
Eric Just - Modware - GMOD January, 2007

Modware: An Object-Oriented
Perl Inteface to Chado

Eric Just
Senior Bioinformatics Scientist
dictyBase: http://dictybase.org

Center for Genetic Medicine
Northwestern University

Eric Just - Modware - GMOD January, 2007

Outline

• Chado Features and Modware
• Architectural Overview
• Sample Problem

– Insert Chromosome
– Insert and Update Gene/mRNAs
– Display Gene Reports

• Other Modware Highlights
• Coming soon
• Limitations

Eric Just - Modware - GMOD January, 2007

What is in the Feature Table?
(the core of Chado)

• Chromosome
• Contig
• Gene
• mRNA
• Exon
• Lots of other things - See Sequence

Ontology!

Eric Just - Modware - GMOD January, 2007

Modware Features

• Multiple Feature classes
CHROMOSOME, GENE, MRNA, CONTIG

• Each class provides type specific methods
• Logic such as building exon structure of

mRNA features is encapsulated
• Parent class Modware::Feature

– Provides common methods
– Abstract factory for various feature types

Eric Just - Modware - GMOD January, 2007

Architectural Overview

• Object-oriented Perl interface to Chado
• Built on top of Chado::AutoDBI
• Connection handled by GMOD
• Database transactions supported
• BioPerl used to represent and manipulate

sequence and feature structure
• ‘Lazy’ evaluation

Eric Just - Modware - GMOD January, 2007

Create and Insert Chromosome
my $seq_io = new Bio::SeqIO(
 -file => "../data/fake_chromosome.txt",
 -format => 'fasta'
);

Bio::SeqIO will return a Bio::Seq object which
Modware uses as its representation
my $seq = $seq_io->next_seq();

my $reference_feature = new Modware::Feature(
 -type => 'chromosome',
 -bioperl => $seq,
 -description => "This is a test",
 -name => 'Fake',
 -source => 'GMOD 2007 Demo'
);

Inserts chromosome into database
$reference_feature->insert();

Eric Just - Modware - GMOD January, 2007

Gene Feature
 symbol: x-ray
 synonyms: none
 mRNA Feature
 exon:
 start: 1703
 end: 1900
 strand: 1
 srcFeature_id:
 Id of genomic sample

Create and Insert a Gene
 1) Enter the information about the following three novel genes, including the

associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Eric Just - Modware - GMOD January, 2007

 Gene Feature
 symbol: x-men
 synonyms: wolverine
 mRNA Feature
 exon_1:
 start: 12648
 end: 13136
 strand: 1
 srcFeature_id:
 Id of genomic sample

Create and Insert a Gene
 1) Enter the information about the following three novel genes, including the

associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Eric Just - Modware - GMOD January, 2007

Gene Feature
 symbol: xfile
 synonyms: mulder, scully
 description: A test gene for
 GMOD meeting
 mRNA Feature
 exon_1:
 start: 13691
 end: 13767
 strand: 1
 srcFeature_id:
 Id of genomic sample
 exon_2:
 start: 14687
 end: 14720
 strand: 1
 srcFeature_id:
 Id of genomic sample

 1) Enter the information about the following three novel genes, including the
associated mRNA structures, into your database. Print the assigned feature_id
for each inserted gene.

Create and Insert a Gene

Eric Just - Modware - GMOD January, 2007

Create and Insert a Gene

my $gene_feature = new Modware::Feature(
 -type => 'gene',
 -name => 'xfile',
 -description => 'A test gene for GMOD meeting',
 -source => 'GMOD 2007 Demo‘
);

$gene_feature->add_synonym('mulder');
$gene_feature->add_synonym('scully');

inserts object into database
$gene_feature->insert();
print 'Inserted gene with feature_id:'.$gene_feature->feature_id()."\n";

 symbol: xfile
 synonyms: mulder, scully
 description: A test gene for GMOD meeting
…

Eric Just - Modware - GMOD January, 2007

Create mRNA BioPerl Object

First, create exon features (using Bioperl)
my $exon_1 = new Bio::SeqFeature::Gene::Exon (
 -start => 13691,
 -end => 13767,
 -strand => 1,
 -is_coding => 1
);

my $exon_2 = new Bio::SeqFeature::Gene::Exon (
 -start => 14687,
 -end => 14720,
 -strand => 1,
 -is_coding => 1
);

Next, create transcript feature to 'hold' exons (using Bioperl)
my $bioperl_mrna = new Bio::SeqFeature::Gene::Transcript();

Add exons to transcript (using Bioperl)
$bioperl_mrna->add_exon($exon_1);
$bioperl_mrna->add_exon($exon_2);

exon_1:
 start: 13691
 end: 13767
 strand: 1
 srcFeature_id: Id of genomic sample

exon_2:
 start: 14687
 end: 14720
 strand: 1
 srcFeature_id: Id of genomic sample

Eric Just - Modware - GMOD January, 2007

Create and Insert mRNA

Now create Modware Feature to 'hold' bioperl object
my $mrna_feature = new Modware::Feature(
 -type => 'mRNA',
 -bioperl => $bioperl_mrna,
 -source => 'GMOD 2007 Demo',
 -reference_feature => $reference_feature
);

Associate mRNA to gene (required for insertion)
$mrna_feature->gene($gene_feature);

 # inserts object into database
$mrna_feature->insert();

The BioPerl object holds the location information, but now we
want to create a Modware object and link it to the gene as well as
locate it on the chromosome.

Eric Just - Modware - GMOD January, 2007

Writing the Report

use Modware::Gene;
use GMODWriter;

my $xfile_gene = new Modware::Gene(-name => 'xfile');
GMODWriter->Write_gene_report($xfile_gene);

 2) Retrieve and print the following report for gene xfile

 symbol: xfile
 synonyms: mulder, scully
 description: A test gene for GMOD meeting
 type: gene
 exon1 start: 13691
 exon1 end: 13767
 exon2 start: 14687
 exon2 end: 14720
 >xfile cds
 ATGGCGTTAGTATTCATGGTTACTGGTTTCGCTACTGATATCACCCAGCGTGTAGGCTGT
 GGAATCGAACACTGGTATTGTATAAATGTTTGTGAATACACTGAGAAATAA

Eric Just - Modware - GMOD January, 2007

Writing the Report

use Modware::Gene;
use GMODWriter;

my $xfile_gene = new Modware::Gene(-name => 'xfile');
GMODWriter->Write_gene_report($xfile_gene);

 2) Retrieve and print the following report for gene xfile

 symbol: xfile
 synonyms: mulder, scully
 description: A test gene for GMOD meeting
 type: gene
 exon1 start: 13691
 exon1 end: 13767
 exon2 start: 14687
 exon2 end: 14720
 >xfile cds
 ATGGCGTTAGTATTCATGGTTACTGGTTTCGCTACTGATATCACCCAGCGTGTAGGCTGT
 GGAATCGAACACTGGTATTGTATAAATGTTTGTGAATACACTGAGAAATAA

package GMODWriter;
sub Write_gene_report {
 my ($self, $gene) = @_;

 my $symbol = $gene->name();
 my @synonyms = @{ $gene->synonyms() };
 my $syn_string = join ",", @synonyms;
 my $description = $gene->description();
 my $type = $gene->type();
 # get features associated with the gene that are of type 'mRNA'
 my ($mrna) = grep { $_->type() eq 'mRNA' } @{ $gene->features() };
 # use bioperl method to get exons from mRNA
 my @exons = $mrna->bioperl->exons_ordered();
 # Modware will return a nice fasta file for you.
 my $fasta = $mrna->sequence(-type => 'cds', -format => 'fasta');

 # Now print the actual report
 print "symbol: $symbol\n";
 print "synonyms: $syn_string\n";
 print "description: $description\n";
 print "type: $type\n";

 my $count = 0;
 foreach my $exon (@exons) {
 $count++;
 print "exon${count} start: ".$exon->start()."\n";
 print "exon${count} end: ".$exon->end()."\n";
 }
 print "$fasta";
}
. . .

Eric Just - Modware - GMOD January, 2007

Updating a Gene Name

use Modware::Gene;
use Modware::DBH;
use GMODWriter;

eval{

 # get xfile gene
 my $xfile_gene = new Modware::Gene(-name => 'xfile');

 # change the name
 $xfile_gene->name('x-file');
 # write changes to database
 $xfile_gene->update();

 # we can use the original object if we want, but instead
 # we refetch from the database to 'prove' the name has been changed
 my $xfile_gene2 = new Modware::Gene(-name => 'x-file');
 # use our GMODWriter package to write report for x-file
 GMODWriter->Write_gene_report($xfile_gene2);

};
if ($@){
 warn $@;
 new Modware::DBH->rollback();
}

 3) Update the gene xfile: change the name symbol to x-file and
retrieve the changed record. Regenerate gene report

Eric Just - Modware - GMOD January, 2007

Search and Display Results
 4) Search for all genes with symbols starting with "x-*". With the results

produce the following simple result list (organism will vary):

 1323 x-file Xenopus laevis
 1324 x-men Xenopus laevis
 1325 x-ray Xenopus laevis

use Modware::Gene;
use Modware::DBH;
use GMODWriter;

find genes starting with 'x-'
my $results = Modware::Search::Gene->Search_by_name('x-*');

write the search results
GMODWriter->Write_search_results($results)

Eric Just - Modware - GMOD January, 2007

Search and Display Results
 4) Search for all genes with symbols starting with "x-*". With the results

produce the following simple result list (organism will vary):

 1323 x-file Xenopus laevis
 1324 x-men Xenopus laevis
 1325 x-ray Xenopus laevis

use Modware::Gene;
use Modware::DBH;
use GMODWriter;

find genes starting with 'x-'
my $results = Modware::Search::Gene->Search_by_name('x-*');

write the search results
GMODWriter->Write_search_results($results)

sub Write_search_results {
 my ($self, $itr) = @_;

 # loop through iterator
 while (my $gene = $itr->next()) {
 # simply print the requested information
 print $gene->feature_id()."\t".$gene->name().
 "\t".$gene->organism_name()."\n";
 }
}

Eric Just - Modware - GMOD January, 2007

Delete a Gene
 5) Delete the gene x-ray. Run the search and report again.

 1323 x-file Xenopus laevis
 1324 x-men Xenopus laevis

get the xray gene
my $xray = new Modware::Gene(-name => 'x-ray');

set is_deleted = 1, this will 'hide' the gene from Searches
$xray->is_deleted(1);

write change to database
$xray->update();

find genes starting with 'x-'
my $results = Modware::Search::Gene->Search_by_name('x-*');

write the search results
GMODWriter->Write_search_results($results)

Eric Just - Modware - GMOD January, 2007

• Easy to write applications with Modware
• Extensible
• Available through Sourceforge

– http://gmod-ware.sourceforge.net
• Easy to install
• Large unit test coverage
• Current release 0.2-RC1

– Works with GMOD’s latest release
– Sample script demoed here are available

• sample_scripts directory

Other Modware Highlights

Eric Just - Modware - GMOD January, 2007

Other Nice Things About Modware
http://gmod-ware.sourceforge.net/doc/

Eric Just - Modware - GMOD January, 2007

Coming Attractions

• Support for changing genomic sequence
• ncRNAs
• UTRs
• Onotology modules
• Phenotype Annotations
• Send us your ideas!

Eric Just - Modware - GMOD January, 2007

Limitations

• Does not have full flexibility of Chado
• Not enough users to get quality feedback
• Performance (?)
• Language dependent

Eric Just - Modware - GMOD January, 2007

Acknowlegments
dictyBase

• PIs
– Rex Chisholm, PhD
– Warren Kibbe, PhD

• Programmer
– Sohel Merchant

• Curators
– Petra Fey
– Pascale Gaudet,

PhD
– Karen Pilcher

Other Groups

• Funding
– NIH (NIGMS and NHGRI)

• GMOD
– Scott Cain
– Brian O’connor
– Everyone else

• BioPerl

• SGD

Eric Just - Modware - GMOD January, 2007

Why Modware Was Developed

• Each feature type requires different
behavior

• Want to leave schema semantics out of
application

• Want to leverage work done in BioPerl
• Re-use code developed for common use

cases

