AGAME

AGAMA reference

Eugene Vasiliev

email: eugvas@protonmail.com

February 11, 2024

Contents
1 Overview 3
2 Structure of the Agama C++ library 4
2.1 Low-level foundations o 4
2.1.1 Math routineso 4
2.1.2 Units e 9
2.1.3 Coordinates e 10
2.1.4 Particles 11
2.1.5 Utilities e 11
2.2 Potentials 11
2.2.1 Analytic potentials 12
2.2.2 Multipole expansion Lo 13
2.2.3 Azimuthal harmonic expansion 14
2.2.4 Potential factory 15
2.2.5 Modifiers and time-dependent density/potential types 23
2.2.6 Utility functions Lo 26
2.3 Orbit integration and analysis 0oL 26
2.4 Action/angle variables L 28
2.4.1 Isochrone mapping 28
2.4.2 Spherical potentials oo 29
2.4.3 Stackel approximation oo 29
244 Torus mappingo e 30
2.5 Distribution functionso Lo 30
2.5.1 Disky components L 31
2.5.2 Spheroidal components Lo 34

2.5.3 Spherical DFs constructed from a density profile 35

2.5.4 Spherical isotropicmodelso oL 37

2.6 Galaxy modelling framework o oo 38
2.6.1 Moments of distribution functions 38

2.6.2 Conversion to/from N-body models 42

2.6.3 Iterative self-consistent modelling 42

2.6.4 Schwarzschild orbit-superposition modelling 45

3 Interfaces with other languages and frameworks 47
3.1 Pythoninterface. 47
3.2 Fortran interface 63
3.3 AMUSE plugin e 64
3.4 GALPY plugin L 64
3.5 GALAplugin 65
3.6 NEMO plugin 66

4 Tests and example programs 68
A Technical details 75
A1 Developer’s guide L 75
A.2 Mathematical methods 84
A.2.1 Basis-set approximation of functions 84

A2.2 B-splines. 87

A.2.3 Spline interpolation 88

A.2.4 Penalized spline regression 94

A.2.5 Penalized spline density estimate 96

A.2.6 Gauss—Hermite series 100

A2.7 Sampling 105

A3 Coordinates 107
A4 Potentials 110
A.4.1 Multipole expansion 110

A.4.2 CylSpline expansion 112

A5 Action/angle transformation oo oL 117
A.5.1 Stackel approximationo 117

A.6 Distribution functionso oL 121
A.6.1 Spherical anisotropic DFs L. 121

A.6.2 Spherical isotropic DFs and the phase-volume formalism 122

A.7 Schwarzschild modelling o0 L 126
References 135

1 Overview

AcAMA (Action-based Galaxy Modelling Architecture) is a software library intended for a
broad range of tasks within the field of stellar dynamics. As the name suggests, it is centered
around the use of action/angle formalism to describe the structure of stellar systems, but
this is only one of its many facets. The library contains a powerful framework for dealing
with arbitrary density/potential profiles and distribution functions (analytic, extracted from
N-body models, or fitted to the data), a vast collection of general-purpose mathematical
routines, and covers many aspects of galaxy dynamics up to the very high-level interface for
constructing self-consistent galaxy models. It provides tools for analyzing N-body simula-
tions, serves as a base for the Monte Carlo stellar-dynamical code RAGA [68], the Fokker—
Planck code PHASEFLOW [69], and the Schwarzschild modelling code FORSTAND [72] (in
turn, derived from the earlier code SMILE [67, 71]).

The core of the library is written in C++ and is organized into several modules, which are
considered in turn in Section 2:

e Low-level interfaces and generic routines, which are not particularly tied to stellar dy-
namics: various mathematical tasks, coordinate systems, unit conversion, input/output
of particle collections and configuration data, and other utilities.

e Gravitational potential and density interface: the hierarchy of classes representing
density and potential models, including two very general and powerful approximations
of any user-defined profile, and associated utility functions.

e Routines for numerical computation of orbits and their classification.

e Action/angle interface: classes and routines for conversion between position/velocity
and action/angle variables.

e Distribution functions expressed in terms of actions.

e Galaxy modelling framework: computation of moments of distribution functions, in-
terface for creating gravitationally self-consistent multicomponent galaxy models, con-
struction of N-body models and mock data catalogues.

e Data handling interface, selection functions, etc.

A large part of this functionality is available in Python through the eponymous exten-
sion module. Many high-level tasks are more conveniently expressed in Python, e.g., finding
best-fit parameters of potential and distribution function describing a set of data points,
or constructing self-consistent models with arbitrary combination of components and con-
straints. A more restricted subset of functionality is provided as plugins to several other
stellar-dynamical software packages (Section 3).

The library comes with an extensive collection of test, demonstration programs and
ready-to-use tools; some of them are internal tests that check the correctness of various code
sections, others are example programs illustrating various applications and usage aspects of

the library, and several programs that actually perform some useful tasks are also included
in the distribution. There are both C++ and Python programs, sometimes covering exactly
the same topic; a brief review is provided in Section 4.

The main part of this document presents a comprehensive overview of various features of
the library and a user’s guide. The appendix contains a developer’s guide and most technical
aspects and mathematical details. The science paper describing the code is [70].

The code can be downloaded from http://agama.software.

2 Structure of the Agama C++ library

2.1 Low-level foundations
2.1.1 Math routines

AGAMA contains an extensive mathematical subsystem covering many basic and advanced
tasks. Some of the methods are implemented in external libraries (GsL, EIGEN) and have
wrappers in AGAMA that isolate the details of implementation, so that the back-end may
be switched without any changes in the higher-level code; other parts of this subsystem are
self-contained developments. All classes and routines in this section belong to the math: :
namespace.

Fundamental objects throughout the entire library are functions of one or many vari-
ables, vectors and matrices. Any class derived from the IFunction interface should provide a
method for computing the value and up to two derivatives of a function of one variable f(z);
IFunctionNdim represents the interface for a vector of functions of many variables f(x),
and IFunctionNdimDeriv additionally provides the Jacobian of this function (the matrix
Jfi/0zk). Many mathematical routines operate on instances of classes derived from one of
these interfaces.

For one-dimensional vectors we use std::vector when a dynamically-sized array is
needed; some routines take input arguments of type const double[] or store the output in
double[] variables which may be also statically-sized arrays (for instance, allocated on the
stack, which is more efficient in tight loops).

For two-dimensional matrices there is a dedicated math: :Matrix class, which provides a
simple fixed interface to an implementation-dependent structure (either the EIGEN matrix
type, or a custom-coded flattened array with 2d indexing, if EIGEN is not available). Matrices
may be dense and sparse; the former provide full read-write access, while the latter are
constructed from the list of non-zero elements and provide read-only access. Sparse matrices
are implemented in EIGEN or, in its absense, in GSL starting from version 2.0; for older
versions we substitute them internally with dense matrices (which, of course, defeats the
purpose of having a separate sparse matrix interface, but at least allows the code to compile
without any modifications).

http://agama.software

Numerical linear algebra routines in AGAMA are wrappers for either EIGEN (consider-
ably more efficient) or GSL library. There are a few standard BLAS functions (matrix-vector
and matrix-matrix multiplication for both dense and sparse matrices) and several matrix
decomposition classes (LUDecomp, CholeskyDecomp, SVDecomp) that can be used to solve
systems of linear equations Ax = b.

LU decomposition of a non-degenerate square matrix A (dense or sparse) into a product
of lower and upper triangular matrices is the standard tool for solving full-rank systems
of linear equations. Once a decomposition is created, it may be used several times with
different r.h.s. vectors b.

Cholesky decomposition of a symmetric positive-definite dense matrix A = LLT serves
the same purpose in this more specialized case (being twice more efficient). It is informally
known as “taking the square root of a matrix”: for instance, a quadratic form & Az may be
written as |[LTz|? — this is used in the context of dealing with correlated random variables,
where A would represent the correlation matrix.

Singular-value decomposition (SVD) represents a generic M x N matrix (M rows, N
columns; here M > N) as A = Udiag(S) V?, where U is a M x N orthogonal matrix (i.e.,
UUT =1), Vis a N x N orthogonal matrix, and the vector S contains singular values, sorted
in descending order. In the case of a symmetric positive definite matrix A, SVD is identical
to the eigenvalue decomposition, and U = V. SVD is considerably more costly than the
other two decompositions, but it is a more powerful tool that may be applied for solving
over-determined and/or rank-deficient linear systems while maintaining numerical stability.
If M > N, there are more equations than variables, and the solution is obtained in the
least-square sense; if the nullspace of the system is non-trivial (i.e., Az = 0 for a non-zero
x), the solution with the lowest possible norm is returned.

Root-finding is handled differently in one or many dimensions. findRoot searches for
a root of a continuous one-dimensional function f(z) on an interval [a..b], which may be
finite or infinite, provided that f(a) f(b) < 0 (i.e., the interval encloses the root). It uses a
combination of Brent’s method with an optional Hermite interpolation in the case that the
function provides derivatives. findRootNdim searches for zeros of an /N-dimensional function
of N variables, which must provide the Jacobian, using a hybrid Newton-type method.

Integration of one-dimensional functions can be performed in several ways. integrateGL
uses fixed-order Gauss—Legendre quadrature without error estimate. integrate uses variable
order Gauss-Kronrod scheme with the order of quadrature doubled each time until it at-
tains the required accuracy or reaches the maximum; it is a good balance between fixed-
order and fully adaptive methods, and is very accurate for smooth analytic functions.
integrateAdaptive handles more sophisticated integrands, possibly with singularities, using
a fully adaptive recursive scheme to reach the required accuracy, but is also more expensive.

Multidimensional integration over an N-dimensional hypercube is performed by the
integrateNdim routine, which serves as a unified interface to either CUBATURE or CUBA li-

brary [30]; the former is actually included into the AGAMA codebase. Both methods are fully
adaptive and have similar performance (either one is better on certain classes of functions).
The input function may provide M > 1 values, i.e., several functions may be integrated
simultaneously over the same domain.

Sampling from a probability distribution (sampleNdim) serves the following task: given
a N-dimensional function f(x) > 0 over a hypercube domain, construct an array of M
random sample points @ such that the density of samples in the neighborhood of any point
is proportional to the value of f at that point. Obviously, the function f must have a finite
integral over the entire domain, and in fact the integral may be estimated from these samples
(however it is not as accurate as the deterministic cubature routines, which are allowed to
attribute different weights to each sampled point). This routine uses a multidimensional
variant of rejection algorithm with adaptive subdivision of the entire domain into smaller
regions, and performing the rejection sampling in each region (a more detailed description
is given in Section A.2.7).

Optimization methods A broad range of tasks may be loosely named “optimization
problems”, i.e., finding a minimum of a certain function (objective) of one or many variables
under certain constraints.

For a function of one variable, there is a straightforward minimization routine findMin
that can operate on any finite or (semi-)infinite interval [a..b], and finds min f(x) on this
interval (including endpoints); if there are multiple minima, then one of them will be found
(not necessarily the global one), depending on the initial guess. The starting point z such
that f(zo) < f(a), f(xo) < f(b) may be optionally be provided by the caller; in its absense
the routine will try to come up with a guess itself. Only the function values are needed by
the algorithm.

For a function of N variables @, there are several possibilities. If only the values of the
function f(x) are available, then the Nelder—-Mead (simplex, or amoeba) algorithm provided
by the routine findMinNdim may be used. If the partial derivatives df/0x are available,
they may be used in a more efficient quasi-Newton BFGS algorithm provided by the routine
findMinNdimDeriv.

A special case of optimization problem is a non-linear least-square fit: given a function
g(x;d), where x; are N parameters that are being optimized, and dj are M data points,
minimize the sum of squared differences between the values of g at these points and target
values vg: min f(z) = Yoo, [g(z; di) —vg]?. This task is solved by the Levenberg-Marquardt
algorithm, which needs the Jacobian matrix of partial derivatives of g w.r.t. its parameters
x at each data point dy. It is provided by the routine nonlinearMultiFit. Of course, if the
function ¢ is linear w.r.t. its parameters, this reduces to a simpler linear algebra problem,
solved by the routine linearMultiFit. And if there is only one or two parameters (i.e., a
linear regression with or without a constant term), this is solved by the routines linearFit
and linearFitZero.

In the above sequence, more specialized problems require more knowledge about the
function, but generally converge faster, although all of them may be recast in terms of a
general (unconstrained) minimization problem, as demonstrated in test_math_core.cpp.
All of them (except the linear regression routines) need a starting point or a N-dimensional
neighborhood, but may move away from it in the direction of (one of possible) minima; again
there is no guarantee to find the global minimum.

If there are restrictions on the values of in the form of a matrix A of element-wise
linear inequality constraints Az < b, and if the objective function f is linear or quadratic in
the input variables, these cases are handled by the routines 1inearOptimizationSolve and
quadraticOptimizationSolve. They depend on external libraries (GLPK and/or CVX-
OPT; the former can only handle linear optimization problems).

Interpolation There are various classes for performing interpolation in one, two or three
dimensions. All methods are based on the concept of piecewise-polynomial functions defined
by the nodes of a grid zo < 1 < --- < zn,_1; in the case of multidimensional interpolation
the grid is rectangular, i.e., aligned with the coordinate lines in each dimension. The ad-
vantages of this approach are locality (the function value depends only on the adjacent grid
points), adaptivity (grid nodes need not be uniformly spaced and may be concentrated in
the region of interest) and efficiency (the cost of evaluation scales as log(/N,) — time needed
to locate the grid segment containing the point x, plus a constant additional cost to evaluate
the interpolating polynomial on this segment).

There are linear, cubic and quintic (fifth-order) interpolation schemes in one, two and
three dimensions (quintic — only in 1d and 2d). The former two are defined by the values of
the interpolant at grid nodes, and the last one additionally requires its (partial) derivatives
w.r.t. each coordinate at grid nodes. All these classes compute the function value and up to
two derivatives at any point inside the grid; 1d functions are linearly extrapolated outside
the grid.

An alternative formulation of the piecewise-polynomial interpolation methods is in terms
of B-splines — N, + N — 1 basis functions defined by the grid nodes, which are polynomials of
degree N on each of at most N + 1 consecutive segments of the grid, and are zero otherwise.
The case N = 1 corresponds to linear interpolation, N = 3 — to (clamped) cubic splines’.
The interpolating function is defined as f(x) = >, Aq Ba(x), where o is a combined index
in all dimensions, A, are the amplitudes and B, are the basis functions (in more than one
dimension, they are formed as tensor products of 1d B-splines, i.e., B;;(z,y) = Bi(x) B;(y)).
Again, the evaluation of interpolant only requires O(log(N,)+ N?) operations per dimension
to locate the grid segment and compute all N possibly nonzero basis functions using a N-step
recursion relation. This formulation is more suitable for constructing approximating splines

LA general cubic spline in 1d is defined by NN, + 2 parameters: they may be taken to be the values of
spline at N, grid nodes plus two endpoint derivatives, which is called a clamped spline. The more familiar
case of a natural cubic spline instead has these two additional parameters defined implicitly, by requiring
that the second derivative of the spline is zero at both ends.

from a large number of scattered points (see next paragraph), and the resulting B-splines
may be subsequently converted to more efficient linear or cubic interpolators. This approach
is currently implemented in 1 and 3 dimensions.

B-splines can also be used as basis functions in finite-element methods: any sufficiently
smooth function can be approximated by a linear combination of B-splines on the given
interval, and hence represented as a vector of expansion coefficients. Various mathematical
operations on the original functions (sum, product, convolution) can then be translated
into linear algebra operations on these vectors. The 1d finite-element approach is used in
the Fokker—Planck code PHASEFLOW, which is included in the library, and in a few other
auxiliary tasks (e.g., solution of Jeans equations).

Spline interpolation is heavily used throughout the entire AGAMA library as an efficient
and accurate method for approximating various quantities that are expensive to evaluate
directly. By performing suitable additional scaling transformations on the argument and/or
value of the interpolator, it is possible to achieve exquisite accuracy (sometimes down to
machine precision) with a moderate (O(10?)) number of nodes covering the region of interest;
for one-dimensional splines a linear extrapolation beyond that region often remains quite
accurate under a carefully chosen scaling (usually logarithmic). Quintic splines are employed
when it is possible to compute analytically the derivatives (or partial derivatives in the 2d
case) of the approximated function at grid nodes during the spline construction in addition
to its values — in this case the accuracy of approximation becomes 1 — 2 orders of magnitude
better than that of a cubic spline. (Of course, computing the derivatives by finite-differencing
or from a cubic spline does not achieve the goal). Mathematical foundations of splines are
described in more detail in the Appendix (sections A.2.2 and A.2.3).

Penalized spline fitting There are two kinds of tasks that involve the construction of a
spline curve from an irregular set of points (as opposed to the values of the curve at grid
nodes, as in the previous section).

The first task is to create a smooth least-square approximation f(z) to a set of points
{@;,y;}: minimize > [y; — f(x;)]* + X [[f"(«)]* dz, where X is the smoothing parameter
controlling the tradeoff between approximation error (the first term) and the curvature
penalty (the second term). The solution is given by a cubic spline with grid nodes placed at
all input points {x;} [29]; however, it is not practical in the case of a large number of points.
Instead, we approximate it with a cubic spline having a much smaller number of grid nodes
{ X} specified by the user. The class SplineApprox is constructed for the given grid { Xy}
and z-coordinates of input points; after preparing the ground, it may be used to find the
amplitudes of B-splines for any {y;} and A, and there is a method for automatically choosing
the suitable amount of smoothing.

The second task is to determine a density function P(z) from an array of samples {z;},
possibly with individual weights {w;}. It is also solved with the help of B-splines, this time
for In P(z), which is represented as a B-spline of degree N defined by user-specified grid
nodes {X}. The routine splineLogDensity constructs an approximation for In P for the

given grid nodes and samples, with adjustable smoothing parameter .

Both tasks are presently implemented only for the 1d case, but in the future may be
generalized to multidimensional data represented by tensor-product B-splines. More details
on the mathematical formulation are given in the Appendix (sections A.2.4 and A.2.5).

2.1.2 Units

Handling of units is a surprisingly difficult and error-prone task. AGAMA adopts a somewhat
clumsy but consistent approach to unit handling, which mandates a clear separation between
internal units inside the library and external units used to import/export the data. This
alone is a rather natural idea; what makes it peculiar is that we do not fix our internal units
to any particular values. There are three independent physical base units — mass, length, and
time, or velocity instead of time. The only convention used throughout the library is that
G = 1, which is customary for any stellar-dynamical code. This leaves only two independent
base units, and we mandate that the results of all calculations should be independent of the
choice of base units (up to insignificant roundoff errors at the level ~ 107 + 107¢ — typical
values for root-finder or integration tolerance parameters). This places heavier demand on
the implementation — in particular, all dimensional quantities should generally be converted
to logarithms before being used in a scale-free context such as finding a root on the interval
[0..00). But the reward is greater robustness in various applications.

In practice, the units:: namespace defines two separate unit classes. The first is
InternalUnits, defining the two independent physical scales (taken to be length and time)
used as the internal units of the library. Typically, a single instance of this class (let’s call it
intUnit) is created for the entire program. It does not provide any methods — only conver-
sion constants such as from_xxx and to_xxx, where xxx stands for some physical quantity.
For instance, to obtain the value of potential expressed in (km/s)? at the galactocentric
radius of 8 kpc, one needs to write something like
double E = myPotential.value(coord::PosCyl(8 * intUnit.from_Kpc, 0, 0));
std::cout << E * pow_2(intUnit.to_kms);

The second is ExternalUnits, which is used to convert physical quantities between the
external datasets and internal variables. External units, of course, do not need to follow
the convention G = 1, thus they are defined by three fundamental physical scales (length,
velocity and mass) plus an instance of InternalUnits class that describes the working units
of the library. An instance of unit converter is supplied as an argument to all functions that
interface with external data: read/write potential and distribution function parameters, N-
body snapshots, and any other kinds of data. Thus the dimensional quantities ingested by
the library are always in internal units, and are converted back to physical units on output.

When the external data follows the convention G = 1 in whatever units, no conversion
is necessary, thus one may provide an ExternalUnits object with a default constructor
wherever required (it is usually a default value for this argument); in this case also no
InternalUnits need to be defined. The reason for existence of two classes is that nei-

ther of them can fulfill both roles: to serve as an arbitrary internal ruler for testing the
scale-invariance of calculations, and to have three independent fundamental physical scales
(possibly different for various external data sources). In practice, one may create a single
global instance of ExternalUnits with a temporary instance of arbitrary InternalUnits as
an argument; however, having a separate global instance of the latter class is handy because
its conversion constants indicate the direction (to or from physical units).

The Python interface supports the unit conversion internally: the user may set up a
global instance of ExternalUnits, and all dimensional quantities passed to the library will
be converted to internal library units and then back to physical units on output. Or, if no
such conversion has been set up, all data is assumed to follow the convention G = 1. In
the future, we might adopt an alternative unit handling approach that would be seamlessly
integrated with the units subsystem of the ASTROPY library [3].

2.1.3 Coordinates

The coord:: namespace contains classes and routines for representing various mathematical
objects in several coordinate systems in three-dimensional space.

There are several built-in coordinate systems: Cartesian, Cylindrical, Spherical, and
ProlSph — prolate spheroidal. Their names are used as tags in other templated classes and
conversion routines; only the last one has an adjustable parameter (focal distance).

Templated classes include position, velocity, a combination of the two, an abstract in-
terface IScalarFunction for a scalar function evaluated in a particular coordinate system,
gradient and hessian of a scalar function, and coefficients for coordinate transformations
from one system to the other. Templated functions convert these objects from one coordi-
nate system to the other: for instance, toPosVelCyl converts the position and velocity from
any source coordinate system into cylindrical coordinates; these routines should be called
explicitly, to make the code self-documenting. An even more powerful family of functions
evalAndConvert take the position in one (output) coordinate system and a scalar function
defined in the other (evaluation) system, calls the function with transformed coordinates,
and perform the transformation of gradient and hessian back to the output system. The
primary use of these routines is in the potential framework (Section 2.2) — each potential
defines a method for computing it in the optimal system, and uses the conversion routines to
provide the remaining ones. Another use is for transformation of probability distributions,
which involve Jacobian matrices of coordinate conversions. In the future, we may add other
coordinate systems (e.g., heliocentric) into the same framework.

Some routines (e.g., in the galaxymodel:: namespace, Sections 2.6.1, 2.6.4) can use an
“observed” coordinate system XY Z that is arbitrarily oriented with respect to the “intrin-
sic” coordinate system zyz of the model, parametrized by three Euler rotation angles (see
Section A.3 for details and illustrations).

10

2.1.4 Particles

A particle is an object with phase-space coordinates and mass; the latter is just a single num-
ber, and the former may be either just the position or the position and velocity in any coordi-
nate system. Particles are grouped in arrays (templated struct ParticleArray<ParticleT>).
Particle arrays in different coordinate systems can be implicitly converted to each other, to
simplify the calling convention of routines that use one particular kind of coordinate system,
but accept all other ones with the same syntax.

AcAMA provides routines for storing and loading particle arrays in files (readSnapshot
and writeSnapshot), with several file formats available, depending on compilation options.
Text files are built-in, and support for NEMO and GADGET binary formats is provided
through the UNsIO library (optional).

Particle arrays are also used in constructing a potential expansion (Multipole, BasisSet
or CylSpline) from an N-body snapshot, and created by routines from the galaxymodel
module (Section 2.6), e.g., by sampling from a distribution function.

The particle array type and input/output routines belong to the particles:: name-
space.

2.1.5 Utilities

There are quite a few general-purpose utility functions that do not belong to any other
module, and are grouped in the utils:: namespace. Apart from several routines for string
manipulation (e.g., converting between numbers and strings), and logging, there is a self-
sufficient mechanism for dealing with configuration files. These files have a standard INI
format, i.e., each line contains name=value, and parameters belonging to the same subject
domain may be grouped in sections, with a preceding line [section name]. Values may be
strings or numbers, names are case-insensitive, and lines starting with a comment symbol #
or ; are ignored.

The class KeyValueMap is responsible for a list of values belonging to a single section; this
list may be read from an INI file, or created by parsing a single string like "parami=valuel
param2=1.0", or from an array of command-line arguments. Various methods return the
values converted to a particular type (number, string or boolean) or set/replace values.
The class ConfigFile operates with a collection of sections, each represented by its own
KeyValueMap; it can read and write INTI files.

2.2 Potentials

AGAMA provides a versatile collection of density and potential models, including two very
general and efficient approximations that can represent almost any well-behaved profile of an
isolated stellar system. All classes and routines in this section are located in the potential: :
namespace.

11

All density models are derived from the BaseDensity class, which defines methods for
computing the density in three standard coordinate systems (derived classes choose the
most convenient one to implement directly, and the two other ones use coordinate transfor-
mations), a function returning the symmetry properties of the model, and two convenience
methods for computing mass within a given radius and the total mass (by default they
integrate the density over volume, but derived classes may provide a cheaper alternative).

All potential models are derived from the BasePotential class, which itself descends
from BaseDensity. It defines methods for computing the potential, its first derivative (gra-
dient vector) and second derivative (hessian tensor) in three standard coordinate systems.
By default, density is computed from the hessian, but derived classes may override this
behaviour. Furthermore there are several derived abstract classes serving as bases for po-
tentials that are easier to evaluate in a particular coordinate system (Section 2.1.3): the
function eval() for this system remains to be implemented in descendant classes, and the
other two functions use coordinate and derivative transformations to convert the computed
value to the target coordinate system. For instance, a triaxial harmonic potential is easier
to evaluate in Cartesian coordinates, while the Stackel potential is naturally expressed in a
prolate spheroidal coordinate system.

Any number of density components may be combined into a single CompositeDensity
class, and similarly several potential components may be combined into a Composite poten-
tial.

2.2.1 Analytic potentials

There are several commonly used models with known expressions for the potential and its
derivatives.

Spherical models include the Plummer, Isochrone, NFW (Navarro-Frenk—White) poten-
tials, and a generalized King (lowered isothermal) model which is specified by its distribution
function f(F), as given by Equation 1 in [28]. Moreover there is a wrapper class that turns
any user-provided function ®(r) with two known derivatives into a form compatible with the
potential interface. A point mass (Kepler) potential is obtained by constructing a Plummer
potential with zero scale radius.

Axisymmetric models include the MiyamotoNagai and OblatePerfectEllipsoid poten-
tials (the latter belongs to a more general class of Stickel potentials [26], but is the only one
implemented at present). There is another type of axisymmetric models that have a ded-
icated potential class, namely a separable Disk profile with p(R,z) = X(R) h(z). A direct
evaluation of potential requires 2d numerical quadrature, or 1d in special cases such as the
exponential radial profile, which is still too costly. Instead, we use the GALPOT approach
introduced in [36, 25]: the potential is split into two parts, DiskAnsatz that has an analytic
expression for the potential of the strongly flattened component, and the residual part that
is represented with the Multipole expansion.

Triaxial models include the Logarithmic, Harmonic, Dehnen [22] and Ferrers poten-

12

tials. The first two have infinite extent and are usable only in certain contexts (such as orbit
integration), because most routines expect the potential to vanish at infinity. Ferrers (n = 2)
models are strictly triaxial, and have analytic expressions for the potential and its derivatives
[46]. Dehnen models may have any symmetry from spherical to triaxial; in non-spherical
cases, the potential and its derivatives are computed using a 1d numerical quadrature [41], so
this is rather costly (and also inaccurate at large distances). A preferred way of using an ax-
isymmetric or triaxial Dehnen model is through the Multipole expansion constructed from
a Spheroid density profile. This class describes general triaxial two-power-law («a(37) density
profiles? [74] with an optional exponential cutoff. Many well-known models are special cases
of this profile: Dehnen, Plummer, Isochrone, NFW, Gaussian, Einasto, Prugniel-Simien.
This class only provides the density profile and not the potential, so it needs to be used
in conjunction with the Multipole potential solver. Some models are defined in terms of
the radial profile of the surface density, from which the 3d density may be reconstructed by
deprojection. These include the two-power-law Nuker model and the exponential Sersic
model; both provide only the density but not potential, and can also be flattened or tri-
axial (note that the deprojected spherical density profile is constructed first, and then it
is compressed /stretched along y and z axes). Generalized spherical King models (with an
adjustable strength of the outer cutoff, as in [28]) provide both the density and the poten-
tial. A time-dependent potential of two point masses orbiting each other is represented by
the KeplerBinary class, and a spatially uniform but time-dependent acceleration field is
provided by the UniformAcceleration class.

2.2.2 Multipole expansion

Multipole is a general-purpose potential approximation that delivers highly accurate results
for density profiles with axis ratio not very different from unity (say, at most a factor of few).
It represents the potential as a sum of spherical-harmonic functions of angles multiplied by
arbitrary functions of radius: ®(r,0,¢) = >_,,. Pim(r)Y"(0,¢). The radial dependence
of each term is given by a quintic spline, defined by a rather small number of grid nodes
(N, ~ 20 <+ 50), typically spaced equally in logr over a range rmax/Tmin = 10%; the suitable

order of angular expansion [,,, depends on the shape of the density profile, and is usually
< 10.
The potential approximation may be constructed in several ways:

e from another potential (makes sense if the latter is expensive to compute, e.g., a triaxial
Dehnen model);

e from a smooth density profile, thereby solving the Poisson equation in spherical coor-
dinates;

2 here corresponds to 1/« in the original paper: higher values of @ produce sharper transitions between
inner and outer asymptotic slopes.

13

e from an N-body model (an array of particle coordinates and masses) — in this case a
temporary smooth density model is created and used in the same way as in the second
scenario;

e by loading a previously computed array of coefficients from a text file.

This type of potential is rather inexpensive to initialize, very efficient to compute, pro-
vides an accurate extrapolation to small and large radii beyond the extent of its radial grid,
and is the right choice for “spheroidal” density models — from spherical to mildly triaxial,
and even beyond (i.e., a model may have a twist in the direction of principal axes, or contain
an off-centered odd-m mode).

A related BasisSet potential approximation is based on expanding the radial dependence
of spherical-harmonic terms @;,,(r) into a sum over functions from a suitable basis set
[32, 74]. For several reasons, this approach is less efficient: the choice of the family of basis
functions implies certain biases in the approximation, and the need to compute a full set of
them (involving rather expensive algebraic operations) at each radius is contrasted with a
much faster evaluation of a spline (essentially using only a few adjacent grid points). For
analytic density profiles, Multipole usually provides much higher accuracy than BasisSet
for a comparable (or lower) computational cost. When initialized from an N-body snapshot,
the accuracy of both expansions is limited by discreteness noise in the coefficients, typically
saturating at lya ~ 6 — 8 and twice as many radial grid points [58].

DensitySphericalHarmonic is a class derived from BaseDensity, which uses the same
mechanism (spherical-harmonic expansion in angles with coefficients given by spline func-
tions in radius) to represent an arbitrary density profile, without an associated potential.
It is used as an intermediate step in constructing a Multipole potential from an N-body
snapshot, or as an internal representation for some spherically symmetric density profiles
such as King (in this case, with [y, = 0).

2.2.3 Azimuthal harmonic expansion

CylSpline’ is another general-purpose potential approximation that is more effective for
strongly flattened (disky) systems, whether axisymmetric or not. It represents the poten-
tial as a sum of Fourier terms in the azimuthal angle (¢), with coefficients of each term
interpolated via a 2d quintic spline spanning a finite region in the R,z plane. The accuracy
of approximation is determined by the number and extent of the grid nodes in R and z
(also scaled logarithmically to achieve a high dynamic range) and the order m,., of angular
expansion; in the axisymmetric case only one term is used, but generally it may represent
any geometry, e.g., spiral arms and a triaxial bar.

This potential may also be constructed in the same four ways as Multipole, but the
solution of Poisson equation is much more expensive in this case; still, for typical grid sizes
of a few dozen in each direction, it takes between a few seconds and minutes on a single CPU

3an improved version of the method presented in [71]

14

core (and is almost ideally parallelized). After initialization, the computation of potential
and forces is as efficient as Multipole. In many cases, it delivers comparable or better
accuracy than the latter, but is not suitable for cuspy density profiles and for extended tails
of density at large radii, since it may only represent it over a finite region (the potential and
its first derivative is still quite accurately extrapolated outside the grid, but the density is
identically zero there). Its main advantage is the ability to handle disky systems which are
not suitable for a spherical-harmonic expansion®.

To summarize, both potential approximations have wide, partially overlapping range of
applicability, are equally efficient in evaluation (but not construction), and deliver good ac-
curacy (see Figures 9, 10 in the Appendix, with more technical details given in Section A.4).
We note that application of these methods to represent the potential of a galaxy like the
Milky Way is computationally more demanding than simple models based e.g. on a combi-
nation of Miyamoto—Nagai disks and spherically-symmetric two-power-law profiles, but only
moderately (by a factor of 2-3), and allows much greater flexibility and realism (especially
if non-axisymmetric features are required).

A related class DensityAzimuthalHarmonic is used to represent an arbitrary density
profile as a Fourier expansion in ¢, with each term being a 2d cubic spline in R, z. This class
is typically not constructed directly, but together with DensitySphericalHarmonic, serves
as an interpolator for the density profiles in the iterative self-consistent modelling procedure
(Section 2.6.3). All potential and density expansions can be stored to and loaded from text
files, as described in the next section.

2.2.4 Potential factory

All density and potential classes may be constructed using a universal “factory” interface
— several routines that return new instances of PtrDensity or PtrPotential according to
the provided parameters. The parameters can be supplied in several ways. The routines
readDensity and readPotential read them from a text file (referred to as INI file there-
after) containing one or several components of the potential described in separate sections
[Potentiall], [Potential2], [Potential disk], etc. (all section names should start with
“Potential”) for readPotential, or similarly a file with one or more density components
listed in sections [Density], [Densityl], etc. for readDensity. These sections may con-
tain coefficients of density or potential expansion previously written by writeDensity /
writePotential routines, or references to other INI files with yet other parameter sets, etc.
Alternatively, the routine createDensity and several overloaded routines createPotential
take a KeyValueMap object (Section 2.1.5) corresponding to a single section from an INT file
(it may be read from the file, or constructed manually, e.g., from named arguments in the
Python interface, or from command-line parameters for console programs, or from a single

4Potential of separable axisymmetric disk density profiles can be efficiently computed using a combination
of DiskAnsatz and Multipole (the GALPOT approach), but this applies only to this restricted class of
systems, and is comparable to CylSpline in both speed and accuracy.

15

Table 1: Static density and potential models and their parameters

Name Formula

Parameters

Density-only models

1
= o (=[]~)
Disk 5(z) if h=0
X ﬁexp(—ﬁ) h >0
Lse(:h2(|iD h <0

2h

=58

Spheroid p="r (g)” [1 i (S)O‘})
xexp | - (:£)]

deprojection of ¥ =

»
Nuker Lo (57 [5+3(8)°] 7

xexp | - ()]

deprojection of

surfaceDensity (Xg) or mass,
scaleRadius (Ry), scaleHeight (h),
innerCutoffRadius (Reu),
sersicIndex (n)

densityNorm (pg) or mass, alpha («),
beta (), gamma (), scaleRadius (a),
axisRatioY (p), axisRatioZ (q),
outerCutoffRadius (reut),
cutoffStrength (§)

surfaceDensity (%) or mass, alpha (a),
beta (), gamma (), scaleRadius (a),
axisRatioY (p), axisRatioZ (q),
outerCutoffRadius (reyt),
cutoffStrength (&)

surfaceDensity (%) or mass,
scaleRadius (a), sersicIndex (n),
axisRatioY (p), axisRatioZ (q)

Density /potential models

Sersic S = T exp [_ b, (R/a)l/n]
Plummer ¢ =— aJQV-[i-rZ
- M
Isochrone P = Py =t
M r
NFW ®=—-Ymn(1+1)
Mi . _ M
iyamotoNagai d = >
R+ (atv22182)
-2
i id , — (z/9)
PerfectE111p801dp 7r2qa [1 + —‘1]
_ M@=y (F\77 F\7—4
Dehnen P=Trpear (z) (1+7)
105 M 7212
Ferrers P = 32t pqa’ |:]' - (2)]
King specified by f(F), see text
Logarithmic ® = L0f In(r2,. +72)
Harmonic b = le 72

mass (M), scaleRadius (a)
mass (M), scaleRadius (a)

mass (M is the mass enclosed in ~ 5.3a, the total
mass is 00), scaleRadius (a)

mass (M), scaleRadius (a), scaleRadius2
or scaleHeight (b)

mass (M), scaleRadius (a),

axisRatioZ (q)

mass (M), gamma (), axisRatioY (p),
axisRatioZ (q), scaleRadius (a)

mass (M), scaleRadius (a),

axisRatioY (p), axisRatioZ (g)

mass, scaleRadius (r¢), WO, trunc (g)

vO0 (vg), scaleRadius (Tcore),

axisRatioY (p), axisRatioZ (q)

Omega (), axisRatioY (p), axisRatioZ (q)

= /22 4+ y? is the cylindrical radius and 7 = /22 +

16

+ (y/p)? + (2/q)? is the ellipsoidal radius

Table 2: Time-dependent potential models and their parameters

Name Formula Parameters

KeplerBinary two moving point masses mass, binary_q, binary_sma,
binary_ecc, binary_phase

UniformAcceleration & = —a(t)x file

Evolving piecewise-constant or piecewise- (see Section 2.2.5)

linear sequence of other potentials

Table 3: Density and potential expansion types

Name (density) name (potential) parameters

— BasisSet nmax, eta, r0, lmax, mmax, symmetry,
fixOrder

DensitySphericalHarmonic Multipole gridSizeR, rmin, rmax, lmax, mmax,
symmetry, fixOrder

DensityAzimuthalHarmonic CylSpline gridSizeR, gridSizeZ, Rmin, Rmax,

zmin, zmax, mmax, symmetry, fixOrder

Table 4: Density and potential modifiers

Name parameter description (see Section 2.2.5) result
Shifted center 3 numbers or a file with @q(t) O(x —)
Tilted orientation three Euler angles o, §,v = rotation matrix R ®(R,s,)
Rotating rotation a single value or a file with () O (Ryoo)
Scaled scale two values or a file with A(t), S(t) AST1®(x/9)

Table 5: Symmetry types and their implications
Sph.-harm. coefs

Name Invariant transformations) .
identically zero

None — —

Reflection .y, 2} = {—w, —y, —2} odd [

(twofold discrete symmetry)

same or z — —z, also implies {z,y} = {—z, —y}

Bi tri . ; dd
teymmetric (fourfold discrete symmetry, e.g., a two-arm spiral) same + odd m
. same or r — —x or Yy — —y .
T 1 . .
riaxia (eightfold discrete symmetry, e.g., a bar) same + negative m
Axisymmetric same or rotation about‘z axis by any angle same + any m 2 0
(continuous symmetry in ¢)
Spherical same or rotation about origin by any angle same + any [£ 0

(continuous symmetry in both 6 and ¢)

17

string like "keyl=valuel key2=value2"). These parameters may describe the potential
completely (e.g., if this is one of the known analytical models), or define the parameters of
Multipole, BasisSet or CylSpline potential expansions to be constructed from the user-
provided density or potential object, or from an array of particles — in the latter case these
objects are also passed to the factory routines.

Below follows the list of possible parameters of a single potential or density component
for the factory routines (not all of them make sense for all models, but unknown or irrelevant
parameters will simply be ignored); see Table 1 for complete information:

e type determines the type of potential used; should be the name of a class derived from
BasePotential — either a static analytic potential listed in the first column of Table 1,
or a time-dependent potential from Table 2, or an expansion listed in the second column
of Table 3, or a modifier listed in Table 4. It is usually required, unless this section
contains a file parameter referring to another INI file with potential parameters.

e density — if type is a potential expansion, this parameter determines the density

model to be used; should be the name of a class derived from BaseDensity (or, by
consequence, the name of an analytic potential from Table 1, except unbound potentials
— Logarithmic or Harmonic).
There is one exception to the rule that type must encode a potential class: it may also
contain the names of the density profiles originally used in GALPOT — Disk, Spheroid,
Nuker or Sersic. All such components are collected first, and used to construct a
single instance of Multipole potential with default parameters, plus zero or more
instances of DiskAnsatz potentials (according to the number of disk profiles). The
source density for this Multipole potential contains all Spheroid, Nuker, Sérsic and Disk
components, plus negative contributions of DiskAnsatz potentials (i.e., with inverted
sign of their masses). Of course, one may use them also as regular density components
(e.g., type=CylSpline density=Disk, which yields comparable accuracy), but in that
case each one would create a separate potential expansion, which is of course not
efficient. In order to lift this limitation, one may construct all density components
individually, manually combine them into a single CompositeDensity model, and pass
it to the constructor of a potential expansion (this approach is used for self-consistent
multicomponent models, Section 2.6.3).

e symmetry defines the symmetry properties of the density model passed to the potential
expansion. All built-in models report this property automatically; this parameter is
needed if the input is given by an array of particles, or by a user-defined routine
returning the density or potential in Python and Fortran interfaces. It could be either
a text string with one of the standard choices from Table 5 (only the first letter is used),
or a number encoding a more complicated symmetry (see the definitions in coord.h).

e file can serves several purposes. It may refer to another INI file with one or more sec-
tions describing density or potential parameters, which may also contain Multipole,

18

BasisSet or CylSpline potential expansion coefficients (if used with readPotential),
or likewise DensitySphericalHarmonic / DensityCylindricalHarmonic coefficients
(if used with readDensity) previously written by writePotential / writeDensity
routines. In this case the type parameter should not be provided.

Alternatively, it may point to an N-body snapshot file used to create such an expan-
sion (in this case the type of expansion needs to be specified, possibly with some other
parameters).

Finally, for the UniformAcceleration potential type, this file contains the time-
dependent acceleration field, and should have 4 columns — time (monotonically in-
creasing) and three acceleration components, which will be interpolated in time as reg-
ularized cubic splines (see Figure 3) and linearly extrapolated beyond the endpoints.
One may provide the same 2d array directly as a text string in the file argument, se-
rialized as follows: [[t1,ax1,ayl,azl], [t2,ax2,ay2,az2],...] — when called from
Python, this argument may contain a numpy array, which is automatically converted
into a string in this format and then parsed inside the C++ code.

Parameters defining an analytic density or potential model (if type is a potential expansion,
they refer to the density argument, otherwise to type); default values are given in brackets:

mass [1] — total mass of an analytic model®.

scaleRadius [1] — the first (sometimes the only) parameter with the dimension of
length that defines the profile.

scaleHeight [1] or scaleRadius2 — the second such parameter (e.g., for Miyamoto—
Nagai or exponential disk models).

outerCutoffRadius [oo] — another length-scale parameter defining the radius of ex-
ponential truncation, used for Spheroid or Nuker models (0o means no cutoff).

innerCutoffRadius [0] — similar parameter for Disk that defines the radius of an inner
hole.

surfaceDensity [0] — normalization of surface density (its value at R = 0 for the expo-
nential Disk or Sersic profiles (not at the half-light radius!), or at R =scaleRadius
for the Nuker profile).

5Except the NFW profile, in which the total mass is formally infinite, and the parameter M refers to
the mass within ~ 5.3a, where a is the scale radius. It is related to the so-called virial mass My; and
so-called concentration ¢ by My, = M [In(1 + ¢) — ¢/(c+ 1)]. Note that one may provide extra parameters
outerCutoffRadius and cutoffStrength, or axisRatioY / axisRatioZ, in which case the type is implicitly
changed to Spheroid, and the total mass will be indeed given by M. An NFW profile sharply cut at the
virial radius is equivalent to setting outerCutoffRadius to the virial radius (ac) and cutoffStrength to a
very large value (however, this may lead to numerical artifacts).

19

densityNorm [0] — value that defines the volume density at the scale radius for the
Spheroid profile. Alternatively, instead of this or the previous parameter, one may
provide the total mass of the corresponding model (these two parameters have a priority
over mass), but this can’t be done for infinite-mass models, so the density normalization
remains the only option.

alpha [1] — parameter controlling the steepness of transition between two asymptotic
power-law slopes for Spheroid or Nuker.

beta [4] — power-law index of the outer density profile for Spheroid or Nuker; should
be > 2 except when there is an outer cutoff, otherwise the potential is unbound.

gamma [1] — power-law index of the inner density profile: p oc 7= as r — 0 for Dehnen
(should be 0 < 7 < 2) or Spheroid (7 < 3) models, or ¥ o« R~ for Nuker model
(0<vy<2).

cutoffStrength [2] — parameter £ controlling the steepness of the exponential cutoff
in Spheroid or Nuker models: p o< exp [— (r/rcut)f]. It can also be used to create the
Einasto profile, in which p(r) o exp [— ¢, (r/ryai)'/"], where ¢, ~ 3n —1/3 4 2905 g
the root of 2I'(3n, ¢,) = I'(3n) and n is the Einasto index: in this case set 7 = 8 = 0,

£ =1/n, reyt = Thair/c” and densityNorm = 3M/[4rxr3 T(3n + 1))].

cut

sersicIndex — shape parameter n of the Sersic profile (larger values correspond to a
models with steeper inner and shallower outer profiles, default is the de Vaucouleur’s
value of 4), or the same parameter for the Disk profile (default is 1 corresponding to
the exponential disk). Please note that the meaning of scaleRadius is not the same
for the two cases: it corresponds to the projected half-light radius for the Sersic
profile, but differs from it by a constant factor that depends on n and b,(n) (see the
expressions in Table 1; b, ~ 2n — 1/3 is computed automatically) for the Disk profile.
The projected density of the Disk profile matches the Sérsic profile (after appropriate
rescaling of length) only in the face-on orientation, and the flattening is also specified
differently (q=z/x for the Sersic profile and scaleHeight for the Disk profile).

p or axisRatioY [1] — the axis ratio y/z of equidensity surfaces of constant ellipticity
for Dehnen, Spheroid, Nuker, Sersic or Ferrers models, or the analogous quantity
for the Logarithmic or Harmonic potentials.

g or axisRatioZ [1] — the same parameter for z/z. Note that if either p or g are different
from unity and type is Plummer or NFW (which specify only spherical potential models),
type is implicitly changed to Spheroid and the potential is represented by Multipole.

WO — dimensionless potential depth of generalized King (lowered isothermal) models:
Wo = [®(r;) — ®(0)]/0?; larger values correspond to more extended envelopes (larger

20

ratio between the outer truncation radius r; and the scale radius). In the above ex-
pression, the velocity dispersion ¢ is not an independent parameter: the model in
dimensionless units is specified by W, and the truncation strength parameter g; the
potential, the truncation radius, and the total mass in dimensionless units are all de-
termined by integrating a second-order ODE, and then the length and mass units are
rescaled to match the given total mass M and the scale radius (also called King radius
or core radius).

e trunc [1] - truncation strength parameter of lowered isothermal models (denoted by
g in [28]); should be between 0 and 3.5 (0 corresponds to Woolley, 1 — to King, 2 — to
Wilson models), larger values result in softer density fall-off near the truncation radius.

e Omega [1] — frequency of oscillation in the Harmonic potential.
e v0 [1] — asymptotic circular velocity for the Logarithmic potential.

e binary_sma [0] — semimajor axis a for the KeplerBinary potential. This model repre-
sents a time-dependent potential of two point masses orbiting each other in the x — y
plane, with the center of mass specified by the center parameter. a = 0 means a single
point mass (the same effect is produced by a Plummer model with scaleRadius=0).

e binary_q [0] — mass ratio ¢ of the KeplerBinary potential (0 means a single massive
object, otherwise the masses of the two components are m; = m/(1 + q), ma = qgmy).

e binary_ecc [0] — orbital eccentricity e of the KeplerBinary potential (0 < e < 1).

e binary_phase [0] — orbital phase ¢y of the KeplerBinary at time ¢ = 0. The po-

sitions of two point masses at time ¢ are given by z; = aﬁ (cosn —e), y1 =
aﬁ 1 — €% sinn for the first one and o = —x1/q, y2» = —y1/q for the second one,

where the eccentric anomaly 7(t) is the solution of Kepler’s equation: n — e sinn =
Ot + ¢g, and Q = y/m/a? is the orbital frequency.

Parameters defining the density or potential expansions (default values in brackets are all
sensible and only occasionally need to be changed):

e gridSizeR [25] — the number of grid nodes in spherical (Multipole, BasisSet and
DensitySphericalHarmonic) or cylindrical (CylSpline and DensityAzimuthalHarmonic)
radius; in the latter case this includes the Oth node at R = 0.

e gridSizeZ [25] —same for the grid in z direction in CylSpline and DensityAzimuthal-
Harmonic, including the z = 0 node.

e rmin [0] — the radius of the innermost nonzero node in the radial grid (for all expansion
classes); zero means automatic determination.

21

rmax [0] — same for the outermost node; zero values mean automatic determination.

zmin [0], zmax [0] — same for the vertical grid in CylSpline/DensityAzimuthalHarmonic;
zero values mean take them from the radial grid. Note that the grid auto-setup mech-
anism is currently less optimal in CylSpline than in Multipole, so a sensibly chosen
manual grid extent may be beneficial for accuracy.

lmax [6] — the order of Multipole, BasisSet and DensitySphericalHarmonic expan-
sion in cos #; 0 means spherical symmetry.

mmax [lmax] — the order of azimuthal Fourier expansion in ¢ for all classes; 0 means
axisymmetry, and M., should be < [,... Of course, the actual order of expansion in
all cases is also determined by the symmetry properties of the input density model —
if it reports to be axisymmetric, no m # 0 terms will be used anyway. Moreover, if all
terms in the computed expansion beyond a certain order are zero, the actual values
of lnax and mpy., can be smaller than the requested ones. Note that for CylSpline,
values of mpya, > 12 significantly increase the cost of construction of the potential
from a density profile (though not of its evaluation, which is roughly proportional to
Mmax + 1 in any case).

fixOrder [false] — whether to restrict the number of integration points in angles § and ¢
to the minimum necessitated by the requested expansion order [y, Mmax. A spherical-
harmonic transformation of a band-limited input function needs l,,x/2 + 1 points in ¢
(or twice as many if the input is not z-reflection-symmetric), and a Fourier transfor-
mation needs Mmuyax + 1 points in ¢ (or twice as many for non-y-reflection-symmetric
inputs). However, the routines typically use more than this minimum number, because
the input is rarely band-limited (e.g., when mmax=0, the expansion will be axisymmet-
ric, but it still needs to integrate the input model over ¢ to produce a correct result).
By default (when fixOrder=false) the internally constructed expansions have an or-
der max(12, {l/m}max +6) and query the input models at the corresponding number of
angular points, then are truncated to the requested output order. On the other hand,
when the input density is expensive to compute (e.g., in the context of DF-based self-
consistent models), one may limit this internal expansion order to exactly the output
order, thus having a more explicit control on the number of input density evaluations.

smoothing [1] — the amount of smoothing applied to the non-spherical harmonics
during the construction of the Multipole potential from an array of particles.

nmax [12] — the order of radial expansion in BasisSet potential.

eta [1] — parameter controlling the shape of basis functions in the Zhao basis set [74].
The zeroth-order function is a double-power-law (Spheroid) profile with o = 1/n,
B =3+1/nand v = 2— 1/n; the default value n = 1 corresponds to the widely used

22

Hernquist—Ostriker basis set [32], although values up to 2 and even higher may provide
more accurate results for cuspy models.

e 10 — scale radius of basis functions. If not provided, it is set to the half-mass radius of
the density profile (unless the latter has infinite mass, in which case one needs to specify
r0 explicitly), and this choice is close to optimal for the approximation accuracy.

These keywords, with some modifications, are also used in potential construction rou-
tines in Python and Fortran interfaces and in the AMUSE, GALPY and GALA plugins
(Sections 3.1, 3.2, 3.3, 3.4, 3.5). For instance, Python interface allows to provide a user-
defined function specifying the density or potential profile in the density= or potential=
argument, or an array of particles in the particles= argument.

All dimensional values in the potential factory routines can optionally be specified in
physical units and converted into internal units by providing an extra unit conversion pa-
rameter (Section 2.1.2). For instance, masses and radii in the INT file may be given in solar
masses and parsecs. This conversion also applies during write/read of density or potential
coefficients to/from text files. Of course, if all data is given in the same units and follows
the convention G = 1, no conversion is needed.

The coefficients of a density or a potential expansion can be stored to a text file by
writeDensity / writePotential routines (which in fact refer to the same routine), and
subsequently loaded back by the readDensity / readPotential routines. The writex*x
routine, in fact, accepts any density/potential class, including composite and modified mod-
els, but it can only write the parameters and coefficients of expansion models, and simply
stores the name of any other model without additional parameters or modifiers (rather than
throwing an error) — note that these other models may not be correctly loaded back unless
you manually edit the file and add the missing properties. Its main purpose is indeed to
store the non-parametric (expansion) models. The storage format is compatible with the
INI file — in fact, the density/potential model, or each component of a composite model, is
written to a separate [Density**x] or [Potential**x*] section, with the type parameter
specifying the name of the expansion model, followed by the parameters of the grids and
expansion orders, and then the coefficients themselves after a line containing a single word
Coefficients. When loading a density or a potential from an INI file, these coefficients
are then used to reconstruct the appropriate expansion (note that they do not follow the
INT format of key=value parameters, but are simply appended after all such parameters at
the end of each INI section). All components of a composite density or potential object are
stored in a single file, one after another.

2.2.5 Modifiers and time-dependent density/potential types

All potential and density classes provide functions for evaluating them at an arbitrary mo-
ment of time (0 by default), although almost all built-in models are time-independent (except

23

KeplerBinary and UniformAcceleration). However, there are two ways in which even a
static density or potential can be made time-dependent:

e By constructing an Evolving potential from an INT file (or a section in such a file) which
has the following format: a line with type=Evolving, an optional line interpLinear=
[true/false], optional modifier parameters discussed below, followed by a line with
a single word Timestamps, and the remaining lines in this section containing a table
with two columns — timestamps and names of corresponding INI files with potential
parameters. The actual potential at the given time ¢ is either taken from the nearest
timestamp, or linearly interpolated between the two potentials associated with times-
tamps t; < t < ty, if the parameter interpLinear is set to true (note that this is twice
more expensive than taking the nearest one). Of course, the individual INT files may
contain coefficients of potential expansions, or specify composite or time-dependent
potentials of arbitrary complexity.

e By applying one or more “modifiers” from Table 4. The modifiers are not named
explicitly, but are constructed whenever a corresponding parameter appears in the sec-
tion of an INT file or in a KeyValueMap object passed to the factory routines, and their
effects are described below: ®(x, t) refers to the original potential and ®(x, t) — to
the modified one; all these modifiers can be applied to density objects as well.
center displaces the potential center by a time-dependent vector xo(t): ®(x, t) =
CID(a; — xo(t), t). A Shifted potential or density automatically degrades symmetry to
None.
orientation changes the orientation of its principal axes. The transformation between
the original and the modified coordinate system is effected by a rotation matrix R spec-
ified by a triplet of Euler angles o, 3,7°; see Section A.3 for a definition of R and illus-
tration of the two coordinate systems. Lowercase letters x,y, z denote the coordinates
supplied to the modified potential ®, and uppercase X,Y, Z are the rotated coordi-
nates fed to the original (underlying) potential ®; in other words, ®(x, t) = <I>(R T, t).
A Tilted density/potential has at most a Reflection symmetry.
rotation makes the potential figure rotate about the z axis by an angle ¢ (t) that is
an arbitrary function of time. The transformation from the modified to the underlying
coordinate systems is again given by a (simpler) rotation matrix, in which ¢ is the
first Euler angle, and the other two angles are zero. For instance, if ¢(t) = Qt, the
underlying potential steadily rotates anticlockwise with an angular frequency €. The
symmetry of a Rotating model is at most Bisymmetric (except when the model is
already spherical, in which case the rotation is meaningless anyway).
scale varies the mass normalization A(t) and spatial scale S(¢) with time: ®(zx, t) =
A(t) S7U(t) ®(S(t) x, t). The factor S~ ensures that when changing the spatial scale

6no relation to the parameters of a Spheroid potential! These three angles are not named explicitly, but

rather given as a space- or comma-separated string, e.g., orientation=1,2,3.

24

S, the total mass remains the same (unless, of course, adjusted by A). A Scaled model
retains its original symmetry.

The parameters of these transformations can be constant or time-dependent, except
orientation, whose triplet of Euler angles is kept fixed. For the other three modifiers,
if the corresponding parameter is a single (for rotation), two (for scale), or three
(for center) space- or comma-separated numbers, it is fixed in time, otherwise it is
interpreted as a 2d table describing the time-dependent variation of this parameter,
or the name of a text file containing such a table. A text file should contain times-
tamps in the first column, and the value(s) of the parameter in the remaining columns,
and will be converted into a regularized cubic spline (linearly extrapolated beyond the
endpoints of the specified time interval). To extrapolate as a constant, make the next-
to-last point identical to the last point. The file may contain not only values but also
time derivatives of the parameter (e.g., have 7 columns for center: ¢, x,y, 2, &,9, 2), in
which case a Hermite spline will be constructed (it is extrapolated with a slope that is
explicitly set by the derivative at the endpoint). Instead of a text file, the same table
can be provided directly in the corresponding parameter, serialized as follows (example
given for the rotation modifier): [[t1,al],[t2,a2], [t3,a3]]. This is most useful
when constructing the potential from the Python interface and providing a nested list
or a 2d numpy array directly.

If a section of the INI file or a KeyValueMap object prescribes multiple modifiers, they
will be applied in the following, most natural order (regardless of their order of ap-
pearance in the INI file): the underlying potential is modulated in amplitude and size,
then made rotating about its z axis, then its principal axes are tilted w.r.t. the ex-
ternal inertial reference frame (in which it will be evaluated), and finally the origin
of the potential is shifted. For instance, one can make the potential spin about an
arbitrary axis, not just z, by providing both rotation and orientation. Evaluating
this multiply-modified potential or its derivatives unfolds the chain of modifiers in the
reverse order to their creation, i.e., the input point is shifted, tilted, rotated and scaled,
then fed into the underlying potential, and the result is propagated back through this
sequence of transformations.

When constructing a multicomponent density /potential from an entire INT file or a vec-
tor of KeyValueMaps, the routines readPotential / createPotential will group the
components sharing the same modifier parameters into separate “bunches” of elemen-
tary or composite potentials, which will then be wrapped into the corresponding mod-
ifier classes, thereby making the potential evaluation more efficient. The readDensity
routine that constructs a possibly composite density from an INI file will apply modi-
fiers to each component separately without attempting to group them.

On the other hand, one can add modifiers to an already existing density or potential
object in the same way as creating a density/potential expansion. In this case, the
original density /potential instance is provided to the factory routine createDensity
/ createPotential together with a KeyValueMap containing the parameters of modi-

25

fiers to be added. This makes possible to apply multiple modifiers in a different order
from the default one, by calling the factory routine several times and ”dressing up”
the model one layer at a time.

The time-dependent potentials are fully supported by the orbit integration routine, but
not by the rest of the library (i.e., all utility functions, sampling from the density profile,
construction of action finders, etc., evaluate the potentials at the default time 0).

2.2.6 Utility functions

Methods of the BaseDensity class include enclosedMass (compute the mass enclosed within
a given spherical radius) and totalMass, which both use 3d integration by default, but may
be reimplemented more efficiently by derived classes. potential_base.h contain several util-
ity functions that operate on any potential object: determination of the radius that encloses
a given mass; projection of density or force along arbitrary lines of sight specified by Euler
angles (Section A.3). It also provides wrapper classes Sphericalized/Axisymmetrized for
both density or potential inputs, which perform on-the-fly symmetrization by averaging over
angles (unless the input model already has the desired symmetry level).

potential_utils.h provides routines for conversion between energy E, angular momen-
tum of a circular orbit L., and radius; epicyclic frequencies &, v, Q2 as functions of radius’;
peri- and apocenter radii of an orbit with given F, L in the z = 0 plane, etc. They are im-
plemented as standalone functions (generally using a root-finding routine to solve equations
such as ®(r) = F for r), and as two interpolator classes that pre-compute these values on a
1d or 2d grid in F or E, L, and provide a faster (but still very accurate) alternative to the
standalone functions. These interpolators are used, e.g., in the spherical and axisymmetric
action finder/mapper classes. The standalone functions accept potentials of any symme-
try, but produce an exact result only if the potential is axisymmetric; otherwise the input
potential is axisymmetrized on the fly, which usually gives a meaningful result that one is
interested in (e.g., a “typical” orbital period). The interpolators, on the other hand, refuse
to work with a non-axisymmetric input potential.

2.3 Orbit integration and analysis

Orbits of particles in a [possibly time-dependent] potential are computed using the class
orbit::0rbitIntegrator, specifically its method run, in any of the three standard coor-
dinate systems, plus optionally a rotating reference frame. It solves the coupled system of
ordinary differential equations (ODEs) for time derivatives of position and velocity, using
one of the available methods derived from math: :BaseOdeSolver; currently we provide only

9227 ~ ROR

2 2 ‘
7deﬁnedas;<;2:a—q)+3dq) 1,256(1) 02 = 1d@<L§£c

2
=m Ron > , evaluated at z = 0.

26

the 8th order Runge-Kutta with adaptive timestep [31]. Other possibilities previously im-
plemented in [67] include 15th order Gauss-Radau scheme [54], 4th order Hermite method
[37], and several methods from ODEINT package [1], including Bulirsch—Stoer and various
Runge-Kutta schemes. However, in practice all of them have quite similar performance in
the appropriate range of tolerance parameters, thus we have only kept one at the moment.

Note that in the of a rotating reference frame (with angular frequency 2 directed along
z axis), the velocity (both in the initial conditions and in the output trajectory) is still
specified in an inertial frame that is instantaneously aligned with the rotating frame at the
corresponding moment of time (i.e., has the same value independently of the pattern speed).
For instance, an orbit trapped into a 1:1 corotation resonance with a bar would have a fixed
position in the rotating frame, but a nonzero azimuthal velocity. The equations of motion
arex =v— QA xx, v =—VP—-Q xwv. On the other hand, if a Rotating modifier is applied
to the potential itself and the orbit integration is performed in the inertial reference frame,
then the trajectory is also stored in the inertial frame. This setup is more general since
the angle of rotation may vary arbitrarily (not just linearly with time, as in the case of a
constant angular frequency), but extra steps would be needed to convert the trajectory into
the instantenously corotating frame.

There are various tasks that can be performed during orbit integration, using classes
derived from orbit::BaseRuntimeFnc. The simplest one (orbit::RuntimeTrajectory)
is the recording of the trajectory either at every timestep of the ODE solver, or at regular
intervals of time, which are unrelated to the internal solver timestep (that is, the position and
velocity at any time are obtained by interpolation provided by the solver — so-called dense
output feature). More complicated tasks involve storage of some other kind of information,
e.g., in the context of Schwarzschild modelling, or in some cases, even modifying the orbit
itself (random perturbations mimicking the effect of two-body relaxation in the Monte Carlo
code RAGA).

Orbit analysis refers to the determination of orbit class (box, tube, resonant boxlet,
etc.) and degree of chaoticity. This is performed using a Fourier transform of position as a
function of time and detecting the most prominent “spectral lines”; the ratio between their
frequencies is an indicator of orbit type [10, 16], and their rate of change with time is a
measure of chaos [65]. These methods were implemented in [67], but as the focus of AGAMA
in galaxy modelling is shifted from discrete orbits to smooth distribution functions, we have
not yet included them in the library.

A finite-time estimate of Lyapunov exponent A is another measure of stochasticity (see
[17, 60] for reviews of methods based on variational equations). It may be estimated by
following the time evolution of a deviation vector, which depends on the second derivatives of
potential evaluated along the orbit. For a regular orbit, its magnitude grows at most linearly
with time, while for a chaotic orbit it eventually starts to grow exponentially. The class
orbit: :RuntimeLyapunov implements the method described in Section 4.3 and illustrated
in Figure 4 of [67]: if no exponential growth has been detected, it returns A = 0, otherwise
a median value of A on the interval of exponential growth, normalized to the characteristic

27

orbital time (so that orbits at different energies can be more directly compared).

2.4 Action/angle variables

As the name implies, AGAMA deals with models of stellar system described in terms of
action/angle variables. They are defined, e.g., in Section 3.5 of [11].

In a spherical or axisymmetric potential, the most convenient choice for actions is the
triplet {.J,, J,, Js}, where J. > 0 (radial action) describes the motion in cylindrical radius,
J, > 0 (vertical action) describes the motion in z direction, and J; = Rv, (azimuthal action)
is the conserved component L, of angular momentum (it may have any sign). In a spherical
potential, the sum J, 4 |J4| is the total angular momentum L. Actions are only defined for
a bound orbit — if the energy is positive, they will be reported as NAN (except L, which can
always be computed).

The actions:: namespace introduces several concepts: Actions and Angles are the
triplet of action and angle variables, ActionAngles is their combination, Frequencies is the
triplet of frequencies Q = 0H/0J (derivatives of Hamiltonian w.r.t. actions). The transfor-
mation from {x,v} to {J,0} is provided by action finders, and the inverse transformation
— by action mappers. There are several distinct methods discussed later in this section,
and they may exist as standalone routines and/or instances of classes derived from the
BaseActionFinder and BaseActionMapper classes. The action finder routines can output
any combination of actions, angles and frequencies, skipping the computation of unneeded
quantities.

The following sections describe the methods suitable for specific cases of spherical or
axisymmetric potentials (see [57] for a review and comparison of various approaches). At
present, AGAMA does not contain any methods for action/angle computation in non-axisym-
metric potentials, but they may be added in the future within the same general framework.
The file action_factory.h provides driver routines for computing actions and creating
action finder /mapper instances, which automatically choose the appropriate implementation
among the ones described below, depending on the potential.

2.4.1 Isochrone mapping

The spherical isochrone potential, specified by two parameters (mass M and scale radius
b) admits analytic expressions for the transformation between {x,v} and {J,6} in both
directions. These expression are given, e.g., in Eqgs. 3.225-3.241 of [11]. The standalone rou-
tines evalIsochrone/mapIsochrone providing these transformations, and the corresponding
wrapper class ActionFinderIsochrone, are located in actions_isochrone.h.

28

2.4.2 Spherical potentials

In a more general case of an arbitrary spherical potential, the radial action is given by

1 Tmax
J, = — \/2[E —®(r)] — L?/r? dr,

Tmin

where 7minmax(E, L) are the roots of the expression under the radical. The standalone
routines evalSpherical /mapSpherical in actions_spherical.h perform the action/angle
transformation in both directions, using numerical root-finding and integration functions in
each invocation. If one needs to compute actions for many points (2 10%) in the same poten-
tial, it is more efficient to construct an instance of ActionFinderSpherical class that pro-
vides high-accuracy interpolation from the pre-computed 2d tables for 7y max(£, L) (using
the helper class potential: :Interpolator2d) and J.(F, L), the inverse mapping E(J,, L)
also provided via an interpolation table, and the complete inverse mapping {J, 0} = {x,v}.

2.4.3 Stackel approximation

In a still more general axisymmetric case, the action/angle variables can be exactly computed
for a special class of Stéackel potentials, in which the motion is fully integrable and separable
in a prolate spheroidal coordinate system. This computation is performed by the standalone
routine evalAxisymStaeckel in actions_staeckel.h, which operates on an instance of
potential::0OblatePerfectEllipsoid class (the only example of a Stéckel potential in
AcAMA). The procedure consists of several steps: numerically find the extent of oscillations
in the meridional plane in both coordinates A, v of the prolate spheroidal system; numerically
compute the 1d integrals for Jy, J, (which correspond to J.,J,); and if necessary, find the
frequencies and angles (again by 1d numerical integration).

For the most interesting practical case of a non-Stackel axisymmetric potential, the ac-
tions can only be approximated under the assumption that the motion is integrable and
is locally well described by a Stéackel potential. This is the essence of the “Stackel fudge”
approach [6]. In a nutshell, it pretends that the potential is of a Stéckel form (without
explicitly constructing it), computes the would-be integrals of motion in this presumed po-
tential, and then performs essentially the same steps as the routines for the genuine Stackel
potential. Actions computed in this way are approximate, in the sense that even for a reg-
ular (non-chaotic) motion, they are not exactly conserved along the orbit; the variation of
J is smallest for nearly-circular orbits close to the equatorial plane, but typically remains
< 1—10% even for rather eccentric orbits that stray far from the plane (note that the method
does not provide any error estimate). However, if the actual orbit is chaotic or belongs to
one of minor resonant families, the variation of estimated actions along the orbit is rather
large because the method does not account for resonant motion.

In order to proceed, the Stéickel approximation requires the parameter of the prolate
spheroidal coordinate system — the focal distance A; the accuracy (variation of estimated
actions along the orbit) strongly depends on its value. Importantly, we do not need to have

29

a single value of A for the entire system, but may use the most suitable value for the given
set of integrals of motion (depending on {x,v}). The ActionFinderAxisymFudge class pre-
computes a table of best-fit values of A as a function of E, L, (this takes a couple of seconds)
and uses interpolation to obtain a suitable value at any point, which is then fed into the
standalone routine evalAxisymFudge that compute the actions, angles and/or frequencies.
This is the main workhorse for many higher-level tasks in the AGAMA library.

A variation of this approach is to pre-compute the actions J,., J, as functions of three
integrals of motion (one of them being approximate) on a suitable grid, and then use a
3d interpolation to obtain the values of actions at any point. The construction of such
interpolation table takes another couple of seconds, and the evaluation of actions through
interpolation is ~ 10x faster than using the Stackel approximation directly. However, the
accuracy of this approach is somewhat worse (not because of interpolation, but due to
the approximate nature of the third integral); nevertheless, it is still sufficient in many
contexts. It is implemented in the same ActionFinderAxisymFudge class with the parameter
interpolate=true.

More technical details are provided in Section A.5.1.

2.4.4 Torus mapping

The transformation from {J,0} to {x,v} in an arbitrary axisymmetric potential is per-
formed using the Torus mapping approach [9]. A single torus is constructed for a given
triplet of actions J, which takes some time and might not always succeed (depending on
the properties of the potential and the required accuracy); the subsequent mapping for any
values of angles 0 is relatively fast. The class ActionMapperTorus implements the torus
construction “on-the-fly”, with each unique triplet of actions producing a new torus, which
is then cached and reused in subsequent calls that use the same J but different 8. The
torus code is adapted from the original TORUSMAPPER package, with several modifications
enabling the use of an arbitrary potential and a more efficient angle mapping approach;
however, it does not quite comply to the coding standards adopted in AGAMA (Section A.1)
and in the future might be replaced by a fresh implementation.

2.5 Distribution functions

By Jeans’ theorem, a steady-state distribution of stars or other species in a stationary poten-
tial may depend only on integrals of motion, taken here to be the actions J. The df : : names-
pace contains the classes and methods for working with such distribution functions (DFs)
formulated in terms of actions. They are derived from the BaseDistributionFunction
class, which provides a single method for computing the value f(J) at the given triplet of
actions. All physically valid DFs must have a finite mass M = (2m)? [[[f(J)d®J, com-
puted by numerical integration (the pre-factor comes from a trivial integration over angles)
and returned by the totalMass method of the DF instance. The same DF corresponds to

30

different density profiles in different potentials (Section 2.6.1), but the total mass of the
density profile is always the same.

AGAMA provides several DF's suitable for various components of a galaxy, described in the
following sections. In addition there is a concept of a multi-component DF: since computing
the actions — arguments of the DF — is a non-negligible cost, it is often advantageous to
evaluate several DFs at the same set of actions at once. There is also a “DF factory” routine
createDistributionFunction for constructing various DF classes from a set of named
parameters described by a KeyValueMap object (Section 2.1.5); the choice of model is set by
type=. .., and model-specific parameters are described in the following sections.

Importantly, the DF formulated in terms of actions does not depend on the potential.
However, some models use the concept of epicyclic frequencies to compute the value of f(J).
These frequencies are represented by a special proxy class potential: : Interpolator, which
is constructed from a given potential, but then serves as an independent entity (essentially
an array of arbitrary functions of one variable), so that f(J) has the same value in any other
potential. This is important in the context of iterative construction of self-consistent models
(Section 2.6.3).

2.5.1 Disky components

There are two classes of disk DFs in AGAMA: the first, QuasiIsothermal, expresses the DF
in terms of auxiliary functions that are related to a particular potential, while the second,
Exponential, is written in an entirely self-contained form. We describe them in turn.

Stars on nearly-circular (cold) orbits in a disk are often described by a Schwarzschild
or Shu DF, which have Maxwellian velocity distribution with different dispersions in each
direction. A generalization for warm disks [23] expressed in terms of actions [8] is provided
by the QuasiIsothermal class. The DF for a single population is given by

FJ) = »Q L K J, LY v, y 1 if J, >0,
= o X P\ T) X 5P 5 exp (2272) it J, <0,

T z z

i](Rc) =2 eXp(_Rc/Rdisk)7 62(RC) = ‘73,0 eXp(—QRC/Rm«) + 01r2nin7

r

6§(Rc) =2 hﬁisk VQ(RC) + 0'12nin or 52(Rc) = 020 exp(—2R./R,.) + crfnin.

z

To construct such a DF, one needs to provide an instance of potential, which is used to
initalize the mappings between actions and the r