Comparative Genome Browsing with GBrowse_syn

Sheldon McKay, Cold Spring Harbor Laboratory

A brief survey of synteny browsers

A few challenges of rendering comparative data

 Comparative genome browsing with GBrowse syn

What is Gbrowse?

- Most popular software package from the Generic Model Organism Database (GMOD) project.
- Built on BioPerl and Bio::Graphics
- Relatively lightweight; designed for model organism databases (MODS) and groups with limited bioinformatics/IT support to display their own genomes

What is a Synteny Browser?

- Has display elements in common with genome browsers
- Uses sequence alignment or orthology to highlight co-linear segments of different genomes, strains, etc.
- Usually displays co-linearity relative to a reference genome.

SynView A Simple Approach to Visualizing Comparative Genome Data

Wang H, Su Y, Mackey AJ, Kraemer ET and JC Kissinger . SynView: a GBrowse-compatible approach to visualizing comparative genome data Bioinformatics 2006 22:2308-2309

... A Synteny Browser for Comparative Sequence Analysis

Pan, X., Stein, L. and Brendel, V. 2005. SynBrowse: a Synteny Browser for Comparative Sequence Analysis. Bioinformatics 21: 3461-3468

Sybil: Web-based software for comparative genomics

Crabtree, J., Angiuoli, S. V., Wortman, J. R., White, O. R. Sybil: methods and software for multiple genome comparison and visualization Methods Mol Biol. 2007 Jan 01; 408: 93-108.

+ others...

GBrowse_syn

SynView:

- Add-on to native GBrowse package
- Uses GFF3 or DAS1 compliant data adapters
- GFF requires special tags (allowed in spec.)
- Reference panel on top

SynBrowse:

- Uses same core libraries as Gbrowse
- Uses GFF database adapter
- GFF2 uses standard 'Target' syntax and overloaded 'source' tag
- Central reference panel

Sybil:

- Not GBrowse-based
- Uses chado database
- Whole genome and detailed views

GBrowse_syn:

- Part of GBrowse distribution
- Uses native GFF2/3 or chado adapters for species' data
- Synteny data are stored in a separate joining database

What is GBrowse_syn?

- Part of the Generic Genome Browser Package (GBrowse)
- A graphical multiple sequence alignment viewer
- Superimposes sequence alignment data on genes and other sequence features
- Compares two or more species to a central reference species

GBrowse_syn

Hierarchical Genome Alignment Strategy

Raw genomic sequences

Mask repeats
(RepeatMasker, Tandem Repeats Finder, nmerge, etc

Identify orthologous regions
(ENREDO, MERCATOR, orthocluster, etc)

Nucleotide-level alignment GBrowse_syn

Further processing

GBrowse

Goals

- More than two species
- Nucleotide-level resolution (gapped alignments)
- High-level resolution (synteny)
- Intuitive graphical rendering


```
Details

Det
```


GBrowse-like interface

PECAN alignments for *Caenorhabditis* (WS197)

■ <u>Instructions</u>		
Select a Region to Browse and a Reference specie	es:	
Examples: c_elegans X:10500011150000, c_brig	gsae chrX:620000670000, c_elegans R193.	2.
■ Search		
	Reference Species:	Show 100 kbp •
Aligned Species:	,	
☑ C. briggsae ☑ C. remanei ☑ C. brenneri ☑ C. japonica		
Data Source :	Display Mode :	
PECAN alignments for Caenorhabditis 💌	Three species/panel Click to show all species in one panel	
■ Overview		
	Reference genome: C. 6	elegans
X		

[GBrowse]

GBrowse_syn Architecture

[GBrowse]

Bio::DB::GFF

species1

alignments

alignments hit_id [PK] int varchar(100) [FK] hit_name src1 varchar(100) ref1 varchar(100) start1 int end1 int strand1 enum sea1 mediumtext bin double varchar(100) src2 varchar(100) ref2 start2 int end2 int strand2 enum seq2 mediumtext

map_id int [PK]
hit_name varchar(100)
src1 varchar(100)
pos1 int
pos2 int

Legend

[FK] Foreign Key [PK] Primary key

Created by SQL::Translator 0.08

 \Leftrightarrow

Bio::DB::GFF species3

Bio::DB::GFF species4

[GBrowse]

Bio::DB::GFF species2

[GBrowse]

How to get the most information about the alignments?

Gbrowse_syn: quick tour

Gbrowse_syn: quick tour (shaded alignments)

Gbrowse_syn: quick tour (strand correction)

All in one view

Adding markup to the annotations

Problem: How to use Insertions/Deletion data

Tracking Indels with grid lines

Evolution of Gene Structure

Comparing gene annotations:

C. elegans ZK524.4 gene

C. elegans ZK524.4 gene

3' end

C. elegans ZK524.4 gene

5' end

Comparing assemblies

Not bad

Needs work

Putative gene or loss

Problem: Getting the most out of small aligned regions or orthology-only data

Chaining Alignments

Gene Orthology

Chained Orthologs

Gene Orthology

PECAN Alignments

Problem: What about synteny blocks that fall off the ends of the displayed reference sequence?

- Synteny blocks may only have two anchor points
- Synteny blocks may not have a 1:1 length ratio

Solution 1: With multiple sequence alignment data, calculate many anchor points (done anyway for grid lines)

Solution 2: For orthology-based synteny blocks, use individual start and end coordinates of orthologs as anchor points.

Solution 3: If all else fails, guess the end of the target block based on the overall length ratio.

length displayed target = (length target/length reference)* length displayed reference

Problem: What if the aligned DNA sequences are too distant?

Pecan alignments

Orthocluster Synteny blocks

Problem: terminal insertion/deletions in multiple sequence alignments

Solution: use pair-wise alignments?

Problem: Space!

Future Improvements for GBrowse_syn

- "On the fly" sequence alignment view (definitely)
- AJAX-based image configuration (probably)
- 3D image rendering? (maybe)
- Suggestions?

Acknowledgments

Lincoln Stein
Dave Clements
Scott Cain
Jason Stajich
Eva Huala
Cynthia Lee
Jack Chen
Ismael Verga
Michael Han
WormBase Curators

