Software for Metagenomics and Metadata Standards

Iddo Friedberg
CAMERA / CALIT2
University of California San Diego

What is Metagenomics?

- Culture-free approach to study microbial communities
 - -< 1% of microbes can be cultured</p>
 - DNA directly isolated from environmental sample and sequenced
- Examining genomic content of organisms in community/environment to better understand:
 - Diversity of organisms
 - Their roles and interactions in the ecosystem

Metagenomics: Appy Genomics to Populations & Communities

	Individual	Population	Community
Ecology	Physiology: Differential gene expression in response to change	Demographics: Birth, death, immigration, emigration	Community ecology: Interspecific interactions that shape community structure and function
Genomics	Fine-scale mapping of individual genomes	Population genomics: Comparative genomic analyses to assess variation	Metagenomics: Genetic potential of collective members of community
Genetics	Bacterial genetics: Role of genes under various conditions	Population genetics: Allele frequency distribution	Community genetics: Interplay between genetic composition of community and ecological community properties

Little AEF, et al. 2008.

Annu. Rev. Microbiol. 62:375-401

What Can We Learn?

- Taxonomic content: Taxon diversity in a habitat (using taxonomic markers)
- · Functional content: biological functions, qualitative and quantitative profiles
- Coping with the environment: differences in functional content between habitats
- · Decompose the biotic / abiotic elements in a habitat: metadata analysis

• ...

Some Metagenomic Studies

- Bacterial rhodopsins (Beja et al. 2000)
- Acid mine drainage study (Tyson et al. 2004)
- Sargasso sea study (Venter et al. 2004)
- Wisconsin soil study (DeLong et al. 2006)
- Termite Hindgut (Warnecke et al. 2007)
- Human Obesity (Turnbaugh et al. 2006)

... and many, many others

What is CAMERA?

- Community Cyberinfrastructure for Advanced Marine Microbial Research and Analysis
- 7 year \$24.5 mil grant from the Moore foundation
- Goal: build a community computational resource for researchers in metagenomics
- "Cyberinfrastrcture": hardware, software & data

What is CAMERA? Hardware

What is CAMERA? Hardware

512 CPU, 200 TB, 5 TFlops

What is CAMERA? Data

- Metagenomic sequence data are:
 - Voluminous
 - Noisy
 - Partial
- At the very least they should be:
 - Standardized for processing
 - Associated with Metadata

Why Metadata?

- Microbial communities are affected by and affect their habitats
- Therefore habitat data, in addition to sequence data, is crucial for an environmental genomic picture
- Also, sample condition data is needed for reproducibility

Why Metadata?

- Microbial communities are affected by and affect their habitat
- Sequence information + metadata = whole picture

- Habitat Type
- Geographic Location (large area)
- Sample Location (smaller area)
- Country
- Filter Size
- Latitude (exact location)
- Longitude (exact location)
- Depth
- Wat. Dep.
- Chlorophyll
- Oxygen
- Fluor.
- Salin.
- Temp
- Trans.
- BioMass
- Inorg. Carbon
- Inorg. Phospate
- Org. Carbon
- Nitr.
 - # Pooled

Why Metadata?

- Microbial communities are affected by and affect their habitat
- Sequence information + metadata = whole picture

Data Standards and Data Acquisition

- Minimal Information for (Meta)Genomic Sequences: MIGS/MIMS
- A Metadata standard, developed by the Genomics Standards Consortium
 - Controlled vocabularies e.g. EnvO, PATO, CABRI
 - Common language: GCDML
- Submissions shall comply with a MIMS/MIGS core, but any metadata can be entered via keywords and free text
- Different metadata submission forms for different habitats: (water, soil, air, hosts)

Standards Compliance: MIMS/MIGS

Standards Compliance: MIMS/MIGS

Standards Compliance: PATO

Standards Compliance: Controlled Vocabularies

Things to Think About

- Visualization:
 - How do we look at "disembodied" sequence data?
 - "Fragment recruitment" track
 - Visualization of sequence data <--> metadata associations
- Database: association of metadata and sequence data; queries by metadata

Would you Like to Know More?

- The Genomic Standards Consortium. MIMS & GCDML:
 - http://gensc.org
- BioMIST (soon): http://sourceforge.net/projects/biomist/
- CAMERA: http://camera.calit2.net
- Me: http://iddo-friedberg.net

Would you Like to Know More?

- The Geno MIMS & G http://gens
- BioMIST (http://sour
- CAMERA:
- Me: http://

nsortium.

ts/biomist/ t2.net

Thanks

- CAMERA data acquisition team:
 - Brian Fox
 - Shulei Sun
 - Jing Chen
 - Laurence Bohannan
 - Jeffrey Grethe
- Genomic Standards Consortium
 - Dawn Field
 - George Garrity
 - Renzo Kottman

