
Snort 3 on Oracle Linux 8
Generated: 2021-01-20
Author: Yaser Mansour

Table of Contents

1. Introduction .. 2
2. Preparation .. 3
3. Installing Snort 3 Dependencies .. 4

3.1 Required Dependencies ... 4
3.2 Optional Dependencies.. 5

4. Installing Snort 3 .. 6
5. Installing Snort 3 Extra for Additional Capabilities... 7
6. Configuring Snort 3 ... 7

6.1 Global Paths for Rules, AppID, and IP Reputation .. 7
6.2 Configuring HOME_NET and EXTERNAL_NET ... 9
6.3 Configuring ips Module .. 9
6.4 Configuring reputation Inspector (Optional) .. 10
6.5 Configuring appid Inspector (Optional) ... 10
6.6 Configuring file Inspectors (Optional) ... 10

7. Configuring Snort 3 Logging ... 11
7.1 Configuring Logger Module (Optional) .. 11
7.2 Configuring file_log Inspector (Optional) .. 11
7.3 Configuring data_log Inspector (Optional) ... 12
7.4 Configuring alert_syslog Logger (Optional) ... 12
7.5 Configuring alert_json Logger (Optional) .. 12
7.6 Configuring appid_listener Logger (Optional) ... 12

8. Managing Snort 3 Rules with PulledPork ... 13
9. Running and Testing Snort 3 .. 17

9.1 Running against PCAP Files .. 17
9.2 Running against an Interface .. 17
9.3 Running Snort 3 Demo ... 17

10. Configuring Snort Network Interfaces, User, Service and Logging ... 18
10.1 Configuring Network Capturing Interfaces ... 18
10.2 Creating Snort User, Logging Directory and Systemd Startup Service .. 20

11. Optimizing Performance (Optional) ... 22
11.1 Configuring CPU Governor .. 22
11.2 Kernel Networking Management .. 22
11.3 UDP Multi-queue Hashing Algorithms .. 23
11.4 Network Card PCI Bus Tuning ... 23
11.5 Optimizing Snort 3 at Build Time .. 24
11.6 Optimizing Snort 3 at Run Time .. 24

12. Snort 3 Use-case Configurations and Tweaks .. 25
12.1 File Inspection over SMB .. 25
12.2 ZIP, SWF and PDF Decompression .. 25
12.3 Logging of Email Headers and Attachment Names .. 25
12.4 Multi-thread Packet Processing .. 26
12.5 Snort 3 Inline (IPS) with DAQ afpacket ... 27

Appendix .. 28
Installing hyperscan from Sources ... 28

1. Introduction

This guide walks through installing, configuring and testing Snort 3 and PulledPork on Oracle Linux version 8.3.
Some of the configurations may not be applicable to production sensors. The steps in this guide should be tested
first.

Oracle Linux 8.3 Image

Base Image : OracleLinux-R8-U3-x86_64-dvd.iso
Release : Oracle Linux Server release 8.3
UEK Kernel : 5.4.17-2036.102.0.2.el8uek.x86_64
RHCK Kernel : 4.18.0-240.10.1.el8_3.x86_64
Software : Minimal Install

Snort version and build

Build : Snort 3.1.0.0 GA
Source : git

LibDAQ version

Build : 3.0.0 GA
Source : git

Paths used for installing and configuring Snort and PulledPork

Snort install prefix /usr/local/snort
Rules directory /usr/local/snort/rules
AppID directory /usr/local/snort/appid
IP Reputation lists directory /usr/local/snort/intel
Logging directory /var/log/snort
Snort Extra Plugins directory /usr/local/snort/extra

PulledPork install prefix /usr/local/pulledpork

Conventions used in this guide

Info: Good to know information or suggestion.

Note: Information that requires attention.

Command line input

Command line output

Configuration changes

2. Preparation

With RH based operating systems version 8, several development libraries required for successfully building
LibDAQ and Snort are not in the default repositories – AppStream, Base, or Extras. Instead, these libraries exist
in the PowerTools repository, which is disabled by default. Hence, the PowerTools repository is enabled first.

dnf config-manager --set-enabled ol8_codeready_builder

Additional development libraries exist in the EPEL repository. Enabling the EPEL repository reduces build time
and streamlines the installation and updates of these libraries. Otherwise, packages from the EPEL repository
can be built from their source code. The Oracle EPEL repository (oracle-epel-release-el8) is not installed since
it does not include some of the packages such as hyperscan and gperftools.

dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
dnf config-manager --set-enabled epel

Now that all of the repositories enabled, it is time to ensure that the operating system and existing packages are
up to date. This may require a reboot, especially if the updates included kernel upgrades.

dnf upgrade
reboot now

Since some of the packages maybe built from source, a directory is created to house the source codes.

mkdir sources && cd sources

Next, some helper packages are installed, which are not required by Snort and can be removed later.

dnf install vim git

Red Hat based operating systems do not include the /usr/local/lib and /usr/local/lib64 in the linker
caching paths, resulting in build errors since the referenced libraries cannot be found. This is corrected by
creating a configuration file under /etc/ld.so.conf.d containing the required paths and updating the cache.

vi /etc/ld.so.conf.d/local.conf

Add the below two lines to the newly created configuration file.

/usr/local/lib
/usr/local/lib64

After saving the configuration file, run ldconfig.

ldconfig

Info: The error message typically generated by the missing linker caching paths is presented as:

cannot open shared object file: no such file or directory

The final step in the preparation is to install the build tools from the repository. These include: flex (flex), bison
(bison), gcc (gcc), c++ (gcc-c++), make (make), and cmake (cmake). Additionally, autoconf (autoconf),
automake (automake) and libtool (libtool) packages are installed to build LibDAQ.

dnf install flex bison gcc gcc-c++ make cmake automake autoconf libtool

3. Installing Snort 3 Dependencies

The following table summarizes the required and optional packages for building Snort and LibDAQ.

Dependency Status Source Dependency Status Source
dnet Required Repository (PowerTools) LibDAQ Required Source Code
pcap Required Repository (PowerTools) lzma Optional Repository (BaseOS)
pcre Required Repository (BaseOS) hyperscan Optional Repository (EPEL)
OpenSSL Required Repository (BaseOS) flatbuffers Optional Source Code
zlib Required Repository (BaseOS) safec Optional Repository (EPEL)
pkgconfig Required Repository (BaseOS) uuid Optional Repository (BaseOS)
LuaJIT Required Repository (EPEL) tcmalloc Optional Repository (EPEL)
hwloc Required Repository (PowerTools) libmnl Required Repository (BaseOS)
unwind Optional Repository (EPEL)

3.1 Required Dependencies

The following packages are installed from CentOS repositories: pcap (libpcap-devel), pcre (pcre-devel),
dnet (libdnet-devel), hwloc (hwloc-devel), OpenSSL (openssl-devel), pkgconfig (pkgconf), zlib (zlib-
devel), LuaJIT (luajit-devel), libmnl (libmnl-devel), and libunwind (libunwind-devel).

dnf install libpcap-devel pcre-devel libdnet-devel hwloc-devel openssl-devel zlib-devel
luajit-devel pkgconf libmnl-devel libunwind-devel

Building LibDAQ with NFQ support requires additional packages to be installed before configuration: libnfnetlink
(libnfnetlink-devel), libnetfilter_queue (libnetfilter_queue-devel).

dnf install libnfnetlink-devel libnetfilter_queue-devel

LibDAQ

Snort 3 requires LibDAQ (>=3.0.0). Clone it and generate the configuration script.

git clone https://github.com/snort3/libdaq.git
cd libdaq/
./bootstrap

Info: Review LibDAQ configuration options to disable modules via --disable-<name>-module option

Example: ./configure --disable-netmap-module --disable-divert-module

Proceed with configuring LibDAQ, resulting in a similar output (omitted) as demonstrated below. The warning “No
libcmocka-1.0.0 or newer library found, cmocka tests will not be built” can be ignored as we are not
building the cmocka tests. Otherwise, install the libcmocka-devel package.

./configure

...
Build AFPacket DAQ module.. : yes
Build BPF DAQ module....... : yes
Build Divert DAQ module.... : no
Build Dump DAQ module...... : yes
Build FST DAQ module....... : yes
Build NFQ DAQ module....... : yes
Build PCAP DAQ module...... : yes
Build netmap DAQ module.... : no
Build Trace DAQ module..... : yes

Proceed to installing LibDAQ.

make
make install
ldconfig
cd ../

3.2 Optional Dependencies

LZMA and UUID

lzma is used for decompression of SWF and PDF files, while uuid is a library for generating/parsing Universally
Unique IDs for tagging/identifying objects across a network.

dnf install xz-devel libuuid-devel

Hyperscan

While hyperscan is an optional requirement, it is highly recommended to install it. The hyperscan packages are
available via the EPEL repository. See the Appendix for installing hyperscan from sources.

dnf install hyperscan hyperscan-devel

Flatbuffers

Flatbuffers is a cross-platform serialization library for memory-constrained apps. It allows direct access of
serialized data without unpacking/parsing it first.

curl -Lo flatbuffers-1.12.tar.gz https://github.com/google/flatbuffers/archive/v1.12.0.tar.gz
tar xf flatbuffers-1.12.tar.gz
mkdir fb-build && cd fb-build
cmake ../flatbuffers-1.12.0
make -j$(nproc)
make -j$(nproc) install
ldconfig
cd ../

Safec

Safec is used for runtime bounds checks on certain legacy C-library calls. Safec package is available in the
EPEL repository.

Note: An additional step is required when installing the package version of Safec because the Safec EPEL package
deploys a pkg-config file named safec-version.pc while Snort expects the pkg-config file to be named
libsafec.pc. This additional step is not required if Safec is built from source.

dnf install libsafec libsafec-devel
ln -s /usr/lib64/pkgconfig/safec-3.3.pc /usr/lib64/pkgconfig/libsafec.pc

Tcmalloc

tcmalloc is a library created by Google (PerfTools) for improving memory handling in threaded programs. The
use of the library may lead to performance improvements and memory usage reduction. The gperftools
(gperftools-devel) package version 2.7 is available from the EPEL repository.

dnf install gperftools-devel

4. Installing Snort 3

Now that all of the dependencies are installed, clone Snort 3 repository from GitHub.

git clone https://github.com/snort3/snort3.git
cd snort3

Before configuring Snort, export the PKG_CONFIG_PATH to include the LibDAQ pkgconfig path, as well as other
packages’ pkgconfig paths, otherwise, the build process may fail.

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH
export PKG_CONFIG_PATH=/usr/local/lib64/pkgconfig:$PKG_CONFIG_PATH

Note: If LibDAQ or other packages were installed to a custom, non-system path, then that path should be exported to
PKG_CONFIG_PATH, for example:

export PKG_CONFIG_PATH=/opt/libdaq/lib/pkgconfig:$PKG_CONFIG_PATH

Proceed to building Snort 3 while enabling tcmalloc support. The compiler flags exported prior to building Snort
are used to help improve compilation time, performance of the generated code and final Snort’s binary image
size. These are discussed further in section 10.5 Optimizing Performance.

export CFLAGS="-O3"
export CXXFLAGS="-O3 -fno-rtti"
./configure_cmake.sh --prefix=/usr/local/snort --enable-tcmalloc

The above command should result in an output (omitted) similar to below.

snort version 3.0.3
...
Feature options:
 DAQ Modules: Static (afpacket;bpf;dump;fst;nfq;pcap;trace)
 Flatbuffers: ON
 Hyperscan: ON
 ICONV: ON
 Libunwind: ON
 LZMA: ON
 RPC DB: Built-in
 SafeC: ON
 TCMalloc: ON
 UUID: ON

Proceed to installing Snort 3.

cd build/
make -j$(nproc)
make -j$(nproc) install
cd ../../

Once the installation is complete, verify that Snort 3 reports the expected version and library names

/usr/local/snort/bin/snort –V

 ,,_ -*> Snort++ <*-
 o")~ Version 3.1.0.0
 '''' By Martin Roesch & The Snort Team
 http://snort.org/contact#team
 Copyright (C) 2014-2020 Cisco and/or its affiliates. All rights reserved.
 Copyright (C) 1998-2013 Sourcefire, Inc., et al.
 Using DAQ version 3.0.0
 Using LuaJIT version 2.1.0-beta3
 Using OpenSSL 1.1.1g FIPS 21 Apr 2020
 Using libpcap version 1.9.1 (with TPACKET_V3)
 Using PCRE version 8.42 2018-03-20
 Using ZLIB version 1.2.11
 Using FlatBuffers 1.12.0
 Using Hyperscan version 5.3.0 2020-08-10
 Using LZMA version 5.2.4

5. Installing Snort 3 Extra for Additional Capabilities

Snort 3 Extra is a set of C++ or Lua plugins to extend the functionality of Snort 3 in terms network traffic
decoding, inspection, actions, and logging. One particular plugin is emphasized and configured in this guide is the
data_log inspector plugin. The emphasis of this inspector is detailed in a later section.

To install Snort extras, clone its repository from GitHub.

git clone https://github.com/snort3/snort3_extra.git

Before building the extra plugins, the environment variable PKG_CONFIG_PATH must be set. The path can be
verified by listing Snort installation directory.

cd snort3_extra
export PKG_CONFIG_PATH=/usr/local/snort/lib64/pkgconfig:$PKG_CONFIG_PATH
./configure_cmake.sh --prefix=/usr/local/snort/extra
cd build/
make -j$(nproc)
make -j$(nproc) install
cd ../../

6. Configuring Snort 3

Snort 3 includes two main configuration files, snort_defaults.lua and snort.lua. The file
snort_defaults.lua contains default values for rules paths, networks, ports, wizards, and inspectors, etc.

Info: The snort.lua file contains Snort’s main configuration, allowing the implementation and configuration of Snort
inspectors (preprocessors), rules files inclusion, event filters, output, etc.

Info: The snort_defaults.lua file contains default values such as paths to rules, AppID, intelligence lists, and network
variables.

Info: An additional file file_magic.lua exists in the etc/snort/ directory. This file contains pre-defined file identities
based on the hexadecimal representation of the files magic headers. These help Snort identify the file types traversing the
network when applicable. This file is also used by Snort main configuration file snort.lua and does not require any
modifications.

The configuration changes and the respective Snort 3 Lua files are as follows.

Task Snort Configuration File
Configure rules, reputation, and AppID paths snort_defaults.lua
Configure HOME_NET and EXTERNAL_NET snort.lua
Configure ips module snort.lua
Enable and configure reputation inspector snort.lua
Configure file_id and file_log inspectors snort.lua
Configure data_log inspector snort.lua
Configure logging snort.lua

6.1 Global Paths for Rules, AppID, and IP Reputation

Snort rules, appid, and reputation lists will be stored in their respective directory. The rules/ directory will contain
Snort rules files, the appid/ directory will contain the AppID detectors, and the intel/ directory will contain IP
blacklists and whitelists.

mkdir -p /usr/local/snort/{builtin_rules,rules,appid,intel}

Snort Rules

Snort rules consist of text-based rules, and Shared Object (SO) rules and their associated text-based stubs. At
the time of writing this guide, the Shared Object rules are not available yet. The rules tarball also contains Snort

configuration files. The configuration files from the rules tarball will be copied to the etc/snort/ directory, and
will be used in favor of the configuration files in from Snort 3 source tarball.

Proceed by creating a directory to contain the files extracted from the rules tarball downloaded from Snort.org.
Replacing the oinkcode placeholder in the below command with the official and dedicated oinkcode.

mkdir rules && cd rules
curl -Lo snortrules-snapshot-3000.tar.gz https://www.snort.org/rules/snortrules-snapshot-
3000.tar.gz?oinkcode=<YOUR OINKCODE HERE>

Extract the rules tarball and copy the rules to the rules/ directory created earlier.

tar xf snortrules-snapshot-3000.tar.gz

Extracting the rules will result in three different directories

├── builtins
├── etc
└── rules

Copy the files to their respective directories of the Snort installation paths.

cp rules/*.rules /usr/local/snort/rules/
cp builtins/builtins.rules /usr/local/snort/builtin_rules/
cp etc/snort_defaults.lua etc/snort.lua /usr/local/snort/etc/snort/
cd ../

OpenAppID (Optional)

Download and extract the OpenAppID package, and move the extracted odp/ directory to the appid/ directory.

curl -Lo snort-openappid-15607.tar.gz https://snort.org/downloads/openappid/15607
tar xf snort-openappid-15607.tar.gz
mv odp/ /usr/local/snort/appid/

IP Reputation (Optional)

Download the IP Blacklist generated by Talos and move it to the intel/ directory created earlier. An empty file
for the IP address whitelist is also created to be configured along with the IP address blacklist.

curl -Lo ip-blocklist https://www.talosintelligence.com/documents/ip-blacklist
mv ip-blocklist /usr/local/snort/intel/
touch /usr/local/snort/intel/ip-passlist

Snort configuration file snort_defaults.lua needs to be modified to point to the correction locations of rules,
AppID and reputation blacklists. The paths shown below follow the conventions from the beginning of this guide.

Change from:
-- Path to your rules files (this can be a relative path)
RULE_PATH = '../rules'
BUILTIN_RULE_PATH = '../builtin_rules'
PLUGIN_RULE_PATH = '../so_rules'

-- If you are using reputation preprocessor set these
WHITE_LIST_PATH = '../lists'
BLACK_LIST_PATH = '../lists'

Change to:
-- Path to your rules files (this can be a relative path)
RULE_PATH = '../../rules'
BUILTIN_RULE_PATH = '../../builtin_rules'
PLUGIN_RULE_PATH = '../so_rules'

-- If you are using reputation preprocessor set these
PASS_LIST_PATH = '../../intel'
BLOCK_LIST_PATH = '../../intel'

-- Path to AppID ODP - Optional
APPID_PATH = '/usr/local/snort/appid'

6.2 Configuring HOME_NET and EXTERNAL_NET

The concept of home and external networks in Snort 3 is the same as in Snort 2.X. The changes made below are
just an example to demonstrate the syntax.

Change from:
-- setup the network addresses you are protecting
HOME_NET = 'any'

Change to:
-- setup the network addresses you are protecting
HOME_NET = [[10.0.0.0/8 192.168.0.0/16 172.16.0.0/12]]

6.3 Configuring ips Module

The inclusion of Snort rules files (.rules) occurs within the ips module. Using the snort.lua copied from the Snort
rules tarball, the inclusion of the rules is already configured. As a result, the changes to the ips module are
minimal and involves enabling decoder and inspector alerts with the option --enable_built_rules, and explicitly
defining the ips policy to tap mode. The ips policy governs Snort’s operational mode (tap, inline, and inline-test).

Change from:
ips =
{
 -- use this to enable decoder and inspector alerts
 --enable_builtin_rules = true,

 -- use include for rules files; be sure to set your path
 -- note that rules files can include other rules files
 --include = 'snort3-community.rules',

 variables = default_variables,

 -- The following include syntax is only valid for BUILD_243 (13-FEB-2018) and later
 -- RULE_PATH is typically set in snort_defaults.lua
 rules = [[
 include $RULE_PATH/snort3-app-detect.rules
 include $RULE_PATH/snort3-browser-chrome.rules

 include $RULE_PATH/snort3-x11.rules
]]
}

Change to:
ips =
{
 mode = tap,

 -- use this to enable decoder and inspector alerts
 --enable_builtin_rules = true,

 -- use include for rules files; be sure to set your path
 -- note that rules files can include other rules files
 --include = 'snort3-community.rules',

 variables = default_variables,

 rules = [[
 include $RULE_PATH/snort.rules
]]
}

The above configuration includes one rules file snort.rules, which is generated later using PulledPork in Section
8 Managing Snort 3 Rules with PulledPork. All enabled rules are included in one file for simpler configuration and
management.

6.4 Configuring reputation Inspector (Optional)

The reputation inspector is disabled (commented) by default. Uncomment its section and change the values of
the --blacklist and --whitelist variables to point to the paths IP address lists.

Change from:
--[[
reputation =
{
 -- configure one or both of these, then uncomment reputation
 --blacklist = 'blacklist file name with ip lists'
 --whitelist = 'whitelist file name with ip lists'
}
--]]

Change to:
reputation =
{
 -- configure one or both of these, then uncomment reputation
 blacklist = BLOCK_LIST_PATH .. '/ip-blocklist',
 whitelist = PASS_LIST_PATH .. '/ip-passlist'
}

Info: Enabling the Reputation inspector while in IDS mode will generate blacklist hit alert when a match occurs, and
traffic may not be inspected further.

6.5 Configuring appid Inspector (Optional)

The appid inspector is enabled by default, however, it requires additional configuration to be fully effective; the
path to the AppID package and detector are commented. Uncomment the app_detector_dir and change its
value the global AppID path defined in the earlier in the snort_default.lua file. AppID logging is configured in
Section 7 Configuring Snort Logging to take advantage of Snort’s new AppID logging capabilities.

Change from:
appid =
{
 -- appid requires this to use appids in rules
 --app_detector_dir = 'directory to load appid detectors from'
}

Change to:
appid =
{
 -- appid requires this to use appids in rules
 app_detector_dir = APPID_PATH,
}

6.6 Configuring file Inspectors (Optional)

The file_id inspector (file_inspect in Snort 2.x) allows Snort to identify files and file types traversing a network
stream via the file magic headers. It supports HTTP, SMTP, IMAP, POP3, FTP, and SMB protocols.

Note: Taking advantage of the file_id inspector involves:

 Including the file magic rules. This step is completed in the default form of the inspector.
 Configuring the inspector and defining the file policy.
 Enabling the inspector logging to generate file events.

The file inspector is configured to enable file type identification (enable_type = true) and file magic signature
calculation (enable_signature = true). Finally, a file policy is configured to log all file types identified in the
network traffic regardless of their type.

Change from:
file_id = { file_rules = file_magic }

Change to:
file_id =
{
 enable_type = true,
 enable_signature = true,
 file_rules = file_magic,
 file_policy =
 {
 { use = { verdict = 'log', enable_file_type = true, enable_file_signature = true } }
 }
}

7. Configuring Snort 3 Logging

Snort 3 provides several logging mechanisms natively or via Snort Extra. This section walks through configuring
some of Snort 3 logging modules.

Note: Only enable the logger modules that are required for your use-case. For example, if your use-case does not require
alerting to Syslog, then do not configure the alert_syslog logger.

7.1 Configuring Logger Module (Optional)

Snort 3 supports various logger modules natively or via the extra plugins. For this guide, the alert_fast logger is
enabled by uncommenting its section and configuring it to log to a file. By default Snort uses /var/log/snort for
saving log files, which also can be specified in the command line via the -l option.

Change from:
--alert_fast = { }

Change to:
alert_fast =
{
 file = true
}

7.2 Configuring file_log Inspector (Optional)

The file_log inspector accompanies the file inspector, i.e.: if the file inspector is configured, the file_log
inspector must be configured to generate the associated logs. This inspector has two Boolean options that allow
logging of packet and system time of logged file events.

file_log =
{
 log_pkt_time = true,
 log_sys_time = false
}

Info: The file policy can include multiple configurations. The below example file policy will log file identification only when
a file of type PDF id = 22 or when a file with the specified SHA256 hash is observed traversing the network or capture.

file_policy =
 {
 { when = { file_type_id = 22 }, use = { verdict = 'log', enable_file_signature = true } },
 { when = { sha256 = "E65ECCC.....DDF3233355007" }, use = { verdict = 'log' } }
 }

7.3 Configuring data_log Inspector (Optional)

The data_log plugin is available via the extra plugins. The data_log is a passive inspector that does not alter
data, instead, it allows for logging additional network data. The inspector can be used to log HTTP request or
response headers. In Snort 2, this was possible using the log_uri and log_hostname options of the http_inspect
preprocessor. The captured data is stored into the data.log within Snort’s configured logging directory.

In order to enable the data_log inspector, it must be defined in snort.lua. The below example will log HTTP
request headers into the data_log file and limit the size of the log file to 100MB before a new log file is
generated.

data_log =
{
 key = 'http_request_header_event',
 limit = 100
}

7.4 Configuring alert_syslog Logger (Optional)

Snort 3 can log generated alerts directly to Syslog. The below configuration example can be used to log alerts so
Syslog. Edit the snort.lua file to add the configuration. This guide does not extend on how to use or configure
the Syslog program. Note that rsyslog is not installed by default on a minimal CentOS 8 installation.

alert_syslog =
{
 facility = local7,
 level = alert,
 options = pid
}

7.5 Configuring alert_json Logger (Optional)

Logging in JSON format is favorable in several log aggregation solutions like Elastiscsearch. Snort 3 can output
generated alerts into JSON format natively. The below configuration example can be used to log alerts so Syslog.
Edit the snort.lua file to add the configuration.

Note: Snort 3 allows logging various fields into JSON format. Review all of the fields and only use those that are most
useful for your logging requirements. Also, note the order of fields you select as the generated log will follow the order of
the fields specified in the configuration. The selected fields in the below configuration are only an example.

alert_json =
{
 file = true,
 limit = 100,
 fields = 'timestamp iface src_addr src_port dst_addr dst_port proto action msg priority class sid'
}

7.6 Configuring appid_listener Logger (Optional)

The new appid_listener allows generating flow logs of detected applications into a JSON format log file. The
logger is part of Snort Extra plugins suite installed in Section 5 Installing Snort 3 Extra for Additional Capabilities.

The logger is configured by enabling JSON logging and specifying the log file name and path as depicted below.

appid_listener =
{
 json_logging = true,
 file = "/var/log/snort/appid.json",
}

8. Managing Snort 3 Rules with PulledPork

PulledPork allows updating and managing Snort rules and Talos open-source IP address block list in a consistent
and regular manner. In order to run PulledPork, the following dependencies are installed first.

dnf install perl-LWP-UserAgent-Determined perl-Net-SSLeay perl-LWP-Protocol-https perl-Sys-
Syslog perl-Archive-Tar

The directory structure hosting PulledPork and associated configuration files are created as specified in the
Introduction section. Afterwards, PulledPork is cloned from GitHub and all of the needed files are moved to
directory structure just created.

mkdir -p /usr/local/pulledpork/etc
git clone https://github.com/shirkdog/pulledpork.git
cp pulledpork/pulledpork.pl /usr/local/pulledpork/
cp pulledpork/etc/* /usr/local/pulledpork/etc/

The first item to configure is setting up the oinkcode acquired after registering to Snort.org in pulledpork.conf.
Replace the marker <oinkcode> with the oinkcode tied to your Snort.org account.

vi /usr/local/pulledpork/etc/pulledpork.conf

Change from:

rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|<oinkcode>

Change to:

rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|123456789

Note: If you are a registered or subscribed to Snort rules, then comment out the community rules URL since community
rules are included in the registered ruleset, by adding the pound sign # at the beginning of the line such as below.

#rule_url=https://snort.org/downloads/community/|community-rules.tar.gz|Community

Since Snort and PulledPork are installed in custom directory layouts, paths configuration within pulledpork.conf
must be updated to reflect the custom directory. Discussing the role of each path is out of the scope of this guide;
however, the pulledpork.conf file is commented to explain each path. The below changes are made to have
PulledPork seamlessly work with the custom directory layout of Snort installation.

Change from:
ignore=deleted.rules,experimental.rules,local.rules

Change to:
ignore= snort3-deleted.rules,snort3-experimental.rules

Change from:
rule_path=/usr/local/etc/snort/rules/snort.rules

Change to:
rule_path=/usr/local/snort/rules/snort.rules

Change from:
local_rules=/usr/local/etc/snort/rules/local.rules

Change to:
local_rules=/usr/local/snort/rules/local.rules

Change from:
sid_msg=/usr/local/etc/snort/sid-msg.map

Change to:
sid_msg=/usr/local/snort/etc/snort/sid-msg.map

Change from:
snort_path=/usr/local/bin/snort

Change to:
snort_path=/usr/local/snort/bin/snort

Change from:
config_path=/usr/local/etc/snort/snort.conf

Change to:
config_path=/usr/local/snort/etc/snort/snort.lua

Change from:
distro=FreeBSD-12

Change to:
distro=Centos-8

Change from:
block_list=/usr/local/etc/snort/rules/iplists/default.blocklist
IPRVersion=/usr/local/etc/snort/rules/iplists

Change to:
block_list=/usr/local/snort/intel/ip-blocklist
IPRVersion=/usr/local/snort/intel/

Change from:
snort_version=2.9.0.0

Change to:
snort_version=3.0.0.0

Change from:
pid_path=/var/run/snort_eth0.pid

Change to:
pid_path=/var/log/snort/snort.pid

The configuration files below (enablesid.conf, dropsid.conf, disablesid.conf and modifysid.conf) govern
how PulledPork will process the rules. For example, enablesid.conf can be used to enable all rules;
disablesid.conf can be used to disable certain rules, etc. Each file includes documentation on how to add rules
SID to process.

Change from:
enablesid=/usr/local/etc/snort/enablesid.conf
dropsid=/usr/local/etc/snort/dropsid.conf
disablesid=/usr/local/etc/snort/disablesid.conf
modifysid=/usr/local/etc/snort/modifysid.conf

Change to:
enablesid=/usr/local/pulledpork/etc/enablesid.conf
dropsid=/usr/local/pulledpork/etc/dropsid.conf
disablesid=/usr/local/pulledpork/etc/disablesid.conf
modifysid=/usr/local/pulledpork/etc/modifysid.conf

After initial configurations are completed, PulledPork is invoked using the below command in order to update pull
and update Snort rules.

perl /usr/local/pulledpork/pulledpork.pl -c /usr/local/pulledpork/etc/pulledpork.conf -PE -
v -I security -T -H SIGHUP

The above command invokes PulledPork while pointing to its configuration file (using the –c option). While the
other options achieve the following:

-P : Process rules even if no new rules were downloaded. (Useful when updating local.rules)
-E : Write ONLY the enabled rules to the output files. (snort.rules)
-v : Run in verbose mode.
-H : Reload Snort after PulledPork update rules. (SIGHUP or SIGUSR2)
-T : Process text based rules files only. (Snort 3 does not support SO_RULES yet)
-I : Specify a base ruleset based on rule’s policy. Policies include:
 security
 balanced
 connectivity
 max_detect

Depending on PulledPork configuration and the selected rules policy, PulledPork generates output similar to the
blow lines.

...
Rule Stats...
 New:-------52696
 Deleted:---0
 Enabled Rules:----52696
 Dropped Rules:----0
 Disabled Rules:---0
 Total Rules:------52696
IP Blocklist Stats...
 Total IPs:-----885

Done

Note that since PulledPork option -k was not used, all of the enabled rules are written to a single file
(snort.rules) as opposed to keeping the rules in separate files using same file names as found when processing
them. In this case, Snort configuration must be updated to now include the snort.rules file and not the
individual rules files as demonstrated below.

ips =
{
 mode = tap,

 rules = [[
 include $RULE_PATH/snort.rules
]]
}

Now we configure PulledPork to pull Snort rules and update them periodically. To achieve this, we will use
systemd timers as opposed to cronjobs. First, we create a PulledPork systemd service, which will not be
enabled (it is automatically invoked by a systemd timer as we will observe later).

vi /etc/systemd/system/pulledpork.service

[Unit]
Description=PulledPork service for updating Snort 3 rules
Wants=pulledpork.timer

[Service]
Type=oneshot
ExecStart=perl /usr/local/pulledpork/pulledpork.pl -c
/usr/local/pulledpork/etc/pulledpork.conf -PE -v -I security -T -H SIGHUP

[Install]
WantedBy=multi-user.target

Afterwards, we create the systemd timer service and enable it.

vi /etc/systemd/system/pulledpork.timer

[Unit]
Description=PulledPork service timer for updating Snort 3 rules
Requires=pulledpork.service

[Timer]
Unit=pulledpork.service
OnCalendar=*-*-* 00:10:00
AccuracySec=1us

[Install]
WantedBy=timers.target

The above systemd timer will invoke the PulledPork service everyday of every month of every year 10 minutes
after midnight, with a time span accuracy of one microsecond from time the timer is configure to run.

systemctl daemon-reload
systemctl enable pulledpork.timer

Note: The above timer schedule is just an example. Use your own schedule to help distribute Snort rules update requests
across varying time spans and not have all requests hit Snort rules servers at once.

Expanding on systemd timers is beyond the scope of this guide.

9. Running and Testing Snort 3

9.1 Running against PCAP Files

Snort can process a single packet capture PCAP file via the -r option, while specifying the configuration file via
the -c option, the log directory via the -l option, and the extra plugins directory (for the data_log inspector) via --
plugin-path option.

/usr/local/snort/bin/snort -c /usr/local/snort/etc/snort/snort.lua -r test.pcap -l
/var/log/snort --plugin-path /usr/local/snort/extra -k none

Snort can also process multiple PCAP files stored in a specific directory in bulk. This involves specifying the
directory containing the PCAP files via the --pcap-dir option and filtering only the PCAP files in that directory
via the --pcap-filter option.

/usr/local/snort/bin/snort -c /usr/local/snort/etc/snort/snort.lua --pcap-dir pcaps/ --
pcap-filter '*.pcap' -l /var/log/snort --plugin-path /usr/local/snort/extra -k none

9.2 Running against an Interface

Snort can be run against a listening interface via the -i option while specifying the capture network interface.

/usr/local/snort/bin/snort -c /usr/local/snort/etc/snort/snort.lua -i eth0 -l
/var/log/snort --plugin-path /usr/local/snort/extra -k none

Info: Snort can run and process network from more than one network interface via the -i option, while taking
advantage of Snort’s multiple packets processing threads via --max-packet-threads or –z options:

Multiple Interfaces:
snort –c snort.lua –i eth0 eth1 –z 2

Inline Pairs:
snort –c snort.lua –i eth0:eth1 –z 2

9.3 Running Snort 3 Demo

Snort 3 demo contains usage examples and tests against Snort 3 in an automated fashion using bats – Bash
Automated Testing System. Bats can be installed using the below steps.

git clone https://github.com/sstephenson/bats.git
cd bats/
./install.sh /usr/local

Now, clone Snort 3 demo project and run the tests.

git clone https://github.com/snort3/snort3_demo.git
cd snort3_demo/
./run_test.sh /usr/local/snort

10. Configuring Snort Network Interfaces, User, Service and Logging

10.1 Configuring Network Capturing Interfaces

The network capture interface that Snort will utilize to inspect traffic is setup with minimal configurations as
shown below. Replace the ifname with the actual interface name

TYPE=Ethernet
BOOTPROTO=none
IPV4_FAILURE_FATAL=no
IPV6INIT=no
IPV6_FAILURE_FATAL=no
NAME=ifname
DEVICE=ifname
ONBOOT=yes

If an existing interface is modified, ensure that NetworkManager can read the changes and have them applied.

nmcli con load /etc/sysconfig/network-scripts/ifcfg-ifname
nmcli con up ifname

Network Capturing Interface and NIC Offloading

NIC offloads are options that allow the stack to transmit packets that are larger than the normal MTU for
resources optimization. In doing so, network traffic is potentially altered – (re)segmentation, IP fragmentation,
reassembly, etc. – by the receiving host’s network interface instead of the CPU. This could lead to packet errors
potentially allowing IDS evasion scenarios. In order to avoid these issues and allow Snort to monitor the same
packets destined to the receiving host, it is recommended to disable NIC offloading options.

Info: Network scripts are deprecated in CentOS 8 and are replaced with NetworkManager through the nmcli tool. The
deprecated network scripts will not be installed/used in this guide.

In CentOS 8 with NetworkManager present, this can be achieved with the following command, replacing the
ifname with the capturing interface name.

nmcli con mod ifname ethtool.feature-lro off ethtool.feature-gro off ethtool.feature-tso off
ethtool.feature-gso off ethtool.feature-sg off ethtool.feature-rx off ethtool.feature-tx off
ethtool.feature-rxvlan off ethtool.feature-txvlan off

This permanently modifies the interface’s configuration file ifcfg-ifname with the ETHTOOL_OPTS parameter.

ETHTOOL_OPTS="-K ifname gro off gso off lro off rx off rxvlan off sg off tso off tx off txvlan off"

Depending on the hardware, interface type and driver, it is possible to increase the size of the receive ring buffer,
rx, to the maximum value the interface is capable of, increasing the number of stored incoming packets, thus,
potentially improving capture performance. Determining the ring buffer size can be done using ethtool with the
–g option as shown in the below example, replacing the ifname with the capturing interface name.

ethtool –g ifname

Ring parameters for ifname:
Pre-set maximums:
RX: 4096
RX Mini: 2048
RX Jumbo: 4096
TX: 4096
Current hardware settings:
RX: 1024
RX Mini: 128
RX Jumbo: 256
TX: 512

From the output, the interface is set to 1024 while the maximum is 4096. The NetworkManager does not support
adapting ring buffers. Instead, using the ETHTOOL_CMD parameter combined with dispatcher script ensures that
the interface ring buffers are adjusted permanently.

First, the interface is configured with the ETHTOOL_CMD parameter.

vi /etc/sysconfig/network-scripts/ifcfg-ifname

ETHTOOL_OPTS="-K ifname gro off gso off lro off rx off rxvlan off sg off tso off tx off txvlan off"
ETHTOOL_CMD="-G ifname rx 4096"

Second, an executable network dispatcher script is created, which will pass the configured ETHTOOL_CMD string
from the interface’s configuration file to the ethtool program.

vi /etc/NetworkManager/dispatcher.d/99-ethtool.sh

#!/bin/bash
BEGIN 99-ethtool.sh
if [[$2 == up]]; then
 SCRIPT="$(basename "$0")"
 if [[-e $CONNECTION_FILENAME]]; then
 source $CONNECTION_FILENAME
 if [[-n $ETHTOOL_CMD]]; then
 ETHTOOL_CMD="/usr/sbin/ethtool $ETHTOOL_CMD"
 if $ETHTOOL_CMD; then
 logger "$SCRIPT: success: $ETHTOOL_CMD"
 else
 logger "$SCRIPT: failed: $ETHTOOL_CMD"
 fi
 else
 logger "$SCRIPT: ETHTOOL_CMD not in $CONNECTION_FILENAME, skipping"
 fi
 else
 logger "$SCRIPT: $CONNECTION_FILENAME does not exist?"
 fi
fi

Finally, the script must be made executable.

chmod +x /etc/NetworkManager/dispatcher.d/99-ethtool.sh

Network Capturing Interface and Promiscuous Mode

Another task involves setting up the interface in promiscuous mode permanently using a custom oneshot
systemd service. The service will also disable ARP and multicast. Once created, reload systemd and enable it.

vi /etc/systemd/system/promisc.service

[Unit]
Description=Snort 3 interface promiscuous mode during boot service
After=network.target

[Service]
Type=oneshot
ExecStart=/usr/sbin/ip link set dev ifname arp off
ExecStart=/usr/sbin/ip link set dev ifname multicast off
ExecStart=/usr/sbin/ip link set dev ifname promisc on
TimeoutStartSec=0
RemainAfterExit=yes

[Install]
WantedBy=default.target

systemctl daemon-reload
systemctl enable promisc.service

Finally, reboot the host and verify that all of the changes were successfully applied. The below outputs
demonstrate the expected behavior of the above tasks, replacing the ifname with the capturing interface name.

systemctl status promisc.service

● promisc.service - Snort 3 interface promiscuous mode during boot service
 Loaded: loaded (/etc/systemd/system/promisc.service; enabled; vendor preset: disabled)
 Active: active (exited) since Wed 2020-03-04 08:29:18 UTC; 6 days ago
 Process: 1284 ExecStart=/usr/sbin/ip link set dev ifname promisc on (code=exited, status=0/SUCCESS)
 Process: 1275 ExecStart=/usr/sbin/ip link set dev ifname arp off (code=exited, status=0/SUCCESS)

ip link show ifname

ifname: <BROADCAST,NOARP,PROMISC,UP,LOWER_UP>

ethtool –g ifname

Ring parameters for ifname:
Pre-set maximums:
RX: 4096
...
Current hardware settings:
RX: 4096
...

10.2 Creating Snort User, Logging Directory and Systemd Startup Service

Preparing Snort for production also involves running Snort with a regular system user and not as root. The
following steps will create a group and a user under which the Snort process will run.

groupadd snort
useradd snort -r -M -g snort -s /sbin/nologin -c SNORT_SERVICE_ACCOUNT

By default, Snort writes the generated logs into /var/log/snort directory. The following steps involved creating the
directory and then assigning its ownership to the Snort user and group created in the previous step along with
appropriate permissions.

mkdir /var/log/snort
chmod -R 5700 /var/log/snort
chown -R snort:snort /var/log/snort

Note: If a custom logging directory is created outside of /var/log, then SELINUX may block Snort from writing logs to
the custom directory. The label for the directory can be viewed using the ls –Z command as demonstrated below.

ls -Z /var/log | grep snort

unconfined_u:object_r:var_log_t:s0 snort

In this case, the SELINUX label and context must be configured for the custom logging directory. The example below
replicates the SELINUX label and context of the directory /var/log to the custom Snort logging directory without having
to disable SELINUX.

chcon --reference /var/log /opt/log/snort

In order to run Snort as a startup service, a systemd unit file is created. The unit file specifies the environment
variables required for running Snort via the Environment option (one per line), the user and group that the
service and ultimately Snort will be running as, and the capabilities that will be granted to the service and user.

Info: Programs running with a regular user (non-root) must have capabilities granted externally, such as granting the
Snort user network-capturing capabilities. This is achieved by using the CapabilityBoundingSet and
AmbientCapabilities in Snort’s systemd unit file. The AmbientCapabilities grants the configured capabilities
automatically while the CapabilityBoundingSet limits the capabilities to only those configured.

Create the systemd unit file under /etc/systemd/system as follows.

vi /etc/systemd/system/snort.service

[Unit]
Description=Snort 3 Intrusion Detection and Prevention service
After=syslog.target network.target

[Service]
Type=simple
ExecStart=/usr/local/snort/bin/snort -c /usr/local/snort/etc/snort/snort.lua --plugin-path
/usr/local/snort/extra -i ifname -l /var/log/snort -D -u snort -g snort --create-pidfile -k
none
ExecReload=/bin/kill -SIGHUP $MAINPID
User=snort
Group=snort
Restart=on-failure
RestartSec=5s
CapabilityBoundingSet=CAP_NET_ADMIN CAP_NET_RAW CAP_IPC_LOCK
AmbientCapabilities=CAP_NET_ADMIN CAP_NET_RAW CAP_IPC_LOCK

[Install]
WantedBy=multi-user.target

Reload systemd to pick up the new service and then enable the service.

systemctl daemon-reload
systemctl enable snort.service

Many of Snort configurations can be supplied either at run-time via the command line or via its configuration file.
For example, in Snort’s systemd unit file, the command line options –D, -u snort, and –g snort were supplied to
run Snort process in daemon mode under the user and group snort, respectively. The same can be configured in
snort.lua via the process module (optional) as the below example demonstrates.

process =
{

--same as -D
 daemon = true,
 --same as -u
 set_uid = 'snort',
 --same as -g
 set_gid = 'snort',
 utc = true
}

The last option, utc, configures Snort to log timestamps in UTC instead of the host’s configured time zone.

Start Snort service and verify that it is active and running.

systemctl start snort.service
systemctl status snort.service
● snort.service - Snort 3 Intrusion Detection and Prevention service
 Loaded: loaded (/etc/systemd/system/snort.service; enabled; vendor preset: disabled)
 Active: active (running) since Sat 2020-03-07 08:51:44 UTC; 9min ago
 Main PID: 2333 (snort)
 Tasks: 2 (limit: 26213)
 Memory: 257.3M
 CGroup: /system.slice/snort.service
 └─2333 /usr/local/snort/bin/snort -c /usr/local/snort/etc/snort/snort.lua -i ifname -l
/var/log/snort -D -k none

Verify that Snort process is running as the Snort user

ps aux | grep snort
snort 2333 8.3 4.1 361272 253304 ? Ssl 11:51 0:16 /usr/local/snort/bin/snort -c
/usr/local/snort/etc/snort/snort.lua -i ens224 -l /var/log/snort -D -k none

11. Optimizing Performance (Optional)

Configurations in this section attempt to optimize the operating system, kernel, and network IO performance to
accommodate IDS/IPS functions. Configuring the CPU governor is the safest configuration to be performed.

Note: These configurations should be treated with care as they might in fact cause performance issues if not
thoroughly tested and correctly implemented against the monitored environment. Also, the configurations are
dependent on the underlying hardware, i.e.: Intel vs. Mellanox NICs, and whether Snort is running in IDS
(passive/tap) or IPS (inline). Finally, optimizations through these configurations may increase utilization on
other components, i.e.: CPU and memory, or may be negligible to the point they are not worth it.

11.1 Configuring CPU Governor

Tuned manages the CPU governor with a selection of performance profiles required for certain workloads. The
default profile may vary depending on whether the host (sensor) is a virtual machine or bare metal. Out of the
many profiles available, the throughput-performance and network-throughput are the prime candidates. In this
guide, the network-throughput is selected since it is based on the throughput-performance profile, and it
additionally increases kernel network buffers. The governor can be set with the below command.

tuned-adm profile network-throughput

To verify the current active profile, use the below command.

tuned-adm active

Current active profile: network-throughput

11.2 Kernel Networking Management

The default Linux kernel configurations may limit the total available throughput. Adapting these defaults may
increase the ability of the Linux kernel to transmit (IPS) or receive data (IDS/IPS). These configurations are
generally hardware dependent. Hence, they are provided as suggestions or as starting point for tuning network
performance. For example, the below configurations may be suitable for Intel 10G ixgbe network cards.

Note: Store the default values of kernel entries before making modifications to revert to original defaults if necessary.

Add a new configuration under /etc/sysctl.d/ in order to persist them.

vi /etc/sysctl.d/ixgb.conf

Number of unprocessed RX packets before kernel starts dropping them, default = 1000
net.core.netdev_max_backlog = 300000
turn TCP timestamp support off, default 1, reduces CPU use
net.ipv4.tcp_timestamps = 0
turn SACK support off, default on
net.ipv4.tcp_sack = 0
Increase size of RX socket buffer, default = 212992
net.core.rmem_default = 524287
Increase Max size of RX socket buffer, default = 212992
net.core.rmem_max = 524287
TCP buffer space pages (not bytes), default = 67932 90576 135864
net.ipv4.tcp_mem = 1048576 4194304 16777216
TCP read buffer in bytes kernel auto-tuning, default = 4096 87380 16777216
net.ipv4.tcp_rmem = 1048576 4194304 16777216
Don't cache ssthresh from previous connection, turn off route metrics
net.ipv4.tcp_no_metrics_save = 1
enable BPF JIT to speed up packet filtering
net.core.bpf_jit_enable = 1
disable source validation
net.ipv4.conf.[iface].accept_local = 1
net.ipv4.conf.[iface].rp_filter = 0

Finally, apply the entries using the sysctl utility.

vi /etc/sysctl.d/ixgb.conf

11.3 UDP Multi-queue Hashing Algorithms

Modern network cards provide multiple receive RX queues where each queue can be pinned to a dedicated CPU
or core. This allows packets to flow through all RX queues utilizing all CPUs or cores. The distribution of packets
to queues is accomplished via hashing algorithms on the packet headers such as source/destination IPv4/IPv6
addresses/ports (tuple).

Some network cards default to hashing algorithms that consider the source and destination IP addresses only.
This limits the NIC’s ability to take to advantage of all available RX queues, thus, not utilizing all available CPUs
or cores. An example of such a case is demonstrated below.

ethtool -n ifname rx-flow-hash udp4

UDP over IPV4 flows use these fields for computing Hash flow key:
IP SA
IP DA

The hashing algorithm can be changed to include source and destination ports in addition to the source and
destination IPv4/IPv6 addresses. Note that not all NICs support the ethtool –n/-N options.

ethtool -N ifname rx-flow-hash udp4 sdfn
ethtool -N ifname rx-flow-hash udp6 sdfn

11.4 Network Card PCI Bus Tuning

The configuration involves increasing the Maximum Memory Read Byte Count (MMRBC) in PCI-X configuration
space to increase transmit burst lengths on the bus. Note that this is a run-time configuration only, and it also
depends on the network card hardware. The process initially involves identifying the vendor and device IDs of the
monitoring network interface. Once these are identified, the adapter registers - MMRBC field – is modified.

First, identify the hardware ID of the network interface using lspci. The below examples show the output of an
Intel I350 1G igb network card, with the hardware ID highlighted in green.

lspci | grep "Ethernet"

08:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

Second, identify the vendor and device IDs from PCI devices. The below output highlights the hardware, vendor,
and device IDs (minified).

grep 0800 /proc/bus/pci/devices

0800 80861521 30 d9b00000 0 0 d9ff0000 0 0 d9000000 100000 0 0 4000 ... igb

Vendor ID: 8086 = Intel
Device ID: 1521 = igb, 1a48 = ixgb

Finally, increase MMRBC based on the network card, for example 4K for Intel 10G ixgbe network cards.

setpci -v -d 8086:1a48 e6.b=2e

Note that:

-d : Location of Ethernet Interface on PCI-X Bus Structure
e6.b : Address of PCI-X Command Register
2e : Value to be set. Possible value are:
 MM Value (Bytes)
 22 512  Default
 26 1024
 2a 2048
 2e 4096  for Intel 10GbE.

Since the above configuration is applied at runtime, persisting the changes requires a startup script or service. To
revert the changes, restart the host or manually set the MMRBC to its default value using the below command.

setpci -v -d 8086:1a48 e6.b=22

11.5 Optimizing Snort 3 at Build Time

During building Snort in section 4 Installing Snort 3 a number of compiler flags were exported prior to building the
source.

export CFLAGS="-O3"
export CXXFLAGS="-O3 -fno-rtti"

The -O3 flag includes all of the optimizations in -O1 and -O2. It informs the compiler to reduce code size and
execution time and increase the performance of the generated code. Discussing individual optimization flags is
outside the scope of this guide.

The -fno-rtti flag disables the generation of Run Time Type Information (RTTI) identification features in C++.
This allows for reduced binary image size.

Additionally, tcmalloc was enabled while building Snort 3. As discussed in previous sections, tcmalloc enables
performance improvements and memory usage reduction. Thus, allowing reduced processing time.

./configure_cmake.sh --enable-tcmalloc

11.6 Optimizing Snort 3 at Run Time

Improve Snort 3 Performance with Hyperscan

Hyperscan can improve Snort 3 performance as follows. Note that enabling hyperscan will result in longer times
for Snort’s startup process loading the rules.

1. Boost Snort 3's IPS fast pattern matching.
2. Faster search engine than existing search engines.
3. Assist in application identification and HTTP inspection.
4. Faster literal content searches and pcre matches during signature evaluation.

The configuration changes to Snort 3 in order to enable hyperscan are implemented via tweaks. Snort 3 tweaks
are tunable configurations that allows configuring Snort relative to the default configurations. Tweaks are
expressed in Lua files and use Snort configuration syntax. Some of the built-in tweaks include talos.lua,
security.lua, and max_detect.lua. For this guide, the configurations demonstrated below are added to a
custom tweaks Lua file within Snort’s configurations directory.

touch /usr/local/snort/etc/snort/custom_tweaks.lua

Tweaks are then incorporated into Snort with the command line option --tweaks tweak_name. Using the above
custom tweaks file, the custom tweaks are incorporated using --tweaks custom_tweaks.

To enable hyperscan, edit the custom_tweaks.lua file to include the below lines

-- Enable hyperscan for IPS, AppID and HTTP inspection
-- Enable hyperscan for pcre/regex matches
search_engine = { search_method = "hyperscan" }
detection = { hyperscan_literals = true, pcre_to_regex = true }

https://blog.snort.org/2020/09/snort-3-hyperscan-.html

12. Snort 3 Use-case Configurations and Tweaks

The following tweaks explore added-value configurations to Snort 3. They are scenario based, and as such may
not be applicable or maybe optional within a given environment.

These tweaks are incorporated by editing the existing custom_tweaks.lua file created earlier.

vi /usr/local/snort/etc/snort/custom_tweaks.lua

12.1 File Inspection over SMB

File inspection over SMB sessions is disabled by default. To enable it, we configure binder is configured to bind
observed TCP traffic over port 445 to be inspected by the dce_smb inspector by adding the below line to the
custom tweaks file custom_tweaks.lua. Enabling and controlling file inspection is achieved using the

-- Add SMB port binding to dce_smb inspector
table.insert(
 binder, 2,
 { when = { proto = 'tcp', ports = '445', role='any' }, use = { type = 'dce_smb' } })

-- Enable SMB file inspection (unlimited file size inspection example)
dce_smb.smb_file_depth = 0
dce_smb.policy = 'Win7'

Finally, ensure that file inspector is configured as discussed in section 6.6 Configuring file Inspectors.

Note: Using unlimited file size or depth inspection may introduce throughput and performance penalties. Use
reasonable file depth values to achieve desired functionality while maintaining optimized performance.

12.2 ZIP, SWF and PDF Decompression

Snort supported in-place decompression of SWF (Adobe Flash content) and PDF files streams since Snort 2.
Snort 3 adds decompression of ZIP files, across multiple inspectors such as http_inspect, smtp, imap and pop.
This allows Snort to inspect decompressed content against file and IPS.

The below configuration demonstrates enabling decompression for the http_inspect and smtp inspectors. Other
inspectors use the same configuration keywords and patterns, and can be configured in a similar manner.

-- Enable ZIP, PDF and SWF decompression in http_inspect
http_inspect.decompress_pdf = true
http_inspect.decompress_swf = true
http_inspect.decompress_zip = true

-- Enable ZIP, PDF and SWF decompression in smtp
smtp.decompress_pdf = true
smtp.decompress_swf = true
smtp.decompress_zip = true

12.3 Logging of Email Headers and Attachment Names

Snort 3 can log forensic and investigative details about email connections in smtp, imap and pop protocols other
than source and destination IP addresses and ports. These include email headers, attachment names, mail form,
and recipient to. Having these logs ready can accelerate detection and incident response.

By default, logging is disabled across the smtp, imap, and pop inspectors. Edit the custom tweaks file
custom_tweaks.lua and add the below line to enable logging in smtp inspector.

-- Enable logging of email headers and attachments in smtp
smtp.log_email_hdrs = true
smtp.log_filename = true
smtp.log_mailfrom = true
smtp.log_rcptto = true

The generated logs are only applicable in the unified2 logging format. Sample output is demonstrated below.

/usr/local/snort/bin/u2spewfoo unified2.log

(ExtraData)
 sensor id: 0 event id: 28 event second: 1223906143
 type: 5 datatype: 1 bloblength: 43 SMTP Attachment Filename: file.pdf
(ExtraDataHdr)
 event type: 4 event length: 58
(ExtraData)
 sensor id: 0 event id: 28 event second: 1223906143
 type: 6 datatype: 1 bloblength: 34 SMTP MAIL FROM Addresses: <abc@addr.test>
(ExtraDataHdr)
 event type: 4 event length: 47
(ExtraData)
 sensor id: 0 event id: 28 event second: 1223906143
 type: 7 datatype: 1 bloblength: 23 SMTP RCPT TO Addresses: <def@addr.test>

12.4 Multi-thread Packet Processing

Snort 3 can run multiple packet processing threads on PCAP files or interfaces. Using the new option --max-
packet-threads or –z Snort will start N packet processing threads, where N is the number of threads specified
with a maximum of eight threads. The example below runs four threads against a directory (--pcap-dir)
containing PCAP files while filtering only for PCAP files (--pcap-filter '*.pcap').

snort -c snort.lua --pcap-dir ./pcaps --pcap-filter '*.pcap' --plugin-path /extra -k none -z 4

Reviewing Snort threads with the top program displays the four threads specified in the example above, plus an
additional thread for logging as a result of using the –l option.

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
17079 root 20 0 1297372 1.0g 8560 R 98.0 18.0 0:04.43 snort
17094 root 20 0 1297372 1.0g 8560 R 35.3 18.0 0:01.06 snort
17095 root 20 0 1297372 1.0g 8560 R 34.0 18.0 0:01.02 snort
17097 root 20 0 1297372 1.0g 8560 R 8.0 18.0 0:00.24 snort
17028 root 20 0 1297372 1.0g 8560 S 1.7 18.0 0:15.40 snort

Note that when using multiple threads while logging to files, each thread will generate its own set of log files,

-rw-------. 1 root root 1107 Aug 11 19:41 0_alert_json.txt
-rw-------. 1 root root 72 Aug 11 19:41 0_appid_stats.log
-rw-------. 1 root root 0 Aug 11 19:41 0_data_log
-rw-------. 1 root root 0 Aug 11 19:41 0_file.log
-rw-------. 1 root root 3131 Aug 11 19:41 1_alert_json.txt
-rw-------. 1 root root 328 Aug 11 19:41 1_appid_stats.log
-rw-------. 1 root root 0 Aug 11 19:41 1_data_log
-rw-------. 1 root root 0 Aug 11 19:41 1_file.log
...

If the --id-subdir option is used, then each thread will create a directory named after the thread’s ID under the
specified log directory.

├── 0
│ ├── alert_json.txt
│ ├── appid_stats.log
│ ├── data_log
│ ├── file.log
├── 1
│ ├── alert_json.txt
│ ├── appid_stats.log
│ ├── data_log
│ ├── file.log
...

12.5 Snort 3 Inline (IPS) with DAQ afpacket

The setup and configuration for running Snort 3 inline does not differ from Snort 2. The below configuration
example sets the IPS policy mode to inline and configures DAQ to run in inline mode with an Inline Pair as the
inputs interface.

ips =
{
 mode = inline,
 ...
}

daq =
{
 module_dirs =
 {
 '/usr/local/lib/daq',
 },
 modules =
 {
 {
 name = 'afpacket',
 mode = 'inline',
 variables =
 {
 'fanout_type=hash'
 }
 }
 },
 inputs =
 {
 'ens192:ens224',
 }
}

The above configurations can be executed from the command line directly as show below.

snort -c snort.lua --daq-dir /usr/local/lib/daq --daq afpacket --daq-var fanout_type=hash -i
ens192:ens224 -Q

Update the normalizer inspector module to reflect the following configuration.

normalizer =
{
 tcp =
 {
 ips = true,
 }
}

Appendix
Installing hyperscan from Sources

Prior to installing hyperscan, the following dependencies should be installed: Colm (colm), Ragel (ragel), Boost
and sqlite3 (sqlite-devel). CentOS 8 does not come with Python preinstalled. Building hyperscan requires a
python interpreter, python3 (python3) installed.

dnf install python3 sqlite-devel colm ragel

The remaining dependency is boost, which is downloaded and decompressed without building it.

curl -LO https://dl.bintray.com/boostorg/release/1.73.0/source/boost_1_73_0.tar.gz
tar xf boost_1_73_0.tar.gz

Download and install hyperscan (5.3.0).

curl -Lo hyperscan-5.3.0.tar.gz https://github.com/intel/hyperscan/archive/v5.3.0.tar.gz
tar xf hyperscan-5.3.0.tar.gz
mkdir hs-build && cd hs-build

There are two methods to make hyperscan aware of the Boost headers: 1) Symlink, or 2) Passing BOOST_ROOT
pointing to the root directory of the boost headers to cmake. Both methods are shown below.

Method 1 – Symlink:

ln -s ~/sources/boost_1_73_0 /boost ~/sources/hyperscan-5.3.0/include/boost
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ../hyperscan-5.3.0

Method 2 – BOOST_ROOT:

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local -
DBOOST_ROOT=../boost_1_73_0 ../hyperscan-5.3.0

Proceed with installing Hyperscan.

make -j$(nproc)
make -j$(nproc) install
cd ../

	1. Introduction
	2. Preparation
	3. Installing Snort 3 Dependencies
	3.1 Required Dependencies
	3.2 Optional Dependencies

	4. Installing Snort 3
	5. Installing Snort 3 Extra for Additional Capabilities
	6. Configuring Snort 3
	6.1 Global Paths for Rules, AppID, and IP Reputation
	6.2 Configuring HOME_NET and EXTERNAL_NET
	6.3 Configuring ips Module
	6.4 Configuring reputation Inspector (Optional)
	6.5 Configuring appid Inspector (Optional)
	6.6 Configuring file Inspectors (Optional)

	7. Configuring Snort 3 Logging
	7.1 Configuring Logger Module (Optional)
	7.2 Configuring file_log Inspector (Optional)
	7.3 Configuring data_log Inspector (Optional)
	7.4 Configuring alert_syslog Logger (Optional)
	7.5 Configuring alert_json Logger (Optional)
	7.6 Configuring appid_listener Logger (Optional)

	8. Managing Snort 3 Rules with PulledPork
	9. Running and Testing Snort 3
	9.1 Running against PCAP Files
	9.2 Running against an Interface
	9.3 Running Snort 3 Demo

	10. Configuring Snort Network Interfaces, User, Service and Logging
	10.1 Configuring Network Capturing Interfaces
	10.2 Creating Snort User, Logging Directory and Systemd Startup Service

	11. Optimizing Performance (Optional)
	11.1 Configuring CPU Governor
	11.2 Kernel Networking Management
	11.3 UDP Multi-queue Hashing Algorithms
	11.4 Network Card PCI Bus Tuning
	11.5 Optimizing Snort 3 at Build Time
	11.6 Optimizing Snort 3 at Run Time

	12. Snort 3 Use-case Configurations and Tweaks
	12.1 File Inspection over SMB
	12.2 ZIP, SWF and PDF Decompression
	12.3 Logging of Email Headers and Attachment Names
	12.4 Multi-thread Packet Processing
	12.5 Snort 3 Inline (IPS) with DAQ afpacket

	Appendix
	Installing hyperscan from Sources

