
Data validation,
storage, and
visualization with
GMOD tools for
modENCODE
Nicole Washington
Lawrence Berkeley National Lab
modENCODE Data Collection Center

The modENCODE project
Background:
 Organisms
  Drosophila melanogaster

  Caenorhabditis elegans

  11 NIH-funded groups
  5 fly & 5 worm groups

  1 data coordination center

The modENCODE project
Research projects:
  Find regulatory elements
  ChIP-chip and ChIP-seq

  Find evidence for all gene structures & miRNAs
  RACE, RT-PCR, cDNA seq, RNA-Seq

  Expression profiles of mRNAs under various
conditions
  Arrays, RNA-Seq

 Annotate UTR regulatory regions

  Examine origins of replication (fly)

The modENCODE project
Data coordination center (DCC):
 Develop specs for submissions
  Metadata & data

  Ensure uniformity across data types

 Data management
  Collect & Validate

  Store data/metadata

  Provide statistics

  Serve to community
  Interfaces for browsing & analysis

DCC Data management
Problems to tackle:
 Capture both data & experimental details
  Store together in database

  Utilize downstream for data analysis

  Basic responsibilities
  Collection

  Validation

  Storage

  Serving

  Provide links between results from different
researchers, data types, organisms, etc.

DCC Data management
Solutions
  Extend existing gmod tools:
  Data & metadata storage with Chado

  Data visualization with Gbrowse
  (Metadata visualization with modMine)

 Develop new tools:
  Meta/Data validation

  Track “finding” via data introspection

  Submission & publishing pipeline

Storing metadata in Chado
  Requirements:
  Strong data typing (ontologies)

  Links between metadata and resulting features

  Normalized, consistent with Chado schema

  Methods to add/drop new data easily

Formalizing experimental metadata:
BIR-TAB & MediaWiki extensions

  Two data files:
  IDF: Investigation Design

  Declare protocols and controlled vocabulary

  SDRF: Sample-Data Relationship

  Applications of protocols - inputs and outputs

  Data and/or references to data

  Use Wiki Forms for additional controlled parameters
  Define all protocols (incl. typing with ontologies)

  Define additional reagents: Abs, Strains, Stages, etc.

BIR-TAB components
(IDF)

BIR-TAB components
(SDRF)

 A superset of MAGE-TAB

 Applications of protocols - inputs and outputs

 Data and/or references to data

  Build an experimental graph
  Can merge and split outputs and inputs of

protocols - describe a DAG

“Protocols”
  Protocols are “black boxes”

 Any input(s) can be transformed
into any output(s)

 Can be as atomic – or not – as
required

“Applied Protocols”
  Each protocol can be reused

with different inputs/outputs as
an “applied protocol”

 Applied protocols are chained

 When following the DAG of
applied protocols, connections
are made by shared data

BIR-TAB
in
Chado
SCHEMA

Chado in PostgreSQL:

Option 1: single database

Chado in PostgreSQL:

Option 2: multiple databases
Each submission has its own DB

Chado in PostgreSQL:
combining data via namespaces

Option 3: single database with namespaces

Displaying data with
GBrowse
  Requirements:
  Everything GBrowse has, plus…

  Need to easily add/drop data

  Handling very large datasets

  Want to use PostgreSQL for Bio::Seqfeature::Store

Displaying data with
GBrowse
  Requirements:
  Everything GBrowse has, plus…

  Need to easily add/drop data

  Handling very large datasets

  Want to use PostgreSQL for Bio::Seqfeature::Store

  Solution:
  Use GBrowse 2.0

  Write Postgres adapter for Bio::Seqfeature::Store

  Use multiple namespaces for Bio::Seqfeature::Store

Displaying data with GBrowse:
stanza for v2.0

[modencode_preview_129:database]
db_adaptor = Bio::DB::SeqFeature::Store
db_args = -adaptor DBI::Pg
 -dsn dbname=modencode_gffdb;host=localhost
 -user '????????'
 -pass '????????’

 -schema ‘129’

[white_-_dCT_WIG_130_129]
database = modencode_preview_129
feature = WIG:130
label = sub { return shift->name; }
glyph = wiggle_xyplot
max_score = 3
min_score = -1
category = Preview
pos_color = blue
neg_color = orange
label density = 100
key = white - dCTCF C-term signal intensity

NEW: Meta/Data validation
  Requirements:
  Handle diverse data types

  Modular components for maximal utility

  Biologist user-friendly

NEW: Meta/Data validation
  Requirements:
  Handle diverse experiment types
  Modular components for maximal utility
  Biologist user-friendly

  Solution
  Wiki extension using forms for metadata entry (strains,

antibodies, stages, etc.)
  BIR-TAB metadata format directs validation pipeline
  Validation modules invoked based on “type”
  Output ChadoXML for max compatibility

NEW: Track “finding”
  Requirements:
  Introspect on a submission, find 1+ gbrowse-

compatible tracks

  Output standardized GFF3 for downstream use

NEW: Track “finding”
  Requirements:
  Introspect on a submission, find 1+ gbrowse-

compatible tracks

  Output standardized GFF3 for downstream use

  Solution
  Heuristics to produce different results depending on

number and types of features found

  Produce GFF3, WIG, or both, depending on input
type

  Reject for non-located features

NEW: Submission &
Publishing pipeline
  Requirements:

  Robust system for submission of data sets

  Tracking & statistics for NIH management

  User should control from submission to final browser

  Public and private data sets available for different user

NEW: Submission &
Publishing pipeline
  Requirements:

  Robust system for submission of data sets
  Tracking & statistics for NIH management
  User should control from submission to final browser
  Public and private data sets available for different user

  Solution
  Built interface with Ruby
  Dispatch perl validation modules
  Track finding
  Track configuration with Gbrowse session co-

management
  Statistics pages built using Google graph API

NEW: Track configuration

Further information
  Pipeline & validation software available via svn:
  svn://public-svn.modencode.org/modencode

Acknowledgements
 Most work done by: EO Stinson

 modENCODE PIs: Suzi Lewis & Lincoln Stein

 NIH funded

