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MOTIVATION

Unsupervised Skeleton-based Human Action Recognition (HAR):
 Classify human action sequences using subspace clustering and skeleton-joints datasets.

Subspace Clustering:
 High-dimensional data represented as a union of subspaces,
 Lower dimensionality and simpler geometrical structure,
 Each subspace corresponds to an action class.

 Skeleton Joints Action Dataset:
 Multi-dimensional time series of human actions,
 Free of background clutter, lighting conditions, variations on clothing,
 Limitedly explored due to noisy data, missing joints, etc.

CONTRIBUTIONS

Subspace Clustering on HAR:
 Skeleton-joints datasets are used,
 showing favorable unsupervised results as 

compared to supervised state of the art,
 where some unsupervised results 

outperform supervised state of the art.

 Temporal data heuristics:
 Covariance representations,
 and time-pruning strategies,
 to encode temporal length of skeleton 

data without compromising results.
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PROPOSED METHOD
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Code available!
https://github.com/IIT-PAVIS/subspace-clustering-action-recognition

 Proposed computational pipeline:
 3 Temporal data heuristics (Covariance, Temporal, and 

Time-pruning Subspace Clustering),
 Subspace Clustering to build Affinity Matrix [1-7],
 Spectral Clustering or Normalized Cuts to generate the 

predicted action classes,
 Hungarian Algorithm for overall accuracy.

 Covariance Subspace Clustering: representation method to encode 
datasets with different temporal length between each samples.
 Flattening and vectorization by keeping diagonal and upper-triangular 

elements of covariance matrix,
 Self-expressiveness based Subspace Clustering to build Affinity Matrix.

 Temporal Subspace Clustering: compress action sequence 
to a fixed length 𝜙:
 min 𝜙 : shortest temporal length by random permutation,
 min TemporalSSC: shortest temporal length using Sparse 

Subspace Clustering [1],
 Percentage TemporalSSC: 𝜙 as percentage value of 

sample’s temporal length,
 Threshold TemporalSSC: 𝜙 as threshold value of sample’s 

temporal length.

 Time-pruning Subspace Clustering: compress action 
sequence to a fixed length 𝜙with dictionary-based Subspace 
Clustering [2]:
 TSC min: shortest temporal length by random permutation,
 TSC max: longest temporal length by data replication,
 temporalSC + TSC: shortest temporal length using Spectral 

Clustering,
 temporalKM + TSC: shortest temporal length K-means 

Clustering.


