Modware: An Object-Oriented
Perl Inteface to Chado

Eric Just

Senior Bioinformatics Scientist
dictyBase: http://dictybase.org
Center for Genetic Medicine
Northwestern University

Eric Just - Modware - GMOD January, 2007

Outline

Chado Features and Modware
Architectural Overview

Sample Problem

— Insert Chromosome

— Insert and Update Gene/mRNAs
— Display Gene Reports

Other Modware Highlights
Coming soon
Limitations

Eric Just - Modware - GMOD January, 2007

What is in the Feature Table?
(the core of Chado)

Chromosome
Contig
Gene

MRNA
Exon

Lots of other things - See Sequence
Ontology!

Eric Just - Modware - GMOD January, 2007

Modware Features

Multiple Feature classes
CHROMOSOME, GENE, MRNA, CONTIG

Each class provides type specific methods

Logic such as building exon structure of
MRNA features is encapsulated

Parent class Modware::Feature
— Provides common methods
— Abstract factory for various feature types

Eric Just - Modware - GMOD January, 2007

Architectural Overview

Object-oriented Perl interface to Chado
Built on top of Chado::AutoDB|
Connection handled by GMOD
Database transactions supported

BioPerl used to represent and manipulate
sequence and feature structure

‘Lazy’ evaluation

Eric Just - Modware - GMOD January, 2007

Create and Insert Chromosome

my $seq_io = new Bio::SeqlO(
-file =>"../data/fake_chromosome.txt",
-format => 'fasta’

);

Bio::SeqlO will return a Bio::Seq object which
Modware uses as its representation
my $seq = $seq_io->next_seq();

my $reference_feature = new Modware::Feature(
-type => 'chromosome’,
-bioperl => $seq,
-description => "This is a test",
-name => 'Fake’',
-source =>"'GMOD 2007 Demo'
);

Inserts chromosome into database
$reference_feature->insert();

Eric Just - Modware - GMOD January, 2007

Create and Insert a Gene

1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Gene Feature
symbol: x-ray
synonyms: none
MmRNA Feature
exon:
start: 1703
end: 1900
strand: 1
srcFeature_id:
Id of genomic sample

Eric Just - Modware - GMOD January, 2007

Create and Insert a Gene

1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Gene Feature

symbol: x-men

synonyms: wolverine

mMRNA Feature

exon_1:
start: 12648
end: 13136
strand: 1
srcFeature_id:
Id of genomic sample

Eric Just - Modware - GMOD January, 2007

Create and Insert a Gene

1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Gene Feature
symbol: xfile
synonyms: mulder, scully
description: A test gene for
GMOD meeting
MmRNA Feature
exon_1:
start: 13691
end: 13767
strand: 1
srcFeature_id:
Id of genomic sample
exon_2:
start: 14687
end: 14720
strand: 1
srcFeature_id:
Id of genomic sample

Eric Just - Modware - GMOD January, 2007

Create and Insert a Gene

symbol: xfile
synonyms: mulder, scully
description: A test gene for GMOD meeting

my $gene_feature = new Modware::Feature(
-type => 'gene’,
-name => "xfile',
-description =>'A test gene for GMOD meeting’,
-source =>'GMOD 2007 Demo*

);

$gene_feature->add_synonym(‘'mulder’);
$gene_feature->add_synonym('scully’);

inserts object into database
$gene_feature->insert();
print 'Inserted gene with feature_id:'.$gene_feature->feature_id()."\n";

Eric Just - Modware - GMOD January, 2007

Create mMRNA BioPerl Object

exon_1: exon_2:
start: 13691 start: 14687
end: 13767 end: 14720
strand: 1 strand: 1
srcFeature_id: Id of genomic sample srcFeature_id: Id of genomic sample

First, create exon features (using Bioperl)
my $exon_1 = new Bio::SeqFeature::Gene::Exon (
-start => 13691,
-end => 13767,
-strand =>1,
-is_coding => 1

);

my $exon_2 = new Bio::SeqFeature::Gene::Exon (
-start => 14687,
-end => 14720,
-strand =>1,
-is_coding => 1

);

Next, create transcript feature to 'hold’ exons (using Bioperl)
my $bioperl_mrna = new Bio::SeqFeature::Gene::Transcript();

Add exons to transcript (using Bioperl)
$bioperl_mrna->add_exon($exon_1);
$bioperl_mrna->add_exon($exon_2);

Create and Insert mRNA

The BioPerl object holds the location information, but now we
want to create a Modware object and link it to the gene as well as
locate it on the chromosome.

Now create Modware Feature to 'hold' bioperl object
my $mrna_feature = new Modware::Feature(
-type => 'mRNA’,
-bioperl => $bioperl_mrna,
-source =>"'GMOD 2007 Demo’,
-reference_feature => $reference_feature

);

Associate mRNA to gene (required for insertion)
$mrna_feature->gene($gene_feature);

inserts object into database
$mrna_feature->insert();

Eric Just - Modware - GMOD January, 2007

Writing the Report

2) Retrieve and print the following report for gene xfile

symbol: xfile

synonyms: mulder, scully

description: A test gene for GMOD meeting

type: gene

exon1 start: 13691

exon1 end: 13767

exon2 start: 14687

exon2 end: 14720

>xfile cds
ATGGCGTTAGTATTCATGGTTACTGGTTTCGCTACTGATATCACCCAGCGTGTAGGCTGT
GGAATCGAACACTGGTATTGTATAAATGTTTGTGAATACACTGAGAAATAA

Eric Just - Modware - GMOD January, 2007

Writing the Report

package GMODWriter;
sub Write_gene_report {
my ($self, $gene) =@_;

my $symbol = $gene->name();

my @synonyms = @{ $gene->synonyms() };

my $syn_string =join ",", @synonyms;

my $description = $gene->description();

my $type = $gene->type();

get features associated with the gene that are of type 'mRNA’

my ($mrna) =grep {$_->type() eq 'mRNA’' } @{ $gene->features() };
use bioperl method to get exons from mRNA

my @exons = $mrna->bioperl->exons_ordered();

Modware will return a nice fasta file for you.

my $fasta = $mrna->sequence(-type => 'cds’, -format => 'fasta');

Now print the actual report

print "symbol: $symbol\n";

print "synonyms: $syn_string\n";
print "description: $description\n";
print "type: $type\n";

my $count = 0;

foreach my $exon (@exons) {
$count++;
print "exon${count} start: ".$exon->start()."\n";
print "exon${count} end: ".$exon->end()."\n";

}

print "$fasta";

Eric Just - Modware - GMOD January, 2007

Updating a Gene Name

3) Update the gene xfile: change the name symbol to x-file and
retrieve the changed record. Regenerate gene report

use Modware::Gene;
use Modware::DBH;
use GMODWriter;

eval{

get xfile gene
my $xfile_gene = new Modware::Gene(-name => "xfile');

change the name
$xfile_gene->name('x-file');
write changes to database
$xfile_gene->update();

we can use the original object if we want, but instead

we refetch from the database to 'prove' the name has been changed
my $xfile_gene2 = new Modware::Gene(-name => "x-file');

use our GMODWriter package to write report for x-file
GMODWFriter->Write_gene_report($xfile_gene2);

b
if (S@){
warn $@);

new Modware::DBH->rollback();

}

Eric Just - Modware - GMOD January, 2007

Search and Display Results

4) Search for all genes with symbols starting with "x-*". With the results
produce the following simple result list (organism will vary):

1323 x-file Xenopus laevis
1324 x-men Xenopus laevis
1325 x-ray Xenopus laevis

find genes starting with "x-'

write the search results

Eric Just - Modware - GMOD January, 2007

Search and Display Results

4) Search for all genes with symbols starting with "x-*". With the results
produce the following simple result list (organism will vary):

1323 x-file Xenopus laevis
1324 x-men Xenopus laevis
1325 x-ray Xenopus laevis

loop through iterator

simply print the requested information

Eric Just - Modware - GMOD January, 2007

Delete a Gene

5) Delete the gene x-ray. Run the search and report again.

1323 x-file Xenopus laevis
1324 x-men Xenopus laevis

get the xray gene
my $xray = new Modware::Gene(-name => 'x-ray');

set is_deleted = 1, this will ‘hide' the gene from Searches
$xray->is_deleted(1);

write change to database
$xray->update();

find genes starting with "x-'
my $results = Modware::Search::Gene->Search_by_name('x-*');

write the search results
GMODWriter->Write_search_results($results)

Eric Just - Modware - GMOD January, 2007

Other Modware Highlights

Easy to write applications with Modware
Extensible

Available through Sourceforge

— http://gmod-ware.sourceforge.net

Easy to install

Large unit test coverage

Current release 0.2-RC1
— Works with GMOD'’s latest release

— Sample script demoed here are available
« sample_scripts directory

Eric Just - Modware - GMOD January, 2007

Other Nice Things About Modware

http://gmod-ware.sourceforge.net/doc/

All Modules TOC All
Perl levels

Modware
Modware::Feature
Modware::Search

Modware::Feature

Aligned

CHROMOSOME
CONTIG

EST

EST CONTIG

GAP

GENE

GENERIC

MRNA

REFERENCE FEATURE

Segment
TRANSCRIPT

Modware::Feature

MRNA

|Su1mna_r'g [Included libraries Package variables [Svnopsis ‘Description [General documentation

Summary
Modware: :Feature: :MRHA - DESCRIPTION of Object

Package variables
No package variables defined.
Included modules
Bio::SeqFeature::Gene::Exon
Bio::SeqFeature:: Gene:: Transcript
Modware::Feature:: TRANSCRIPT
Modware::Protein_info
Inherit
Modware::Feature:: TRANSCRIPT
Synopsis

NEVER INSTANTIATE THIS OBJECT DIRECTLY, USE Modware::Feature

#USE CASE : print the cds stored in the database as a fasta file
ny $feature = new Modware::Feature| -primary_id => 'DDB0233595'
print §feature->sequence| -type => 'cds', -format => 'fasta'):

#USE CASE : print the translated cds
ny $feature = new Modware::Feature| -primary_id => 'DDB0O233595'

print §feature->sequence(-type => 'protein', -format => 'fasta'

#USE CASE: shift feature up 200 bases

warr Gfaatrinra = wnar Wadmaras sFaastnra ! _my»imarr 54 =- INNRA222CaC1

Eric Just - Modware - GMOD January, 2007

Coming Attractions

Support for changing genomic sequence
NcRNASs

UTRs

Onotology modules
Phenotype Annotations
Send us your ideas!

Eric Just - Modware - GMOD January, 2007

Limitations

Does not have full flexibility of Chado
Not enough users to get quality feedback
Performance (?)

Language dependent

Eric Just - Modware - GMOD January, 2007

Acknowlegments

. Other Groups
dictyBase
 Funding
« Pls — NIH (NIGMS and NHGRI)
— Rex Chisholm, PhD
— Warren Kibbe, PhD - GMOD
— Scott Cain
— Brian O’connor
— Everyone else

 Programmer
— Sohel Merchant

 BioPerl
e Curators

— Petra Fey . SGD

— Pascale Gaudet,
PhD

— Karen Pilcher

Eric Just - Modware - GMOD January, 2007

Why Modware Was Developed

Each feature type requires different
behavior

Want to leave schema semantics out of
application

Want to leverage work done in BioPerl

Re-use code developed for common use
cases

Eric Just - Modware - GMOD January, 2007

