The Chado Schema Manual

Chris Mungall

December 21, 2006



Contents

[1.1.1  Module System| . . . . . . . . ..

[1.2 View layers| . . . . . . . o

[1.2.1 Inter-schema bridges| . . . . . . . . . . . .. o

[2 The general Module: Identifiers|

2.1 Purpose| . . . . . e




CONTENTS
4.2.2  Examples: Current implementations| . . . . . . .. ... ... ... ......
4.3 Table definitionsl . . . . . . . . . .
ADPP g

ii

34
37

90



Chapter 1

Introduction

general intro here
outlines - overview then module descriptions
See also |(GMOD
and FlyBase

1.1 Schema

naming convention

design patterns

1.1.1 Module System

Module Metadata

1.2 View layers

Views can be thought of as wvirtual tables. They provide a powerful abstraction layer over the
database. All views should be portable across all DBMSs

Views in chado are defined on a per module basis. View definitions are maintained in the
chado/modules/MODULE-NAME/views directory.

Included in the view directory are report views. These can usually be found in a file called
chado/modules/MODULE-NAME/views/MODULE-NAME-report.sql

Collections of view definitions are bundled into packages, each package is a .sql file.


http://www.gmod.org
http://www.flybase.org

CHAPTER 1. INTRODUCTION 2

1.2.1 Inter-schema bridges
GODB Bridge

BioSQL Bridge
1.3 DBMS Functions

DBMS Functions in Chado are entirely optional

Functions in chado are defined on a per module basis. Function definitions are maintained in
the chado/modules/MODULE-NAME/functions directory.

Collections of function definitions are bundled into packages. Each package comes with an
interface descriptions and one or more implementations.

Function Interface Definitions

The interface descriptions are stored in a .sqlapi file. The syntax used is a variant of SQL and is
intended primarily as a consistent way of providing information for human, although it should be
parseable by software.

Here is an example, taken from the top of the chado/modules/sequence/functions/subsequence.sqlapi
package. This package provides basic subsequencing functions. It has dependencies on two other
function packages, declared at the top of the file. The package declares multiple functions, only the
first of which is show here, a function for extracting subsequences from the sequence of a feature.

IMPORT reverse_complement (TEXT) FROM ’sequtil’;
IMPORT get_feature_relationship_type_id(TEXT) FROM ’sequence-cv-helper’;

DECLARE FUNCTION subsequence (

srcfeature_id INT REFERENCES feature(feature_id),
fmin INT,
fmax INT,
strand INT

)
RETURNS TEXT;

COMMENT ON FUNCTION subsequence(INT,INT,INT,INT) IS ’extracts a
subsequence from a feature referenced by srcfeature_id, within the
interbase boundaries determined by fmin and fmax, reverse
complementing if strand = -1. The sequence can be DNA or AA. Strand



CHAPTER 1. INTRODUCTION 3

must always by >0 for AA sequences’;

Function Implementations

The goal is to provide implementations for different dialects of procedural SQL. Currently only
PostgreSQL dialect is supported. The psql implementations are stored in .plpgsql files.

1.4 Software



Chapter 2

The general Module: Identifiers

2.1 Purpose

General purpose tables are housed in the module general. The primary purpose of this module is to
provide a means of providing data entities with stable, unique identifiers. In Chado, all identifiable
data entities have bipartite identifiers, consisting of a dbname plus an accession, together with an
optional version suffix.

By convention, these are normally presented using a ’:’ separator. An example of an identifier
in this notation would be GO:0008045 or FlyBase :FBgn00000001. In the Chado schema the atomic
units are the dbname and the accession, the separator is introduced only in the presentation layer.
Each dbname uniquely identifies the authority responsible for a particular ID-space (so there cannot
be two GO in any single Chado instance). The accession must be unique within the ID-space.
Thus there can be two accessions 0008045, but there can only be one data artefact identified as
GO:0008045.

These uniqueness constraints are encoded in the schema, so it is impossible for any Chado
relational database instance to violate them.

Each identifier is stored as a row in the dbxref table, with the dbname stored in the db table.
Keeping the dbname in a separate db table ensures that the Chado schema retains its commitment
to normalization. Entries in other tables can refer to entries in the dbxref table by means of foreign
keys.

Note that all stable identifiers are stored in the dbxref table, whether or not they refer to
‘external’ data entities. Chado does not have an explicit notion of a data entity being external.
Some dbxrefs have further information fully fleshed out in other tables in the database, and others
are 'dangling’ dbxrefs.

2.2 Design patterns

Primary identifiers: ENTITY .dbxref_id REFERENCES dbxref(dbxref_id)



CHAPTER 2. THE GENERAL MODULE: IDENTIFIERS 5

Secondary identifiers: ENTITY_DBXREF.dbxref_id

2.3 Tables

The two main tables are dbxref (for the identifier itself) and db (for the name of the DB or ID-
granting authority). By separating the db into its own table rather than duplicating the name in
the dbxref we retain normalization

A dbxref identifier has two key parts: a db_id column that refers to an entry in the db table,
and an accession column, that must be a locally unique identifier within the db referred to by the
db_id column. An optional third column is the version column. Taken together, these 3 columns
constitute a unique key.

The db is a database authority. Typical dbs in bioinformatics are FlyBase, GO, UniProt, NCBI,
MGI, etc. The authority is generally known by this sortened form (the db.name, which is unique
within the bioinformatics and biomedical realm. See below for more on uniqueness. This name is
typically in short mnemonic (but human-friendly) form, and uniquely identifies the DB/authority
(enforced by uniqueness constraint). Examples include FlyBase, GO, MGI. Short human-friendly
names are encouraged, although longer names (such as full LSID prefixes) may also be used. The
name should be a valid XML NMTOKEN (see XML specification for details) - for example, it should
not start with a number. This constraint is to help syntactic interoperability with other identifier
schemes. To ensure interoperability with other Chado databases, the same db.names should be
used (e.g. FlyBase should be used consistently instead of FB). This will prevent duplicate dbxref
rows being created if and when databases are merged. At the same time, uniqueness must be
preserved: there must not be two GOs. See below for more information.

2.4 URLs and URIs

See the following for background:
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/URL

Basically, a URI is an addressing scheme. The form of URI most people are familiar with are
URLs; but not all URIs are URLs. Another URI addressing scheme is the URN; for example,
LSIDs use URNS.

People often expect URLs to be resolvable using standard technology (eg a web browser) to a
resource intended for humans, but this isn’t always the case. URNs may require other software to
resolve them; eg LSID resolver.

The db table has columns for both URL and URI. The former is intended just to go to a website
like the FlyBase or GO home page. The latter is intended as a globally unique addressing scheme
that should be interoperable with other schemes. For example GO may be a unique identifier for the
Gene Ontology ID space by fiat within the bioinformatics community, but not outside. Although
Chado only cares about the former, it may have to interoperate with schemes that care about truly



CHAPTER 2. THE GENERAL MODULE: IDENTIFIERS 6

global uniqueness, hence URIs.

This column is nullable, so it is possible to defer decision on what the unique URI for a particular
authority is if this information is not known up-front. See below for mechanisms for assigning URIs
to DBs and ensuring uniqueness.

2.5 Identifiers and interoperability between Chado instances

2.6 Table Definitions

tableinfo
NULL
Table 2.1: tableinfo

Column Datatype Description
tableinfo_id integer
name varchar
primary_key_column  varchar
is_view integer
view_on_table_id integer
superclass_table_id integer
is_updateable integer

modification_date date



CHAPTER 2. THE GENERAL MODULE: IDENTIFIERS 7

db

A database authority. Typical dbs in bioinformatics are FlyBase, GO, UniProt, NCBI, MGI, etc.
The authority is generally known by this sortened form, which is unique within the bioinformatics
and biomedical realm.



CHAPTER 2. THE GENERAL MODULE: IDENTIFIERS

Column

Datatype

Table 2.2: db

Description

db_id
name

description
urlprefix
url

uri

integer
varchar

varchar
varchar
varchar

varchar

A (typically short, mnemonic) name of the ID-space,
database or ID-granting authority. The db.name
uniquely identifies the DB/authority. Examples
include FlyBase, GO, MGI. Short human-friendly
names are encouraged, although longer names (such
as full LSID prefixes) may also be used. The name
should be a valid XML NMTOKEN (see XML speci-
fication for details) - for example, it should not start
with a number. This constraint is to help syntac-
tic interoperability with other identifier schemes. To
ensure interoperability with other Chado databases,
the same db.names should be used (e.g. FlyBase
should be used consistently instead of FB). This
will prevent duplicate dbxref rows being created if
and when databases are merged. At the same time,
uniqueness must be preserved: there must not be two
”GO”s. See supporting docs for more info
contact_id int,

A W3C compliant URL with the address of a website
containing information about the DB/authority.
For example, http://www.flybase.org,
http://www.geneontology.org. ~ The URL is in-
tended for humans rather than software agents

A W3C compliant URI that contains a unique
namespace for the DB/authority. Some ID schemes
(eg LSID) require this. The URI is intended for soft-
ware agents rather than humans. It does not need to
be a resolvable URL. However, certain DBs may pre-
fer the URI to be a resolvable URL that has human-
readable information on the other end. Other DBs
may provide URNs (eg LSID URNs) that require
software agents to be resolved. Note that it is per-
fectly acceptable for the db.name column to be the
same as the URI column (provided it is a valid URI).
However, it is encouraged that a short form is used
as the db.name. See supporting docs for more infor-
mation



CHAPTER 2. THE GENERAL MODULE: IDENTIFIERS 9

dbxref

A unique, global, public, stable identifier. Not necessarily an eXternal reference - can reference
data items inside the particular chado instance being used. Typically a row in a table can be
uniquely identified with a primary identifier (called dbxref id); a table may also have secondary
identifiers (in a linking table {T;_dbxref). A dbxref is generally written as jDB;:jACCESSION; or
as DB} :jACCESSION; .the ID-spajVERSION;.

Table 2.3: dbxref

Column Datatype Description

dbxref_id integer

db_d integer

accession varchar The local part of the identifier. Guaranteed by the

db authority to be unique for that db.
version varchar
description  text



CHAPTER 2. THE GENERAL MODULE: IDENTIFIERS

project

Table 2.4: project

Column Datatype Description
project_id  integer
name varchar

description  varchar



Chapter 3

The cv Module: Ontologies

3.1 Introduction

We have seen how the sequence module makes extensive use of terms taken from various ontologies
such as SO and the OBO Relations Ontology, using the type_id foreign key column. In addition,
features can be annotated using ontologies such as GO using the feature_cvterm linking table.
These terms are modelled using the cv module, the core of which is the cvterm table.

An ontology, terminology or cv (controlled vocabulary) , is a collection of terms (here equivalent
to what are more typically called classes, types, categories or kinds in the ontology literature[REF])
in a particular domain of interest. Examples include "gene” (from SO), ”transcription factor
activity” (from GO molecular function) and ”lymphocyte” (from OBO-Cell). The chado cv module
is based on the GO Database schema, described here[14]. Terms are stored in the cvterm table,
and relationships between terms are stored in the cvterm_relationship table. This table follows an
analogous structure to the feature_relationship table, in that it has columns subject_id, object_id
and type_id. Here, all three of these foreign keys refer to rows in the cvterm table.

A detailed treatment of relationship types in biological ontologies can be found here[13]. Of
particular interest to Chado is the is_a relation, which specifies a sub- typing relationship between
two terms or classes. Recall that tables in the sequence module frequently (such as the feature
table) defined a type_id foreign key column to indicate the specific type or class of entity for each
row in that table. The combination of the type_id column and the is_a relationship gives Chado a
data sub- classing system, beyond what is possible with traditional SQL database semantics.

This is discussed further in a later section The collection of cvterms and cvterm_relationships
can be considered to constitute vertices and edges in a graph. This graph is typically acyclic (a
DAG), though it is not guaranteed to be as certain relationship types are allowed to form cycles.

11



CHAPTER 3. THE CV MODULE: ONTOLOGIES 12

3.1.1 Transitive Closure
Rules

The cvtermpath is for calculating the reflexive transitive closure of a relationship, and any derived
relationships

Normal (direct) relationships are stored in the cvterm relationship table. A entry in this table
represents a cvterm_relationship S over some relation R.

S = Subj R Obj

For example:
S = "cardioblast" develops_from "mesodermal cell"
The relation is_a represents a special kind of relation - subsumption, or inheritance.

If X is_a Y, then it follows that all of Y’s cvterm_relationship statements are inherited by X

[Rule 1]

If X is_a Y
and YR Z

then X R(inh) Z
\begin{verbatim}

For example

\begin{verbatim}
"cilium axoneme" is_a "axoneme"
"axoneme" part_of '"cell projection"
THEREFORE:

"cilium axoneme" part_of(inh) "cell projection"

Here we use T(inh) to represent an inherited relationship.

Populating cvterm_path

The cvtermpath table stores the reflexive transitive closure of a relationship, taking into account
subsumption/inheritance. The number of intermediate relationships is represented in the ’distance’
column of the table.

Here we use T(path) to represent the 'path’ or closure of a relationship. Every T(path) is stored
in cvtermpath. We use the same cvterm for T, the fact that it is a path is implicit.

We use these rules:

Reflexive relationships:



CHAPTER 3. THE CV MODULE: ONTOLOGIES 13

for all relations T, X T(path) X

In this case the distance=0

Direct relationships:

these are also included in the cvtermpath table, distance=1

If X TY Then X T(path) Y

Transitive relationships:

these have distance ; 1; these also make use of inheritance rule, [Rulel], which gives us T(inh)
If X T(inh) Y and Y T(path) Z Then X T(path) Z

Note that this rule is recursive.

These rules should be used for populating cvtermpath. Attempting to calculate a more general
closure where all relations are treated equally or ignored will produce combinatorial explosions over
certain ontologies (eg flybase anatomy ontology)

What does this mean in practice?

For a typical database, which may only have relations is_a , part_of and develops_from, we
will end up with 3 sets of paths.

The is_a closure, is_a (path) will include paths over cvterm relationships that look like this:

a is_a b is_a c is_a d is_a e

The "part_of" closure, part_of(path) will include paths over
cvterm_relationships that look like this:

a is_a b part_of c part_of d is_a e part_of f

The "develops_from" closure, develops_from(path) will include paths over
cvterm_relationships that look like this:

a develops_from b develops_from c is_a d is_a e develops_from f

It may be tempting to mix different non is_a relationships in the same path, but this should
NEVER be done - there will be an unacceptable combinatorial explosion in many cases. Besides,
there is no use for such a cvtermpath; it is meaningless.

Note that for amigolike query behaviour, it is necessary only to query cvtermpath ignoring
cvtermpath.type_id (these are obtained by querying cvterm_relationship)



CHAPTER 3. THE CV MODULE: ONTOLOGIES 14

3.2 Table Definitions

CVv

A controlled vocabulary or ontology. A cv is composed of cvterms (aka terms, classes, types,
universals - relations and properties are also stored in cvterm)) and the relationships between them

Table 3.1: cv
Column Datatype Description
cv-id integer
name varchar The name of the ontology. This corresponds to the

obo-format -namespace-. c¢v names uniquely identify
the cv. In obo file format, the cv.name is known as
the namespace

definition  text A text description of the criteria for membership of
this ontology



CHAPTER 3. THE CV MODULE: ONTOLOGIES

cvterm

15

A term, class, universal or type within an ontology or controlled vocabulary. This table is also
used for relations and properties. cvterms constitute nodes in the graph defined by the collection
of cvterms and cvterm_relationships

Table 3.2: cvterm

Column Datatype Description

cvterm_id integer

cv_id integer The cv/ontology /namespace to which this cvterm
belongs

name varchar A concise human-readable name or label for the
cvterm. uniquely identifies a cvterm within a cv

definition text A human-readable text definition

dbxref_id integer Primary identifier dbxref - The unique global OBO
identifier for this cvterm. Note that a cvterm may
have multiple secondary dbxrefs - see also table:
cvterm_dbxref

is_obsolete integer Boolean 0=false,1=true; see GO documentation for
details of obsoletion. note that two terms with dif-
ferent primary dbxrefs may exist if one is obsolete

is_relationshiptype integer Boolean (0=false,1=true relations or relationship

types (also known as Typedefs in OBO format, or as
properties or slots) form a cv/ontology in themselves.
We use this flag to indicate whether this cvterm is an
actual term/class/universal or a relation. Relations
may be drawn from the OBO Relations ontology, but
are not exclusively drawn from there



CHAPTER 3. THE CV MODULE: ONTOLOGIES 16

cvterm_relationship

a name can mean different things in different contexts; for example ”chromosome” in SO and GO.
A name should be unique within an ontology/cv. A name may exist twice in a cv, in both obsolete
and non-obsolete forms - these will be for different cvterms with different OBO identifiers; so GO
documentation for more details on obsoletion. Note that occasionally multiple obsolete terms with
the same name will exist in the same cv. If this is a possibility for the ontology under consideration
(eg GO) then the ID should be appended to the name to ensure uniqueness

Table 3.3: cvterm_relationship

Column Datatype Description
cvterm_relationship_id  integer
type-id integer The nature of the relationship between subject and

object. Note that relations are also housed in the
cvterm table, typically from the OBO relationship
ontology, although other relationship types are al-
lowed

subject_id integer the subject of the subj-predicate-obj sentence. The
cvterm_relationship is about the subject. In a graph,
this typically corresponds to the child node

object_id integer the object of the subj-predicate-obj sentence. The
cvterm _relationship refers to the object. In a graph,
this typically corresponds to the parent node



CHAPTER 3. THE CV MODULE: ONTOLOGIES

cvtermpath

17

The reflexive transitive closure of the cvterm_relationship relation. For a full discussion, see the file
populating-cvtermpath.txt in this directory

Table 3.4: cvtermpath

Column Datatype Description

cvtermpath_id integer

type_id integer The relationship type that this is a closure over. If
null, then this is a closure over ALL relationship
types. If non-null, then this references a relation-
ship cvterm - note that the closure will apply to both
this relationship AND the OBO_REL:is_a (subclass)
relationship

subject_id integer

object_id integer

cv-id integer Closures will mostly be within one cv. If the closure
of a relationship traverses a cv, then this refers to
the cv of the object_id cvterm

pathdistance integer The number of steps required to get from the sub-

ject cvterm to the object cvterm, counting from zero
(reflexive relationship)



CHAPTER 3. THE CV MODULE: ONTOLOGIES 18

cvtermsynonym

A cvterm actually represents a distinct class or concept. A concept can be refered to by different
phrases or names. In addition to the primary name (cvterm.name) there can be a number of
alternative aliases or synonyms. For example, -T cell- as a synonym for -T lymphocyte-

Table 3.5: cvtermsynonym

Column Datatype Description
cvtermsynonym_id  integer

cvterm_id integer

synonym varchar

type_id integer A synonym can be exact, narrow or borader than



CHAPTER 3. THE CV MODULE: ONTOLOGIES 19

cvterm_dbxref

In addition to the primary identifier (cvterm.dbxref id) a cvterm can have zero or more secondary
identifiers/dbxrefs, which may refer to records in external databases. The exact semantics of
cvterm_dbxref are not fixed. For example: the dbxref could be a pubmed ID that is pertinent to the
cvterm, or it could be an equivalent or similar term in another ontology. For example, GO cvterms
are typically linked to InterPro IDs, even though the nature of the relationship between them is
largely one of statistical association. The dbxref may be have data records attached in the same
database instance, or it could be a "hanging” dbxref pointing to some external database. NOTE:
If the desired objective is to link two cvterms together, and the nature of the relation is known
and holds for all instances of the subject cvterm then consider instead using cvterm_relationship
together with a well-defined relation.

Table 3.6: cvterm_dbxref

Column Datatype Description

cvterm_dbxref_id  integer

cvterm_id integer

dbxref_id integer

is_for_definition integer A cvterm.definition should be supported by one or

more references. If this column is true, the dbxref is
not for a term in an external db - it is a dbxref for
provenance information for the definition



CHAPTER 3. THE CV MODULE: ONTOLOGIES 20

cvtermprop

Additional extensible properties can be attached to a cvterm using this table. Corresponds to
-AnnotationProperty- in W3C OWL format

Table 3.7: cvtermprop

Column Datatype Description

cvtermprop-id integer

cvterm_id integer

type_id integer The name of the property/slot is a cvterm. The
meaning of the property is defined in that cvterm

value text The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion

rank integer Property-Value ordering. Any cvterm can have mul-

tiple values for any particular property type - these
are ordered in a list using rank, counting from zero.
For properties that are single-valued rather than
multi-valued, the default 0 value should be used



CHAPTER 3. THE CV MODULE: ONTOLOGIES 21

dbxrefprop

Metadata about a dbxref. Note that this is not defined in the dbxref module, as it depends on the
cvterm table. This table has a structure analagous to cvtermprop

Table 3.8: dbxrefprop

Column Datatype Description
dbxrefprop_id integer

dbxref_id integer

type_id integer

value text

rank integer



CHAPTER 3. THE CV MODULE: ONTOLOGIES 22

organism

The organismal taxonomic classification. Note that phylogenies are represented using the phylogeny
module, and taxonomies can be represented using the cvterm module or the phylogeny module

Table 3.9: organism

Column Datatype Description

organism_id integer

abbreviation varchar

genus varchar

species varchar A type of organism is always uniquely identified

by genus+species. When mapping from the NCBI
taxonomy names.dmp file, the unique-name column
must be used where it is present, as the name column
is not always unique (eg environmental samples). If
a particular strain or subspecies is to be represented,
this is appended onto the species name. Follows stan-
dard NCBI taxonomy pattern

common name varchar

comment text



CHAPTER 3. THE CV MODULE: ONTOLOGIES

organism_dbxref

Column

Table 3.10: organism_dbxref

Datatype Description

organism_dbxref_id
organism_id
dbxref_id

integer
integer
integer

23



CHAPTER 3. THE CV MODULE: ONTOLOGIES

organismprop

tag-value properties - follows standard chado model

Table 3.11: organismprop

Column Datatype Description
organismprop_id integer

organism_id integer

type-id integer

value text

rank integer

24



Chapter 4

The Sequence Module: Features

4.1 The role of features in Chado

The central module in Chado is the sequence module. The fundamental table within this module
is the feature table, for describing biological sequence features. Chado defines a feature to be a
region of a biological polymer (typically a DNA, RNA, or a polypeptide molecule) or an aggregate
of regions on this polymer. As the term is used here, region can be the entire extent of the molecule,
or a junction between two bases. Features can be typed according to a classification scheme[6], they
can be localized relative to other features, and they can form part-whole and other relationships
with other features.

There are many different types of features. Examples include gene, exon, transcript, regulatory
region, chromosome, sequence variation, polypeptide, protein domain and cross-genome match
regions. Chado does not have a different table for each kind of feature; all features are stored in
the feature table. Types of feature are differentiated using a type_id column, which is a foreign key
to the cvterm table in the cv (ontology) module, described later. This allows us to type features
according to the Sequence Ontology. The use of ontologies to type tables gives Chado a subtyping
mechanism, which is absent from the standard relational model. For example, SO tells us that
mRNA and snRNA are different kinds of transcript. This is discussed in more in the next section.
For the purposes of discussion in this document, it can be assumed that any reference to genes,
exons, polypeptides, SNPs, chromosomes, transcripts and various kinds of RNAs and so on refers
to features of that sequence ontology type.

The Chado feature table has a text-valued column named residues for storing the sequence
of the feature. The value of this column is string of IUPAC[REF] symbols corresponding to the
sequence of biochemical residues encoded by the feature. This column is optional, because the
sequence of the feature may not be known. Even if the sequence of a feature is known, it may not
be desirable to store it in the feature table, as it may be possible to infer the sequence from the
sequence of other features in the database. For example, exon sequences are generally not stored,
as these can trivially be inferred from the sequence of the genomic feature on which the exon is
located. In contrast, mRNA and other processed transcript sequences are stored as it is less trivial
and more computationally expensive to dynamically splice together the mRNA sequence.

25



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 26
cvterm
| arganism cvterm
i i [
\ type_id : :
A organism_id ;
feature_relationship —— o, P —— ! ?EE:—_'U_ _
feature_relationship_id . !
subject id ' '
object_id ' '
type id - :
rank o A A
feature
feature_id faaturelos
N name feature_id __{ featureloc_id
subject_id uniquename ] feature_id _
type_id srqleature_m
organism_id :m:lx
residues
object_id seqglen srcfeature _id . strand
md5checksum =] rank
locgroup
feature id
— feature_id
feature cvterm
- featureprop
feature_cvterm id _
feature id featureprop_id
cvierm id feature_id
is not type_id
value
¥
! v
! T type id
| cvterm_id : e

evterm




CHAPTER 4. THE SEQUENCE MODULE: FEATURES 27

It is important to realize that the existence of a row in the feature table does not necessarily
imply that the feature has been characterized as a result of genome annotation. It is possible to
have features of SO type gene for genes that have only been characterized through genetic studies
[REF], and for which neither sequence nor sequence location is known. This is in contrast to other
feature schemas (such as GFF) in which it is not possible to represent features without representing
a location in sequence coordinates. This design decision is crucial for the use of Chado as a database
for integrating information about the same entity from multiple perspectives.

Because the sequence is stored as a column in the feature table rather than as an independent
table, sequences cannot exist in the absence of a row in the feature table; sequences are dependent
upon features. This is in contrast with almost all other genomics schemas that allow independent
treatment of sequences and features. This design decision follows for both philosophical and prag-
matic reasons. The feature table also contains columns seqlen and md5checksum, for storing the
length of the sequence and the 32-character checksum computed using the MD5 [RL Rivest. RFC
1321: The md5 message-digest algorithm. Technical report, Internet Activities Board, April 1992.]
algorithm. The length and checksum can be stored even when the residues column is null valued.
The checksum is useful for checking if two or more features share the same sequence, without
comparing the entire sequence string.

The existence of these columns means that this table is no longer in third normal form (3NF)[REF],
which is usually a desirable formal property of relational database. On balance, the utility of these
columns outweighs the disadvantages of violating 3NF [updates]|. In practical terms, it means that
the values of the residues, seqlen and md5checksum columns are interdependent and cannot be
updated independently of one another.

The feature table has a Boolean valued column, is_analysis, indicating whether this is an an-
notation or a computed feature from a computational analysis. Annotations are features that are
generated or blessed by a human curator, or in some cases by an integrated genome pipeline[7-9]
capable of synthesising gene models and other annotations from in-silico analyses. They constitute
the definitive version of a particular feature, in contrast to the features generated by gene prediction
programs and sequence similarity searches such as BLAST.

The feature table has a dbxref_id column that refers to a global, stable public identifier for
the feature. This column is optional, because not all classes of features have such identifiers for
example, features resulting from gene predictions and blast HSP features may be less stable and
thus lack public identifiers. It is recommended that most annotated features have dbxref_ids. The
organism_id column refers to a row in the organism table (defined in the organism module). This
column is mandatoryall features derive from a single organism.

The name and uniquename columns allow features to be labelled. The name column is optional,
but it is recommended that all annotated features (as opposed to those that arise from purely
computational methods) have names. The name should be a simple, concise, human-friendly display
label (such as a gene or gene product symbol, as defined by the nomenclature rules of governing the
organism). User interface software (such as GBrowse[10] and Apollo[11]) can use the name column
for labelling feature glyphs in user displays. Uniqueness of name within any particular organism
or genome project is a desirable characteristic, but is not enforced in the schema, since there are
occasions where name clashes are unavoidable. In contrast, the uniquename column is required,
and guaranteed to be unique when taken in combination with organism_id and type_id this is



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 28

enforced by a constraint in the relational schema. The uniquename may be human-friendly (for
example, it can be the same as the name); however, it is not guaranteed to be so, and in general
should not be displayed to the end user. Its use is mainly as an alternate unique key on the table .

The uniquename normally conforms to some naming rule these rules may vary across chado
instances, but they should all guarantee the uniqueness of the uniquename, organism_id, type_id
triple.

Feature synonyms

In addition to having a name or symbol, it is common for features such as genes to have multiple
synonyms or aliases. These synonyms may exist due to different publications referring to the same
gene with different symbols, or because one gene was once believed to be two or more separate
genes. A common curation operation on genes[REF] is splitting and merging, which results in the
creation of synonyms.

This is modelled in Chado with a synonym table and a feature_synonym linking table; thus
multiple features can potentially share the same, and a single feature can be have multiple synonyms.
Use of a synonym in the literature is indicated with a pub_id foreign key referencing the pub table
(described later in the section on publications module), indicating historical provenance for the use
of a synonym.

Feature locations

Features can potentially be localized using a sequence coordinate system. A relative localization
model is used, so all feature localizations must be relative to another feature. Some features such
as those of type chromosome are not localized in sequence coordinates. Locations are stored in the
featureloc table, also part of the sequence module. Other non-sequence oriented kinds of localization
(such as physical localization from in situ experiments, or genetic localizations from linkage studies)
are modelled outside the sequence module (for example, in the expression or map module).

A feature can have zero or more featurelocs, although it will typically have either one (for local-
ized features for which the location is known) or zero (for unlocalized features such as chromosomes,
or for features for which the location is not yet known, such as a gene discovered using classical
genetics techniques). Features with multiple featurelocs will be explained later.

A featureloc is an interval in sequence coordinates (see figure), bounded by the fmin
and fmax columns, each representing the lower and upper linear position of the boundary between
bases or base pairs, with directionality indicated by the strand column. Interbase coordinates were
chosen over the more commonly used base-oriented coordinate system because they are more nat-
urally amenable to the standard arithmetic operations that are typically performed upon sequence
coordinates. This leads to cleaner and more efficient database coding logic that is arguably less
prone to errors. Of course, interbase coordinates are typically transformed into the more common
base-oriented system used by BLAST reports and so forth prior to presentation to the end-user.

The relational schema includes a constraint which ensures that fmin j= fmax is always true any
attempt to set the database in a state which violates this will flag an error .



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 29

o 1 2 3 4 5 6 7 B8 9 10

fmin=0
fmax=3
residues=ATG

As mentioned previously, a featureloc must be localized relative to another feature, indicated
using the srcfeature_id foreign key column, referencing the feature table. There is nothing in the
schema prohibiting localization chains; for example, locating an exon relative to a contig that is
itself localized relative to a chromosome (see figure). The majority of Chado database instances will
not require this flexibility; features are typically located relative to chromosomes or chromosomes
arms. Nevertheless, the ability to store such localization networks or location graphs can be useful
for unfinished genomes or parts of genomes such as heterochromatin [REF], in which it is desirable
to locate features relative to stable contigs or scaffolds, which are themselves localized in an unstable
assembly to chromosomes or chromosome arms. Localization chains do not necessarily only span
assemblies protein domains may be localized relative to polypeptide features, themselves localized
to a transcript (or to the genome, as is more common). Chains may also span sequence alignments.

We will now present a short formal treatment of the properties of these hierarchies of localization
using graph theory. This treatment can be ignored for the purposes of understanding the basics
of the Chado schema; the end-user of the database will be entirely unaware of such technicalities.
However, for the purposes of software engineering and ensuring interoperability between different
Chado database instances and different applications, formal treatments such as these are an essential
requirement for software specifications.

We can define a featureloc graph (LG) as being a set of vertices and edges, with each feature
constituting a vertex, and each featureloc constituting an edge going from the parent feature_id
vertex to the srcfeature_id vertex. The node is labelled with column values from the feature table,
and the edge is labelled with column values from the featureloc table. The LG is not allowed to
contain cycles it is a directed acyclic graph (DAG). This includes self-cycles - no feature may be
localized relative to itself.

The roots of the LG are the features that do not have featureloc row typically chromosomes
or chromosome arms, although LG roots may also be unassembled contigs, scaffolds or features for
which sequence localization is not get known (such as genes discovered through classical genetics
techniques). The leaves of the LG are any features that are not present as a srcfeature_id in any
featurelocs row typically the bulk of features, such as genes, exons, matches and so on. The depth
of a particular LG g, denoted D(g), is the maximum number of edges between any leaf- root pair.
As has been previously noted, many Chados will have LGs with a uniform depth of 1. Such LGs
are said to be simple and the features within them are said to be singletons. The maximum depth
of all LGs in a particular database instance i is denoted LGDmax(i).



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 30

exon:
dpp-Ex2

\ / E
! ! .
\ i group:0 :
L] ! "
'k J' '
group:
* contig: :
CTGOO000123 .
A\ .
1|| i .l'r | ]
: F !
\ P group:0 '
\ v |
\ s .
\ s .
A ! Y ¥

. s
* chromosome:
chrz




CHAPTER 4. THE SEQUENCE MODULE: FEATURES 31

The schema does not constrain the maximum depth of the LG. This flexibility proves useful
when applying Chado to the highly variable needs of multiple different genome projects; however,
it can lead to efficiency problems when querying the database. It can also make it more difficult to
write software to interoperate with the database, as the software must take into account different
contingencies. We can solve this problem by collapsing the LG, in which a graph of arbitrary depth
is flattened to a depth of 1, transforming or projecting featurelocs onto the root features (typically
chromosomes or chromosome arms). The original featurelocs are left unaltered in the database,
and additional redundant featurelocs between leaf and root features are added to the database.
These new featurelocs are known as inferred featurelocs. In the schema inferred featurelocs are
differentiated from direct featurelocs using the locgroup column. Direct (non-inferred) localizations
are indicated by the locgroup column taking value 0, and transitive localizations are indicated by
this column having value 0.

The terminology used above can be used to define specifications for applications intended to
interoperate with the database. Feature location pairs Certain kinds of features have paired loca-
tions. These include hits and high-scoring- pairs (HSPs) coming from sequence search programs
such as BLAST, and syntenic chromosomal regions. These kinds of features have two featurelocs
(in contrast to the usual 1) one on the query feature and one on the subject (hit) feature. We
differentiate the two featurelocs with the rank column. A rank of 0 indicates a location relative to
the query (as is the default for most features), and a rank of 1 indicates a location relative to the
subject (hit) feature.

For multiple alignments (e.g. CLUSTALW [REF] results), this scheme is extended to unbounded
ranks [0..n], with arbitrary ordering. Alignments are stored in the residue_info column. CIGAR
format[REF] is used for pairwise alignments.

Multiple featurelocs may also be required for features of type sequence_variant (SO:0000109),
indicating points or extents which vary between reference and non- reference sequences. From a
modelling standpoint, variants are conceptually similar to alignments; with variants we are noting a
difference as opposed to a similarity. Here a rank of zero indicates the wild-type (or reference) fea-
ture and a rank of one or more indicates the variant (or non-reference) feature, with the residue_info
column representing the sequence on wild-type and variant. [?figure | A featureloc is uniquely iden-
tified by the [feature_id, rank, locgroup]| triple. This means that no feature can have more than one
featureloc with the same rank and locgroup. In other words, rank and locgroup uniquely identify
a featureloc for any particular feature.

Difference between the chado location model and other schemas

There is a crucial difference between the Chado location model and the sequence location model
used in other schemas, such as GFF, GenBank, BioSQL, BioPerl, etc.

First, Chado is the only model to use the concept of rank and locgroup. Second, and perhaps
more important, all these other models allow discontiguous locations (also known as split locations).
These will be familiar to anyone who has inspected GenBank annotated DNA records for an or-
ganism that has introns within the transcripts; the transcript location is modelled as a sequence of
non-contiguous intervals on the genome. The interval represents the location of an exon.



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 32

Although Chado allows a feature to have multiple locations, this is only with variable rank and
locgroup this is enforced by a uniqueness constraint in the relational schema. We made a conscious
decision to avoid discontiguous locations, because the extra degree of freedom this affords results
in either redundancies or ambiguities. Redundancies arise when exons are stored in addition to a
discontiguous transcript, and ambiguities arise by virtue of the fact that explicit representation of
the exons may be seen as optional. Ambiguities are undesirable as it makes it harder for databases
to interoperate. The omission of discontiguous locations does not restrict the expressive capacity
of Chado in any way, because any discontiguous location can be modelled as a collection of features
with contiguous locations. For example, a transcript with a discontiguous location can be modelled
as a collection of exons with contiguous featurelocs, and a transcript with a single contiguous
featureloc representing the outer boundaries defined by the outermost exons.

Extensible feature properties

The feature table has a fairly limited set of columns for recording feature data. For example, there
is no anticodon column for recording the RNA triplet for the adapter in a tRNA feature (all feature
types, including tRNAs, are recorded as rows in the feature table). If we were to add columns such
as anticodon then the number of columns in the table would become very large and difficult to
manage; most would end up being nullable (for example, anticodon does not apply to non-tRNA
features). This is because different organisms, different types of feature and different projects have
differing needs regarding what extra data should be attached to any one feature. How then are
we to attach both biologically relevant and project specific data to features? Chado solves this by
using an extensible mechanism for attaching attribute- value pairs to features via the featureprop
table. The featureprop.type_id foreign key column references a property in the Sequence Feature
Property Ontology (SFPO)url], distributed as part of Chado. The value text column stores the
value filler for that property. Sets or lists of values for any property can be stored in the featureprop
table, differentiated by the value of the rank column. Provenance for the featureprop assignment
is stored using the featureprop_pub table in the publications module, described later, allowing
multiple publications to be associated with any one assignment.

Because featureprop values can be of an arbitrary size, they are modelled using a SQL TEXT
type. This has some disadvantages from a query efficiency perspective.

Numeric values cannot be indexed correctly, and sorting the results of a query can only be done
via a SQL casting operation, or in software outside of the database management system, either of
which may result in poorer performance. This is one of several areas in Chado where performance
has been traded in favour of a simpler, more abstract and generic model. Later on we will look at
strategies for offsetting some of these performance penalties.

[example table]
Feature annotations
Detailed annotations, such as associations to Gene Ontology[5] (GO) terms or Cell Ontology[12]

terms, can be attached to features using the feature_cvterm linking table. This allows multiple
ontology terms to be associated with each feature.



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 33

Provenance data can be attached with the feature_cvtermprop and feature_cvterm_dbxref higher-
order linking tables. It is up to the curation policy of each individual Chado database instance to
decide which kinds of features will be linked using feature_cvterm. Some may link terms to gene
features, others to the distinct gene products (processed RNAs and polypeptides) linked to the
gene features (see next section)

Relationships between features

Biological features are inter-related; exons are part of transcripts, transcripts are part of genes,
and polypeptides are derived from messenger RNAs. Relationships between individual features
are stored in the feature_relationship table, which connects two features via the subject_id and
object_id columns (foreign keys referring to the feature table) and a type_id (a foreign key referring
to a relationship type in an ontology, either SO[6], or the OBO relationship ontology, OBO-REL[13])
indicating the nature of the relationship between subject and object features. The core relationships
between features are part-whole (part_of) or temporal (derives_from). ”Subject” and ”Object”
describes the linguistic role the two features play in a sentence describing the feature_relationship.
In English, many sentences follow a subject, predicate, object word order. To say that ”exons
are part_of transcripts” is the correct way to describe a typical biological relationship. To say
”transcripts are part_of exons” is either grammatically or biologically incorrect.

We use this same terminology (which comes from RDF[REF]) again in the c¢v module. The
collection of features and feature_relationships can be considered as vertices and edges in a graph,
known as the Feature Graph (FG). Some example feature graphs are shown [figure FEATURE-
GRAPH]. The FG is independent of the LG in general the FG and the LG should have no edges in
common if there is a featureloc connecting two features, then the addition of a feature_relationship
between these same two features is redundant.

The FG is required in order to query the database for such things as alternately spliced genes,
exons shared between transcripts, etc.

Although the chado schema admits any FG, certain configurations are biologically meaningless,
and should not be used. The FG can be constrained by the Sequence Ontology. Standardized FG
structures are required for complex applications to be interoperable - this is discussed later on.

Unlike the LG, the FG may be cyclic, although cycles in the FG are not common. The subset
of the FG corresponding to certain kinds of relationship may be acyclic for example, the subset of
the FG connecting parts with wholes via part_of must be acyclic.

Canonical gene models
Regulatory regions
Sequence variants
Feature example

[Diagram showing an example that puts this all together]



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 34

4.2 Best Practices

Chado is a generic schema, which means anyone writing software to query or write to chado (either
middleware or applications) should be aware of the different ways in which data can be stored.
We want to strike a nice balance between flexibility and extensibility on the one hand, and strong
typing and rigor on the other. We want to avoid the situation we have with GenBank entries where
there are a dozen ways of representing a gene model, but we need to be able to cope with the
constant surprises biology throws at us in an attempt to confound our nice computable models.

Chado uses a layered model - this is tried and tested in software engineering. Some generic
software can be targeted at the lower layers and be guaranteed to work no matter what. Other
more specific software needs a more tightly defined rigorous model and should be targeted at the
upper layers.

We require validation software and more formal/computable descriptions of these layers and
policies - for now natural language descriptions will have to suffice.

4.2.1 Chado Compliance Layers
Layer 0: Relational Schema

Level 0 conformance basically means the schema is adhered to. Obviously, this is enforced by the
DBMS.

Layer 1: Ontologies

Level 1 conformance is minimal conformance to SO - all feature.types must be SO terms, and all
feature_relationship.types must be SO relationship types.

Layer 2: Graph

Level 2 conformance is graph conformance to SO - all feature_relationships between a feature of
type X and Y must correspond to relationship of that type in SO; for example, mRNA can be
part_of gene, but mRNA can not be part_of golden_path_region. [more detailed/formal explanation
to come]. In practice Level 2 conformance may be undesirable, we may need to make modifications
to SO.

Orthogonal to these layers are various additional policy decisions. Some of these are more
tolerant of non-conformance than others. (there is also some overlaps with levels 1/2).

4.2.2 Examples: Current implementations

I have listed how FB implements each policy choice - other chado instances feel free to add....



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 35

TIGR: Currently at level 0 conformance, though most (if not all) of the terms being used have
an obvious counterpart in SO. Therefore these " TIGR Ontology” terms are used in the answers to
the SO-related questions that appear below. We plan on updating our terms with SO terms very
soon.

SO terms used for standard central-dogma gene model

FB: gene mRNA exon protein [other types are derivable]

TIGR: gene transcript CDS exon protein [though the strict answer is for any of these SO
questions is "none” since we do not yet meet level 1 conformance]

NOTE: we should be using 'polypeptide’ instead of 'protein’. For now, software should be
tolerant of both these uses.

SO terms used for storing alignments

FB: match
TIGR: match

NOTE: we want to use the new more specific SO types for match_set, match_part, for hits and
hsps respectively. For now, software should be tolerant of either usage.

TIGR: We've also extended the model for storing pairwise alignments to store multiple align-
ments. Each member of the alignment is featureloced to the 'match’ feature. We’ve used this
representation to store paralogous/orthologous gene families.

feature_relationship.types

FB: partof (for mRNA to gene and exon to mRNA) producedby (for protein to mRNA)

TIGR: part_of (gene-assembly, exon-transcript, assembly-supercontig) produced_by (protein-
CDS, CDS-transcript, transcript-gene)

NOTE: this should be ”part_of” and ”derived_from” to conform to SO. Most read-only software
should be able to safely ignore feature_relationship.type anyway. Protein should be polypeptide -
see note above

NOTE: the main difference between FB and TIGR here is that TIGR introduce an intermediate
CDS feature between mRNA and protein

featureloc policy

FB: all constituent parts of a central dogma gene model are located relative to the same srcfeature
(the chromosome arm). No redundant locations (ie featureloc.group ; 0) are used

TIGR: Redundant locations are used and indicated with featureloc.group ;, 0.



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 36

NOTE: we want to allow some flexibility with this policy. I believe that the constituent parts
linked located relative to the feature should always be followed. This can be stated more formally
as:

IF X is linked to Y via feature\_relationship
AND X is located relative to Z via featureloc.srcfeature\_id
THEN Y must also be located relative to Z via featureloc.srcfeature\_id

TIGR: We’ve followed this policy in adding a featureloc between the protein and genomic
contig in our databases (such a featureloc does not appear in the Chado usage documents). This
additional featureloc simplifies many queries, especially when looking at the genomic context of
‘match’ features associated with proteins.

We should also expect that the fmin/fmax boundaries of a feature be defined the the outermost
boundaries of the outermost constituent part features (this rule may require refinement when we
have promoters, enhancers and so on - but for now we don’t).

As to what the srcfeature should be, it could be a contig, and assembly or a top-level locat-
able feature such as chromosome or chromosome arm. Software should be tolerant of different
choices here. Whilst it is generally always best to locate relative to the topmost feature (ie the
arm/chromosome), sometimes this is not possible or desirable (eg low coverage, heterochromatin).

non-central dogma gene models
FB: we store a lot of non-central dogma gene models; noncoding gene models and pseudogenes
[need to fill in more details here]

TIGR: not many of these stored yet, save for a few pseudogenes and the occasional non-coding
ORF

other features
FB: the FlyBase implementation includes many other feature types, including polyA _site and se-
quence_variant [need to fill in details]

TIGR: using 'SNP’ in some databases

derivable features types

FB: derivable features (introns, UTRs, intergenic_region) are not included. Feature typing is always
done to the most specific, non-derivale level. For example, we never use types ”5_prime_exon”,
”dicistronic_gene”, ”coding_exon” as these are always inferrable. We always use type ”gene” - the
specific type of gene is inferred from the child type (mRNA, tRNA, snRNA, etc).

TIGR: derivable features are not included. currently not storing any tRNAs or snRNAs.



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 37

NOTE: whilst it is perfectly permissable to include redundant derivable features (useful for
warehouse-style querying), you should not write software that expects to find these if you want the
software to work on different chado db instances.

sequence_variants

FB: these are included in chado, but they are lacking full detail

TIGR: only SNPs so far. the SNPs currently being stored are computed from pairwise align-
ments of sequences already loaded into Chado, so each SNP feature is featureloc’ed to the appro-
priate place on each of the two sequences (rather than having one of the featurelocs ”dangling”, as
indicated in some of the Chado usage documents.) featureloc.residue_info is used to redundantly
store the base referenced in each of the two sequences.

NOTE: variation features should specify the edit that makes one feature (such as the reference/wild-
type) from another (the variant/mutant/non-reference). There were perhaps 2 proposals for this
[more details required...]

4.3 Table definitions



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 38

feature

A feature is a biological sequence or a section of a biological sequence, or a collection of such
sections. Examples include genes, exons, transcripts, regulatory regions, polypeptides, protein
domains, chromosome sequences, sequence variations, cross-genome match regions such as hits and
HSPs and so on; see the Sequence Ontology for more



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

Column

Datatype

Table 4.1: feature

Description

feature_id
dbxref_id

organism_id
name

uniquename

residues

seqlen

mdbchecksum

type_-id

is_analysis

is_obsolete

integer
integer

integer
varchar

text

text

integer

char

integer

boolean

boolean

An optional primary public stable identifier for this
feature. Secondary identifiers and external dbxrefs
go in table:feature_dbxref

The organism to which this feature belongs. This
column is mandatory

The optional human-readable common name for a
feature, for display purposes

The unique name for a feature; may not be necessar-
ily be particularly human-readable, although this is
prefered. This name must be unique for this type of
feature within this organism

A sequence of alphabetic characters representing bi-
ological residues (nucleic acids, amino acids). This
column does not need to be manifested for all fea-
tures; it is optional for features such as exons where
the residues can be derived from the featureloc. It is
recommended that the value for this column be man-
ifested for features which may may non-contiguous
sublocations (eg transcripts), since derivation at
query time is non-trivial. For expressed sequence,
the DNA sequence should be used rather than the
RNA sequence

The length of the residue feature. See col-
umn:residues. This column is partially redundant
with the residues column, and also with featureloc.
This column is required because the location may be
unknown and the residue sequence may not be man-
ifested, yet it may be desirable to store and query
the length of the feature. The seglen should always
be manifested where the length of the sequence is
known

The 32-character checksum of the sequence, calcu-
lated using the MD5 algorithm. This is practically
guaranteed to be unique for any feature. This col-
umn thus acts as a unique identifier on the mathe-
matical sequence

A required reference to a table:cvterm giving the fea-
ture type. This will typically be a Sequence Ontology
identifier. This column is thus used to subclass the
feature table

Boolean indicating whether this feature is annotated
or the result of an automated analysis. Analysis re-
sults also use the companalysis module. Note that
the dividing line between analysis/annotation may
be fuzzy, this should be determined on a per-project
basis in a consistent manner. One requirement is
that there should only be one non-analysis version of
each wild-type gene feature in a genome, whereas the
same gene feature can be predicted multiple times in
different analyses

Boolean indicating whether this feature has been ob-
soleted. Some chado instances may choose to simply
remove the feature altogether, others may choose to
keep an obsolete row in the table

39



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 40

featureloc

The location of a feature relative to another feature. IMPORTANT: INTERBASE COORDI-
NATES ARE USED.(This is vital as it allows us to represent zero-length features eg splice sites,
insertion points without an awkward fuzzy system). Features typically have exactly ONE loca-
tion, but this need not be the case. Some features may not be localized (eg a gene that has been
characterized genetically but no sequence/molecular info is available). NOTE ON MULTIPLE
LOCATIONS: Each feature can have 0 or more locations. Multiple locations do NOT indicate
non-contiguous locations (if a feature such as a transcript has a non-contiguous location, then the
subfeatures such as exons should always be manifested). Instead, multiple featurelocs for a feature
designate alternate locations or grouped locations; for instance, a feature designating a blast hit or
hsp will have two locations, one on the query feature, one on the subject feature. features repre-
senting sequence variation could have alternate locations instantiated on a feature on the mutant
strain. the column:rank is used to differentiate these different locations. Reflexive locations should
never be stored - this is for -proper- (ie non-self) locations only; i.e. nothing should be located
relative to itself



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

Column

Datatype

Table 4.2: featureloc

Description

featureloc_id
feature_id

srcfeature_id

fmin

is_fmin_partial

fmax

is_fmax_partial

strand

phase

residue_info

locgroup

integer
integer

integer

integer

boolean

integer

boolean

integer

integer

text

integer

The feature that is being located. Any feature can
have zero or more featurelocs

The source feature which this location is relative to.
Every location is relative to another feature (how-
ever, this column is nullable, because the srcfeature
may not be known). All locations are -proper- that
is, nothing should be located relative to itself. No
cycles are allowed in the featureloc graph

The leftmost/minimal boundary in the linear range
represented by the featureloc. Sometimes (eg in
bioperl) this is called -start- although this is con-
fusing because it does not necessarily represent the
5-prime coordinate. IMPORTANT: This is space-
based (INTERBASE) coordinates, counting from
zero. To convert this to the leftmost position in a
base-oriented system (eg GFF, bioperl), add 1 to
fmin

This is typically false, but may be true if the value
for column:fmin is inaccurate or the leftmost part of
the range is unknown/unbounded

The rightmost/maximal boundary in the linear range
represented by the featureloc. Sometimes (eg in
bioperl) this is called -end- although this is con-
fusing because it does not necessarily represent the
3-prime coordinate. IMPORTANT: This is space-
based (INTERBASE) coordinates, counting from
zero. No conversion is required to go from fmax to
the rightmost coordinate in a base-oriented system
that counts from 1 (eg GFF, bioperl)

This is typically false, but may be true if the value
for column:fmax is inaccurate or the rightmost part
of the range is unknown/unbounded

The orientation/directionality of the location.
Should be 0,-1 or +1

phase of translation wrt srcfeature_id. Values are
0,1,2. It may not be possible to manifest this col-
umn for some features such as exons, because the
phase is dependant on the spliceform (the same exon
can appear in multiple spliceforms). This column is
mostly useful for predicted exons and CDSs
Alternative residues, when these differ from fea-
ture.residues. for instance, a SNP feature located
on a wild and mutant protein would have different
alresidues. for alignment/similarity features, the al-
tresidues is used to represent the alignment string
(CIGAR format). Note on variation features; even
if we dont want to instantiate a mutant chromo-
some/contig feature, we can still represent a SNP
etc with 2 locations, one (rank 0) on the genome,
the other (rank 1) would have most fields null, ex-
cept for altresidues

This is used to manifest redundant, derivable ex-
tra locations for a feature. The default locgroup=0
is used for the DIRECT location of a feature. !!

41



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featureloc_pub

COMMENT ON INDEX featureloc_cl IS ’locgroup and rank serve to uniquely

Table 4.3: featureloc_pub

Column Datatype Description
featureloc_pub_id integer
featureloc_id integer

pub_id integer

42



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_pub

Provenance. Linking table between features and publications that mention them

Table 4.4: feature_pub

Column Datatype Description
feature_pub_id integer
feature_id integer

pub_id integer

43



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featureprop

44

A feature can have any number of slot-value property tags attached to it. This is an alternative to
hardcoding a list of columns in the relational schema, and is completely extensible

Table 4.5: featureprop

Column Datatype Description

featurepropid integer

feature_id integer

type_id integer The name of the property/slot is a cvterm. The
meaning of the property is defined in that cvterm.
Certain property types will only apply to certain fea-
ture types (e.g. the anticodon property will only ap-
ply to tRNA features) ; the types here come from
the sequence feature property ontology

value text The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion. This is less efficient than using native database
types, but is easier to query.

rank integer Property-Value ordering. Any feature can have mul-

tiple values for any particular property type - these
are ordered in a list using rank, counting from zero.
For properties that are single-valued rather than
multi-valued, the default 0 value should be used



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featureprop_pub

for any one feature, multivalued property-value pairs must be differentiated by rank

Table 4.6: featureprop_pub

Column Datatype Description
featureprop_pub_id integer
featureprop_id integer

pub_id integer

45



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 46

feature_dbxref

links a feature to dbxrefs. This is for secondary identifiers; primary identifiers should use fea-
ture.dbxref_id

Table 4.7: feature_dbxref

Column Datatype Description

feature_dbxref_id integer

feature_id integer

dbxref_id integer

is_current boolean the is_current boolean indicates whether the linked

dbxref is the current -official- dbxref for the linked
feature



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_relationship

features can be arranged in graphs, eg exon part_of transcript part_of gene; translation madeby
transcript if type is thought of as a verb, each arc makes a statement [SUBJECT VERB OBJECT]
object can also be thought of as parent (containing feature), and subject as child (contained feature
or subfeature) — we include the relationship rank/order, because even though most of the time we
can order things implicitly by sequence coordinates, we cant always do this - eg transpliced genes.

its also useful for quickly getting implicit introns

Table 4.8: feature_relationship

Column Datatype Description

feature_relationship_id integer

subject_id integer the subject of the subj-predicate-obj sentence. This
is typically the subfeature

object_id integer the object of the subj-predicate-obj sentence. This
is typically the container feature

type_-id integer relationship type between subject and object. This
is a cvterm, typically from the OBO relationship
ontology, although other relationship types are al-
lowed. The most common relationship type is
OBO_REL:part_of. Valid relationship types are con-
strained by the Sequence Ontology

value text Additional notes/comments

rank integer The ordering of subject features with respect to the

object feature may be important (for example, exon
ordering on a transcript - not always derivable if you
take trans spliced genes into consideration). rank is
used to order these; starts from zero



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_relationship_pub

Provenance. Attach optional evidence to a feature_relationship in the form of a publication

Table 4.9: feature_relationship_pub

Column Datatype Description
feature_relationship_pub_id integer
feature_relationship_id integer

pub_id integer

48



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 49

feature_relationshipprop

Extensible properties for feature_relationships. Analagous structure to featureprop. This table is
largely optional and not used with a high frequency. Typical scenarios may be if one wishes to
attach additional data to a feature_relationship - for example to say that the feature_relationship
is only true in certain contexts

Table 4.10: feature_relationshipprop

Column Datatype Description

feature_relationshipprop.id integer

feature_relationship_id integer

type_id integer The name of the property/slot is a cvterm. The

meaning of the property is defined in that cvterm.
Currently there is no standard ontology for fea-
ture_relationship property types

value text The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion. This is less efficient than using native database
types, but is easier to query.

rank integer Property-Value ordering. Any feature_relationship
can have multiple values for any particular property
type - these are ordered in a list using rank, count-
ing from zero. For properties that are single-valued
rather than multi-valued, the default 0 value should
be used



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_relationshipprop_pub

Provenance for feature_relationshipprop

Table 4.11: feature_relationshipprop_pub

Column

Datatype Description

feature_relationshipprop_pub_id
feature_relationshipprop_id
pub.id

integer
integer
integer

50



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_cvterm

Associate a term from a cv with a feature, for example, GO annotation

Table 4.12: feature_cvterm

Column Datatype Description

feature_cvterm_id integer

feature_id integer

cvterm_id integer

pub_id integer Provenance for the annotation. KEach annotation
should have a single primary publication (which
may be of the appropriate type for computational
analyses) where more details can be found. Addi-
tional provenance dbxrefs can be attached using fea-
ture_cvterm_dbxref

is_not boolean if this is set to true, then this annotation is inter-

preted as a NEGATIVE annotation - ie the feature
does NOT have the specified function, process, com-
ponent, part, etc. See GO docs for more details

o1



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_cvtermprop

52

Extensible properties for feature to cvterm associations. Examples: GO evidence codes; qualifiers;
metadata such as the date on which the entry was curated and the source of the association. See
the featureprop table for meanings of type_id, value and rank

Column

Table 4.13: feature_cvtermprop

Datatype

Description

feature_cvtermprop_id
feature_cvterm_id
type-id

value

rank

integer
integer
integer

text

integer

The name of the property/slot is a cvterm. The
meaning of the property is defined in that cvterm.
cvterms may come from the OBO evidence code cv
The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion. This is less efficient than using native database
types, but is easier to query.

Property-Value ordering. Any feature_cvterm can
have multiple values for any particular property type
- these are ordered in a list using rank, counting from
zero. For properties that are single-valued rather
than multi-valued, the default 0 value should be used



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 93

feature_cvterm_dbxref

Additional dbxrefs for an association. Rows in the feature_cvterm table may be backed up by
dbxrefs. For example, a feature_cvterm association that was inferred via a protein-protein inter-
action may be backed by by refering to the dbxref for the alternate protein. Corresponds to the
WITH column in a GO gene association file (but can also be used for other analagous associations).
See http://www.geneontology.org/doc/GO.annotation.shtml#file for more details

Table 4.14: feature_cvterm_dbxref

Column Datatype Description
feature_cvterm_dbxref_id integer
feature_cvterm_id integer

dbxref_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES o4

feature_cvterm_pub

Secondary pubs for an association. Each feature_cvterm association is supported by a single primary
publication. Additional secondary pubs can be added using this linking table (in a GO gene
association file, these corresponding to any IDs after the pipe symbol in the publications column

Table 4.15: feature_cvterm_pub

Column Datatype Description
feature_cvterm_pub_id integer
feature_cvterm_id integer

pub_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 95

synonym

A synonym for a feature. One feature can have multiple synonyms, and the same synonym can
apply to multiple features

Table 4.16: synonym

Column Datatype Description

synonym_id integer

name varchar The synonym itself. Should be human-readable
machine-searchable ascii text

type_id integer types would be symbol and fullname for now

synonym_sgml varchar The fully specified synonym, with any non-ascii char-

acters encoded in SGML



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_synonym

Linking table between feature and synonym

Table 4.17: feature_synonym

Column Datatype Description

feature_synonym_id integer

synonym_id integer

feature_id integer

pub_d integer the pub_id link is for relating the usage of a given
synonym to the publication in which it was used

is_current boolean the is_current boolean indicates whether the linked
synonym is the current -official- symbol for the linked
feature

is_internal boolean typically a synonym exists so that somebody query-

ing the db with an obsolete name can find the ob-
ject theyre looking for (under its current name. If
the synonym has been used publicly & deliberately
(eg in a paper), it my also be listed in reports as a
synonym. If the synonym was not used deliberately
(eg, there was a typo which went public), then the
is_internal boolean may be set to -true- so that it is
known that the synonym is -internal- and should be
queryable but should not be listed in reports as a
valid synonym

o6



CHAPTER 4. THE SEQUENCE MODULE: FEATURES o7

feature

A feature is a biological sequence or a section of a biological sequence, or a collection of such
sections. Examples include genes, exons, transcripts, regulatory regions, polypeptides, protein
domains, chromosome sequences, sequence variations, cross-genome match regions such as hits and
HSPs and so on; see the Sequence Ontology for more



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

Column

Datatype

Table 4.18: feature

Description

feature_id
dbxref_id

organism_id
name

uniquename

residues

seqlen

mdbchecksum

type_-id

is_analysis

is_obsolete

integer
integer

integer
varchar

text

text

integer

char

integer

boolean

boolean

An optional primary public stable identifier for this
feature. Secondary identifiers and external dbxrefs
go in table:feature_dbxref

The organism to which this feature belongs. This
column is mandatory

The optional human-readable common name for a
feature, for display purposes

The unique name for a feature; may not be necessar-
ily be particularly human-readable, although this is
prefered. This name must be unique for this type of
feature within this organism

A sequence of alphabetic characters representing bi-
ological residues (nucleic acids, amino acids). This
column does not need to be manifested for all fea-
tures; it is optional for features such as exons where
the residues can be derived from the featureloc. It is
recommended that the value for this column be man-
ifested for features which may may non-contiguous
sublocations (eg transcripts), since derivation at
query time is non-trivial. For expressed sequence,
the DNA sequence should be used rather than the
RNA sequence

The length of the residue feature. See col-
umn:residues. This column is partially redundant
with the residues column, and also with featureloc.
This column is required because the location may be
unknown and the residue sequence may not be man-
ifested, yet it may be desirable to store and query
the length of the feature. The seglen should always
be manifested where the length of the sequence is
known

The 32-character checksum of the sequence, calcu-
lated using the MD5 algorithm. This is practically
guaranteed to be unique for any feature. This col-
umn thus acts as a unique identifier on the mathe-
matical sequence

A required reference to a table:cvterm giving the fea-
ture type. This will typically be a Sequence Ontology
identifier. This column is thus used to subclass the
feature table

Boolean indicating whether this feature is annotated
or the result of an automated analysis. Analysis re-
sults also use the companalysis module. Note that
the dividing line between analysis/annotation may
be fuzzy, this should be determined on a per-project
basis in a consistent manner. One requirement is
that there should only be one non-analysis version of
each wild-type gene feature in a genome, whereas the
same gene feature can be predicted multiple times in
different analyses

Boolean indicating whether this feature has been ob-
soleted. Some chado instances may choose to simply
remove the feature altogether, others may choose to
keep an obsolete row in the table

o8



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 99

featureloc

The location of a feature relative to another feature. IMPORTANT: INTERBASE COORDI-
NATES ARE USED.(This is vital as it allows us to represent zero-length features eg splice sites,
insertion points without an awkward fuzzy system). Features typically have exactly ONE loca-
tion, but this need not be the case. Some features may not be localized (eg a gene that has been
characterized genetically but no sequence/molecular info is available). NOTE ON MULTIPLE
LOCATIONS: Each feature can have 0 or more locations. Multiple locations do NOT indicate
non-contiguous locations (if a feature such as a transcript has a non-contiguous location, then the
subfeatures such as exons should always be manifested). Instead, multiple featurelocs for a feature
designate alternate locations or grouped locations; for instance, a feature designating a blast hit or
hsp will have two locations, one on the query feature, one on the subject feature. features repre-
senting sequence variation could have alternate locations instantiated on a feature on the mutant
strain. the column:rank is used to differentiate these different locations. Reflexive locations should
never be stored - this is for -proper- (ie non-self) locations only; i.e. nothing should be located
relative to itself



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

Column

Datatype

Table 4.19: featureloc

Description

featureloc_id
feature_id

srcfeature_id

fmin

is_fmin_partial

fmax

is_fmax_partial

strand

phase

residue_info

locgroup

integer
integer

integer

integer

boolean

integer

boolean

integer

integer

text

integer

The feature that is being located. Any feature can
have zero or more featurelocs

The source feature which this location is relative to.
Every location is relative to another feature (how-
ever, this column is nullable, because the srcfeature
may not be known). All locations are -proper- that
is, nothing should be located relative to itself. No
cycles are allowed in the featureloc graph

The leftmost/minimal boundary in the linear range
represented by the featureloc. Sometimes (eg in
bioperl) this is called -start- although this is con-
fusing because it does not necessarily represent the
5-prime coordinate. IMPORTANT: This is space-
based (INTERBASE) coordinates, counting from
zero. To convert this to the leftmost position in a
base-oriented system (eg GFF, bioperl), add 1 to
fmin

This is typically false, but may be true if the value
for column:fmin is inaccurate or the leftmost part of
the range is unknown/unbounded

The rightmost/maximal boundary in the linear range
represented by the featureloc. Sometimes (eg in
bioperl) this is called -end- although this is con-
fusing because it does not necessarily represent the
3-prime coordinate. IMPORTANT: This is space-
based (INTERBASE) coordinates, counting from
zero. No conversion is required to go from fmax to
the rightmost coordinate in a base-oriented system
that counts from 1 (eg GFF, bioperl)

This is typically false, but may be true if the value
for column:fmax is inaccurate or the rightmost part
of the range is unknown/unbounded

The orientation/directionality of the location.
Should be 0,-1 or +1

phase of translation wrt srcfeature_id. Values are
0,1,2. It may not be possible to manifest this col-
umn for some features such as exons, because the
phase is dependant on the spliceform (the same exon
can appear in multiple spliceforms). This column is
mostly useful for predicted exons and CDSs
Alternative residues, when these differ from fea-
ture.residues. for instance, a SNP feature located
on a wild and mutant protein would have different
alresidues. for alignment/similarity features, the al-
tresidues is used to represent the alignment string
(CIGAR format). Note on variation features; even
if we dont want to instantiate a mutant chromo-
some/contig feature, we can still represent a SNP
etc with 2 locations, one (rank 0) on the genome,
the other (rank 1) would have most fields null, ex-
cept for altresidues

This is used to manifest redundant, derivable ex-
tra locations for a feature. The default locgroup=0
is used for the DIRECT location of a feature. !!

60



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featureloc_pub

COMMENT ON INDEX featureloc_cl IS ’locgroup and rank serve to uniquely

Table 4.20: featureloc_pub

Column Datatype Description
featureloc_pub_id integer
featureloc_id integer

pub_id integer

61



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_pub

Provenance. Linking table between features and publications that mention them

Table 4.21: feature_pub

Column Datatype Description
feature_pub_id integer
feature_id integer

pub_id integer

62



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featureprop

63

A feature can have any number of slot-value property tags attached to it. This is an alternative to
hardcoding a list of columns in the relational schema, and is completely extensible

Table 4.22: featureprop

Column Datatype Description

featurepropid integer

feature_id integer

type_id integer The name of the property/slot is a cvterm. The
meaning of the property is defined in that cvterm.
Certain property types will only apply to certain fea-
ture types (e.g. the anticodon property will only ap-
ply to tRNA features) ; the types here come from
the sequence feature property ontology

value text The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion. This is less efficient than using native database
types, but is easier to query.

rank integer Property-Value ordering. Any feature can have mul-

tiple values for any particular property type - these
are ordered in a list using rank, counting from zero.
For properties that are single-valued rather than
multi-valued, the default 0 value should be used



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featureprop_pub

for any one feature, multivalued property-value pairs must be differentiated by rank

Table 4.23: featureprop_pub

Column Datatype Description
featureprop_pub_id integer
featureprop_id integer

pub_id integer

64



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 65

feature_dbxref

links a feature to dbxrefs. This is for secondary identifiers; primary identifiers should use fea-
ture.dbxref_id

Table 4.24: feature_dbxref

Column Datatype Description

feature_dbxref_id integer

feature_id integer

dbxref_id integer

is_current boolean the is_current boolean indicates whether the linked

dbxref is the current -official- dbxref for the linked
feature



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 66

feature_relationship

features can be arranged in graphs, eg exon part_of transcript part_of gene; translation madeby
transcript if type is thought of as a verb, each arc makes a statement [SUBJECT VERB OBJECT]
object can also be thought of as parent (containing feature), and subject as child (contained feature
or subfeature) — we include the relationship rank/order, because even though most of the time we
can order things implicitly by sequence coordinates, we cant always do this - eg transpliced genes.
its also useful for quickly getting implicit introns

Table 4.25: feature_relationship

Column Datatype Description

feature_relationship_id integer

subject_id integer the subject of the subj-predicate-obj sentence. This
is typically the subfeature

object_id integer the object of the subj-predicate-obj sentence. This
is typically the container feature

type_-id integer relationship type between subject and object. This

is a cvterm, typically from the OBO relationship
ontology, although other relationship types are al-
lowed. The most common relationship type is
OBO_REL:part_of. Valid relationship types are con-
strained by the Sequence Ontology

value text Additional notes/comments

rank integer The ordering of subject features with respect to the
object feature may be important (for example, exon
ordering on a transcript - not always derivable if you
take trans spliced genes into consideration). rank is
used to order these; starts from zero



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_relationship_pub

Provenance. Attach optional evidence to a feature_relationship in the form of a publication

Table 4.26: feature_relationship_pub

Column Datatype Description
feature_relationship_pub_id integer
feature_relationship_id integer

pub_id integer

67



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 68

feature_relationshipprop

Extensible properties for feature_relationships. Analagous structure to featureprop. This table is
largely optional and not used with a high frequency. Typical scenarios may be if one wishes to
attach additional data to a feature_relationship - for example to say that the feature_relationship
is only true in certain contexts

Table 4.27: feature_relationshipprop

Column Datatype Description

feature_relationshipprop.id integer

feature_relationship_id integer

type_id integer The name of the property/slot is a cvterm. The

meaning of the property is defined in that cvterm.
Currently there is no standard ontology for fea-
ture_relationship property types

value text The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion. This is less efficient than using native database
types, but is easier to query.

rank integer Property-Value ordering. Any feature_relationship
can have multiple values for any particular property
type - these are ordered in a list using rank, count-
ing from zero. For properties that are single-valued
rather than multi-valued, the default 0 value should
be used



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_relationshipprop_pub

Provenance for feature_relationshipprop

Table 4.28: feature_relationshipprop_pub

Column

Datatype Description

feature_relationshipprop_pub_id
feature_relationshipprop_id
pub.id

integer
integer
integer

69



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_cvterm

Associate a term from a cv with a feature, for example, GO annotation

Table 4.29: feature_cvterm

Column Datatype Description

feature_cvterm_id integer

feature_id integer

cvterm_id integer

pub_id integer Provenance for the annotation. KEach annotation
should have a single primary publication (which
may be of the appropriate type for computational
analyses) where more details can be found. Addi-
tional provenance dbxrefs can be attached using fea-
ture_cvterm_dbxref

is_not boolean if this is set to true, then this annotation is inter-

preted as a NEGATIVE annotation - ie the feature
does NOT have the specified function, process, com-
ponent, part, etc. See GO docs for more details

70



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 71

feature_cvtermprop
Extensible properties for feature to cvterm associations. Examples: GO evidence codes; qualifiers;

metadata such as the date on which the entry was curated and the source of the association. See
the featureprop table for meanings of type_id, value and rank

Table 4.30: feature_cvtermprop

Column Datatype Description

feature_cvtermprop_id integer

feature_cvterm_id integer

type-id integer The name of the property/slot is a cvterm. The

meaning of the property is defined in that cvterm.
cvterms may come from the OBO evidence code cv

value text The value of the property, represented as text. Nu-
meric values are converted to their text representa-
tion. This is less efficient than using native database
types, but is easier to query.

rank integer Property-Value ordering. Any feature_cvterm can
have multiple values for any particular property type
- these are ordered in a list using rank, counting from
zero. For properties that are single-valued rather
than multi-valued, the default 0 value should be used



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 72

feature_cvterm_dbxref

Additional dbxrefs for an association. Rows in the feature_cvterm table may be backed up by
dbxrefs. For example, a feature_cvterm association that was inferred via a protein-protein inter-
action may be backed by by refering to the dbxref for the alternate protein. Corresponds to the
WITH column in a GO gene association file (but can also be used for other analagous associations).
See http://www.geneontology.org/doc/GO.annotation.shtml#file for more details

Table 4.31: feature_cvterm_dbxref

Column Datatype Description
feature_cvterm_dbxref_id integer
feature_cvterm_id integer

dbxref_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 73

feature_cvterm_pub

Secondary pubs for an association. Each feature_cvterm association is supported by a single primary
publication. Additional secondary pubs can be added using this linking table (in a GO gene
association file, these corresponding to any IDs after the pipe symbol in the publications column

Table 4.32: feature_cvterm_pub

Column Datatype Description
feature_cvterm_pub_id integer
feature_cvterm_id integer

pub_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 74

synonym

A synonym for a feature. One feature can have multiple synonyms, and the same synonym can
apply to multiple features

Table 4.33: synonym

Column Datatype Description

synonym_id integer

name varchar The synonym itself. Should be human-readable
machine-searchable ascii text

type_id integer types would be symbol and fullname for now

synonym_sgml varchar The fully specified synonym, with any non-ascii char-

acters encoded in SGML



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_synonym

Linking table between feature and synonym

Table 4.34: feature_synonym

Column Datatype Description

feature_synonym_id integer

synonym_id integer

feature_id integer

pub_d integer the pub_id link is for relating the usage of a given
synonym to the publication in which it was used

is_current boolean the is_current boolean indicates whether the linked
synonym is the current -official- symbol for the linked
feature

is_internal boolean typically a synonym exists so that somebody query-

ing the db with an obsolete name can find the ob-
ject theyre looking for (under its current name. If
the synonym has been used publicly & deliberately
(eg in a paper), it my also be listed in reports as a
synonym. If the synonym was not used deliberately
(eg, there was a typo which went public), then the
is_internal boolean may be set to -true- so that it is
known that the synonym is -internal- and should be
queryable but should not be listed in reports as a
valid synonym

75



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

genotype

Table 4.35: genotype

Column Datatype Description

genotype_id  integer
uniquename  text
description  varchar



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_genotype

Table 4.36: feature_genotype

Column Datatype Description
feature_genotype_id integer
feature_id integer
genotype_id integer
chromosome_id integer
rank integer
cgroup integer

cvterm_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

environment

Column

Table 4.37: environment

Datatype Description

environment_id
uniquename
description

integer
text
text

78



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

environment_cvterm

Column

Table 4.38: environment_cvterm

Datatype Description

environment_cvterm_id
environment_id
cvterm_id

integer
integer
integer

79



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 80

phenstatement

Phenotypes are things like ”larval lethal”. Phenstatements are things like ”dpp[l] is recessive
larval lethal”. So essentially phenstatement is a linking table expressing the relationship between
genotype, environment, and phenotype.

Table 4.39: phenstatement

Column Datatype Description
phenstatement_id integer
genotype_id integer
environment_id integer
phenotype_id integer
type_id integer

pub_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

phendesc

81

a summary of a _set_ of phenotypic statements for any one gcontext made in any one publication

Table 4.40: phendesc

Column Datatype Description
phendesc_id integer

genotype_id integer

environment_id integer

description text

pub_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 82

phenotype_comparison

comparison of phenotypes eg, genotypel /environmentl/phenotypel ”non-suppressible” wrt geno-
type2/environment2/phenotype2

Table 4.41: phenotype_comparison

Column Datatype Description
phenotype_comparison_id integer
genotypel_id integer
environment1_id integer
genotype2_id integer
environment2_id integer
phenotypel _id integer
phenotype2_id integer
type-id integer

pub_id integer



CHAPTER 4. THE SEQUENCE MODULE: FEATURES 83

phenotype

a phenotypic statement, or a single atomic phenotypic observation a controlled sentence describing
observable effect of non-wt function — e.g. Obs=eye, attribute=color, cvalue=red

Table 4.42: phenotype

Column Datatype Description
phenotype_id integer
uniquename  text

observable_id integer The entity: e.g. anatomy_part, biological process

attr_id integer Phenotypic attribute (quality, property, attribute,
character) - drawn from PATO

value text value of attribute - unconstrained free text. Used
only if cvalue_id is not appropriate

cvalue_id integer Phenotype attribute value (state)

assay_id integer evidence type



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

phenotype_cvterm

NULL

Table 4.43: phenotype_cvterm

Column Datatype Description
phenotype_cvterm_id integer
phenotype_id integer
cvterm_id integer

84



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

feature_phenotype

NULL

Column

Table 4.44: feature_phenotype

Datatype Description

feature_phenotype_id
feature_id
phenotype_id

integer
integer
integer

85



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featuremap

NOTE: this module is all due for revision...

Table 4.45: featuremap

Column Datatype Description
featuremap_id  integer

name varchar

description text

unittype_id integer

86



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featurerange

Table 4.46: featurerange

Column Datatype Description

featurerange_id integer
featuremap_id  integer

feature_id integer
leftstartf_id integer
leftendf_id integer
rightstartf_id integer
rightendf_id integer

rangestr varchar



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featurepos
Table 4.47: featurepos
Column Datatype Description
featurepos_id integer
featuremap_id  integer
feature_id integer

map_feature_id integer
mappos float



CHAPTER 4. THE SEQUENCE MODULE: FEATURES

featuremap_pub

map_feature_id links to the feature (map) upon which the feature is

Column

Table 4.48: featuremap_pub

Datatype Description

featuremap_pub_id
featuremap_id
pub_id

integer
integer
integer

89



Appendix A

Chado Naming Conventions

A.1 Case sensitivity

We use lowercase in all tables and column names - DBMSs differ in how they treat case sensitivity.
oracle will auto caps everything. so it’s best to be neutral and use lowercase.

A.2 Table names

In table names, we use underscores for linking tables; eg feature_dbxref is a linking table between
feature and dbxref

where a table name is a noun phrase rather than a single noun, we concatenate the words
together. for instance the table for describing feature properties is called featureprop . it
could be argued this is harder to read, but it does allow consistent usage of underscores as above.
FeatureProp could be used where it is known the DBMS is case insensitive.

A.3 Column names

in column names, we also use concatenated noun phrases, except in the case of primary / foreign
keys, eg dbxref_id .

we try to keep column names unique where appropriate, which is useful for large join statements
/ views, in avoiding column name clash between different tables. the convention is to use an
abbreviated form of the table name plus a noun describing the column, for instance fmin in the
feature table. by consistently using abbreviated forms we stop column names getting too big
[many DBMSs will barf on long column names]

90



APPENDIX A. CHADO NAMING CONVENTIONS 91

A.3.1 Primary and foreign key names

we use the same column name for primary and foreign key columns - very useful for NATURAL
JOIN statements



	Introduction
	Schema
	Module System

	View layers
	Inter-schema bridges

	DBMS Functions
	Software

	The general Module: Identifiers
	Purpose
	Design patterns
	Tables
	URLs and URIs
	Identifiers and interoperability between Chado instances
	Table Definitions

	The cv Module: Ontologies
	Introduction
	Transitive Closure

	Table Definitions

	The Sequence Module: Features
	The role of features in Chado
	Best Practices
	Chado Compliance Layers
	Examples: Current implementations

	Table definitions

	Appendices
	Chado Naming Conventions
	Case sensitivity
	Table names
	Column names
	Primary and foreign key names



