

Comparative Genomics with GBrowse_syn

Sheldon McKay, Cold Spring Harbor Laboratory

Outline

A few words on data

A brief survey of synteny browsers

A few challenges of rendering comparative data

Comparative genome browsing with GBrowse_syn

Hierarchical Genome Alignment Strategy

Raw genomic sequences

Mask repeats
(RepeatMasker, Tandem Repeats Finder, nmerge, etc

Identify orthologous regions (ENREDO, MERCATOR, orthocluster, etc)

Nucleotide-level alignment
(PECAN, MAVID, etc)

GBrowse_syn

Further processing

GBrowse

GBrowse_syn

A Few Use Cases

- Multiple sequence alignment data from whole genome
- Synteny or Co-linearity data without alignments
- Gene orthology assignments based on proteins
- Self vs. Self comparison of duplications, homeologous regions, etc
- Others

What is a Synteny Browser?

- Has display elements in common with genome browsers
- Uses sequence alignments, orthology or co-linearity data, to highlight different genomes, strains, etc.
- Usually displays co-linearity relative to a reference genome.

An Embarrassment of Riches*

A Brief Survey of GMOD-friendly Synteny Browsers

SynView A Simple Approach to Visualizing Comparative Genome Data

... A Synteny Browser for Comparative Sequence Analysis

Sybil: Web-based software for comparative genomics

Crabtree, J., Angiuoli, S. V., Wortman, J. R., White, O. R. Sybil: methods and software for multiple genome comparison and visualization Methods Mol Biol. 2007 Jan 01; 408: 93-108. Collaborative

+ others...

Youens-Clark K, Faga B, Yap IV, Stein LD, Ware, D. 2009. Collaborative mapping application for the Internet. doi:10.1093

GBrowse_syn

+others...

Branding ideas..

Desktop Synteny Viewers: Apollo and Artemis

Debating the relative merits of Apollo* and Artemis[‡]

Other non-GMOD Browsers

http://mkweb.bcgsc.ca/circos/

http://www.mizbee.org

Other non-GMOD Browsers

http://synteny.cnr.berkeley.edu/CoGe/

GMOD Browser branding/nomenclature issues...

SynView:

- Add-on to native GBrowse package
- Uses GFF3 or DAS1 compliant data adapters
- GFF requires special tags (allowed in spec.)
- Reference panel on top

SynBrowse:

- Uses same core libraries as Gbrowse
- Uses GFF database adapter
- GFF2 uses standard 'Target' syntax
- Currently only supports two species
- Central reference panel?

Sybil:

- Not GBrowse-based
- Uses chado database
- Whole genome and detailed views

GBrowse_syn:

- Part of GBrowse distribution
- Uses native GFF2/3 or chado adapters for species' data
- Synteny data are stored in a separate joining database

How is GBrowse_syn different?

- Does not rely on perfect co-linearity across the entire displayed region (no orphan alignments)
- Offers on the fly alignment chaining
- No upward limit on the number of species
- Used grid lines to trace fine-scale sequence gain/ loss
- Seamless integration with GBrowse data sources
- Ongoing support and development
- Some people think it looks nice

GBrowse-like interface

PECAN alignments for *Caenorhabditis* (WS197)

■ Instructions				
Select a Region to Browse and a Reference species:				
Examples: c_elegans X:10500011150000, c_briggsae chrX:620000670000, c_elegans R193.2.				
■ Search				
X:10500011150000 Search Reset	Reference Species: C. elegans •	Show 100 kbp 🔻 🕌 >>>		
Aligned Species:				
☑ C. briggsae ☑ C. remanei ☑ C. brenneri ☑ C. japonica				
Data Source :	Display Mode :			
PECAN alignments for Caenorhabditis 💌	Three species/panel Click to show all s	species in one panel		
■ <u>Overview</u>				
	Reference genome: C. el	legans		
X X	1 4M 5M 6M 7M 8M 9M 10M	 		

[GBrowse]

GBrowse_syn Architecture

[GBrowse]

Bio::DB::GFF

species1

alignments

	alignments		
	hit_id	int	[PK]
+	hit_name	varchar(100)	[FK]
	src1	varchar(100)	
	ref1	varchar(100)	
	start1	int	
	end1	int	
	strand1	enum	
	seq1	mediumtext	
	bin	double	
	src2	varchar(100)	
	ref2	varchar(100)	
	start2	int	
	end2	int	
	strand2	enum	
	seq2	mediumtext	

	мар		
	map_id	int	[PK]
_	hit_name	varchar(100)	
	src1	varchar(100)	
	pos1	int	
	pos2	int	

Bio::DB::GFF species2

Legend

[FK] Foreign Key [PK] Primary key

Created by SQL::Translator 0.08

Bio::DB::GFF species3

Bio::DB::GFF species4

Getting Data into GBrowse_syn

CLUSTALW PECAN
MSF ad hoc tab-delimited
FASTA STOCKHOLM
GFF3 etc...

Gbrowse_syn: quick tour

Gbrowse_syn: quick tour (shaded alignments)

Gbrowse_syn: quick tour (strand correction)

Optional "All in one" view

Adding markup to the annotations

Problem: How to use Insertions/Deletion data

Α

Ce-CHROMOSOME_I(+)/5195-16585 Cb-chrI(-)/4091935-4097143	TGGCAAAAATATTTTGCATTTGCCGTTTTTCCCGTTTGCCGAAAAGTCTAATTTCGGTAA
Cr-Contig8(+)/571990-577344	TTCGAAAC
	В
Ce-CHROMOSOME_I(+)/5195-16585	TTGGGCCATTTTTCGAAATTTTGAGCCACATAAAAAACTTTGAACCATTTTTGAGAAGTA
Cb-chrI(-)/4091935-4097143	AGAAGAATGTGAAGATCTTCA
Cr-Contig8(+)/571990-577344	CAGAGAAACAGAAACAATTTTACAGAGAAACAACAATTTTA
	** * ** **
	C
	TTATTACGACATTCGTTTATTTGAGCACAATTTGGGCCTATACTTTCAAAATCGGGGTTT
Cb-chrI(-)/4091935-4097143	TTCATGTCAATCAT
Cr-Contig8(+)/571990-577344	TTTCTGAAAACAGGTAGTATTATGGTTCCGAGGGTGTAGGGTTCGAAACCGGGCCTAG * * *

Tracking Indels with grid lines

Evolution of Gene Structure

Putative gene or loss

Comparing gene models

Comparing assemblies

Not bad

Needs work

Getting the most out of small aligned regions or orthology-only data

Gene Orthology

Chained Orthologs

Inversion + translocation?

What about synteny blocks that fall off the ends of the displayed reference sequence?

Solution 1: With multiple sequence alignment data, calculate many anchor points (done anyway for grid lines)

Solution 2: For orthology-based synteny blocks, use individual start and end coordinates of orthologs as anchor points.

Solution 3: If all else fails, guess the end of the target block based on the overall length ratio.

length displayed target = (length target/length reference)* length displayed reference

What if the aligned DNA sequences are too distant?

Pecan alignments

Protein orthology based Synteny blocks

What about segmental duplications?

The Future of GBrowse_syn*

- Integration with GBrowse 2.0
- · "On the fly" sequence alignment view
- AJAX-based user interface and navigation (Jbrowse_syn)
- Suggestions?

Acknowledgments

Lincoln Stein Dave Clements Scott Cain Jason Stajich Bonnie Hurwitz Eva Huala Cynthia Lee Jack Chen Ismael Verga Michael Han WormBase Curators

Projects

Funding

