is also true relative to a carbon price. Fig. 9 shows

that the carbon price is less affected by the level of preexisting distortions. The employment

losses from a payroll tax-financed subsidy therefore grow relative to a carbon price when the

labor market is initially more distorted.

A subsidy financed by payroll taxes performs worse in the presence of high preexisting

distortions because the distortions dampen economic activity and erode the tax base. To

cation of fossil workers to green jobs. This offsets the fossil employment losses from the payroll taxes and
explains why the number of fossil jobs increases.
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finance a given subsidy level, payroll taxes thereby need to increase by a larger amount.

The higher payroll taxes increase labor costs, reduce recruitment, and ultimately decrease

employment.
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Figure 8: Employment change from a green subsidy by financing mechanism and benchmark
tax rates

Note: The figure shows the employment change from a green subsidy financed by lump sum taxes (“LS tax”)

or payroll taxes for various scenarios. The scenarios are “Baseline” (where the labor income tax τL equals

0.29 and the payroll tax τP equals 0.15 in the benchmark) and a scenario where τL and τP are 50% higher

in the benchmark. The employment change is given in percentage points relative to the benchmark.
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Figure 9: Employment change from a carbon price by recycling mechanism and benchmark
tax rates

Note: The figure shows the employment change from a carbon price with transfer or payroll tax recycling for

various scenarios. The scenarios are “Baseline” (where the labor income tax τL equals 0.29 and the payroll

tax τP equals 0.15 in the benchmark) and a scenario where τL and τP are 50% higher in the benchmark.

The employment change is given in percentage points relative to the benchmark.
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5.4 Welfare

Welfare corresponds to the discounted lifetime utility of the representative household. The

household’s utility in a given period is

log
(
C
)
−
∑
j

nj
ψχ

1 + χ
h

1+ 1
χ

j .

I measure welfare changes using the equivalent variation. The equivalent variation is the

change in benchmark consumption, evaluated at benchmark prices, that gives the same utility

as after a policy is implemented. When calculating the equivalent variation, I hold employ-

ment nj and hours worked hj fixed at their benchmark levels. This is in line with Hafstead

and Williams (2018) and is done because workers do not directly control either variable. nj is

determined by firms and hj results from a bargaining process. Holding nj and hj fixed means

welfare changes stem solely from changes in consumption.

Table 5 reports the welfare change by policy instrument for different levels of preexisting

distortions. A subsidy financed by lump sum taxes increases welfare by 0.26% and performs

better than a carbon tax. Financing a subsidy by payroll taxes, in contrast, gives welfare

losses that exceed those from a carbon tax with payroll tax recycling. Having access to a

non-distortionary financing mechanism is especially valuable if the labor market is initially

distorted. Table 5 shows that such a mechanism is unaffected by the preexisting distortion

level, while a distortionary mechanism performs worse when initial distortions are high.

Table 5: Welfare change in % by policy instrument and initial distortion level

Initial distortion Subsidy + Subsidy + Carbon price + Carbon price +
level LS tax Payroll tax Transfer Payroll tax

Baseline 0.26 -0.06 -0.09 -0.00

50% higher τL, τP 0.26 -0.09 -0.15 -0.01

Note: The table shows policy-induced welfare changes for different levels of initial distortions. The policy

instruments are a green subsidy financed by lump sum taxes, a green subsidy financed by payroll taxes, a

carbon price with transfer recycling, and a carbon price with payroll tax recycling. The initial distortion

levels are “Baseline” (where the labor income tax τL equals 0.29 and the payroll tax τP equals 0.15 in the

benchmark) and a scenario where τL and τP are 50% higher in the benchmark. The welfare changes are given

in percent relative to the benchmark.
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5.5 Sensitivity analysis

5.5.1 Employment outcomes

This section looks at how the employment outcomes vary with key parameters. The analysis

is carried out by recalibrating the disutility of work ψ and unemployment benefits bi in

the benchmark. Table 6 presents the results. The qualitative effects are robust. A non-

distortionary subsidy always produces employment gains.52 Using a distortionary financing

mechanism, in contrast, increases unemployment. A carbon price produces employment losses

irrespective of the recycling mechanism. The losses are smaller when the revenue is recycled

via lower payroll taxes.

Table 6: Employment change by policy instrument and parameter (in percentage points
relative to the benchmark)

Subsidy + Subsidy + Carbon price + Carbon price +
LS tax Payroll tax Transfer Payroll tax

Baseline 0.104 -0.014 -0.034 -0.001

qj up by 50% 0.155 -0.025 -0.050 -0.002

qj down by 50% 0.048 -0.005 -0.016 -0.001

η = 0.7 0.226 -0.050 -0.072 -0.003

η = 0.3 0.041 -0.004 -0.014 -0.001

γ = 0.75 0.052 -0.006 -0.017 -0.001

γ = 0.25 0.155 -0.024 -0.049 -0.003

χ = 2 0.078 -0.009 -0.024 -0.001

χ = 0.5 0.121 -0.019 -0.041 -0.002

σfg = 0.9 0.065 -0.007 -0.032 -0.001

σfg = 0.6 0.253 -0.047 -0.036 -0.002

σC = 0.6 0.166 -0.030 -0.030 -0.001

σC = 0.4 0.075 -0.008 -0.038 -0.002

13% abatement 0.840 -1.252 -0.301 -0.046

Note: The table shows the employment change, by sensitivity test, from various instruments. The instruments

are a green subsidy financed by lump sum taxes, a green subsidy financed by payroll taxes, a carbon price

with transfer recycling, and a carbon price with payroll tax recycling. The employment change is given in

percentage points relative to the benchmark.

Looking at the subsidy outcomes in Table 6, we see that changing recruitment produc-

tivity qj in the benchmark has an uneven impact across financing mechanisms. A higher qj

means a unit of recruitment effort υjhj generates more matches. A subsidy financed by non-

distortionary taxes increases recruitment effort (see Table 7) and therefore generates more

matches when qj is high. The opposite occurs if a subsidy is financed by payroll taxes. Re-

cruitment effort then decreases (Table 7), meaning a higher qj result in fewer matches and

more unemployment.

52I refer to a subsidy financed by lump sum taxes as “non-distortionary” and a subsidy financed by payroll
taxes as “distortionary” in this section. To be sure, both subsidies distort. However, only the latter’s financing
mechanism distorts recruitment decisions.
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A higher bargaining power of firms η increases the flow value of unemployment and re-

duces the fundamental surplus ratio.53,54 A small fundamental surplus ratio means that a

productivity shock has a large percentage impact on profits because profits are initially small

(Ljungqvist and Sargent, 2017). There is consequently a strong incentive to adjust recruit-

ment in response to a productivity shock. The shock is positive in the context of a non-

distortionary subsidy, meaning the recruitment and employment gains grow. Conversely, the

shock is negative for a distortionary subsidy, meaning employment declines by more.

A higher elasticity of matching with respect to unemployment γ reduces the matching

efficiency µj .
55 The lower µj reduces the number of matches from a unit of recruitment

effort. This weakens the employment gains from a non-distortionary subsidy. On the other

hand, the number of matches from a distortionary subsidy falls by less, which reduces the

employment losses from such a subsidy.

Increasing the labor supply elasticity χ makes workers react more on the intensive margin

to wage changes. For the case of a non-distortionary subsidy, the wage change is positive,

meaning hours increase (Table 7). This crowds out labor supply on the extensive margin and

reduces the employment gains. For the case of a distortionary subsidy, the wage change is

negative. Hours therefore decrease (Table 7) and labor supply on the extensive margin rises.

A higher elasticity of substitution between the fossil and green good σfg decreases the

required subsidy rate (Table 7). This weakens the magnitude of the employment effects.

Increasing the elasticity of substitution between the fossil-green composite and the neutral

good σC amplifies the employment outcomes from a subsidy. A higher σC induces more

consumption substitution from the neutral to the cheaper green good. More workers flow

from neutral to green jobs in response to the substitution, which crowds out some of the

reallocation of fossil workers to green jobs. A higher subsidy rate is required to counterbalance

this crowding out effect (Table 7). The higher subsidy is beneficial in the context of a non-

distortionary subsidy since employment increases to a larger extent. In contrast, payroll taxes

must increase to cover a higher distortionary subsidy, which exacerbates the employment

losses.

53The relationship between η and the flow value of unemployment in my analysis is similar to Hagedorn
and Manovskii (2008). They find empirical evidence of small profits and only moderately procyclical wages.
They argue that the latter indicates a high bargaining power of firms, which, together with small profits, imply
that the flow value of unemployment is high. The same relationship is evident in my benchmark calibration.
A higher value of η raises the flow value of unemployment because unemployment benefits bi increase. The
larger flow value of unemployment, in turn, reduces the fundamental surplus ratio.

54As shown in Table D.1 in Appendix D, a higher η increases the average flow value of unemployment in
the benchmark from 0.61 to 0.63, and reduces the average fundamental surplus ratio in the benchmark from
0.08 to 0.04.

55This can be seen by rearranging Eq. 5 to µj = qj/(ξjθ
−γ + (1− ξj)θ−γjj ).
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Table 7: Subsidy rate and change in recruitment effort and hours from a green subsidy by
financing mechanism and parameter value

% change in % change in
recruitment effort hours∑

j υjhjnj∑
j nj

∑
j hjnj∑
j nj

Subsidy s

LS Payroll LS Payroll LS Payroll

Baseline 1.74 -0.48 0.198 -0.014 0.30 0.25

qj up by 50% 2.76 -0.69 0.175 -0.015 0.31 0.24

qj down by 50% 0.66 -0.32 0.223 -0.014 0.30 0.25

η = 0.7 4.19 -1.17 0.148 -0.017 0.31 0.24

η = 0.3 0.51 -0.30 0.224 -0.014 0.29 0.25

γ = 0.75 2.65 -0.55 0.223 -0.014 0.30 0.25

γ = 0.25 0.84 -0.38 0.173 -0.014 0.31 0.24

χ = 2 1.23 -0.39 0.293 -0.020 0.31 0.25

χ = 0.5 2.09 -0.59 0.121 -0.010 0.29 0.25

σfg = 0.9 1.08 -0.28 0.120 -0.007 0.17 0.15

σfg = 0.6 4.21 -1.36 0.551 -0.050 1.01 0.57

σC = 0.6 2.71 -0.95 0.339 -0.031 0.53 0.37

σC = 0.4 1.29 -0.28 0.139 -0.008 0.21 0.18

13% abatement 12.03 -21.93 3.298 -0.934 8.16 3.55

Note: The table shows the change in various outcomes, by sensitivity test, from a green subsidy financed by

either lump sum taxes (“LS”) or payroll taxes (“Payroll”). The change in recruitment effort and hours is

reported as the percentage change in the steady state values relative to the benchmark. The subsidy rate is

given in dollars per dollar of green output.

The baseline assumes an abatement target of 1.7%. This is lower compared to estimated

emissions reductions from the IRA (Larsen et al., 2022; Bistline et al., 2023; Bistline, Mehrotra

and Wolfram, 2023; Voigts and Paret, 2024) that range from 7%-13% of 2019 emissions by

2030.56 I adopt the upper bound of this range by setting the emissions reduction target to

13%. This amplifies the magnitude of the employment changes but leaves the signs unchanged.

Finally, I vary ξj to consider the role of frictions associated with cross-type matching.

Fig. 10 shows the employment impact of a non-distortionary subsidy for different values of

ξj . Changing the parameter has little impact on the steady state, as employment converges

to the same level. The speed of convergence, however, varies. A small value of ξj slows down

convergence and a sufficiently small value can even eliminate the employment gains in the

short run. A low value of of ξj means firms face friction when matching with workers of a

different type. The friction increases the time it takes for firms to adjust hiring and reach

their steady state recruitment level. Thus, while ξj has little effect on the steady state, it

impacts the subsidy’s performance during the transition.57 Fig. 10 in Appendix D shows that

56The emissions reduction estimates in the literature are given relative to 2005 levels. I express the es-
timates relative to 2019 levels by converting them using historical emissions data from the “Inventory of
U.S. Greenhouse Gas Emissions and Sinks”, available from the EPA at https://www.epa.gov/ghgemissions/

inventory-us-greenhouse-gas-emissions-and-sinks.
57This result is analogous to that for a carbon price in Hafstead and Williams (2018).
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the same is true for a subsidy financed by payroll taxes.
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Figure 10: Employment change from a lump sum tax-financed green subsidy by value of ξj
Note: The figure shows the employment change, by value of ξj , from a green subsidy financed by lump sum

taxes. “Baseline” assumes the values of ξj in Table 2. The employment change is given in percentage points

relative to the benchmark.

5.5.2 Welfare outcomes

This section looks at how welfare outcomes change with the parameters. Table 8 shows

that the qualitative insights from the baseline specification are generally robust to different

parameter values. A subsidy financed by payroll taxes always generates welfare losses that

exceed those from a carbon tax with payroll tax recycling. A subsidy financed by lump sum

taxes increases welfare and outperforms a carbon price in most cases. The only exception is

when the abatement target increases to 13%. The subsidy results in welfare losses then and

no longer outperforms a carbon tax with payroll tax recycling. A higher abatement target

increases the subsidy rate which shifts more consumption towards the green good.58 Beyond

a certain threshold, too much consumption is shifted, which reduces welfare. Fig. D.14

in Appendix D shows that the welfare change is positive for abatement targets below 11%,

but negative for higher targets. A subsidy financed in a non-distortionary manner therefore

performs best for low abatement levels.

58Changing the abatement target from 1.7% to 13% increases the subsidy rate from 0.3 dollars to 8.16
dollars (Table 7).
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Table 8: Welfare change by policy instrument and parameter (in percent relative to the
benchmark)

Subsidy + Subsidy + Carbon price + Carbon price +
LS tax Payroll tax Transfer Payroll tax

Baseline 0.257 -0.058 -0.090 -0.003

qj up by 50% 0.287 -0.070 -0.098 -0.004

qj down by 50% 0.226 -0.049 -0.081 -0.003

η = 0.7 0.323 -0.095 -0.108 -0.005

η = 0.3 0.223 -0.048 -0.081 -0.003

γ = 0.75 0.225 -0.050 -0.081 -0.002

γ = 0.25 0.289 -0.069 -0.099 -0.005

χ = 2 0.325 -0.059 -0.105 -0.003

χ = 0.5 0.199 -0.059 -0.077 -0.003

σfg = 0.9 0.165 -0.029 -0.084 -0.003

σfg = 0.6 0.541 -0.201 -0.097 -0.003

σC = 0.6 0.382 -0.127 -0.080 -0.003

σC = 0.4 0.192 -0.032 -0.102 -0.004

13% abatement -0.325 -3.896 -0.809 -0.169

Note: The table shows the welfare change, by sensitivity test, from various instruments. The instruments

are a green subsidy financed by lump sum taxes, a green subsidy financed by payroll taxes, a carbon price

with transfer recycling, and a carbon price with payroll tax recycling. The welfare change is given in percent

relative to the benchmark.

6 Conclusion

This paper examines the effects of green subsidies on the labor market and welfare. I develop a

general equilibrium search model to analyze how green subsidies impact the number of green,

fossil, and neutral jobs. I underpin the analysis with empirical evidence on the distribution

of jobs and job transitions in the U.S.

The empirical analysis suggests that green jobs in the U.S. have become more prevalent,

while the number of fossil jobs has decreased. Green and fossil jobs account for a small

fraction of overall employment. The majority of jobs are neutral and not directly affected by

green subsidies and carbon pricing. With regard to job transitions, the data shows that fossil

workers rarely move to a green job. They are instead more likely to start a neutral job. I

furthermore estimate the distribution of hires by job type and use it to calibrate the degree

of friction associated with cross-type matching in the search model. The level of friction is

generally low, which implies a high degree of labor mobility in the model.

In the numerical analysis, I find that green subsidies reduce unemployment if they are paid

for in a non-distortionary manner. The subsidies in this case generate higher employment

and, for low abatement levels, higher welfare compared to a carbon price. However, if a non-

distortionary mechanism is unavailable and instead replaced by distortionary labor taxes, a

subsidy increases unemployment and performs worse compared to a carbon price. The choice
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of financing mechanism is therefore an important determinant of a subsidy’s performance.

Finally, the preexisting level of distortion can impact outcomes from green subsidies. The

impact depends on the financing mechanism. A subsidy paid for by non-distortionary taxes

is unaffected by the level of distortion, while a subsidy financed by labor taxes generates

larger employment losses if preexisting distortions are high. Financing a subsidy with lump

sum, as opposed to labor, taxes is thus especially advantageous if the labor market is already

distorted.
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Appendix A: Occupations

Table A.1: 2018 Census codes with a one-to-many mapping to SOC

SOC
Census SOC share
code Census title code SOC title in SIPP

0335 Entertainment and 11-9199 Managers, All Other 1
Recreation Managers 11-9071 Gaming Managers 0

0705 Project 11-9199 Managers, All Other 0.77
Management 15-1199 Computer Occupations, All Other 0.16
Specialists 13-1199 Business Operations Specialists, 0.06

All Other

0960 Other Financial 13-2051 Financial Analysts 0.88
Specialists 13-2099 Financial Specialists, All Other 0.12

1022 Software Quality 15-113X Software Developers, Applications 0.67
Assurance Analysts and Systems Software
and Testers 15-1199 Computer Occupations, All Other 0.33

1032 Web and Digital 15-1199 Computer Occupations, All Other 0.73
Interface Designers 15-1134 Web Developers 0.27

1065 Database Administ- 15-1199 Computer Occupations, All Other 0.86
rators and Architects 15-1141 Database Administrators 0.14

1108 Computer Occup- 15-1199 Computer Occupations, All Other 0.94
ations, All Other 43-9011 Computer Operators 0.06

1555 Other Engineering 17-3020 Engineering Technicians, 1
Technologists and Except Drafters
Technicians, Except 55-3010 Military Enlisted Tactical 0
Drafters Operations and Air/Weapons

Specialists and Crew Members

1935 Environmental Science 19-4090 Miscellaneous Life, Physical, 0.98
and Geoscience and Social Science Technicians
Technicians 19-4041 Geological and Petroleum Technicians 0.02

2435 Librarians and Media 25-90XX Other Education, Training, and 0.52
Collections Specialists Library Workers

25-4021 Librarians 0.48

2545 Teaching Assistants 25-1000 Postsecondary Teachers 0.63
25-9041 Teacher Assistants 0.37

2865 Media and 27-3090 Miscellaneous Media and 0.7
Communication Communication Workers
Workers, All Other 27-3010 Announcers 0.3

2905 Broadcast, Sound, 27-4010 Broadcast and Sound Engineering 1
and Lighting Technicians and Radio Operators
Technicians 27-4099 Media and Communication 0

Equipment Workers, All Other
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Table A.1: 2018 Census codes with a one-to-many mapping to SOC (continued)

SOC
Census SOC share
code Census title code SOC title in SIPP

3545 Miscellaneous 29-2050 Health Practitioner Support 0.86
Health Technologists and Technicians
Technologists 29-2090 Miscellaneous Health Technologists 0.14
and Technicians and Technicians

3550 Other Healthcare 29-2071 Medical Records and Health 0.69
Practitioners and Information Technicians
Technical 29-9000 Other Healthcare Practitioners 0.31
Occupations and Technical Occupations

3870 Police Officers 33-3051 Police and Sheriff’s Patrol Officers 1
33-3052 Transit and Railroad Police 0

4055 Fast Food and 35-3021 Combined Food Preparation and 0.67
Counter Workers Serving Workers, Including Fast Food

35-3022 Counter Attendants, Cafeteria, 0.33
Food Concession, and Coffee Shop

4330 Supervisors of 39-1021 First-Line Supervisors of Personal 0.86
Personal Care and Service Workers
Service Workers 39-1010 First-Line Supervisors of 0.14

Gaming Workers

4435 Other Entertainment 39-3090 Miscellaneous Entertainment 1
Attendants and Attendants and Related Workers
Related Workers 39-3021 Motion Picture Projectionists 0

4461 Embalmers, Crematory 39-9099 Personal Care and Service 0.86
Operators and Workers, All Other
Funeral Attendants 39-40XX Embalmers and Funeral Attendants 0.14

5040 Communications 27-4010 Broadcast and Sound Engineering 1
Equipment Technicians and Radio Operators
Operators, All 43-2099 Communications Equipment 0
Other Operators, All Other

6115 Fishing and 45-3011 Fishers and Related Fishing Workers 1
Hunting Workers 45-3021 Hunters and Trappers 0

6305 Construction 47-2073 Operating Engineers and Other 0.98
Equipment Construction Equipment Operators
Operators 47-2071 Paving, Surfacing, and Tamping 0.02

Equipment Operators
47-2072 Pile-Driver Operators 0

6410 Painters and 47-2141 Painters, Construction and 1
Paperhangers Maintenance

47-2142 Paperhangers 0

6850 Underground 47-5040 Mining Machine Operators 0.54
Mining 53-7030 Dredge, Excavating, and Loading 0.46
Machine Machine Operators
Operators 47-5061 Roof Bolters, Mining 0

53-7111 Mine Shuttle Car Operators 0
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Table A.1: 2018 Census codes with a one-to-many mapping to SOC (continued)

SOC
Census SOC share
code Census title code SOC title in SIPP

6950 Other 47-50XX Other Extraction Workers 0.53
Extraction 47-5040 Mining Machine Operators 0.47
Workers 47-5081 Helpers–Extraction Workers 0

7640 Other Installation, 49-909X Other Installation, Maintenance, 1
Maintenance, and and Repair Workers
Repair Workers 49-9097 Signal and Track Switch Repairers 0

7905 Computer Numerically 51-9199 Production Workers, All Other 0.89
Controlled Tool Operators 51-4010 Computer Control 0.11
and Programmers Programmers and Operators

7925 Forming Machine 51-4021 Extruding and Drawing Machine 0.81
Setters, Operators, Setters, Operators, and Tenders,
and Tenders, Metal and Plastic
Metal and Plastic 51-4022 Forging Machine Setters, Operators, 0.12

and Tenders, Metal and Plastic
51-4023 Rolling Machine Setters, Operators, 0.07

and Tenders, Metal and Plastic

8025 Other Machine 51-4032 Drilling and Boring Machine NA†

Tool Setters, Tool Setters, Operators, and
Operators, and Tenders, Metal and Plastic
Tenders, Metal 51-4034 Lathe and Turning Machine NA†

and Plastic Tool Setters, Operators, and
Tenders, Metal and Plastic

51-4035 Milling and Planing Machine NA†

Setters, Operators, and
Tenders, Metal and Plastic

8225 Other Metal 51-4199 Metal Workers and Plastic 1
Workers and Workers, All Other
Plastic Workers 51-4081 Multiple Machine Tool Setters, 0

Operators, and Tenders, Metal
and Plastic

51-4191 Heat Treating Equipment Setters, 0
Operators, and Tenders, Metal
and Plastic

51-4192 Layout Workers, Metal and Plastic 0
51-4193 Plating and Coating Machine 0

Setters, Operators, and Tenders,
Metal and Plastic

51-4194 Tool Grinders, Filers, and Sharpeners 0

8365 Textile Machine 51-6064 Textile Winding, Twisting, and 0.74
Setters, Operators, Drawing Out Machine Setters,
and Tenders Operators, and Tenders

51-6063 Textile Knitting and 0.21
Weaving Machine Setters,
Operators, and Tenders

51-6062 Textile Cutting Machine Setters, 0.05
Operators, and Tenders

51-6061 Textile Bleaching and Dyeing 0
Machine Operators and Tenders
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Table A.1: 2018 Census codes with a one-to-many mapping to SOC (continued)

SOC
Census SOC share
code Census title code SOC title in SIPP

8465 Other Textile, Apparel, 51-6099 Textile, Apparel, and Furnishings 1
and Furnishings Workers Workers, All Other

51-6091 Extruding and Forming Machine 0
Setters, Operators, and Tenders,
Synthetic and Glass Fibers

51-6092 Fabric and Apparel Patternmakers 0

8555 Other Woodworkers 51-7099 Woodworkers, All Other 1
51-7030 Model Makers and 0

Patternmakers, Wood

8990 Other Production Workers 51-9199 Production Workers, All Other 1
51-9141 Semiconductor Processors 0

9005 Supervisors of Transportation 53-1000 Supervisors of Transportation 0.56
and Material Moving Workers and Material Moving Workers

39-1021 First-Line Supervisors of 0.44
Personal Service Workers

9141 Shuttle Drivers 53-3020 Bus Drivers 0.62
and Chauffeurs 53-3041 Taxi Drivers and Chauffeurs 0.38

9265 Other Rail 53-4010 Locomotive Engineers and Operators 0.64
Transportation 53-40XX Subway, Streetcar, and Other Rail 0.36
Workers Transportation Workers

53-4021 Railroad Brake, Signal, and 0
Switch Operators

9365 Transportation Service 53-6031 Automotive and Watercraft 0.84
Attendants Service Attendants

53-60XX Other Transportation Workers 0.16

9430 Other Transportation 53-60XX Other Transportation Workers 1
Workers 53-6011 Bridge and Lock Tenders 0

9570 Conveyor, Dredge, and 53-7030 Dredge, Excavating, and 0.85
Hoist and Winch Operators Loading Machine Operators

53-7041 Hoist and Winch Operators 0.15
53-7011 Conveyor Operators and Tenders 0

9760 Other Material 53-7199 Material Moving Workers, All Other 0.53
Moving Workers 53-7030 Dredge, Excavating, and 0.47

Loading Machine Operators
53-7121 Tank Car, Truck, and Ship Loaders 0

Note: The table lists the Census occupation codes with a one-to-many mapping to SOC. The last column

shows the distribution of SOC codes in the 2013-2016 SIPP panel. To acheive a one-to-one mapping, I

choose the most frequent SOC code (i.e., the SOC code with the highest share in the last column).
†The SOC codes mapping to Census code “8025” are not present in the 2013-2016 SIPP panel. I therefore

map this Census code to the first SOC category “51-4032 - Drilling and Boring Machine Tool Setters,

Operators, and Tenders, Metal and Plastic”.
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Table A.2: O*NET occupations with GreenShare ≥ 0.5

O*NET-SOC Total Green
code O*NET-SOC title tasks tasks GreenShare

11-1011.03 Chief Sustainability Officers 18 18 1

11-3051.02 Geothermal Production Managers 17 17 1

11-3051.03 Biofuels Production Managers 14 14 1

11-3051.04 Biomass Power Plant Managers 18 18 1

11-3051.06 Hydroelectric Production Managers 19 19 1

11-9041.01 Biofuels/Biodiesel Technology and 19 19 1
Product Development Managers

11-9121.02 Water Resource Specialists 21 21 1

11-9199.09 Wind Energy Operations Managers 16 16 1

11-9199.10 Wind Energy Project Managers 15 15 1

11-9199.11 Brownfield Redevelopment Specialists 22 22 1
and Site Managers

13-1199.01 Energy Auditors 21 21 1

13-1199.05 Sustainability Specialists 14 14 1

17-2081.00 Environmental Engineers 28 28 1

17-2081.01 Water/Wastewater Engineers 27 27 1

17-2141.01 Fuel Cell Engineers 26 26 1

17-2199.03 Energy Engineers 21 21 1

17-2199.10 Wind Energy Engineers 16 16 1

17-2199.11 Solar Energy Systems Engineers 13 13 1

17-3025.00 Environmental Engineering Technicians 26 26 1

19-1013.00 Soil and Plant Scientists 27 17 0.62

19-1031.01 Soil and Water Conservationists 33 33 1

19-2041.01 Climate Change Analysts 14 14 1

19-2041.02 Environmental Restoration Planners 22 22 1

19-2041.03 Industrial Ecologists 38 38 1

19-3011.01 Environmental Economists 19 19 1

19-4091.00 Environmental Science and Protection 26 26 1
Technicians, Including Health

41-3099.01 Energy Brokers 16 16 1

41-4011.07 Solar Sales Representatives and Assessors 13 13 1

47-1011.03 Solar Energy Installation Managers 15 15 1

47-2231.00 Solar Photovoltaic Installers 26 26 1

47-4041.00 Hazardous Materials Removal Workers 21 21 1

47-4099.02 Solar Thermal Installers and Technicians 21 21 1

47-4099.03 Weatherization Installers and Technicians 18 18 1

49-9081.00 Wind Turbine Service Technicians 13 13 1

49-9099.01 Geothermal Technicians 24 24 1

51-8099.01 Biofuels Processing Technicians 19 19 1

51-8099.03 Biomass Plant Technicians 16 16 1

51-8099.04 Hydroelectric Plant Technicians 21 21 1

51-9199.01 Recycling and Reclamation Workers 18 18 1

53-1021.01 Recycling Coordinators 23 23 1

53-7081.00 Refuse and Recyclable Material Collectors 16 16 1

Note: The table lists the O*NET occupations with a GreenShare score of at least 0.5.
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Table A.3: Green occupations in the main specification

SOC code SOC title Average GreenShare

17-2081 Environmental Engineers 1

17-2141 Mechanical Engineers 0.53

19-2040 Environmental Scientists and Geoscientists 0.57

41-3099 Sales Representatives, Services, All Other 1

47-2231 Solar Photovoltaic Installers 1

47-4041 Hazardous Materials Removal Workers 1

47-4090 Miscellaneous Construction and Related Workers 0.67

49-9081 Wind Turbine Service Technicians 1

49-909X Other installation, maintenance, and repair workers 0.5

51-9199 Production Workers, All Other 1

53-7081 Refuse and Recyclable Material Collectors 1

Note: The table lists the occupations that are classified as green in the main specification. The occupations

have by definition an average GreenShare score of at least 0.5.
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Table A.4: Fossil occupations in the main specification

SOC code SOC title

11-3051 Industrial Production Managers

11-9041 Architectural and Engineering Managers

17-2041 Chemical Engineers

17-2110 Industrial Engineers, Including Health and Safety

17-2121 Marine Engineers and Naval Architects

17-2131 Materials Engineers

17-2171 Petroleum Engineers

17-3020 Engineering Technicians, Except Drafters

19-2030 Chemists and Materials Scientists

19-4011 Agricultural and Food Science Technicians

19-4031 Chemical Technicians

43-5061 Production, Planning, and Expediting Clerks

47-5010 Derrick, Rotary Drill, and Service Unit Operators, Oil, Gas, and Mining

47-5021 Earth Drillers, Except Oil and Gas

47-5040 Mining Machine Operators

47-50XX Other extraction workers

49-2091 Avionics Technicians

49-9010 Control and Valve Installers and Repairers

49-9043 Maintenance Workers, Machinery

49-9044 Millwrights

49-904X Industrial and refractory machinery mechanics

49-9096 Riggers

49-9098 Helpers–Installation, Maintenance, and Repair Workers

51-1011 First-Line Supervisors of Production and Operating Workers

51-2011 Aircraft Structure, Surfaces, Rigging, and Systems Assemblers

51-2031 Engine and Other Machine Assemblers

51-2041 Structural Metal Fabricators and Fitters

51-2090 Miscellaneous Assemblers and Fabricators

51-3020 Butchers and Other Meat, Poultry, and Fish Processing Workers

51-3091 Food and Tobacco Roasting, Baking, and Drying Machine Operators and Tenders

51-3093 Food Cooking Machine Operators and Tenders

51-3099 Food Processing Workers, All Other

51-4021 Extruding and Drawing Machine Setters, Operators, and Tenders, Metal and Plastic

51-4022 Forging Machine Setters, Operators, and Tenders, Metal and Plastic

51-4031 Cutting, Punching, and Press Machine Setters, Operators, and Tenders, Metal and Plastic

51-4033 Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Operators, and Tenders,
Metal and Plastic

51-4050 Metal Furnace Operators, Tenders, Pourers, and Casters

51-4070 Molders and Molding Machine Setters, Operators, and Tenders, Metal and Plastic

51-4111 Tool and Die Makers

51-4199 Metal Workers and Plastic Workers, All Other

51-6063 Textile Knitting and Weaving Machine Setters, Operators, and Tenders

51-6064 Textile Winding, Twisting, and Drawing Out Machine Setters, Operators, and Tenders

51-7041 Sawing Machine Setters, Operators, and Tenders, Wood

51-7042 Woodworking Machine Setters, Operators, and Tenders, Except Sawing

51-8031 Water and Wastewater Treatment Plant and System Operators

51-8090 Miscellaneous Plant and System Operators

51-9010 Chemical Processing Machine Setters, Operators, and Tenders

51-9020 Crushing, Grinding, Polishing, Mixing, and Blending Workers

51-9041 Extruding, Forming, Pressing, and Compacting Machine Setters, Operators, and Tenders
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Table A.4: Fossil occupations in the main specification (continued)

SOC code SOC title

51-9051 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders

51-9061 Inspectors, Testers, Sorters, Samplers, and Weighers

51-9111 Packaging and Filling Machine Operators and Tenders

51-9191 Adhesive Bonding Machine Operators and Tenders

51-9195 Molders, Shapers, and Casters, Except Metal and Plastic

51-9196 Paper Goods Machine Setters, Operators, and Tenders

51-9197 Tire Builders

51-9198 Helpers–Production Workers

53-5011 Sailors and Marine Oilers

53-6031 Automotive and Watercraft Service Attendants

53-7021 Crane and Tower Operators

53-7051 Industrial Truck and Tractor Operators

53-7070 Pumping Station Operators

53-7199 Material Moving Workers, All Other

Note: The table lists the occupations that are classified as fossil in the main specification.
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Table A.5: Most common neutral jobs that fossil workers transition to and percentage of
cases when the neutral job is in a dirty industry

SOC code % of fossil → neutral % of cases when the
of neutral transitions involving neutral job is in a
job SOC title of neutral job the neutral job a dirty industry

11-9199 Managers, All Other 7.3 51

53-7062 Laborers and Freight, Stock, and Material 6.8 28
Movers, Hand

37-201X Janitors and Building Cleaners 2.8 21

49-9071 Maintenance and Repair Workers, General 2.2 34

17-2199 Engineers, All Other 2.1 50

53-3030 Driver/Sales Workers and Truck Drivers 2 26

41-1011 First-Line Supervisors of Retail Sales Workers 1.8 10

53-7064 Packers and Packagers, Hand 1.8 40

43-5081 Stock Clerks and Order Fillers 1.8 27

47-2061 Construction Laborers 1.7 0

41-2010 Cashiers 1.6 32

51-4120 Welding, Soldering, and Brazing Workers 1.4 32

41-2031 Retail Salespersons 1.4 3

45-2090 Miscellaneous Agricultural Workers 1.2 0

51-4041 Machinists 1.2 28

49-1011 First-Line Supervisors of Mechanics, Installers, 1.1 32
and Repairers

51-2020 Electrical, Electronics, and Electromechanical 1.1 66
Assemblers

47-2111 Electricians 1.1 37

43-4051 Customer Service Representatives 1 19

49-3023 Automotive Service Technicians and Mechanics 1 21

11-1021 General and Operations Managers 1 46

35-2010 Cooks 1 18

Note: The table lists the neutral jobs that fossil workers most often transition to. The third column shows

the percentage of fossil to neutral transitions that involve a given neutral job. The last column shows the

percentage of cases when the new neutral job is located in a dirty industry.
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Table A.6: All green jobs that fossil workers transition to and percentage of cases when the
green job is in a dirty industry

SOC code % of fossil → green % of cases when the
of green transitions involving green job is in a
job SOC title of green job the green job dirty industry

51-9199 Production Workers, All Other 70 43

17-2141 Mechanical Engineers 18.1 56

49-909X Other Installation, Maintenance, and Repair 4.2 23
Workers

41-3099 Sales Representatives, Services, All Other 3.6 0

53-7081 Refuse and Recyclable Material Collectors 1.2 20

47-4041 Hazardous Materials Removal Workers 0.9 0

19-2040 Environmental Scientists and Geoscientists 0.9 0

47-4090 Miscellaneous Construction and Related 0.6 0
Workers 0.6 0

17-2081 Environmental Engineers 0.6 0

Note: The table lists the green jobs that fossil workers transition to. The third column shows the percentage

of fossil to green transitions that involve a given green job. The last column shows the percentage of cases

when the new green job is located in a dirty industry.
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Appendix B: Aggregating the O*NET task data

O*NET provides task data on an 8-digit occupational level. I aggregate the data to a 6-digit level
to align them with SIPP. The task data in O*NET are given for 974 occupations that map to
774 6-digit parent groups. 677 occupations map to a unique parent group. The aggregation is
straightforward in these cases. It is more difficult for occupations sharing a parent group. Simply
averaging the green task shares of these occupations is inappropriate when they have different weights
in the parent group. This is the case when the parent group includes an occupation ending in “.00”
(i.e., an occupation corresponding to a 6-digit parent group) as this occupation should get more
weight. For instance, the occupation “19-3011.00 - Economists” is much broader than “19-3011.01 -
Environmental Economists” and should get more weight in the parent group “19-3011 - Economists”.

I use a procedure based on Vona, Marin and Consoli (2019) to account for weight differences
across occupations. The procedure is as follows. If an occupation corresponding to the parent group
(i.e., ending in “.00”) has zero or relatively few green tasks, I assign a green task share of zero to the
parent group. In all other cases, I average the green task shares across the occupations in the parent
group.59

Table B.1 shows how this procedure is implemented. The number of total and green tasks are
listed by occupation in the third and fourth columns, where the occupations are sorted by 6-digit
parent group. The last column indicates whether the parent group is assigned a green task share of
zero (“Zero”) or an average of the occupations’ green task shares (“Mean”).

59Four 6-digit groups are special cases and exempted from the aggregation procedure (see the note at the
bottom of Table B.1 for more details). Vona, Marin and Consoli (2019) make similar adjustments for these
groups.
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Table B.1: Task aggregation procedure for O*NET occupations with a many-to-one map-
ping to a 6-digit level

O*NET-SOC Total Green
code O*NET-SOC title tasks tasks Method

11-1011.00 Chief Executives 31 0 Zero

11-1011.03 Chief Sustainability Officers 18 18

11-2011.00 Advertising and Promotions Managers 26 0 Zero

11-2011.01 Green Marketers 16 16

11-3051.00 Industrial Production Managers 14 0 Zero

11-3051.01 Quality Control Systems Managers 27 0

11-3051.02 Geothermal Production Managers 17 17

11-3051.03 Biofuels Production Managers 14 14

11-3051.04 Biomass Power Plant Managers 18 18

11-3051.05 Methane/Landfill Gas Collection System 21 21
Operators

11-3051.06 Hydroelectric Production Managers 19 19

11-3071.01 Transportation Managers 28 6 Mean

11-3071.02 Storage and Distribution Managers 31 7

11-3071.03 Logistics Managers 30 9

11-9013.01 Nursery and Greenhouse Managers 20 0 Mean†

11-9013.02 Farm and Ranch Managers 27 4

11-9013.03 Aquacultural Managers 19 0

11-9041.01 Biofuels/Biodiesel Technology and Product 19 19
Development Managers

11-9121.00 Natural Sciences Managers 16 0 Zero

11-9121.01 Clinical Research Coordinators 33 0

11-9121.02 Water Resource Specialists 21 21

11-9199.01 Regulatory Affairs Managers 27 4 Mean

11-9199.02 Compliance Managers 30 6

11-9199.03 Investment Fund Managers 20 0

11-9199.04 Supply Chain Managers 30 9

11-9199.07 Security Managers 30 0

11-9199.08 Loss Prevention Managers 27 0

11-9199.09 Wind Energy Operations Managers 16 16

11-9199.10 Wind Energy Project Managers 15 15

11-9199.11 Brownfield Redevelopment Specialists and 22 22
Site Managers

13-1041.01 Environmental Compliance Inspectors 26 0 Mean

13-1041.02 Licensing Examiners and Inspectors 12 0

13-1041.03 Equal Opportunity Representatives and Officers 19 0

13-1041.04 Government Property Inspectors and Investigators 14 0

13-1041.06 Coroners 20 0

13-1041.07 Regulatory Affairs Specialists 32 6
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Table B.1: Task aggregation procedure for O*NET occupations with a many-to-one map-
ping to a 6-digit level (continued)

O*NET-SOC Total Green
code O*NET-SOC title tasks tasks Method

13-1081.00 Logisticians 22 0 Zero

13-1081.01 Logistics Engineers 30 11

13-1081.02 Logistics Analysts 31 6

13-1199.01 Energy Auditors 21 21 Mean

13-1199.02 Security Management Specialists 24 0

13-1199.03 Customs Brokers 23 0

13-1199.04 Business Continuity Planners 21 0

13-1199.05 Sustainability Specialists 14 14

13-1199.06 Online Merchants 34 0

13-2099.01 Financial Quantitative Analysts 21 5 Mean

13-2099.02 Risk Management Specialists 24 4

13-2099.03 Investment Underwriters 19 2

13-2099.04 Fraud Examiners, Investigators and Analysts 23 0

15-1199.01 Software Quality Assurance Engineers and Testers 28 0 Mean

15-1199.02 Computer Systems Engineers/Architects 28 0

15-1199.03 Web Administrators 35 0

15-1199.04 Geospatial Information Scientists and 24 2
Technologists

15-1199.05 Geographic Information Systems Technicians 19 5

15-1199.06 Database Architects 18 0

15-1199.07 Data Warehousing Specialists 18 0

15-1199.08 Business Intelligence Analysts 17 0

15-1199.09 Information Technology Project Managers 21 0

15-1199.10 Search Marketing Strategists 36 0

15-1199.11 Video Game Designers 24 0

15-1199.12 Document Management Specialists 23 0

17-2051.00 Civil Engineers 17 8 Mean

17-2051.01 Transportation Engineers 26 6

17-2072.00 Electronics Engineers, Except Computer 22 5 Value of

17-2072.01 Radio Frequency Identification Device 21 0 17-2072.00‡

Specialists

17-2081.00 Environmental Engineers 28 28 Mean

17-2081.01 Water/Wastewater Engineers 27 27

17-2141.00 Mechanical Engineers 28 8 Mean

17-2141.01 Fuel Cell Engineers 26 26

17-2141.02 Automotive Engineers 25 8
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Table B.1: Task aggregation procedure for O*NET occupations with a many-to-one map-
ping to a 6-digit level (continued)

O*NET-SOC Total Green
code O*NET-SOC title tasks tasks Method

17-2199.01 Biochemical Engineers 35 12 Mean

17-2199.02 Validation Engineers 22 2

17-2199.03 Energy Engineers 21 21

17-2199.04 Manufacturing Engineers 24 4

17-2199.05 Mechatronics Engineers 23 3

17-2199.06 Microsystems Engineers 31 6

17-2199.07 Photonics Engineers 26 5

17-2199.08 Robotics Engineers 24 2

17-2199.09 Nanosystems Engineers 25 9

17-2199.10 Wind Energy Engineers 16 16

17-2199.11 Solar Energy Systems Engineers 13 13

17-3023.01 Electronics Engineering Technicians 19 0 Mean

17-3023.03 Electrical Engineering Technicians 24 5

17-3024.00 Electro-Mechanical Technicians 12 1 Mean

17-3024.01 Robotics Technicians 23 2

17-3027.00 Mechanical Engineering Technicians 18 0 Zero

17-3027.01 Automotive Engineering Technicians 18 5

17-3029.01 Non-Destructive Testing Specialists 16 0 Mean

17-3029.02 Electrical Engineering Technologists 20 8

17-3029.03 Electromechanical Engineering Technologists 17 5

17-3029.04 Electronics Engineering Technologists 23 4

17-3029.05 Industrial Engineering Technologists 23 4

17-3029.06 Manufacturing Engineering Technologists 29 8

17-3029.07 Mechanical Engineering Technologists 21 3

17-3029.08 Photonics Technicians 30 6

17-3029.09 Manufacturing Production Technicians 30 6

17-3029.10 Fuel Cell Technicians 16 16

17-3029.11 Nanotechnology Engineering Technologists 17 6

17-3029.12 Nanotechnology Engineering Technicians 19 3

19-1031.01 Soil and Water Conservationists 33 33 Mean

19-1031.02 Range Managers 16 0

19-1031.03 Park Naturalists 18 0

19-2041.00 Environmental Scientists and Specialists, 22 0 Mean∗

Including Health

19-2041.01 Climate Change Analysts 14 14

19-2041.02 Environmental Restoration Planners 22 22

19-2041.03 Industrial Ecologists 38 38

19-3011.00 Economists 13 0 Zero

19-3011.01 Environmental Economists 19 19
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Table B.1: Task aggregation procedure for O*NET occupations with a many-to-one map-
ping to a 6-digit level (continued)

O*NET-SOC Total Green
code O*NET-SOC title tasks tasks Method

19-4011.01 Agricultural Technicians 26 3 Mean

19-4011.02 Food Science Technicians 15 0

19-4041.01 Geophysical Data Technicians 21 5 Mean

19-4041.02 Geological Sample Test Technicians 17 3

19-4051.01 Nuclear Equipment Operation Technicians 20 7 Zero**

19-4051.02 Nuclear Monitoring Technicians 19 0

19-4099.01 Quality Control Analysts 26 0 Mean

19-4099.02 Precision Agriculture Technicians 22 7

19-4099.03 Remote Sensing Technicians 22 3

41-3031.01 Sales Agents, Securities and Commodities 19 0 Mean

41-3031.02 Sales Agents, Financial Services 8 0

41-3031.03 Securities and Commodities Traders 22 2

41-4011.00 Sales Representatives, Wholesale and 36 5 Value of
Manufacturing, Technical and Scientific Products 41-4011.00‡

41-4011.07 Solar Sales Representatives and Assessors 13 13

43-5011.00 Cargo and Freight Agents 24 0 Zero

43-5011.01 Freight Forwarders 31 6

47-1011.00 First-Line Supervisors of Construction Trades 15 0 Zero
and Extraction Workers

47-1011.03 Solar Energy Installation Managers 15 15

47-2152.01 Pipe Fitters and Steamfitters 20 3 Mean

47-2152.02 Plumbers 23 9

47-4099.02 Solar Thermal Installers and Technicians 21 21 Mean

47-4099.03 Weatherization Installers and Technicians 18 18

49-3023.01 Automotive Master Mechanics 24 0 Mean

49-3023.02 Automotive Specialty Technicians 26 12

49-9021.01 Heating and Air Conditioning Mechanics 26 7 Mean
and Installers

49-9021.02 Refrigeration Mechanics and Installers 21 0

51-8099.01 Biofuels Processing Technicians 19 19 Mean

51-8099.02 Methane/Landfill Gas Generation System 17 17
Technicians

51-8099.03 Biomass Plant Technicians 16 16

51-8099.04 Hydroelectric Plant Technicians 21 21
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Table B.1: Task aggregation procedure for O*NET occupations with a many-to-one map-
ping to a 6-digit level (continued)

O*NET-SOC Total Green
code O*NET-SOC title tasks tasks Method

53-1021.00 First-Line Supervisors of Helpers, Laborers, 24 0 Zero
and Material Movers, Hand

53-1021.01 Recycling Coordinators 23 23

53-6051.01 Aviation Inspectors 15 0 Mean

53-6051.07 Transportation Vehicle, Equipment and Systems 21 9
Inspectors, Except Aviation

53-6051.08 Freight and Cargo Inspectors 20 0

Note: The table describes how the green task shares of O*NET occupations with a many-to-one mapping

to a 6-digit parent group were aggregated to the parent group. The last column details the aggregation

procedure: “Zero” means that the 6-digit parent group was assigned a green task share of zero, while

“Mean” implies that the 6-digit parent group was assigned the average of the O*NET occupations’ green

task shares.
†Occupation “11-9041.01 - Biofuels/Biodiesel Technology and Product Development Managers” was orig-

inally in parent group “11-9041 - Architectural and Engineering Managers”. The green task share of this

parent group (“11-9041.00”) is 19% and therefore much lower than the 100% of “11-9041.01”. The occu-

pation “11-9041.01” was moved to parent group “11-9013” that contains similar occupations, while parent

group “11-9041” was removed.
‡The values of the “.00” parent group were chosen because this occupation is more important.
∗The parent group was not assigned zero green tasks because occupations “19-2041.01” - “19-2041.03” have

100% green tasks and can jointly be considered of similar importance to the parent group.
∗∗The parent group was assigned zero green tasks to avoid calling occupations in the nuclear power sector

green (Bowen and Kuralbayeva, 2015).
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Appendix C: Crosswalking from NAICS to the Census
Industry system

I harmonize the dirty sector classification with SIPP by crosswalking the codes in the classification
from a 4-digit NAICS level to the Census Industry system. The crosswalking is straightforward for
sectors with a unique Census mapping. It is more complicated in two other instances.

First, multiple sectors sometimes map to the same Census code. This is problematic when only
some of the sectors are dirty, since it implies that the Census code is only partly dirty. Table C.1
lists these Census codes.

Second, some dirty sectors lack a mapping to a Census code. They are instead indirectly mapped
through parent groups (on a 2-digit or 3-digit level) or subcategories (on a 5-digit or 6-digit level).

Table C.2 lists the parent groups in the crosswalk containing both dirty and non-dirty sectors.
An example is Census code “3895”. It maps to the 3-digit NAICS code “377” that has three 4-digit
codes, of which only one is dirty. The Census code is therefore only partly dirty.

Table C.3 lists the dirty sectors that are indirectly mapped through subcategories. Sector “2213
- Water, Sewage and Other Systems”, for instance, has two subcategories “22131” and “22133” that
map to Census code “0670” - Water, Steam, Air-conditioning, and Irrigation systems”. It is not clear
which subcategory accounts for the dirty part of “2213”. If not all of them do, the Census code is
only partly dirty.

Tables C.1-C.3 contain in total 18 Census codes that I consider partly dirty and that I add to
the list of dirty sectors (see Table C.4). In addition, I include three Census codes that are typically
thought of as dirty: “4490 - Petroleum and petroleum products merchant wholesalers”, “5090 -
Gasoline stations”, and “5680 - Fuel dealers”.
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Table C.1: 4-digit NAICS sectors, of which some are dirty, with a many-to-one mapping to the Census Industry system

NAICS Dirty Census Call Census
code NAICS title NAICS? code Census title code dirty?

3344 Semiconductor and Other Electronic Yes 3390 Electronic component and product Yes
and Component Manufacturing manufacturing, n.e.c.

3346 Manufacturing and Reproducing No
Magnetic and Optical Media

3351 Electric Lighting Equipment Manufacturing No 3490 Electric lighting and electrical equipment Yes
3353 Electrical Equipment Manufacturing No manufacturing, and other electrical
3359 Other Electrical Equipment and Component Yes component manufacturing, n.e.c.

Manufacturing

3361 Motor Vehicle Manufacturing Yes 3570 Motor vehicles and motor vehicle Yes
3362 Motor Vehicle Body and Trailer Manufacturing No equipment manufacturing
3363 Motor Vehicle Parts Manufacturing No

5611 Office Administrative Services No 7780 Other administrative and other support No†

5612 Facilities Support Services Yes services
5619 Other Support Services No

6112 Junior Colleges No 7870 Colleges, universities, and professional No†

6113 Colleges, Universities, and Professional Schools Yes schools, including junior colleges

Note: The table lists the instances in which multiple NAICS codes map to a single Census code and only some of the NAICS codes are dirty. The last column shows

whether the Census code is ultimately classified as dirty.
†I do not call this Census code dirty as it is typically not thought of as a sector most vulnerable to decarbonization.
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Table C.2: 2-digit and 3-digit NAICS codes in the crosswalk with some dirty 4-digit sectors

NAICS code in Share of 4-digit NAICS Census Call Census
crosswalk codes that are dirty code Census title code dirty?

Part of 311 8/9 1290 Not specified food industries Yes

Part of 331 and 332 5/14 2990 Not specified metal industries Yes

Part of 31-33 41/86 3990 Not specified manufacturing industries Yes

488 1/6 6290 Services incidental to transportation No†

562 2/3 7790 Waste management and remediation services No‡

Note: The table lists the instances in which a 2-digit or 3-digit NAICS code maps to a Census code and has some 4-digit subcategories that are dirty. The second

column shows the share of 4-digit subcategories that are dirty. The last column shows whether the Census code is ultimately classified as dirty.
†I do not call this Census code dirty since only one out of six NAICS codes are dirty.
‡I do not call this Census code dirty as it is typically not thought of as a sector most vulnerable to decarbonization.
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Table C.3: Dirty NAICS sectors with subcategories that map to a Census code

Dirty NAICS Call
NAICS code in Census Census
code Dirty NAICS title crosswalk NAICS title in crosswalk code Census title code dirty?

2213 Water, Sewage 22131 Water Supply and Irrigation Systems 0670 Water, Steam, Air-conditioning, Yes
and Other 22133 Steam and Air-Conditioning Supply and Irrigation systems

Systems 22132 Sewage Treatment Facilities 0680 Sewage Treatment Facilities Yes

3132 Fabric Mills 31321 Broadwoven Fabric Mills 1480 Fabric mills, except knitting Yes†

31322 Narrow Fabric Mills and Schiffli Machine Embroidery mills

31323 Nonwoven Fabric Mills

3132 Fabric Mills 31324 Knit Fabric Mills 1670 Knitting Fabric Mills, and No†

3151 Apparel Knitting Mills Apparel Knitting Mills

3141 Textile Furnishings Mills 31411 Carpet and Rug Mills 1570 Carpet and Rug Mills Yes‡

3141 Textile Furnishings Mills 31412 Curtain and Linen Mills 1590 Textile Product Mills, Except No‡

3149 Other Textile Product Mills Carpet and Rug

3241 Petroleum and Coal 32411 Petroleum Refineries 2070 Petroleum refining Yes∗

Products Manufacturing

3241 Petroleum and Coal 32412 Asphalt Paving, Roofing, and Saturated Materials 2090 Miscellaneous petroleum and Yes∗

Products Manufacturing Manufacturing coal products
32419 Miscellaneous petroleum and coal products

3262 Rubber Product 32621 Tire Manufacturing 2380 Tire Manufacturing Yes

Manufacturing 32622 Rubber and Plastics Hoses and Belting Manufacturing 2390 Rubber Products, Except Yes
32629 Other Rubber Product Manufacturing Tires, Manufacturing

3271 Clay Product 32711 Pottery, Ceramics, and Plumbing 2470 Pottery, Ceramics, and Plumbing Yes
and Refractory Fixture Manufacturing Fixture Manufacturing

Manufacturing 327120 Clay Building Material and 2480 Clay Building Material and Yes
Refractories Manufacturing Refractories Manufacturing

3364 Aerospace Product 336411 Aircraft Manufacturing 3580 Aircraft and parts Yes
and Parts 336412 Aircraft Engine and Engine Parts Manufacturing manufacturing
Manufacturing 336413 Other Aircraft Parts and Auxiliary

Equipment Manufacturing

336414 Guided Missile and Space Vehicle Manufacturing 3590 Aerospace products and Yes
336415 Guided Missile and Space Vehicle Propulsion parts manufacturing

Unit and Propulsion Unit Parts Manufacturing
336419 Other Guided Missile and Space Vehicle Parts

and Auxiliary Equipment Manufacturing

Note: The table lists the instances in which a dirty NAICS code is indirectly mapped to a Census code through 5-digit or 6-digit subcategories. The last column shows

whether the Census code is ultimately classified as dirty.
†I call Census code “1480” dirty as it maps to most subcategories of dirty NAICS code “3132”. I call Census code “1670” non-dirty as NAICS code “3151” is not dirty.
‡NAICS code “3149” is not dirty and I therefore call Census code “1590” non-dirty. NAICS code “3141” is dirty. I attribute the dirty part of this code to subcategory

“31411”. Thus, I call Census code “1570” dirty.
∗The parent 4-digit NAICS code is “3241 - Petroleum and Coal Products Manufacturing”. I consider this NAICS code as well as its subcategories dirty. I therefore call

Census codes “2070” and “2090” dirty.

64



Table C.4: Dirty Census sectors in the main specification

Census code Census title

0370 Oil and gas extraction

0380 Coal mining

0390 Metal ore mining

0470 Nonmetallic mineral mining and quarrying

0480 Not specified type of mining

0490 Support activities for mining

0570 Electric power generation, transmission and distribution

0580 Natural gas distribution

0590 Electric and gas, and other combinations

0670 Water, steam, air-conditioning, and irrigation systems

0680 Sewage treatment facilities

0690 Not specified utilities

1070 Animal food, grain and oilseed milling

1080 Sugar and confectionery products

1090 Fruit and vegetable preserving and specialty food manufacturing

1170 Dairy product manufacturing

1180 Animal slaughtering and processing

1280 Seafood and other miscellaneous foods, n.e.c.

1290 Not specified food industries

1370 Beverage manufacturing

1390 Tobacco manufacturing

1480 Fabric mills, except knitting mills

1490 Textile and fabric finishing and fabric coating mills

1570 Carpet and rug mills

1870 Pulp, paper, and paperboard mills

2070 Petroleum refining

2090 Miscellaneous petroleum and coal products

2170 Resin, synthetic rubber, and fibers and filaments manufacturing

2180 Agricultural chemical manufacturing

2190 Pharmaceutical and medicine manufacturing

2270 Paint, coating, and adhesive manufacturing

2280 Soap, cleaning compound, and cosmetics manufacturing

2290 Industrial and miscellaneous chemicals

2380 Tire manufacturing

2390 Rubber products, except tires, manufacturing

2470 Pottery, ceramics, and plumbing fixture manufacturing

2480 Clay building material and refractories manufacturing

2490 Glass and glass product manufacturing

2570 Cement, concrete, lime, and gypsum product manufacturing

2590 Miscellaneous nonmetallic mineral product manufacturing

2670 Iron and steel mills and steel product manufacturing

2680 Aluminum production and processing

2690 Nonferrous metal (except aluminum) production and processing

2770 Foundries

2990 Not specified metal industries

3180 Engine, turbine, and power transmission equipment manufacturing
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Table C.4: Dirty Census sectors in the main specification (continued)

Census code Census title

3390 Electronic component and product manufacturing, n.e.c.

3490 Electric lighting and electrical equipment manufacturing, and other electrical component
manufacturing, n.e.c.

3570 Motor vehicles and motor vehicle equipment manufacturing

3580 Aircraft and parts manufacturing

3590 Aerospace products and parts manufacturing

3670 Railroad rolling stock manufacturing

3770 Sawmills and wood preservation

3780 Veneer, plywood, and engineered wood products

3990 Not specified manufacturing industries

4490 Petroleum and petroleum products merchant wholesalers

5090 Gasoline stations

5680 Fuel dealers

6270 Pipeline transportation

Note: The table lists the sectors that are classified as dirty in the main specification.
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Appendix D: Additional figures and tables
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(e) Fossil job := ≥10 times more
likely in a dirty sector
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(g) Fossil job := ≥6 times more
likely in a dirty sector
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(h) Dirty sector := top 1% of
emissions-intensity

α in %: 10 20 30 40 50 100

Figure D.1: Green job share over time by sensitivity test (panels) and α (lines)
Note: The figure shows the share of green jobs in the U.S. during 2013-2020 by sensitivity test (panels) and

α (lines). Panel (a) is the main specification. Panel (b) uses only core tasks. Panel (c) restricts green jobs to

non-dirty sectors. Panel (d) restricts fossil jobs to dirty sectors. Panel (e) defines fossil jobs as jobs at least

10 times more likely than the average job to be found in a dirty sector. Panel (f) counts neutral jobs in dirty

sectors as fossil. Panel (g) defines fossil jobs as jobs at least 6 times more likely than the average job to be

found in a dirty sector. Panel (h) defines dirty sectors as sectors lying in the top 1% of emissions intensity.

α is the minimum share of green tasks for an occupation to be classified as “green”. The green job share

increases by at least 0.2 percentage points in all panels for α = 100%.
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(e) Fossil job := ≥10 times more
likely in a dirty sector
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(f) Neutral jobs in dirty sectors are
counted as fossil
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(g) Fossil job := ≥6 times more
likely in a dirty sector
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(h) Dirty sector := top 1% of
emissions-intensity
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Figure D.2: Fossil job share over time by sensitivity test (panels) and α (lines)
Note: The figure shows the share of fossil jobs in the U.S. during 2013-2020 by sensitivity test (panels) and

α (lines). Panel (a) is the main specification. Panel (b) uses only core tasks. Panel (c) restricts green jobs to

non-dirty sectors. Panel (d) restricts fossil jobs to dirty sectors. Panel (e) defines fossil jobs as jobs at least

10 times more likely than the average job to be found in a dirty sector. Panel (f) counts neutral jobs in dirty

sectors as fossil. Panel (g) defines fossil jobs as jobs at least 6 times more likely than the average job to be

found in a dirty sector. Panel (h) defines dirty sectors as sectors lying in the top 1% of emissions intensity.

α is the minimum share of green tasks for an occupation to be classified as “green”. The green job share

increases by at least 0.2 percentage points in all panels for α = 100%.
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(e) α = 50%
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.3: Job-finding probability by α, type of job, and worker type
(assuming only core tasks)Note: The panels show the probability of transitioning to a green job, fossil job, neutral

job, or unemployment by worker type (green, fossil, or neutral). The panels differ in terms

of α (i.e., the minimum share of green tasks for an occupation to be classified as “green”).
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(d) α = 40%
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(e) α = 50%
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.4: Job-finding probability by α, type of job, and worker type
(assuming only core tasks)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming tasks are restricted to the “core” tasks. The panels

differ in terms of α (i.e., the minimum share of green tasks for an occupation to be classified as “green”).
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.5: Job-finding probability by α, type of job, and worker type
(assuming no green jobs in dirty sectors)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming green jobs are restricted to those in non-dirty sectors. The

panels differ in terms of α (i.e., the minimum share of green tasks for an occupation to be classified as “green”).
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(e) α = 50%
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.6: Job-finding probability by α, type of job, and worker type
(assuming only fossil jobs in dirty sectors)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming fossil jobs are restricted to those in dirty sectors. The panels

differ in terms of α (i.e., the minimum share of green tasks for an occupation to be classified as “green”).
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(e) α = 50%
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.7: Job-finding probability by α, type of job, and worker type
(assuming fossil jobs are ≥ 10 more likely in a dirty sector)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming fossil jobs are defined as jobs at least 10 times more likely

than the average job to be found in a dirty sector. The panels differ in terms of α (i.e., the minimum share

of green tasks for an occupation to be classified as “green”).
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(d) α = 40%
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(e) α = 50%
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.8: Job-finding probability by α, type of job, and worker type
(assuming neutral jobs in dirty sectors are counted as fossil)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming neutral jobs in dirty sectors are counted as fossil jobs. The

panels differ in terms of α (i.e., the minimum share of green tasks for an occupation to be classified as “green”).
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(b) α = 20%
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(e) α = 50%

0

20

40

60

80

100

G
re

en

Fo
ss

il

N
eu

tr
al

N
o

jo
b

New job

(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.9: Job-finding probability by α, type of job, and worker type
(assuming fossil jobs are ≥ 6 more likely in a dirty sector)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming fossil jobs are defined as jobs at least six times more likely

than the average job to be found in a dirty sector. The panels differ in terms of α (i.e., the minimum share

of green tasks for an occupation to be classified as “green”).
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(f) α = 100%

Worker type: Green Fossil Neutral

Figure D.10: Job-finding probability by α, type of job, and worker type
(assuming dirty sectors lie in the top 1% of emissions-intensity)

Note: The panels show the probability of transitioning to a green job, fossil job, neutral job, or unemployment

by worker type (green, fossil, or neutral) assuming dirty sectors are defined as sectors lying in the top 1% of

emissions-intensity. The panels differ in terms of α (i.e., the minimum share of green tasks for an occupation

to be classified as “green”).
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Figure D.11: Job finding probability by worker type and job type given that the employment
sizes are not standardized (Panel (a)) or standardized (Panel (b)) across job
types

Note: The figure shows the probability of transitioning to a green, fossil, or neutral job by worker type (green,

fossil, or neutral) in the U.S. during 2013-2020. Panel (a) shows the raw job finding probabilities, while

Panel (b) standardizes them to correct for employment size differences in 2019. Panel (b) therefore shows

hypothetical job finding probabilities assuming identical employment shares across job types.
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Figure D.12: Employment change from a carbon price by job type and recycling mechanism

Note: The figure shows the change in employment, by job type, from a carbon price with transfer (“Transfer”)

or payroll tax recycling. The employment change is given in percentage points relative to the benchmark.
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Figure D.13: Employment change from a green subsidy financed by payroll taxes by ξj
Note: The figure shows the employment change, by value of ξj , from a green subsidy financed by payroll taxes.

The “Baseline” scenario assumes the values of ξj in Table 2. The employment change is given in percentage

points relative to the benchmark.
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Table D.1: Outcomes from a non-distortionary subsidy by firm/worker type and parameter value

Benchmark
unemployment Benchmark flow value Benchmark fundamental Employment

benefits of unemployment surplus ratio change (pp)

g f z g f z mean g f z mean g f z

Baseline 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.33 -0.09 -0.14

qj up by 50% 0.29 0.28 0.29 0.62 0.61 0.62 0.62 0.06 0.08 0.05 0.05 0.34 -0.09 -0.10

qj down by 50% 0.21 0.17 0.23 0.54 0.50 0.56 0.56 0.18 0.24 0.16 0.16 0.32 -0.09 -0.19

η = 0.7 0.30 0.29 0.31 0.63 0.62 0.63 0.63 0.04 0.05 0.04 0.04 0.35 -0.08 -0.04

η = 0.3 0.20 0.15 0.21 0.53 0.48 0.54 0.54 0.20 0.27 0.18 0.18 0.32 -0.09 -0.20

γ = 0.75 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.32 -0.09 -0.18

γ = 0.25 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.34 -0.09 -0.10

χ = 2 0.16 0.14 0.17 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.34 -0.09 -0.17

χ = 0.5 0.38 0.36 0.39 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.32 -0.08 -0.12

σfg = 0.9 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.23 -0.08 -0.08

σfg = 0.6 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.82 -0.10 -0.47

σC = 0.6 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.59 -0.09 -0.33

σC = 0.4 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 0.22 -0.08 -0.07

13% abatement 0.27 0.25 0.28 0.60 0.58 0.61 0.61 0.09 0.12 0.08 0.08 5.83 -0.73 -4.26

Note: The table shows the change in various outcomes, by sensitivity test, from a green subsidy financed by lump sum taxes. The outcomes are reported by firm or

worker type. The “mean” columns denote weighted averages, where the weights are the worker types’ benchmark unemployment rates. The “Employment change”

refers to the change in steady state employment relative to the benchmark.
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Figure D.14: Welfare change from a lump sum tax-financed green subsidy by abatement
target

Note: The figure shows the welfare change from a lump sum tax-financed green subsidy for various abatement

targets. The welfare change is given in percent relative to the benchmark.
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