

Why the @#\$& is the GMOD meeting being held here?

Todd Vision

Associate Director of Informatics
The National Evolutionary Synthesis Center

Department of Biology University of North Carolina at Chapel Hill

Informatics @ NESCent

Mission

- Support for sponsored science
- "Cyberinfrastructure" to enable evolutionary synthesis
 - Data sharing/exchange and database technology
 - Software development (e.g. hackathons)
 - · Training, dissemination and user support

Resources

- IT and bioinformatics staff (currently hiring!)
- Hardware for HPC, software development & web/db services
- Visiting scientists (both technical experts and user)

Interspecific phenotypic diversity and model organism developmental genetics

- Questions
 - What zebrafish mutants differ from wild type in the same way that a particular anatomical features distinguishes these groups of fish?
 - Are characters that are phylogenetically correlated among fish species also genetically correlated in zebrafish mutants?
- Can be answered using the Phenotype and Trait Ontology (PATO) as a bridge

Evolutionary model organisms

Types of evolutionary model organisms

Genome model relatives that are convenient for evolution/ecology, or just for comparison

- · Drosophila pseudoobscura
- Caenorhabditis briggsae
- Arabidopsis lyrata

Phylogenetically important lineages

· Ciona intestinalis (sea squirt)

Historically popular evolutionary models

- Mimulus spp. (monkeyflowers)
- · Heliconius spp.
- Gasterosteus aculeatus (sticklebacks)
- Geospiza spp. (Darwin's finches)

NESCent's interest in GMOD

- A meeting in the middle
 - Model organisms are venturing into comparative genomics and population genetics
 - Evolutionary biologists are acquiring genomic information from their own model systems
- Focus of our initial efforts
 - Chado population module
 - Visualization of phenotypic variation & geographic information
 - · User support, training, dissemination

Existing glyphs

- Allele tower
- Pie chart
- Haplotype block
- Pairwise plot (for LD)
- XY plot
- Whiskerplot
- Embedded images

Proposed glyph (Bio::Graphics)

Visualizing phylogenies (old school)

Visualizing phylogenies

ATV 3.0 (Zmasek & Cannon)

Some closing thoughts

 Are clade-oriented databases sufficient to solve the impending genome glut?

Some closing thoughts

How important is a machine-readable treeof-life, and how far are we from that goal?

Some closing thoughts

 How important are curated cross-species gene/protein family data?

