{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Inference using CGCNN Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook we show how to perform inference using GT4SD and CGCNN-based models. The current existing models (algorithm_version=v0) and the sample dataset have been obtained from the [official CGCNN repository](https://github.com/txie-93/cgcnn)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Formation Energy\n", "\n", "This method predicts the formation energy per atom using the CGCNN framework (unit eV/atom)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import FormationEnergyParameters, FormationEnergy\n", "\n", "model_parameters = FormationEnergyParameters(algorithm_version=\"v0\")\n", "model = FormationEnergy(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Absolute Energy\n", "\n", "This method predicts the absolute energy of crystals using the CGCNN framework (unit eV/atom)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import AbsoluteEnergy, AbsoluteEnergyParameters\n", "\n", "model_parameters = AbsoluteEnergyParameters(algorithm_version=\"v0\")\n", "model = AbsoluteEnergy(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Band Gap\n", "\n", "This method predicts the band gap of crystals using the CGCNN framework (unit eV)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import BandGapParameters, BandGap\n", "\n", "model_parameters = BandGapParameters(algorithm_version=\"v0\")\n", "model = BandGap(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fermi Energy\n", "\n", "This method predicts the Fermi energy of crystals using the CGCNN framework (unit eV/atom)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import FermiEnergyParameters, FermiEnergy\n", "\n", "model_parameters = FermiEnergyParameters(algorithm_version=\"v0\")\n", "model = FermiEnergy(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bulk Moduli\n", "\n", "This method predicts the bulk moduli of crystals using the CGCNN framework (unit log(GPa))." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import BulkModuliParameters, BulkModuli\n", "\n", "model_parameters = BulkModuliParameters(algorithm_version=\"v0\")\n", "model = BulkModuli(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Shear Moduli\n", "\n", "This method predicts the shear moduli of crystals using the CGCNN framework (unit log(GPa))." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import ShearModuliParameters, ShearModuli\n", "\n", "model_parameters = ShearModuliParameters(algorithm_version=\"v0\")\n", "model = ShearModuli(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Poisson Ratio\n", "\n", "This method predicts the poisson ratio of crystals using the CGCNN framework." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import PoissonRatioParameters, PoissonRatio\n", "\n", "model_parameters = PoissonRatioParameters(algorithm_version=\"v0\")\n", "model = PoissonRatio(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Metal-Semiconductor classifier\n", "\n", "This method predicts if the provided crystals are metal (1) or semiconductors (0) using the CGCNN framework." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gt4sd.properties.crystals.core import MetalSemiconductorClassifierParameters, MetalSemiconductorClassifier\n", "\n", "model_parameters = MetalSemiconductorClassifierParameters(algorithm_version=\"v0\")\n", "model = MetalSemiconductorClassifier(model_parameters)\n", "\n", "model(input=\"cgcnn-sample\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.15" }, "vscode": { "interpreter": { "hash": "7f6df040e92be56c42e1ba5ffdd58832f97e24eff2af0498cbc88845f2e95a48" } } }, "nbformat": 4, "nbformat_minor": 2 }