Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning Giancarlo Paoletti^{1,2}, Jacopo Cavazza¹, Cigdem Beyan¹, Alessio Del Bue^{1,3}

¹Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy ² Elect., Electron. and Telecom. Eng. and Naval Arch. Department, University of Genoa, 16126, Genoa, Italy ³ Visual Geometry and Modelling, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy {Giancarlo.Paoletti, Jacopo.Cavazza, Cigdem.Beyan, Alessio.DelBue}@iit.it

Contact: Giancarlo.Paoletti@iit.it

https://www.iit.it/people/giancarlo-paoletti

MOTIVATION

- Unsupervised Skeleton-based Human Action Recognition (HAR):
 - Classify human action sequences using subspace clustering and skeleton-joints datasets.

> Subspace Clustering:

High-dimensional data represented as a union of subspaces,

CONTRIBUTIONS

- Subspace Clustering on HAR:
 - Skeleton-joints datasets are used,
 - showing favorable unsupervised results as compared to supervised state of the art,
- where <u>some unsupervised results</u> outperform supervised state of the art.

- Lower dimensionality and simpler geometrical structure,
- Each subspace corresponds to an action class.

Skeleton Joints Action Dataset:

- Multi-dimensional time series of human actions,
- Free of background clutter, lighting conditions, variations on clothing,
- Limitedly explored due to noisy data, missing joints, etc.

> Temporal data heuristics:

- **Covariance** representations,
- and time-pruning strategies,
- to encode temporal length of skeleton data without compromising results.

PROPOSED METHOD

- Proposed computational pipeline:
 - 3 Temporal data heuristics (Covariance, Temporal, and Time-pruning Subspace Clustering),
 - Subspace Clustering to build Affinity Matrix [1-7],
 - Spectral Clustering or Normalized Cuts to generate the predicted action classes,
 - Hungarian Algorithm for overall accuracy.
- **Covariance Subspace Clustering:** representation method to encode datasets with different temporal length between each samples.
- Flattening and vectorization by keeping diagonal and upper-triangular elements of covariance matrix,
- Self-expressiveness based Subspace Clustering to build Affinity Matrix.

	Dataset	Km	Sc	EDSC	OMP	DSCN	LSR	SSC	EnSC
Γ	F3D	45,58	66,05	54,42	61,40	57,02	60,47	69,12	70,23
	UTK	34,67	66,83	52,71	58,79	69,35	57,79	73,97	78,90
	MSRP	42,78	52,69	51,90	50,14	49,26	47,31	49,60	49,86
	MSRA	41,11	65,17	52,69	43,99	59,91	54,40	57,27	62,84
	G3D	31,22	64,71	44,48	45,70	62,59	64,25	65,16	72,25
	HDM-05-14	32,36	53,35	52,42	47,67	56,27	51,60	49,13	56,00
	HDM-05-65	31,41	44,46	44,43	36,07	30,95	42,98	35,98	42,38
	MSRC	61,54	84,34	81,30	51,20	71,35	87,04	62,27	83,27

		min	min	percentage		threshold	
Dataset	SSC	ϕ	temporalSSC	temporalSSC	ϕ	temporalSSC	ϕ
F3D	69,12	67,91	66,51	65,12	75%	68,84	50%
UTK	73,97	64,82	80,90	68,34	25%	72,86	75%
MSRP	49,60	48,88	47,88	50,42	25%	49,58	25%
MSRA	57,27	59,61	57,09	62,66	25%	63,02	75%
G3D	65,16	64,86	64,10	69,68	75%	71,49	75%
HDM-05-14	49,13	63,12	59,04	59,33	25%	59,77	25%
HDM-05-65	35,98	41,31	44,00	43,66	25%	41,53	50%
MSRC	62,27	83.79	83,62	83,41	75%	83,14	75%

- **Temporal Subspace Clustering:** compress action sequence to a fixed length ϕ :
 - min ϕ : shortest temporal length by random permutation,
 - min TemporalSSC: shortest temporal length using Sparse Subspace Clustering [1],
- Percentage TemporalSSC: ϕ as percentage value of sample's temporal length,
- Threshold TemporalSSC: ϕ as threshold value of sample's temporal length.

Time-pruning Subspace Clustering: compress action sequence to a fixed length ϕ with dictionary-based Subspace Clustering [2]:

- TSC min: shortest temporal length by random permutation,
- TSC max: longest temporal length by data replication,
- temporalSC + TSC: shortest temporal length using Spectral Clustering,
- temporalKM + TSC: shortest temporal length K-means Clustering.

Dataset	TSCmin	COV	TSCmax	COV	temporalSC	temporalSC	temporalKm	temporalKm	supervised
Dataset		TSCmin		TSCmax	+ TSC	+ TSC cov	+ TSC	+ TSC cov	s.o.t.a.
F3D	84,65	81,40	94,88	81,86	95,81	88,84	87,91	87,44	99,07
UTK	93,97	96,98	99,50	92,96	96,98	96,98	93,47	83,92	100,00
MSRP	93,48	81,30	98,02	84,70	88,67	76,20	96,32	71,10	95,50
MSRA	87,18	79,89	85,64	83,30	82,47	81,13	88,51	87,61	97,40
G3D	88,99	90,20	85,07	92,61	90,20	92,46	88,84	92,91	96,02
HDM-05-14	89,80	86,73	80,32	83,82	88,48	84,84	83,97	81,63	99,10
HDM-05-65	70,51	83,57	75,97	85,62	72,13	84,64	68,42	86,00	96,92
MSRC	97,96	91,09	99,08	99,05	98,81	97,42	99,00	91,07	98,50
AVG	88,32	86,40	89,81	87,99	89,19	87,81	88,31	85,21	
STD	7,79	5,59	8,62	5,72	8,18	7,05	8,80	6,31	

References:

[1] E. Elhamifar et al., Sparse subspace clustering: Algorithm, theory, and applications, IEEE TPAMI, 2013.

[2] S. Li et al., Temporal subspace clustering for human motion segmentation, ICCV, 2015.

[3] P. Ji et al., Efficient dense subspace clustering, WACV, 2014.

[4] C. You et al., Scalable sparse subspace clustering by orthogonal matching pursuit, CVPR, 2016. [5] P. Ji et al., Deep subspace clustering networks, NIPS, 2017.

[6] C.-Y. Lu et al., Robust and efficient subspace segmentation via least squares regression, ECCV, 2012. [7] C. You et al., Oracle based active set algorithm for scalable elastic net subspace clustering, CVPR, 2016.

Code available!

https://github.com/IIT-PAVIS/subspace-clustering-action-recognition

