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What is in the Feature Table?
(the core of Chado)

Chromosome
Contig
Gene

MRNA
Exon

Lots of other things - See Sequence
Ontology!
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Modware Features

Multiple Feature classes
CHROMOSOME, GENE, MRNA, CONTIG

Each class provides type specific methods

Logic such as building exon structure of
MRNA features is encapsulated

Parent class Modware::Feature
— Provides common methods
— Abstract factory for various feature types
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Architectural Overview

Object-oriented Perl interface to Chado
Built on top of Chado::AutoDB|
Connection handled by GMOD
Database transactions supported

BioPerl used to represent and manipulate
sequence and feature structure

‘Lazy’ evaluation

Eric Just - Modware - GMOD January, 2007




Create and Insert Chromosome

my $seq_io = new Bio::SeqlO(
-file =>"../data/fake_chromosome.txt",
-format => 'fasta’

);

# Bio::SeqlO will return a Bio::Seq object which
# Modware uses as its representation
my $seq = $seq_io->next_seq();

my $reference_feature = new Modware::Feature(
-type => 'chromosome’,
-bioperl => $seq,
-description => "This is a test",
-name => 'Fake’',
-source =>"'GMOD 2007 Demo'
);

# Inserts chromosome into database
$reference_feature->insert();
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Create and Insert a Gene

1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Gene Feature
symbol: x-ray
synonyms: none
MmRNA Feature
exon:
start: 1703
end: 1900
strand: 1
srcFeature_id:
Id of genomic sample
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Create and Insert a Gene

1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Gene Feature

symbol: x-men

synonyms: wolverine

mMRNA Feature

exon_1:
start: 12648
end: 13136
strand: 1
srcFeature_id:
Id of genomic sample
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Create and Insert a Gene

1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Gene Feature
symbol: xfile
synonyms: mulder, scully
description: A test gene for
GMOD meeting
MmRNA Feature
exon_1:
start: 13691
end: 13767
strand: 1
srcFeature_id:
Id of genomic sample
exon_2:
start: 14687
end: 14720
strand: 1
srcFeature_id:
Id of genomic sample
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Create and Insert a Gene

symbol: xfile
synonyms: mulder, scully
description: A test gene for GMOD meeting

my $gene_feature = new Modware::Feature(
-type => 'gene’,
-name => "xfile',
-description =>'A test gene for GMOD meeting’,
-source =>'GMOD 2007 Demo*

);

$gene_feature->add_synonym( ‘'mulder’ );
$gene_feature->add_synonym( 'scully’ );

# inserts object into database
$gene_feature->insert();
print 'Inserted gene with feature_id:'.$gene_feature->feature_id()."\n";
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Create mMRNA BioPerl Object

exon_1: exon_2:
start: 13691 start: 14687
end: 13767 end: 14720
strand: 1 strand: 1
srcFeature_id: Id of genomic sample srcFeature_id: Id of genomic sample

# First, create exon features (using Bioperl)
my $exon_1 = new Bio::SeqFeature::Gene::Exon (
-start => 13691,
-end => 13767,
-strand =>1,
-is_coding => 1

);

my $exon_2 = new Bio::SeqFeature::Gene::Exon (
-start => 14687,
-end => 14720,
-strand =>1,
-is_coding => 1

);

# Next, create transcript feature to 'hold’ exons (using Bioperl)
my $bioperl_mrna = new Bio::SeqFeature::Gene::Transcript();

# Add exons to transcript (using Bioperl)
$bioperl_mrna->add_exon( $exon_1);
$bioperl_mrna->add_exon( $exon_2);




Create and Insert mRNA

The BioPerl object holds the location information, but now we
want to create a Modware object and link it to the gene as well as
locate it on the chromosome.

# Now create Modware Feature to 'hold' bioperl object
my $mrna_feature = new Modware::Feature(
-type => 'mRNA’,
-bioperl => $bioperl_mrna,
-source =>"'GMOD 2007 Demo’,
-reference_feature => $reference_feature

);

# Associate mRNA to gene (required for insertion)
$mrna_feature->gene( $gene_feature );

# inserts object into database
$mrna_feature->insert();
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Writing the Report

2) Retrieve and print the following report for gene xfile

symbol: xfile

synonyms: mulder, scully

description: A test gene for GMOD meeting

type: gene

exon1 start: 13691

exon1 end: 13767

exon2 start: 14687

exon2 end: 14720

>xfile cds
ATGGCGTTAGTATTCATGGTTACTGGTTTCGCTACTGATATCACCCAGCGTGTAGGCTGT
GGAATCGAACACTGGTATTGTATAAATGTTTGTGAATACACTGAGAAATAA
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Writing the Report

package GMODWriter;
sub Write_gene_report {
my ($self, $gene) =@_;

my $symbol = $gene->name();

my @synonyms = @{ $gene->synonyms() };

my $syn_string =join ",", @synonyms;

my $description = $gene->description();

my $type = $gene->type();

# get features associated with the gene that are of type 'mRNA’

my ($mrna) =grep {$_->type() eq 'mRNA’' } @{ $gene->features() };
# use bioperl method to get exons from mRNA

my @exons = $mrna->bioperl->exons_ordered();

# Modware will return a nice fasta file for you.

my $fasta = $mrna->sequence( -type => 'cds’, -format => 'fasta' );

# Now print the actual report

print "symbol: $symbol\n";

print "synonyms: $syn_string\n";
print "description: $description\n";
print "type: $type\n";

my $count = 0;

foreach my $exon ( @exons ) {
$count++;
print "exon${count} start: ".$exon->start()."\n";
print "exon${count} end: ".$exon->end()."\n";

}

print "$fasta";
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Updating a Gene Name

3) Update the gene xfile: change the name symbol to x-file and
retrieve the changed record. Regenerate gene report

use Modware::Gene;
use Modware::DBH;
use GMODWriter;

eval{

# get xfile gene
my $xfile_gene = new Modware::Gene( -name => "xfile' );

# change the name
$xfile_gene->name( 'x-file' );
# write changes to database
$xfile_gene->update();

# we can use the original object if we want, but instead

# we refetch from the database to 'prove' the name has been changed
my $xfile_gene2 = new Modware::Gene( -name => "x-file' );

# use our GMODWriter package to write report for x-file
GMODWFriter->Write_gene_report( $xfile_gene2);

b
if (S@){
warn $@);

new Modware::DBH->rollback();

}
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Search and Display Results

4) Search for all genes with symbols starting with "x-*". With the results
produce the following simple result list (organism will vary):

1323 x-file Xenopus laevis
1324 x-men Xenopus laevis
1325 x-ray Xenopus laevis

# find genes starting with "x-'

# write the search results
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Search and Display Results

4) Search for all genes with symbols starting with "x-*". With the results
produce the following simple result list (organism will vary):

1323 x-file Xenopus laevis
1324 x-men Xenopus laevis
1325 x-ray Xenopus laevis

# loop through iterator

# simply print the requested information

Eric Just - Modware - GMOD January, 2007




Delete a Gene

5) Delete the gene x-ray. Run the search and report again.

1323 x-file Xenopus laevis
1324 x-men Xenopus laevis

# get the xray gene
my $xray = new Modware::Gene( -name => 'x-ray' );

# set is_deleted = 1, this will ‘hide' the gene from Searches
$xray->is_deleted(1);

# write change to database
$xray->update();

# find genes starting with "x-'
my $results = Modware::Search::Gene->Search_by_name( 'x-*');

# write the search results
GMODWriter->Write_search_results( $results )
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Other Modware Highlights

Easy to write applications with Modware
Extensible

Available through Sourceforge

— http://gmod-ware.sourceforge.net

Easy to install

Large unit test coverage

Current release 0.2-RC1
— Works with GMOD'’s latest release

— Sample script demoed here are available
« sample_scripts directory
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Other Nice Things About Modware

http://gmod-ware.sourceforge.net/doc/

All Modules TOC All
Perl levels

Modware
Modware::Feature
Modware::Search

Modware::Feature

Aligned

CHROMOSOME
CONTIG

EST

EST CONTIG

GAP

GENE

GENERIC

MRNA

REFERENCE FEATURE

Segment
TRANSCRIPT

Modware::Feature

MRNA

|Su1mna_r'g [Included libraries Package variables [Svnopsis ‘Description [General documentation

Summary
Modware: :Feature: :MRHA - DESCRIPTION of Object

Package variables
No package variables defined.
Included modules
Bio::SeqFeature::Gene::Exon
Bio::SeqFeature:: Gene:: Transcript
Modware::Feature:: TRANSCRIPT
Modware::Protein_info
Inherit
Modware::Feature:: TRANSCRIPT
Synopsis

# NEVER INSTANTIATE THIS OBJECT DIRECTLY, USE Modware::Feature

#USE CASE : print the cds stored in the database as a fasta file
ny $feature = new Modware::Feature| -primary_id => 'DDB0233595'
print §feature->sequence| -type => 'cds', -format => 'fasta' ):

#USE CASE : print the translated cds
ny $feature = new Modware::Feature| -primary_id => 'DDB0O233595'

print §feature->sequence( -type => 'protein', -format => 'fasta'

#USE CASE: shift feature up 200 bases

warr  Gfaatrinra = wnar Wadmaras sFaastnra ! _my»imarr 54 =- INNRA222CaC1
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Coming Attractions

Support for changing genomic sequence
NcRNASs

UTRs

Onotology modules
Phenotype Annotations
Send us your ideas!
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Limitations

Does not have full flexibility of Chado
Not enough users to get quality feedback
Performance (?)

Language dependent
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Why Modware Was Developed

Each feature type requires different
behavior

Want to leave schema semantics out of
application

Want to leverage work done in BioPerl

Re-use code developed for common use
cases
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