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Abstract

Action recognition, a sub-field of computer vision, has garnered increasing attention in recent
years due to its potential applications in addressing a wide range of real-world problems.
By analysing individuals’ movements and actions, researchers can better understand their
underlying motivations, thoughts, and emotions, which has numerous practical applications,
including the development of more effective algorithms that can better understand and re-
spond to human behaviour. Some useful applications of action recognition include security
surveillance systems, human-robot and human-computer interaction, patient monitoring and
assistive technologies, sign language recognition, consumer behaviour analysis, and sports
analysis. Despite recent progress, the development of a fully automated human activity
recognition system that can accurately classify activities remains challenging due to the
complexity of visual data, such as varying camera viewpoints, occlusions, changes in scale
and appearance, background clutter, and lighting changes. A skeleton-based approach offers
privacy-preserving characteristics and allows the model to focus on the essential characteris-
tics of the body and its movements rather than being influenced by extraneous factors. This
can result in a more accurate understanding of human anatomy and movement. Supervised
learning approaches are effective in annotating sequences with corresponding actions or
activities. However, this process is time-consuming, requires specialised knowledge, and
is prone to human error. The problem is further complicated by intra-class and inter-class
similarities, making it difficult to distinguish between different actions. As a result, the
reliance on annotated data for sequence annotation may compromise the scalability of big
data systems. This motivates the need to explore unsupervised methods as an alternative.
Unsupervised learning techniques effectively overcome the challenges faced by traditional
supervised methods in this research field. These challenges include a lack of labelled data
and the high variability of human actions. Despite this, unsupervised learning for HAR
remains an emerging sub-field of research, leading to the exploration of new techniques
such as clustering, dimensionality reduction, and deep learning. The main focus of this
thesis is unsupervised action recognition using 3D skeleton poses as a specific typology of
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data, aiming to introduce new algorithms that address the limitations of previous models and
provide insight into the usefulness of unsupervised learning. This study presents a subspace
clustering algorithm for the classification of trimmed sequences of actions using skeleton
joints datasets, introducing new strategies for handling temporal data using covariance ma-
trices. Additionally, a novel unsupervised method using a convolutional autoencoder to
learn human action representations is proposed. This approach demonstrates the benefits
of combining residual convolutions with spatio-temporal convolutions, resulting in more
efficient and memory-effective architectures with the introduction of graph Laplacian regu-
larisation to reconstruct skeleton-based action sequences better. This research also examined
the effectiveness of unsupervised methods for human emotion recognition from full-body
movement data. However, current unsupervised methods, while designed for high recognition
accuracy, do not consider the resilience of the models to perturbed data, which is common in
real-world scenarios. Based on these findings, a novel framework was developed, incorporat-
ing a transformer encoder-decoder with strong denoising capabilities and additional losses to
improve robustness against such data perturbation and alteration.
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Chapter 1

Introduction

The study of action recognition, a sub-task of computer vision, has been a crucial area
of research for many years. It is a significant research topic because it offers insight into
human behaviour, personality, and psychological states. Analysing individuals’ movements
and actions researchers can better understand their underlying motivations, thoughts, and
emotions by analysing individuals’ movements and actions. This knowledge has numer-
ous practical applications, including developing more effective algorithms that can better
understand and respond to human behaviour. Overall, the study of action recognition is
a critical component of the broader field of computer vision, with the potential to impact
many different fields and industries. Recently, the field has garnered increasing attention due
to its potential applications in addressing a wide range of real-world problems, including
surveillance systems, human-robot and human-computer interaction [57], patient monitoring
and assistive technologies [24], sign language [198, 37], computational behavioural science
[174, 167, 43], consumer behaviour analysis [138], sports analysis, and many others. Below,
some useful applications of action recognition for real-world cases are detailed.
Security surveillance is widely-used to protect individuals, structures, and possessions
[132, 101, 69, 155, 91, 176]. A crucial aspect of modern surveillance systems is the ability
to recognise actions accurately, reducing the need for human intervention. These systems
have the potential to identify and prevent a range of undesirable events, altercations, criminal
activities, and so forth. As the global population continues to age, the number of individuals
aged 65 or over has reached 700 million in 2019 [199]. It is projected that by 2050, this
demographic will make up 16% of the world’s population [199]. This presents a growing
concern for the care of older individuals.

1
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One potential solution is the development of assistive technologies, methods used for elderly
care: i.e., robotic agents that can accurately recognise the actions of the elderly and respond
to their behaviours accordingly. The market for virtual reality has experienced a significant
increase: according to recent studies, the global virtual reality market size is projected to reach
84.09 billion USD by 2028 [72]. Action recognition techniques are crucial for implementing
mature virtual reality systems, enabling computers to accurately interpret users’ body
movements and provide appropriate responses and interactions. The implementation and
maintenance of social distancing have proven to be effective in controlling the spread of the
recent COVID-19 viral outbreak. To ensure the effectiveness of this measure, governments
have imposed restrictions on the minimum distance individuals must maintain between
one another in public settings. The visual social distancing problem [42] is the automatic
identification of interpersonal distances from an image and the categorisation of related
groups of people. This is critical for conducting non-invasive analyses of individuals’
adherence to social distancing guidelines and providing statistics on the safety levels of
specific areas where these guidelines are not being followed. It is done by detecting and
tracking two or more people (using e.g., skeleton poses to maintain privacy), measuring their
reciprocal distance and classifying whether they are too close to each other or not.

Human behaviours refer to physical actions associated with emotions, personality, and
psychological state [133]. Therefore, to effectively recognise human activities through
behaviour, it is necessary to determine the kinetic states of individuals. Some human
activities, such as walking and running, are relatively easy to identify from both humans
and action classifiers due to their prevalence in daily life for the former and the higher
number of dataset samples (w.r.t. this particular action) for the latter. More complex and
subtle activities are more challenging to recognise. The primary objective is to identify
intentional and unintentional gestures that individuals use to communicate. This includes
the voluntary selection of gestures to convey a message and the more subtle and often
unconscious movements that may reveal underlying emotions or thoughts [27]. In these
cases, it may be helpful to decompose the activity into simpler movements that are easier to
identify (e.g., segment a long and enriched action, composed of different gestures, into smaller
chunks of atomic actions). In detail, gestures are considered to be primitive movements of
the body that may correspond to a specific action [233]. Atomic actions are movements
that describe a specific motion and may be part of more complex activities [140]. These
components form human-to-object or human-to-human interactions, which usually involve
multiple individuals or objects [157, 204]. Such interactions will ultimately form events,
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Figure 1.1 The moving lightspot experiment [90], conducted by Swedish perceptual psy-
chologist Gunnar Johansson, aimed to document and explain the phenomenon of human
sensitivity to biological motion. In the experiment, actors wore lightbulbs attached to their
body parts and joints while performing various actions in the dark (on a black background)1.
The results of the experiment showed that people were able to recognize the actions of
the actors when the lightbulbs were moving (e.g., two people walking towards each other),
but not when they were stationary. This groundbreaking experiment inspired new fields of
research into human perception, leading up to modern techniques that use multiple cameras
to construct a 3D representation of actors’ movements.

high-level activities that describe social interactions between individuals and indicate the
intention or social role of a person [102].

These areas of study have spurred a significant portion of the computer vision community
to research action recognition and modelling. Similar to other areas of computer vision,
psychological studies often motivate current approaches. One notable example is Johansson’s
moving lightspots experiment [90], conducted in the 1970s to study 3D human motion
perception from 2D patterns. This experiment, as displayed in Figure 1.1, demonstrated
that the number of lightspots and their distribution on the human body could impact motion
perception, with an increasing number of lightspots potentially reducing ambiguity in motion
understanding. Johansson’s study also showed that human vision could detect not only
motion directions but also different types of limb motion patterns, including recognition
of the activity and velocity of the motion patterns. As reported in the study [90]: "The
geometric structures of body motion patterns in man are determined by the construction of
their skeletons. From a mechanical point of view, the joints of the human body are endpoints
of bones with constant length."

This study has influenced much of the literature on human body pose estimation, and action
recognition [177, 33, 209], as the knowledge of the position of multiple body parts allows
the machine to learn to distinguish between different action classes.

1 The full video is available here: https://www.youtube.com/watch?v=1F5ICP9SYLU

https://www.youtube.com/watch?v=1F5ICP9SYLU
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Figure 1.2 A general description of the HAR pipeline. It involves two main steps: skeleton
data acquisition and action recognition using computational models. For the first step, input
data is represented by RGB or Depth-based video frames (acquired from the respective sen-
sors) which will be processed using an SDK toolkit or Human Pose Estimation architectures
[19]. The second step is to devise a model capable of correctly classifying and discriminating
the different actions involved for each data sample. The scope of this thesis lies within this
last category.

In line with, and inspired by such insights mentioned above, this thesis’s main research
focus is directed towards recognising actions using a specific typology of data: 3D skeleton

poses. Despite the significant progress made in the last few years, the development of a
fully automated human activity recognition system that can accurately classify activities
remains a challenging task due to the complexity of the visual data, such as varying camera
viewpoints, partial or total occlusions, changes in scale and appearance, background clutter,
and abrupt changes in lighting conditions. Consequently, a skeleton-based HAR approach is
an exciting paradigm to consider, given its beneficial privacy-preserving characteristics. This
helps ensure that the model is not influenced by any potential biases or preconceived notions,
achieving a more accurate understanding of human anatomy and movement using skeleton
poses. As a result, the model is able to focus on the essential characteristics of the body and
its movements rather than being distracted by extraneous factors.

1.1 Rationale

In skeleton-based HAR, action or activity sequences are represented through the multi-
dimensional time series of joints located at the intersection of skeletal bones, which are
typically tracked in time via motion capture systems, images or depth sensors (as seen in
Figure 1.2). Recently, skeleton-based HAR has undergone a paradigm shift, similar to other
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fields of pattern recognition, with the replacement of hand-crafted feature representations by
data-driven ones and the adoption of an end-to-end classification pipeline.

1.1.1 Supervised learning and its shortcomings

The literature demonstrates the effectiveness of supervised learning approaches for both
paradigms, where each sequence is manually annotated with the corresponding action/activity
[28, 241, 227, 143, 137, 185, 11, 29]. But this comes with the cost of annotating behavioural
roles is time-consuming and requires specific knowledge of the event. Each sequence is
in fact assumed to be (manually) annotated by the action/activity it involves. Additionally,
intra-class and inter-class similarities can make the problem even more challenging. Actions
within the same class may be expressed differently by different people, and actions between
different classes may be difficult to distinguish due to similar information. Other than
being an expensive task, a time-consuming task, and prone to human errors [153], sequence
annotations compromise the scalability of the big data regime. This motivates the need to
research unsupervised (or self-supervised) methods which do not need to rely heavily on
such annotated data, fuelling the main core of this thesis.

1.1.2 Unsupervised learning and contributions

Unlike supervised counterparts mentioned in Section 1.1.1, unsupervised learning methods
for HAR manage to overcome issues as mentioned above (e.g., lack of labelled data and the
high variability of human actions) imposing as well fewer computational and methodological
burdens w.r.t. supervised methods. Still, it represents an emerging sub-field of research,
and this motivates researchers to explore new unsupervised skeleton action recognition
techniques, such as clustering, dimensionality reduction, and deep learning. In other words,
due to the increasing demand for methods capable of handling and modelling the ever-
growing supply of unlabelled data, this thesis aims to introduce in literature new methods
capable of mitigating shortcomings of previous models and shed light on the goodness of
using such unsupervised algorithms. The contributions related to the PhD research, focused
on Human Activity Recognition (HAR) using unsupervised learning techniques, can be
described as follows.
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Subspace Clustering

This section outlines a subspace clustering algorithm for classifying trimmed sequences of
actions using skeleton joints datasets, introducing new strategies for handling temporal data
using covariance matrices. Subspace clustering was initially devised in Computer Vision
to segment dynamic moving objects [70, 38]. This technique posits that high-dimensional
data (in the context of this study, skeletal joints) can be represented as a union of subspaces,
each having a lower dimensionality and simpler geometric structure. Each subspace typically
corresponds to a class (in this case, an action or activity).

The central concept in subspace clustering is learning encodings that are subsequently utilised
to construct an affinity matrix from which the data can be clustered according to the modelled
similarities and differences between samples [211]. While this is often achieved through a
self-expressive model in which each data point is expressed as a linear combination of the
remaining ones, additional constraints such as sparsity have also been adopted [60]. A limited
number of studies have only explored subspace clustering to solve skeleton-based human
action recognition (HAR) tasks [239, 113, 34]. This is due to several operational limitations,
including difficulty handling the temporal dimension, the inherent noise in skeletal data, and
the associated computational challenges.

Two alternative computational strategies to support subspace clustering methods in dealing
with the temporal dimensions of action sequences were developed to address these issues.
The first approach encodes raw skeletal trajectories using a covariance representation, which
aids in solving HAR problems [22]. The second approach involves devising a computational
strategy for pruning instantaneous body poses whose temporal aggregation produces an
action sequence. As a result of temporal pruning, the most representative timestamps can be
selected and used to compress the original action sequence to a fixed duration. Therefore,
this temporal pruning can be employed as a successful pre-processing step for utilising a
subspace clustering method for HAR.

Convolutional-Residual AutoEncoder for skeleton-based U-HAR

Subsequently, a novel method for handling the spatial correlation of human joints in larger
and more complex datasets using a Graph Laplacian regularizer was proposed, which offers
the advantage of being lighter than other methods in the literature. A recent paper submission
also proposed a novel unsupervised method that uses a convolutional (residual) autoencoder
to learn human action representations. This approach demonstrates the benefits of combining
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residual convolutions with spatio-temporal convolutions rather than relying on more complex
and memory-intensive architectures.

Graph Laplacian regularizer for U-HAR and self-supervised viewpoint-invariance

One key factor in the previous method is the adoption of graph Laplacian regularisation
in the reconstruction space, i.e., the reconstructed skeletal action. The graph Laplacian is
a well-known tool for analysing weighted undirected graphs, and it was used to promote
the alignment of skeletal joints that are connected by bones. Additionally, a method for
promoting viewpoint invariance in camera position and orientation was designed, which
is particularly useful in practical scenarios where data capturing of human actions is often
different from the setups used in the tested dataset. First, the original skeletal data was
perturbed with random rotations along the X, Y, and Z axes to improve viewpoint invariance
in different camera positions and orientations. Then, a strategy to increase the model’s
generalizability was developed by pairing the Laplacian-regularised reconstruction loss
with a regressor head that attempts to learn the parameters (i.e., the rotation angles using
Euler’s angles) of the random rotations applied. Finally, adversarial training as a gradient
reversal layer was used to learn a feature representation invariant to rotations, thus fooling
the regressor. This method does not require annotated data features, as the randomly rotated
skeletal actions are directly synthesised from the data itself, representing the core concept of
self-supervision.

Human Emotion Recognition and Pose Denoising for HAR

As a final remark, the research was expanded by adapting the devised models to different
scenarios, including Human Emotion Recognition (HER) and developing new methods
capable of being noise-resistant in real-life perturbations. The proposed unsupervised
methods were further evaluated for their effectiveness in emotion recognition from full-
body movement data. Human Emotion Recognition is a complex task due to the varying
contexts in which emotions are expressed and perceived and the interpersonal differences that
impact emotional expression. Current HER datasets are typically smaller than HAR datasets
due to the difficulty in collecting and annotating such data with high reliability. As both
HAR and HER share similar data structures and commonly use supervised approaches, the
previously-published unsupervised methods were applied to recognise emotions expressed
through skeletal poses over time.
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This exploration of unsupervised feature learning for HER from full-body movements repre-
sents a novel approach, applying the previously proposed convolutional residual autoencoder
model to infer emotions from skeletal poses. The use of large-scale datasets is common
in current unsupervised human activity recognition (U-HAR) and unsupervised human-
environment interaction recognition (U-HER) methods. These methods are designed and
optimised for high recognition accuracy. Still, they do not consider the resilience of the mod-
els to perturbed data, which is common in real-world testing scenarios. To address this issue,
a systematical analysis was applied to check the performance decrease of state-of-the-art
U-HAR algorithms when using perturbed or altered data, such as removing skeletal joints,
rotating the pose, or injecting geometrical aberrations.

Based on the findings, a method called SKELTER was devised, a novel framework based on a
transformer encoder-decoder with strong denoising capabilities to counter such perturbations.
Additional losses were also introduced to improve the robustness of the model against rotation
variations and provide temporal motion consistency. In the case of perturbed skeleton poses,
the proposed model showed lower performance decreases in the presence of noise compared
to previous approaches, making it a suitable solution for challenging in-the-wild settings.

1.2 Summary of Contributions

A summary of this thesis’ contributions is the following:

• Developing a subspace clustering algorithm for fully-unsupervised human action
classification

• Propose a novel unsupervised feature learning method that uses a convolutional (resid-
ual) autoencoder to learn human action representations.

• Adopting graph Laplacian regularization in reconstruction space improves the align-
ment of skeletal joints connected by bones.

• Design a method for promoting viewpoint invariance in camera position and orientation
using a gradient reversal layer.

• Expanded research to adapt action recognition models for the human emotion recogni-
tion task from full-body skeletal movement data.

• Systematic analysis of the performance of state-of-the-art unsupervised action recogni-
tion algorithms when using perturbed or altered data.
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1.3 Publications

The work presented in this thesis has produced the following publications:

• Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, and Alessio Del Bue. Subspace
clustering for action recognition with covariance representations and temporal prun-
ing. In 2020 25th International Conference on Pattern Recognition (ICPR), pages
6035–6042. IEEE, 2021. Oral presentation.

• Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, and Alessio Del Bue. Unsu-
pervised human action recognition with skeletal graph laplacian and self-supervised
viewpoints invariance. In 32nd British Machine Vision Conference 2021, BMVC 2021,
Online, November 22-25, 2021. BMVA Press, 2021. Oral presentation.

• Giancarlo Paoletti, Cigdem Beyan, and Alessio Del Bue. Graph Laplacian-Improved
Convolutional Residual Autoencoder for Unsupervised Human Action and Emotion
Recognition. IEEE Access.

• Giancarlo Paoletti, Cigdem Beyan, and Alessio Del Bue. SKELTER: Unsupervised
Skeleton Action Denoising and Recognition using Transformers. Submitted and under

review.

1.4 Thesis Organization

This thesis is organised as follows. Chapter 2 outlines a general overview of skeleton-based
models for Unsupervised Human Action Recognition, with a thorough presentation of 3D
skeleton-action datasets utilised in overall works, Chapter 3 presents subspace clustering
methods deployed for action classification, Chapter 4 includes a proposed encoder-decoder
model to learn spatio-temporal skeletal features with extensive ablation studies and introduc-
ing the emotion classification from body poses, Chapter 5 illustrates a proposed model to
denoise corrupted skeletal poses, and Chapter 6 conclusions are drawn w.r.t. overall thesis.



Chapter 2

Background & Datasets

In this chapter, the overall definitions of action and emotion recognition are described,
with the related works in literature for this task and an extensive description of all 3D
skeleton-based action datasets used for the entirety of this thesis.

2.1 Human Action Recognition

Human Action Recognition (HAR) task can be defined as classifying which action is dis-
played in a trimmed sequence. This task plays a crucial role in computer vision since it is
related to a broad spectrum of artificial intelligence applications (such as video surveillance,
human-machine interaction or self-driving cars, and so forth [166, 223, 168]). Given a
trimmed sequence in which a single action or activity is assumed to be present, the final
goal of HAR is to classify it correctly. Although significant progress has been made in
recent years, accurate action recognition in videos is still a challenging task because of the
complexity of the visual data, e.g., due to varying camera viewpoints, occlusions and abrupt
changes in lighting conditions.

To perform HAR, several modalities have been exploited, such as video frames (RGB)
[20, 14, 53, 12, 96, 103, 120, 15, 119], video frames with depth information (RGB+D)
[68, 115, 232, 148, 171, 170, 172, 131], and skeleton data [225, 76]. One advantage of
using depth videos over conventional RGB videos is their ease of foreground human subject
segmentation (even in cluttered scenes), allowing researchers to focus more on robust feature
descriptors for action recognition rather than low-level segmentation. However, depth
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images are also susceptible to noise and do not always guarantee good action recognition
performance.

As an all-in-one solution to these problems, skeleton-based HAR is surely the paradigm to
embrace, also considering its beneficial characteristics of being privacy-preserving since
not a single RGB image needs to be stored, and it is a representation is easily given by
off-the-shelf body pose detectors and potentially allowing performing HAR in real-time
[19, 224, 188, 226, 227]. The onset of many recent skeleton-based action datasets had been
possible thanks to the introduction, to the general market, of sensors like the Microsoft
Kinect camera. Its ability to capture real-time RGB and depth videos, as well as the
availability of a publicly available toolkit for computing human skeleton models from depth
videos, has spawned a multitude of research papers on 3D HAR using the Kinect camera
[187, 209, 181, 210, 94, 95, 169, 98, 240, 105, 212, 196, 123, 86, 104, 189, 213, 121, 6, 247,
85, 222, 56, 208, 248, 122, 1, 61, 188, 110, 183, 184].

In skeleton-based HAR, action/activity sequences are represented through the multidimen-
sional time series of joints located at the intersection of skeletal bones, whose position is
tracked in time, typically through motion capture systems or depth sensors. Existing methods
for skeleton-based action recognition can be divided into two categories: joint-based and
body part-based. Joint-based methods model the positions and movements of joints using
coordinates already extracted. These coordinates can be defined w.r.t. a reference joint
[232, 209, 94, 95], or the joint orientations can be computed relative to a fixed coordinate
system[222]. On the other hand, body part-based methods model the human body as a
system of rigid cylinders connected by joints. These methods often use information such as
joint angles [210], the temporal evolution of body parts [181, 98, 227, 1], and 3D relative
geometric relationships between rigid body parts [209, 210, 227] to represent the human
pose for action recognition.

Recently, skeleton-based HAR has undergone the same paradigm shift, which was registered
in other fields of pattern recognition: hand-crafted data encodings fed into engineered
classifiers [141, 214, 209, 210, 147, 231, 148, 62, 209] have been replaced by data-driven
feature representation with an end-to-end classification pipeline [99].

As for deep neural networks, recent studies are based on Recurrent Neural Networks (RNNs)
[56, 181, 191, 241, 242, 114, 213, 247, 186, 56, 208, 248, 122], Convolutional Neural
Networks (CNNs) [95, 107, 55, 116, 94, 197] and Graph Convolutional Networks (GCNs)
[110, 183, 184, 188, 217, 227, 243, 245, 226] demonstrating the benefits of learning intrinsic



2.2. UNSUPERVISED HUMAN ACTION RECOGNITION 12

properties of skeletal actions performed over time. The current mainstream paradigm in
skeleton-based HAR is the possibility of learning a feature representation from the data
in tandem with the final action classifier. As one of the seminal works in this direction,
a hierarchy of bidirectional recurrent neural networks is used by [56] to represent in a
bottom-up fashion all the structural relationships between body parts (torso, legs, arms) in
the human skeleton. Long Short-term Memory (LSTM) networks have been widely used in
HAR due to their ability to model temporal dependencies and capture the co-occurrences of
human joints. This ability, unique to LSTM networks among Recurrent Neural Networks
(RNNs), has been demonstrated in several studies [181, 122, 79, 123, 104, 6, 248, 188]. The
use of LSTM networks in this area has proven effective and contributed to their popularity
as a choice for modelling human actions. Throughout the years, LSTM networks have
been modified to accommodate the task better. For instance, by applying a novel mixed-
norm regularization term and dropout [248] or recurring to attention mechanisms [123].
Alternatively, joint trajectories are cast into coloured images by producing the so-called
distance maps [218, 106, 95]. Using the well-known convolutional neural networks such
as AlexNet, despite originally proposed for image classification, can be adapted to HAR
[218, 106]. Surely, the most active and recent research direction leverages the possibility of
encoding the whole human skeleton as a graph, processing it through a graph-convolutional
neural network [184, 221].

2.2 Unsupervised Human Action Recognition

The literature presented in the previous section leverages a fully supervised learning approach
to accomplish the task [28, 241, 227, 143, 137, 185, 11, 29]. Each sequence is assumed to
be (manually) annotated by the action/activity involved. Besides being an expensive and
time-consuming task, prone to human errors [153], sequence annotations compromise the
scalability of the big data regime.

As a (recent) alternative, unsupervised approaches [247, 194, 173, 80, 142, 225, 100, 117,
154, 134, 108, 238, 6, 73] are continuously reducing the performance gap with the fully
supervised counterpart while dismissing the strong reliance over annotated data. Encoder-
decoder recurrent architectures are often used to solve HAR problems [100, 247, 117, 194,
173]. Zheng et al. [247] introduce LongT GAN, based on GRUs that learns how to represent
skeletal body poses in time. At the same time, an adversarial loss supports an auxiliary
inpainting task favourably helps the learning stage. MS2L [117] is also based on GRUs and
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benefits from contrastive learning, motion prediction, and jigsaw puzzle recognition. In
addition, Kundu et al. [100] include a GAN-based encoder in their recurrent architecture
(EnGAN). PCRP [225] builds upon a vanilla autoencoder trained to reconstruct the skeletal
data using mean-squared error (MSE) loss. This vanilla model is boosted by an ad-hoc
training mechanism based on expectation maximization with learnable class prototypes. Su
et al. [194] present the Predict & Cluster (P&C) method based on encoder-decoder RNN that
learns representations for HAR in an unsupervised manner from skeletal joints while solving
action classification with a 1-nearest neighbour predictor. AS-CAL [173] combines contrastive
learning with momentum LSTM, where the similarity between augmented instances and
the input skeleton sequence is contrasted. Then a momentum-based LSTM encodes the
long-term actions. SeBiReNet [142] uses a Siamese denoising autoencoder is used with
feature disentanglement, showing good performance across pose denoising and unsupervised
cross-view HAR. Recently, Li et al. [109] processed the joint, motion, and bone information
instead of using the datasets’ skeleton data. ISC [200] leverages inter-skeleton contrastive
learning and spatio-temporal augmentations to learn invariances w.r.t. skeleton representations.
AimCLR [74] builds upon contrastive methods as well, and it is capable of obtaining robust
representation from extreme augmentations and novel movement patterns.

2.3 Human Emotion Recognition From Full-Body Move-
ments

Psychological research suggests that affective states are often communicated through body
movements [135, 163, 47, 48, 2]. Affective phenomena, such as emotions, feelings, moods,
attitudes, temperament, and interpersonal stances, can be categorised based on various
factors, including the focus of the event, the appraisal of the event, the synchronisation
of bodily responses, the speed of change, the behavioural impact, the intensity, and the
duration [18, 149, 179, 178, 51, 40]. Scherer [178] defines emotions as "a synchronised
change in the states of the cognitive, physiological, motivational, subjective feeling, and
motor expression subsystems in response to the evaluation of a relevant stimulus event".
The communication of emotions can be spontaneous or strategic [164, 17], with the former
being involuntary and non-propositional, and the latter being goal-oriented and propositional.
Basic emotions, such as anger, happiness, sadness, surprise, disgust, and fear, are defined
by a specific set of neural and bodily responses, as well as a motivational component
[59, 58, 202]. Theories of emotional expression often focus on facial expressions, but there is
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also evidence to suggest that bodily expressions can be important indicators of affective states
[45, 136, 203, 165]. During daily human-human interactions, people often pay attention to
facial and bodily expressions of emotion. A recent study showed that bodily cues could be
useful in discriminating between intense positive and negative emotions [163, 3]. Affective
states can be expressed through various body movements, including whole-body gestures,
arm gestures, and the modulation of functional movements.

Emotion recognition from full-body movement data is a complex task since the act of express-
ing and perceiving affect differs a lot w.r.t. its context, and also their variety increases due to
the interpersonal differences (e.g., personality, physical capacity, and personal experience)
[93, 146]. This task can be inscribed within affective computing, a combination of artificial
intelligence, computer vision, pattern recognition, cognitive science and psychology. It is a
field of study that focuses on developing computing systems capable of modelling human
affective states such as emotions, moods, and other related psychological phenomena. One
of the key challenges is to accurately recognize and interpret various forms of affective
expressions, such as hand gestures, facial expressions, physiological changes, and speech
patterns. By doing so, these systems can help individuals better express, recognize, and
control their affective states and enable machines and other computational systems to respond
to and interact with humans in more natural and intuitive ways [151]. This research area
is prominently based on the concept of emotional intelligence. According to Picard [162],
the fundamental aspect of emotional intelligence is comprehending the connection between
an individual’s emotional states and the corresponding behaviours. These behaviours are
closely linked to the emotional state and communication of the person with others. Therefore,
emotional intelligence involves the ability to recognize and understand the emotion of the self
and others, as well as the ability to communicate and manage those emotions in social settings
effectively. Emotion recognition from full-body representation has been so far addressed
by: i) processing single body pose (e.g., a forward head and chest bend express sadness in
[39]), ii) recognizing specific gestures which are emblems of the emotions (e.g., raising arms
and hands-on-hips are the gestures of pride according to [203, 144]), or iii) processing the
expressive quality of the movement [44, 145, 65, 8]. Out of these three possibilities, the
second and the third use the temporal information of the data, while the first one performs
only spatial processing.

The existing related datasets were curated with diverse motion capture (MoCap) systems and
various numbers of markers. These datasets are smaller than the HAR counterparts due to the
effort needed to collect and, most importantly, annotate such data with high reliability. As
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annotations are more costly, it is crucial to develop unsupervised feature learning methods
that can effectively apply to HER.

Earlier works define hand-crafted features and apply learning methods such as Support Vector
Machines (SVM) and Random Forests [21, 66, 32, 161]. For instance, Castellano et al. [21]
use motion quantity, velocity, and movement fluidity as the descriptors of movements and
aggregate them in the temporal dimension to classify four-emotion classes. Instead, Piana et

al. [161] extend the low-level features by adding high-level features (e.g., contraction index,
impulsiveness) and applying an SVM classifier. On the other hand, Fourati et al. [66] show
the importance of using temporal features (e.g., regularity of a motion profile, overall or
single gesture phase impulsiveness) and multi-level body cues (e.g., based on Body Action
and Posture Coding System) for emotions elicited during the daily-life actions. In [46],
the 3D-skeleton data is represented in the Riemannian manifold and then processed with a
covariance operator. This methodology was adapted by Kacem et al. [92], where the former
applies a Nearest Neighbour classifier and uses a temporal warping and SVM. Both methods
improved the emotion recognition from 3D-body movements results w.r.t. the prior art. As a
different approach, Creen et al. [41] synthesize neutral motion by quantizing it with a cost
function and then calculate the difference between the neutral class and the other emotions to
decide the class 3D-body expression at inference.

Deep learning architectures e.g., Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), have been explored for skeleton-based HER in recent studies. For
example, [127] used an RNN with 3-layers to perform emotion classification from MoCap
data of daily activities: clapping, drinking, throwing, and waving, etc., associated with four
emotions: happy, angry, sad, and neutral. Beyan et al. [8] present the joint training of two
CNNs such that one of them performs coarse-grained modelling while the other applies
fine-grained modelling in the time. The inputs of this network are 8-bit RGB images obtained
from 3D-skeleton data over time. This approach [8] achieves better performance compared
to [65, 66, 41], showing generalisation properties over the diverse number of emotion classes
and contexts.
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2.4 3D action recognition datasets

The following action datasets were used for the experimental analyses scattered across
different chapters of this thesis.

2.4.1 Florence3D

Figure 2.1 A sample from Florence 3D [180]

Florence3D (F3D) [180] is a 9-class action dataset (answer

phone, bow, clap, drink, read watch, sit down, stand up,

tight lace, wave) captured using a Microsoft Kinect camera.
The actions were performed two/three times by 10 subjects,
resulting in 215 data samples.

2.4.2 UTKinect-Action3D

Figure 2.2 UTKinect [222] dataset sample

UTKinect-Action3D (UTK) [222] is a 10-class action dataset
(carry, clap hands, pick up, pull, push, sit down, stand up,

throw, walk, wave hands) captured using a single stationary
Microsoft Kinect camera. Each action was performed two
times by 10 subjects, resulting in 199 data samples. Each
estimated skeleton has 20 joints.

2.4.3 MSR 3D Action Pairs

Figure 2.3 MSR 3D Action Pairs [148] skele-
ton pose

MSR 3D Action Pairs (MSRP) [148] includes 12 actions
in pairs (pick up a box, put down a box, lift the box, place

the box, push a chair, pull a chair, wear a hat, take off the

hat, put on the backpack, take off the backpack, stick poster,

remove poster). Each pair has similar features, but their
relationship in terms of motion and shape is different. The
actions were performed three times by 10 subjects, resulting
in 353 activity samples.
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2.4.4 MSR Action 3D

Figure 2.4 A sample from MSR Action 3D
[115]

MSR Action 3D (MSRA) [115] is a 20-class action dataset
(bend, draw a circle, draw tick, draw x, forward kick, forward

punch, golf swing, hand catch, hand clap, hammer, high arm

wave, high throw, horizontal arm wave, jogging, pick up and

throw, side boxing, side kick, tennis serve, tennis swing, two-

handwave) captured by a depth-camera. Each action was
performed three times by 10 subjects, resulting in 557 data
samples. The skeleton in each sequence’s frame comprises
20 joints.

2.4.5 Gaming 3D

Figure 2.5 A sample from Gaming 3D [13]

Gaming 3D (G3D) [13] is a 20-class gaming actions dataset
(aim and fire gun, clap, climb, crouch, defend, flap, golf

swing, jump, kick left, kick right, punch left, punch right, run,

steer a car, tennis swing backhand, tennis swing forehand,

tennis serve, throw a bowling ball, wave, walk) captured
using a Kinect camera. The actions were repeated seven
times by 10 subjects, resulting in 663 activity samples.

2.4.6 HDM05

Figure 2.6 An action sequence from HDM05
[139]

HDM05 [139], due to class imbalance of the original dataset,
for the experimental analysis 14 classes (HDM-05-14, clap

above head, deposit floor, elbow to knee, grab high, hop

both legs, jog, kick forward, lie down on the floor, rotate

both arms backwards, sit down chair, sneak, squat, stand up,

throw basketball, following the protocol of [216, 23]), and
65 classes (HDM-05-65 were used, following the protocol
of [31] by grouping together similar actions). The sequences
were captured using VICON cameras at 120Hz, resulting in
686 data samples for the former and 2343 data samples for
the latter.
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2.4.7 MSRC-Kinect12

Figure 2.7 Samples from MSRC-Kinect12
[64]

MSRC-Kinect12 (MSRC) [64] is a 12-class gesturing
dataset, grouped into iconic and metaphoric gestures (beat

both, bow, change weapon, duck, goggles, had enough, kick,

lift outstretched arms, push right, shoot, throw, wind it up).
Following the protocol as in [87], highly corrupted actions
were removed, resulting in 5881 data samples.

2.4.8 NTU-60

Figure 2.8 A sample action from NTU-60
[181]

NTU-60 [181] contains 60 action classes performed by 40
subjects, captured with Microsoft Kinect v2 at 30fps (frames-
per-second). The videos were collected in a laboratory using
Microsoft Kinect V2 cameras, resulting in accurately ex-
tracted skeletons with 25 joints, each incorporating more
than 56,880 videos and 4 million frames. The dataset covers
a range of scenarios, including daily individual and interac-
tive behaviours and medical conditions. These actions were
performed by 40 subjects aged between 10 and 35 and were
recorded by three cameras positioned at different angles.
While the high-quality skeletons in the NTU60 dataset provide a valuable resource for action
recognition, there are several challenges associated with this task. These challenges include
the variability of skeleton sizes and action speeds among subjects, the different viewpoints
from which the skeletons are captured, and the similarity of motion trajectories among
different actions. Additionally, the limited number of joints used to depict hand actions can
make it difficult to portray them in detail. Three cameras record action sequences, facing
frontally w.r.t. the subject and diagonally facing the subject with ±45° angle. The authors of
the NTU60 dataset recommend evaluating the accuracy of action recognition models under
two settings. The first setting, referred to as Cross-Subject (C-Subject), involves splitting
the 40 subjects evenly into training and validation groups, resulting in 40,320 sequences
for training and 16,560 for validation. The second setting, called Cross-View (C-View),
involves using sequences captured from the cameras that directly face and are oriented at
+45° toward the subject for training (37,920 instances), and the remaining sequences from
the -45° orientation view for validation (18,960 instances).
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2.4.9 NTU-120

Figure 2.9 A sample action from NTU-120
[121]

NTU-120 [121] encompasses 113,945 samples and 120
classes. These actions were performed by 106 unique sub-
jects with 32 different camera setups, e.g., different back-
grounds or locations where the data is captured. It is an
extension of NTU60, with 57,367 additional skeleton se-
quences and 60 extra action categories. The authors sug-
gest substituting the original Cross-View evaluation protocol
with the Cross-Setup (C-Setup) protocol, which uses more
camera positions and angles. Specifically, 54,468 skeleton
sequences from half of the camera setups are used for train-
ing, and the remaining 59,477 samples are for validation.
For the Cross-Subject (C-Subject) setting, 63,026 skeleton
sequences collected from 53 subjects are utilised for training,
and the remaining 50,919 samples are for validation.

2.4.10 Skeletics-152 Action Recognition In-the-wild Dataset

Figure 2.10 Samples from Skeletics-152 [75]

Skeletics-152 [75] was made from the Kinetics-700 dataset
[190] by discarding some of the Kinetics-700 dataset’s data
due to being unfeasible or irrelevant to skeleton-based HAR.
For example, videos containing occluded poses, egocentric
videos, and videos composed of object interactions were
omitted by [75]. Afterwards, VIBE [97] algorithm and some
post-processing steps were applied, resulting in 125621 3D-
skeleton sequences corresponding to 152 action classes.
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2.5 3D emotion recognition datasets

The following emotion datasets were used for the experimental analyses of Chapter 4.

2.5.1 Dance Motion Capture Emotion Database

Figure 2.11 A performance from Dance Mo-
tion Capture Emotion Database [52]

Dance Motion Capture Emotion Database (DMCD) [52]
consists of various dance performances recorded with the
PhaseSpace Impulse X2 MoCap system. The contemporary
dance sequences were performed by six participants having
different dance-related backgrounds. Each choreography
the artists perform is associated with one of 12 emotions:
excited, happy, pleased, satisfied, relaxed, tired, bored, sad,
miserable, annoyed, angry, and afraid. In total, 108 perfor-
mances correspond to 614898 3D points captured with 38
markers.

2.5.2 Emilya Emotional Body Expressions Dataset

Figure 2.12 Emilya [65] dataset sample

Emilya is a 3D-MoCap dataset [65] of emotional body ex-
pressions during eight daily actions: simple walking, walking
with an object in hands, moving books on a table, knock-
ing, sitting down, being seated, lifting, and throwing. The
dataset was collected with 28 markers from 12 people who
performed the earlier actions associated with eight emotional
states: anxiety, pride, joy, sadness, panic, fear, shame, anger,
and neutral. Prior papers have applied two types of cross-
validation on the Emilya dataset.



Chapter 3

Subspace Clustering for Action
Recognition with Covariance
Representations and Temporal Pruning

Subspace clustering, a popular computational framework in the machine learning and com-
puter vision and image processing communities, aims to find subspaces, each fitting a group
of data points, and then performs clustering based on these subspaces [211]. It postulates that
high-dimensional data (herein; skeletal joints) can be represented as a union of subspaces,
each of them having a much lower dimensionality (i.e., low-rank) and simpler geometrical
structure. Each subspace usually corresponds to a class (e.g., to an action or an activity).
The key idea in subspace clustering is to learn encodings that are then used to construct an
affinity matrix W from which the data can be clustered together according to the modelled
(dis)-similarities between samples [211]. Although, this is usually achieved through a self-
expressive model (Section 3.2.1) or dictionary-based model (Section 3.2.2) in which each
data point is expressed as a linear combination of the remaining ones, additional constraints,
such as sparsity, were also adopted [60].

Figure 3.1 illustrates the need for subspace clustering for high dimensional data. In such
a scenario, many data points of the dataset could be nearly equidistant from each other.
This could lead to an impairment of cluster quality of traditional clustering algorithms: by
examining the entire dataset, many clusters could be masked and considered irrelevant,
redundant, cut, misinterpreted or hidden within noisy data [156].

21



22

Figure 3.1 A simple three-dimension dataset to illustrate the need for subspace clustering,
where points from two clusters can be very close together and confusing many traditional
clustering algorithms [156]. It is divided into four clusters of 100 samples each, existing in
only two of the three dimensions (the third one represents noise). Red and Green clusters
exist in dimensions a and b, whereas Cyan and Purple clusters exist in dimensions b and c.

By implementing subspace clustering for Human Action Recognition (HAR), a key factor
must be considered: the consistent variability of the length of the performed actions. Due to
the complexity and nature of the action performed, each sample inherits a distinct temporal
length in terms of timeframes. Therefore a regularisation must be applied to accommodate
such data into subspace clustering algorithms (Section 3.3.2). Therefore, this chapter proposes
a novel subspace clustering method, which exploits the covariance matrix to enhance the
action’s discriminability and a timestamp pruning approach that allows us to handle the
temporal dimension of the data better, embracing the fully unsupervised paradigm (U-HAR).
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3.1 Background and related work

Subspace clustering was first introduced in the computer vision domain to segment dynamic
moving objects [38, 70] and implemented to solve other tasks e.g., image representation and
compression [81], image segmentation [228], and motion segmentation [63]. Most subspace
clustering methods learn an affinity matrix W and then apply spectral clustering, e.g., low-rank
representation [118, 128]. Self-representation-based subspace clustering methods reconstruct
a sample from a linear combination of other pieces [60, 118, 82, 129], and they have proven
their effectiveness for high-dimensional data. Sparse subspace clustering integrates l1-norm
regularisation, which mainly results in improvements in the clustering performances [60].
The temporal Laplacian regularisation was proposed in [113] and also adopted in other works
e.g., [34] to better model kinematic data for the sake of action detection and segmentation.
As earlier subspace clustering methods rely on handcrafted representations, more recent and
powerful representations can be learned through deep learning, which effectively cluster data
samples from non-linear subspaces [89]. Deep subspace clustering methods apply embedding
and clustering jointly, typically with an autoencoder network e.g., in [89, 230]. This results
in an optimal embedding subspace for clustering, which is more effective than conventional
clustering methods. On the other hand, deep adversarial subspace clustering methods
learn more effective sample representations using deep learning while exploiting adversarial
learning to supervise and, thus, progressively improve the performance of subspace clustering.
This is done using a subspace clustering generator and a quality-verifying discriminator,
which are adversarially learned against each other.

Even though subspace clustering has become a powerful technique for problems such as face
clustering or digit recognition, its applicability to the problems like skeleton-based HAR was
only explored by a limited number of works [239, 113, 34]. This is due to many operative
limitations, including handling the temporal dimensions, the inherent noise present in the
skeletal data and the related computational issues.

3.2 Subspace clustering for HAR

To obtain the previously-mentioned affinity matrix W, used to infer the predicted action
labels for HAR, subspace clustering methods algorithms can be generally grouped into two
main categories: self-expressiveness based and dictionary-based models.
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3.2.1 Self-Expressiveness based models

Let us consider a collection of D-dimensional data-points x1, . . . ,xN . Subspace clustering
[211] attempts to cluster x1, . . . ,xN into groups (termed subspaces) which share common
geometrical relationships as the well-known self-expressiveness property.

The problem can be formalised as finding a N ×N matrix C of coefficients such that

X = XC subject to diag(C) = 0, (3.1)

where X is the D×N matrix, which stacks by columns the data points x j. The constraint
diag(C) = 0 avoids the trivial solution corresponding to C being the identity matrix. Ul-
timately, the geometrical relationship of relevance in modelling is a linear relationship in
which each data point can be described as a linear combination. As a consequence of that, the
subspaces are linear in turn. The constraint diag(C) = 0 is fundamental to avoid the trivial
(and useless) solution x j = x j. Specifically, the self-expressiveness property Equation 3.1
attempts to estimate each data point as a linear combination of different data points. This
allows capturing the geometrical inter-dependencies among the data points themselves.

An important aspect regarding subspace clustering is how the matrix C is obtained. Several
works proposed to solve this problem through optimisation [129, 60, 88, 237, 236, 89] and
different strategies have been adopted to constraint the solution. In subspace segmentation
via Least Squares Regression (SS-LSR) [129], a Frobenius norm is introduced to promote a
L2 penalty, obtaining

min∥C∥F subject to X = XC,diag(C) = 0. (3.2)

Another popular manner of constraining the coefficient matrix C is to impose sparsity
[60, 236, 89]. As in the Sparse Subspace clustering via Alternating Direction Method of
Multipliers (SSC-ADMM) [60], the problem formulation is framed as

min∥C∥1 subject to X = XC,diag(C) = 0, (3.3)

while using the alternating direction method of multipliers (ADMM) algorithm to foster
convergence by solving a stack of easier sub-problems. As an alternative to ADMM, Sparse
Subspace Clustering by Orthogonal Matching Pursuit (SSC-OMP) [237] approaches a
similar problem with a different optimisation technique.
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The previous formalism in Eq. Equation 3.3 was extended in the Deep Subspace Clustering
Networks (DSC-Nets) [89] by having the hidden layer of an autoencoder implementing
either Eq. Equation 3.2 or Eq. Equation 3.3. The Elastic Net (EnSC) [236] approach uses
a convex combination of L2 and L1 constraint on C to increase performance while also
boosting the scalability due to the usage of oracle sets to better pre-condition the solution.
Dense subspace clustering (EDSC) [88] approaches the problem by attempting to apply the
self-expressiveness loss on a dictionary which is used to describe the data while also taking
into account outliers.

Once the matrix of coefficient C is found, an affinity graph matrix W is built by setting the
weights on the edges between the nodes through W = C+C⊤.

3.2.2 Dictionary based models

Even though subspace clustering methods explained in Section 3.2.1 build the affinity matrix
W by exploiting the self-expressiveness property of data, they do not explicitly take into
account the temporal dimension of time-series data while building the model adopted for
HAR. As a solution, temporal regularisation was proposed by Temporal Subspace Clustering
(TSC) [113]. Precisely, given a dictionary D ∈ Rd×r and a coding matrix Z ∈ Rr×n, a
collection of data points X ∈ Rd×n can be approximately represented as

X ≈ DZ, (3.4)

where each data point is encoded using a Least Squares regression, and a temporal Laplacian
regularisation L(Z) function encourages the encoding of the sequential relationships in
time-series data. This can be done by minimising

min
Z,D

∥X−DZ∥2
F + λ1∥Z∥2

F + λ2L(Z), subject to Z ≥ 0, D ≥ 0, (3.5)

by using the ADMM algorithm to encourage convergence by solving a stack of easier sub-
problems. Different from Section 3.2.1, the affinity graph matrix W is given by the coding
matrix Z by using

W(i, j) =
z⊤i z j

||zi||2||z j||2
, (3.6)

since the within-cluster samples (for example, the sequential neighbours of a time-series
datapoint) are always highly correlated to each other [111, 112].
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3.3 Temporal regularisation for HAR

Two alternative computational strategies to help and support subspace clustering methods in
handling the temporal dimensions of action sequences are proposed. On the one hand, the
raw skeletal trajectories were encoded using a covariance representation (described in Sec-
tion 3.3.1), which is effective for solving HAR problems [22]. Additionally, a computational
strategy is devised, to prune the instantaneous body poses (termed timestamps hereafter)
whose temporal aggregation produces an action sequence. As a result of temporal pruning,
the most representative timestamps can be selected, which are exploited to compress the
original action sequence to a fixed duration. Consequently, this temporal pruning (namely
temporalSSC, described in Section 3.3.2) can be adopted as a successful pre-processing step
to accommodate for the usage of a subspace clustering method for HAR.

3.3.1 Covariance encoding for HAR

The idea of encoding 3D-skeleton dynamics within a single hand-crafted kernel representation
has been proposed often in HAR. For instance, it has been shown that Hankel matrices can
efficiently model action dynamics when used with a Hidden Markov Model [126] or a
Riemannian nearest neighbours with class-prototypes [244]. Lie group [209] and associated
Lie algebra [210] can effectively model human actions and activities by means of roto-
translations. Likewise, generic deforming bodies can be efficiently modelled over variations
of Stiefel manifolds [49]. Surely, within the class of kernel representations, a major role is
played by a specific symmetric and positive definite (SPD) operator: covariance matrices
(COV). Originally envisaged for image classification and detection [205], COV is an effective
representation for skeleton-based HAR since capable of modelling second-order statistics. It
was used in tandem with various classification pipelines, such as a temporal pyramid [87]
or max-margin approaches [216, 98]. Formal studies have tried to enhance the capability
of such operators in modelling non-linear correlations among the data [77, 23]. Kernel
approximation was recently investigated to speed up the computational pipeline and ensure
scalability towards the big data regime [22].

Even though prior work focused on the effectiveness of covariance representations applied to
supervised learning pipelines (e.g., in [9, 10]), its capabilities for unsupervised learning are
instead demonstrated in this chapter. Using a covariance representation as the data encoder
and the subspace clustering for solving HAR can be described as follows. Through either a
motion capture system or a depth sensor, an action is represented as the collection-in-time
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of K joints 3D positions p1(t), . . . ,pK(t). By using p(t) to denote the column vectorisation
of all such 3D positions for a fixed timestamp, an action sequence is represented as the
covariance matrix

Λ =
1
T ∑

t
(p(t)−µ)(p(t)−µ)⊤, (3.7)

where T denotes the number of timestamps and µ is the temporal average of p(t). The
covariance matrix was then vectored through a flattening operation which exploits the
property of Λ in being symmetrical. That is, Λ = Λ

⊤. Therefore, when flattening, the
diagonal elements of Λ (which are Λii) were extracted, and the upper-triangular ones (that is,
Λi j, j > i). The lower triangular part can be ignored since it is equal to the upper triangular
one. Such flattening operation casts the 3K ×3K matrix Λ into a 3K · (3K −1)/2 column
vector. The flattened covariance representation is used as one data point, then given to the
subspace clustering algorithm as the input.

3.3.2 Temporal pruning via Sparse Subspace Clustering (temporalSSC)

In addition to utilising subspace clustering as a suitable method for U-HAR, such families
of techniques were also exploited to solve another task: temporal pruning. That refers
to utilising subspace clustering on the raw joint coordinates p(t). Here, different from
Section 3.3.1, each data point to be clustered is not an action sequence but a single data
point of an action (Figure 3.2 (b)). In other words, rather than applying subspace clustering
to group action sequences, subspace clustering was exploited to the group skeletal poses
at a given timestamp. The general assumption is that the processed skeleton data might
contain similar or redundant poses over time. To address this, temporal pruning was applied,
potentially capturing the similarities over time with respect to the kinematic execution.

A relevant parameter for temporal pruning is the number of subspaces φ , which corresponds
to the length of the new pruned skeleton data, which was set based on the following strategies:

min φ : the temporal length of the entire dataset is fixed to be equal to the shortest time
duration across all the sequences in the skeletal dataset, this is done by using the
random permutation of each sample timestamp.

min temporalSSC: subspace clustering method SSC_ADMM is used to get φ equal to the
shortest time duration across all the sequences in the skeletal dataset.
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percentage temporalSSC: the temporal length of each dataset sample is determined by
selecting a percentage value for φ (which was chosen to keep the 75%, 50% or 25% of
the sample temporal length during experiments) and applying temporalSSC.

threshold temporalSSC: the temporal length of each sample of the dataset is determined
by selecting a percentage value for φ (which was chosen to keep the 75%, 50% or 25%
of the sample temporal length during experiments), which is used as a threshold value
for temporalSSC.

If a certain dataset sample has a temporal length superior to φ , temporalSSC is applied to
match this threshold value. Once φ is fixed according to one of the previous strategies, all
the timestamps t1, . . . , ts, . . . assigned to a given subspace can be retrieved. Afterwards, an
average of the corresponding skeletal positions were made p(t1) , . . . , p(ts) , . . .

The so-obtained average skeletal position is adopted to replace the original one, and the
procedure is iterated across all the different subspaces.

For the sake of clarity, let us assume that the number of subspaces is set to be φ = 2. The
original action sequence has 5 timestamps which are associated with the following body
poses [p1,p2,p3,p4,p5]. Once temporalSSC is run on top of the sequence [p1,p2,p3,p4,p5],
let assume that the corresponding output is [1,1,2,1,2]. So, temporalSSC is grouping p1,p2

and p4 in a subspaces and p3,p5 in another one. Then, the pruned action sequence was

defined as [p′
1,p

′
2], where p′

1 =
1
3(p1 +p2 +p4) and p′

2 =
1
2
(p′

3 +p′
5).
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Figure 3.2 The pipeline of the proposed unsupervised methods for HAR: (a) A covariance
descriptor is applied to each sample. Given the obtained covariance matrix is square and
symmetrical, only the upper (can be also lower) triangular part was taken, including the
diagonal and flattened it. This results in a new matrix (X) having size samples× f eatures.
Following that, any subspace clustering technique can be applied to obtain an affinity graph
matrix W. Then, spectral clustering is applied using W to obtain cluster labels. The
Hungarian algorithm finds the matching between the cluster labels (predicted action classes)
and the ground-truth labels. (b) The skeletal data of each sample is temporally pruned using
temporalSSC, and then the pruned data is processed as in (a). (c) Each sample is pruned by
using various strategies. Afterwards, temporal subspace clustering is applied to obtain an
affinity graph matrix W. The normalized cuts are applied to obtain cluster labels, and the
Hungarian algorithm matches the cluster labels with the ground-truth labels.
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3.4 Methodology and Experimental Analysis

This section, through a comprehensive experimental analysis, validates the impact on U-HAR
of covariance representations and temporal pruning defined in Section 3.3.1 and Section 3.3.2,
respectively. Eventually, it was also demonstrated their degree of complementary to the
extent that the performance of a fully unsupervised recognition pipeline can be enhanced.
Interestingly, the overall performance of the proposed unsupervised approaches can almost fill
the gap with state-of-the-art supervised methods. Overall, these experimental findings would
help practitioners re-thinking how HAR is approached, raising attention to the desirable shift
towards more agile unsupervised learning frameworks.

There exists a consistent variability in every HAR dataset due to the length of the performed
actions and their complexity, the number of action classes, and the technology that was
used to capture them. Prior to experimental analysis, a pre-processing step is performed
[126, 244, 209, 210, 98, 23, 122] to fix one root joint located at the hip centre and compute
the relative differences of all other J−1 3D joint positions. This pre-processing is performed
at any timestamps t = 1, . . . ,T to obtain a 3(J − 1)-dimensional (column) vector p(t) of
the relative displacements. The following dataset for experimental analysis were used
(see Chapter 2, Section 2.4 of for a full description): Florence3D (F3D) [180], UTKinect-
Action3D (UTK) [222], MSR 3D Action Pairs (MSRP) [148], MSR Action 3D (MSRA)
[115], Gaming 3D (G3D) [13], HDM05 [139], MSRC-Kinect12 (MSRC) [64].

In order to properly ablate on their relative importance of them, it was taken considered
the following computational variants of the pipeline1. The performance in U-HAR was
monitored by taking advantage of classification accuracy, expressed as a percentage and
defined as:

ACC(%) =

(
1− # o f misclassi f ied labels

# o f total labels

)
×100 (3.8)

1 Code available here: https://github.com/IIT-PAVIS/subspace-clustering-action-recognition

https://github.com/IIT-PAVIS/subspace-clustering-action-recognition
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3.4.1 U-HAR using subspace clustering and covariance descriptors

As reported in Figure 3.2(a), the first step is to apply the covariance encoding (Section 3.3.1)
as the descriptor, whose result is given as an input to the state-of-the-art subspace clustering
methods that are based on the self-expressiveness property of the data (Section 3.2.1) to
obtain the affinity matrix W. These methods are: EDSC [88], OMP [237], DSCN [89], LSR
[129], SSC [60], and EnSC [236].

Spectral clustering is later applied to the obtained affinity matrix W to infer the clustering
labels by assigning each of the N datapoint x j into its corresponding subspace. The final step
is to apply the Hungarian algorithm to compare and map subspace labels into actual class
labels [211]. Additionally, as a baseline method, two of the most popular clustering method
were considered: K-means clustering (Km) and spectral clustering (Sc [159]) and all the
corresponding results are reported in Table 3.1.

The best-performing method is Elastic net Subspace Clustering (EnSC) [236], which ranked
highest for five of the nine datasets. For three of these five, i.e., UTK, MSRA, and G3D
datasets, EnSC’s performance is approximately 5% better than the second-best performing
method.

Dataset Km Sc EDSC OMP DSCN LSR SSC EnSC

F3D 45,58 66,05 54,42 61,40 57,02 60,47 69,12 70,23
UTK 34,67 66,83 52,71 58,79 69,35 57,79 73,97 78,90
MSRP 42,78 52,69 51,90 50,14 49,26 47,31 49,60 49,86
MSRA 41,11 65,17 52,69 43,99 59,91 54,40 57,27 62,84
G3D 31,22 64,71 44,48 45,70 62,59 64,25 65,16 72,25
HDM-05-14 32,36 53,35 52,42 47,67 56,27 51,60 49,13 56,00
HDM-05-65 31,41 44,46 44,43 36,07 30,95 42,98 35,98 42,38
MSRC 61,54 84,34 81,30 51,20 71,35 87,04 62,27 83,27

AVG 40,08 62,22 54,29 49,37 57,09 58,23 57,81 64,46
STD 9,63 11,28 10,82 7,58 11,92 12,66 11,63 13,38

Table 3.1 Clustering accuracy (%) of subspace clustering methods as well as k-means (Km)
and spectral clustering (Sc). AVG and STD represent the average and standard deviation
results in each column. The best performance for each dataset is emphasised in bold.
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3.4.2 U-HAR using temporalSSC

For this set of experiments (Figure 3.2(b)), the first step is to apply the proposed temporal
pruning approach (namely temporalSSC as in Section 3.3.2) as a pre-processing stage.
while the rest of the pipeline follows the same setting as the pipeline of Section 3.4.1.
Following, different pruning strategies for the temporal dimension of data by using SSC (see
Figure 3.2(b)) were applied to raw data, before the encoding of the covariance descriptor.
For the subspace clustering implementation, SSC [60] was chosen for its computational
efficiency and rapid convergence time.

Table 3.2 reports the clustering accuracy of different temporalSSC strategies, along with
SSC results of Table 3.1 as a baseline comparison. Results of percentage temporalSSC and
threshold temporalSSC are related to the best accuracy along the different percentage values
of φ (i.e., 75%, 50% and 25%).

Only with the exception of F3D (due to its original low dimensionality of the dataset and the
extreme pruning of timestamps), the results show that applying temporalSSC overall con-
tributes positively to the clustering performance of SSC [60]: the performance improvement
is up to an average 8% among all dataset, where on MSRC (the biggest dataset available) the
improvement goes up to 21%.

Dataset SSC
min
φ

min
temporalSSC

percentage
temporalSSC

threshold
temporalSSC

F3D 69,12 67,91 66,51 65,12 (φ = 75%) 68,84 (φ = 50%)
UTK 73,97 64,82 80,90 68,34 (φ = 25%) 72,86 (φ = 75%)
MSRP 49,60 48,88 47,88 50,42 (φ = 25%) 49,58 (φ = 25%)
MSRA 57,27 59,61 57,09 62,66 (φ = 25%) 63,02 (φ = 75%)
G3D 65,16 64,86 64,10 69,68 (φ = 75%) 71,49 (φ = 75%)
HDM-05-14 49,13 63,12 59,04 59,33 (φ = 25%) 59,77 (φ = 25%)
HDM-05-65 35,98 41,31 44,00 43,66 (φ = 25%) 41,53 (φ = 50%)
MSRC 62,27 83.79 83,62 83,41 (φ = 75%) 83,14 (φ = 75%)

AVG 57,81 61,79 62,89 62,83 63,78
STD 11,63 11,90 13,23 11,40 12,53

Table 3.2 Clustering accuracy (%) of temporalSSC combined with different strategies and
when standard SSC applied for the final clustering. φ is the number of subspaces utilised
(Section 3.3.2). The first column shows the SSC’s performances alone. AVG and STD
represent the average and standard deviation results in each column. The best performance
of each dataset is emphasised in bold.
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3.4.3 U-HAR using dictionary-based subspace clustering models

With this last set of experiments (Figure 3.2(c)), the Temporal Subspace Clustering was
utilised to show the effectiveness of a dictionary-based subspace clustering (Section 3.2.2)
for temporal series of data when applying temporal regularization on top of the (optional)
encoding through covariance (Section 3.3.1).

In Sections 3.4.1 and 3.4.2, a (flattened) covariance representation was adopted to encode
the actions’ kinematics. Computationally, this operation cast an action sequence with a
variable temporal duration into a fixed-size embedding passed in input to subspace clustering
methods based on the self-expressiveness property. Here, TSC leverages a dictionary learning
framework which, together with the temporal regularization, should effectively capture the
temporal variability of the data. To understand to which extent this is true, the covariance
representations within the computational pipeline were intentionally left apart to separately
evaluate these two alternative strategies of handling the temporal dimensions of the data.

TSC approach is combined with the following pruning strategies such that a constant temporal
length φ for all the datasets in use is set as:

TSC min: the temporal length φ of the entire dataset is fixed to equal the shortest time
duration across all the skeletal dataset sequences. This is done by using the random
permutation of each timeframe.

TSC max: the opposite process of TSC min. For each instance, its timeframes are replicated
until the temporal length φ is equal to the longest time duration across all the sequences
in the skeletal dataset.

temporalSC + TSC: spectral clustering is used to get φ equal to the shortest time duration
across all the sequences in the skeletal dataset.

temporalKm + TSC: k-means clustering is used to get φ equal to the shortest time duration
across all the sequences in the skeletal dataset.

As the final steps of the pipeline, the standard Normalized Cuts [182] and Hungarian algo-
rithms determine the clustering labels necessary for evaluation against the ground truth.

Tables 3.3 and 3.4 report the unsupervised clustering accuracy of the approach given in
Section 3.4.3 (as well as illustrated in Figure 3.2(c)), where TSCmin, TSCmax, temporalSC +

TSC, and temporalKm + TSC results were given with and without covariance descriptor.
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Dataset TSCmin TSCmax
temporalSC

+ TSC
temporalKm

+ TSC
supervised

s.o.t.a.

F3D 84,65 94,88 95,81 87,91 99,07 [105]
UTK 93,97 99,50 96,98 93,47 100,00 [244]
MSRP 93,48 98,02 88,67 96,32 95,50 [22]
MSRA 87,18 85,64 82,47 88,51 97,40 [22]
G3D 88,99 85,07 90,20 88,84 96,02 [218]
HDM-05-14 89,80 80,32 88,48 83,97 99,10 [22]
HDM-05-65 70,51 75,97 72,13 68,42 96,92 [56]
MSRC 97,96 99,08 98,81 99,00 98,50 [22]

AVG 88,32 89,81 89,19 88,31
STD 7,79 8,62 8,18 8,80

Table 3.3 Clustering accuracy (%) of TSC combined with different strategies of the uni-
forming temporal dimension of each dataset, without the usage of a covariance descriptor.
The supervised state-of-the-art (s.o.t.a) results are also given. AVG and STD stand for each
column’s average and standard deviation results. The best-unsupervised performance of each
dataset is emphasised in bold.

Dataset
cov

TSCmin
cov

TSCmax
temporalSC
+ TSC cov

temporalKm
+ TSC cov

supervised
s.o.t.a.

F3D 81,40 81,86 88,84 87,44 99,07 [105]
UTK 96,98 92,96 96,98 83,92 100,00 [244]
MSRP 81,30 84,70 76,20 71,10 95,50 [22]
MSRA 79,89 83,30 81,13 87,61 97,40 [22]
G3D 90,20 92,61 92,46 92,91 96,02 [218]
HDM-05-14 86,73 83,82 84,84 81,63 99,10 [22]
HDM-05-65 83,57 85,62 84,64 86,00 96,92 [56]
MSRC 91,09 99,05 97,42 91,07 98,50 [22]

AVG 86,40 87,99 87,81 85,21
STD 5,59 5,72 7,05 6,31

Table 3.4 Clustering accuracy (%) of TSC combined with different strategies of the uni-
forming temporal dimension of each dataset, with the usage of a covariance descriptor. The
supervised state-of-the-art (s.o.t.a) results are also given. AVG and STD represent the average
and standard deviation results in each column. The best-unsupervised performance of each
dataset is emphasised in bold.
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The last column of both tables reports the state-of-the-art performance obtained for each
dataset. It is important to highlight that the corresponding state-of-the-art methods are all
supervised, while all other results given in that table are unsupervised.

The results show that applying TSC gives the best overall accuracy among all techniques
adopted in this paper. Table 3.3 and Table 3.4 demonstrate that the average of results of
each implementation (column) is over 85% among all cases. Except for G3D and HDM-
05-65 datasets, the average accuracy of each method without covariance (cov) descriptor is
approximately 2% better than a method with cov descriptor. The comparisons between the
temporal frame selection approaches show that in 5-out-of-8 datasets, the pruning of data,
therefore reducing its temporal dimension, is beneficial to encode and represent this type of
dataset. Whereas, for MSRP and MSRC datasets, augmenting the data in temporal dimension
leads to performance levels better than the state-of-the-art methods, which are all supervised.

3.5 Concluding Remarks

The context and novelties introduced in this chapter, where the focus lies on skeletal data
analysis embracing a fully unsupervised approach to tackling HAR, were published in [153].
The experimental analysis was validated on eight different datasets, which are different
from each other in terms of action types, the number of action classes involved, and the
experimental protocol they were captured. Across such a wide variety of experimental
benchmarks, this chapter’s findings show that the proposed pipeline is superior to previous
subspace clustering methods relying on the self-expressiveness property of data. Subspace
clustering methods based on the self-expressiveness property can remarkably be enhanced
in performance by covariance representation to the point that other baseline methods are
systematically outperformed. On the other hand, the temporal subspace clustering method
that relies on dictionary learning and temporal Laplacian regularization combined within the
pipeline results in remarkably good HAR performances: This demonstrates the benefits of
pruning action sequences along the temporal dimension. Overall, combining the experimental
findings enables a fully unsupervised pipeline for HAR to always reduce the gap with
supervised approaches while surprisingly outperforming them in some cases.



Chapter 4

Unsupervised Human Action and
Emotion Recognition with Skeletal Graph
Laplacian and Self-Supervised
Viewpoints Invariance

After an introduction related to pure U-HAR described in Chapter 3, the follow-up step is
shifting towards more extensive and complex data regimes. This is due to overcome one
of the main drawbacks of subspace clustering algorithms related to the size of the given
dataset: the space complexity of the affinity matrix W (of size n× n and required for the
classification task) is O(n2), where n is the size of the dataset. Therefore the applicability of
such algorithms is restricted only to smaller datasets, impairing the learning of richer nuances
of human actions.

To overcome this, recent literature is shifting towards the usage of unsupervised feature

representation to solve the U-HAR task (check Figure 4.1 for a general depiction and
Chapter 2 Section 2.2 for a detailed description). The focus of this chapter is to propose
a novel end-to-end method with a convolutional (residual) autoencoder (Section 4.1) that
uses graph Laplacian regularisation (Section 4.2) to model the skeletal geometry across
the temporal dynamics of actions. Using unannotated 3D skeleton sequences, feature
representations were learned (as formalised e.g., in [194] and illustrated in Figure 4.2), which
is then fed to an action recognition classifier (e.g., 1-nearest neighbour, see Section 4.4) to
validate the method performance as defined in standard evaluation protocols [247, 194, 173,

36
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Figure 4.1 Unsupervised Human Action Recognition (U-HAR) from skeleton data. Features
were computed without supervision but by learning how to reconstruct skeleton data extracted
with a generative approach. U-HAR evaluation relies on applying 1-Nearest Neighbour (1-
NN) classifier or Linear Evaluation Protocol (LEP) [247, 194, 173, 80, 142, 225, 100, 117].

80, 142, 225, 100, 117]. This proves the benefits of performing residual convolutions to
jointly learn representations with spatio-temporal convolutions instead of relying on more
complex and memory-intense architectures, which use e.g., contrastive learning, GANs, gated
networks, or recurrent networks [247, 194, 173, 80, 142, 225, 100, 117] (check Section 4.8
for a comparison).

To boost the performance even further, the adoption of (graph) Laplacian regularisation

[5] ensures the learning of representations that are aware of the spatial configuration of the
skeletal geometry. This regularisation was applied in the reconstruction space (i.e., the space
induced by the last layer of the decoder) to inject a "continuity pattern" while making this
"approximation" smoother. This is the first attempt where Laplacian Regularisation is used
within an unsupervised feature learning paradigm for HAR.

In addition, the proposed approach is robust towards viewpoint variations by including a
self-supervised gradient reverse layer (Section 4.3) that ensures generalisation across camera
views. To promote the deployment of the proposed method in practical scenarios, the
problem of viewpoint invariance was also tackled, as camera positions and orientations used
to capture humans very likely differ from the setup used in the tested dataset. Improvements
of viewpoint-invariance were made possible by perturbing the original data with random
rotations. Then, to increase the model’s generalizability, the unsupervised learned data
representations were enhanced by pairing the Laplacian-regularised reconstruction loss with
a regressor head. This regressor attempts to learn the applied random rotations’ parameters
(rotation angles). Using adversarial training in the form of a gradient reversal layer [67],
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the learned feature representation can fool this regressor, being, thus, not influenced by the
rotational perturbation. This is a proxy for rotational invariance achieved with a different
(and more effective - see Table 4.6 and Section 4.7) method than the Siamese network
proposed in [142] (only attempting to align rotated with non-rotated data). It is important
to notice that invariance was not achieved towards some annotated data features. Still, the
random rotations generated were directly synthesised from the data itself: thus leveraging the
concept of self-supervision. To validate the proposed claims, experiments were performed on
three large-scale skeletal action datasets: NTU-60 (Cross-Subject and Cross-View) [181],
NTU-120 (Cross-Subject and Cross-Setup) [121], and Skeletics-152 [75]. Ablation studies
were performed to dissect the impact of the autoencoder, the skeletal graph Laplacian, and the
adaptation of gradient reversing to U-HAR (Section 4.4). The proposed end-to-end approach
outperformed prior unsupervised skeleton-based methods for U-HAR, and it also favourably
scored w.r.t. state-of-the-art supervised methods, even outperforming a few of them (see
Figure 4.8).

To further enhance the flexibility of the method proposed in this chapter, it was also tested
w.r.t. a different research scenario: the Human Emotion Recognition task (HER) using full-
body motion-based 3D skeletal data. The analysis of human emotions can include several
modalities, such as text, physiological signals, acoustic data, facial landmarks, facial images,
or full-body motion. It is worth mentioning that representing the full-body motion with
skeletal joints is principled and rooted in cognitive perception [90]. Therefore, a continuous
human body moving in time is approximated with a collection of discrete trajectories. The
successes in skeleton-based HER [8, 161, 46, 65, 41] highlight the effectiveness of processing
full-body motion represented in terms of 3D-skeleton data.

Although unsupervised approaches for HAR are tremendously increasing their impact in
terms of action classification while competing to reduce the performance gap with the
fully supervised counterparts, there have been yet no attempts to apply unsupervised HER
(U-HER) using skeleton data. Therefore, Section 4.6 presents an experimental analysis
w.r.t. SOTA-unsupervised and supervised methods for HER.

The last sections are related to the extensive analyses w.r.t. the different components of the
proposed model for both action (U-HAR) and emotion (U-HER) scenarios, proving its useful-
ness under various evaluation protocols with observed higher-quality feature representations,
e.g., with fine-tuning and end-to-end training protocol (Section 4.11), even if when it is
trained with fewer data (Section 4.12), showing its remarkable transfer-ability across various
domains (Section 4.17).



4.1. CONVOLUTIONAL AUTOENCODER 39

4.1 Convolutional Autoencoder

The proposed Convolutional Autoencoder (AE) input is a set of 3D human body joints in
time extracted from a video sequence with one or more subjects performing an unlabelled
action. Let X denote an input sequence of body joints represented as a d ×m× t tensor,
containing the x,y,z coordinates (d = 3), the number of joints (m = 25 on NTU-60 [181],
and NTU-120 [121]) and the number of timestamps t1. This aims at obtaining unsupervised

feature representations by learning an autoencoder that reconstructs the input data X using a
Mean-Squared Error (MSE) loss:

LMSE = 1
2EX∼B

[
∥X− X̂∥2

F
]
, (4.1)

where ∥ ·∥F denotes the Frobenius norm, i.e., the Euclidean norm of the vector obtained after
flattening the tensor. The MSE loss in Equation 4.1 is minimised by using gradient descent
(Adam optimiser) over mini-batches B. The reconstructed data are defined as

X̂ = Dθ ◦Eϕ(X) (4.2)

and computed using an encoder-decoder architecture, where ϕ denotes the learnable parame-
ters of the encoder E and θ are the analogous parameters for the decoder D. The complete
architecture of the convolutional autoencoder is detailed in Figure 4.2.

4.1.1 Residual blocks of convolutions

The proposed AE architecture stacks different fully-residual blocks for both encoder and
decoder, whereas each block is made of convolutions capable of jointly learning spatial
representations of skeletal data in time, treating each skeletal data X as 2D convolutions.
Padded convolutions with fixed size kernels (either 1×1 or 1×3) and stride 1, applied inside
E and D, are capable of capturing spatial and temporal relationships of data along tensor
rows for the former and along tensor columns for the latter. Hence it is called convolutions-

in-time. In detail, within the encoder blocks, the residual layer is made of a series of three
2D-convolutional layers (each with ReLU activations) stacked together. At the same time,
decoder blocks share a similar structure but use instead 2D-deconvolutional layers with the
addition of 2D-BatchNorm applied after each ReLU activation.

1 To be comparable with the prior art, each skeleton sequence was cast to a fixed temporal length [194].
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Figure 4.2 The proposed method: exploiting a convolutional autoencoder (AE) trained with
LMSE (Equation 4.1). In the reconstruction space, Skeletal Laplacian Regularisation (L;
Section 4.2 was performed, Equation 4.7), enriching the learned (hidden) feature representa-
tions with the skeletal geometry information. The additional inclusion of a self-supervised
viewpoint-invariance (SSVI module, Section 4.3), which adapts a gradient reversal layer [67]
achieves robustness towards different viewpoints. The convolutional encoder and deconvolu-
tional decoder blocks exploit residual connections, while batch normalisation is exclusive to
the decoder.
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Figure 4.3 The learning curves of the AE model. Train/test accuracy values – left pane –
and MSE loss – right pane – of the proposed model trained on DMCD [52] dataset. The
proposed model achieves a stable performance at the testing time across training epochs: a
favourable characteristic given the plateau in performance across training epochs.

To ensure the bottleneck structure of the convolutional autoencoder, a MaxPool layer is
applied at the end of each encoder block, whereas a MaxUnpool layer is used at the beginning
of each decoder block (see Figure 4.2).

4.1.2 Model Selection and Hyperparameters

The proposed model consists of a concatenation of three encoder blocks and three decoder
blocks with ReLU activation layers, defined in the previous Section. It is trained for 100
epochs using Adam optimiser with a learning rate of 10−3 when the batch size is 128. At
the end of the encoder, a fully-connected layer represents the latent space z of size 2048.
The size of z was determined by testing various numerical combinations, e.g., 32, 128, 512.
For the convolutional autoencoder, 2048 results in the best performances (up to +10% in
NTU-60 and +23% in NTU-120) out of all combinations. Thus, this value was fixed in all
experiments. The features extracted from that layer were used, which are later given to the
classifiers (i.e., 1-NN protocol [194], or Linear Evaluation Protocol [247]. In Figure 4.4, the
learning curves of the proposed model after applying z-normalisation are given. As seen
in this figure, the proposed model achieves a stable performance at the testing time across
training epochs. This is an affirmative characteristic, also showing that representations can
be learned without over-training.
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Figure 4.4 The learning curves of the AE model. Train/test accuracy values – top pane
– and MSE loss – bottom pane – of the proposed model trained on NTU-60 [181] in the
Cross-Subject protocol. The proposed model achieves a stable performance at the testing
time across training epochs: a favourable characteristic given the plateau in performance
across training epochs.
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4.2 Skeletal Laplacian Regularisation

Belkin et al. [5] propose to regularise a model using the implicit geometry of the feature
space, regardless of the distribution of their labels, by using the Laplacian of the graph built
over the cross-similarity of examples. A similar approach was pursued by a recent end-to-end
trainable approach for image denoising [150]. A different approach was followed by applying
Laplacian regularisation in space while the proposed autoencoder learns to reconstruct input
skeletal data (i.e., reconstruction space). In this way, the goal is to inject information of
skeletal geometry into the proposed model.

Different from supervised HAR methods (e.g., [122, 229]) that directly exploit the "raw"
adjacency matrix to encode skeletal connectivity, a more powerful mathematical tool was
taken into consideration, the graph Laplacian, since it better capitalises from the skeletal
geometry. This differs from prior works, e.g., [247, 194] relying on Mean-Squared Error
(MSE)-based action reconstruction only.

The graph Laplacian is a well-known and established mathematical tool to analyse weighted
undirected graphs. It builds upon the graph adjacency matrix W, whose entries Wi j are
defined such that Wi j = 1 if and only if the nodes i and j are connected through an edge. The
(un-normalized) graph Laplacian L is easily computable from W as

L = D−W, (4.3)

where D is the degree matrix (obtained as the diagonal matrix where its (i, i)-th element is
Dii = ∑ j Wi j) [50]. The Laplacian regulariser

R(z) = ∑
i, j

Wi j(zi − z j)
2 (4.4)

can be applied to a hidden vectorial embedding z to learn the geometry of the feature space
(where z belongs to) and to capitalise from these cues to solve a semi-supervised learning
paradigm [5]. This is true because, thanks to the weights Wi j, the alignment between the
scalar components zi and z j can be prioritised by simply putting a stronger penalty between
pairs of components that must be well aligned.

This chapter attempts to do so by promoting the alignment of skeletal joints, which are
connected through a bone (e.g., an edge exists if and only if joints are connected).
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Therefore, to correctly compute the used Graph Laplacian regularization, it was set as fixed
W, which corresponds to the adjacency matrix of each dataset in use. The results given in
Section 4.9 show that such a setting is also empirically favourable compared to other ways
of initialising W. This is intended as a valid proxy for injecting the knowledge of skeletal
geometry while learning the action representations. The reason why R is termed Laplacian
regularizer lies in the fact that

R(z) = 2 z⊤Lz (4.5)

That is, R(z) implements a "L-weighted weight decay", since

R(z) = ∥Qz∥2
2 (4.6)

if setting Q =
√

L.

Unlike prior art [5, 150], Laplacian regularization was applied to the reconstruction space
learned by the proposed decoder, i.e., the space where X̂ belongs to. The proposed skeletal
Laplacian regularizer was computed as:

Rskel = EX∼B

[
Et,d

[
x̂(t,d)⊤Lx̂(t,d)

]]
, (4.7)

where x̂(t,d) is the m-dimensional column vector stacking the scalar (abscissae, ordinatae
or quotae) coordinates along the dimension d obtained from the reconstructed sequence
X̂ at time t. In Equation 4.7, the regularizer Rskel is averaged over the mini-batch B,
considering the reconstructions produced by the convolutional autoencoder across coordinates
and timestamps. The Laplacian regularization attempts to inject the connectivity of the
skeleton to learn a feature representation, which is aware of the skeletal geometry.

This can be deemed to be a proxy of features that are aware of the fact that the representation
learned, e.g., from the shoulder and elbow joints, cannot be decorrelated from each other
since those joints are closed in space, while there can be joints, which are more distant in
space (e.g., left foot vs right hand) are allowed to be more independent (as seen in Figure 4.5).
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Figure 4.5 Skeletal Laplacian Regularisation. Top: location of the skeletal joints on NTU-60
[181]. Bottom: corresponding adjacency matrix W (binary).
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4.3 Self-supervised Viewpoints Invariance (SSVI)

Originally proposed for domain adaptation, the gradient reversal layer (GRL) [67] is arguably
helpful to achieve a better generalisation: e.g., classify actions performed by multiple sub-
jects [249]. Differently, a non-discriminative architecture (an autoencoder) for viewpoint
invariance was proposed. This was performed by synthesising the skeletal joints’ auxiliary
rotations to simulate different viewpoints. Then, by achieving the invariance across view-
points by a GRL layer that is fooling a predictor attempting to infer the viewpoint from the
hidden representation of the autoencoder. Li et al. [108] adapts GRL to obtain view-invariant
action representations.

However, that work differs from this chapter’s proposal by (a) relying on RGB-D data and,
more importantly, (b) using the annotated viewpoints of the datasets as the source and target
domains and learning how to distinguish them by classification.

A viewpoint-invariant action representation can be obtained by synthesising multiple view-
points of the original skeletal data. Geometrically, this operation can be easily framed as
(right) multiplying Xt , the m×3 matrix stacking the m 3D joints captured at a given times-
tamp t, by Ω defined as the product of Ωx, Ωy, and Ωz, each corresponding to the independent
three (planar) rotations performed around the x,y,z axis, respectively. Ωx depends upon the
pitch angle α , Ωy depends upon the yaw angle β , and Ωz depends upon the roll angle γ .

By the means of the so-defined Ω, Zt = XtΩ could be obtained and, hence, synthesize a
rotation under a generated viewpoint by iterating the process over all timestamps t of the
sequence X and, afterwards repeating the whole procedure for all sequences X in the mini-
batch B, generating the transformed sequences Z. When Z is obtained from X according to
this procedure, the action class referring to them remains unaltered in its information content,
while only the viewpoint has changed.

Z and X were made indistinguishable, being the latter a proxy for an improved hidden repre-
sentation that the proposed autoencoder learns from data since, in this way, the autoencoder
will be robust towards different viewpoints, claiming that this requirement is a proxy for an
improved viewpoint generalisation. An L1 norm was used to train a regressor that predicts
the triplet [α,β ,γ], used to rotate the data.

The gradient reversal layer (GRL) [67] took advantage to flip the gradients coming from the
regressor. By doing so, invariance across synthetic rotations could be promoted by explicitly
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Figure 4.6 Self-Supervised Viewpoints Invariance using a regressor and a gradient reversal
layer [67]. The encoder learned the hidden representation to be invariant across synthetic
rotations applied to the input data X, using the Euler’s angles α,β ,γ . This could be seen as a
proxy to achieve viewpoints invariance and generalise across random rotations (parametrized
by Euler’s angles α,β ,γ).

optimising the learned representation to fool a regressor attempting to predict the [α,β ,γ]

triplet used to rotate the data of each mini-batch before every forward pass.

This can be referred to as the self-supervised viewpoints invariance (SSVI) module, which
is visualised in Figure 4.6 and connected to the hidden representation of the autoencoder (see
Figure 4.2).

For the SSVI experiments, data rotation along the z-axis was applied. A sigmoid activation
function, multiplied by 2π to match the Euler rotation angle, was applied for the fully
connected layer of GRL. The GRL loss is an L1 loss calculated between the original Euler
angle of rotations and the predicted Euler angle. Additionally, a penalty term was included in
the GRL loss and a penalty term for the GRL layer (i.e., the alpha value depicted in [67]):
both are set to 10−3.
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4.4 Experimental Analysis

The proposed method was validated using the three large-scale skeletal action datasets (NTU-
60 [181], NTU-120 [121], and Skeletics-152 [75]) and two skeletal emotion datasets (DMCD
[52], and Emilya [65]). Refer to Chapter 2, Sections 2.4.8 to 2.4.10, 2.5.1 and 2.5.2 for
a detailed description of those datasets used as input for the experimental analysis. The
proposed method was valuated2 on NTU-60 dataset for Cross-Subject (C-Subject) and Cross-
View (C-View) settings [181], and NTU-120 for Cross-Subject (C-Subject) and Cross-Setup
(C-Setup) settings [121]. For HER datasets, on par with [8], a 25-frames overlapping time-
patches were applied while still retaining the temporal length of 100 frames. Figure 4.3 shows
the stable performance of AE-L w.r.t. emotion datasets. The pseudo-code of the proposed
method is given in Algorithm 1. Below, details on how a trained autoencoder is used for
inference are given. All implementation details, including learning curves, can be found in
Section 4.1.2.

For all experiments, the following evaluation protocols were applied:

• Linear Evaluation Protocol (LEP): This is the most standard evaluation protocol for
unsupervised feature learning [247, 173, 100, 80, 142, 225, 109]. A downstream task
verifies the methods by attaching a linear classifier (a fully-connected layer followed
by a softmax layer) to the frozen encoder (shown as E in Section 4.1). Then, the linear
classifier is trained by using the available labels.

• 1-Nearest Neighbour Predictor (1-NN): Another standard evaluation protocol is
applying a 1-nearest neighbour predictor [194]. In detail, the class inference of a test
data X̃ is performed by applying a 1-nearest neighbour predictor, fed by Eϕ(X̃), and
exploiting a Euclidean Gram matrix computed over the whole training set, which, in
turn, is obtained using the splits of the datasets.

4.4.1 Data Pre-processing

Missing time-frames were discarded, as applied in Predict & Cluster [194]. Each skeleton
was normalised in terms of bone length (in the range of [-1, 1]), followed by a regularization
of the temporal length of each sample by setting it up to 100 time-frames (cutting frames
of longer samples or replicating frames for shorter samples), and finally splitting data
w.r.t. Cross-Subject, Cross-View and Cross-Setup settings of benchmarks [181, 121]. This

2 The code is available in: www.github.com/IIT-PAVIS/UHAR_Skeletal_Laplacian

www.github.com/IIT-PAVIS/UHAR_Skeletal_Laplacian
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procedure is adapted from Predict & Cluster [194] except from the temporal length of each
sample (choosing 100 time-frames instead of 50) and replication of the frames where instead
Predict & Cluster [194] uses zero padding for the actions having less than their fixed temporal
length.

4.5 U-HAR - Comparisons against the state-of-the-art

Algorithm 1 Training of the proposed approach
1: Randomly initialise Eϕ , Dθ and the SSVI module
2: Compute the skeletal graph Laplacian L from adjacency

matrix W
3: while not converged do
4: Sample a mini-batch of data B

5: Do a forward pass through Eϕ and Dθ , obtaining X̂
6: Update Eϕ , Dθ using the MSE loss as in Equation 4.1

▷ (OPTIONAL SKELETAL LAPLACIAN REGULARISATION)

7: Update Eϕ , Dθ using the Rskel loss as in Equation 4.7
▷ (OPTIONAL VIEWPOINTS INVARIANCE)

8: Randomly sample α,β ,γ in [0,2π]

9: Rotate all data in B −→ B(α,β ,γ)

10: Do a forward pass through Eϕ

11: Update Eϕ using the SSVI module fed by B(α,β ,γ)

12: end while
13: Freeze encoder parameters Eϕ and append a linear classifier

(LEP) or a 1-Nearest Neighbour classifier (1-NN)

This section compares AE-L against the
state-of-the-art (SOTA) unsupervised and su-
pervised learning methods for the Human
Action Recognition task. Only skeletal data
was used in the experiments, i.e., discarding
the RGB and depth images, normalising data
as in prior works [194] and detailed in the
previous section, feeding the proposed Rskel-
regularized autoencoder (AE-L). Then, one
of the two evaluations was applied: 1-NN or
LEP, as described in Section 4.4. It is impor-
tant to highlight that the main competitors
are the methods performing unsupervised
feature learning. Still, this section includes
the fully supervised methods in comparison
to show each dataset’s current upper bound performance and the gap between unsupervised
and supervised methods. The corresponding results are given in Tables 4.1 to 4.3 for NTU-60
[181], NTU-120 [121], and Skeletics-152 [75] datasets, respectively. The Confusion matrices
belonging to AE-L in testing can be found in Section 4.14. In addition, readers can find in
Section 4.14.1 the complete list of action classes that benefit from the usage of Laplacian
regularization. Detailed discussion is provided below.

4.5.1 Results for NTU-60

For NTU-60 C-Subject and C-View, the learned features of AE-L are superior to any other
unsupervised feature learning SOTA. In addition, a favourable comparison w.r.t. supervised
methods demonstrates the effectiveness of the proposed AE-L.
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HAR on NTU-60 [181]

Method
Feature C-Subject C-View

Learning ACC (%) ACC (%)
Lie Group [170] supervised 50.1 52.8
Cavazza et al. [22] supervised 60.9 63.4
H-RNN [56] supervised 59.1 64.0
Spatio-Temporal LSTM [122] supervised 69.2 77.7
Part-Aware LSTM [181] supervised 62.9 70.3
TCN [193] supervised 74.3 83.1
VA-LSTM [241] supervised 79.2 87.7
DGNN [183] supervised 89.9 96.1
4s-ShiftGCN [28] supervised 90.7 96.5
CTR-GCN [26] supervised 92.4 96.8

U-HAR on NTU-60 [181] – 1-NN Protocol [194]

P&C FS⋆ [194] unsupervised 50.6 76.3
P&C FW⋆ [194] unsupervised 50.7 76.1
Baseline AE unsupervised 50.1 80.4

AE unsupervised 52.3 81.0

AE-L (AE + Rskel) unsupervised 54.1 83.1

U-HAR on NTU-60 [181] – Linear Evaluation Protocol (LEP) [247]

LongT GAN [247] unsupervised 39.1 48.1
MS2L [117] unsupervised 52.5 –
PCRP [225] unsupervised 53.9 63.5
VAE-PoseRNN [100] unsupervised 56.4 63.8
AS-CAL [173] unsupervised 58.5 64.6
MM-AE [80] unsupervised 61.2 70.2
EnGAN-PoseRNN [100] unsupervised 68.6 77.8
SkeletonCLR joint [109] unsupervised 68.3 76.4
Baseline AE unsupervised 68.5 84.3

AE unsupervised 69.2 85.1

AE-L (AE + Rskel) unsupervised 69.9 85.4

Table 4.1 Performance comparisons on NTU-60 [181] in terms of accuracy (%). The numbers
of methods proposed in this chapter are in italic. Improved performance over the prior art is
underlined. The best of all unsupervised results are in bold. Refer to [36] for the complete
list of supervised benchmark results. Only a few example approaches that the proposed
method surpasses and the top scorers are listed herein. ⋆FS and FW stand for a decoder with
“fixed states” and “fixed weights”, respectively [194].
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Cross-Subject evaluation protocol

Ablation study shows that AE-L improves the performance of AE model, demonstrating the
advantages of using Laplacian regularization: +1.8% in 1-NN, +0.7% in LEP for NTU-60
C-Subject setting. The proposed AE is preferable to the Baseline AE (i.e., not using residual
layers in design) as performing +2.2% in 1-NN, +0.7% in LEP for NTU-60 C-Subject,
showing the contribution of using residual convolutions layers. For NTU-60 C-Subject, the
learned features of AE-L and AE models are superior to P&C [194]: +3.5% as compared to
P&C FS [194] and +3.4% as compared to P&C FW [194]. While exploiting LEP, AE-L again
performs better than the approaches based on RNNs [100, 173], performing +11.4% better
than AS-CAL [173] and +8.7% than MM-AE [80]. AE-L improves over VAE-PoseRNN
[100], EnGAN-PoseRNN [100] and SkeletonCLR joint [109] by +13.5%, +1.3%, +1.6%,
respectively. It also surpasses MS2L [117] (+17.4%), which benefits from contrastive
learning, motion prediction, and jigsaw puzzle recognition.

Cross-View evaluation protocol

For NTU-60 [181] C-View, AE-L improves the performance by +6.8% and +7.0% over P&C
FS [194] and P&C FW [194], respectively within the 1-NN Protocol. In the same protocol,
the ablation study shows that AE-L improves the performance of Baseline AE by +2.1%, and
using residual layers (i.e., the proposed AE) performs 0.6% better than not using (Baseline
AE). On NTU-60 [181] C-View, with LEP, the superiority of AE-L is much visible such that
it notably exceeds LongT GAN [247] (+37.3%), PCRP [225] (+21.9%), AS-CAL (+20.8%),
VAE-PoseRNN (+21.6%), MM-AE (+15.2%), EnGAN-PoseRNN (+7.6%) and SkeletonCLR
joint [109] (+9%). AE also surpasses "Baseline AE" by 0.8%, again showing residual layers’
positive contribution.

Comparison with supervised methods

A performance comparison of the proposed AE-L with SOTA-supervised skeleton-based
HAR approaches is also included, although they are not direct competitors. This compar-
ison includes kernel-based methods [170, 22] and the methods realising feature learning
[56, 122, 181, 241, 193, 183, 28, 26] with several different deep learning architectures,
e.g., RNNs, LSTMs, CNNs, and Graph Convolutional Networks (GCNs). Although based
on unsupervised learning, AE-L can achieve better performance than the fully supervised
kernel-based methods [170, 22], with a +7.2% to +19.8% improvement in C-Subject and a
+22% to +32.6% improvement in C-View setting. It also outperforms several fully supervised
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deep architectural methods: H-RNN [56] (providing an increase of 10.8% in C-Subject and
up to 21.4% in C-View), Spatial-Temporal LSTM [122] (resulting in a boost of +0.7% in C-
Subject and up to +7.7% in C-View) and part-aware LSTM [181] (achieving an improvement
of +7% in C-Subject and up to +15.1% in C-View) while performing better than temporal
CNN (TCN) [193] (up to +2.3%) in C-View setting. These results show that the proposed
unsupervised residual convolutions with Laplacian regularization exceed even supervised
GRUs, RNNs, and LSTMs (and variants) for HAR.

Besides the favourable results of AE-L it is important to note that fully supervised techniques,
e.g., [241, 183, 28, 26], perform better than AE-L. These supervised methods mainly imple-
ment GCNs, and some of them additionally adapt LSTMs [188], or a variable temporal dense
block [220]. As expected, the best performing method for this dataset is [26], with 92.4%
and 96.8% in C-Subject and C-View, respectively.

4.5.2 Results for NTU-120

For NTU-120 C-Subject, AE-L once again performs better than all unsupervised SOTA,
showing a complementary behaviour noticed in NTU-60 [181].

Cross-Subject evaluation protocol

Ablation study shows that AE-L improves the performance of AE model, demonstrating the
advantages of using Laplacian regularization: +1.4% in 1-NN, +2% in LEP for NTU-120
C-Subject setting. The proposed AE is preferable to the Baseline AE (i.e., not using residual
layers in design) as performing +0.8% in 1-NN, +0.7% in LEP for NTU-120 C-Subject,
showing the contribution of using residual convolutions layers. For NTU-120 C-Subject, AE-

L outperforms P&C [194] (+0.7%) when 1-NN is applied, with an increase in performance
w.r.t. both AS-CAL [173] (+10.5%) and PCRP [225] (+17.4%) in LEP.

Cross-Setup evaluation protocol

On NTU-120 [121] C-Setup, AE-L again performs better than P&C within the 1-NN Protocol
(+2.0%), and in LEP, it performs better than AS-CAL and PCRP by margins of +13.2% and
+17.3%, respectively. In this setting, AE achieves better results than "Baseline AE" by +0.2%
for 1-NN and +1.5% for LEP.
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HAR on NTU-120 [121]

Method
Feature C-Subject C-Setup

Learning ACC (%) ACC (%)
Part-Aware LSTM [181] supervised 25.5 26.3
Soft RNN [84] supervised 36.3 44.9
Dynamic Skeletons [83] supervised 50.8 54.7
Spatio-Temporal LSTM [122] supervised 55.7 57.9
Internal Feature Fusion [122] supervised 58.2 60.9
Qiuhong et al. [95] supervised 58.4 57.9
DualHead-Net [25] supervised 88.2 89.3
EfficientGCN-B4 [192] supervised 88.7 89.1
CTR-GCN [26] supervised 88.9 90.6

U-HAR on NTU-120 [121] – 1-NN Protocol [194]

P&C† [194] unsupervised 41.7 42.7
Baseline AE unsupervised 40.2 44.3

AE unsupervised 41.0 44.5

AE-L (AE + Rskel) unsupervised 42.4 44.7

U-HAR on NTU-120 [121] – Linear Evaluation Protocol (LEP) [247]

PCRP [225] unsupervised 41.7 45.1
AS-CAL [173] unsupervised 48.6 49.2
Baseline AE unsupervised 56.4 60.3

AE unsupervised 57.4 61.8

AE-L (AE + Rskel) unsupervised 59.1 62.4

Table 4.2 Performance comparisons on NTU-120 [121] in terms of accuracy (%). The
numbers of methods proposed in this chapter are in italic. Improved performance over the
prior art is underlined. The best of all unsupervised results are in bold. Refer to [35] for the
full list of supervised benchmark results. Herein, only a few example approaches that the
proposed method surpasses, as well as the top scorers, are listed. †Taken from PCRP [225].

Comparison with supervised methods

The performance gap between the unsupervised and supervised learning methods is bigger in
NTU-120 [121] C-Subject and C-Setup split compared to the NTU-60 dataset. Still, AE-L is
able to achieve better performance than other more complex methods, e.g., [181, 83, 122],
which rely on variations of LSTM and RNNs. On the other hand, similar to the NTU-
60 dataset’s results, the best performance achieved in NTU-120 is also based on GCNs
(e.g., [192, 26]).
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4.5.3 Results for Skeletics-152

HAR on Skeletics-152 [75]

Method Feature Learning ACC (%)
4s-ShiftGCN [28] supervised 56.1
MS-G3D [125] supervised 56.4

U-HAR on Skeletics-152 [75] – 1-NN Protocol [194]

P&C FS⋆ [194] unsupervised 45.1
P&C FW⋆ [194] unsupervised 47.4
Baseline AE unsupervised 46.2

AE unsupervised 48.5

AE-L (AE + Rskel) unsupervised 49.0

U-HAR on Skeletics-152 [75] – Linear Evaluation Protocol (LEP) [247]

MS2L [117] unsupervised 20.4
PCRP [225] unsupervised 21.1
AS-CAL [173] unsupervised 25.9
LongT GAN [247] unsupervised 30.7
SkeletonCLR joint [109] unsupervised 37.3
Baseline AE unsupervised 45.0

AE unsupervised 46.4

AE-L (AE + Rskel) unsupervised 52.0

Table 4.3 Performance comparisons on Skeletics-152 [75] in terms of accuracy (%). The
numbers of methods proposed in this chapter are in italic. Improved performance over the
prior art is underlined. The best of all unsupervised results are in bold. Refer to [36] for
the full list of supervised benchmark results. Herein, only few example approaches that the
proposed method surpasses, as well as the top scorers, are listed. ⋆FS and FW stand for a
decoder with “fixed states” and “fixed weights”, respectively [194].

This section compares the performance of AE-L against supervised and unsupervised SOTA
methods. Especially in LEP, AE-L has promising results w.r.t. the supervised SOTA, which
performs only 4.1% and 4.4% less than 4s-ShiftGCN [28] and MS-G3D [125], respectively.
It is important to notice that 4s-ShiftGCN [28] and MS-G3D [125] are based on multiple
numbers of spatial-temporal graph convolutional blocks, i.e., more complex than the proposed
architecture, also requiring fully annotated large-scale training data. The performance
gaps between AE-L and 4s-ShiftGCN [28] and MS-G3D [125] decreased in this dataset
compared to the NTU-60 dataset. As for unsupervised results, AE-L performs better than
1-NN competitors (+3.9% over P&C FS [194], and +1.6% over P&C FW [194]), exceeding
LEP competitors as well (MS2L [117] +31.6%, PCRP [225] +30.9%, AS-CAL [173] +26.1%,
LongT GAN [247] +21.3%, and SkeletonCLR joint [109] +14.7%).
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4.6 U-HER - Comparisons against the state-of-the-art

This section compares AE-L against the state-of-the-art (SOTA) unsupervised and supervised
learning methods for the Human Emotion Recognition task. It is important to highlight
that the main competitors are the methods performing unsupervised feature learning. Still,
fully supervised methods were included in the proposed comparisons to show each dataset’s
current upper bound performance and the gap between unsupervised and supervised methods.

4.6.1 Results for DMCD

Performance of AE-L on DMCD dataset [52] greatly outperforms both supervised (+22.4%
over Beyan et al. [8]) and unsupervised counterparts: exceeding P&C FS [194] (+21.3%),
P&C FW [194] (+11.9%), MS2L [117] (+69.8%), PCRP [225] (+66.2%), AS-CAL [173]
(+54.4%), LongT GAN [247] (+21.4%), and SkeletonCLR joint [109] (+9.3%).

4.6.2 Results for Emilya

Evaluating AE-L on Emilya dataset [65] highlights the comparable results w.r.t. supervised
counterpart Crenn et al. [41] and even outperforming Fourati et al. [65] (+7.3%). As for
comparisons against unsupervised SOTA, AE-L is superior than P&C FS [194] (+10.2%),
MS2L [117] (+49.9%), PCRP [225] (+50.2%), AS-CAL [173] (+35.6%), LongT GAN [247]
(+11.6%), and SkeletonCLR joint [109] (+2.1%), showing once again its effectiveness for
HER.
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HAR on DMCD [52]

Method Feature Learning F1-score

Beyan et al. [8] supervised 74.7

U-HAR on DMCD [52] – 1-NN Protocol [194]

P&C FS⋆ [194] unsupervised 75.1
P&C FW⋆ [194] unsupervised 84.5
AE-L (AE + Rskel) unsupervised 96.4

U-HAR on DMCD [52] – Linear Evaluation Protocol (LEP) [247]

MS2L [117] unsupervised 27.3
PCRP [225] unsupervised 30.9
AS-CAL [173] unsupervised 42.7
LongT GAN [247] unsupervised 75.7
SkeletonCLR joint [109] unsupervised 87.8
AE-L (AE + Rskel) unsupervised 97.1

Table 4.4 Performance comparisons on DMCD [52] in terms of F1-score. The numbers of
methods proposed in this chapter are in italic. Improved performance over the prior art is
underlined. The best of all unsupervised results are in bold. ⋆FS and FW stand for a decoder
with “fixed states” and “fixed weights”, respectively [194].

HAR on Emilya [65]

Method Feature Learning ACC (%)

Fourati et al. [65] ▽ supervised 75.0
Beyan et al. [8] ▽ supervised 90.5
Crenn et al. [41] ⋄ supervised 82.2
Beyan et al. [8] ⋄ supervised 91.3

U-HAR on Emilya [65] – 1-NN Protocol [194]

P&C FS⋆ [194] ⋄ unsupervised 65.0
P&C FW⋆ [194] ⋄ unsupervised 76.8
AE-L (AE + Rskel) ▽ unsupervised 71.8

AE-L (AE + Rskel) ⋄ unsupervised 75.2

U-HAR on Emilya [65] – Linear Evaluation Protocol (LEP) [247]

MS2L [117] ⋄ unsupervised 32.4
PCRP [225] ⋄ unsupervised 32.1
AS-CAL [173] ⋄ unsupervised 46.7
LongT GAN [247] ⋄ unsupervised 70.7
SkeletonCLR joint [109] ⋄ unsupervised 80.2
AE-L (AE + Rskel) ▽ unsupervised 76.4

AE-L (AE + Rskel) ⋄ unsupervised 82.3

Table 4.5 Performance comparisons on Emilya [65] in terms of accuracy (%). The numbers
of methods proposed in this chapter are in italic. Improved performance over the prior art
is underlined. The best of all unsupervised results are in bold. ⋆FS and FW stand for a
decoder with “fixed states” and “fixed weights”, respectively [194]. ⋄ and ▽ stand for the
cross validation set-up applied in [41], and [65], respectively.
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4.7 Transfer across viewpoints for U-HAR

U-HAR: Transfer Across Viewpoints # of params. where?
NTU-60 NTU-120
C-View C-Setup

Baseline [194] 0.58M input (pre-proc) 76.3% 42.7%
SeBiReNet [142] 0.27M input (data-aug) 79.7% –
GRAE (AE + SSVI) 0.39M feature space 81.9% 47.0%

GRAE-L (AE + Rskel + SSVI) 0.39M feature space 82.4% 48.9%

Table 4.6 A comparison of the proposed SSVI module plugged into either AE and AE-L (using
the Linear Evaluation Protocol [247], the numbers reported in italic) with published results
of [194, 142].

Since U-HAR is, by design, better tailored to real-world applications, this section aims to
push the proposed approach to the limit and compete against SeBiReNet [142] to transfer
across viewpoints. SeBiReNet and GRAE-L (AE + Rskel + SSVI) leverage random rotational
noise to perturb the input data with a sharp algorithmic difference. The two-stream Siamese
architecture of SeBiReNet [142] is jointly fed by rotated and non-rotated data while using
non-adversarial optimization to promote viewpoints invariance. Differently, the proposed
method exploits gradient reversing [67] to achieve viewpoint invariance in a model which
is fed by rotated data only, attempting to fool a regressor (one ReLU-hidden layer MLP
with a sigmoid readout layer) to predicting the triplet of Euler’s angles used to rotate each
mini-batch (see Algorithm 1). By relying on a single stream, and as opposed to having two
lightweight streams helping each other in generalising better [142], the proposed network
is deeper (also depends upon a greater number of learnable parameters - 0.27M versus
0.39M, see Table 4.6) but achieves a better invariance across viewpoints. Furthermore, the
proposed approach does not benefit from auxiliary skeletal datasets as commonly happening
in unsupervised domain adaptation [67] (e.g., in SeBiReNet [142], a pre-training is performed
on Cambridge-Imperial APE dataset, and then transfer learning is applied for NTU-60). As
seen in Table 4.6, GRAE (AE + SSVI) and GRAE-L (AE + Rskel + SSVI) approaches score
favourably against SeBiReNet [142], and GRAE-L has a +2.7% on NTU-60 C-View setting.
In the same table, a comparison with the baseline solution [194] was reported, applying
view-invariant transformations to "clean" the data from rotations as pre-processing.
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Notably, despite being trained with more complex data to be fitted (the single-stream of
GRAE-L never sees non-rotated data), the proposed method still outperforms this baseline by
big margins (+6.1% on NTU-60 [181] C-View and +6.2% on NTU-120 [121] C-Setup).

4.8 Time and Space Complexity

# of Parameters
NTU-60 [181] NTU-120 [121]

Skeletics-152 [75] DMCD [52] Emilya [65]
C-Subject C-View C-Subject C-Setup

P&C FS⋆ [194] 57.7M 35.06 s 43.06 s 104.57 s 123.58 s 24.68 s 29.07 s 28.75 s

P&C FW⋆ [194] 57.7M 35.35 s 40.58 s 104.10 s 123.74 s 24.12 s 28.90 s 27.46 s

MS2L [117] 11.2M 24.66 s 29.81 s 64.63 s 69.59 s 17.14 s 24.37 s 17.92 s

SkeletonCLR joint [109] 3.6M 16.96 s 19.36 s 51.53 s 58.99 s 11.52 s 20.25 s 15.20 s

LongT GAN [247] 10.2M 15.84 s 18.85 s 64.56 s 80.32 s 11.40 s 14.05 s 12.47 s

PCRP [225] 19.4M 14.30 s 16.44 s 41.97 s 48.97 s 10.39 s 10.84 s 11.27 s

AS-CAL [173] 340K 9.42 s 10.37 s 28.45 s 33.54 s 6.71 s 10.19 s 8.08 s

AE-L 38.5M 3.41 s 3.91 s 9.91 s 11.91 s 2.52 s 3.84 s 3.08 s

Table 4.7 Inference time of one epoch (in seconds) of the proposed AE-L and unsupervised
competitors. All experiments were performed on a single machine equipped with an Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz, 64GB RAM, and a single NVIDIA RTX2080 GPU.
⋆FS and FW stand for a decoder with “fixed states” and “fixed weights”, respectively [194].

Table 4.7 reports the time complexity of AE-L and the most prominent unsupervised com-
petitors in terms of the inference time of one epoch using the testing split of both HAR and
HER datasets. All analyses were performed with the machine equipped with an Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz, 64GB of RAM, and a single NVIDIA RTX2080
GPU. In the same table, the space complexity of the proposed model and its counterparts
in terms of the number of parameters is also declared. Despite AE-L having higher (or
comparable) space complexity in terms of the number of parameters w.r.t. to some other
architectures, it achieves the lowest per-epoch inference time, proving the effectiveness
of using residual convolutional layers instead of relying on contrastive-based approaches,
GANs, gated networks, or recurrent networks. It is also noticeable that the proposed method
has a low space complexity compared to P&C [194], which is based on recurrent networks.
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Figure 4.7 (Top-Left) The location of the skeletal joints in NTU-60 [181], (Top-Right) The
corresponding binary adjacency matrix for NTU-60 [181], (Bottom-Left) The location of
skeletal joints in DMCD [52], (Bottom-Right) The corresponding binary adjacency matrix
for DMCD.
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4.9 Graph Laplacian weight matrix initialisation

The goal of this section is to examine how the initialisation of Graph Laplacian weight matrix
W affects the proposed method’s performance: AE-L. This is done in order to promote the
alignment of skeletal joints, connected through a bone (e.g., an edge exists if and only if
joints are connected). The reason behind this is to inject the knowledge of skeletal geometry
while learning action representations. This is referred as Fixed W, a binary and symmetric
n×n skeleton adjacency matrix, including the connectivity between pairs of skeletal joints
(as shown in Figure 4.7). n is equal to the number of joints of each skeleton.

NTU-60 [181] NTU-120 [121]
Skeletics-152 [75] DMCD [52] Emilya [65]

C-Subject C-View C-Subject C-Setup

W Initialisation – 1-NN Protocol [194]

Baseline AE 50.1 80.4 40.2 44.3 46.2 75.3 52.8
AE 52.3 81.0 41.0 44.5 48.5 78.9 55.3
AE-L w/ Random W 52.6 80.3 40.9 42.8 47.7 90.8 71.8
AE-L w/ Fixed W (AE-L) 54.1 83.1 42.4 44.7 49.0 96.4 75.2

W Initialisation – Linear Evaluation Protocol (LEP) [247]

Baseline AE 68.5 84.3 56.4 60.3 45.0 81.4 55.7
AE 69.2 85.1 57.4 61.8 46.4 86.2 58.1
AE-L w/ Random W 69.0 84.8 57.1 60.9 50.3 92.5 74.5
AE-L w/ Fixed W (AE-L) 69.9 85.4 59.1 62.4 52.0 97.1 82.3

Table 4.8 Ablation study and the effect of Graph Laplacian Weight Matrix (W ) initialisation
for AE-L, using a random weight matrix W or the fixed one. Baseline AE refers to the
proposed model (AE-L) without residual layers within. AE refers to AE-L without the Graph
Laplacian regularisation. All the scores are in terms of accuracy (%) except the F1-scores
(%) given for DMCD dataset [52].

For action datasets i.e., NTU-60 [181], NTU-120 [121], and Skeletics-152 [75], n is set
to 25 joints. For emotion datasets i.e., DMCD [52] and [65], n is set to 38 and 28 joints,
respectively. The Wi j entries of W are defined such that Wi j = 1 if and only if the joints i and
j are connected through an edge (i.e., a bone); otherwise, Wi j = 0.

A natural alternative to this approach is randomly initialising the weight matrix W (n×n).
This setting is called Random W, and the range of Wi j is [0,1].

Table 4.8 shows and demonstrates the effectiveness of the proposed AE-L with Fixed W

against Random W by comparing as well with different model ablations: "Baseline AE"
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(i.e., proposed method without Laplacian regularization and without residual layers), and
"AE" (i.e., proposed method without Laplacian regularization).

Ablation study (Table 4.8) shows that AE-L improves the performance of the AE model,
demonstrating the advantages of using Laplacian regularization in all datasets and all eval-
uation protocols. The comparisons among initialising the Graph Laplacian weight matrix
W in the proposed way (i.e., Fixed W) versus initialising it randomly (Random W) show
that Fixed W achieves better performance independent of the number and the position of the
joints in the skeletal data, showing that injecting the skeletal geometry into the regularization
is useful. Results also show that AE is preferable to Baseline AE, i.e., using residual layers in
the design contributes positively to all datasets and evaluation protocols.

HAR datasets evaluated with the 1-NN evaluation protocol show that the usage of Laplacian
regularization brings improvements for NTU-60 [181] up to +4% for C-Subject and +2.8%
for C-View, same behaviour for NTU-120 [121] with increments of +2.2% for C-Subject and
+1.9% for C-Setup. Similarly, for Skeletics-152 [75], AE-L achieves up to +2.8% performance
increase. When evaluated with the LEP evaluation protocol, HAR datasets got an increase in
performance of +1.4% for NTU-60 [181] C-Subject and +1.1% for NTU-60 [181] C-View,
+2.7% for NTU-120 [121] C-Subject and +2.1% for NTU-120 [121] C-Setup, and +7% for
Skeletics-152 [75].

Especially for HER datasets, this improvement is remarkable. For DMCD dataset [52], the
increase is up to +21.1% in 1-NN evaluation protocol and +15.7% in LEP evaluation protocol.
As for Emilya dataset [65], the increase is up to +22.4% in 1-NN evaluation protocol and
+26.6% in LEP evaluation protocol.
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4.10 Using synthetic data in training

GRAE GRAE-L

AE AE-L (AE + SSVI) (AE-L + SSVI)

NTU-60 [181]
C-View

Real data (pre-processed) 85.1 85.4 ∼ ∼
Real + Synthetic data 80.4 80.6 ∼ ∼
Synthetic data 80.1 81.3 81.9 82.4

NTU-120 [121]
C-Setup

Real data (pre-processed) 61.8 62.4 ∼ ∼
Real + Synthetic data 45.7 45.2 ∼ ∼
Synthetic data 46.1 46.4 47.0 48.9

Table 4.9 Performances (accuracy) of the proposed methods using the real and/or synthetic
data in training. Notice that methods with SSVI rely only on synthetic data.

This section investigates the impact of using synthetic data in training for C-View and C-
Setup scenarios. Synthetic data were obtained as described in Chapter 4 Section 4.3, and it
was fixed for all experiments in Table 4.9. The models are trained with a) real data only, b)
real + synthetic data, c) synthetic data only. Real data refers to pre-processed data, so-called
clean data in Chapter 4 Section 4.7, which is already aligned to the same viewpoint.

Recalling that SSVI-based experiments rely only on synthetic data, whose amount is as much
as the real training data, the training set size of real + synthetic experiments is twice of
real only and synthetic only. Synthetic data includes rotational perturbations of not pre-

processed real data. Thus, experiments only with synthetic data and real + synthetic data
result in performance degradation for all models. Experiments with real data perform the
best out of all, but it is important to notice that the applied pre-processing is mostly not

applicable in real-world applications as the viewpoints might not be known. When the
amount of synthetic data in real + synthetic setting is decreased, performance increases,
e.g., AE performs 83.2% and 46.8%, AE-L performs 84.3% and 47.4% on NTU60, and
NTU120 with "real + (20%) synthetic data". In this case, SSVI-based models perform better
than AE and AE-L (both synthetic & real + synthetic) for all cases, showing that they can
handle viewpoint perturbations in a better way.
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4.11 Fine-tuning Protocol and End-to-end Training

Fine-tuning Protocol [109] End-to-end Training

NTU-60 [181] C-Subject 69.9 ↔ 70.5 ↑
NTU-60 [181] C-View 83.7 ↓ 83.8 ↓
NTU-120 [121] C-Subject 57.1 ↓ 57.5 ↓
NTU-120 [121] C-Setup 59.6 ↓ 61.1 ↓
Skeletics-152 [75] 45.5 ↓ 54.3 ↑
DMCD [52] 97.2 ↑ 97.4 ↑
Emilya [65] 80.7 ↓ 76.9 ↓

Table 4.10 Performance of the proposed method when the fine-tuning protocol and the end-
to-end training are applied. All the scores are in terms of accuracy (%) except the F1-scores
(%) given for the DMCD dataset [52]. ↑ ↓ and ↔ stand for the performance improvement,
decrease, and no-change, respectively w.r.t. LEP results obtained for the proposed method.

The performances of AE with the fine-tuning protocol [109] and end-to-end supervised
training are reported in Table 4.10. Both experiments were applied for 100 epochs with a
learning rate of 0.001.

• Fine-tuning Protocol [109]: This refers to first end-to-end pre-training of AE-L in an
unsupervised way. Then appending a linear classifier to the encoder and fine-tuning
the whole model for the target task. Therefore, this protocol is supervised.

• End-to-end Training: This refers to fully supervised learning of AE-L from scratch
using the class labels of the training data.

While fine-tuning performs the best out of all, fine-tuning and supervised HAR results are
always better than "AE Unsupervised" (as expected) by +3∼18% for NTU-60 [181] and
+15∼17% for NTU-120 [121]. As the Laplacian regularizer is trained on the reconstructed
skeleton from the decoder, and the experiments presented herein are regarding applying a
linear classifier appended to the encoder, the results of AE-L are the same as AE. Notice that,
when applying LEP and 1-NN evaluation protocols, the encoder is frozen (i.e., the encoder
is detached), and the feature learning is unsupervised. Besides, 1-NN does not learn any
classifier but relies only on a distance metric.
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Data Percentage
1% 25% 50% 75%

NTU-60 [181] C-Subject 32.3 60.9 65.0 66.4
NTU-60 [181] C-View 26.5 70.5 76.0 78.6
NTU-120 [121] C-Subject 16.1 47.3 50.7 51.6
NTU-120 [121] C-Setup 18.9 49.7 53.7 55.1
Skeletics-152 [75] 8.8 25.0 31.6 36.5
DMCD [52] 23.0 71.7 81.3 86.5
Emilya [65] 26.4 61.5 68.7 71.9

Table 4.11 Performance of the proposed method when the Linear Evaluation Protocol is
applied with fewer labels. All the scores are in terms of accuracy (%) except the F1-scores
(%) given for the DMCD dataset [52].

On the other hand, the encoder is not frozen in the application of the fine-tuning protocol and
the end-to-end training, i.e., it is learnable and, the proposed AE-L is no longer unsupervised.
These evaluation protocols align with the recent SOTA, e.g., [109] to show that AE-L is
flexible to adjust between supervised and unsupervised settings.

It is important to highlight that for this set of experiments, the training procedure was not
optimised (e.g., by adjusting the hyper-parameters of AE-L). Instead, all implementation
settings are kept as it was used in unsupervised training to supply a direct comparison
with LEP. In some cases, the fine-tuning and end-to-end protocol results are lower than the
w.r.t. LEP performance (e.g., NTU-60 C-View [181], and Emilya [65], while still achieving
better scores than several supervised SOTA). As a concluding remark, it is undoubtedly
correct stating that these results can be improved by performing a hyper-parameter search on
the validation sets.

4.12 Linear Evaluation Protocol with Fewer Training Data

To better examine the learning capability of AE-L, the first step was to train them in an
unsupervised way (as described in Chapter 4) with all training data. During inference,
LEP evaluation protocol was adopted, but the linear classifier is trained with only 1%, 25%,
50%, and 75% randomly selected data while keeping the class balance the same as the
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original datasets. Also, the hyper-parameter search was not performed for these experiments,
keeping all settings as in Chapter 4.

The results in Table 4.11 show that, for all cases, when the percentage of the training data is
increased, the performance of the proposed method also improves. Moreover, AE-L is able to
surpass several SOTA when it is trained on much fewer data (e.g., 25%, 50%) compared to
the amount of the data SOTA is trained on (i.e., 100%).

In detail,

• NTU-60 [181] C-Subject. By using 25% of the data, AE-L is able to achieve better
results compared to: Lie Group [170], Cavazza et al. [22], H-RNN [56], P&C [194],
LongT GAN [247], MS2L [117], PCRP [225], VAE-PoseRNN [100] and AS-CAL
[173], whose are trained with 100% of the data.

• NTU-60 [181] C-View. When using 50% of the training data, AE-L surpasses the
performance of Lie Group [170], Cavazza et al. [22], H-RNN [56], LongT GAN [247],
MS2L [117], PCRP [225], VAE-PoseRNN [100], AS-CAL [173] and MM-AE [80]
trained with the whole training data.

• NTU-120 [121] C-Subject. By training AE-L with the 50% of the training data, better
results were achieved compared to Part-Aware LSTM [181], Soft RNN [84], P&C
[194], PCRP [225] and AS-CAL [173] trained by using 100% of the data.

• NTU-120 [121] C-Setup. By using 50% of the training data, AE-L is able to achieve
better results compared to Part-Aware LSTM [181], Soft RNN [84], P&C† [194],
PCRP [225] and AS-CAL [173] whose model are learnt with the whole training data.

• Skeletics-152 [75]. By being trained with the 50% of the training data, AE-L surpasses
the methods: MS2L [117], PCRP [225], AS-CAL [173] and LongT GAN [247], all
trained with the 100% of the data.

• DMCD [52]. AE-L trained on 50% of the training data, achieves better performance
compared to Beyan et al. [8], P&C [194], MS2L [117], PCRP [225], AS-CAL [173],
and LongT GAN [247] trained with the whole training data.

• Emilya [65]. By using 50% of the training data, AE-L surpasses the methods: P&C
FS⋆ [194], MS2L [117], PCRP [225] and AS-CAL [173] trained on whole dataset.
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4.13 Comparisons Against Supervised Methods

This section compares the performance of AE-L with SOTA supervised skeleton-based HAR
approaches on NTU-60 dataset [181]. This comparison includes kernel-based methods
[170, 22] and the methods realising feature learning [56, 122, 181, 241, 193, 124, 107, 227,
220, 110, 184, 188, 183, 28] with several different deep learning architectures, e.g., RNNs,
LSTMs, CNNs, and Graph Convolutional Networks (GCNs). The corresponding results are
presented in Figure 4.8, while an in-depth comparison is given in Table 4.12. Performance
comparisons between AE-L and the state-of-the-art unsupervised and supervised skeleton-
based HAR methods on NTU-60 dataset [181] are given in Figure 4.8. The results in
Table 4.12 provide the quantitative values, summarised in Figure 4.8.

AE-L outperforms all prior unsupervised skeleton-based approaches on the Cross-Subject and
Cross-View settings. Importantly, the learnable representation, although unsupervised, allows
the proposed method even to surpass a few supervised skeleton-based action recognition
methods: [170, 22, 56, 122, 181, 193].

AE-L, although based on unsupervised learning, can achieve better performance than the
fully supervised kernel-based methods [170, 22], with a +7.2% to +19.8% improvement in
C-Subject and a +22% to +32.6% improvement in C-View setting. AE-L also outperforms
several fully supervised deep architectural methods: hierarchical RNN [56] (providing an
increase of 10.8% in C-Subject and up to 21.4% in C-View), spatial-temporal LSTM [122]
(resulting in a boost of +0.7% in C-Subject and up to +7.7% in C-View) and part-aware
LSTM [181] (achieving an improvement of +7% in C-Subject and up to +15.1% in C-
View) while performing better than temporal CNN [193] (up to +2.3%) in C-View setting.
These results show that the proposed unsupervised residual convolutions with Laplacian
regularization exceed even supervised GRUs, RNNs, and LSTMs (and variants) for HAR.
Besides the favourable results of AE-L, it is important to note that fully supervised techniques
[241, 124, 107, 227, 220, 110, 184, 188, 183, 28] perform better than AE-L. These methods
mostly implement GCNs [227, 220, 110, 184, 188, 28], and some of them additionally adapt
LSTMs [188] or a variable temporal dense block [220]. The best performing method is [28]
with 90.7% and 96.5% in C-Subject and C-View, respectively.
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Figure 4.8 Comparisons between AE-L and SOTA unsupervised and supervised skeleton-
based HAR methods on NTU-60 dataset [181].

Year Method Classifier Architecture C-Subject C-View

Rahmani et al. [170] 2016 supervised linear SVM 3D Spatio-temporal interest points 50.1 52.8
Cavazza et al. [22] 2019 supervised linear SVM Kernel-approximating random feat maps 60.9 63.4
Du et al. [56] 2015 supervised softmax Hierarchical RNN 59.1 64.0
Liu et al. [122] 2016 supervised softmax Spatial Temporal LSTM 69.2 77.7
Shahroudy et al. [181] 2016 supervised softmax Part-Aware LSTM 62.9 70.3
Kim et al. [193] 2017 supervised softmax Temporal CNN 74.3 83.1
Zhang et al. [241] 2017 supervised softmax View-Adaptive LSTM 79.2 87.7
Liu et al. [124] 2017 supervised softmax Multi-stream CNN 80.0 87.2
Liu et al. [55] 2017 supervised softmax CNN 83.2 89.3
Yan et al. [227] 2018 supervised softmax Spatio-Temporal GCN 81.5 88.3
Wen et al. [220] 2019 supervised softmax Motif GCN + Variable Temporal Dense Block 84.2 90.2
Li et al. [110] 2019 supervised softmax Actional-structural GCN 86.8 94.2
Shi et al. [184] 2019 supervised softmax 2-stream Adaptive GCN 88.5 95.1
Si et al. [188] 2019 supervised softmax Attention GCN+LSTM 89.2 95.0
Shi et al. [183] 2019 supervised softmax Directed Graph Neural Networks 89.9 96.1
Cheng et al. [28] 2020 supervised softmax Shift GCN 90.7 96.5

Holden et al. [80] 2015 unsupervised linear classifier Denoising AE 61.2 70.2
Zheng et al. [247] 2018 unsupervised linear classifier Adversarial GRU-AE 39.1 48.1
Kundu et al. [100] 2018 unsupervised linear classifier Variational-AE + poseRNN 56.4 63.8
Kundu et al. [100] 2018 unsupervised linear classifier Encoder-GAN + poseRNN 68.6 77.8
Xu et al. [225] 2020 unsupervised linear classifier Contrastive-AE 53.9 63.5
Rao et al. [173] 2020 unsupervised linear classifier Contrastive-AE 58.5 64.6
Li et al. [109] 2021 unsupervised linear classifier Contrastive-GCN 68.3 76.4
AE-L 2021 unsupervised linear classifier Regularised convolutional, residual AE 69.9 85.4

Table 4.12 Performance comparisons between AE-L and the state-of-the-art supervised and
unsupervised skeleton-based HAR methods on NTU-60 dataset [181] in terms of accuracy
(%). The results that AE-L surpasses are underlined. The best results for the supervised and
unsupervised methods are individually shown in black.
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4.14 Confusion matrices

The confusion matrices for testing AE-L performance within 1-NN protocol [194] for datasets
NTU-60 [181] (Cross-Subject, Cross-View) are given in Figure 4.9 and Figure 4.10, respec-
tively. In the same figure, the accuracy score of each action class was also reported in the
box-plot form.

4.14.1 Accuracy-per-action class comparison

AE-L achieves recognition accuracy above 80% for 8 actions (sitting down, standing up from

sitting position, wearing jacket, taking off jacket, jumping up, falling, walking towards each

other, and walking apart from each other) in NTU-60 Cross-Subject setting [181].

In NTU-60 Cross-View setting [181], AE-L performs recognition above 90% accuracy for 13
actions (throwing, sitting down, standing up from sitting position, wearing jacket, taking off

jacket, cheering up, kicking something, one foot jumping, jumping up, salute, crossing hands

in front, staggering, and falling) while class accuracy above 80% is observed for 41 actions.

There are 3 actions: standing up from sitting position, jumping, and falling for which
AE-L recognises with nearly 100% accuracy in Cross-View setting of NTU-60 [181].

4.14.2 Accuracy improvements of AE-L on C-Subject protocol

AE-L improves the performance of the AE model, showing that Laplacian regularization
supplies some advantages.

For NTU-60 Cross-Subject action classes: brushing hair, drop, reading, wear on glasses,

take off glasses and using a fan and for NTU-120 Cross-Subject action classes; taking off

a shoe, wearing on glasses, making a phone call, putting the palms together, patting on

back of other person, applying cream on face and kicking backward; obtaining at least +5%
performance gain by involving Laplacian regularization to the proposed AE.
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Figure 4.9 Confusion matrices and the corresponding accuracy scores for each action class
obtained when AE-L is applied with 1-NN protocol on the NTU-60 [181] C-Subject dataset.
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Figure 4.10 Confusion matrices and the corresponding accuracy scores for each action class
obtained when AE-L is applied with 1-NN protocol on the NTU-60 [181] C-View dataset.
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4.14.3 Accuracy improvements of AE-L on C-View and C-Setup proto-
cols

Additionally, AE-L performs at least +5% better than AE for NTU-60 Cross-View and
NTU-120 Cross-Setup actions.

The NTU60 Cross-View actions are eating meal, brushing teeth, brushing hair, dropping,

clapping, reading, tearing up paper, wearing on glasses, taking off glasses, putting on a hat,

taking off a hat, reaching into pocket, hopping, make a phone call, playing with phone, taking

a selfie, checking time, rubbing two hands together, wiping face, putting the palms together,

sneeze/cough, touching head/chest/back, using a fan, punching other person, patting on back

of other person and touching other person’s pocket.

In addition, the NTU-120 Cross-Setup action classes are: drinking water, eating meal, putting

on a hat, taking off a hat, kicking something, making a phone call, putting the palms together,

kicking other person, hushing, thumbing up, making victory sign, sniffing, balling up paper,

applying cream on face, taking something out of a bag and crossing arms.

4.15 Visualization of the reconstructed skeletons

Figures 4.11 and 4.12 present the visualisations of the reconstructed skeletons obtained by
applying the proposed models (AE and AE-L). Blue skeletons represent the input data (of
action "Drink Water" for Figure 4.11 and "Standing Up" for Figure 4.12), red and green

skeletons are reconstructed by AE and AE-L, respectively. In these examples, while the
effectiveness of the models is the same, in other words, AE and AE-L both classify the actions
correctly, the AE-L makes the reconstructed skeletons smoother compared to AE.
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Figure 4.11 Action class "Drink Water" in NTU-60 [181] Cross-View dataset. Blue: original
data, Red: AE reconstruction, Green: AE-L reconstruction. Rows correspond to different
time-frames. Both AE and AE-L correctly classify this action sample.
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Figure 4.12 Action class "Standing Up" in NTU-60 [181] Cross-View dataset. Blue: original
data, Red: AE reconstruction, Green: AE-L reconstruction. Rows correspond to different
time-frames. Both AE and AE-L correctly classify this action sample.
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4.16 Qualitative Results
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Figure 4.13 The t-SNE visualization of embeddings at different epochs when training AE-L.
Embeddings of random 10 categories are sampled and visualised with different colours.
Illustrations refer to epochs 2, 20, 60, and 100, respectively.

Figure 4.13 shows the embeddings of AE-L learned during unsupervised training of it by
using t-SNE [206] for the epochs 2, 20, 60, and 100. For NTU-60 [181], NTU-120 [121],
and Skeletics-152 [75] datasets, 10 action classes were randomly selected. For NTU-60
[181], these are: “drink water”, “pickup”, “throw”, “wear jacket”, “hand waving”, “jump
up”, “pointing”, “palms together”, “falling”, and “backache”. The actions for NTU-120
[181] are: “tennis swing”, “coin toss”, “move objects”, “shake fist”, “throw cap”, “cross
arms”, “arm circles”, “spot running”, “side kick”, and “stretch oneself”. For Skeletics-152
[75] the selected actions are: “robot dancing”, “gangnam style”, “chopping wood”, “pool
jumping”, “moon walking”, “archery”, “sword fighting”, “belly dancing”, “salsa dancing”,
and “sledgehammer”. Embeddings of AE-L are more clustered in NTU-60 compared to
NTU-120 [181] and Skeletics-152 [75] dataset. This is in line with the quantitative results of
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AE-L in, which performs numerically better in NTU-60. On the other hand, one can observe
more compact and less overlapping clusters after the epoch of 20 for all datasets.
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4.17 Transfer-ability
Tested on

NTU-60 [181] NTU-120 [121] NTU-61∼120 [121]
Skeletics-152 [75] DMCD [52] Emilya [65]

C-Subject C-View C-Subject C-Setup C-Subject C-Setup

P
re

-t
ra

in
ed

on

NTU-60 [181] C-Subject 54.1 82.2 42.1 46.4 46.6 43.4 48.9 75.1 76.4
NTU-60 [181] C-View 54.6 83.1 42.0 46.2 45.8 45.1 49.1 92.7 75.1
NTU-120 [121] C-Subject 52.0 81.0 42.4 44.3 44.0 45.2 48.0 92.6 74.7
NTU-120 [121] C-Setup 52.3 81.2 38.9 44.7 44.0 45.4 47.9 92.7 74.7
NTU-61∼120 [121] C-Subject 55.6 52.1 39.4 43.8 45.1 46.4 48.9 92.7 76.4
NTU-61∼120 [121] C-Setup 54.3 53.3 39.9 44.4 45.2 46.1 48.1 92.6 75.1
Skeletics-152 [75] 47.8 71.3 35.4 39.1 42.2 44.0 49.0 92.7 74.7
DMCD [52] 51.3 70.4 39.1 44.5 44.9 45.2 47.6 96.4 75.0
Emilya [65] 48.3 70.8 38.5 43.7 44.6 45.0 47.1 82.7 75.2

Table 4.13 The transfer-ability of AE-L across different datasets. Unsupervised pre-training
is performed w.r.t. each dataset’s training/testing split (except DMCD and Emilya, in which
cross-validation is applied as in [8]). NTU 61∼120 refers to using only the action classes
from 61 to 120. The darker colour shows better performance compared to a lighter colour in
the same column.

This section tests the transfer-ability of AE-L across different datasets. The unsupervised
pre-training is considered to be useful in a practical scenario in which (in the case presented
in this chapter) action and/or emotion classes are varying, and labelling new data is expensive.
Herein, the transfer-ability of the proposed model was tested across different datasets, when
a) in the unsupervised training and inference of the same task but a different set of classes
exist (e.g., pre-training on action dataset NTU-60 [181] C-Subject → transfer learning on
action dataset NTU-120 [121] C-Setup) and b) different tasks during unsupervised training
and inference are being addressed (e.g., pre-training on action dataset Skeletics-152 [75]
→ transfer learning on emotion dataset Emilya [65]). The corresponding results are given
in Table 4.13 in terms of 1-NNprotocol. Overall, a drop in performance can be expected
due to the domain gap between datasets (e.g., variety in actions and emotions). Still, results
show the effectiveness of the proposed approach in dampening this phenomenon. In many
cases, the performance even surpasses their same-dataset baseline. For example, in case of
actions → actions, a boost in performance can be observed when NTU-60 [181] C-Subject

is tested with a model pre-trained with NTU-61∼120 [121] C-Subject and NTU-60 [181]
C-View (+1.5% and +0.5%); NTU-120 [121] C-Setup is tested with a model pre-trained on
NTU-60 [181] C-Subject and NTU-60 [181] C-View (+1.7% and +1.5%); and NTU-61∼120
[121] C-Subject is classified by a model pre-trained on NTU-60 [181] C-Subject and NTU-60
[181] C-View (+1.5% and +0.7%). On the other hand, for actions → emotions, there are
performance improvements (up to +1.2%) when Emilya dataset [65] is recognised by a model
pre-trained on NTU-60 [181] C-Subject or NTU-61∼120 [121] C-Subject.
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4.18 Concluding Remarks

This chapter introduced a novel unsupervised feature learning method that results in effective
feature representations of actions and emotions from the input 3D skeleton sequences, where
all these findings were ultimately published in [154, 152]. The proposed method is based
on convolutional autoencoders (AE) and adapting Laplacian Regularisation (L) to capture
the pose geometry in time. AE-L is validated on large-scale HAR benchmarks that exceed
all SOTA skeleton-based U-HAR methods for Cross-Subject, Cross-View, and Cross-Setup
settings. It is also validated on large-scale HER benchmarks in supervised and unsupervised
settings, showing exciting and promising results. This proves that the proposed AE-L is able to
learn more distinctive action and emotion features compared to the prior art. AE-L were also
updated with gradient reversing (GRAE-L) to provide better invariance to camera viewpoint
changes compared to a direct competitor [142]. Overall, this study highlights the potential of
unsupervised learning for 3D skeleton-based action and emotion recognition and serves as a
valuable contribution to the improvement of the research field. Demonstrating the capabilities
of unsupervised approach w.r.t. supervised methods, further research is encouraged to explore
and improve the proposed framework, evaluating its performance on more extensive and
diverse datasets.



Chapter 5

SKELTER: Unsupervised Skeleton
Action Denoising and Recognition using
Transformers

In Chapter 4 the proposed model AE-L, which leverages large-scale datasets to solve the chal-
lenging problem for U-HAR and to overcome limitations of pure unsupervised approaches
(i.e., Subspace Clustering, presented in Chapter 3). As most of the approaches are dedicated
to reaching the best recognition accuracies, no attention has been put into analysing the
resilience of such methods given perturbed data, a likely occurrence in real in-the-wild testing
scenarios.

The benchmark datasets, on which the existing U-HAR methods are tested (check Chapter 2
Section 2.4 for a detailed description), were recorded using depth sensors [215] (e.g., by
using Microsoft Kinect) in relatively controlled experimental settings, being free from several
challenges such as noisy data, severe occlusions, etc., thus being far from realistic scenarios.
It is also important to notice that in real-world conditions, there can be errors in sensors
resulting in missing frames and/or errors occurring due to the misdetection of the pose
estimators.

Therefore, this chapter provides a systematic analysis of the state-of-the-art (SOTA) skeleton-
based U-HAR methods evaluated on perturbed and altered data, simulating several real-world
challenges, e.g., noise, clutter, occlusions and geometrical distortions. To do so, an extensive
set of perturbations and alterations are presented to simulate in-the-wild scenarios for HAR
(e.g., obtained by removing some skeletal joints, rotating the entire pose, injecting geometrical
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aberrations, etc., see Section 5.2) and verifying the decrease in performance of current SOTA,
evidencing cases where such loss is more predominant. [78, 235] tackled similar approaches
but for different tasks (i.e., not U-HAR) and the type of data were images and videos (i.e., not
skeletons).

Then, this chapter proposes a novel framework called SKELTER (SKELeton TransformER),
which is based on a transformer encoder-decoder capable of learning robust representations
from the spatio-temporal 3D-skeletal data (receiving inputs as 3D-skeletal data over time)
in an unsupervised fashion (Section 5.3), and showing remarkable denoising capabilities
to counter such perturbations effectively. The success of transformers mainly relies on
their property to establish long-range connections among time-series data, w.r.t. shorter
connections as could occur in RNNs or LSTMs. The choice of a transformer-based encoder-
decoder architecture is due to its superior ability to encode skeletal joint information across
the entire temporal span. At the same time, its attention modules provide context for any
position in the input sequence of sequential data, weighing their influence on different
temporal parts.

Since their inception in NLP research [207, 16], transformers have gained popularity in dif-
ferent tasks such as for machine translation [234, 219], visual question answering [130, 195],
action recognition [7, 71], and human pose estimation [246] to name a few. Vision Trans-
former (ViT) [54] is the first pure-transformer model deployed for image classification that
was trained on large-scale datasets like Imagenet-21K [175] and JFT-300M achieving re-
markable results. On the other hand, ACTOR [160] is a transformer-based conditional VAE,
which can generate action-conditioned human motions by sampling from a sequence-level
latent vector. The hierarchical transformer from Cheng et al. [30] fuses part-based skeletal
features to higher-level representations, using self-attention mechanisms from transformers.
Although the common final task of U-HAR, this model formulates the unsupervised repre-
sentation learning as a classification problem, predicting the motion direction of masked
poses. However, it does not aim to perform data denoising while this approach is the first
transformer-based solution specifically designed to tackle data denoising for the U-HAR.

Moreover, additional losses are presented to have robust representations against rotation
variances and to provide temporal motion consistency. Overall, the performance of the
proposed method is compared with SOTA skeleton-based U-HAR when tested on perturbed
and altered data, which is applied on NTU-60 [181] and NTU-120 [121] datasets’ Cross-
Subject Cross-View and Cross-Setup splits. SKELTER shows limited drops in performance
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when skeleton noise is present in comparison with previous approaches, favouring its use in
challenging in-the-wild settings by showing its better denoising capability.

Summarising the main contributions of this chapter:

• For the first time, SOTA skeleton-based U-HAR methods are evaluated on perturbed
and altered data, which simulate in-the-wild challenging scenarios. The results shown
in this chapter could allow the community better to understand the existing methods’
applicability to real-world scenarios.

• SKELTER, a novel method based on transformers, processes the skeletal data within a
spatio-temporal pipeline by integrating a multi-attention mechanism. This encoder-
decoder structure relies upon mean squared error (MSE), so the feature learning is
fully unsupervised. Also, two additional losses are devised: one for resulting in more
robust representations against rotation variances (Section 5.4), and the other to handle
the possible temporal motion consistency by integrating triplet loss (Section 5.5).

• Experimental results show that SKELTER is more resilient than the SOTA skeleton-
based U-HAR methods when subject to data perturbations and alterations, showing that
it can handle various real-world challenges, i.e., performing better denoising compared
to other approaches.

5.1 Application scenarios for Skeleton-based HAR

Concerning skeleton-based HAR experimental pipelines, several steps are involved, which
can be summarised into two main components:

1. Obtain 3D keypoints from RGB videos, usually as sequences of image frames using
specific equipment or using pose estimator algorithms

2. Deploy a state-of-the-art model capable of correctly classifying the correspondent
action

The predominant choice bends on benchmark datasets obtained within staged scenarios. For
example, NTU-60 [181], and NTU-120 [121] are recorded using depth sensors (i.e., Microsoft
Kinect v2) inside a constrained and well-controlled setup to achieve the best quality of data.

On the other hand, these conditions could not always be guaranteed in realistic scenarios.
For this less common kind of setup, e.g., a surveillance online video feed, a continuous
stream of RGB frames represents the input where pose estimator software infers the initial
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2D keypoints from the RGB frames [19] and lifts them into the 3D space [158]. Starting
from the nature of the scenario itself (online frame-wise 3D pose estimation), depending on
the conditions of the scene itself (e.g., overcrowded frames, bad camera recording quality,
errors in camera calibration, missing frames from recording, etc.), and accounting abrupt
and unforeseen events (like noisy estimation, severe occlusions, misdetected keypoints, etc.),
the quality of keypoints estimation could be severely affected in this type of scenario. Due
to its unpredictable nature, the quantity and variability of these unexpected events, action
classification from severely-affected 3D keypoints could represent a challenging task for
U-HAR SOTA models, which often overlook the particular conditions of this real-world
scenario.

The following section illustrates and presents the design choices made w.r.t. the perturbation
or alteration of given skeletal poses to prove the goodness of SKELTER as a robust model
capable of correctly classifying those actions regardless of their conditions. To prove their
coherence w.r.t. a practical application, Section 5.11 reports a comparison between the
perturbed datasets and a test case of the aforementioned real-world scenario.

5.2 Data Perturbation & Alteration for HAR

Existing skeleton-based U-HAR methods were evaluated on commonly-used datasets, e.g.,

NTU-60 [181], and NTU-120 [121], by applying pre-processing steps (normalisation and
camera pre-registration). Although such pre-processing represent undoubtedly a common
practice to obtain robust features from the skeletal action sequences, the ingredients to apply
it might not always be available in real-world processing as well as the methods trained
on optimum conditions (such as without considering the noise, missing joints, etc.), might
result in poor performance in their unconstrained real-world processing. Since the main
scope of this chapter is to evaluate the SOTA and SKELTER in the presence of perturbed and
altered data, the first step is, therefore, to define a wide range of perturbations (i.e., Gaussian
Noise, Joint Outlier, Joint Removal, Limbs Removal, Axis Removal, Shear, and Subtract)
and alterations (i.e., Rotation, and Reverse Motion). The following sections illustrate this
claim: the blue skeletal poses represent the original data, whereas the red poses represent the
transformation applied.
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5.2.1 Data Perturbation

Figure 5.1 "Gaussian Noise" perturbation

Gaussian Noise (GN)
Additive Gaussian noise is applied over the joints
(with a mean equal to zero and standard deviation
equal to 0.05) to simulate noisy positions caused by
the pose estimator model.

Figure 5.2 "Joint Outlier" perturbation

Joint Outlier (JO)
For each skeletal sample, a random joint is selected
and alter its 3D coordinates by adding, for each axis,
a fixed value within a range of [-1, 1] to simulate an
outlier joint that severe incorrect estimations in the
camera feed can cause.

Figure 5.3 "Joint Removal" perturbation

Joint Removal (JR)
For each sample action sequence, a subsection of
temporal frames is selected, i.e., a random amount
of frames, up to 25% of the entire length, and within
these selected frames, a subsection of joints is chosen
and set to zero. This random-conditioned selection
ensures the simulation of a plausible real-world sce-
nario in which some joints could not be detected.

Figure 5.4 "Limbs Removal" perturbation

Limbs Removal (LR)
For each sample action sequence, the occlusion of an
entire limb is simulated by randomly selecting one
of the four groups of joints (i.e., left and right arms,
left and right legs) and setting their coordinates to
zero to simulate e.g., common severe occlusions like
“legs occluded due to the subject being sat at a desk”.
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Figure 5.5 "Axis Removal" perturbation

Axis Removal (AR)
Refers to setting an entire axis which is selected
randomly to zero. This simulates a failure of a pose
estimator to infer 3D poses and as a general-purpose
2D-to-3D hallucination capability of models that are
not natively designed for this kind of task.

Figure 5.6 "Shear" perturbation

Shear (SHR)
Shear simulates the variations in the camera orien-
tation. Each skeletal joint is displaced in a fixed
direction (e.g., slant joints with a random angle
S ∈ [−1,1]), using a linear mapping matrix:

Ωs =

 1 SY
X SZ

X

SX
Y 1 SZ

Y

SX
Z SY

Z 1

 (5.1)

Figure 5.7 "Subtract" perturbation

Subtract (SUB)
Shift the entire skeleton in 3D space by selecting a
random joint and setting it as the new root joint. This
is a simulation of the situations arising when e.g., a
pose estimator fails to correctly detect a skeletal pose,
resulting in an abrupt shift of spatial coordinates.
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5.2.2 Data Alteration

Figure 5.8 "Rotation" data alteration

Rotation (ROT)
3D-skeletal data is rotated along XY Z axes, using the
respective rotation matrices given in Equation 5.2.
Rotation is involved in testing the strength of a
method under view-point variations e.g., in scenar-
ios like camera surveillance where a skeleton pose
of a person is captured through multi-camera set-
tings. To simulate plausible contexts, a randomly-
sampled Z-axis rotation along all 360 degrees is ap-
plied, whereas on X and Y axes, the rotation angles’
range spans in-between [-30, 30] degrees.

Ωx =

1 0 0
0 cosα −sinα

0 sinα cosα

 , Ωy =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 , Ωz =

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 (5.2)

Figure 5.9 "Reverse Motion" data alteration

Reversed Motion (RM)
The order of the time frames of a given sample is
randomly reversed (with a 50% chance) to ensure
a model learns human motion when a reversed per-
spective is shown. This is useful especially when
SKELTER is trained on datasets which contain am-
biguous or subtle actions, e.g., actions like "wear a

shoe" or "take off a shoe", which are theoretically
similar but different w.r.t. motion execution and ac-
tion label.
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5.3 SKELTER - Model Analysis

The proposed method, SKELTER, was designed by following the general direction endowed
by ViT [54] for embedding the input data and ACTOR [160] for the overall encoder/decoder
structure. The training paradigm fosters the model to learn robust features for HAR, describ-
ing below its components in detail. Following that, additional modules and losses of the
method were defined to pursue robustness towards skeletal rotations (Section 5.4) and tempo-
ral consistencies (Section 5.5) to disambiguate between specular actions w.r.t. time-frames
alterations.

5.3.1 Transformer-based Encoder and Decoder

On the proposed frame-wise skeleton encoder, the temporal frames of the given sample
represent the input tokens for the transformer module to capture their global dependencies.

The input sequence is defined as X ∈ R f×(3J), where f is the number of time-frames of the
action sequence, and J represents the number of joints for each 3D pose.

Skeleton data, which can be (in general) clean or (in this case) perturbed denoted as{
Xclean,Xpert

}
respectively, are fed into the transformer-based encoder and decoder shar-

ing the same architecture (described below). Each 3D-skeletal pose is defined as X i
pert ∈

R1×(3J), i = 1,2, . . . , f of each time-frame f as a patch token.

Subsequently, the patch embedding P ∈ R f×d is the linear projection of joints into a high-
dimensional feature, where d is the embedding dimension, using a trainable linear layer
E ∈ R(3J)×d:

P = [x1E, x2E, . . . , x f E]+PE (5.3)

The positional embedding PE ∈ R f×d , inherited from [207], come in aid to the transformer
module to maintain positional information about the skeletal sequence (i.e., the temporal
frame order) as:

PE( f ,2d) = sin( f/100002i/d), (5.4)

PE( f ,2d+1) = cos( f/100002i/d). (5.5)



5.3. SKELTER - MODEL ANALYSIS 86

𝐿𝑀𝑆𝐸 𝑋𝑐𝑙𝑒𝑎𝑛, 𝑋𝑝𝑒𝑟𝑡

iii) Human Action Recognition

ii) Unsupervised Transformer

𝑥𝑓

𝑥1
𝑥2

𝑋𝑝𝑒𝑟𝑡

Cleaned
Action Sequence

𝑥𝑐𝑜𝑟𝑟
1

𝑃𝐸1

𝑥𝑐𝑜𝑟𝑟
1

𝑃𝐸1

𝑃𝑟_𝑥

𝑃𝐸𝑟𝑜𝑡_𝑥

𝑥

𝑦

𝑧

𝐿𝑟𝑜𝑡

iirot) Rotation Invariance

+

i) Data Perturbation

𝑥𝑓

𝑥1
𝑥2

𝑋𝑝𝑒𝑟𝑡

Perturbed
Action Sequence

𝑥𝑓

𝑥1
𝑥2

𝑋𝑐𝑙𝑒𝑎𝑛

Original
Action Sequence

𝑥𝑐𝑜𝑟𝑟
1

𝑃𝐸1

𝑥𝑐𝑜𝑟𝑟
1

𝑃𝐸1

𝑥𝑐𝑜𝑟𝑟
1

𝑃𝐸1

𝑥𝑐𝑜𝑟𝑟
1

𝑃𝐸1

𝑥𝑝𝑒𝑟𝑡
1

𝑃𝐸1

Figure 5.10 Overall Methodology. i) Data Perturbation: given a clean skeletal action
sequence Xclean (blue skeleton), a plausible real-world data perturbation is simulated ad
applied to the data sample to obtain the input sequence Xpert (red skeleton). ii) Unsupervised
Transformer: the proposed approach, SKELTER, is a transformer-based Encoder and
Decoder architecture, able to learn how to denoise the Xpert data and reconstruct the animated
pose as X̂pert (green skeleton), using the reconstruction loss LMSE. iirot) Rotation Invariance:
RotHead are plugged into SKELTER (one for each 3D axis). The rotation loss Lrot ensures
a correct prediction of the rotation angles, granting invariant properties towards 3D rotations.
iii) Human Action Recognition (Inference Stage): to perform U-HAR, a linear classifier is
set on top of the learned feature representations.
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5.3.2 Attention in Transformers

The core principle of transformers is the scaled dot-product attention, where information
coming from different data representations and positions are encoded in a parallel way given
by:

Attention(Q,K,V ) = So f tmax(QKT/
√

d)V, (5.6)

where Attention is a mapping function using Q,K,V ∈RN×d (a query, key, and value matrix,
respectively). N is the number of sequence vectors, and d represents its dimension which is
scaled for normalisation. These matrices are computed from P, by the linear transformations
WQ, WK , and WV ∈ Rd×d as:

Q = PWQ, (5.7)

K = PWK, (5.8)

V = PWV . (5.9)

5.3.3 Transformer Multiple Self-Attention Heads

To encode attention, multiple h self-attention heads are concatenated together as:

MSA(Q,K,V ) =Concat(H1, H2, . . . , Hh)Wout , (5.10)

Hi = Attention(Qi,Ki,Vi), i ∈ [1, . . . , h]. (5.11)

The general structure of a transformer stack L identical layers given the embedded space
P ∈ R f×d . Each layer contains a multi-head attention block in conjunction with an MLP
layer.

These blocks are placed in-between a Layer Norm LN(·) and a residual connection such that:

Y ′
l = MSA(LN(Yl−1))+Yl−1, (5.12)

Yl = MLP(LN(Yl))+Y ′
l , (5.13)

Z = LN(Yl), (5.14)

where the transformer output Z ∈ R f×d has the same size of its input P ∈ R f×d and it is
averaged in frame dimension to get a vector z ∈ R1×d .
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5.3.4 Denoising Property

The transformer-based decoder reconstructs each skeletal action sequence, starting from the
unsupervised latent features Z, into X̂pert ∈ R f×(3J). The MSE reconstruction loss ensures
the model correctly encodes and rebuilds each data sample free of any noise or corruptions
injected during training:

LMSE = 1
2EX∼B

[
∥Xclean − X̂pert∥2

F
]
, (5.15)

where ∥ ·∥F denotes the Frobenius norm, i.e., the Euclidean norm of the vector obtained after
flattening the tensor. The MSE loss is minimised over mini-batches B.

5.4 SKELTER - Rotation Invariance

Granting the flexibility of the transformer-based approach to combine reconstruction loss
with other complementary losses, this section introduces an additional loss to ensure learning
consistencies w.r.t. rotation invariance. This is visualised in Figure 5.10.

First, each skeletal action sequence was altered by applying ROT (3D rotations, see Sec-
tion 5.2) to obtain Xrot . Following, pseudo labels were defined as yx, yy, and yz, which
correspond to the rotation angles applied to the rotated action sequence Xrot . These pseudo
labels are only used for the skeletal rotation prediction task, but not for U-HAR.

During training, for each 3D axis, an additional patch token Pr and relative positional
embeddings PEr were stacked (concatenated) on top of the existing ones, thus obtaining:

Prot = concat(Pr +P)+ concat(PEr +PE) (5.16)

After the encoding stage, the first three vectors were selected from Z (the latent features
extracted from Pr) and fed into three different linear layers, representing the axes’ rotation
heads. The overall goal is to classify the correct rotation angles (as predicted pseudo labels
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ŷx, ŷy, and ŷz) using cross entropy losses, defined as:

ŷx = so f tmax(RotHeadx(Rot(xi_clean,α))) (5.17)

Lrot_x(θ) =− 1
N

N

∑
i

log ŷα
x (5.18)

ŷy = so f tmax(RotHeady(Rot(xi_clean,β ))) (5.19)

Lrot_y(θ) =− 1
N

N

∑
i

log ŷβ
y (5.20)

ŷz = so f tmax(RotHeadz(Rot(xi_clean,γ))) (5.21)

Lrot_z(θ) =− 1
N

N

∑
i

log ŷγ
z , (5.22)

where Rot(·, ·) is the rotation function (as shown in Equation 5.2), RotHead(·) is the output
of each rotation heads, and θ denotes the encoder parameters. The final loss for this task is:

L = 1
2EX∼B

[
∥Xrot − X̂rot∥2

F
]
+Lrot_x +Lrot_y +Lrot_z. (5.23)

5.5 SKELTER - Temporal Motion Consistency with Triplet
Loss

The motion information of a skeletal action sequence can be easily obtained from joints
data as it can be represented as the temporal displacement of each joint [109], i.e., xt+1 − xt .
Herein, the goal of this chapter is to better regularise the model by checking consistencies
between the reconstructed skeleton and its data byproduct (i.e., the motion data) using a
Triplet Margin Loss [4]:

Lcontr(a, p,n) = max{∥ai − pi∥2 −∥ai −ni∥2 +margin, 0}, (5.24)

where a is the anchor samples, joints data coming from Xpert , p represents the positive
samples obtained from forward motion data (unaltered motion data), n is the negative
samples consisting of reversed motion data and left the default value of 1 for margin. This
ensures that the latent features learn to reconstruct action samples into the correct temporal
motion despite the presence of altered data (RM, see Section 5.2) by attracting the positive
samples of the correct motion and pushing afar the inverted motion data which can perturb
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the model performance. The final loss for this task is given by:

L = LMSE +Lcontr. (5.25)

5.6 SKELTER - Implementation Details

Each skeletal action sequence is normalised in terms of bone length in the range of [-1, 1].
As for their temporal sequence length, every missing time-frames were discarded (applying
methods introduced in [194]) and regularised the frame numbers to match a fixed size (fixing
each sequence length up to 100 time-frames by applying a regularisation in which frames of
longer samples were cut or replicate frames for shorter samples).

Both encoder and decoder modules are made of two transformer layers with four attention
heads each. Patch embedding and latent space sizes are set to 256. The positional embedding
length is set to 100, matching the temporal length of the given action sequences. The model
is trained for 100 epochs using AdamW optimiser with a batch size of 64 and a learning rate
of 0.001 (with a decay scheduling at epochs 20 and 70).

5.7 Experimental Analysis

The experimental analysis was performed on two large-scale skeletal action datasets: NTU-
60 [181] (Chapter 2 Section 2.4.8) and NTU-120 [121] (Chapter 2 Section 2.4.9) using all
available data splits, i.e., Cross-Subject, Cross-View and Cross-Setup. For action inference,
the common protocol of unsupervised feature learning was used, i.e., linear evaluation [247],
such that the latent features (learned without supervision) are given to a linear classifier to
perform HAR. Notice that the inference stage is the same with all SOTA competitors.

The performance of the proposed method (SKELTER) was compared against 9 SOTA
skeleton-based U-HAR methods: LongTGAN [247], MS2L [117], P&C [194], PCRP [225],
AS_CAL [173], AE-L [154], CrosSCLR [109], ISC [200], and AimCLR [74].
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Performance Accuracy (ACC %) – Perturbations on Test set only

NTU-60 [181] C-Subject

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 52.1 4.9 12.9 32.3 10.7 32.7 30.9 29.1 23.0 29.1
MS2L [117] 52.6 16.6 15.2 21.2 15.7 19.8 20.7 34.0 23.9 28.7
P&C FS [194] 50.6 5.9 18.1 37.9 14.4 39.2 35.9 34.9 27.9 22.7
P&C FW [194] 50.7 18.3 14.2 41.7 13.2 42.4 35.2 35.2 29.9 20.8
PCRP [225] 53.9 6.2 12.2 39.6 15.8 40.2 32.7 42.8 28.7 25.2
AS_CAL [173] 58.5 39.7 36.8 46.1 37.9 46.5 41.3 38.9 40.5 18.0
AE-L [154] 69.9 30.3 31.6 65.4 23.0 66.7 59.7 50.1 48.7 21.2
CrosSCLR [109] 77.8 51.2 40.1 50.5 40.4 22.4 49.4 57.4 47.8 30.0
ISC [200] 76.3 54.2 50.1 63.8 50.8 63.0 56.9 62.1 58.2 18.1
AimCLR [74] 74.3 55.7 50.0 66.3 58.2 65.0 60.1 63.3 60.5 13.8

SKELTER 69.2 57.2 60.0 69.0 63.7 67.9 63.9 68.9 64.4 4.8

NTU-60 [181] C-View

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 56.4 8.7 14.6 38.3 11.2 39.2 19.6 12.0 21.8 34.6
MS2L [117] 46.4 10.1 15.9 11.0 14.4 22.2 12.2 30.7 20.5 25.9
P&C FS [194] 76.3 8.5 23.5 60.8 19.7 63.1 50.7 29.5 38.9 37.4
P&C FW [194] 76.1 5.9 15.8 59.1 12.5 61.2 39.2 29.1 34.4 41.7
PCRP [225] 63.5 15.3 14.1 45.5 17.4 46.8 40.7 32.2 32.2 31.3
AS_CAL [173] 64.6 37.7 33.9 46.7 34.7 46.1 35.4 40.2 39.1 25.5
AE-L [154] 85.4 11.4 35.4 76.4 24.7 75.5 66.0 58.2 51.6 33.8
CrosSCLR [109] 83.4 58.0 44.6 56.5 53.0 28.6 52.7 57.4 54.1 29.3
ISC [200] 85.2 60.1 49.2 74.0 62.4 72.1 68.8 70.1 66.0 19.2
AimCLR [74] 79.7 60.9 54.9 76.5 65.8 73.8 70.4 74.1 68.8 10.2

SKELTER 78.5 62.1 66.4 77.5 70.5 76.8 71.9 77.5 71.8 6.7

Table 5.1 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR
and SKELTER when only the testing splits of NTU-60 [181] are perturbed by: SUB, AR, JR,
SHR, GN, LR and JO (see Section 5.2 for definitions). The average (AVG) accuracy and the
Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean data,
i.e., usage of original data as supplied by the datasets. The best results of each column are
given in bold.
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Figure 5.11 Performance drop ↓ % (related to the decrease of accuracy points) of SOTA
U-HAR and SKELTER when only the testing splits of NTU-60 [181] are perturbed by: SUB,
AR, JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The lowest bars represent the
best results.
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Performance Accuracy (ACC %) – Perturbations on Test set only

NTU-120 [121] C-Subject

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 35.6 4.8 7.3 26.7 5.2 26.7 20.8 18.8 17.7 17.9
MS2L [117] 24.3 8.5 10.2 7.7 8.4 9.4 9.1 12.7 10.5 13.8
P&C FS [194] 40.5 2.1 6.0 29.9 6.5 30.2 28.8 24.5 19.8 20.7
P&C FW [194] 40.3 14.3 9.4 30.4 7.6 31.5 28.3 24.2 21,5 18.8
PCRP [225] 41.7 3.7 6.5 27.8 8.5 28.2 22.4 22.8 19.5 22.2
AS_CAL [173] 48.6 27.6 23.9 34.1 25.0 34.7 26.1 30.1 28.3 20.3
AE_L[154] 59.1 7.6 19.3 47.3 11.7 51.3 40.9 47.2 34.9 24.2
CrosSCLR [109] 67.9 40.7 26.4 40.8 35.9 13.5 39.2 47.0 37.7 30.2
ISC [200] 67.1 44.0 37.2 50.8 44.4 52.8 49.3 50.3 47.5 19.6
AimCLR [74] 68.2 44.9 42.0 53.2 46.9 54.9 50.1 55.9 50.2 18.0

SKELTER 52.9 46.5 48.7 58.2 51.7 59.1 53.9 58.9 53.9 0

NTU-120 [121] C-Setup

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 39.7 3.9 8.7 27.2 6.4 28.1 17.4 12.6 16.5 23.2
MS2L [117] 23.8 8.3 10.0 8.4 9.5 8.4 9.9 8.3 10.3 13.5
P&C FS [194] 42.4 12.7 9.7 25.1 7.3 25.1 20.8 22.0 18.4 24.0
P&C FW [194] 42.9 2.1 4.7 32.6 6.9 33.0 23.0 22.1 20.1 22.8
PCRP [225] 45.1 13.5 8.7 30.7 9.7 31.2 27.1 20.7 21.7 23.4
AS_CAL [173] 49.2 26.5 22.6 35.7 23.5 36.2 32.9 35.8 29.9 19.3
AE-L [154] 62.4 7.7 22.6 48.1 12.9 42.8 40.3 32.6 32.9 29.5
CrosSCLR [109] 66.7 41.7 29.0 42.1 36.1 18.0 43.0 50.1 40.8 25.9
ISC [200] 67.9 40.5 34.8 50.8 38.4 43.9 48.1 53.2 46.4 21.5
AimCLR [74] 68.8 41.1 37.0 57.1 41.1 44.2 50.9 54.4 48.4 20.4

SKELTER 56.0 42.9 40.6 60.9 44.1 45.7 56.5 60.5 50.2 5.8

Table 5.2 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR
and SKELTER when only the testing splits of NTU-120 [121] are perturbed by: SUB, AR,
JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The average (AVG) accuracy and
the Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean
data, i.e., usage of original data as supplied by the datasets. The best results of each column
are given in bold.
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Figure 5.12 Performance drop ↓ % (related to the decrease of accuracy points) of SOTA
U-HAR and SKELTER when only the testing splits of NTU-120 [121] are perturbed by:
SUB, AR, JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The lowest bars
represent the best results.
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5.8 Comparison with SOTA - Data Perturbation

By first verifying if the initial claim of this chapter is valid (i.e., U-HAR methods are not
resilient to data perturbations), all SOTA were evaluated by supplying their code publicly in
two distinct evaluation phases:

• Investigate the accuracy results and performance drop of SOTA U-HAR and SKELTER
when data perturbation is applied only on the test set, where the SOTA models are
pre-trained using the original and unaltered data.
Tables 5.1 and 5.2 report quantitative results, whereas Figures 5.11 and 5.12 represent
the graphical counterpart in terms of bar plots (lower the bars, better the results).

• Investigate the accuracy results and performance drop of SOTA U-HAR and SKELTER
when data perturbation is applied on both the train and test set, de-facto re-training
from scratch all SOTA models providing perturbed data.
Tables 5.3 and 5.4 report quantitative results, whereas Figures 5.13 and 5.14 represent
the graphical counterpart in terms of bar plots (lower the bars, better the results).

Overall, the extensive quantitative and qualitative results confirm and demonstrate the sensi-
ble weakness in performance (i.e., classification accuracy) of these approaches w.r.t. such
perturbations, showing that all the methods’ performance decrease when the testing data is
corrupted, in some cases up to 70%. However, it is important to notice that even for the cases
in which the set of data perturbations are introduced to the models in their training, there still
exist remarkable drops in the performance, up to 45%. The reader can observe that for the
perturbed data, the accuracy of SKELTER is better than the others in all datasets: such strong
drops are not observed for SKELTER, proving its better denoising capabilities compared
to SOTA. In other words, the performance drop of SKELTER is lower than others, and its
performance is more accurate than others with the perturbed data.

It is also important to highlight that some of the methods, such as AS-CAL [173], CrosSCLR
[109], ISC [200], and AimCLR [74], all perform contrastive learning while they augment
the data in terms of e.g., Shear, Gaussian noise, and Rotation. Therefore, one can expect
they would be more resistant to the corresponding perturbations. However, compared to
SKELTER, their performance decrease is relevant.
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Performance Accuracy (ACC %) – Perturbations on Train & Test set

NTU-60 [181] C-Subject

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 52.1 11.6 32.8 34.7 20.1 35.3 30.9 32.2 28.5 23.6
MS2L [117] 52.6 32.8 25.4 36.0 22.1 40.0 33.1 42.7 34.3 18.3
P&C FS [194] 50.6 18.9 28.4 45.2 24.9 43.0 29.2 38.8 33.1 17.5
P&C FW [194] 50.7 24.5 27.0 48.3 21.7 44.8 32.7 38.6 34.5 16.2
PCRP [225] 53.9 15.2 18.7 46.7 22.8 51.9 40.7 51.1 35.4 18.5
AS_CAL [173] 58.5 41.9 33.9 45.3 34.4 46.5 40.1 50.0 41.6 16.9
AE-L [154] 69.9 52.8 58.8 66.2 59.1 66.2 63.4 57.2 59.8 10.1
CrosSCLR [109] 77.8 54.3 45.2 58.8 45.0 32.9 57.2 63.4 53.1 24.7
ISC [200] 76.3 55.8 52.2 65.2 52.2 65.8 59.0 65.6 60.1 16.2
AimCLR [74] 74.3 56.4 48.9 68.0 60.9 67.2 62.7 66.8 62.1 12.2

SKELTER 69.2 57.2 60.0 69.0 63.7 67.9 63.9 68.9 64.4 4.8

NTU-60 [181] C-View

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 56.4 20.1 40.7 36.9 28.4 36.2 41.1 29.2 32.3 21.5
MS2L [117] 46.4 30.7 41.6 40.8 24.2 29.9 32.8 42.1 36.1 18.2
P&C FS [194] 76.3 15.4 27.1 63.4 24.7 65.6 55.2 39.7 43.2 15.7
P&C FW [194] 76.1 14.2 26.8 61.7 16.2 64.1 58.3 39.9 41.3 14.9
PCRP [225] 63.5 21.4 22.2 54.2 24.0 54.3 50.8 44.2 39.3 15.9
AS_CAL [173] 64.6 41.5 33.2 45.0 33.8 46.2 44.2 49.5 41.6 17.0
AE-L [154] 85.4 57.4 44.8 74.9 55.1 75.8 69.9 68.4 63.7 9.2
CrosSCLR [109] 83.4 60.9 48.1 75.9 60.7 49.1 70.0 70.2 63.3 24.8
ISC [200] 85.2 60.8 50.9 76.1 63.8 74.4 70.1 72.8 67.7 15.7
AimCLR [74] 79.7 61.7 57.2 77.0 68.0 76.0 71.2 75.9 70.1 11.5

SKELTER 78.5 62.1 66.4 77.5 70.5 76.8 71.9 77.5 71.8 6.7

Table 5.3 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and
SKELTER when both training and testing splits of NTU-60 [181] are perturbed by: SUB,
AR, JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The average (AVG) accuracy
and the Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for
clean data, i.e., usage of original data as supplied by the datasets. The best results of each
column are given in bold.
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Figure 5.13 Performance drop ↓ % (related to the decrease of accuracy points) of SOTA
U-HAR and SKELTER when both training and testing splits of NTU-60 [181] are perturbed
by: SUB, AR, JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The lowest bars
represent the best results.
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Performance Accuracy (ACC %) – Perturbations on Train & Test set

NTU-120 [121] C-Subject

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 35.6 2.5 28.5 33.8 18.7 32.5 32.9 29.9 25.8 9.8
MS2L [117] 24.3 10.5 20.4 17.6 20.1 16.2 22.5 19.2 18.0 6.3
P&C FS [194] 40.5 12.6 22.7 32.7 12.8 35.4 30.8 33.6 26.3 14.2
P&C FW [194] 40.3 18.3 26.0 36.7 13.8 33.9 32.4 34.0 27.7 12.6
PCRP [225] 41.7 10.2 13.4 35.1 12.4 33.7 31.7 33.3 25.4 16.3
AS_CAL [173] 48.6 32.5 21.8 32.4 23.3 21.0 47.2 42.2 31.0 17.6
AE_L[154] 59.1 44.0 32.7 51.9 36.3 53.4 49.9 50.6 45.9 13.2
CrosSCLR [109] 67.9 44.2 35.9 50.1 47.1 36.9 52.4 53.3 46.9 21.0
ISC [200] 67.1 45.1 38.6 51.8 46.5 55.5 50.1 52.9 49.4 17.7
AimCLR [74] 68.2 45.9 44.3 54.2 49.9 56.1 52.2 57.4 51.9 16.3

SKELTER 52.9 46.5 48.7 58.2 51.7 59.1 53.9 58.9 53.9 0

NTU-120 [121] C-Setup

CLN SUB AR JR SHR GN LR JO
AVG Drop ↓

ACC (%) (%)

LongTGAN [247] 39.7 5.7 27.8 35.5 10.8 33.4 29.9 21.9 23.8 15.9
MS2L [117] 23.8 17.6 10.1 10.7 20.4 20.0 10.4 12.4 21.9 1.9
P&C FS [194] 42.4 25.9 23.8 36.9 20.0 31.2 30.7 30.7 27.5 14.9
P&C FW [194] 42.9 12.4 20.5 40.1 21.5 36.0 32.7 30.8 28.4 14.5
PCRP [225] 45.1 20.4 18.0 44.0 15.9 38.3 25.9 37.4 28.8 16.3
AS_CAL [173] 49.2 30.7 24.4 33.6 25.0 25.6 30.0 49.0 31.0 18.2
AE-L [154] 62.4 40.0 33.8 47.3 37.2 43.9 42.1 48.2 42.7 19.7
CrosSCLR [109] 66.7 42.4 34.7 45.9 39.9 39.7 43.2 54.4 45.6 21.1
ISC [200] 67.9 42.0 36.3 52.2 40.0 44.0 50.8 55.2 47.9 20.0
AimCLR [74] 68.8 42.6 38.8 59.4 43.1 44.9 53.9 58.7 50.3 18.5

SKELTER 56.0 42.9 40.6 60.9 44.1 45.7 56.5 60.5 50.2 5.8

Table 5.4 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and
SKELTER when both training and testing splits of NTU-120 [121] are perturbed by: SUB,
AR, JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The average (AVG) accuracy
and the Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for
clean data, i.e., usage of original data as supplied by the datasets. The best results of each
column are given in bold.
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Figure 5.14 Performance drop ↓ % (related to the decrease of accuracy points) of SOTA
U-HAR and SKELTER when both training and testing splits of NTU-120 [121] are perturbed
by: SUB, AR, JR, SHR, GN, LR and JO (see Section 5.2 for definitions). The lowest bars
represent the best results.
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5.9 Comparison with SOTA - Data Alteration

This section reports the performance of SOTA U-HAR when rotation (ROT) and reversed
motion (RM) are applied to the datasets, with the same experimental pipeline described in
the previous section (Tables 5.5 and 5.6, Figures 5.15 and 5.16). These results also include
SKELTER’s performance in three settings to examine the importance of using the proposed
rotation-invariance and triplet losses:

• Pure SKELTER: using only the LMSE loss (Equation 5.15)

• SKELTER with the rotation invariance loss (Equation 5.23)

• SKELTER with the triplet loss Lcontr (Equation 5.24)

The reader can observe the same trends in the previous section, such that when Rotation and
Reversed Motion are applied, the performance of SKELTER drop less than SOTA methods
while performing better than all SOTA in terms of accuracy. Additionally, the proposed
rotation invariance head and the inclusion of triplet loss for temporal motion consistency

always improve the performance, achieving the best out of all.
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Performance Accuracy (ACC %) – Alterations on Test set only

NTU-60 [181] C-Subject NTU-60 [181] C-View

CLN ROT RM
AVG Drop ↓

CLN ROT RM
AVG Drop ↓

ACC (%) (%) ACC (%) (%)

LongTGAN [247] 52.1 23.4 30.1 26.7 25.4 56.4 32.0 20.4 26.2 30.2
MS2L [117] 52.6 38.2 33.4 35.8 16.8 46.4 33.8 34.2 34.0 12.4
P&C FS [194] 50.6 31.0 33.8 32.4 18.2 76.3 46.2 47.8 47.0 29.3
P&C FW [194] 50.7 32.6 36.2 34.4 16.3 76.1 37.7 48.7 43.2 32.9
PCRP [225] 53.9 29.9 38.8 34.3 19.6 63.5 37.5 40.0 38.7 24.8
AS_CAL [173] 58.5 33.3 43.7 38.5 20.0 64.6 33.0 43.9 38.4 26.2
AE-L [154] 69.9 57.0 54.1 55.5 14.4 85.4 58.8 58.2 58.5 26.6
CrosSCLR [109] 77.8 60.1 58.8 59.4 18.4 83.4 66.9 68.8 67.8 15.6
ISC [200] 76.3 60.3 62.9 61.6 14.7 85.2 67.2 70.1 68.6 16.6
AimCLR [74] 74.3 62.7 63.4 63.1 11.2 79.7 69.4 73.0 71.2 8.5

SKELTER (Pure) 69.2 63.8 65.2 64.5 4.7 78.5 70.1 76.1 73.1 5.4
SKELTER (w/RotHeads)) 69.2 66.2 - 66.2 3.0 78.5 75.2 - 75.2 3.3
SKELTER (w/ Lcontr) 69.2 - 68.7 68.7 0.5 78.5 - 78.0 78.0 0.5

NTU-120 [121] C-Subject NTU-120 [121] C-Setup

CLN ROT RM
AVG Drop ↓

CLN ROT RM
AVG Drop ↓

ACC (%) (%) ACC (%) (%)

LongTGAN [247] 35.6 18.2 30.9 24.5 11.1 39.7 24.2 20.0 22.1 17.6
MS2L [117] 24.3 13.3 14.9 14.1 10.2 23.8 12.8 17.5 15.1 8.8
P&C FS [194] 40.5 22.6 27.8 25.2 15.3 42.4 20.8 22.4 21.6 20.8
P&C FW [194] 40.3 20.4 27.4 23.9 16.4 42.9 21.4 34.9 28.1 14.8
PCRP [225] 41.7 24.9 30.5 27.7 14.0 45.1 23.3 30.5 26.9 18.2
AS_CAL [173] 48.6 20.0 32.8 26.4 22.2 49.2 21.9 34.2 28.1 21.1
AE_L[154] 59.1 42.4 46.2 44.3 14.8 62.4 40.7 48.8 44.7 17.7
CrosSCLR [109] 67.9 45.9 50.1 48.0 19.9 66.7 52.8 54.2 53.5 13.2
ISC [200] 67.1 50.7 48.1 49.4 17.7 67.9 53.0 54.7 53.8 14.1
AimCLR [74] 68.2 51.2 52.9 52.1 16.1 68.8 54.1 56.0 55.1 13.7

SKELTER (Pure) 52.9 54.1 54.6 54.3 0 56.0 55.3 57.7 56.5 0
SKELTER (w/RotHeads) 52.9 56.6 - 56.6 0 56.0 58.8 - 58.8 0
SKELTER (w/ Lcontr) 52.9 - 59.0 59.0 0 56.0 - 61.0 61.0 0

Table 5.5 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR
and SKELTER when only the testing splits of NTU-60 [181] and NTU-120 [121] are altered
by: ROT and RM (see Section 5.2 for definitions) in terms of the average (AVG) accuracy
and the Drop ↓ w.r.t. clean data (CLN) (the lower, the better). CLN stands for clean data,
i.e., usage of original data as supplied by the datasets. The results of SKELTER are given in
three settings: (a) pure SKELTER, (b) SKELTER with the rotation head (RotHeads) and (c)
SKELTER with Lcontr. The best results of each column are given in bold while the second
best result is underlined.
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Figure 5.15 Kiviat plots in terms of Accuracy (%) between the SOTA U-HAR and SKELTER
when only the testing splits of NTU-60 [181] and NTU-120 [121] are altered by: ROT and
RM (see Section 5.2 for definitions). Each ray line represents the accuracy results of each
method (where the centre is the zero), and coloured lines and areas represent the Accuracy
values w.r.t. the CLN (grey), ROT (blue) and RM (orange) applied. CLN stands for clean
data, i.e., usage of original data as supplied by the datasets.
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Performance Accuracy (ACC %) – Alterations on Train & Test set

NTU-60 [181] C-Subject NTU-60 [181] C-View

CLN ROT RM
AVG Drop ↓

CLN ROT RM
AVG Drop ↓

ACC (%) (%) ACC (%) (%)

LongTGAN [247] 52.1 24.9 33.6 29.2 22.9 56.4 34.0 24.3 29.1 27.3
MS2L [117] 52.6 41.0 35.2 38.1 14.5 46.4 35.9 37.0 36.4 10.0
P&C FS [194] 50.6 34.1 35.7 34.9 15.7 76.3 48.5 49.5 49.0 27.3
P&C FW [194] 50.7 35.0 38.1 36.5 14.2 76.1 40.2 50.0 45.1 31.0
PCRP [225] 53.9 31.7 40.1 35.9 18.0 63.5 40.1 42.3 41.2 22.3
AS_CAL [173] 58.5 35.5 46.5 41.0 17.5 64.6 35.2 46.2 40.7 23.9
AE-L [154] 69.9 59.4 55.2 57.3 12.6 85.4 62.9 60.4 61.6 23.8
CrosSCLR [109] 77.8 61.4 59.9 60.6 17.2 83.4 68.2 70.3 69.2 14.2
ISC [200] 76.3 61.8 63.2 62.5 13.8 85.2 68.4 72.8 70.6 14.6
AimCLR [74] 74.3 63.2 64.9 64.1 10.2 79.7 69.9 74.2 72.1 7.6

SKELTER (Pure) 69.2 63.8 65.2 64.5 4.7 78.5 70.1 76.1 73.1 5.4
SKELTER (w/RotHeads)) 69.2 66.2 - 66.2 3.0 78.5 75.2 - 75.2 3.3
SKELTER (w/ Lcontr) 69.2 - 68.7 68.7 0.5 78.5 - 78.0 78.0 0.5

NTU-120 [121] C-Subject NTU-120 [121] C-Setup

CLN ROT RM
AVG Drop ↓

CLN ROT RM
AVG Drop ↓

ACC (%) (%) ACC (%) (%)

LongTGAN [247] 35.6 20.2 33.0 26.6 9.0 39.7 26.8 22.4 24.6 15.1
MS2L [117] 24.3 16.2 19.7 17.9 6.4 23.8 15.4 19.9 17.6 6.2
P&C FS [194] 40.5 25.0 30.7 27.8 12.7 42.4 23.8 24.9 24.3 18.1
P&C FW [194] 40.3 24.2 30.4 27.3 13.0 42.9 24.7 37.0 30.8 12.1
PCRP [225] 41.7 26.8 32.0 29.4 12.3 45.1 25.8 33.5 29.6 15.5
AS_CAL [173] 48.6 23.9 34.8 29.3 19.3 49.2 24.5 36.2 30.3 18.9
AE_L[154] 59.1 46.7 48.0 47.3 11.8 62.4 42.1 50.1 46.1 16.3
CrosSCLR [109] 67.9 49.4 52.8 51.1 16.8 66.7 53.4 56.7 55.1 11.6
ISC [200] 67.1 53.0 50.8 51.9 15.2 67.9 53.9 56.9 55.4 12.5
AimCLR [74] 68.2 53.9 53.1 53.5 14.7 68.8 54.2 57.2 55.7 13.1

SKELTER (Pure) 52.9 54.1 54.6 54.3 0 56.0 55.3 57.7 56.5 0
SKELTER (w/RotHeads) 52.9 56.6 - 56.6 0 56.0 58.8 - 58.8 0
SKELTER (w/ Lcontr) 52.9 - 59.0 59.0 0 56.0 - 61.0 61.0 0

Table 5.6 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR
and SKELTER when both training and testing splits of NTU-60 [181] and NTU-120 [121]
are altered by: ROT and RM (see Section 5.2 for definitions) in terms of the average (AVG)
accuracy and the Drop ↓ w.r.t. clean data (CLN) (the lower, the better). CLN stands for clean
data, i.e., usage of original data as supplied by the datasets. The results of SKELTER are
given in three settings: (a) pure SKELTER, (b) SKELTER with the rotation head (RotHeads)
and (c) SKELTER with Lcontr. The best results of each column are given in bold while the
second best result is underlined.
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Figure 5.16 Kiviat plots in terms of Accuracy (%) between the SOTA U-HAR and SKELTER
when both training and testing splits of NTU-60 [181] and NTU-120 [121] are altered by:
ROT and RM (see Section 5.2 for definitions). Each ray line represents the accuracy results
of each method (where the centre is the zero), and coloured lines and areas represent the
Accuracy values w.r.t. the CLN (grey), ROT (blue) and RM (orange) applied. CLN stands for
clean data, i.e., usage of original data as supplied by the datasets.
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5.10 Qualitative Results

Figures 5.17 and 5.18 shows the visualisations of a skeletal action sequence "Throw" picked
from the NTU-60 [181] Cross-View split. As a reference for all illustrations, the original
unaltered skeletons are represented in blue colour, their perturbed counterpart (by applying
one of the perturbations from Section 5.2) in red colour, and the denoised skeletons obtained
from the proposed SKELTER model in green colour.

Figure 5.17 depicts some of the proposed perturbations, which potentially could negatively
affect the proposed method’s performances and the state-of-the-art. Starting on a variety of
perturbed data, the effectiveness of SKELTER can be seen through the smoothed denoised
skeleton reconstruction of it even in case of heavy data perturbation.

As a concluding remark, Figure 5.18 shows how SKELTER reconstructs and denoise each
sample accordingly as the sequence unfolds w.r.t. its temporal dimension.
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i) ’Rotation’

Clean Perturbed Reconstructed

ii) ’Shear’

iii) ’Axis Removal’

iv) ’Joint Removal’

v) ’Limbs Removal’

Figure 5.17 SKELTER reconstruction. Starting from the clean "Throw" skeleton action
sequences (first column, blue), a perturbation is applied (middle column, red) and gives the
obtained sequence as the input, which is then reconstructed (last column, green). Each row is
a sample of different perturbations. From first to the last row: ’i)’ rotated skeleton (along X ,
Y , and Z axes), ’ii)’ sheared skeleton, ’iii)’ 2D skeleton (all coordinated of X axis set to zero),
’iv)’ joint-corrupted skeleton (random joints coordinates set to zero), ’v)’ no-limb skeleton
(the joints set coordinates of the left arm set to zero).
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Clean

Frame # 25 Frame # 50 Frame # 75 Frame # 100

Perturbed

Reconstructed

Figure 5.18 Original (blue), perturbed (red), and SKELTER-reconstructed (green) skeletal
pose. As the data perturbation Gaussian additive noise is applied, each column represents
one particular frame of the overall sequence. Left to right: frame #25, frame #50, frame #75,
frame #100.
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Sample pose from a real-life scenario [19] Sample pose from NTU-60 [181]

Figure 5.19 Graphical comparison between perturbed and real-life sample poses. Left: 2D
skeleton pose estimated using OpenPose [19], from a sample captured from a CCTV video
stream (red skeleton). Camera calibration and reference origin point estimated beforehand
for the 3D-to-2D conversion of the perturbed dataset. All 2D poses were normalised and
centred w.r.t. the reference point, which is set identically to the perturbed poses. Right: a
sample from NTU-60 [181] (blue skeleton) after applying the world-to-camera projection,
using camera parameters obtained earlier, making sure that both distributions of poses are
compatible with each other. Axis values correspond to the pixel values of the recorded frame
(i.e., 640x480). In both cases, the RGB background is left for illustration purposes.
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Missing Joints Missing Limbs MMD [201]
(AVG %) (AVG %) (p < 0.05)

CLN 0.32 0.49 0.0095
SUB 5.89 0.01 0.0078
AR 0.21 0.30 0.0313
JR 2.11 0.57 0.0157
SHR 0.89 1.32 0.0191
GN 0.24 0.45 0.0294
LR 20.87 25.38 0.0009
JO 0.64 0.49 0.0103

Real-world 13.45 22.76 -

Table 5.7 Statistics between perturbed NTU-60[181] and real-world 2D poses. Values of
missing joints and limbs are reported as the average percentage w.r.t. all joints of 2D poses.
MMD refers to the Maximum Mean Discrepancy [201] between the real-world 2D poses and
each distinct proposed perturbation of NTU-60[181].
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5.11 Real-Life scenario - a case study

Section 5.1 sets the foundations of the overall claim of this chapter: devise an unsupervised
model, U-HAR oriented, capable of handling data corruption of skeleton poses in any con-
ditions which can be found in more practical scenarios. Subsequent sections proved the
usefulness of SKELTER for this particular task. Still, an important question remained unan-
swered: if the proposed skeleton poses perturbations or alterations (described in Section 5.2)
plausibly reflect data corruption which could be found in real-world scenarios. This section
describes a case study about a simulated scenario, with a comparison between a perturbed
dataset (i.e., perturbed NTU-60[181]) and real-world 2D skeleton poses. The goal is to
demonstrate that both data distributions can overlap each other, confirming the plausibility of
proposed perturbation w.r.t. real data.

To achieve this, a set of 2D skeleton poses were captured from a CCTV video stream using
OpenPose [19]. Recordings were made in an office scenario, where the original video stream
was deleted later to maintain the privacy of people detected. This can be seen in Figure 5.19,
where a clean office background is left only for visualisation purposes: the left pose represents
a sample frame from the real-world poses captured, and the right pose represents a sample
frame from the perturbed dataset. In addition, camera parameters and a reference origin point
were recorded and estimated to ensure an equal comparison for both data distributions. As
for the perturbed dataset, a world-to-camera projection had to be performed to convert its
3D poses into 2D poses, compatible in terms of the number of joints (keeping only a subset
of 17 skeleton joints common to each other), their order and their pixel position w.r.t. camera
parameters estimated beforehand. The reference origin point was necessary to keep all poses
coming from both datasets aligned. In addition, for the perturbed dataset, to add variety and
add realism, each pose was rotated along its Z-axis before performing the camera projection
to ensure a similar behaviour naturally occurring in real-life scenarios (i.e., rotations of
people detected). As the last step, pose normalisation in unit-norm was applied for both
datasets.

Table 5.7 reports some statistics related to the number of missing joints, missing limbs (i.e., a
group of joints) and the Maximum Mean Discrepancy (MMD). Missing joints and limbs
refer to the averaged percentage value of each distinct joint which is missing (i.e., zero-
valued) for the former and the missing values of groups of joints which form one of the four
limbs (i.e., arms and legs). Results show that the Limbs Removal perturbation is the closest
w.r.t. real-world 2D poses, simulating the high occurrence of missing entire body parts due to
heavy occlusions instead of milder occlusions like single Joints Removal. Maximum mean
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discrepancy (MMD) [201] is a kernel-based statistical test used to determine whether two
given data distributions are identical. In addition to being used as a statistical test (as an
integral probability metric), MMD can also be used as a loss or cost function in various
machine learning algorithms (as a distance, or difference, between feature means). It is often
used as a simpler discriminator because of its easy implementation and the rich kernel-based
theory that underlies its principles. The kernel trick was used to estimate this measure, and a
lower value denotes a statistically-significative overlap between the two data distributions.
It was performed by comparing the real-world 2D poses with each, and distinct NTU-60
[181] dataset perturbation proposed in Section 5.2. In all cases, its value was below the null
hypothesis p < 0.05, denoting the plausibility of such proposed data perturbation strategies,
despite the semantic differences and type of motion involved.

5.12 Concluding remarks

Robust human action recognition is a fundamental capability in artificial intelligence sys-
tems, and this chapter shows that data perturbations and alterations can severely reduce the
performance of SOTA approaches. First, several perturbations and alterations that could be
commonly found when extracting skeletal data in realistic environments (e.g., occlusions,
geometrical distortions, noise, etc.) were introduced. Then, a novel framework, based on
a transformer encoder-decoder and accepting 3D-skeletal data as the input, is presented.
Additional losses grant to obtain robust representations against rotation variances and to
provide temporal motion consistency. Indeed, results show that the current methods have
a relevant drop in performance while the proposed method is less affected by such data
perturbations and alterations. This confirms that the proposed approach might be prone to be
better resistant to challenging realistic operational scenarios.



Chapter 6

Conclusions

In conclusion, this thesis presents novel approaches to human activity recognition using
unsupervised learning techniques, both actions and emotions. The proposed methods address
several operational limitations of previous approaches, including difficulty handling the
temporal dimension, noise in skeletal data, and computational challenges. The following
sections define the concluding remarks of each research topic addressed in this thesis,
focusing on drawbacks, limitations and insights for future works.

6.1 Subspace Clustering

The results of the experimental analysis presented in Chapter 3 demonstrate the effectiveness
of the proposed fully unsupervised pipeline for human action recognition (HAR). The
pipeline, which combines subspace clustering methods based on the self-expressiveness
property with covariance representation and temporal subspace clustering using dictionary
learning and temporal Laplacian regularisation, was validated on eight different datasets with
a wide variety of action types, the number of action classes, and experimental protocols.
Across these benchmarks, the proposed pipeline consistently outperformed previous subspace
clustering methods and, in some cases, even outperformed supervised approaches.

Drawbacks, limitations, and future works: One of the main drawbacks of the subspace
clustering approach for unsupervised human action recognition (HAR) is its limited scalabil-
ity. Due to the space complexity of the affinity matrix, which is required for the classification
task and grows quadratically with the size of the dataset, the applicability of such algorithms
is restricted to smaller datasets. This can limit the ability of the approach to capture the full
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range of nuances in human actions and may impair its performance on more complex and
diverse datasets. To address this issue, a promising direction for future work is to develop
subspace clustering algorithms capable of handling large-scale or big-data regimes. Overall,
the results of this chapter demonstrate the potential of the proposed pipeline for unsupervised
HAR but also highlight the need for further research to address its scalability limitations and
enable its application to more complex and diverse datasets.

6.2 AE-L: convolutional residual autoencoder

The experimental analysis results presented in Chapter 4 demonstrate the effectiveness of
the proposed convolutional autoencoder with Laplacian regularisation (AE-L) method for
unsupervised feature learning in the context of 3D skeleton-based action and emotion recog-
nition. The proposed method was validated on large-scale benchmarks for both action and
emotion recognition, showing superior performance compared to state-of-the-art unsuper-
vised methods in various settings, including cross-subject, cross-view, and cross-setup. The
incorporation of gradient reversing into the AE-L framework also resulted in improved invari-
ance to camera viewpoint changes. These findings highlight the potential of unsupervised
learning approaches for 3D skeleton-based action and emotion recognition and suggest that
the proposed AE-L method represents a valuable contribution to the field, capable of learning
more distinctive action and emotion features compared to the prior art.

Drawbacks, limitations, and future works: One of the major drawbacks of the existing
unsupervised human action recognition (U-HAR) methods is that they have largely been
evaluated on benchmark datasets recorded in controlled experimental settings. These datasets
may not adequately capture the challenges and complexities that can arise in real-world
scenarios, such as noisy data, severe occlusions, and errors in sensors or pose estimators.
As a result, the performance of these methods may not generalise well to more realistic
environments. To address this issue, a promising direction for future work is to evaluate the
performance of U-HAR methods on datasets that more closely reflect real-world conditions.
Additionally, it may be beneficial to investigate the robustness of U-HAR methods to errors
or missing data, as this is a common issue that can arise in real-world scenarios.
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6.3 SKELTER: transformer for real-world perturbed data

In conclusion, Chapter 5 has demonstrated the importance of the robustness of the proposed
SKELTER in human action recognition (HAR) in need of approaches that can effectively
handle data perturbations and alterations commonly found in realistic environments. A novel
framework based on a transformer encoder-decoder and incorporating additional losses to
promote rotation-invariant and temporal motion-consistent representations was presented to
address this issue. The proposed approach was shown to be significantly less affected by data
perturbations and alterations than state-of-the-art (SOTA) methods, indicating its potential
to be more resistant to challenging real-life scenarios. Additionally, a systematic analysis
of SOTA unsupervised HAR algorithms in the presence of perturbed data highlighted the
need for noise-resistant models in these types of environments. Overall, this chapter’s results
demonstrate the SKELTER framework’s potential as a solution for robust unsupervised HAR
in challenging, in-the-wild settings.

Drawbacks, limitations, and future works: While the results of SKELTER, presented
in Chapter 5, demonstrate the approach’s effectiveness, there is still a significant need for
further research and exploration of this topic since it is a relatively unexplored research
topic, and has not yet been widely studied. Overall, the results of this work demonstrate the
potential of the proposed approach for handling perturbed data and achieving robust results
but also highlight the need for further research to fully understand and optimise this approach.
To address this issue, a promising direction for future work is to put more research effort
into developing and evaluating new unsupervised approaches for handling perturbed data
in various applications. Such research will be beneficial not only for the computer vision
community but also for a wide range of real-time and real-world applications where data
perturbations are common.
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