
max of k Heuristic Estimator

Gabriel Wu

January, 2024

Code can be found here.

1 Overview

We’re given a modelM that takes in k integers x1, . . . , xk (each in the range [n] = {1, . . . , n})
and outputs a probability distribution over [n]. It has been trained to output the maximum
of its inputs. The soft accuracy of the model is the expected probability it places on the
correct answer on a random input. For simplicity, I define the input distribution as all
n!/(n− k)! inputs in which all xi are distinct.

We are interested in finding a heuristic estimator G that given the proper argument π
outputs a reasonable estimate for the soft accuracy ofM . I’ve found it conceptually confusing
to distinguish G from π in this setting,1 so I’ll just treat them as one joint object for now.

2 Model Architecture

The model is a one-layer attention-only transformer with no bias (except in positional
encoding). It has a single attention head and hidden dimension d.

The model comes with the following matrices:

Name Dimension Description
P k × d Positional encoding
E n× d Embedding matrix
Q d× d Query matrix
K d× d Key matrix
V d× d Value matrix
O d× d Output matrix
U d× n Unembedding matrix

The output of the model is defined as follows.

1In some sense, my π can be thought of as O(1) information outlining to G how to set up the algebraic
rewrite, possibly followed by walking G through all of the computations. Notably, this is different from
Jacob’s setting where π has the clean interpretation of a specific set of directions upon which to do covariance
propagation.

1

https://github.com/GabrielDWu/max_of_n_heuristic_args/blob/b9da731a8204aa9ed7d153d28c88e2a3979a7d59/max_of_n.py

1. Let input ∈ Rk×n be the one-hot encoding of the input

2. res← input · E+P (dimension k × d)

3. attn presoft← res ·Q ·KT · resT (dimension k × k)

4. attn prob← masked softmax(attn presoft) (dimension k × k)

5. attn← attn prob · res ·V ·O (dimension k × d)

6. logits← (res+ attn) ·U (dimension k × n)

7. output← softmax(logitsk,1, . . . , logitsk,n) (dimension n)

8. return output

Note that after step 2, only the values at k-th token position end up mattering for the
final output.

The particular model I worked with had k = 10, n = 64, and d = 32. When doing any
asymptotic analysis of the algorithm, I will treat k = o(n) and n = Θ(d).

3 Heuristic Estimator

3.1 Outline

Let the input be x1, . . . , xk, where each xi ∈ [n]. Let m = argmaxixi ∈ [k] be the token
position that achieves the maximum value.

The heuristic estimator actually produces n different estimates: the soft accuracy of the
model conditional on the correct answer being v, for every v ∈ [n]. Call these estimates
A1, . . . , An. Its overall estimate of the soft accuracy of the model is

∑n
v=1 Ai Pr[xm = v].

For any v, the estimate Av is the result of the following process (all distributions are
conditional on the event xm = v):

1. Condition on xk. Estimate the distributions of attn presoftk,m and attn presoftk,i∼[k]\{m}.

2. Still conditioning on xk, estimate the distributions of attn probk,m and attn probk,i∼[k]\{m}.
Then marginalize over all choices of xk.

3. For each ℓ ∈ [n], estimate the distribution of logitsk,ℓ.

4. Estimate the distribution of outputv. The mean of this distribution is Av.

Steps 1 and 2 are described in section 3.3, and steps 3 and 4 are described in section 3.4.

2

3.2 Bin Propagation

Throughout the argument I need to track the distributions of real-valued random variables.
I do this by “binning” a distribution into b equally-probable bins and storing the mean of
each bin. For example when b = 10 (which is what I normally use) I keep track of 10 values:
the mean of the i-th decile of the distribution for each i from 1 to 10.

There are straightforward algorithms for applying functions to binned distributions and
taking mixtures.

� If I have the binned distribution of a random variable X and want to estimate the
binned distribution of f(X), I simply apply f to the mean of each bin and sort the
resulting list.

� If I have the binned distributions of X and Y and want to estimate the binned
distribution of a bivariate function f(X, Y), I first assume X and Y are independent,
then compute the b2 evaluations of f on all pairs of bin means. I sort this list of
evaluations and group them into b new bins (each containing b points), storing their
means.

� If I want to estimate the mixture distribution of X w.p. p and Y w.p. 1−p, I generate
a weighted list of length 2b, sort the list, then greedily generate a binned distribution
from that.

� Finally, I often have the binned distribution of X and wish to estimate the binned
distribution of X1 +X2 + · · ·+Xn, where each Xi is drawn i.i.d. from the distribution
ofX (for example, this comes up in the denominator of the softmax operation). Instead
of doing n iterative convolutions (this would take time O(nb2 log b)), I use the “square
and multiply” trick, taking O(b2 log b log n) time.2

Note that mean propagation is equivalent to bin propagation when b = 1.

3.3 Estimating Attention

Let ti = inputi ∈ Rn be the one-hot encoding of xi ∈ [n]. For any vector X ∈ Ra, let
stackb(X) ∈ Rb×a be the matrix formed by b copies of X stacked on top of each other.

Notice that we can write

attn presoftk,i = (tk · E+Pk) ·Q ·KT · (ti · E+Pi)
T

= tk · (E+ stackn(Pk))QKTET · tTi + tk · (E+ stackn(Pk))QKT (Pi)
T

= EQKExk,xi
+ EQKPxk,i

where we’ve defined the matrices

EQKE := (E+ stackn(Pk))QKTET

EQKP := (E+ stackn(Pk))QKTPT .

2Equivalently, decompose the sum into a balanced binary tree instead of a daisy chain. The log b factor
comes from sorting.

3

Thus, after precomputing these two matrix products (which takes O(n3)), we can exactly
calculate attn presoftk,i in constant time.

Now, condition on a particular value of xk (and recall that we’re also already conditioning
on xm = v). We can analytically compute the distribution of m (there are only two
cases: xk < xm and xk = xm), which allows us to compute the (binned) distribution
of attn presoftk,m. We also wish to compute the distribution, over a random choice of
i ̸= m, of attn presoftk,i. We know that xi is distributed uniformly over [xm − 1], so the
distribution of the first term (EQKExk,xi

) can be computed3. We can also analytically
compute the distribution of i (again, xk < xm and xk = xm are handled separately), giving
us the distribution of the second term EQKPxk,i. Convolving these two terms gives us the
distribution of attn presoftk,i∼[k]\{m}. All of the distributions in this step are exact, modulo
binning error.

Using the distributions of attn presoftk,m and attn presoftk,i∼[k]\{m}, we next compute
the distributions of attn probk,m and attn probk,i∼[k]\{m}. This is the first time we use the
presumption of independence. We have:

attn probk,m =
exp(attn presoftk,m)

exp(attn presoftk,m) +
∑

i ̸=m exp(attn presoftk,i)
.

We approximate this as the distribution of

X

X +
∑k−1

i=1 Yi

,

where all X, Yi are independent, X is distributed like exp(attn presoftk,m), and each Yi is
distributed like exp(attn presoftk,i∼[k]\{m}). Computationally, this involves a sum of k−1 i.i.d.
variables (which takes O(log k) pairwise convolutions) followed by applying the bivariate
function f(a, b) = a

a+b
. We handle attn probk,i∼[k]\{m} similarly: it can be expressed as

Z

X+Z+
∑k−2

i=1 Yi
.

We now have approximations for the distributions of attn probk,m and attn probk,i∼[k]\{m},
conditional on xm and xk. We marginalize over all choices of xk by taking a weighted
mixture of these distributions, with weights given by Pr[xk = v′|xm = v] (which we can
compute exactly). The final result of this phase is the distributions of attn probk,m and
attn probk,i∼[k]\{m} conditional on xm = v and nothing else.

3Naively, computing this distribution takes O(n) time because it would require iterating through xm − 1
matrix entries. We speed this up by expressing the distribution EQKExk,[x] as a mixture of EQKExk,[x−1]

and (the constant) EQKExk,x, then building them up cumulatively. This gives us amortized constant-time
access to the distribution (ignoring binning overhead).

4

3.4 Estimating Logits

The next step is to estimate the distribution of logitsk,ℓ for every ℓ ∈ [n]. We have:

logitsk,ℓ = [(attn+ res) ·U]k,ℓ

= [attn prob · res ·V ·O ·U+ (input · E+P) ·U]k,ℓ

= (attn prob · (input · E+P) ·VOU)k,ℓ + (input · EU)k,ℓ + (PU)k,ℓ

= (attn prob · (input · EVOU+PVOU))k,ℓ + EUxk,ℓ + PUk,ℓ

=
k∑

i=1

(attn probk,i · (EVOUxi,ℓ + PVOUi,ℓ)) + EUxk,ℓ + PUk,ℓ

= attn probk,m · (EVOUxm,ℓ + PVOUm,ℓ)+∑
i∈[k]\{m}

(attn probk,i · (EVOUxi,ℓ + PVOUi,ℓ)) + EUxk,ℓ + PUk,ℓ

where we define the matrices EU = EU, PU = PU, EVOU = EVOU, and PVOU =
PVOU. These matrix products can be precomputed in O(n3) time.

To approximate the distribution of logitsk,ℓ, we treat all four terms above as independent.
The last term – PUk,ℓ – is a constant. The distribution of the third term – EUxk,ℓ – can be
exactly computed analytically in amortized constant time, ignoring binning overhead4. The
first term can be approximated as the product of two independent distributions, the first of
which we obtained in section 3.3, and the latter which can be calculated exactly5.

The second term is treated as the (k − 1)-wise convolution of the distribution of

attn probk,i∼[k]\m · (EVOUxi,ℓ + PVOUi,ℓ).

To compute this distribution, we treat the two factors as independent. We have the distribution
of the first factor from section 3.3. The distribution of the second factor can be computed
exactly (up to binning error): the two terms are independent, and both are uniform over
some matrix entries6.

Once we have an estimate for the distribution of logitsk,ℓ for every ℓ ∈ [n], we can estimate
the distribution of the final probability the model places on xm using the same approach as
in section 3.3. The mean of this distribution is Av.

4 Time Complexity

For a given choice of xm = v, the time taken in section 3.3 is dominated by the O(n log k)
pairwise convolutions. In section 3.4, we also require O(n log k+log n) pairwise convolutions.
This gives O(n log k·b2 log b) for every choice of xm, and so O(n2 log k·b2 log b) in total. Taking

into account the O(n3) precomputation of matrix products, we get O(n3 + n2 log k · b2 log b) .

4The exact distribution of EUxk,ℓ is EUxm,ℓ with probability 1/k, otherwise uniformly distributed among
EU[xm−1],ℓ. The latter distribution can be built up cumulatively.

5Note m ∼ Unif([k]), so the distribution of PVOUm,ℓ is easy to calculate. EVOUxm,ℓ is a constant.
6EVOUxi,ℓ is distributed like EVOU[xm−1],ℓ, which can be built up cumulatively.

5

5 Empirical Results

Unless otherwised stated, I use b = 10 bins in my estimates. It takes about 3 seconds for
the estimate to run on my computer.

Let D be the distribution over models that you get by starting with an overtrained model
M0, then adding random Gaussian noise independently to every parameter (σ = 0.1). Here
are 100 random samples from D, plotting the true soft accuracy (empirically derived over
104 samples) against estimated soft accuracy:

The estimator tends to slightly overestimate the soft accuracy of the model: on average,
the estimate is about 2.5 percentage points higher the ground truth. Overall, I’m somewhat
satisfied with this estimator’s performance – it’s clearly doing something right. I’m not
worried about a cherry-picked explanation or estimator because aren’t many free-parameters
to vary, and I didn’t use the performance of the estimator to choose how to modify it.

On the overtrained model, which has a soft accuracy of 0.99990, the estimator outputs
0.99992.

Changing the number of bins also affects the estimate. More bins consistently results in
a lower estimate. Here are the results of 5 different samples from D (each color represents
different sample):

6

6 Open questions

Surprise accounting. Under our current understanding, we want the total suprise of G
throughout processing the argument to be at most (log) the size of the search space of
the coincidence (which in this case corresponds roughly to the number of paramaters of
the model)7. I have not gone through all of the careful accounting to figure this out yet. I
strongly suspect that this argument goes above our allotted suprise budget, and we’ll have to
figure out a way to use “naively predict the distribution of the result, then choose distribution
and pay in the KL” steps to get it under budget, if it is possible at all.

Analog of Wick propagation. G(Ex∼D[M(x)]|π) is to G(M(x)|π) as covariance
propagation is to Wick propagation as this estimator is to... what? It would be great if
we had an analogous interpretation of what it means to apply this estimator to a specific
input. This would allow for anomaly detection experiments.

7We’d also want to see how sensitive the model’s behavior is to the exact setting of its parameters; if it’s
not sensitive then our surprise budget should decrease.

7

	Overview
	Model Architecture
	Heuristic Estimator
	Outline
	Bin Propagation
	Estimating Attention
	Estimating Logits

	Time Complexity
	Empirical Results
	Open questions

