How to load a Chado database into BioMart

Authors: Aminah Olivia KELIET"
Joélle Amselem'
Sandra DEROZIE'
Delphine Steinbach'
(‘INRA URGI http://www.urgi.versailles.inra.fr)

Contact: Aminah Olivia KELIET, aminah-olivia.keliet@versailles.inra.fr

http://www.urgi.versailles.inra.fr/
mailto:aminah-olivia.keliet@versailles.inra.fr

Table of Contents

PREREQUISITES 3

Prerequisites

To load datasets from chado databases, BioMart must be installed in your system.

See instructions in http://www.biomart.org/install-overview.html

BioMart is available in URL http://www.biomart.org.

The BioMart components are available under CVS distribution in two packages :

- martj : JAVA API (MartEditor, MartShell, MartExplorer, MartBuilder).
- biomart-perl : PERL API (MartView, MartService, DAS Annotation Server).
The installation requires a password: CVSUSER.

To use MartView, MartService and DAS Server, an Apache web server must be installed.

Martj

Martj contains the Java API and whole BioMart applications based on Java. Its directory "bin"
contains bash scripts (. sh).

Martj source code is available for download via CVS, but it is necessary to have tool "ant" installed
to compile it. "Ant" is available on the site http://ant.apache.org/.

Martj requires at least Java 1.3 (http://java.sun.com/)

Commands to get and install:
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/biomart login
- recover:
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/biomart co -r release-0_7 martj

e Changes :

In order to fix a problem encountered you need to edit one of the source file:
martj/src/java/org/ensembl/mart/lib/config/DatabaseDatasetConfigUtils.java
Search for the expression “Remove duplicates before generating template” and after the second
occurrence delete the expression "return false"
Compilation:
ant jar

Biomart-perl

Commands to get and install:

cvs —d:pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/biomart login
- recover:

cvs —d:pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/biomart \

co —r release-0_7 biomart-perl

http://www.biomart.org/
http://www.biomart.org/install-overview.html

- Install:

Perl 5.6.0 or more is required (http://www/perl.org/). Biomart-perl depends on a number of Perl
modules. To get the list of required and missing modules, launch the command below: (in the
directory biomart/biomart-perl)

/usr/local/bin/perl bin/configure.pl -r conf/registryURL Pointer.xml

Apache

Apache is available http://httpd.apache.org/ and it is not necessary to configure it, scripts for
BioMart do automatically. A version of Apache 1.3 minimum is required. MartView also requires
the installation of plug-ins for Apache and a preference for a version higher than 2.0.

To install Apache, you must :

- Create a new directory apache:
mkdir biomart/apache
- Create a new source directory in biomart:
mkdir biomart/source
- Retrieve the archive on www.apache.org:
cd biomart/source
wget http://www.apache.org/dist/httpd/httpd-2.2.8.tar.gz
- Install it:
gunzip http-2.2.8.tar.gz
tar -xvf http-2.2.8.tar
cd biomart/source/httpd-2.2.8
- Set some environment variables:
export C-C=cc export CXX=CC export CFLAGS= « -fast —xarch=v9 »
- Run the configuration script :
Jconfigure.pl -enable-deflate -prefix=biomart/apache
- Then:
make
make test
make install

The Apache installation is done (biomart/apache/bin) and its configuration.

ModPerl

- Retrieve the archive on http://perl.apache.org/ :
cd biomart/source
wget http://perl.apache.org/distmod_perl-2.0.3.tar.gz
gunzip mod_perl-2.0.3.tar.gz
tar -xvf mod_perl.2.0.3.tar
cd /home/projects/gpi/biomart/source/mod_perl-2.0.3

http://perl.apache.org/dist/mod-perl-2.0.3.tar.gz
http://perl.apache.org/
http://www.apache.org/dist/httpd/httpd-2.2.8.tar.gz

- Run the configuration script :
/usr/local/bin/perl Makefile.pl \

PREFIX=/home/projects/gpi/biomart/apache \

MP_APXS=/home/projects/gpi/biomart/apache/apxs
- Then:

make

make test

make install

BioMart Configuration

1 - Configuring BioMart Perl API.

- Run the configuration script:
cd biomart/biomart-perl

/usr/local/bin/perl bin/configure.pl -r conf/registryURL Pointer.xml
- do you want to install in API only mode [y/n] [n]:

y

The final message is “Looks good ... You are done”.

2 - Configuring MartView.

Before using the configuration script MartView must learn some characteristics in settings.conf file
in the directory biomart/biomart-perl/conf:

- Apache Binary : biomart/apache/bin/httpd.
- ServerHost : localhost.
- Port : 1111.

- Proxy : none.
- Location : biomart.

This file can set full of other parameters for the web interface (colors, etc ...). The file
site_header_biomart.tt in directory biomart/biomart-perl/conf/templates/default allows you to
customize the interface (logo, navigation bar, etc ...).

Once everything is customize, the same script is used for configuring MartView:

- Run the configuration script:
cd biomart/biomart-perl

/usr/local/bin/perl bin/configure.pl -r conf/registryURLPointer.xml
- do you want to install in API only mode [y/n] [n] :
n

Create dataset from a Chado database

Dataset creation

To create this dataset, a new schema must be created in the chado database. The owner of this
schema should have at least right to “select” in chado database and the right to insert data into tables
of this new schema.

To create this dataset, the plugin MartBuilder of BioMart was used. Here is the database login
window to fill in:

chado_database | public.
jdbepostoresaliiplsans 8433kchadotisnz.

Once the schema database MartBuilder is loaded, just select the central table on which you want to
build the dataset. Here, we choose the table "feature" as a central table.

assay_id _|Hide masked
type_id attr_id taxen_id
abject_d cvalue_id biosourceprovider_id quantific:
type_id Subject_id abservable_id dbxret_id i cleme

n feature_relationship_id type_id quantification_id
nviranment2_id pub_id phylonade_id element_id

The dataset will be created with the option "Create" menu "Dataset" of MartBuilder, centering the
dataset on the table "feature." The dimension tables and the main table are viewable in "Dataset
Editor" MartBuilder. This tool create a master table centered on the table feature and twenty five
dimension tables.

In this example, some of data will not be recovered, only the following tables will be used:

Analysis Feature
Analysisfeature Dbxref

Cvterm Feature_dbxref
Synonym Organism
Feature_synonym Featureloc

Only the main table feature and dimension tables following will be used for the creation of the
dataset:

Analysisfeature Feature_dbxref
Featureloc Feature_synonym

The other dimension tables will be hidden: right click on each table and select the option "Mask."
In order to keep only the tables you need, you should also to make some configuration manual:

-on the table « feature » : select "Mask" on the link between “feature” and “dbxref” and on
the label "dbxref id" Tables "feature".

-on_the table « organism » : select "Mask" on the link between "organism" and "dbxref"
and on the label "dbxref_id" table "organism."

-on the table « feature synonym » : select "Mask" on the link between "feature_synonym"
and "pub"” and the label "pub_id" table "feature_synonym.

-on the table « synonym » : select "Mask" on the link between "synonym" and "cvterm"
and on the label "cvterm_id" table "synonym".

To check if everything is working as planned, you can use the "explain table ..." on the main table
and dimension tables in the "Dataset Editor" MartBuilder. Thus, there is a view of all the merged
tables.

To generate the SQL dataset, we use the option "Generate SQL" menu "Mart." Here the window
generation of SQL:

se. chado_database

Tesaats | /

With this, SQL statements related to our MartBuilder diagram will be written in a file to save. It is
possible to use the software MartRunner. The dataset creation SQL scripts will be executed using
the following command:

psql -h host -p port -U user -d mydatabase <myfile.sql> myfile.log 2>&1

Once the SQL code generated, it is interesting to keep the ". xml" MartBuilder reporting changes on
the original schema downloaded.

Indeed, the backup file ". xml" to MartBuilder can work on the layout of the database saved without
having to reconnect to it again. This backup contains the whole changes made.

Dataset Configuration

To configure this dataset the plugin MartEditor of BioMart will be used.

Here is the login window that links MartEditor to the database containing the dataset to configure:

@ Display Name 'my_name -
Database Type |postgres -
Database Driver |org.postgresgl.Driver -
Host |host >
Port Port -
Database :chado_database =
Schema |newschema -
Database User user_schema i
Passwurd!""*‘*‘“""ﬂ | [#] Remember Password

Ok || Cancel || Delete |

Once connected to the database, you can create a basic configuration with "naive" option (command
of menu "File" menu). This will actually create a basic configuration in MartEditor but also insert
meta-data tables into the chado database. Once configuration achieved, we have to configure the
dataset.

Different pages will be created:

- a “filters” page.
- a “attributes” page.

Filters and attributes can be represented in different ways (See “Complete BioMart docs in PDF
format” in http://www.biomart.org/install.html). As example use case:

a) Filters page.

This page allows to define on which field the user will be able to run a query. You can choose to
group groups filter in categories. We choose to define 3 categories of filters: "analysis", “feature”
and "region".

Category Collection/filtre Chado DB Field set up Comments
table.field
Analysis_name/anal | Analysis.name List of all analysis
ysis_name available in the dataset
Analysis Drop-down list |31 could be True or

Is_analysis/is_analy | Feature.is_analysis
sis False according to the data
source, if whether or not
linked to an analysis

stored in analysis table of
chado DB

Feature

feature_name/name

Feature.name

Text field
/upload file of
values

"%'" wildcard is accepted.
File contains a list of
names of several features
(features the names must
be one per line and the file
does not contain blank
lines).

feature_uniquename
/uniquename

Feature.uniquename

Text field
/upload file of
values

"%'" wildcard is accepted.
File contains a list of
names of several features
(features the names must
be one per line and the file
does not contain blank
lines).

type/type

Cvterm.name

Drop-down list

List of types used in
feature table
(feature.type_id foreign
key references
cvterm.cvterm_id, eg STS,
gene, polypeptide, etc. ...)

Region

Position/fmin

Featureloc.fmin

Text field

positions of start
locations of different

features

Position/fmax

Featureloc.fmax

Text field

positions of end locations

of different features

Strand/strand

Featureloc.strand

Drop-down list

List of strand used in

featureloc table

b) Page attributes.

The page lets you define attributes on which field the user wishes to obtain the results of its
application. We chose to create three categories or groups of filters "feature", "organism",

"analysis".

10

Category Collection Attributes Chado DB Comments
table.fields
Clickable option with
linkoutURL. This
allows for a link to the
outside, we make a
feature_name Feature.name link to a conf
Gbrowser of our
system information
(INRA URGI)
(http://urgi.versailles.i
Feature Feature nra.fr/cgi-bin/gbrowse/
grape/?name=%s).
feature_uniquena |Feature.uniquena
me me
type Cvterm.name Selected by default in
the result with the
option "default"
validated “true”.
Phase Featureloc.phase
Strand Featureloc.strand
fmin Featureloc.fmin
fmax Featureloc.max
abbreviation Organism.abbrevi
ation
COmmon_name Organism.commo
n_name
Organism Feature species Organism.species
genus Organism.genus | gelected by default in
the result with the
option "default"
validated “true”.
analysis_name Analysis.name
description Analysis.descripti
Analysis Feature P on y P
program Analysis.program

The configuration dataset is well finished.

11

Operating interface BioMart

To allow the user to query dataset through the BioMart web interface, BioMart MartView tool is
used. To connect web interface to the dataset, you have to create an xml file "Registry" containing
the connection parameters to the dataset as an example:

<?xml version="1.1" encoding="UTF-8"?>
<IDOCTYPE MartRegistry>
<MartRegistry>

<virtualSchema name="default">
<MartDBLocation

name = "my_dataset_name"

displayName = "my dataset name displayed"
databaseType = "oracle"

host = "myhost"

port = "myport"

database = "my_database_name"
schema = "newschema"

user = "user_schema"

password = "password_schema"
visible = "1"

default ="
includeDatasets = ""

martUser = "

/>

<MartDBLocation

name = "my_dataset_name2"

displayName = "my dataset name2 displayed"
databaseType = "postgres"

host = "myhost2"

port = "myport2"

database = "my_database_name2"
schema = "newschema2"

user = "user_schema2"

password = "password_schema2"
visible = W3

default = W

includebDatasets = ""

martuUser = W

/>

Here are the steps to configure the web interface to make queries via MartView:

- connection via « .xml » file:

export PATH=/usr/local/bin :$PATH
cd /biomart/biomart-perl
perl bin/configure.pl -r conf/myRegistry.xml

- start Apache :

12

/home/projects/gpi/biomart/apache/bin/httpd —d $PWD —f $PWD/conf/httpd

Once this is done, simply connect to connect to the following address:
http://localhost:1111/biomart/martview.

Here is a sample display filters, attributes and results

" GnplIS advanced search

D New || B count || [E Results W urL [|BAxmL || 8 Per || @ Help

Please restrict your query using criteria below

2 Qualifiers

| Description (% for wildcard) [

Attributes | Ontology Term (% for wildcard) [

Description
Target ID / Hit

I Target ID (% for wildcard) [

Ontology Term | Program blastn
Program blastx

q eugene
Library fgenesh

Feature Name
Feature Type

RepeatMasker | =

L Library BO510_B2BC [<]
BOS10_B3BC B
BOS10_B4BC
BOS10_BSBC -
E0O510_genes
B Feature
L1 Is Analysis e

-

|| Feature Mame (% for wildcard)

Parcourir...
_| Feature Type contig [=]
gene
match

13

http://localhost:1111/biomart/martview

Dataset
Botrytis
Filters

pEEEEStG,

Attributes

Target ID / Hit
Ontology Term
Program
Library
Feature Name
Feature Type

®

Please select columns to be included in the output and hit 'Results’ when ready

B Feature
Qualifiers
¥ Description
v Target 1D/ Hit
W Ontology Term

Feature
¥ Feature Name
_IFeature Unique Name

2 Organism

_IComron MNarme

¥ Program
W | ibrary

¥ Feature Type

biomart ver:

14

VRG]

-info GnplS advanced search

2 New || B count || [Results

Dataset Export all results to File |2| Tsv |4 L Unique resuits only
Botrytis Email notification to |
Filters
Description (% for wildcard View 10 |2 rows as HTML 2| L] Unique results only
: %kinase% T t ID / Ontol Feat
i T arge ntology . eature
Attributes Description Hit Term Program Library Feature Name Type
Description adenosine kinase BC1G_06571.1 blastn B0510_genes | bt4ctg_0688_BC1G_06571.1 | match
Target 1D / Hit hypothetical protein similar to MAP kinase BC1G_07144.1 blastn B0510_genes | btdctg_0696_BC1G_07144.1 | match
Ontology Term hypathetical protein similar to calmodulin- BC1G_15259.1 blastn |B0OS10_genes |btdctg 0880 BC1G_15259.1 | match
Program dependent protein kinase CgCMK
s hypothetical protein similar to PHOBS_YARLI
¥ Negative regulator of the PHO system BC1G_05099.1 blastn B0510_genes | bt4ctg_1815_BC1G_05099.1 | match
Feature Name {Serinefthrecnine-protein kinase PHO85) L mm m o
Feature Type i imi in ki e b3
P gyspKOthEt'cal protein similar to protein kinase | 50 4305 ¢ blastn | B0510_genes#bticty 2108 BCIG 13455 M match
A
Mitogen-activated protein kinase styl S551G_07590.1 blastn SS_genes Btﬁ:t& 0044 SS1g QZ5®.1 | match
hypothetical protein similar to serine threonine | ooy 15456 1 blastn |SS genes | bttt 0440 SS1G_10426.1 | match
protein kinase @
Mitogen-activated protein kinase SS1G_11866.1 blastn SS_genes |btdctg_0883_SS1G_11866.1 | match
Pyruvate kinase SS1G_04568.1 blastn SS_gerﬁs’ btdctg_0914_SS1G_04568.1 | match
hypothetical protein similar to hexokinase SS1G_01273.1 blastn SS_ggnes btdctg_1222_SS1G_01273.1 | match
g

biomart version 0.7

| http:fjurgi.versailles.inra fr/cgi-bin/gbrowse/BOTRYTIS T4 pubf?name=btdctg 2109 BC1G_13455.1

15

Uses cases: Integration of specific features

Integration of attributes from featureprop table
a) gff3 file

In order to make possible request on feature attributes they should have been inserted in chado DB
from column 9 of GFF3 file using the format "tag=value". The "tag=value" are inserted into chado
DB featureprop table.

In the example below, "biological_Process”, "molecular_Function” and "Notes" will be
integrated in BioMart to be filtered on

PTR19GenBank_Eugene polypeptide 162271 165862 . - 0
ID=polypeptide|eugenel3.00190012_1;biological Process=apoptosis, defense
response, defense response to pathogen;molecular_Function=ATP

binding; Name=polypeptide|eugene3.00190012_1;Note=gi|15237022|ref|NP_194452.1|
disease resistance protein (NBS-LRR class)%2C putative [Arabidopsis thaliana]
%269t%3Bgi| 46395628 |sp|081825|DR28_ARATH Putative disease resistance protein
At4927220 %269t%3Bgi|7486805|pir||TO05746 hypothetical protein M4122.30 -
Arabidopsis thaliana %269t%3Bgi|3269283|emb|CAA19716.1| putative protein
[Arabidopsis thaliana] %26gt%3Bgi|7269575|emb|CAB79577.1| putative protein
[Arabidopsis thaliana] (model%25| 68%2C hit%25| 83%2C score| 785%2C %25id| 13)
[Arabidopsis

thaliana];gene=eugene3.00190012;i1d=573538; interproid=IPROOO767, IPROO2182; kogid
=K0G4658; product=apoptosis - defense response - defense response to pathogen -
ATP b1nd1ng translation=length.1160;Derives_from= mRNA|eugene3 00190012_0

PTR19GenBank_Eugene exon 162271 164700 . . ID=exon |
eugene3.00190012_0; gene=eugene3.00190012;Parent= mRNA|eugeneS.00190012_0
PTR19GenBank_Eugene exon 164813 165862 e - 5 ID=exon |

eugenel3.00190012_1;gene=eugenel3.00190012;Parent=mRNA|eugene3.00190012_0

In Chado DB, these "tags" have been inserted as new terms into cvterm table as follows:

cvterm_id cv_id name

2 1 Note

26570 5 biological Process
26572 5 molecular_Function

In chado DB featureprop.type_id Foreign key references cvterm.cvterm_id. Acordingly a
supplementary table must be created and will contain the values of the different tag. In the example
above "biological_Process", "molecular_Function" and "Notes".

b) SQL. code

Thus, the SQL code that should have to be added to the SQL code (myfile.sql) generated by
Martbuilder (see Creating dataset section) could be for the current example:

//biological Process attribute

create table newschema.TEMPa as select a.*,b.value as value_bioprocess_1078

16

from newschema.myname__feature__main as a left join public.featureprop as b on
a.feature_id_1057_key=b.feature_id and b.type_id=26570;

set search_path=newschema, pg_catalog;

create index I_a on newschema.TEMP7(value_bioprocess_1078);

set search_path=newschema, public, pg_catalog;

//molecular_Function attribute

create table newschema.TEMPb as select a.*,b.value as value_molfunct_1078 from
newschema.TEMPa as a left join public.featureprop as b on
a.feature_id 1057 key=b.feature_id and b.type id=26572;

set search_path=newschema, pg_catalog;

drop table newschema.TEMPa;

set search_path=newschema, pg_catalog;

create index I_b on newschema.TEMP7d(value_molfunct_1078);

set search_path=newschema, public, pg_catalog;

//Note attribute

create table newschema.TEMPc as select a.*,b.value as value_note_1078 from
newschema.TEMPb as a left join public.featureprop as b on
a.feature_id_1057_key=b.feature_id and b.type_id=2;

set search_path=newschema, pg_catalog;

drop table newschema.TEMPDb;

set search_path=newschema, pg_catalog;

create index I_c on newschema.TEMP7d(value_note_1078);

set search_path=newschema, public, pg_catalog;

//creating of __ featureprop__dm table

set search_path=poplarmart, poplarmart, pg_catalog;

alter table poplarmart.TEMP7c rename to myname__featureprop__dm;

set search_path=newschema, pg_catalog;

create index I_d on newschema.myname__featureprop__dm(feature_id_1057_key);
set search_path=newschema, newschema, pg_catalog;

After running the psql command to execute the sql (myfile.sql), the datasets from the Chado DB
will be created with attribute values to be integrated into Biomart. These data are contained in the
“myname__featureprop__dm” table.

To add these new attributes in configuration, see Configuration of dataset section.

Integration of Target
a) gff3 file

The aim here is to allow the user to make a request on a Target (ie attributes inserted in chado DB
relative to the Target). The Target corresponds to Hit in a comparison analysis. So the ID, match
start, match end, description or every other attribute inserted in the database relative to the Target
could be request under BioMart.

The most common way to insert data relative to a Target is to insert it through GFF3 as "Target"
attributes in match and match_part types as Target_ID+start+end.

Examples of GFF3 required to insert a blast analysis result are showed below:

GFF3 corresponding to the Reference feature inserted once

17

bt4ctg_0002 Genoscope contig 1 20000 4
ID= bt4ctg_0002;Name= bt4ctg_ 000602

GFF3 corresponding to the Target feature inserted once

. Bot_allest EST . . .
ID=PDOACA5YNO7FM1;description=BT4 mycelium - pH stress library

GFF3 corresponding to the match between reference feature and the target feature

bt4ctg_0002 blastn_Bot_allest match_set 6244 7015 0.0

o . ID=blastn_BT4_PDOACA _bt4ctg_0002_PDOACA5YNO7FM1_m1;
Target=PDOACAS5YNO7FM1+1+725; Name=bt4ctg_0002_PDOACA5YNO7FM1; target_pcover=100.
00;target_pident=100.00;target_length=725;1ib=BT4_PDOACA; program=blastn
bt4ctg_ 0002 blastn_Bot_allest match_part 6483 7015 0.0

+

ID=blastn_BT4_PDOACA bt4ctg_0002_PDOACA5YNO7FM1_ml1_mpl; Target=PDOACA5YNO7FM1+1
93+725;Parent=blastn_BT4_PDOACA_bt4ctg_0002_PDOACA5YNO7FM1_m1

bt4ctg_0002 blastn_Bot_allest match_part 6244 6435 le-104
T ID=blastn_BT4_PDOACA_bt4ctg_0002_PDOACA5YNO7FM1_ml1_mp2;
Target=PDOACA5YNO7FM1+1+192; Parent=blastn_BT4_PDOACA_bt4ctg_0002_PDOACA5YNO7FM
1 meeO1

"Reference" feature and "Target" feature are inserted into the chadoDB "feature" table. Information
relative to the match location on Target feature and on Reference feature is stored in “featureloc”
table.

In the example above :

bt4ctg 0002 is the reference feature

PDOACAS5YNO7FM1 Target feature:
blastn_BT4_PDOACA_bt4ctg_0002_PDOACA5YNO7FM1_m1 is the ID of the match feature
between reference and target feature..

To allow the addition in BioMart query builder of a filter on Target IDs, or other attributes relative
to Target we need to get all the features for which they are target in order to add a link on the result
displayable in GBrowse.

Supposing that we would like to search all the region mapped by the Target PDOACA5YNO7FM1,
search for this Target name in the table feature.

select feature_id, uniquename, name from feature where name =
'"PDOACASYNO7FM1"';
feature_id | uniguename [name

61564 | PDOACAS5YNOG7FM1 | PDOACAS5YNO7FM1

Search now for the features in which PDOACA5YNO7FM1 is Target (rank for Reference features
are 0 and rank for Target are 1.

select feature_id, srcfeature_id, fmin, fmax, rank from featureloc where
feature_id in

(select feature_id from featureloc where srcfeature_id = 61564);
feature_id | srcfeature_id | fmin | fmax | rank

257075 | 61564 | 192 | 725 | 1

18

257075 | 121 | 6482 | 7015 | 0
257074 | 61564 | 0| 192 | 1
257074 | 121 | 6243 | 6435 | 0
257073 | 61564 | 0 | 725 | 1
257073 | 121 | 6243 | 7015 | 0
532911 | 61564 | 192 | 725 | 1
532911 | 121 | 6482 | 7015 | 0
532910 | 61564 | 0 | 192 | 1
532910 | 121 | 6243 | 6435 | 0
532909 | 61564 | 0| 725 | 1
532909 | 121 | 6243 | 7015 | 0

Search now for all the uniquename of feature_id of for which PDOACAS5YNO7FM1 is Target

select feature_id, uniquename from feature where feature_id in
(select feature_id from featureloc where feature_id in
(select feature_id from featureloc where srcfeature_id = 61564));

feature_id | unigquename

T e
257073 blastn_BT4_PDOACA_bt4ctg_0002_PDOACAS5YNO7FM1_m1
257075 blastn_BT4_PDOACA _bt4ctg_0002_PDOACA5YNO7FM1_mi_mpl
257074 blastn_BT4 PDOACA bt4ctg 0002_PDOACA5YNO7FM1_ml1_mp2

532911 sim4_BT4_PDOACA bt4ctg 0002 PDOACAS5YNO7FM1_ml mp2
532910 sim4_BT4_PDOACA_bt4ctg_0002_PDOACAS5YNO7FM1_mi1_mpl

I
|
532909 | sim4_BT4_PDOACA_bt4ctg_0002_PDOACA5YNO7FM1_ml
I
|

Finally we get the features (here matches from blastn and sim4 analysis) on which we will make
hypertext link to display this region in GBrowse). Thus we have to add a table to integrate BioMart
Targets in addition of those generated by MarBuilder. This new table will contain contain values for
each Target features.

b) SQL. code

Thus, the SQL code will have to be added to the SQL code (myfile.sql) provided by the
MartBuilder (see Creating dataset section) could be:

create table newschema.tablel as

select feature_id_1057_key as feature_id, name_1057 as name_feature_1057,
type_id_1057

from newschema.myname__ feature__main

--Search features that have multiple sources (b.rank=1)

create table newschema.table2c as select b.feature_id as
feature_id_1057_key, a.name_feature_1057,a.feature_id, b.srcfeature_id

from newschema.tablel as a left join public.featureloc as b on
b.feature_id=a.feature_id and b.rank=1;

drop table newschema.tablel;

--Search for names of sources (name_target) of features that have multiple
sources

create table newschema.table3 as select a.feature_id_1057_key,b.name as
name_target_1057 from newschema.table2c as a left join public.feature as b
on a.srcfeature_id=b.feature_id;

19

drop table newschema.table2c;

create table newschema.table3d as select distinct b.feature_id_1057_key,
a.name_target_1057 from newschema.myname__feature_ main as b left join
newschema.table3 as a on a.feature_id_1057_key=b.feature_id_1057_key;

drop table newschema.table3;

--creating __target__dm table

set search_path=newschema, newschema, pg_catalog;

alter table newschema.table3d rename to myname__target__dm;

set search_path=newschema, pg_catalog;

create index I_t on newschema.myname__target__dm(feature_id_1057_key);
set search_path=newschema, newschema, pg_catalog;

After running the psql command to execute the sql (myfile.sql), datasets from the Chado DB will
be created, with values of targets that must be integrated into BioMart. These data are contained in
the “myname__target__dm” table.

For dataset configuration , see Configuration of dataset section .

Integration of Ontology Terms
a) gff3 file

To make request on attributes of type "Ontology_term" using in BioMart query Builder. We
suppose that this tag was present in GFF3 file used for insertion into Chado database.
An exemple is showed below:

PTRO3eugene gene 12312 12445 . + . ID=gene_01li|
eugene;Ontology term="GO:0046703"

Given that chado DB Ontologies Terms are inserted into the “cvterm” table, the table “cvterm” is
joined to the “feature” table by “feature_cvterm” table;
cvterm.cvterm_id=feature cvterm.cvterm_id

and
feature cvterm.feature id=feature.feature_id

Thus to integrate Ontologies Term in Biomart, a table should be created and added to those
provided by MarBuilder . This table Ontology terms values for each feature.

b) SQL Code

Thus, the sql code which must be added to the sql code (myfile.sql) that generates Martbuilder (see
Creating dataset section) can be:

create table newschema.TEMPOOO1 as select a.feature_id,b.name from cvterm b,
feature_cvterm a where b.cvterm_id=a.cvterm_id;

set search_path=newschema, pg_catalog;

create table newschema.TEMPOOO® as select a.*, b.name as ontologie_name_1057
from newschema.TEMPO@ as a left join newschema.TEMPEOO1 as b on
a.feature_id_1057_key=b.feature_id;

set search_path=newschema, pg_catalog;

20

drop table newschema.TEMPO;

drop table newschema.TEMPGOOO1;

set search_path=newschema, pg_catalog;

create index I_00 on newschema.TEMPOOO(cvname_1057);

This code must be integrated into the sql code of __feature__main table creation, as follows:

set search_path=newschema, public, pg_catalog;

create table newschema.TEMPO as select a.residues as
residues_1057,a.is_analysis as is_analysis_1057,a.organism_id as
organism_id_1057,a.is_obsolete as is_obsolete_1057,a.uniquename as
uniquename_1057,a.type_id as type_id_1057,a.feature_id as

feature_id_1057_key,a.name as name_1057 from public.feature as a;
set search_path=newschema, pg_catalog;

create index I_0 on newschema.TEMPO(type_id_1057);

set search_path=newschema, public, pg_catalog;

HERE

set search_path=newschema, public, pg_catalog;

create table newschema.TEMP1 as select a.*,b.dbxref_id as
dbxref_id_1037,b.definition as definition_1037,b.name as
name_1037,b.is_obsolete as is_obsolete_1037,b.cv_id as
cv_id_1037,b.is_relationshiptype as is_relationshiptype_1037 from
newschema.TEMPQOO as a left join public.cvterm as b on

a.type_id_1057=b.cvterm_id;

set search_path=newschema, pg_catalog;

drop table newschema.TEMPOOO;

set search_path=newschema, pg_catalog;

create index I_1 on newschema.TEMP1(organism_id_1057);

set search_path=newschema, public, pg_catalog;

create table newschema.TEMP2 as select a.*,b.species as
species_1084,b.common_name as common_name_1084,b.genus as genus_1084,b.comment
as comment_1084,b.abbreviation as abbreviation_1084 from newschema.TEMP1 as a
left join public.organism as b on a.organism_id 1057=b.organism_id;

set search_path=newschema, pg_catalog;

drop table newschema.TEMP1;

set search_path=newschema, newschema, pg_catalog;

alter table newschema.TEMP2 rename to myname__feature__main;

set search_path=newschema, pg_catalog;

create index I_2 on newschema.myname__feature_ _main(feature_id_1057_key);

After running the psql command to execute the SQL code (myfile.sql), the dataset from Chado DB
will be created, with values of Ontology Term to be integrated into BioMart. These data are
contained in the “myname__feature__main” table as name "ontologie_name_1057".

For this dataset configuration, see Configuration of dataset section.

21

	Prerequisites
	Martj
	Biomart-perl
	Apache
	ModPerl
	BioMart Configuration

	Create dataset from a Chado database
	Dataset creation
	Dataset Configuration
	Operating interface BioMart

	Uses cases: Integration of specific features
	Integration of attributes from featureprop table
	Integration of Target
	Integration of Ontology Terms

