{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "bMcZtJYe9cMJ" }, "source": [ "# DH-401: Digital Musicology semester project\n", "---------------\n", "## Predicting music popularity using DNNs - Milestone 3\n", "\n", "### Table of Content\n", "\n", "1. [Research Question](#rq)\n", "1. [Popularity score](#pop)\n", "1. [Features selection for regression](#feat-selection)\n", "1. [Regressions](#regs)\n", "1. [Survey](#survey)\n", "1. [Explaining the linear regression model of popularity score using audioLIME](#audiolime)\n", "1. [Appendix: Efforts to use Wave2Vec2.0 for popularity estimation](#wave2vec)\n", "\n", "-------------------" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reasearch Question \n", "\n", "It's common in the history of music that some genres and bands gain very high popularity and some aren't noticed at all. It's not really easy to find out which piece will gain an universal acclaim. Or is it? Maybe the popularity of the most known music is the intrinsic feature of that music itself?\n", "\n", "In this project, we want to answer the question: to what extent music popularity can be identified solely based on the musical features, and what are the features that make music popular ? Is it possible to identify musical features that play a significant role in songs' popularity ? It's interesting to see whether there are parameters and patterns which lead to the increased music popularity. Needless to say, that this kind of information is priceless for the whole music industry, and for the musicians themselves, as the music which is more popular will, by definition, reach a broader audience and have a higher chance of selling better. \n", "\n", "\n", "To conduct our study, we use the [FMA: A Dataset for Music Analysis](https://arxiv.org/abs/1612.01840) dataset. It is publicly available on [Github](https://github.com/mdeff/fma) and the files are stored on UNIL/SWITCH server.\n", "\n", "\n", "For this study, we are making two main assumptions :\n", "1. We claim that popular music has a lot of listens. Let's explain that by starting from the definition of \"popular music\". According to Gaynor Jones and Jay Rahn, \"an obvious criterion for a music's popularity is the number of people who experience it: the more people involved, the more popular music\" *(Gaynor Jones and Jay Rahn (1977). Definitions of Popular Music: Recycled. The Journal of Aesthetic Education , Oct., 1977, Vol. 11, No. 4, pp. 79-92, [Jstor](https://www.jstor.org/stable/3332182).)*. That means that a music can be qualified as popular if it reaches a wide audience. However, we shouldn't be too quick with the definition and acknowledge that popularity more complex than that, that \"various groups of people cultivate certain genres within a popular idiom\". *(Gaynor Jones and Jay Rahn (1977). Definitions of Popular Music: Recycled. The Journal of Aesthetic Education , Oct., 1977, Vol. 11, No. 4, pp. 79-92, [Jstor](https://www.jstor.org/stable/3332182).)*. This can be social class, geographical place, race, education, or other. We do not account for any of these in our study. We however try to make our analysis more fine-grained by studying popularity within genres, so that a music is popular if, within its genre, it has a lot of listens.\n", "\n", "\n", "2. There would exist some intrinsic features of each music piece which participate in making it more or less popular than others. We mean by 'intrinsic features', features that are directly calculated from the audio sound wave - and its spectrogram. This approach inscribes our work in the still recent field of Hit Song Science (HSS) whose goal is to \"understand better the relation between intrinsic characteristics of songs and their popularity, regardless of the complex and poorly understood mechanisms of human appreciation and social pressure\" (Pachet, 2012). As a result of this project, we expect to identify several technical characteristics of the music which result in its success.\n", "\n", "\n", "To answer the research question, we are first going to check our two assumptions. For assumption (1), we will conduct a survey in order to get a better intuition on how people are perceiving popular music, and how people like some subset of our dataset. We hope to find that music that people would listen to a lot are the ones that are popular, justifying assumption (1). To check on assumption (2), we implement a Deep Neural Network to see if it manages to predict popularity, because if it does then it's a good indication that there exists musical features that play a role in popularity. After that, we are going to come up with a popularity metric based on the data available. It will take into accound the number of listens of the song, but also of the album and the number of likes and comments. Then we identify discriminating features in music, and apply regression models for musics in each genre to detect the features that play a role in popularity. Finally, the biggest challenge is how we can interpret the features and make sense of them, trying to create listenable interpretations of our model, to answer accuratly our research question.\n", "\n", "\n", "Throughout this study, we will take particular care to pinpoint the limitations of each step that we take. On the survey, we acknowledge that it has some crucial limitations, and we will try to explain the choice of our questions as precisely as possible, and describing how they will help us answer our research question. On the model interpretation, one of the biggest drawback is that the computed features are not really easily interpretable. That's why we try an approach to make it listenable, that we will develop further later in the notebook.\n", " \n", " " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "30jJwH7i9cMO" }, "outputs": [], "source": [ "from zipfile import ZipFile\n", "from tqdm.notebook import tqdm\n", "from pqdm.processes import pqdm\n", "\n", "from IPython import display\n", "\n", "import librosa\n", "import soundfile as sf\n", "import torchaudio\n", "\n", "import seaborn as sns\n", "import pandas as pd\n", "import numpy as np\n", "\n", "import os\n", "import ast\n", "\n", "import statsmodels.api as sm\n", "import statsmodels.formula.api as smf\n", "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", "from sklearn.decomposition import PCA\n", "\n", "from scipy.stats import chisquare\n", "from scipy.stats import shapiro\n", "\n", "from nltk import agreement\n", "\n", "import matplotlib.pyplot as plt\n", "from scipy.cluster import hierarchy as hc\n", "from scipy import stats\n", "from sklearn import preprocessing\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "\n", "from transformers import Wav2Vec2PreTrainedModel, Wav2Vec2Model, Wav2Vec2FeatureExtractor\n", "from transformers.modeling_outputs import SequenceClassifierOutput\n", "\n", "from torch.utils.data import DataLoader\n", "\n", "from audioLIME.data_provider import DataProvider\n", "from audioLIME.factorization import DataBasedFactorization\n", "from audioLIME import lime_audio\n", "from spleeter.separator import Separator\n", "\n", "plt.rcParams['figure.figsize'] = (17, 5)\n", "\n", "# You should have fma_large and fma_metadata updated in this directory for the code to run properly\n", "datasource = \"data\"" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EZhpKb2x9cMR", "outputId": "3d278fc5-a67c-4d78-f128-ca14099374d5" }, "outputs": [ { "data": { "text/plain": [ "(106574, 52)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load metadata and features.\n", "# Function based on: https://github.com/mdeff/fma/blob/master/utils.py\n", "tracks = pd.read_csv(f'{datasource}/fma_metadata/tracks.csv', index_col=0, header=[0, 1])\n", "\n", "COLUMNS = [('track', 'tags'), ('album', 'tags'), ('artist', 'tags'),\n", " ('track', 'genres'), ('track', 'genres_all')]\n", "for column in COLUMNS:\n", " tracks[column] = tracks[column].map(ast.literal_eval)\n", "\n", "COLUMNS = [('track', 'date_created'), ('track', 'date_recorded'),\n", " ('album', 'date_created'), ('album', 'date_released'),\n", " ('artist', 'date_created'), ('artist', 'active_year_begin'),\n", " ('artist', 'active_year_end')]\n", "for column in COLUMNS:\n", " tracks[column] = pd.to_datetime(tracks[column])\n", "\n", "SUBSETS = ('small', 'medium', 'large')\n", "try:\n", " tracks['set', 'subset'] = tracks['set', 'subset'].astype(\n", " 'category', categories=SUBSETS, ordered=True)\n", "except (ValueError, TypeError):\n", " # the categories and ordered arguments were removed in pandas 0.25\n", " tracks['set', 'subset'] = tracks['set', 'subset'].astype(\n", " pd.CategoricalDtype(categories=SUBSETS, ordered=True))\n", "\n", "COLUMNS = [('track', 'genre_top'), ('track', 'license'),\n", " ('album', 'type'), ('album', 'information'),\n", " ('artist', 'bio')]\n", "for column in COLUMNS:\n", " tracks[column] = tracks[column].astype('category')\n", "\n", "\n", "tracks.shape" ] }, { "cell_type": "markdown", "metadata": { "id": "ZqbOkcuM9cMW" }, "source": [ "## Popularity score \n", "\n", "To define popularity, we will use a score, instead of 'popular' or 'unpopular', as it is more accurate to talk about levels of popularity, rather than a binary classification. *(Russel B. Nye, \"Notes for an Introduction to a Discussion of Popular Culture, Journal of Popular Culture, Vol. 4 (Spring 1971):1031-38, on the need to recognize degrees of popularity)*.\n", "\n", "\n", "The dataset contains different measures that can be used to define popularity: number of listens, likes and comments. These features are present at two levels (song and album). The two levels come from Free Music Archive's API and both encompass important information concerning the dispersion of the songs. Thus, we first build a DataFrame containing all these scores for all of the songs available in the dataset." ] }, { "cell_type": "markdown", "metadata": { "id": "HhpHdEJN9cMY" }, "source": [ "### Popularity features " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "vHuKsOS59cMZ" }, "outputs": [], "source": [ "POP_FEATURES = [\"listens\", \"favorites\", \"comments\"]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "LHX6kQ3p9cMb", "outputId": "62ef888a-2341-4a70-d8d0-7049f72701cb" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date_createdgenre_toplistensfavoritescommentsalbum_listensalbum_favoritesalbum_comments
track_id
1240702015-08-24 16:32:25NaN353101113900
488382011-06-11 15:47:29NaN44400604313
898882013-08-30 16:15:29NaN326691806597610
\n", "
" ], "text/plain": [ " date_created genre_top listens favorites comments \\\n", "track_id \n", "124070 2015-08-24 16:32:25 NaN 353 1 0 \n", "48838 2011-06-11 15:47:29 NaN 444 0 0 \n", "89888 2013-08-30 16:15:29 NaN 32669 18 0 \n", "\n", " album_listens album_favorites album_comments \n", "track_id \n", "124070 11139 0 0 \n", "48838 6043 1 3 \n", "89888 65976 1 0 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pop_df = tracks[\"track\"][[\"date_created\", \"genre_top\"]+POP_FEATURES]\n", "\n", "# add informations collected at the \"album level\"\n", "for pop_feat in POP_FEATURES:\n", " pop_df[\"album_\"+pop_feat] = [count for count in tracks[\"album\"][pop_feat]]\n", "\n", "pop_df.sample(3)" ] }, { "cell_type": "markdown", "metadata": { "id": "O7yRsc-Z9cMd" }, "source": [ "The number of listens per song and per album reflect different realities, in that they are not directly based on one another (the number of listens of an album is not the sum of the number of listens of its songs and the number of listens of the songs don't take into account the number of listens of the album). In other words, if $l_s$ is the number of listens of a song, $a$ refers to albums and $\\{s\\in a\\}$ the set of songs in one album, $$ \\sum_{s\\in a}l_s \\neq l_a $$\n", "\n", "This fact is illustrated below and two extreme examples are underlined." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 66, "referenced_widgets": [ "44ec8feff73d4e6abd372e5e88c79c76", "2909cd6e3ee844bbaf818d7f98007288", "fd2983b086e94940a10b5d7d51fd4530", "bb42199b84314b7995f56e39c850c25c", "26e1ad0b929d4916876da4db38bf1869", "491b8e5ab24548e38c65cbbfed26e091", "cda6871a5a5c4625939f7a72040cbd35", "a6d4c1db736047ef98ffc7f9d93be588" ] }, "id": "ATAv494i9cMe", "outputId": "4b54bcf7-0956-403f-f40c-af8811deae43" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1dea96c0fc1f47319a99a167db5439b3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=14395.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "# build a DataFrame of albums\n", "albums = tracks[\"album\"].groupby([\"id\"]).mean()[[\"listens\"]]\n", "# remove songs without album\n", "albums = albums[albums.listens > 0]\n", "\n", "albums[\"sum_songs\"] = 0\n", "albums[\"album\"] = 0\n", "albums[\"songs_minus_album\"] = 0\n", "albums[\"songs_ratio_album\"] = 0\n", "\n", "for alb_id, _ in tqdm(albums.iterrows(), total=albums.shape[0]):\n", " # retrieve track ids for the album\n", " curr_track_ids = tracks[\"album\"][tracks[\"album\"].id == alb_id].index.values\n", " # compute sum of the listens of the album's songs\n", " curr_sum_songs_listens = pop_df.loc[curr_track_ids].listens.sum()\n", " # retrieve album's number of listens\n", " curr_album_listens = pop_df.loc[curr_track_ids].album_listens.iloc[0]\n", " \n", " # add these information to the `albums` DataFrame\n", " albums.loc[alb_id, \"sum_songs\"] = curr_sum_songs_listens\n", " albums.loc[alb_id, \"album\"] = curr_album_listens\n", " # compute difference and ratio\n", " albums.loc[alb_id, \"songs_minus_album\"] = curr_sum_songs_listens-curr_album_listens\n", " albums.loc[alb_id, \"songs_ratio_album\"] = curr_sum_songs_listens/curr_album_listens\n", " \n", "albums = albums.sort_values(by=\"songs_minus_album\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 357 }, "id": "6QCR2DOV9cMi", "outputId": "b0ffde61-bc36-4dfc-a4d2-c7b3f7d4fcd5" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAFUCAYAAADWLDSBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAcV0lEQVR4nO3df5Dnd10f8OerCQHM0QUET5ukvTBJIykRCztBmWovgngYT5CJmpQiscFTOoztTGo9x44dp9MWq3RGazrMiRmqtRwUrSYkNiJ4Um1GQiQ0iTF6xjAc0ESMLBxSwsGrf+wX3Wzusru33/d+d7/3eMx85vbz/n5+vHbnfZ+9533en/enujsAAADAdP2NWRcAAAAA80jgBgAAgAEEbgAAABhA4AYAAIABBG4AAAAYQOAGAACAAc6edQFJ8qxnPav37Nkz6zJgUz7zmc/k3HPPnXUZMBX6M/NEf2ae6M/Mk3nqz3feeecnuvvZq9u3ReDes2dPPvCBD8y6DNiUI0eOZO/evbMuA6ZCf2ae6M/ME/2ZeTJP/bmqPnyydkPKAQAAYICZBu6q2l9Vh5aWlmZZBgAAAEzdTAN3d9/c3QcWFhZmWQYAAABMnSHlAAAAMIDADQAAAAMI3AAAADCAwA0AAAADCNwAAAAwgMANAAAAAwjcAAAAMIDADQAAAAOcPesCAJi9PQdvecz69ZedyLUr2h5845VbXRIAwI7nDjcAAAAMIHADAADAAAI3AAAADDAkcFfVuVV1Z1V924jjAwAAwHa3rsBdVTdW1cNVdc+q9n1VdX9VHa2qgys++uEk75hmoQAAALCTrPcO91uT7FvZUFVnJbkhycuTXJrkmqq6tKpemuQPkjw0xToBAABgR1nXa8G6+31VtWdV8+VJjnb3A0lSVYeTvCLJriTnZjmEf7aqbu3uL06tYgAAANgBqrvXt+Fy4H5Xdz9vsn5Vkn3d/brJ+muSvKi73zBZvzbJJ7r7Xac43oEkB5Jk9+7dLzx8+PCmvhGYtePHj2fXrl2zLgNOy90fXXrM+u6nJg999q/XLztvYYsrgulxfWae6M/Mk3nqz1dcccWd3b24un1dd7hPoU7S9lfpvbvf+kQ7d/ehJIeSZHFxsffu3buJUmD2jhw5Ev2Ynerag7c8Zv36y07kTXf/9a+IB1+9d4srgulxfWae6M/MkzOhP29mlvJjSS5YsX5+ko9trhwAAACYD5sJ3HckubiqLqyqc5JcneSmjRygqvZX1aGlpaW1NwYAAIAdZL2vBXtbktuTXFJVx6rquu4+keQNSW5Lcl+Sd3T3vRs5eXff3N0HFhY8GwgAAMB8We8s5decov3WJLdOtSIAAACYA5sZUr5phpQDAAAwr2YauA0pBwAAYF7NNHADAADAvDKkHAAAAAYwpBwAAAAGMKQcAAAABhC4AQAAYADPcAMAAMAAnuEGAACAAQwpBwAAgAEEbgAAABhA4AYAAIABTJoGAAAAA5g0DQAAAAYwpBwAAAAGELgBAABgAIEbAAAABhC4AQAAYACzlAMAAMAAZikHAACAAQwpBwAAgAEEbgAAABhA4AYAAIABBG4AAAAYQOAGAACAAbwWDAAAAAbwWjAAAAAYwJByAAAAGEDgBgAAgAEEbgAAABhA4AYAAIABBG4AAAAYQOAGAACAAQRuAAAAGEDgBgAAgAEEbgAAABhgpoG7qvZX1aGlpaVZlgEAAABTN9PA3d03d/eBhYWFWZYBAAAAU2dIOQAAAAwgcAMAAMAAAjcAAAAMIHADAADAAAI3AAAADCBwAwAAwAACNwAAAAwgcAMAAMAAAjcAAAAMIHADAADAAAI3AAAADDD1wF1Vz62qN1fVO6vq9dM+PgAAAOwE6wrcVXVjVT1cVfesat9XVfdX1dGqOpgk3X1fd/9Aku9Ksjj9kgEAAGD7W+8d7rcm2beyoarOSnJDkpcnuTTJNVV16eSzb0/yO0neM7VKAQAAYAdZV+Du7vcleWRV8+VJjnb3A939aJLDSV4x2f6m7n5xkldPs1gAAADYKc7exL7nJfnIivVjSV5UVXuTvCrJk5PcuonjAwAAwI61mcBdJ2nr7j6S5MiaO1cdSHIgSXbv3p0jR9bcBba148eP68fsWNdfduIx67uf+tg2fZudzPWZeaI/M0/OhP68mcB9LMkFK9bPT/Kx9e7c3YeSHEqSxcXF3rt37yZKgdk7cuRI9GN2qmsP3vKY9esvO5E33f3XvyIefPXeLa4Ipsf1mXmiPzNPzoT+vJnXgt2R5OKqurCqzklydZKbNnKAqtpfVYeWlpY2UQYAAABsP+t9Ldjbktye5JKqOlZV13X3iSRvSHJbkvuSvKO7793Iybv75u4+sLCwsNG6AQAAYFtb15Dy7r7mFO23xsRoAAAA8DibGVK+aYaUAwAAMK9mGrgNKQcAAGBezTRwAwAAwLwSuAEAAGAAz3ADAADAAJ7hBgAAgAEMKQcAAIABBG4AAAAYwDPcAAAAMIBnuAEAAGAAQ8oBAABgAIEbAAAABvAMNwAAAAzgGW4AAAAYwJByAAAAGEDgBgAAgAEEbgAAABhA4AYAAIABzFIOAAAAA5ilHAAAAAYwpBwAAAAGELgBAABgAIEbAAAABhC4AQAAYACBGwAAAAY4e9YFALD97Tl4y5rbPPjGK7egEgCAncN7uAEAAGAA7+EGAACAATzDDQAAAAMI3AAAADCAwA0AAAADCNwAAAAwgMANAAAAAwjcAAAAMIDADQAAAAMI3AAAADDATAN3Ve2vqkNLS0uzLAMAAACmbqaBu7tv7u4DCwsLsywDAAAAps6QcgAAABhA4AYAAIABBG4AAAAYQOAGAACAAQRuAAAAGEDgBgAAgAEEbgAAABhA4AYAAIABBG4AAAAYQOAGAACAAQRuAAAAGEDgBgAAgAGGBO6qemVV/VxV/VpVvWzEOQAAAGA7W3fgrqobq+rhqrpnVfu+qrq/qo5W1cEk6e5f7e7vS3Jtku+easUAAACwA2zkDvdbk+xb2VBVZyW5IcnLk1ya5JqqunTFJv9q8jkAAACcUdYduLv7fUkeWdV8eZKj3f1Adz+a5HCSV9Syn0jy6939+9MrFwAAAHaG6u71b1y1J8m7uvt5k/Wrkuzr7tdN1l+T5EVJ/ijJa5PckeSu7n7zSY51IMmBJNm9e/cLDx8+vKlvBGbt+PHj2bVr16zLgNNy90eXHrO++6nJQ5/d2DEuO29hihXB9Lg+M0/0Z+bJPPXnK6644s7uXlzdfvYmj1snaevu/pkkP/NEO3b3oSSHkmRxcbH37t27yVJgto4cORL9mJ3q2oO3PGb9+stO5E13b+xXxIOv3jvFimB6XJ+ZJ/oz8+RM6M+bnaX8WJILVqyfn+RjmzwmAAAA7HibDdx3JLm4qi6sqnOSXJ3kpvXuXFX7q+rQ0tLS2hsDAADADrKR14K9LcntSS6pqmNVdV13n0jyhiS3JbkvyTu6+971HrO7b+7uAwsLnvsDAABgvqz7Ab3uvuYU7bcmuXVqFQEAAMAc2OykaZtSVfuT7L/oootmWQbAXNuzakI0AAC2xmaf4d4UQ8oBAACYVzMN3AAAADCvZhq4zVIOAADAvJrpM9zdfXOSmxcXF79vlnUAsHlrPSv+4Buv3KJKAAC2B0PKAQAAYACBGwAAAAbwDDcAAAAM4LVgAAAAMIAh5QAAADCAwA0AAAADCNwAAAAwgEnTAAAAYACTpgEAAMAAhpQDAADAAAI3AAAADCBwAwAAwAACNwAAAAxglnIAAAAYwCzlAAAAMIAh5QAAADCAwA0AAAADCNwAAAAwgMANAAAAA5w96wIAODPsOXjLmts8+MYrt6ASAICt4bVgAAAAMIDXggEAAMAAhpQD7GDrGaYNAMBsmDQNAAAABhC4AQAAYACBGwAAAAYQuAEAAGAAk6YBsG14VzcAME/c4QYAAIABBG4AAAAYQOAGAACAAWYauKtqf1UdWlpammUZAAAAMHUzDdzdfXN3H1hYWJhlGQAAADB1hpQDAADAAAI3AAAADCBwAwAAwAACNwAAAAwgcAMAAMAAAjcAAAAMIHADAADAAAI3AAAADCBwAwAAwAACNwAAAAwgcAMAAMAAAjcAAAAMMPXAXVXPqaqfr6p3TvvYAAAAsFOsK3BX1Y1V9XBV3bOqfV9V3V9VR6vqYJJ09wPdfd2IYgEAAGCnWO8d7rcm2beyoarOSnJDkpcnuTTJNVV16VSrAwAAgB1qXYG7u9+X5JFVzZcnOTq5o/1oksNJXjHl+gAAAGBHqu5e34ZVe5K8q7ufN1m/Ksm+7n7dZP01SV6U5F8n+bdJvjnJW7r735/ieAeSHEiS3bt3v/Dw4cOb+kZg1o4fP55du3bNugx2kLs/ujTrEk5p91OThz476ypO7rLzFmZdAjuM6zPzRH9mnsxTf77iiivu7O7F1e1nb+KYdZK27u4/T/IDa+3c3YeSHEqSxcXF3rt37yZKgdk7cuRI9GM24tqDt8y6hFO6/rITedPdm/kVMc6Dr9476xLYYVyfmSf6M/PkTOjPm5ml/FiSC1asn5/kY5srBwAAAObDZgL3HUkurqoLq+qcJFcnuWkjB6iq/VV1aGlp+w6rBAAAgNOx3teCvS3J7UkuqapjVXVdd59I8oYktyW5L8k7uvvejZy8u2/u7gMLC57HAwAAYL6s6wG97r7mFO23Jrl1qhUBAADAHJjpjDhVtT/J/osuumiWZQBs2J41Jjx78I1XblElAABsV5t5hnvTDCkHAABgXs00cAMAAMC8mmngNks5AAAA88qQcgAAABjAkHIAAAAYQOAGAACAAbwWDIAdZRqvZFvrGOs5zjSOAQDMN89wAwAAwACGlAMAAMAAAjcAAAAMIHADAADAACZNA4CTWM+kaJs9hknVAGC+mTQNAAAABjCkHAAAAAYQuAEAAGAAgRsAAAAGELgBAABgALOUAzvGemaNNusz05hdHABgGsxSDgAAAAMYUg4AAAADCNwAAAAwgMANAAAAAwjcAAAAMIDADQAAAAN4LRjAAF5NxXbilXoAMBteCwYAAAADGFIOAAAAAwjcAAAAMIDADQAAAAMI3AAAADCAwA0AAAADCNwAAAAwgMANAAAAAwjcAAAAMIDADQAAAAOcPcuTV9X+JPsvuuiiWZYBrGHPwVvW3ObBN165BZUAo6zn7/la1nMdWOs8riUAzJOZ3uHu7pu7+8DCwsIsywAAAICpM6QcAAAABhC4AQAAYACBGwAAAAYQuAEAAGAAgRsAAAAGELgBAABgAIEbAAAABhC4AQAAYACBGwAAAAYQuAEAAGAAgRsAAAAGELgBAABggLOnfcCqOjfJf07yaJIj3f1L0z4HAAAAbHfrusNdVTdW1cNVdc+q9n1VdX9VHa2qg5PmVyV5Z3d/X5Jvn3K9AAAAsCOsd0j5W5PsW9lQVWcluSHJy5NcmuSaqro0yflJPjLZ7AvTKRMAAAB2lnUF7u5+X5JHVjVfnuRodz/Q3Y8mOZzkFUmOZTl0r/v4AAAAMG+qu9e3YdWeJO/q7udN1q9Ksq+7XzdZf02SFyX54SQ/m+T/JfmdUz3DXVUHkhxIkt27d7/w8OHDm/pGtsrdH11ac5vLzlvYgkrYbo4fP55du3ate/u1+tK0+tE0zrOefj8Na9Uyrb9/O+lnMiu7n5o89NlZVzH/turv+VbZqr87Gz3P6fbneft9vlW/dzZbRzJ/P/tp2ui/NxhPn3689V7r17o+76Sf2xVXXHFndy+ubt/MpGl1krbu7s8k+d61du7uQ0kOJcni4mLv3bt3E6VsnWsP3rLmNg++eu/4Qth2jhw5ko3047X60rT60TTOs55+Pw1r1TKtv3876WcyK9dfdiJvunvq82qyylb9Pd8qW/V3Z6PnOd3+PG+/z7fq985m60jm72c/TRv99wbj6dOPt95r/VrX53n4uW1myPexJBesWD8/ycc2coCq2l9Vh5aWtsf/zAMAAMC0bCZw35Hk4qq6sKrOSXJ1kps2coDuvrm7Dyws7JyhAgAAALAe630t2NuS3J7kkqo6VlXXdfeJJG9IcluS+5K8o7vvHVcqAAAA7BzreqCpu685RfutSW493ZNX1f4k+y+66KLTPQQAAABsSzN9bZch5QAAAMwr78kGAACAAQRuAAAAGGCmgdtrwQAAAJhXnuEGAACAAQwpBwAAgAGqu2ddQ6rqz5J8eNZ1wCY9K8knZl0ETIn+zDzRn5kn+jPzZJ7689/p7mevbtwWgRvmQVV9oLsXZ10HTIP+zDzRn5kn+jPz5Ezoz4aUAwAAwAACNwAAAAwgcMP0HJp1ATBF+jPzRH9mnujPzJO578+e4QYAAIAB3OEGAACAAQRuWKGqvrOq7q2qL1bV4qrPfqSqjlbV/VX1LSvaX1hVd08++5mqqkn7k6vq7ZP236uqPSv2eW1V/fFkee2K9gsn2/7xZN9zxn/X8FhVtW/Sz49W1cFZ18OZq6purKqHq+qeFW3PrKp3T66T766qZ6z4bPh1Gk5XVV1QVb9VVfdN/q3xzybt+jQ7TlU9pareX1UfmvTnH5+068+rdbfFYpksSZ6b5JIkR5Isrmi/NMmHkjw5yYVJ/iTJWZPP3p/k65NUkl9P8vJJ+z9N8ubJ11cnefvk62cmeWDy5zMmXz9j8tk7klw9+frNSV4/65+J5cxakpw16d/PSXLOpN9fOuu6LGfmkuQbk7wgyT0r2v5DkoOTrw8m+YnJ11tynbZYTndJ8lVJXjD5+mlJ/mjSb/Vpy45bJn1v1+TrJyX5vSRfpz8/fnGHG1bo7vu6+/6TfPSKJIe7+3Pd/adJjia5vKq+Ksnf7O7be/kK8AtJXrlin/8y+fqdSV4y+R+7b0ny7u5+pLv/Ism7k+ybfPZNk20z2fdLx4KtcnmSo939QHc/muRwlvsybLnufl+SR1Y1r7y2rrxODr9OT/875EzS3R/v7t+ffP3pJPclOS/6NDtQLzs+WX3SZOnoz48jcMP6nJfkIyvWj03azpt8vbr9Mft094kkS0m+/AmO9eVJPjnZdvWxYKucqn/CdrG7uz+eLAeYJF8xad+K6zRMxWRo7N/P8l1BfZodqarOqqq7kjyc5QCsP5/E2bMuALZaVf1mkq88yUc/2t2/dqrdTtLWT9B+Ovs80bFgq+iH7FRbcZ2GTauqXUl+Ock/7+5PTR5XPemmJ2nTp9k2uvsLSb62qp6e5H9U1fOeYPMztj+7w80Zp7tf2t3PO8lyqrCdLP/P2QUr1s9P8rFJ+/knaX/MPlV1dpKFLA+NPNWxPpHk6ZNtVx8Ltsqp+idsFw9NhiBm8ufDk/atuE7DplTVk7Ictn+pu39l0qxPs6N19yezPP/RvujPjyNww/rclOTqyWyJFya5OMn7J0NlPl1VXzd5puR7kvzain2+NGviVUneO3k25bYkL6uqZ0xmbnxZktsmn/3WZNtM9n2i/wSAEe5IcnEtz5h/TpYnKblpxjXBSiuvrSuvk8Ov06O/MebbpP/9fJL7uvs/rvhIn2bHqapnT+5sp6qemuSlSf4w+vPjzXrWNotlOy1JviPL/2v2uSQPZTkIf+mzH83yjIr3ZzJ74qR9Mck9k89+NklN2p+S5L9neVKI9yd5zop9/smk/WiS713R/pzJtkcn+z551j8Ty5m3JPnWLM+e+ydZftRi5jVZzswlyduSfDzJ5yfX5uuy/Pzee5L88eTPZ67Yfvh12mI53SXJP8jysNf/k+SuyfKt+rRlJy5JvibJByf9+Z4kPzZp159XLV/6ZgAAAIApMqQcAAAABhC4AQAAYACBGwAAAAYQuAEAAGAAgRsAAAAGELgBAABgAIEbAAAABhC4AWBGquoNVdUbXN4y67oBgPURuAFgdk7MugAAYJzq7lnXAABnpKp6SpJbk1yR5FNJXtLdH5htVQDAtAjcADBDVXVukt9I8uIkjyTZ2913z7YqAGAaBG4AmLGqWkjyniQvTPJQkn/Y3ffPtioAYLM8ww0AA9SyD1XVa9fatruXknxLkruT7E7ym1W15zTPe3VVPVpVT1pjuxuq6udP5xzTrgUA5pXADQBjfFeSZyT5b+vZuLv/PMk3J7k/yflJ3ltV553GeZ+f5A+6+/NrbPeTSV5dVRedxjmmXQsAzCWBGwDG+MEkv7iRsNndDyV5SZI/TXJhkvdU1Vds8Lxfm+RD6zjXg0l+J8nrN3j8qdcCAPNK4AaAKZvcNX5xkndudN/u/miSb0pyLMklSd5dVc/cwCGen+SudW77y1m+yz3q3wMbqQUA5o7ADQDT95Ikn8lp3t2d3H1+82T1a7I81HxNVfXsJF+1gfP+7yw/M37ZBkscUQsAzB2BGwCm74VJ7uvuL57OzlX1yiQ/Pln90e5++zp3/drJn+sNufcm+UKSyzdQ3npttBYAmDtnz7oAAJhDX5nkE6ezY1V9U5LDSc5K8qbu/ncb2P35SY5NJmBbU3efqKpPZrne1XUsZPkO9VrH+MNp1AIA80jgBoDpe0qSv9zoTlW1mORXkzw5yY3d/S82eIjnZ+N3lD+X5XpX+84kP7eO/WuKtQDAXDGkHACm75EkT9/IDlX11Ul+PcnTkvxKkgOncd7TmRX86Vmu9zG6+y3dXWstU64FAOaKwA0A03d/ll/rtS5V9beT/EaSZyX5zST/qLu/sJETVtU5Sb46q2YFr6pXVdUdVXVXVd1XVc9Z8dmzk3xZkj/ayLlOp5aqellV3V5VH6yqe6vqG6Z5TgDYjgwpB4Dp+90kP1ZVz+7uP3uiDavqWVkO2xck+b0k39HdnzuNc/69LP9e/6u7ypPg+9NJntvdx6tqV5aHkH/JYpLO8mzl0/S4WpLcmeTF3d1V9dIkP5Tkf035vACwrbjDDQDTdyTLw7T3PdFGVfW0JP8zy+/bvjfJt3b38dM85/Oz/Nz40RVtneSzSW6YhNy/7O7Pr/h8X5LfHjCx2clquSrJ71bVh5IcmtQFAHOtunvWNQDA3Kmqn05yUXdf+QTb/GKSf7zBQ3+4u/dsoI6nJHlZktcn+bPu/p5J+1lJPpzkYHf/1w3WsCFVdVWS67I8VP4vquqnkjyywRnYAWDHcYcbAMb4ySR7q+rvPsE2a752azOq6pIkn+vum5LcmOXntb/kO7N8l/nwyBomnp/k/ZOw/YIk35/kg1twXgCYKXe4AWCQqro6yce7+7dndP63JPnGJJ9O8lCS7+/uj0w+uybJR7v7fVtQx8VJbk7yqSTvTfLdSb6+u//v6HMDwCwJ3AAAADCAWcoBYJuoqguT/Msszx7+1BUffW933zGbqgCA0+UONwBsA1X1vCQ3JfmRJDd1t1m8AWCHM2kaAGyBqnpVVd1RVXdV1X1V9ZxVm/ynJK/v7revFbar6mVVdXtVfbCq7q2qbxhXOQBwutzhBoDBquqcJH+S5LndfbyqdmV59vDPTz7/siR3dfcTzWi+8nhfnuXXavXk/do/2N3fPqp+AOD0eIYbAMbrLL+C64bJu7ff291fXPH52UnOr6p7TrH/6me4r0ry2qo6N8nTkni+GwC2IYEbAAbr7s9X1dckeVmS65N8z2T50uefqqrfT/Jt3f3JJzpWVV2V5JVJrpy81/qnkjwyrnoA4HR5hhsABquqS7I8hPymJDcm+bKTbPZvkry9qv7WGod7fpL3T8L2C5J8f5IPTrVgAGAq3OEGgPF+KMk3VtWnkzyU5ZD8GN19W1V9IcnhqnpGklrx8coh5b+Q5OaqenmS9yb5RARuANiWTJoGAAAAAxhSDgAAAAMI3AAAADCAwA0AAAADCNwAAAAwgMANAAAAAwjcAAAAMIDADQAAAAMI3AAAADDA/wdG/XBbQOWrWgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# histogram of the sum of album's songs' listens - album's listens\n", "albums[\"songs_minus_album\"].hist(bins=100)\n", "plt.xlabel(r\"$(\\sum_{s\\in a}l_s) - l_a$\", fontsize=15)\n", "plt.semilogy()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gQsgVU6b9cMk", "outputId": "2750aad1-b0be-4e61-9a03-48cc1eb0f58a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The album 'Music For Media Vol. 3' containing 8 songs was listened 247274 times as an album, but individually the songs account for less listens: 72202.\n" ] } ], "source": [ "id_album = albums[\"songs_minus_album\"].idxmin() #10953\n", "\n", "id_tracks = tracks[\"album\"][tracks[\"album\"].id == id_album].index.values\n", "\n", "print(\"The album '{album_title}' containing {n_songs} song{plural} was listened {alb_listens} times as an album, \\\n", "but individually the song{plural} account{sing} for {more_or_less} listens: {songs_sum_listens}.\"\\\n", " .format(album_title=tracks[\"album\"].loc[id_tracks].iloc[0].title\n", " , n_songs=len(id_tracks)\n", " , plural='s' if len(id_tracks)>1 else ''\n", " , sing='' if len(id_tracks)>1 else 's'\n", " , alb_listens=pop_df.loc[id_tracks].iloc[0].album_listens\n", " , songs_sum_listens=np.sum(pop_df.loc[id_tracks].listens)\n", " , more_or_less='more' \n", " if (np.sum(pop_df.loc[id_tracks].listens)/pop_df.loc[id_tracks].iloc[0].album_listens)>1 \n", " else 'less'\n", " )\n", " )" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8YO8XyAb9cMp", "outputId": "8383969c-f5f7-4769-bac4-05361153ef01" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The album '...Plays Guitar' containing 7 songs was listened 386403 times as an album, but individually the songs account for more listens: 690479.\n" ] } ], "source": [ "id_album = albums[\"songs_minus_album\"].idxmax() #7690\n", "\n", "id_tracks = tracks[\"album\"][tracks[\"album\"].id == id_album].index.values\n", "\n", "print(\"The album '{album_title}' containing {n_songs} song{plural} was listened {alb_listens} times as an album, \\\n", "but individually the song{plural} account{sing} for {more_or_less} listens: {songs_sum_listens}.\"\\\n", " .format(album_title=tracks[\"album\"].loc[id_tracks].iloc[0].title\n", " , n_songs=len(id_tracks)\n", " , plural='s' if len(id_tracks)>1 else ''\n", " , sing='' if len(id_tracks)>1 else 's'\n", " , alb_listens=pop_df.loc[id_tracks].iloc[0].album_listens\n", " , songs_sum_listens=np.sum(pop_df.loc[id_tracks].listens)\n", " , more_or_less='more' \n", " if (np.sum(pop_df.loc[id_tracks].listens)/pop_df.loc[id_tracks].iloc[0].album_listens)>1 \n", " else 'less'\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": { "id": "wm8wPEQD9cMq" }, "source": [ "### Removing songs without album \n", "\n", "The number of listens, likes and comments of albums bring supplementary, non negligible, information about the public a song could have reached. However some songs don't appear in albums (reflected by $-1$ for album listens, comments, and favorites counts in the DataFrame). These songs represent appproximately 3.3% of the dataset, so they are left aside to be able to compute a more coherent popularity score based on both of the disposable levels." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "RCH-_Krr9cMr", "outputId": "fce92e01-7e80-41bc-ed8f-6c48d55a5cea" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.31% songs have no album.\n" ] } ], "source": [ "# songs without albums have -1 as count for listens, favorites, comments\n", "no_album = pop_df.album_listens < 0\n", "print(\"{0:.2f}% songs have no album.\".format(100*np.sum(no_album)/len(pop_df)))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_J3PcyWt9cMs", "outputId": "5920e4b8-71b4-4895-e249-7371450d016e" }, "outputs": [ { "data": { "text/plain": [ "(103045, 8)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# keeping only songs with album informations\n", "pop_df = pop_df[~no_album].copy()\n", "pop_df.shape" ] }, { "cell_type": "markdown", "metadata": { "id": "qni9og_v9cMs" }, "source": [ "The distribution of the logarithmic transform of the different features are plotted below, showing that they reflect different realities and justifying that the album level should not be neglected, as it appears to be largely used by FMA's users." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "1tJ5JM9o9cMt" }, "outputs": [], "source": [ "def log_transform(serie):\n", " \"\"\"log transform for serie of non-negative values\"\"\"\n", " return np.log((serie)+1)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 338 }, "id": "73AjiWj69cMt", "outputId": "cefbe976-0577-4929-f852-ecf627cf0209" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAFBCAYAAACFN6epAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df7hddX3g+/eHEECURvnRqSWkiQ16TYmOeAq02hGt1VA9EhlricXilEsKM7R0ei2a2/bSzvP0QVOfewfuRZ2oXBxHQS5NgaOpUL2l0SumBPwREBlTgnCkLYE4p1VrMfK5f+x9wuZwfux9zl77u9be79fznIez1957rc9Kwmetz/r+isxEkiRJkiT112GlA5AkSZIkaRhZcEuSJEmSVAELbkmSJEmSKmDBLUmSJElSBSy4JUmSJEmqgAW3JEmSJEkVOLx0AADHH398rl69unQYkobMXXfd9VhmnlA6jqqYOyVVwdwpSb2bK3fWouBevXo1u3fvLh2GpCETEd8qHUMVImIcGF+7dq25U1LfDWvunOZ9p6QqzJU77VIuSQ2TmROZuXnFihWlQ5EkSdI8LLglqWEiYjwitk1NTZUORZIkSfMoWnB70yhJvbOFW5IkqRmKjuHOzAlgYmxs7MKScUhN9cMf/pDJyUl+8IMflA6lqKOOOoqVK1eyfPny0qFIagBzZ4u5U1K3zJtP6TV31mLSNEmLMzk5yTHHHMPq1auJiNLhFJGZPP7440xOTrJmzZrS4QxE56Rpknpn7hzN3Clp8cybLYvJnY7hlhrsBz/4Accdd9xIJ76I4LjjjhupJ652KZeWxtw5mrlT0uKZN1sWkzstuKWGG/XEB/4ZSOqdecM/A0m9MWe09PrnYMEtqe9Wr17NY489xoMPPsgpp5xSOhxJagRzZ+8i4syI+HxEfDAiziwdj6TBq3vuLDqG23GIUn9t2b6nr/u74pz1fd2f+sPcKfWXubNeIuIa4I3Ao5l5Ssf2DcCVwDLgw5n5HiCB7wJHAZMFwpVGknmze0VbuB2HKDXfxo0befnLX87P/MzPsG3btme8f/DgQc4//3xe8pKX8Ja3vIXvf//7wFNPIwF2797NmWeeCcAf/dEfcf755/O6172O1atXs337di677DLWr1/Phg0b+OEPfziwc6src6fUfObOeV0LbOjcEBHLgKuBs4B1wKaIWAd8PjPPAt4F/PGA45Q0YE3MnXYp19Dasn3Pkp++Te+j30/xhsk111zDXXfdxe7du7nqqqt4/PHHn/b+/fffz+bNm/na177Gj/3Yj/H+979/wX3+7d/+LZ/+9Ke5+eabOe+883j1q1/Nnj17eNaznsWnP/3pqk5lJPhvWaoHc+fcMnMncGDG5tOAvZn5QGY+AVwPnJ2ZT7bf/w5wZCUBTVz61I+kopqYOy24JfpTnI+qq666ipe+9KWcccYZPPzww3zzm9982vsnnXQSr3jFKwA477zz+MIXvrDgPs866yyWL1/O+vXr+dGPfsSGDa2GjvXr1/Pggw/2/RwkadDMnT07EXi44/UkcGJEnBMR/wX4GPB/zfXliNgcEbsjYvf+/fsrDlVSVZqYO12HW72bfsI7fuXs2+cz8zsD0FlILzQ+ZPqzwzyOpJ9uv/12PvvZz3LHHXdw9NFHc+aZZz5jmYSZMzlOvz788MN58slWw8TM7xx5ZKuR4rDDDmP58uWHvnPYYYdx8ODBSs6lSRzDLTWbuXNRZpsWODNzO7B9oS9n5jZgG8DY2Fj2OTZJA9DU3GkLt5ZuMd2sCnXNmtmSPVfLti3e3ZmamuJ5z3seRx99NN/4xjf40pe+9IzPPPTQQ9xxxx0AXHfddbzyla8EWmNp7rrrLgD+7M/+bHBBDwHHcEvNZu5clEngpI7XK4FHetlBRIxHxLapqam+BiZpMJqaOy241Z3Zxi/1o9CuYFxUVcWyRfgzbdiwgYMHD/KSl7yEP/zDP+SMM854xmde/OIX89GPfpSXvOQlHDhwgIsvvhiAyy+/nEsvvZRf+IVfYNmyZYMOXZKKMXcuyp3AyRGxJiKOAM4FbullB4t9WLlr34FDP5LKaWrujMzyvWrGxsZy9+7dpcPQfAbRGt2n7ubdFMXTXcaXUkDXodv5fffdx4tf/OLSYdTCbH8WEXFXZo4VCqlyi8mdW7bvqcW/Xakkc+dT6pg7I+I64EzgeOAfgMsz8yMR8cvAf6a1LNg1mfknPe53ejjOhTPHfc5n11VvP/T76b/9sV4OKQ0N8+bT9ZI7HcOt+Q2y2/dcY8MX4LhrSZKGR2ZummP7DmDHEvY7AUyMjY1duNh9SFKvihbcTvyjWS2y8O5FVV3OwcJf1VtK7tw4uRUmji0ygaEkSdKoKVpw+6Sxhhq8xuSgx1c7nlulmDslqXc29EgqwUnTVF9zTKbm5GWSJKlXrvAgqQTHcI+yBrdmQ31bmHtZ91uSJEnS8LKFW5IkSZKkCtjCrfqb0RK/cfIAN628rFAwkiSpiRzDLakEC241wq59B0qH0Az9HibgTNaSRoG5cyQ44aTUR+bNrtmlfBTNMRmZ1Kvvfe97vOENb+ClL30pp5xyCp/85Cf53Oc+x8te9jLWr1/Pb/zGb/Av//IvAKxevZrLL7+cU089lfXr1/ONb3wDgP379/NLv/RLnHrqqfzmb/4mP/VTP8Vjjz1W8rRqLyLGI2Lb1NRU6VAkLYK5U5J619TcacEtVWjYZ1T/zGc+w0/+5E/y1a9+lXvuuYcNGzbwjne8g09+8pPs2bOHgwcP8oEPfODQ548//njuvvtuLr74Yt73vvcB8Md//Me85jWv4e677+bNb34zDz30UKnTaQxn2pWazdxZhg8rpWZrau604FYjbZzcysbJraXDGHnr16/ns5/9LO9617v4/Oc/z4MPPsiaNWt44QtfCMD555/Pzp07D33+nHPOAeDlL385Dz74IABf+MIXOPfccwHYsGEDz3ve8wZ7EpI0YObOMnxYKTVbU3OnBbdqbde+A0MxfntYW7pf+MIXctddd7F+/Xq2bNnCzTffPO/njzzySACWLVvGwYMHAcjMyuOUpDoxd0pS75qaOy241Wi2dJf1yCOPcPTRR3Peeefxzne+ky9+8Ys8+OCD7N27F4CPfexjvOpVr5p3H6985Su54YYbALjtttv4zne+U3ncklSSuVOSetfU3Fl0lnKXZxgQJ0hTRfbs2cPv/d7vcdhhh7F8+XI+8IEPMDU1xa/8yq9w8OBBfvZnf5aLLrpo3n1cfvnlbNq0iU9+8pO86lWv4vnPfz7HHHPMgM5A/TLdg+OKc9YXjkSqP3OnJPWuqbmzaMHt8gyayzB0Iy9iwEsqvP71r+f1r3/9M7Z/+ctffsa26bEzAGNjY9x+++0ArFixgltvvZXDDz+cO+64g7/6q7861AVIzXGop8nEsUO9tIeGlLlzJNjQI/VRgWt9U3On63BrKEzf7N+08rLCkahXDz30EG9961t58sknOeKII/jQhz5UOiRJqj1zZ+9s6JFUIndacEsF2Q0XTj755FmfTEqS5mbulKTelcidTpomSQ3jWrKSJEnNYAu3hkpTupb3c4mwzCQi+ra/Jhq15XHsFiktnblz9HKnpKUxb7b0mjstuIdNw2ckd7K03hx11FE8/vjjHHfccSObADOTxx9/nKOOOqp0KJIawtxp7pTUG/Nmy2JypwW31GArV65kcnKS/fv3lw6lqKOOOoqVK1eWDkNSQ5g7W0YtdzpLubR45s2n9Jo7Lbg1lA4tUUT9u5cvxfLly1mzZk3pMCSpUcydo8nhONLimTcXz0nTpBrYsn1PX8d1S5IkSSrPgluSJEmSpArYpXxYOFmaJEmSJNWKBbdUI53dyq84Z33BSCRJkiQtlQW3hl6d1uZ2nLYkSZI0OhzDrZGxcXLr02YvlyRJkqQq2cKtohy7LQl4ah6K8SvLxiFJktRHFtxN1/DJ0jS36e7njuUeHRHxbGAncHlmfqp0PJI0TCJiHBhfu3Zt6VAkjZC+dymPiBdHxAcj4saIuLjf+5ekpoiIayLi0Yi4Z8b2DRFxf0TsjYh3d7z1LuCGwUYpSaMhMycyc/OKFStKhyJphHRVcPdy05iZ92XmRcBbgbH+hyxJjXEtsKFzQ0QsA64GzgLWAZsiYl1EvBb4OvAPgw5SkiRJ1ei2hftaurxpbL/3JuALwOf6FqkkNUxm7gRmTlRwGrA3Mx/IzCeA64GzgVcDZwBvAy6MiFnzc0RsjojdEbF7//79FUY/OM7eL0mShlVXY7gzc2dErJ6x+dBNI0BETN80fj0zbwFuiYhPA5/oX7g6xLHbi1anZcK64VjuoXMi8HDH60ng9My8BCAi3gE8lplPzvblzNwGbAMYGxvLakOVJEnSUixl0rRZbxoj4kzgHOBIYMdcX46IzcBmgFWrVi0hDElqlJhl26HCOTOvHVwokiRJqtJSCu5Zbxoz83bg9oW+bCuNpBE1CZzU8Xol8EgvO3CmXUmSpGZYyizlS75p1Ojate+Aa3BrVN0JnBwRayLiCOBc4JZeduBMu5IkSc2wlBbuQzeNwLdp3TS+rZcd2EozWiywNWoi4jrgTOD4iJiktb72RyLiEuBWYBlwTWbeWzBMSZIkVaSrgruqm8bMnAAmxsbGLuwt7BHVsInSpgvs09ccWzgSqYzM3DTH9h3MM8fFQnxYKUmS1AzdzlJeyU2jRkNdW7abNlv5NGctlw8rJUmSmmEpXcolDZBrFWtkdfbuGb+yXBySaiking3spNUD81Ol45GkTkuZNG3JImI8IrZNTU2VDEOSGsXcKWmYRcQ1EfFoRNwzY/uGiLg/IvZGxLs73noXcMNgo5Sk7hQtuJ1pV5J6Z+6UNOSuBTZ0boiIZcDVwFnAOmBTRKyLiNcCXwf+YdBB1tGW7XsO/UiqB7uUa+RNj+WG5o3nliRp2GTmzohYPWPzacDezHwAICKuB84GngM8m1YR/s8RsSMznxxguJI0LwvuJmjY7OSSquUs5ZJG0InAwx2vJ4HTM/MSgIh4B/DYXMV2RGwGNgOsWrWq2kglqYNjuCWpYexSLmkExSzb8tAvmdfON2FaZm7LzLHMHDvhhBMqCVCSZuMYbqmhHKMlSRohk8BJHa9XAo/0sgMbeiSVULTglupm4+TWp43pllQfu/YdKB2CpHLuBE6OiDURcQRwLnBLLzuwoUdSCRbcktQwttJIGmYRcR1wB/CiiJiMiAsy8yBwCXArcB9wQ2beWzJOSepG0UnTnPhnONkKJVUrMyeAibGxsQtLxyJJ/ZaZm+bYvgPYsdj9et8pqQTHcEuSJGnoed8pqQSXBZMkDYfOJRTHrywXhyRJUpsFd525/rYkSVJf2KVcUgkW3FLDTS8NdsU56xf93cV+X2V40yhJvXP+C0klOEu5JDWM4xAlSZKawVnK1TfOTi5JkurK+05JJThLuTSLjZNb2Ti5tXQYkiSpT7zvlFSCXcqleVh4S5IkSVosC25JkiRJkirgLOV15HJgkiRJfeUYbkkl2MItdcGu5aqTiBiPiG1TU1OlQ6m/iUuf+pE00hzDLakEC24t2a59B5yhvGa2bN/ztDW2NVy8aZQkSWqGogW3rTSSJEmSpGHlsmCSJEmSJFXALuWSpMZzCIWkhdizUlIJzlJeWudEPuNXlotDQ2m6CLninPWFI5EkqazMnAAmxsbGLiwdi6TRYcEtSRotPuiUJEkDYsFdJy5bU3udS4PdtPKygpFIkiSVYQ86qXuO4ZZGgMuESZIkSYNnwS1JDePEP5IkSc3gOtzqya59B9i170DpMKSR5pKKktQ77zsllVB0DLezRTaXRfdT47nrMpbbLuOSJM3N+05JJdilXJIkSZKkCjhLuSRpqE33yDl9oQ9OrxThUmGSJKlPLLjVFbuQz61uXcslSZIk1YNdyqUR4vJgkiRJ0uBYcEuSJEmSVAG7lJcyPVZQkiRJkjSULLgHzUJbNWC3cqk1N8WCE6lJGhoRMQ6Mr127tnQokkaIXcolSZI09DJzIjM3r1ixonQokkaIBbckSXOZuNSeSZIkadEsuCWpBiLixRHxwYi4MSIuLh2PJEmSlq5owR0R4xGxbWpqqmQYUl9snNx6aE1uCSAiromIRyPinhnbN0TE/RGxNyLeDZCZ92XmRcBbgbES8UqSNEguV6pRULTgdixN/e3ad4Bd+w6UDkNqqmuBDZ0bImIZcDVwFrAO2BQR69rvvQn4AvC5wYYpSZKkKtilXJIqkpk7gZlPrE4D9mbmA5n5BHA9cHb787dk5s8DvzbYSCVJklQFlwWTpME6EXi44/UkcHpEnAmcAxwJ7JjryxGxGdgMsGrVquqilCRJ0pJZcGtWdiOXKhOzbMvMvB24faEvZ+Y2YBvA2NhY9jWyETed92Zdm7tzpvLxKwcSjyQtxqH5ZCaONV9JNWCXckkarEngpI7XK4FHetmBE04Oxpbte3z4KEmSlsSCW5IG607g5IhYExFHAOcCt/SyAyeclCRJagYLbkmqSERcB9wBvCgiJiPigsw8CFwC3ArcB9yQmfeWjFOSmioiXhwRH4yIGyPi4tLxSNJMjuEelM7xf1INTa+DecU56wtHMjwyc9Mc23cwz8RoC4mIcWB87dq1i92FJNVWRFwDvBF4NDNP6di+AbgSWAZ8ODPfk5n3ARdFxGHAh4oELEnzsIVb6rONk1ufmrBEqoBdygubuNSHqFK1rgU2dG6IiGXA1cBZwDpgU0Ssa7/3JuALwOcGG6YkLcwWbkmSquQM51JPMnNnRKyesfk0YG9mPgAQEdcDZwNfz8xbgFsi4tPAJwYZqyQtxIJbUq3Z1f2Z7FIuaQSdCDzc8XoSOD0izgTOAY5knqE6EbEZ2AywatWq6qKUpBnsUi5JDWOX8hqym7lUtZhlW2bm7Zn525n5m5l59VxfzsxtmTmWmWMnnHBChWFK0tPZwl01b8AkSZKWahI4qeP1SuCRQrFIUtcsuCUtynRXb7C796DZpbzGHK8tVeVO4OSIWAN8GzgXeFsvOzB3SirBLuXSADRx5vIt2/c8rahWfdilXNIwi4jrgDuAF0XEZERckJkHgUuAW4H7gBsy895e9mvulFSCLdxSRZpWYEuSVAeZuWmO7TuYZ2K0hdjCLamESlq4I2JjRHwoIm6OiNdVcYxactIcSZKkWrKFW1IJXRfcEXFNRDwaEffM2L4hIu6PiL0R8W6AzLwpMy8E3gH8al8jlqQRFxHjEbFtamqqdCiSJBXh0Dc1RS8t3NcCGzo3RMQy4GrgLGAdsCki1nV85A/a70uS+sRWGknqnQ8rJZXQdcGdmTuBAzM2nwbszcwHMvMJ4Hrg7Gh5L/AXmXl3/8KVJKkhHGYk1YoPKyWVsNRJ004EHu54PQmcDvwW8FpgRUSszcwPzvxiRGwGNgOsWrVqiWFI6he7Z0mSJEn9sdRJ02KWbZmZV2XmyzPzotmK7faHtmXmWGaOnXDCCUsMQ/2ya98Bdu2b2ZFB/dLE5cEkzc6HU1Kz2KVcUglLLbgngZM6Xq8EHlniPiVJkqS+sku5pBKW2qX8TuDkiFgDfBs4F3hbt192PcT6sFVbag5zpyRJUjP0sizYdcAdwIsiYjIiLsjMg8AlwK3AfcANmXlvt/v0SaMk9c7cWT8+tJQkSbPpuoU7MzfNsX0HsKNvEUkaGtNjXK84Z33hSCRJo87eQZJKWGqXcs2mpsvATLfAnL7m2MKRSJIkDVZmTgATY2NjF5aORdLoKFpw+6SxLLtASlLNzPbAdvzKwcchSZL6YqmzlC+J4xAlSZIkScOqaMEtSeqda8nW1659B+w9JEmSDrHglqSGsXfQ4FlIS83nw8r+2ji5tbbzFkl1UrTgNvGV4Y2jJBUycak3qFIhPqwcTVu27zm0aopUgmO4JUmSJEmqgMuCSZIkSRppna3gV5yzvmAkGjYW3JIklWQXc0mShpYFt1TQxsmth36/aeVlBSORNFAW2ZIkjYSiBXdEjAPja9euLRnG0HOCtPrpLLQlqSudRfr4leXikBrK+05JJThpmiRJw8AZ0KV5ed8pqQTX4ZakhnFJRUmSpGZwDPdiTLcgTHfps0VB0gBl5gQwMTY2dmHpWCRJkjQ3W7gldWXL9j1PWzJDUkF2H5ckqRGKFtx2i5QkSZIkDSsnTZMkSZIkqQJ2KZckqUIuzShJ0uiy4F6I4+QkSZIkSYtgwS1JkqSh59xBkkqw4JYkSdLQc+4gSSVYcEs1sXFyKxsnt5YOQ5IkSVKfHF7y4BExDoyvXbu2ZBhDy4l6mmm66L5p5WWFI5EkSZK0FEUL7sycACbGxsYuLBmHJEm1Nd/EnU7qKUlSrdmlXJJqICI2RsSHIuLmiHhd6XgkSZK0dBbcklSRiLgmIh6NiHtmbN8QEfdHxN6IeDdAZt6UmRcC7wB+tUC4GkYubSlJUlEW3JJUnWuBDZ0bImIZcDVwFrAO2BQR6zo+8gft9yVJktRwRcdwS9Iwy8ydEbF6xubTgL2Z+QBARFwPnB0R9wHvAf4iM+8eaKCqvV37DnD6mmNLhyFJqqkt2/cc+v2Kc9YXjKS5qvoztOCWasrZyofWicDDHa8ngdOB3wJeC6yIiLWZ+cHZvhwRm4HNAKtWrao4VC2WBbIkdWfj5FaYaOfL8SvLBtOFhYqy6fctejXNgluSBitm2ZaZeRVw1UJfzsxtwDaAsbGx7HNsGlad47gbcEMrSaPOwn14uA63VHN1a+nufLKrRZkETup4vRJ4pJcdmDs1LydJ0wiJiI3AG4AfB67OzNsKhyT1xK7gw6/opGmZOZGZm1esWFEyDEkDsmX7Hgt2uBM4OSLWRMQRwLnALb3swNwpaZi5woOkYeIs5UNk174D7Np3oHQYktoi4jrgDuBFETEZERdk5kHgEuBW4D7ghsy8t2ScGjEuFab6uxZXeJA0JBzDLUkVycxNc2zfAexY7H7tUq6+my7AHd+tGnCFB0nDxBZuSWoYu5RLGkGzrfBwIk+t8PCWiLhori9HxOaI2B0Ru/fv319tpJLUwRbubtn9TpLUB7VeMszZzFVfrvAgqZEsuCWpYexSPpwWKsSn5+joW7Hug2Q1iys8qLFc4mu02aVckhrGLuXDw4kupa65woOkRrLgltQ3LvslSVqqqlZ4iIjxiNg2NTXV/6AlaQ52KZckSVJtVLXCQ2ZOABNjY2MXLnYfktQrC+6lcPybpAIchzhcatut3AnUJElaMruUS1LDOA5Rknpnl3Lp6RwKOBgW3JIkSRp6PqyUVELRgtsnjZIkSZKkYVW04PZJoyT1zoeVmk2lY8EnLnXeEkmSFsEu5ZLUMD6sVC1YhKthfFgpqQRnKR9CtZ3xVpLUGLv2HeD0Ncc+faMFthrMZcEklTDaBbdLnkiSJEmSKmKXckmSBsQeSJIkjZbRaOGebsmebsWer0vczM9KNbFxcuuh329aeVnBSFRaRIwD42vXri0diiQ1hrlTUgm2cEtSwzhpmiT1ztwpqYTRaOGWhsx0a7ct3ZKKcz4USZLmZAu3JEmSJEkVsIVbkqQRMD1h2zOW+qqCrd6qIcdwSyrBFm5JkiQNPcdwD5eNk1ufNqGsVFe2cM9lvpnMa8QlZkbbzAuNY7pHg600qq2GXDslSRoUW7glqWFspRkNPlCVJKn5LLglSaqJXfsOWGhLkjRE7FIuDZEqlgvbsn1P3/YlSZIkjZK+F9wR8QLg94EVmfmWfu9fkiQ9xRZxSZLqq6uCOyKuAd4IPJqZp3Rs3wBcCSwDPpyZ78nMB4ALIuLGKgJWizdYmk/nZGpOpCZJkhNOSiqj2zHc1wIbOjdExDLgauAsYB2wKSLW9TU6SZLUbBOXOnu5asEJJyWV0FXBnZk7gZlNqqcBezPzgcx8ArgeOLvP8UmSJEmS1EhLmaX8RODhjteTwIkRcVxEfBB4WURsmevLEbE5InZHxO79+/cvIQxJkiRJkupnKZOmxSzbMjMfBy5a6MuZuQ3YBjA2NpZLiEOSRorjEIdft/N0NHY+j+ku5uNXzr9NkqSGW0oL9yRwUsfrlcAjSwtHkrQQxyFKkiQ1w1JauO8ETo6INcC3gXOBt/WyA1tppNHgWt5Sc023op++5til7ciJ0yRJI6irFu6IuA64A3hRRExGxAWZeRC4BLgVuA+4ITPv7eXgttJIkiRJkoZVVy3cmblpju07gB19jUiSJEnqM3tWSiphKWO4JUmSpEawZ6WkEpYyhnvJKnnS2DlGzJlOJUlq7mzmktQvroSgQooW3Jk5AUyMjY1dWDIOSZKaYte+A0ufwKwuZptIzQfnkqQhYpdySZIkSZIqULSFW5IkldW4FnNbwCVJDTJ8Y7iHVN/WQdXI2Ti5FYCbVl5W2TFcZ1tSJSyuJUkNV7RLubNFSpIkSZKGlV3KJakGIuIFwO8DKzLzLaXjUb0567gkSc3gpGmSVJGIuCYiHo2Ie2Zs3xAR90fE3oh4N0BmPpCZF5SJVJIkSVWw4Jak6lwLbOjcEBHLgKuBs4B1wKaIWDf40CRJklS1ogV3RIxHxLapqamSYdTSrn0H7DIoNVxm7gRm/o98GrC33aL9BHA9cPbAg5OkIRARL4iIj0TEjaVjkaTZFB3DnZkTwMTY2NiFJeOQpAE6EXi44/UkcHpEHAf8CfCyiNiSmVfM9uWI2AxsBli1alXVsUr10Tlj+XzbpnU7q7kzoddORFwDvBF4NDNP6di+AbgSWAZ8ODPfk5kPABdYcEuqK7uUS9JgxSzbMjMfz8yLMvOn5yq22x/clpljmTl2wgknVBimJBVzLQ7HkTQkLLglabAmgZM6Xq8EHikUiyTVjsNxJA0TC25JGqw7gZMjYk1EHAGcC9zSyw6c/0LzcQ4QDanZhuOcGBHHRcQHaQ/HmevLEbE5InZHxO79+/dXHasaauPkVjZObi0dhoaMk6ZJUkUi4jrgDuBFETEZERdk5kHgEuBW4D7ghsy8t5f9ZuZEZm5esWJF/4OWpHpyOI6kRnLSNEmqSGZummP7DmDHYvcbEePA+Nq1axe7C0lqmiUPxzF3ahht2b6ndAhagF3KJalhbOGWNIKWPBzH3CmpBAtuSZIk1UZVw/mQracAABMYSURBVHEkqYSiXcolSb2zW6SWate+A5y+5tjSYUizcjiOpGFiC7ckNYzdIiWpd+ZOSSVYcEuSJEmSVIGiXcrt2tM711bVYk2vK3nTystm3T7be5IkDQvvOyWVULSF2649ktS7iBiPiG1TU1OlQ5GkxvC+U1IJdimXpIbxplGSJKkZLLglSZI09OwdJKkEC25JkiQNPXsHSSrBdbglqWGc+EfdGumJNicufea28SsHH4ckaaTZwi1JDWMrjSRJUjNYcEuSJGnoOYZb/bBxcuvTllR9molL535PI6u563BPdxUbgu5h013+Tl9z7JzvSf023wVhrjW7JUlqqsycACbGxsYuLB2LpNHhOtySJEmSJFXASdMkqWGcNE1apNkmUlvqd4egp50kqTqO4ZakhrF3kCRJUjNYcEuSJGnoOWmaSto4uXVpvWzUWBbckiRJGnr2DpJUggW3JEmSJEkVsOCWJEmSJKkCFtySJEmSJFXAZcEkqWFcFkyqSL8nNOrcn8uHSdJIsoVbkhrGiX8kqXfOUq7ambi0NXu5hpoFtyRJkoaeDysllWDBLUmSJElSBYqO4R7GcYi79h049Pvpa46d9b2Z22f7rlTCzG5N069vWnlZiXAkSZKkRivawm3XHkmSJEnSsLJLuSRJkiRJFbDgliRJkiSpAhbckiRJkiRVoOikaZKk3g3jhJNS401cWjoCSVIN2cItSQ3jhJOS1LuIGI+IbVNTU6VDkXo3cSm7rno7u656e+lI1CMLbkmSJA09H1ZKKsGCW5IkSZKkClhwS5IkSZJUAQtuSZIkSZIqYMEtSZIkSVIFLLglSZIkSaqABbckSZIkSRWw4JYkSZIkqQIW3JIkSZIkVcCCW5IkSZKkChze7x1GxLOB9wNPALdn5sf7fQxJGjbmTknqnblTUt111cIdEddExKMRcc+M7Rsi4v6I2BsR725vPge4MTMvBN7U53glqTHMnZLUO3OnpGHSbZfya4ENnRsiYhlwNXAWsA7YFBHrgJXAw+2P/ag/YUpSI12LuVOSenUt5k5JQ6KrLuWZuTMiVs/YfBqwNzMfAIiI64GzgUlaye8rzFPQR8RmYDPAqlWreo17KOzad6B0CBpBGye3lg5hZJg7pREwcWlvnxu/cv7vdr4/33cXc7yGMHdKnfdrH+vPDjvzTTd5YbE5ZBDf6/VcClvKpGkn8tQTRWglvBOB7cC/jYgPABNzfTkzt2XmWGaOnXDCCUsIQ5IaxdwpSb0zd0pqpKVMmhazbMvM/B7w75awX0kaZuZOSeqduVNSIy2lhXsSOKnj9UrgkaWFI0lDb8m5MyLGI2Lb1NRUXwOTpBozd0pqpKUU3HcCJ0fEmog4AjgXuKWXHZj4JI2gJefOzJzIzM0rVqyoJEBJqiFzp6RG6nZZsOuAO4AXRcRkRFyQmQeBS4BbgfuAGzLz3l4ObuKTNMyqyp2SNMyqyp029EgqodtZyjfNsX0HsKOvEUnSkKgqd0bEODC+du3axe5CkmqrqtyZmRPAxNjY2IWL3Yck9WopXcqXzCeNktQ7ewdJkiQ1Q9GC25tGSZIkDYINPZJKKFpwS5J6502jJPXOhh5JJVhwS1LDeNMoSZLUDI7hliRJ0tDzvlNSCY7hlqSG8aZRknrnfaekEiIzS8dARPwTcH/pODocDzxWOog2Y5ldnWKBesVjLE/5qcw8oeDxKxUR+4Fv9fi10n8n0+oSBxjLbOoSBxjLXKqMxdz5dKX/3j1+ueOP8rl7/N6PP2vurEvBvTszx0rHMa1O8RjL7OoUC9QrHmPRfOryd1KXOMBY6hwHGMtc6hTLsCv9Z+3xyx1/lM/d4/fv+E6aJkmSJElSBSy4JUmSJEmqQF0K7m2lA5ihTvEYy+zqFAvUKx5j0Xzq8ndSlzjAWGZTlzjAWOZSp1iGXek/a48/msf2+ENy/FqM4ZYkSZIkadjUpYVbkiRJkqShUrzgjogNEXF/ROyNiHcXjOOkiPiriLgvIu6NiEtLxdIR07KI+HJEfKoGsTw3Im6MiG+0/4x+rmAs/7H9d3RPRFwXEUcN8NjXRMSjEXFPx7ZjI+IvI+Kb7f8+r3A8f9r+e/paRPx5RDy3VCwd770zIjIijh9ELHqmGuXaOf+dFIilFnk/Io6KiL+JiK+24/jjEnHMiKkW15+IeDAi9kTEVyJid8E4anENjIgXtf8spn/+MSJ+p0Qsw2ihPBktV7Xf/1pEnDrg458ZEVMdf///Wx+PPW9uHsC5L3T8Ks99wWtBleff5fGrPP8Fr0EVn383x6/s/Nv7n/Oa15dzz8xiP8Ay4G+BFwBHAF8F1hWK5fnAqe3fjwH+e6lYOmL6XeATwKdKxtGO5aPA/9z+/QjguYXiOBHYBzyr/foG4B0DPP6/AU4F7unYthV4d/v3dwPvLRzP64DD27+/d1DxzBZLe/tJwK201jw9vsS/m1H/qVmunfXfSaFYapH3gQCe0/59ObALOKPwn00trj/Ag3XIG3W5Bs6IaRnw97TWfS0ayzD8dJMngV8G/qL9/+wZwK4BH//Mqv6fXCg3V3nuXR6/ynNf8FpQ8d99N8ev8vwXvAZVfP7dHL+y82/vf85rXj/OvXQL92nA3sx8IDOfAK4Hzi4RSGb+XWbe3f79n4D7aBV3RUTESuANwIdLxdARy4/RSoQfAcjMJzLzfxQM6XDgWRFxOHA08MigDpyZO4EDMzafTetmjPZ/N5aMJzNvy8yD7ZdfAlaWiqXt/wAuA5wwopw65dq5/p0MXF3yfrZ8t/1yefun2P8vdbr+1EENr4HTfhH428z8VulAhkQ3efJs4L+2/5/9EvDciHj+AI9fmS5yc5XnXvTa0OW1oLLzL30t6vIaVOX5F70GdnHNW/K5ly64TwQe7ng9ScEid1pErAZeRusJSyn/mVaR8mTBGKa9ANgP/N/t7hYfjohnlwgkM78NvA94CPg7YCozbysRS4d/lZl/B62kCfx44Xg6/Qatp3JFRMSbgG9n5ldLxSCgprm2Tkrn/XZ3tq8AjwJ/mZlef1oSuC0i7oqIzYViqM01cIZzgetKBzFEusmTVebSbvf9c+2ut38RET/Tp2N3ow7XkcrPfZ5rwUDOf4FrUWXn38U1qNLz7/IaWNX5L3TNW/K5ly64Y5ZtRVvBIuI5wJ8Bv5OZ/1gohjcCj2bmXSWOP4vDaXXz+UBmvgz4Hq2u0wMXrfHRZwNrgJ8Enh0R55WIpe4i4veBg8DHCx3/aOD3gb6Os9Gi1C7X1kkd8n5m/igz/zWtHimnRcQpJeKo4fXnFZl5KnAW8B8i4t8UiKE218BpEXEE8Cbg/ykZx5DpJk9WmUu72ffdtIYQvBT4P4Gb+nTsbpS+jlR+7gtcCyo//wWOX+n5d3ENqvT8uzh+Jeff5TVvyedeuuCepDW+c9pKBtg9eKaIWE7rH/rHM3N7qTiAVwBviogHaXUpek1E/LeC8UwCkx1Pm26kdfNRwmuBfZm5PzN/CGwHfr5QLNP+YbprSfu/jxaOh4g4H3gj8GvZHoBSwE/TejDy1fa/5ZXA3RHxE4XiGWW1yrV1UqO8D0C7q/LtwIZCIdTq+pOZj7T/+yjw57S63Q5ana6B084C7s7MfygcxzDpJk9WmUsX3Hdm/uN019vM3AEsj8FNRlr0OlL1uXdxLaj0/Bc6/qD+7ue5Bg3k73+u41d4/t1c85Z87qUL7juBkyNiTftp7bnALSUCiYigNT7rvsz830vEMC0zt2TmysxcTevP5P/NzGKtuJn598DDEfGi9qZfBL5eKJyHgDMi4uj239kv0hrrUtItwPnt388Hbi4YCxGxAXgX8KbM/H6pODJzT2b+eGaubv9bnqQ1Kcjfl4pphNUm19ZJXfJ+RJwQ7dUEIuJZtB4sfqNELHW6/kTEsyPimOnfaU0IOfDZ7Wt2DZy2CbuT91s3efIW4NfbsxafQWtY298N6vgR8RPtvEVEnEbrPv7xPh1/IVWe+4KqPPcurwWVnX83x6/4/Lu5BlV5/gsev6rz7/Kat+RzP3ypgS5FZh6MiEtozWC8DLgmM+8tFM4rgLcDe9pjCAD+1/ZTFMFvAR9vXwQeAP5diSAyc1dE3Eira8lB4MvAtkEdPyKuozVT4vERMQlcDrwHuCEiLqD1QOBXCsezBTgS+Mt2bvpSZl5UIpbM/EjVx9XC6pRra/bvpC55//nARyNiGa2biBsys/hykDXwr4A/b+exw4FPZOZnCsVSi2sgHBqu80vAb5aKYRjNlScj4qL2+x8EdtCasXgv8H36+O+gy+O/Bbg4Ig4C/wyc269ebHPcTyzvOHZl597l8Ss7d+a4FgCrOo5f5fl3c/wqz3/Wa9Cg/u13efwqz/8Z+n3uUa63qSRJkiRJw6t0l3JJkiRJkoaSBbckSZIkSRWw4JYkSZIkqQIW3JIkSZIkVcCCW5IkSZKkClhwS5IkSZJUAQtuSZIkSZIqYMGtBUXEd5fw3WdFxF+3F7MnIq6JiEcj4p5+xRQRX5znc8+NiH+/lGPNsd8jImJnRBze731Lapaa5sjfjoj7IuLjS9lPF8f5Yvu/i8615lNp+NUxTzZJNznWXFpfFtyq2m8A2zPzR+3X1wIbFvpSRJwZEdd2c4DM/Pl53n4u0PeCOzOfAD4H/Gq/9y1ppFSVI/898MuZ+WtLjnD240dEHNaRfxeda82nkhZQ+b1kAyyYY82l9WXBra5FxO9GxD3tn9/p2P6HEfGNiPjLiLguIt7Z8bVfA26efpGZO4EDfY7ru+3/PjsiPh0RX23H+KvAe4CfjoivRMSftj93XkT8TXvbf4mIZRGxut0a9KGIuDcibms/UZ1tn9Nuap+fJNUmR0bEB4EXALdExH9sb7spIu5q57fN7W3v7WwxiYg/ioj/Za5z6ciT7wfuBk7qaLXqNtfOlVPNp9IIqEuebB/z1yPia+189LH5Ymznv29ExIfb2z8eEa+NiP8vIr4ZEaf1+Lln5MeO7z/jfpQZOdZc2jCZ6Y8/8/4A3wVeDuwBng08B7gXeBkwBnwFeBZwDPBN4J3t7x0B/P0s+1sN3LPAMc8Erp0vppm/A/8W+FDH9hUzjwW8GJgAlrdfvx/49fbnDgL/ur39BuC82fbZ8fsyYH/pvx9//PGn7E9Nc+SDwPEdr49t//dZwD3Ace34/rrjM18HVs1zLquBJ4EzOs99tpjnybWz5lTzqT/+DPdP3fIk8DPA/dN5siNHzpf/DgLraTVY3gVcAwRwNnBTR1zzfm6u/Djj+zPvR2fmWHNpg37s469uvRL488z8HkBEbAd+gVYyuTkz/7m9faLjO8cD/6OXg0TELuBIWknu2Ij4Svutd2XmrQt8fQ/wvoh4L/CpzPx8RDxvxmd+kVYyvTMioJXcHwV2Avsyc/p4d9FKbjfM3Of0jjLzRxHxREQck5n/1Mt5Sho6dc+Rvx0Rb27/fhJwcmZ+KSJ+PCJ+EjgB+E5mPtT+3Gzncgvwrcz8UhehzpVrP8EsOdV8Ko2EOuXJ1wA3ZuZjAJk53WI+V4y30LpP3NPefi/wuczMiNhD655x2kKfmys/dn5/5v3oF2ac5jPuedvnYS6tIQtudSt63A7wz8BRvRwkM0+H1rgb4B2Z+Y4evvvfI+LlwC8DV0TEbcB/nSXej2bmlqdtjFgN/EvHph8Bz5ptn5n5nzo+dyTwg25jlDS0apsj2599LfBzmfn9iLi947g3Am8BfgK4vouYv9dlqLPm2nY8c+VU86k03OqUJwPIHmPpvE98suP1kzy9plroc3Pmx1m+/yNaBfnTLHB/ai6tGcdwq1s7gY0RcXREPBt4M/B5Wk/cxiPiqIh4DvCG6S9k5neAZRHRU6JcrHYrzfcz878B7wNOBf6JVvekaZ8D3hIRP97+zrER8VM97nP6veNoddv5Yd9PRlLT1DlHrqDVev39iPifgDM63rseOJdW0X3jAucyn65y7Vw51XwqjYQ65cnPAW9t5x4i4tgFYuz3sbu+F217Wo41lzaLLdzqSmbeHa2ZHv+mvenDmfllgIi4Bfgq8C1gNzDV8dXbaHXP+Wz7s9fRGlNzfERMApdn5kf6FOZ64E8j4kngh8DFmfl4e6KKe4C/yMzfi4g/AG6LiMPan/sPwN93u8+O914N7OhT7JIarOY58jPARRHxNVpjFg91Cc/MeyPiGODbmfl3851LuyfQrHrItSuYPaeaT6UhV6c82c59fwL8dUT8CPgyrdbwnvNfrzLz63Pkx2/N852n5Vhafxbm0oaIzNl6U0jdi4jnZOZ3I+JoWk8GN2fm3e33Xgb8bma+vWiQFWiP69mSmfeXjkVSfY1qjuyF+VQabebJ/jCX1pMt3OqHbRGxjtYYm49OJ0iA9lPBv4qIZfnU+omNFxFH0JqR0oQmaSEjlyN7YT6VhHlyycyl9WULtyRJkiRJFXDSNEmSJEmSKmDBLUmSJElSBSy4JUmSJEmqgAW3JEmSJEkVsOCWJEmSJKkCFtySJEmSJFXAgluSJEmSpApYcEuSJEmSVIH/H2ypx9DyNuhwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f, axes = plt.subplots(nrows=1,ncols=3, sharex=False)\n", "\n", "for ax, feat in zip(axes, POP_FEATURES) :\n", " ax.hist(log_transform(pop_df[\"album_\"+feat]), bins=100, alpha=0.6, label=\"album\")\n", " ax.hist(log_transform(pop_df[feat]), bins=100, alpha=0.6, label=\"song\")\n", " ax.set_xlabel(r\"$\\log(1+$\"+feat+\"$)$\")\n", " ax.legend()\n", " ax.semilogy()\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "rKs5-i889cMv" }, "source": [ "### Computing popularity scores \n", "\n", "The popularity score can then be computed as the one-dimensional projection of the logarithmic transformation of these features using PCA to encompass the maximum informations of these different dimensions in a single value per song.\n", "\n", "This popularity score can then be thought of as a proxy of the ability of a song to reach a great audience. The number of likes and comments add informations about the engagement of publics towards the songs.\n", "It could potentially embrace social dynamics, an hypothesis could be that users that have liked or commented a song are more prone to recommend or play this song to their entourage, thus spreading the song." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "GC5wOxsK9cMv" }, "outputs": [], "source": [ "# without `interest` but with album scores\n", "X = pop_df[POP_FEATURES+[\"album_\"+pop_feat for pop_feat in POP_FEATURES]].copy()\n", "\n", "for pop_feat in X.columns:\n", " # using log transform for the pca\n", " X[pop_feat] = log_transform(X[pop_feat])\n", "\n", "pca = PCA(n_components=1, svd_solver=\"full\").fit(X)\n", "#computing popularity score as a 1D projection of the popularity features\n", "pop_df[\"pop_score\"] = pca.transform(X) " ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 321 }, "id": "rIQyHDGZ9cMv", "outputId": "2e0ecff0-ce06-43be-d467-63615ad780c6" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAEwCAYAAABIVwmKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAcqUlEQVR4nO3dfbhlV10f8O+PCVEQhEJGhbxNxAANr8KQSoEaFHgCtAaUmgCKiBqjRkSLklpqw2NbglipYmSMmIKCpsqbAwRCpQQsEJlEQt4gdBqiGYIQ0IIoJQn8+sfe45xcbmZOkjW592Y+n+c5z90v6+y97pw1+5zvWuvsW90dAAAAYIw7rXUFAAAA4I5E0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEOWqsTH3LIIb1ly5a1Oj0AAADcahdddNFnu3vzavvWLGhv2bIlF1544VqdHgAAAG61qvrLm9tn6jgAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAx00FpXYCPYctrb17oK7CdXn/HUta4CAABwB2NEGwAAAAYStAEAAGAgQRsAAAAG8h1tAOAm3Jvkjsu9SQBuH0a0AQAAYCBBGwAAAAYStAEAAGAgQRsAAAAGErQBAABgIEEbAAAABhK0AQAAYCBBGwAAAAYStAEAAGAgQRsAAAAGErQBAABgIEEbAAAABloqaFfV8VV1ZVXtrKrTbqbMcVV1cVVdXlXvHVtNAAAA2BgO2leBqtqU5MwkT0yyK8mOqtre3VcslLlnkt9Kcnx3/1VVfdP+qjAAAACsZ8uMaB+bZGd3X9Xd1yc5J8kJK8o8K8mbuvuvkqS7PzO2mgAAALAxLBO0D01yzcL6rnnbovsn+SdVdX5VXVRVzxlVQQAAANhI9jl1PEmtsq1XOc4jk3x3krsk+WBVXdDdH7/JgapOTnJykhxxxBG3vLYAAACwzi0zor0ryeEL64cluXaVMu/s7r/v7s8meV+Sh608UHef1d1bu3vr5s2bb22dAQAAYN1aJmjvSHJ0VR1VVQcnOSnJ9hVl/iTJ46rqoKq6a5J/luSjY6sKAAAA698+p453941VdWqS85JsSnJ2d19eVafM+7d190er6p1JLkny1SSv7u7L9mfFAQAAYD1a5jva6e5zk5y7Ytu2FesvT/LycVUDAACAjWeZqeMAAADAkgRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgZYK2lV1fFVdWVU7q+q0VfYfV1Wfr6qL58cvja8qAAAArH8H7atAVW1KcmaSJybZlWRHVW3v7itWFP2z7v6X+6GOAAAAsGEsM6J9bJKd3X1Vd1+f5JwkJ+zfagEAAMDGtEzQPjTJNQvru+ZtKz26qj5SVe+oqgcNqR0AAABsMPucOp6kVtnWK9b/IsmR3f3FqnpKkrckOfprDlR1cpKTk+SII464hVUFAACA9W+ZEe1dSQ5fWD8sybWLBbr7C939xXn53CR3rqpDVh6ou8/q7q3dvXXz5s23odoAAACwPi0TtHckObqqjqqqg5OclGT7YoGq+paqqnn52Pm4nxtdWQAAAFjv9jl1vLtvrKpTk5yXZFOSs7v78qo6Zd6/LckzkvxEVd2Y5EtJTuruldPLAQAA4A5vme9o754Ofu6KbdsWln8zyW+OrRoAAABsPMtMHQcAAACWJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMtFTQrqrjq+rKqtpZVaftpdyjquorVfWMcVUEAACAjWOfQbuqNiU5M8mTkxyT5JlVdczNlHtZkvNGVxIAAAA2imVGtI9NsrO7r+ru65Ock+SEVcr9dJI3JvnMwPoBAADAhrJM0D40yTUL67vmbf+oqg5N8vQk2/Z2oKo6uaourKoLr7vuultaVwAAAFj3lgnatcq2XrH+X5O8qLu/srcDdfdZ3b21u7du3rx52ToCAADAhnHQEmV2JTl8Yf2wJNeuKLM1yTlVlSSHJHlKVd3Y3W8ZUksAAADYIJYJ2juSHF1VRyX5ZJKTkjxrsUB3H7V7uapek+RtQjYAAAAHon0G7e6+sapOzXQ38U1Jzu7uy6vqlHn/Xr+XDQAAAAeSZUa0093nJjl3xbZVA3Z3P/e2VwsAAAA2pmVuhgYAAAAsSdAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEOWusKwIFoy2lvX+sqsJ9cfcZT17oKAACsMSPaAAAAMJCgDQAAAAMJ2gAAADCQoA0AAAADCdoAAAAwkKANAAAAAwnaAAAAMNBSQbuqjq+qK6tqZ1Wdtsr+E6rqkqq6uKourKrHjq8qAAAArH8H7atAVW1KcmaSJybZlWRHVW3v7isWir07yfbu7qp6aJI/SvLA/VFhAAAAWM+WGdE+NsnO7r6qu69Pck6SExYLdPcXu7vn1W9I0gEAAIAD0DJB+9Ak1yys75q33URVPb2qPpbk7UmeN6Z6AAAAsLEsE7RrlW1fM2Ld3W/u7gcmeVqSX171QFUnz9/hvvC66667ZTUFAACADWCZoL0ryeEL64clufbmCnf3+5Lcr6oOWWXfWd29tbu3bt68+RZXFgAAANa7ZYL2jiRHV9VRVXVwkpOSbF8sUFXfVlU1Lz8iycFJPje6sgAAALDe7fOu4919Y1WdmuS8JJuSnN3dl1fVKfP+bUm+L8lzquqGJF9KcuLCzdEAAADggLHPoJ0k3X1uknNXbNu2sPyyJC8bWzUAAADYeJaZOg4AAAAsSdAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYSNAGAACAgQRtAAAAGEjQBgAAgIEEbQAAABhI0AYAAICBBG0AAAAYaKmgXVXHV9WVVbWzqk5bZf+zq+qS+fGBqnrY+KoCAADA+rfPoF1Vm5KcmeTJSY5J8syqOmZFsU8k+c7ufmiSX05y1uiKAgAAwEZw0BJljk2ys7uvSpKqOifJCUmu2F2guz+wUP6CJIeNrCQAABvXltPevtZVYD+5+oynrnUVYF1aZur4oUmuWVjfNW+7OT+S5B23pVIAAACwUS0zol2rbOtVC1Y9PlPQfuzN7D85yclJcsQRRyxZRQAAANg4lhnR3pXk8IX1w5Jcu7JQVT00yauTnNDdn1vtQN19Vndv7e6tmzdvvjX1BQAAgHVtmaC9I8nRVXVUVR2c5KQk2xcLVNURSd6U5Ae7++PjqwkAAAAbwz6njnf3jVV1apLzkmxKcnZ3X15Vp8z7tyX5pST3TvJbVZUkN3b31v1XbQAAAFiflvmOdrr73CTnrti2bWH5R5P86NiqAQAAwMazzNRxAAAAYEmCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADCRoAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQII2AAAADLRU0K6q46vqyqraWVWnrbL/gVX1war6clW9cHw1AQAAYGM4aF8FqmpTkjOTPDHJriQ7qmp7d1+xUOxvkjw/ydP2Sy0BAABgg1hmRPvYJDu7+6ruvj7JOUlOWCzQ3Z/p7h1JbtgPdQQAAIANY5mgfWiSaxbWd83bAAAAgBWWCdq1yra+NSerqpOr6sKquvC66667NYcAAACAdW2ZoL0ryeEL64clufbWnKy7z+rurd29dfPmzbfmEAAAALCuLRO0dyQ5uqqOqqqDk5yUZPv+rRYAAABsTPu863h331hVpyY5L8mmJGd39+VVdcq8f1tVfUuSC5N8Y5KvVtULkhzT3V/Yj3UHAACAdWefQTtJuvvcJOeu2LZtYfmvM00pBwAAgAPaMlPHAQAAgCUtNaINAACwXmw57e1rXQX2k6vPeOpaV2EII9oAAAAwkKANAAAAAwnaAAAAMJCgDQAAAAMJ2gAAADCQoA0AAAADCdoAAAAwkKANAAAAAwnaAAAAMJCgDQAAAAMJ2gAAADCQoA0AAAADCdoAAAAwkKANAAAAAwnaAAAAMJCgDQAAAAMJ2gAAADCQoA0AAAADCdoAAAAwkKANAAAAAwnaAAAAMJCgDQAAAAMJ2gAAADCQoA0AAAADCdoAAAAwkKANAAAAAwnaAAAAMJCgDQAAAAMdtNYVAOC223La29e6CuwnV5/x1LWuAgBwCy01ol1Vx1fVlVW1s6pOW2V/VdVvzPsvqapHjK8qAAAArH/7DNpVtSnJmUmenOSYJM+sqmNWFHtykqPnx8lJXjW4ngAAALAhLDOifWySnd19VXdfn+ScJCesKHNCkt/ryQVJ7llV9xlcVwAAAFj3lgnahya5ZmF917ztlpYBAACAO7xlboZWq2zrW1EmVXVypqnlSfLFqrpyifNz+zskyWfXuhK3h3rZWtfggHDAtKdEm7qdaFOMdsC0Ke3pdqNNMdIB056SDdemjry5HcsE7V1JDl9YPyzJtbeiTLr7rCRnLXFO1lBVXdjdW9e6HtwxaE+Mpk0xmjbFaNoUI2lPG9MyU8d3JDm6qo6qqoOTnJRk+4oy25M8Z777+Hck+Xx3f2pwXQEAAGDd2+eIdnffWFWnJjkvyaYkZ3f35VV1yrx/W5Jzkzwlyc4k/5Dkh/dflQEAAGD9WmbqeLr73ExhenHbtoXlTvJTY6vGGjK9n5G0J0bTphhNm2I0bYqRtKcNqKaMDAAAAIywzHe0AQAAgCUJ2ndAVfXF+ed9q+oNeyl3z6r6yduvZmwEVfX8qvpoVb1+Px1/a1X9xrx8XFX98/1xHtibqnpBVd11resBANwxCdp3YN19bXc/Yy9F7plE0Galn0zylO5+9ugDV9VB3X1hdz9/3nRcEkGbtfCCJIL2OlVVV1fVIVW1paouux3Pe35VbZ2Xz62qe+6lrM6adWgN287jquryqrq4qu6yH8/zgfnnlqp61v46z4FsrdrQRlJVT6uqY9a6HuudoH0HtniBqKoHVdWH5jeAS6rq6CRnJLnfvO3lc7mfr6odc5mXLBzno1X1O/ObyLt2v4nMo59XzOXPWavflTGqaluSb02yvapeVFUfqKoPzz8fMJf586p60MJzzq+qR1bVvarqLXNbuKCqHjrvP72qzqqqdyX5vXkU+21VtSXJKUl+dm6Dj6uqzVX1xrkN7qiqx8zH+M65zMVzfe5+O//TsKSqes7cBj5SVb9fVUdW1bvnbe+uqiPmcq+pqldV1Xuq6qr5NT57vta8ZuF4X6yql1XVRVX1p1V17Nzmrqqq75nLbKqqly9cu3583n7cXPYNVfWxqnp9TZ6f5L5J3jOff9Ncn8uq6tKq+tk1+Kdjnenup3T3/91LEZ01LHp2kl/t7od395dGH7yqNiVJd+/unN6SRNBmrTwtiaC9L93tcQd7JPni/HNLksvm5Vcmefa8fHCSuyzun7c/KdNdDStTJ8zbkvyLudyNSR4+l/ujJD8wL1+b5Ovm5Xuu9e/uMaT9XJ3kkCTfmOSgedsTkrxxXv7ZJC+Zl++T5OMLbew/zMvfleTiefn0JBclucu8flySty3se+HCuf8gyWPn5SOSfHRefmuSx8zLd9tdL4/19UjyoCRXJjlkXr/X/Nr90Lz+vCRvmZdfk+Sc+XpzQpIvJHnIfO25aOF600mePC+/Ocm7ktw5ycMW2tjJSV48L39dkguTHDW3tc8nOWw+7gcX2tfVC/V8ZJL/sfB7uJbdvu3mLfNrfnmSkxdfn/n952NJXpvkkiRvSHLXVV7DrUnOn5dPn8u/ay7zvUl+JcmlSd6Z5M57qcv5SbauqMM3JHl7ko8kuSzJiUmen+T6+Zjvmcs/aW5jf5Hkj5PcbeE4L5m3X5rkgfP270xy8fz4cJK7r/VrsdEe66XtJPnRJH+T5BNJXp/pferdC6/5CXO5lyX5yYXnnZ7k32S6Dr58bl+XJjlx3n9ckvdkem+8Yt62+zPeBZmubxdnel/eNB9jx/z7/vhc7j5J3jeXuyzJ49b6dVtPj/XShubnPirJBzJdaz6U5O5Jvj7Jf5uf/+Ekj5/LPneu+1vndndqkp+by1yQ5F5zufOTvGJuAx+dz/GmJP87yX9cOPcPzOe8OMlvJ9m0u70l+U9znS5I8s2ZZiLubu8XJ7lfpmviFfO/0zlr/bqul4cR7QPHB5P8YlW9KMmRvXpv65Pmx4czvTk8MMnR875PdPfF8/JFmS4+yfQf6vVV9QOZwjh3HPdI8sfzrIhXZApRydTR8q/n5e/P9IEySR6b5PeTpLv/Z5J7V9U95n3bb6bNrfSEJL9ZVRcn2Z7kG+fR6/cn+bV5JPKe3a2trU/fleQN3f3ZJOnuv0ny6EwfEpOpfTx2ofxbe3onvzTJp7v70u7+aqYPPFvmMtdn+nCSudx7u/uGeXl3mSclec7cbv48yb2z59r1oe7eNR/34oXnLLoqybdW1Sur6vhMoZ/bz/O6+5GZPqw+v6ruvWL/A5Kc1d0PzfTaLPOVp/sleWqmTpzXZQrDD0nypXn7LXF8kmu7+2Hd/eAk7+zu38jU0fz47n58VR2S5MVJntDdj8jU2fNzC8f47Lz9VUleOG97YZKf6u6HJ3ncXDdumXXRdrr71Znes36+p69d/b8kT59f88cn+S9VVZk6F09ceOru99DvTfLwTB2IT0jy8qq6z1zm2CT/rrtXjh6eluTPehpBf0WSH0ny+e5+VKYw9WNVdVSmUe/z5nb2sEzXQfZYF22oqg5O8t+T/Ex3724HX8r855Pn5z8zyWur6uvnpz040+t7bKYw/A/d/e2ZPvM/Z+Hw13f3v0iyLcmfzMd8cJLnVtW9q+qfZmqXj5nbyVcyzdBIpo7GC+Y6vS/Jj3X3B7KnvT+8u/9Ppvb47fO/0ylL/BsdEATtA0R3/0GS78n0n/a8qvquVYpVkpfO/2ke3t3f1t2/O+/78kK5r2TP32B/apIzM40IXVRVS/1tdjaEX8705vDgJP8qU69quvuTST43Tw0/MdMHh2RqPyvt/vuBf7/kOe+U5NELbfDQ7v677j4j04jBXZJcUFUPvHW/EvtZZc9rfnMW9+++rnw1N73GfDV7rjE3zGH8JuXm4Ly7TCX56YV2c1R3v2vFOZKbXrv2VKj7bzN9AD0/0weQV+/jd2Cs51fV7tGSw7Onk2S3a7r7/fPy63LTzpqb846FDplNuWlnzZZbWL9Lkzxh/grD47r786uU+Y5M0yjfP3f4/FCSIxf2v2n+udhRrQPxtluvbaeS/OequiTJnyY5NMk3d/eHk3xTTTerfViSv+3uv5rr9Yfd/ZXu/nSS92YKy8nUWfiJJc55cx2OO5L8cFWdnuQh3f13S/4OB4r10oYekORT3b0jSbr7C/M1YXEQ42NJ/jLJ/efnvGf+jHRdptkNb72Z82xf2H55d3+qu7+cqZP58CTfnelz/I65/Xx3pq8RJlNn99vm5cXr10oG3lYhaB8gqupbk1w198JvT/LQJH+XaVrKbucleV5V3W1+zqFV9U17Oeadkhze3e9J8guZbq52t/30K3D7u0eST87Lz12x75xMr/k9uvvSedv7MveAVtVxmUZw9jUyuLINvivT9KfMx3n4/PN+82jnyzKNFAna69O7k3z/7hGBqrpXpmlwJ837n53kf+2H856X5Ceq6s7zee9fVd+wj+f8Y9ubRyPv1N1vTPLvkzxiP9SRVczXiidk6mB7WKYZVV+/otjKzpvd6zdmz+eYlc9Z7JBZ2VlzizqEu/vjmT6EXprkpVX1S6v9Kpm+frC7s+eY7v6RlfXJQmePDsTbZp23nWcn2ZzkkfMI4acXzvOGJM/Ivjuqd1u2o3rVDsfufl+mrwF+MsnvV9Vz9n6YA8c6a0M311G9t7axsoN6sfP6oFXK3VyndiV57ULbeUB3nz6XWaz/qp3VMwNvqxC0DxwnJrls7ql6YJLf6+7PZep9v6yqXj6PAP1Bkg9W1aWZ3gz2dtOpTUleN5f9cJJX9N5vHMPG8iuZPlS+P9NrvegNmcLTHy1sOz3J1rkH/4xMIzr78tYkT59vcva4TN/x2Trf0OqK7Jl+9IK5nX4k06yMd9zaX4r9p7svzzR97b3za/VrmV7TH57bxQ8m+Zn9cOpXZ/pu2F/MX3X47ez7A/FZSd5RVe/JNNp0/nx9fE2Sf7sf6sjq7pFpVO8f5qD5HauUOaKqHj0vPzN7OmuuzvShLkm+b39VsKrum2lK5uuS/Gr2dMQsdhRekOQxVfVt83PuWlX3/5qD3fS4OhBvm/Xcdu6R5DPdfUNVPT43nd1wTqb3z2dkei9Npo7qE+cbM27OFIw/tI9zrDZY8jUdjlV15FyX30nyu9GRuGg9taGPJblvVT0qSarq7nNYXRzEuH+m+9dcOeB8i96d5Bm7B9dqurntkft4zmJntYG3m6G34Q6ou+82/7w603cw0t0vTfLSVco+a8X6ryf59VUO++CFMr+6sH2ZKTRsIN29ZV78bPZMT0qmkb7dZT6dFdePnr6Pe8Iqxzt9xfr5mabo7h4peuiKp5y4Yj3d/dPL1Z611t2vzXQjmEVf81WV7n7uwvLVuek1ZnHf3RaWT19xjN3Xuq8m+cX5sej8+bG7/KkLy6/MdAO/3Xz4XBvvTHLK3BFzZabAutJHk/xQVf12phv4vGre/pIkv1tVv5hpquz+8pBM35n9apIbkvzEvH13Z82nevqe9nOT/GFVfd28/8VJPr6X475gDmFfydRRpAPxllnPbef1Sd5aVRdm+k70x3bv6O7L53uPfLK7PzVvfnOm+1l8JNOo5i9091/vY5bDJUlunDs1X5Pps9uWTB2OleS6THeGPi7Jz1fVDZlubGVEe49104a6+/qqOjHJK2v6yz5fyjTa/ltJts2DWjcmeW53f3l6icfo7iuq6sVJ3jWH5hsyfY3qL/fytHOS/M781ZeTMv1b3CPT6LiBt1ntmQ0AAAAA3FamjgMAAMBApo4DAAeUqnpzpr+1vuhF3X3eWtSHjUPb4bbShg4cpo4DAADAQKaOAwAAwECCNgAAAAwkaAMAAMBAgjYAAAAMJGgDAADAQP8felIb3Y0F+wQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# display the weight of each component in the projection\n", "plt.bar(X.columns\n", " , (pca.components_)[0]\n", " )\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above plot represents the weights of the different features (or their associated coefficients) in the projection the 6 dimensions on a 1D axis representing the popularity score." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 355 }, "id": "uQvLji7i9cMw", "outputId": "1a6210c6-5f3c-4251-aa54-ec152a35acd2" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/mbien/.local/lib/python3.8/site-packages/scipy/stats/morestats.py:1676: UserWarning: p-value may not be accurate for N > 5000.\n", " warnings.warn(\"p-value may not be accurate for N > 5000.\")\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+MAAAEvCAYAAAAuMRA2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dfZReVX03/O+PBJFHSFCSSCR4h94FrSCgpMAj+pRqlShU0OVL8AUELAiI1nW7llBb7FMXNoAvBRVaaqnIQrmpb1ABEX0qqAUlKBACoqnmlkAkQQUSEUxgP3/MxXRIJplJMjmTmfl81rrWnGuffc61T07OzHxn77NPtdYCAAAAdGeb0W4AAAAATDTCOAAAAHRMGAcAAICOCeMAAADQMWEcAAAAOiaMAwAAQMcmj3YDhjJt2rQ2e/bs0W4GAAAAbJRbbrnlgdba9MHWbfVhfPbs2VmwYMFoNwMAAAA2SlX9n/WtM0wdAAAAOiaMAwAAQMeEcQAAAOiYMA4AAAAd2+oncAMAABho9erVWbp0aR599NHRbgrk6U9/embNmpVtt912o7YTxgEAgDFl6dKl2XHHHTN79uxU1Wg3hwmstZZf/epXWbp0aXbfffeN2tYwdQAAYEx59NFHs/POOwvijLqqys4777xJozSEcQAAYMwRxNlabOr/RWEcAAAAOiaMAwAAQMeEcQAAAOiY2dQBWK/Zp101IvtZMv+wEdkPAKzPSP3MWp+N+Vm277775kMf+lBe//rXJ0luu+227Lfffrn44otz9NFHJ0kWLVqUgw46KPfcc0922mmnLdLm8ejXv/51jj/++HzjG9/ItGnT8vd///d5y1veMmjdu+66K6ecckpuueWWTJ8+Peecc05e97rX9a9fsmRJTj755Nx4443Zbrvt8oY3vCH/8A//kMmTJ+eQQw7JTTfdlMmT+yLzrrvumrvvvntEj0XPOAAAwAjaaaed8tBDD/W/P/fcczN16tSnlH3yk5/M0UcfLYhvpFNOOSVPe9rTcv/99+fSSy/NSSedlEWLFq1Tb82aNTniiCNy+OGH59e//nUuvPDCvO1tb8tPfvKT/jonn3xyZsyYkWXLluXWW2/N9ddfn/PPP79//ac+9amsWrUqq1atGvEgngjjAAAAI2rq1Kl5+OGHkyQrVqzIv//7v+fYY4/tD+MPPvhgLr300px66qmj2cwx57e//W2+9KUv5cMf/nB22GGHvPSlL81rX/vaXHLJJevU/fGPf5z77rsv73vf+zJp0qS8/OUvz8EHH/yUuj//+c/zpje9KU9/+tOzyy67ZO7cuYMG+y1FGAcAABhBA8P4P/3TP+XNb35znvvc5/aXXXTRRTn44IPz/Oc/fzSbOeoOP/zw7LTTToO+Dj/88HXq/+QnP8mkSZOy55579pftu+++gwbo1tqgZXfccUf/+/e+97257LLL8sgjj+Tee+/NNddck7lz5/avP/300zNt2rQcfPDB+fa3v72ZR7suYRwAAGAEPRnGV69enX/8x3/MqaeemilTpuShhx7KE088kU9/+tN573vfmyS5+uqrc8ghh+RlL3tZXvKSl+Txxx9Pkrzvfe/LzTffvMltOP/8858yJHtz3XnnnTnmmGOSJL/73e+y00475a677kqSfOQjH8kll1zS/5nve9/7smDBgiR5yvLavva1r+XBBx8c9PW1r31tnfqrVq3K1KlTn1I2derUrFy5cp26z3/+8zNjxoycc845Wb16db7xjW/k+uuvzyOPPNJf50/+5E+yaNGiTJkyJbNmzcqcOXNy5JFHJknOOuus/OxnP8u9996bE044IX/+53+e//qv/9qEf7n1M4EbwAS2pSe7Ge7nmOANgPFk6tSpeeCBB/LFL34x++67b573vOfl9ttvz0MPPZSrrroqkydPzty5c7Ny5cqcccYZ+d73vpftttsuv/nNbzJp0qQkfRO8veAFL9jkNpx88slPef/EE09km202vS92ypQp/aH3i1/8YmbOnNn//itf+UpuuOGGbL/99kn6gvtee+21zvLm2mGHHfpHFzzp4Ycfzo477rhO3W233TZf/epXc+qpp+ass87KnDlz8qY3vSnbbbddkr5/j0MPPTQnnnhi/vM//zOrVq3Kcccdlw984AM5++yzc+CBB/bv65hjjskXvvCFXH311SN6a4GecQAAgBH0ZM/4ueee298DPmXKlDz88MP55Cc/mVNPPTVVlV/+8pdZtWpV7rnnniTJM5/5zP59LF++PB/84Aez995757zzzkuS/M3f/E0OOeSQPP/5z893v/vdJMnee++d1772tXnRi16Us88+u3/7l73sZUmSF7/4xTnppJPyzne+M5/+9Kdz0EEH5cADD8yNN964Ucc0MIz/27/9W97xjndk5cqVueGGGzJnzpxsv/32/Z/5u9/9rj+YP7l89tln54Mf/GCeeOKJ/n2++tWvzg477DDo69WvfvU6bdhzzz2zZs2a/PSnP+0vu+2229Yb9vfZZ59cf/31+dWvfpVrr702P/vZz3LAAQck6ZuV/Z577sm73/3ubLfddtl5551z7LHH5uqrrx50X1U16ND3zSGMAwAAjKCpU6fmO9/5Th5++OG86lWvStIXZm+99dbcfPPNecc73pEk2WOPPfKe97wnb3jDG7L//vtn4cKFSfqC+KpVq/J3f/d3+c53vpOrruobYXbaaafl29/+di655JJ86UtfyoMPPpjf/OY3ueiii/L9738/n//855MkDzzwQGbMmJEHHnggK1asyJlnnpl3vetd+e53v5sbb7wxl19+ec4666yNOqYdd9wxq1atyuLFizNr1qzssssuWblyZS666KK8853v7P/M5cuX59nPfnb/cey444457rjj8pznPCdnnnnmU3rnr7nmmv7Zytd+XXPNNeu04RnPeEZe//rX54wzzshvf/vbfO9738sVV1yRt7/97YO2+fbbb8+jjz6aRx55JB/96EezbNmy/n/7adOmZffdd88FF1yQNWvW5MEHH8zFF1+cfffdNw8++GCuvfbaPProo1mzZk0uvfTS3HDDDTn00EM36t9sKMI4AADACJo6dWruvffe/l7xpC+MPxkGd9hhh/7yk08+ObfeemuOO+64nHvuuUmShQsX5s1vfnOmTJmSFStW5A/+4A+yfPnyvOtd78qf/umf5i/+4i+y2267ZeHChTnqqKMybdq0PO1pT8vOO++cpC+E7rPPPrn99tvzlre8Jc961rPy1a9+NSeffHKqKttss01/z3WS/PKXv8xLX/rSdV6//OUv++s82TP8mc98Jscff3x22GGH3HfffVm8eHH233///s9cuHBhXvjCF/Yfx49+9KPsvvvuedvb3jYi/7bnn39+fve732XGjBk56qijcsEFF/T3jL/61a/ORz7ykf66l1xySWbOnJkZM2bkW9/6Vq677rr+YepJ8uUvfzlf//rXM3369PzhH/5hJk+enE984hNZvXp1/vqv/zrTp0/PtGnT8slPfjJf/epX87znPW9EjuFJ7hkHAADGvK1p/pF58+Zl3rx5Tynba6+91hnm/JOf/KR/ZvAHH3ywP+wtXLgwL37xi5MkP/rRj7LPPvvkwx/+cN761rdm7ty5Oe644/LCF74wCxcuzGOPPZYk+fznP5+Xv/zlSZ4axv/4j/84SbJ69er8/ve/T9L3/Owjjjiivx277LJL/7D3DXniiSeycOHCzJ8/Pw888EA+8pGP5Nhjj33KZy5cuDD77LNP/3Gcd955+dd//dfcdttt2XfffTfiX3FwT/5hYTBr96afc845Oeecc9a7r/3222+9s6RvzuR5w6VnHAAAYBScccYZOfDAA3PIIYfkF7/4RX9P+sKFC7Pffvsl+e8wfvDBB+f9739/jj322Nxxxx39wbeq8opXvCJXXXVV3v/+9/dv/+T6J/dz4okn5owzzshLXvKSJFnnjwXDsXLlyhx2WN8fPXbccccsWrQob33rW9f5zIFh/MUvfnE++9nP5j3veU8eeOCBzfjXGn9qpG9CH2lz5sxp65sKH4DN09Vs6kPZmnozANj63XXXXfmjP/qj0W7GqHvlK1+Za6+9drNmSWdkrO//ZFXd0lqbM9g2zhoAAMAY9Pvf/14QH8PcMw4wTm0tvd5dGc7x6oEHYDy5/vrrR7sJbAZhHIAxYaL9cQEAGN+MaQAAAICODdkzXlVPT3JDku169b/YWvtQVf1tkr9IsqJX9a9aa1f3tjk9yfFJHk/yntbatb3y/ZN8Nsn2Sa5O8t62tc8gB8AWp9cbAJhohjNM/bEkL2+traqqbZN8t6qefIDbJ1prHx1YuapekGRekr2SPCfJN6tqz9ba40kuSHJCkpvSF8bnJnnqw+AAAACG0FpLVY12M2Cd58cP15DD1FufVb232/ZeG/q0I5Jc1lp7rLX28ySLkxxQVTOTTGmt3djrDf9ckiM3qdUAAMCENWnSpKxevXq0mwFJktWrV2fy5I2fjm1Y94xX1aSqujXJ8iTXtda+31v17qq6vaouqqpn9sp2TXLPgM2X9sp27S2vXQ4AADBsO+20U+6///488cQTo90UJrgnnngi999/f6ZOnbrR2w4rvveGmO9XVTsl+UpV7Z2+IecfTl8v+YeTfCzJcUkGGyvSNlC+jqo6IX3D2fPc5z53OE0EAAAmiGnTpmXp0qW5++67R7spkGc84xmZNm3aRm+3UX3prbUHq+rbSeYOvFe8qv45ydd6b5cm2W3AZrOS3NcrnzVI+WCfc2GSC5Nkzpw5JngDWIsJzwCYyLbZZhuddox5Qw5Tr6rpvR7xVNX2Sf4syY9794A/6XVJ7ugtX5lkXlVtV1W7J9kjyQ9aa8uSrKyqg6pvpoWjk1wxgscCAAAAY8JwesZnJrm4qialL7xf3lr7WlVdUlX7pW+o+ZIkJyZJa21RVV2e5M4ka5Kc0hvmniQn5b8fbXZNzKQOAADABDRkGG+t3Z7kRYOUv30D25yZ5MxByhck2Xsj2wgAAADjyrBmUwcAAABGjjAOAAAAHRPGAQAAoGPCOAAAAHRMGAcAAICODefRZgB0bPZpV412EwAA2IL0jAMAAEDHhHEAAADomGHqADDAULcILJl/WEctAQDGM2EcgAnDvfgAwNbCMHUAAADomDAOAAAAHRPGAQAAoGPCOAAAAHRMGAcAAICOCeMAAADQMWEcAAAAOiaMAwAAQMcmj3YDAGAsmX3aVUPWWTL/sA5aAgCMZXrGAQAAoGPCOAAAAHRMGAcAAICOCeMAAADQMWEcAAAAOiaMAwAAQMeGDONV9fSq+kFV3VZVi6rq/+2VP6uqrquqn/a+PnPANqdX1eKquruqDh1Qvn9VLeytO6+qasscFgAAAGy9htMz/liSl7fW9k2yX5K5VXVQktOSfKu1tkeSb/Xep6pekGRekr2SzE1yflVN6u3rgiQnJNmj95o7gscCAAAAY8LkoSq01lqSVb232/ZeLckRSQ7plV+c5NtJPtArv6y19liSn1fV4iQHVNWSJFNaazcmSVV9LsmRSa4ZoWMBGBNmn3bVaDeBLWw453jJ/MM6aAkAsLUa1j3jVTWpqm5NsjzJda217yd5dmttWZL0vs7oVd81yT0DNl/aK9u1t7x2OQAAAEwowwrjrbXHW2v7JZmVvl7uvTdQfbD7wNsGytfdQdUJVbWgqhasWLFiOE0EAACAMWOjZlNvrT2YvuHoc5PcX1Uzk6T3dXmv2tIkuw3YbFaS+3rlswYpH+xzLmytzWmtzZk+ffrGNBEAAAC2esOZTX16Ve3UW94+yZ8l+XGSK5Mc06t2TJIrestXJplXVdtV1e7pm6jtB72h7Cur6qDeLOpHD9gGAAAAJowhJ3BLMjPJxb0Z0bdJcnlr7WtVdWOSy6vq+CS/SPLGJGmtLaqqy5PcmWRNklNaa4/39nVSks8m2T59E7eZvA0AAIAJZzizqd+e5EWDlP8qySvWs82ZSc4cpHxBkg3dbw4AAADj3kbdMw4AAABsPmEcAAAAOiaMAwAAQMeEcQAAAOjYcGZTB2AjzD7tqtFuAgAAWzk94wAAANAxYRwAAAA6Zpg6AIyCoW5nWDL/sI5aAgCMBj3jAAAA0DFhHAAAADomjAMAAEDHhHEAAADomDAOAAAAHTObOsBGGGoGbAAAGA494wAAANAxYRwAAAA6JowDAABAx4RxAAAA6JgwDgAAAB0TxgEAAKBjwjgAAAB0TBgHAACAjgnjAAAA0DFhHAAAADo2ebQbAACsa/ZpVw1ZZ8n8wzpoCQCwJQzZM15Vu1XVf1TVXVW1qKre2yv/26q6t6pu7b1eM2Cb06tqcVXdXVWHDijfv6oW9tadV1W1ZQ4LAAAAtl7D6Rlfk+R/tdZ+WFU7Jrmlqq7rrftEa+2jAytX1QuSzEuyV5LnJPlmVe3ZWns8yQVJTkhyU5Krk8xNcs3IHAoAAACMDUP2jLfWlrXWfthbXpnkriS7bmCTI5Jc1lp7rLX28ySLkxxQVTOTTGmt3dhaa0k+l+TIzT4CAAAAGGM26p7xqpqd5EVJvp/k4CTvrqqjkyxIX+/5b9IX1G8asNnSXtnq3vLa5QBbheHcowsAACNh2LOpV9UOSb6U5C9baw+nb8j5/0yyX5JlST72ZNVBNm8bKB/ss06oqgVVtWDFihXDbSIAAACMCcMK41W1bfqC+KWttS8nSWvt/tba4621J5L8c5IDetWXJtltwOazktzXK581SPk6WmsXttbmtNbmTJ8+fWOOBwAAALZ6w5lNvZL8S5K7WmsfH1A+c0C11yW5o7d8ZZJ5VbVdVe2eZI8kP2itLUuysqoO6u3z6CRXjNBxAAAAwJgxnHvGD07y9iQLq+rWXtlfJTmqqvZL31DzJUlOTJLW2qKqujzJnembif2U3kzqSXJSks8m2T59s6ibSR0AAIAJZ8gw3lr7bga/3/vqDWxzZpIzBylfkGTvjWkgAAAAjDfDnsANAAAAGBkb9WgzAGDrMdTj+JbMP6yjlgAAG0vPOAAAAHRMGAcAAICOCeMAAADQMWEcAAAAOiaMAwAAQMeEcQAAAOiYMA4AAAAdE8YBAACgY8I4AAAAdEwYBwAAgI4J4wAAANAxYRwAAAA6JowDAABAxyaPdgMAujL7tKtGuwkAAJBEzzgAAAB0ThgHAACAjgnjAAAA0DH3jAPAODWceRKWzD+sg5YAAGvTMw4AAAAdE8YBAACgY8I4AAAAdEwYBwAAgI4J4wAAANCxIcN4Ve1WVf9RVXdV1aKqem+v/FlVdV1V/bT39ZkDtjm9qhZX1d1VdeiA8v2ramFv3XlVVVvmsAAAAGDrNZxHm61J8r9aaz+sqh2T3FJV1yV5R5JvtdbmV9VpSU5L8oGqekGSeUn2SvKcJN+sqj1ba48nuSDJCUluSnJ1krlJrhnpgwImnuE8wgkAALYWQ/aMt9aWtdZ+2FtemeSuJLsmOSLJxb1qFyc5srd8RJLLWmuPtdZ+nmRxkgOqamaSKa21G1trLcnnBmwDAAAAE8Zwesb7VdXsJC9K8v0kz26tLUv6AntVzehV2zV9Pd9PWtorW91bXrscABglwxlVsmT+YR20BAAmlmFP4FZVOyT5UpK/bK09vKGqg5S1DZQP9lknVNWCqlqwYsWK4TYRAAAAxoRhhfGq2jZ9QfzS1tqXe8X394aep/d1ea98aZLdBmw+K8l9vfJZg5Svo7V2YWttTmttzvTp04d7LAAAADAmDGc29UryL0nuaq19fMCqK5Mc01s+JskVA8rnVdV2VbV7kj2S/KA3pH1lVR3U2+fRA7YBAACACWM494wfnOTtSRZW1a29sr9KMj/J5VV1fJJfJHljkrTWFlXV5UnuTN9M7Kf0ZlJPkpOSfDbJ9umbRd1M6gAAAEw4Q4bx1tp3M/j93knyivVsc2aSMwcpX5Bk741pIAAAAIw3w57ADQAAABgZwjgAAAB0TBgHAACAjgnjAAAA0DFhHAAAADomjAMAAEDHhHEAAADo2JDPGQcAJrbZp121wfVL5h/WUUsAYPzQMw4AAAAdE8YBAACgY8I4AAAAdEwYBwAAgI6ZwA3Y6g01eRQAAIw1esYBAACgY8I4AAAAdEwYBwAAgI4J4wAAANAxYRwAAAA6JowDAABAx4RxAAAA6JgwDgAAAB0TxgEAAKBjk0e7AQDA2Db7tKuGrLNk/mEdtAQAxg494wAAANAxYRwAAAA6NmQYr6qLqmp5Vd0xoOxvq+reqrq193rNgHWnV9Xiqrq7qg4dUL5/VS3srTuvqmrkDwcAAAC2fsO5Z/yzST6V5HNrlX+itfbRgQVV9YIk85LsleQ5Sb5ZVXu21h5PckGSE5LclOTqJHOTXLNZrQfGheHcbwoAAOPJkD3jrbUbkvx6mPs7IsllrbXHWms/T7I4yQFVNTPJlNbaja21lr5gf+SmNhoAAADGss25Z/zdVXV7bxj7M3tluya5Z0Cdpb2yXXvLa5cDAADAhLOpYfyCJP8zyX5JliX5WK98sPvA2wbKB1VVJ1TVgqpasGLFik1sIgAAAGydNimMt9bub6093lp7Isk/Jzmgt2ppkt0GVJ2V5L5e+axByte3/wtba3Naa3OmT5++KU0EAACArdZwJnBbR1XNbK0t6719XZInZ1q/Msnnq+rj6ZvAbY8kP2itPV5VK6vqoCTfT3J0kk9uXtMBgLFiqIkal8w/rKOWAMDWYcgwXlVfSHJIkmlVtTTJh5IcUlX7pW+o+ZIkJyZJa21RVV2e5M4ka5Kc0ptJPUlOSt/M7NunbxZ1M6kDAAAwIQ0ZxltrRw1S/C8bqH9mkjMHKV+QZO+Nah0AAACMQ5szmzoAAACwCYRxAAAA6JgwDgAAAB0TxgEAAKBjwjgAAAB0bJOeMw4AMJKGeg554lnkAIwvesYBAACgY8I4AAAAdEwYBwAAgI4J4wAAANAxYRwAAAA6ZjZ1AGBMMOM6AOOJnnEAAADomDAOAAAAHRPGAQAAoGPuGQe2qOHc4wkAABONnnEAAADomDAOAAAAHRPGAQAAoGPCOAAAAHRMGAcAAICOmU0dABg3hnqCw5L5h3XUEgDYMD3jAAAA0DFhHAAAADomjAMAAEDHhHEAAADo2JBhvKouqqrlVXXHgLJnVdV1VfXT3tdnDlh3elUtrqq7q+rQAeX7V9XC3rrzqqpG/nAAAABg6zecnvHPJpm7VtlpSb7VWtsjybd671NVL0gyL8levW3Or6pJvW0uSHJCkj16r7X3CQAAABPCkI82a63dUFWz1yo+IskhveWLk3w7yQd65Ze11h5L8vOqWpzkgKpakmRKa+3GJKmqzyU5Msk1m30EwKga6jFCAADAujb1nvFnt9aWJUnv64xe+a5J7hlQb2mvbNfe8trlg6qqE6pqQVUtWLFixSY2EQAAALZOIz2B22D3gbcNlA+qtXZha21Oa23O9OnTR6xxAAAAsDUYcpj6etxfVTNba8uqamaS5b3ypUl2G1BvVpL7euWzBikHAOjMcG6tWTL/sA5aAsBEt6k941cmOaa3fEySKwaUz6uq7apq9/RN1PaD3lD2lVV1UG8W9aMHbAMAAAATypA941X1hfRN1jatqpYm+VCS+Ukur6rjk/wiyRuTpLW2qKouT3JnkjVJTmmtPd7b1Unpm5l9+/RN3GbyNgAAACak4cymftR6Vr1iPfXPTHLmIOULkuy9Ua0DAACAcWikJ3ADAAAAhiCMAwAAQMeEcQAAAOiYMA4AAAAd29TnjAMAjEueRQ5AF/SMAwAAQMeEcQAAAOiYMA4AAAAdE8YBAACgYyZwA9ZrOJMYAQAAG0/POAAAAHRMGAcAAICOGaYOALCRhrqNx3PIARiKnnEAAADomJ5xAIARNpwJMPWeA0xsesYBAACgY8I4AAAAdEwYBwAAgI4J4wAAANAxE7jBBDWcyYUAAIAtQ884AAAAdEzPOADAKBhqhJJHnwGMb3rGAQAAoGPCOAAAAHRMGAcAAICObdY941W1JMnKJI8nWdNam1NVz0ryv5PMTrIkyZtaa7/p1T89yfG9+u9prV27OZ8PADBeDeepF+4rBxi7RmICtz9trT0w4P1pSb7VWptfVaf13n+gql6QZF6SvZI8J8k3q2rP1trjI9AGYC0eXQYAAFuvLTFM/YgkF/eWL05y5IDyy1prj7XWfp5kcZIDtsDnAwAAwFZtc3vGW5JvVFVL8k+ttQuTPLu1tixJWmvLqmpGr+6uSW4asO3SXhmwkfR6AwDA2La5Yfzg1tp9vcB9XVX9eAN1a5CyNmjFqhOSnJAkz33uczeziQAAALB12axh6q21+3pflyf5SvqGnd9fVTOTpPd1ea/60iS7Ddh8VpL71rPfC1trc1prc6ZPn745TQQAAICtzib3jFfVM5Js01pb2Vt+VZK/S3JlkmOSzO99vaK3yZVJPl9VH0/fBG57JPnBZrQdAGBCG4nblszIDjA6NmeY+rOTfKWqntzP51trX6+qm5NcXlXHJ/lFkjcmSWttUVVdnuTOJGuSnGImdQAAACaiTQ7jrbWfJdl3kPJfJXnFerY5M8mZm/qZAAAAMB5siUebAQAAABsgjAMAAEDHNvfRZsAI8wxxALo0nJ87JnkDGHnCOAAAGySwA4w8w9QBAACgY8I4AAAAdEwYBwAAgI4J4wAAANAxE7hBx8yWDsB4NBI/30wCB0wkesYBAACgY8I4AAAAdMwwdQAAtgpDDXU3jB0YT/SMAwAAQMf0jMMIMjkbAGw5w/k5q/ccGCv0jAMAAEDHhHEAAADomGHqAACMG4ayA2OFnnEAAADomJ5x2AgmaAOAsc8j1ICtgZ5xAAAA6JiecQAAGMB950AXhHHoMQQdABiukfi9QaCHiU0YBwCAUaAHHiY2YZxxQa82ADAe6YGH8UsYBwCAcayrTguhHzZO52G8quYmOTfJpCSfaa3N77oNbD30aAMAABNRp2G8qiYl+XSSVyZZmuTmqrqytXZnl+0AAABGliH1sHG67hk/IMni1trPkqSqLktyRBJhfJzS8w0AwHAJ9EwkXYfxXZPcM+D90iQHdtwGhkmQBgBgrBlvv8P648L41XUYr0HK2jqVqk5IckLv7YGgzTIAAAYTSURBVKqqunsY+56W5IHNaBtjl3M/cTn3E5dzPzE57xOXcz9xTfhzX2eNdgtGzXg59/9jfSu6DuNLk+w24P2sJPetXam1dmGSCzdmx1W1oLU2Z/Oax1jk3E9czv3E5dxPTM77xOXcT1zO/cQ1Ec79Nh1/3s1J9qiq3avqaUnmJbmy4zYAAADAqOq0Z7y1tqaq3p3k2vQ92uyi1tqiLtsAAAAAo63z54y31q5OcvUW2PVGDWtnXHHuJy7nfuJy7icm533icu4nLud+4hr3575aW2f+NAAAAGAL6vqecQAAAJjwxmwYr6r/XVW39l5LqurW9dRbUlULe/UWdN1ORl5V/W1V3Tvg/L9mPfXmVtXdVbW4qk7rup2MvKo6p6p+XFW3V9VXqmqn9dRz3Y8DQ13D1ee83vrbq+rFo9FORlZV7VZV/1FVd1XVoqp67yB1Dqmqhwb8HDhjNNrKyBvq+7frfnyqqucNuJ5vraqHq+ov16rjuh8nquqiqlpeVXcMKHtWVV1XVT/tfX3merYdV7/fj4th6lX1sSQPtdb+bpB1S5LMaa2Nh2fUkb4wnmRVa+2jG6gzKclPkrwyfY/UuznJUa21OztpJFtEVb0qyf/XmwzyrCRprX1gkHpL4rof04ZzDff+EHdqktckOTDJua21A0ehuYygqpqZZGZr7YdVtWOSW5Icuda5PyTJ+1trh49SM9lChvr+7bof/3rf/+9NcmBr7f8MKD8krvtxoar+nySrknyutbZ3r+zsJL9urc3vhexnrv073nj8/X7M9ow/qaoqyZuSfGG028JW5YAki1trP2ut/T7JZUmOGOU2sZlaa99ora3pvb0pyazRbA9b1HCu4SPS94O8tdZuSrJTL8gxhrXWlrXWfthbXpnkriS7jm6r2Iq47se/VyT5r4FBnPGltXZDkl+vVXxEkot7yxcnOXKQTcfd7/djPowneVmS+1trP13P+pbkG1V1S1Wd0GG72LLe3RuedtF6hrHsmuSeAe+Xxi9z481xSa5ZzzrX/dg3nGvYdT7OVdXsJC9K8v1BVv/fVXVbVV1TVXt12jC2pKG+f7vux795WX8nm+t+/Hp2a21Z0vdH2SQzBqkz7q7/zh9ttjGq6ptJdhlk1Qdba1f0lo/KhnvFD26t3VdVM5JcV1U/7v01hq3Yhs59kguSfDh9P7A/nORj6QtmT9nFINuO/XsyJoDhXPdV9cEka5Jcup7duO7HvuFcw67zcayqdkjypSR/2Vp7eK3VP0zyP1prq3rDlr+aZI+u28gWMdT3b9f9OFZVT0vy2iSnD7Ladc+4u/636jDeWvuzDa2vqslJXp9k/w3s477e1+VV9ZX0DW/wS/lWbqhz/6Sq+uckXxtk1dIkuw14PyvJfSPQNLawYVz3xyQ5PMkr2nomvXDdjwvDuYZd5+NUVW2bviB+aWvty2uvHxjOW2tXV9X5VTXNPBFj3zC+f7vux7dXJ/lha+3+tVe47se9+6tqZmttWe/Wk+WD1Bl31/9YH6b+Z0l+3FpbOtjKqnpGb/KXVNUzkrwqyR2D1WXsWOvesNdl8HN6c5I9qmr33l9Z5yW5sov2seVU1dwkH0jy2tbaI+up47ofH4ZzDV+Z5Oje7MoHpW8iz2VdN5SR1ZsL5l+S3NVa+/h66uzSq5eqOiB9v8/8qrtWsiUM8/u36358W++IV9f9uHdlkmN6y8ckuWKQOuPu9/utumd8GNa5p6SqnpPkM6211yR5dpKv9K7byUk+31r7euetZKSdXVX7pW9YypIkJyZPPfe92bbfneTaJJOSXNRaWzRaDWbEfCrJdukbupgkN7XW3uW6H3/Wdw1X1bt66/8xydXpm1F5cZJHkhw7Wu1lRB2c5O1JFtZ/P7b0r5I8N+k/929IclJVrUnyuyTz1jdShjFl0O/frvuJoar+r/TNkn3igLKB5951P05U1ReSHJJkWlUtTfKhJPOTXF5Vxyf5RZI39uqO69/vx8WjzQAAAGAsGevD1AEAAGDMEcYBAACgY8I4AAAAdEwYBwAAgI4J4wAAANAxYRwAAAA6JowDAABAx4RxAAAA6Nj/DxpTXX1+LQYcAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot the distribution of the 1D-popularity projection, and showcase its Shapiro-Wilk score\n", "W, p_val = shapiro(pop_df.pop_score)\n", "\n", "plt.hist(pop_df.pop_score, bins=100, label=r\"$W_{Shapiro-Wilk}\"+\"={0:.3f}$\".format(W))\n", "plt.legend(fontsize=12)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The popularity scores obtained after the 1D PCA projection follow a gaussian distribution (as underlined by the Shapiro-Wilk score close to 1). This measure is then $z$-score normalized to make it follow a normal law $\\mathcal{N}(0,1)$." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "douDo7u89cMx" }, "outputs": [], "source": [ "# as the distribution is ~ normal (shapiro close to 1), standardize the score (z-score normalization)\n", "pop_df[\"pop_score\"] = (pop_df[\"pop_score\"]-np.mean(pop_df[\"pop_score\"]))/(np.std(pop_df[\"pop_score\"]))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 175 }, "id": "cEMHUN699cMy", "outputId": "720c2084-cdcd-4182-fcd2-fcf249fd9359" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date_createdgenre_toplistensfavoritescommentsalbum_listensalbum_favoritesalbum_commentspop_score
track_id
1255322015-09-25 16:18:52Electronic135200447300-0.275386
851572013-05-30 15:50:26Experimental23020301494110.213893
449802011-03-04 13:55:33Experimental10210129200-1.407466
\n", "
" ], "text/plain": [ " date_created genre_top listens favorites comments \\\n", "track_id \n", "125532 2015-09-25 16:18:52 Electronic 1352 0 0 \n", "85157 2013-05-30 15:50:26 Experimental 230 2 0 \n", "44980 2011-03-04 13:55:33 Experimental 102 1 0 \n", "\n", " album_listens album_favorites album_comments pop_score \n", "track_id \n", "125532 4473 0 0 -0.275386 \n", "85157 30149 4 11 0.213893 \n", "44980 1292 0 0 -1.407466 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pop_df.sample(3)" ] }, { "cell_type": "markdown", "metadata": { "id": "JyQB9_3CFtjV" }, "source": [ "## Generate samples for finetuning" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "id": "D2i668J6FlSV" }, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "train, test = train_test_split(pop_df.pop_score, test_size=0.05)\n", "train.to_csv(\"train.csv\")\n", "test.to_csv(\"test.csv\")" ] }, { "cell_type": "markdown", "metadata": { "id": "AzPb4uWN9cMz" }, "source": [ "## Feature selection for regressions " ] }, { "cell_type": "markdown", "metadata": { "id": "Z_uvpeKG9cM0" }, "source": [ "Now we are going to proceed to the regression analysis. The features of our dataset are at a number of 518. There are : \n", "- *chroma_cens* (max, min, mean, median, skew, kurtosis, and standard deviation) (N = 1...12): corresponds to the chroma energy normalized, how much energy of pitch class N is present in the signal\n", "- *Mel-frequency cepstral coefficients (MFCCs)* (max, min, mean, median, skew, kurtosis, and standard deviation) (N = 1....20) : N-th coefficient that describe the short-term power spectrum of a sound, that itself describes how power of a signal or time series is distributed over frequency\n", "- *Root-mean-square (RMS) energy* (max, min, mean, median, skew, kurtosis, and standard deviation) (N=1...20) : corresponds to how 'loud' the music is\n", "- *Spectral Bandwidth* (max, min, mean, median, skew, kurtosis, and standard deviation) : band width at one-half the peak maximum\n", "- *Spectral Centroid* (max, min, mean, median, skew, kurtosis, and standard deviation) : an acoustical descriptor of timbre. Estimates the center of mass of the spectrum (in Hz)\n", "- *Spectral Contrast* (max, min, mean, median, skew, kurtosis, and standard deviation) : works on octaves and considers spectral peak, spectral valley and their difference in each sub-band\n", "- *Tonnetz* (max, min, mean, median, skew, kurtosis, and standard deviation) (N=0...5) : N represents : fifth x-axis, fifth y-axis, minor x-axis, minor y-axis, major x-axis, major y-axis\n", "- *Zero Crossing Rate* (max, min, mean, median, skew, kurtosis, and standard deviation) : rate at which a signal changes from positive to zero to negative or from negative to zero to positive\n", "\n", "As it is computationnaly too expensive to compute a regression with all the features, we are need to reduce the dimensionality of each data point. To do that, we observe that some features are potentially strongly correlated, and including both of them in the analysis would be unnecessary. For example, the mean ZCR and median ZCR are likely to be somehow linked. Our assumption is that we can find a smaller set of features that describe well enough our dataset.\n", "\n", "To find the features, we will compute the Pearson's correlation between each feature, pairwise. It gives us information about the joint variablitiy of two random variables, showing linear relationships between them. For two random variables X and Y, the correlation is computed as follow :\n", "\n", "$$corr(X,Y) = \\frac{cov(X, Y)}{std(X) * std(Y)} $$\n", "\n", "Where the covariance is defined as : $$cov(X,Y) = \\frac{\\sum(x_i - \\overline{x})(y_i - \\overline{y})}{N}$$\n", "\n", "A first limitation of this approach is that we only account for linear relationships, not more complex ones.\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 287 }, "id": "FASXF2LW9cM0", "outputId": "38fe4cb6-aab3-42f4-c3b9-53f1bd7c4e13" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
featurechroma_cens...tonnetzzcr
statisticskurtosis...stdkurtosismaxmeanmedianminskewstd
number01020304050607080910...04050601010101010101
track_id
106701-0.657624-0.7393330.846104-0.2948640.4958130.117134-1.324070-1.1596720.909491-0.578040...0.0424120.0194420.0185827.8202170.4672850.0707510.0556640.02.5176030.065010
828622.100222-0.4375570.268126-0.700742-0.670827-0.1058311.4358822.523684-0.693280-0.222233...0.1002950.0328270.0257111.3928350.1616210.0504120.0483400.00.7739270.019650
142205-0.740965-0.608202-0.559238-0.6978920.193160-0.2335191.581625-0.333326-0.999112-0.553771...0.0688100.0176000.01704316.8771500.7021480.0637870.0400390.03.2960570.077015
\n", "

3 rows × 518 columns

\n", "
" ], "text/plain": [ "feature chroma_cens \\\n", "statistics kurtosis \n", "number 01 02 03 04 05 06 \n", "track_id \n", "106701 -0.657624 -0.739333 0.846104 -0.294864 0.495813 0.117134 \n", "82862 2.100222 -0.437557 0.268126 -0.700742 -0.670827 -0.105831 \n", "142205 -0.740965 -0.608202 -0.559238 -0.697892 0.193160 -0.233519 \n", "\n", "feature ... tonnetz \\\n", "statistics ... std \n", "number 07 08 09 10 ... 04 05 \n", "track_id ... \n", "106701 -1.324070 -1.159672 0.909491 -0.578040 ... 0.042412 0.019442 \n", "82862 1.435882 2.523684 -0.693280 -0.222233 ... 0.100295 0.032827 \n", "142205 1.581625 -0.333326 -0.999112 -0.553771 ... 0.068810 0.017600 \n", "\n", "feature zcr \\\n", "statistics kurtosis max mean median min skew \n", "number 06 01 01 01 01 01 01 \n", "track_id \n", "106701 0.018582 7.820217 0.467285 0.070751 0.055664 0.0 2.517603 \n", "82862 0.025711 1.392835 0.161621 0.050412 0.048340 0.0 0.773927 \n", "142205 0.017043 16.877150 0.702148 0.063787 0.040039 0.0 3.296057 \n", "\n", "feature \n", "statistics std \n", "number 01 \n", "track_id \n", "106701 0.065010 \n", "82862 0.019650 \n", "142205 0.077015 \n", "\n", "[3 rows x 518 columns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "features = pd.read_csv(f'{datasource}/fma_metadata/features.csv', index_col=0, header=[0, 1, 2])\n", "features.sample(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's compute the correlation matrix, and visualize it. " ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "m_nlCrhV9cM1" }, "outputs": [], "source": [ "corr_matrix = features.corr()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "C6G6tOmR9cM2", "outputId": "ea9a9e0f-a66a-4416-dd6b-54aaa5250427" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAI3CAYAAACbPVFkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9abBl13Xf99t7n+GOb37d6BFozCAIgqQo0rRkDXYsUirP/hCVK7LsKGaFSlIpp1KpJB9SSaryJYm/JGUxpseyK7ajSsWybMsibSq0ZpEiRZAgQBBjD+jxjXc+w947H9Y+597XaNB0IoCIe/+7br1+5553hn32sNZ//dc6yntPRERERERERMT9AP29voCIiIiIiIiIiHcL0fCJiIiIiIiIuG8QDZ+IiIiIiIiI+wbR8ImIiIiIiIi4bxANn4iIiIiIiIj7BtHwiYiIiIiIiLhvEA2fiIiIiIiIiO8ZlFL/g1LqqlJq8q/Z779SSr2ilHpJKfWJle3fp5T6Rvjuf1FKqe90nGj4RERERERERHwv8U+Aj36nHZRS7wN+Enga+CTwc0opE77+DPAp4LHw+eR3OlY0fCIiIiIiIiK+Z/De/7b3/sa/Zrc/CfxD733hvX8deAX4qFLqDLDmvf8tLxWZ/y7wp77TgZLfl6uOiIiIiIiIeE/jEz/a9/sH9l0511e+XnwTWKxs+qz3/rP/Hw55Dvjtld+vhW1V+P/d298W0fCJiIiIiIi4D7B/YPnS5y6+K+cyZ15eeO8/8vt4yHvpdvx32P62iKGuiIiIiIiIiPc6rgEXVn4/D1wP28/fY/vbIho+ERERERER9wE84N6lf+8AfhH4SaVUrpS6hIiYvxS0QWOl1B8I2Vx/HvjH3+lA0fCJiIiIiIiI+J5BKfU/KqWuAT2l1DWl1H8btv8JpdR/D+C9/ybw88ALwC8D/5H3vhEsfRr4G4jg+VXgn3/H84kIOiIiIiIiIuLfZnzfs7n/zV/+jrrf3zd0zr7+ld9njc/vGyLjExEREREREXHfIGZ1RURERERE3AcQjU+M8kTGJyIiIiIiIuK+QWR8IiIiIiIi7hO8QxlX/79CZHwiIiIiIiIi7htExiciIiIiIuI+gMdjYyZ3ZHwiIiIiIiIi7h9ExiciIiIiIuI+QczqioxPRERERERExH2EaPhERERERERE3DeIoa6IiIiIiIj7AB6wMdQVGZ+IiIiIiIiI+weR8YmIiIiIiLhPEMXNkfGJiIiIiIiIuI8QGZ+IiIiIiIj7AB5iAUMi4xMRERERERFxHyEyPhEREREREfcJ4itKI+MTERERERERcR8hMj4RERERERH3ATw+1vEhMj4RERERERER9xEi4xMREREREXE/wIONhE9kfCIiIiIiIiLuH0TGJyIiIiIi4j6AJ2Z1QWR8IiIiIiIiIu4jRMYnIiIiIiLivoDCor7XF/E9R2R8IiIiIiIiIu4bRMMnIiIiIiIi4r5BDHVFRERERETcB/CAi+nskfGJiIiIiIiIuH8QGZ+IiIiIiIj7BFHcHBmfiIiIiIiIiPsIkfGJiIiIiIi4D+CJjA9ExiciIiIiIiLiPkJkfCIiIiIiIu4TOB8Zn8j4RERERERERNw3iIxPRERERETEfYCo8RFExiciIiIiIiLivkFkfCIiIiIiIu4DeBQ28h2xBSIiIiIiIiLuH0TGJyIiIiIi4j5BzOp6BxkfpdQnlVIvKaVeUUr9l+/UeSIiIiIiIiIivlu8I4yPUsoAfxX4o8A14MtKqV/03r/wTpwvIiIiIiIi4jsjZnUJ3inG56PAK97717z3JfAPgT/5Dp0rIiIiIiIiIuK7wjul8TkHXF35/RrwsdUdlFKfAj4FYHT6fR98v+ZbV3apNjx6ptDrNeqOAa2wKWQjC1UlJqsCnG8OJD+9X/4M27z3y+3Nvt6f/L9SKKXeuu/Jiz3xndI6HN+FiwFltPzfO1y/Q91TJDOPsvJ3NteYhUVZt3IPTo7twrkV8l17ovDTGBanUzp3LDY3mMKCc3ijKdcN+ZFlcUqTjhRmYfFaoWoLKHyiUfNieUyt5Bzh3Cfu+17n90j74E9+9x3a5y3P5O79+l1cqjGTAm8teI/q5NIOSoGtIQld03m5CBvaSjXHVSeut9zJ8Qby/RrKCu992FWOWZ3qgYLszgK8xzt38nkqJW3a9Amt2n0U6q5bD22h7u05qeVeKw0q/QyQZ7DawH6lbZs2SxOo6uUxmvOF71WeLZ9j06Ga/tT0pZU296H9lNHL8zXXszqeTtymX/aRe2z/jn3Wr/7e3Cdv3b/9u5U/9Hdvv8e2e43VtzvGW/YLz3R1LrjHLazehux21/zR7OPcyftu7vHtxsE9r+lefUkOdqJJ7zr/d/qu7Stan+jvzT5Kaxl/q5vD3Hb3c3rrXLqy03dxe9813qZ/yBy0inBvSr9lLDdjnyzF5Ql6UYOz+Nqe2Oct43h1jm/Od9ezW879d603qz/lALLvyt9771bGhew75nDPe7/73TVOxO8X3inD5+1G8fIX7z8LfBZgPTvl88f+C0af+2v80Kc/Re/6nHI9o1vfwfe7spBNbkLqUJ0c1enIMWZzvLUoY2QAay0d1lp8WWFO7eBnc+zhIWgTTuyWE0KWyU+jUetrUBS4ybRdjFeh14ZQVbjFApRBaSV/7xzeOlSWtp1fb23h1vtc+8QWF/7xLTgcoQY9/GSGn81QD53HfvMlzMY65DmsDVCzBX48kQXPebBWFkil8edOo8dTbv175zEF7HzxKhjNq3/xPGd/raBz9RgSg799GXXpAna9i6odZn8MiwLft1CVYAyc3oGywr1xFZVlqOEAigJ7PEIZE5rISzspDc6i8hzd6+HLEjedSluutCMAxqC7HXxd44tCBn6aLidWHyYnrUlOnYOqpnp6FzMq4JU30GdOy/17jz04xPQ2sEdHJA9dxA27qFkB4ylYuR5f1+A8ysgk5g6O0N0O6swG9s2by/MZg0oS/EER+p30F/3IBVRV4w+P8WUJYRFQSkGa4ssy9CWHrytpG2PwVS39rSpBG1SaoIzBLQrwTto07NcYOL6qUeFZttcF8jug0gRfltLuitC3cryu5Th3QWcpvq5ReS5GY6+L6vfwiwJ/PEJlWTsummtwkymq2w0Gk8eX1QlDzFd16HNaDCi9JINXF0eVJLjZTPp+2O6tXd5LY9SF31sjb8Ww8tZKv0qStq+pRPpK8/feeXDhvKsGr1LLYzfHCOdv54FwHb45p7MnF7dwjGYf3cnlGaXJst3uMhS8dXIv4ZjK6LaNVp+Rr6uThie8xQh9iwPGci6SY5u2LzYLbPOsVn+/+zu3WEifbNqwrkEbdCfHzWbLObAZ090O9ni07JfeowdDubdwn95asLYdB+11ayPt5N1yvmjaN8wPq8+j3R6eWfuMV8dDs8/qM1uZg04Y597JnJPn2Mm07St6MGzHrt7Zxp7ZQr9xU+b2+QJflSgj/a4Zk81YNmsD3GR6ou3M2gBfVtJ+SqHzHNXtyu8g5zKmHXO+LNv2NGtr+LJqn7MvVhy9cD//ovz7l3lXobA+JnO/U4bPNeDCyu/ngetvu7dSXPtjlh/69Kf41c98lh/6xp/m6qu7PPLzOwDYjqFz/ZYM9KYjGQN5jvIOP5u3h3JFEQaqxd66jcpzzOYmWIsdj2WnZuFGJipfyXF1J5dFdXVxB+nI1spiEyZaX3u8tehuF+pajK5eV/bLUmw/p3/D8eqfP8XWC7v0blXkVw7RicGXFbrTEYNpvoD5Ap8mkOf4xaJdeBRKFpfLb+LPP8Cp39zntX93h+7eGW59LOXCv5wzuZCTjrrc/INDqj+1zaW/9Rqqk7E408Od65FMLd3nr+EWMhFx/Ra+qsVAsRZVltJG62ti9IV7RKUyIYQBa8sSlWXofh+slXZemZjwTo5ZltJm3i+NA63wLkxgicHd3kNlKclLC/yZU6gHz+MPjqWpB32S9TV8J4PHzuNfu44ajWVh6HWFBZnPZRJMEpmgvEdvbaBSMT7NhbN4o1G1xQ278O03VoxU6Rv+2g18MPTQWgxXa3CTCVpr2b+q2n7VLADyizqxwOCcLJ7WyuQW+pgiLABhglVp0u4vTeSXC2mWodzSONSbG7i9fbx3mOEQtMLNF+1Er7SS604SfFHiC5nsGwNo1XBpr39RyLnD4uUbA2flelRgvdTd16hXDAfv2zEmk7wHwv6uMYDCvbR279KYVlrhfWgTA94GQ+LEBS8XjPa8SkkfDguLx7S7N0aeWt2mXbjGFSukOYYxrYF+t5Fz4jKa+/cOVo598lLLpQHWXPOKYXXCKFi5jrYtYbmoe7ck/+zyujzL71E6MLAr/2/gLOjkxO93szooMXR9do/7rio8qfzf2qURfDdT7p2MAzgxvuX7cF3OL+eH9trVSWPobriVa1Urxnczr6xsU1j8xbPwwsvtdalOBz+fy9hWSphlo3F13T4HlWUQjudtMMSMwU3nrbG8uq25bryXbcE4Wl0ffFmiul18UaCMtIe3bukYP/Uw/vmX22vXvZ4YnRHfE7xTpt+XgceUUpeUUhnwk8Avvu3ezrH29Yze9Tk/9I0/za8+848YvJZgc00yrSjWDXpnq51svXViSTdedIAywvi0Xndd4+YLGcB5LkZKu7NuPXmVJOAsblEIo5Tnb7lEb23LHqgkbQdCO3CsxY8n+MkUDo9Jbx3TObSsvQqHT2h07YKnXUJiUP2eeGpaiRHnPKrXQXU6ck1Gy/bgfap5gU80xcWCuq85/4eukr1+m+7tinIzZ3Dd8eBf+SpuMkVfu03nxozOnQJTOejk4ulXNaTBs9SmvX7xhOqlJ9ZMEo331dxrWUpbpqm0QTMBNpNCsxCuLjRu6YGjFL6ucIvArC1CCM57VJ7h5wthYPIU+8K3Uc99u73Whqb2nQzV64HR0kZKy/fjiRhEZYVb61Fc3MSt97nz/Zvy3LpiaLaLftM3vEdvbeLmC9xkgkpS3Hy+9Ki1apmwdpE3K0ZxM4k7t2RQIHi8erkAeCesTlW/JXTkKzEYxauupX2OR7iyknOmCWp9Dd3twKnt9vr9XCbllg2wFpIkhA1XJuVmAQ3GUvtdWBzQumVLV3/Ko1crobkVmHsbAe2zvvcXoWl82/faNrAuLKbunqzY3aGghhFqjoV3SwMlfFrGR91jmmvCqgTjxp80At4S3rsX2ja+x/26u42NlXGxej139RmUbp+nsErq5Efp5fNQd30fjuedX7l3dbJftpejlkbwKnu7+lxX+kEbjl9hzJpztOzcqpHaGPxv2e5PPtO7w4xJspx33tJ+YkyeYBVfeePEbn6xWPazPEXPxclr2qUxvLy1nDDGw3al1Vu35fny+WkdWF69bKumr1XViftpx5FW+JdeD8eWNnONE/4uQ1wU/a583st4Rxgf732tlPqPgc8hbtLf8t5/823/QBt6n7hF+fwGV1/d5Zl/8bN84z/7OR794l9g+5cH7HzhMu7wqKUTG0/ET5x0wm4HP1/IQgbitTYTm3fY8RjdMBa9Hm6+COGIFW8oMDxuMhXDSSlcWS1DFM7LubJUWCfvWmrTK43Z2pB7L0o4tc387BBdODZenrN22XDlxzpsffM0G9/s4F94Vbx/Y8AuvWVGE8hS+ZQV3i4ZB7feR49mPPbXc9Krt+A3atypTUaXMk79Xy+x9+8/yZrW6LUhvtdBlzV6Mmf2+DZpnkG/i5rOoSihk0NoK5mMLG42Q/d6bUiroXpbrNDpqmG+6hXPtq4lbJClYcGmnfybiaeZkJLTu/jpTJ7DK2/gjcE/ehGdJnij8ZffpPiJ7yf/5a9KWxvTMm5kqSzuabo0nJBFXw/68ihv7pNfLlG9Lrv/+2t47/HHxXLCXVl03aLAXb+J2drAjSfCAoTjtbeeJMGACPdTFO220N9bQ0mlWds3XFEEI3YlzMoyNKGUwmtOePsgi5IyGh3YG3twCAeH0mdHE9knzSS0aJ1MuIHtopD7VJ1c2md1AXd3LW7en2A7fGO8QhhjJ1kGAM/K96vwy/Hm3T1Ces3iercBY+292RSlgbB4YpYLefuHbsWQkEVNvY0t9pZjNAZDcz3NAt6ErNQK23XielZvV555y5atshurhmirBVlpr7vDO6vn8E7YMOdPMjmrxqS7xzNdOZ4yTbiw+duVaw/PwTuPfjvjtapaA/kk48WKEbPC6qw+i5Vn/BZmZ5Utujvs217eKkO2qt25y6ALx1dpctJwa/qTRULj670lGxeeTcP4AS1z34azlQZft9uEzamW9xtC2u180Di/q8e0tg3dNv1DGYNbDVsrTctqRrzreMcKGHrvfwn4pe9qZ2tJ/9o23Vdu8sjP72Bzx6Nf/Au88iN/h2d+72dF92KMMA7O413dnEQscGOCQbI8ZDPZNcyOKytMlgnNOZ3inT2h+xEDJ2g7kkSMJELcvFm0fdDyNCwRzaJOG27zVY0+HNGdzqEOi/XOJmuvbHHwtGLwZoe035UFa5UaD8dSRsuivhLW83WNGc3wRqNLi5/PUZ0O+vYh3f01VJpy/nMH4BxuNEZNAxXrPPlmH99JsYMc1jskexP8laMwkXBywgK5v+a+Gg3FCSPItSyXyjIJ7XjVLnqNsbg0PP3y+GHyF01NoLy1grLCjOcS7gvhqN5XLuMazUXj0XonYcUkgTyT0E0DJzoflaXyjBuPttF9NRNqE8K8OxShtGgeQvijjc2HBafx8lxJ6+Ep3eigPE3YXIV7aNpQJsW2U74lpNMKx5uFoFn8WjbspFZCNe3mlRhWWbZc2BoNUpqAzoJmxQXRsw7slYaGKfNuyQY5h7pbqNk8t5UQHM7dW8u6YiTfbWi0Y5HmlpbGvtzbvQ7IPZkaeV7VWxbOE/q0cM42BHP3MayFemWx1gqcbvVi7TGbcalXfjdLbU1r/IS+BIAJztndN/WdBNmBWSQYT61B/JZd7729/a5iyWysfpesTPOrBmW3A6OT4RaVZa1uBVjquMqqfcbNuGm1RJYTDtCJvoxr2ff2flfDX3ffR9N36lUjoWHAzIkxgtLCxiwKQIwflYteq2FCzcFE5uYmgSH057aNmpC1SmU8hLClnFCMF181C0sw0FecoJb9shYfGGQgGFJ6yWRm2XLOhfDd94YViens75XKzUpRd7QImYH8oGD7lwc883s/yzf+8s/xR776M+ST6dJ6ThOZ4BtxctDZqH5fBLJatWI0lSxFjy2r0emIQbNKw0Ib1nDzheh9ul2UlYVYZ2kQwIbQQidHuaxlmQBZPNIEkgQ37KP3DuW6jsZsvtShe5Bz86NdLr7UwU9nqOHghGhRBerX97v47Q30TPQ/7rDC7qzhUs3xIz22j2fYjT7mxgE3fkAx/HoPVVnIMmFEQAwEY0jujERIvHkalygS79Eb69S3bi9FiEGo6mYzdLcrRk2YQNpQ3irF7jxusRB2SK2EgpqQndEytLRuY/OtAFUrYWy6XUySYA+O5PmEUFh5fpPsOExW1qI3N0TLU1USwimrto3odVAHx2IIzWZtmJNuB5Wl+DRBzecS3vPTMCFWEqZrQlhVLRN3UcCpbZJOh/r2HrrfDfv7Zbgxy9BarwiZu23/XRUFN/qAExN0YCabbLX2WTuHajxKkO9DyAvnhDgLzNFSf5CKAZOmYpiChDIbdoxgwGYpSmsRPKeJPNfBYGlwa42ydsn0NALetj+fZKJAFkAJ9y6nDu+W+0gItFn07LJvaNVS/34+b++n8ZYbg9F7L38TmF3x1h0qVStiapYG4YoIV2dpa7w0wnSVqhP/P3GMxplpDApjxPgzBuXC8ZsMIbsU5d4tAlerBk1rqCdv7ffN7yto7kFE9cvQcjN+2nCUMbJPw57epeFSRrdM9NIIDPfaMlsri7UxKK1bwfEJ567bEYOiYawaI6Rk6Qi0fpAHX6N7Hdm/OXdZgnfoXm+53XlhUU7oeFZDfV7m8hXHoTW2QkKDMkGrV4e+mqXL69emDfuprEt98RQuT8iCtk1VtRg2nTxk1zaRAb00eNrw/sq2NF/Oa51c+lITdfD+ZAJCEEB761DDIaoopA/lmTgzrbH93g4F/duO94bhkyaMz2s2vlJhO4bZ6YydL1yGNOGPfPVn+MLf+5v8yM/8JTq/8nV0o+7XOuhNEtzxSDJbGnHndLYM2QRrvWEu7GhE8uAF1KLA3rqNHgxEKwGtIl9phVsUaGMwO1v4qlpa81WFT1OoJHOsCSm44KGrNMFtDoRheX2C3ljH97ukl++Qvu4YPpdx9c89wplfH2O+dRmf5zKxWCuMR1XDfI7udvFb6yjvUY88iPmf9ij/61OMLinWXl/jzod7nP0HN9n9Ckye3mWxYZid2eXBf3AVt3cgRoK1+NEYkoTsm1dhax3fzVDzYunZJelS5Am42QyzsY7Z2RZR88FRmLw9VCthwbBwm+0tqGvs0TE6SfD4E6xPGypEqGaPga11Rk9tsfbVG6jjsUxUC9EPZVqx+NCDzE4l9G9UmFduS3jOWvlpjMTx53PcpbNov4YaTbnzfz5IWSdc+OlrMJ3JpGkMVBUK2Pv58wCc+k8KqC31tTfxwfM0p0+JcTCWjD6zviYGyKJYCn6twyNenO7KJO8WxZJtbITQ1gojkqbofjdkzYjQW4MsammyFFYHzVorJEX6kf3wE+gvv9gaFEsPUxjMxY99BF04Ol96WSbnWrQMKkslC2W6h9nehDyTMRFCuL6qlgtZs+glCa1Gqylnv+q1rzAITVZXGy4L2ofWwGmuMYQcvD3J+Hhrl30vy5aLoVbt+Gs99iRdHtOuhKUbzz4cw5eltOnKIuRXwx9N9li9kqzQ6kzEgCRk9rU6DXuXKFgvQxvN9bTXVRSSrBDaten33vkT2W/t+WSndt8Tx4fWUFueW67HhXZZFXqrJNz3vcoRhPM1BluTSeTrqm3HE9l1zoqT4EImV2sQBwOqYT7UisiclT4By+3B2L/n9iwJhtGKZigc18/nrOqH2jB6HTIc73GfKs2WmYJpGhyglHqQgUKMvDxr29zNF20Yq2GTzfaWsFrzeeu46EFfnqm1eFviigozHKJUvcxKB1mTmuNWTeKHXiaqgEggVtCGx96O7XyH4H3M6oL3iOGzOK05//kD/Js36Vy/RW9nC3d4BMaQT6b8yM/8Jb74N/86P/H0j4bMoxCPzfNlHYvjEc7LRNOk7Ko8bz0NoKU16yvX0HkunX1R0KS0EiaWxktz47EIXkNIR/d6qOFQ0r/nC9l3GjzNTAwIXxTsfWyT0//0derZTFgLuy4MhjHYGze58AuaF//yaZ78b4xkkIEMkGaSMQZfjuB4JIvSoWL8V57An4KH//YV3P4BZ1/s4CZTtn7zOnZ7yPDrE+zWAHtqA314jF8UqPNnhPUoSny/g7p2C/fwWebPnKX76yMxeALTsuqp29EEjo7RvR5mfQ17eBgmqxVv0oqRxHQqWWFra9jRCJXnKEw7STbhtGbi83WFmhesffWGtDeEMNWh7L93QPqtiu2L53HrffzxaKnBsEtPUCUJ+pWrUg4gTRn+3DrK+cD0rYRBjIGyov9X1/GJwneP4NrNE6E31clRan1ZHqHXo378HOo3nxPDkBUhrlb4+YJGuOkBPy3bybJJXVeAm9ft4u29W6a4ew9UJ0JIJ7xG70gv31nOiSHNdxlKUPS/9iZkqeij5vOlFkOJAaHyHHt4BIdHcm2NuDqEMdr7aUoCrC60d2M1pNSEeJtFWK0IlRsD9x7ajcYgPJEJtqrnaMI8xrSLEl48+7vLS6gkWbJxjei2PX9gUVZCWSdS4+VkJ/tIVcn1hVB6O6estknDhq0YoPLsZPy4MjAZwZhsZSrlPbROzTNt2rZpv6afv01hnDZ0t0qSNNfoXct8nDDYwnNnlZlosvJWDLVlW5QyJ65qfOCk8RYMLaXdW9pWDBZ74rzLc4TQfZPyTSOu9ief1UpGn18xMNv7DPspbNBCrpx/sRAnZTSh88I1ycI6PAptFTQ+TTJKXQubA6LtbL6D1thSaml4AbjDw6WB2up4ZkvGrIGz4iQHZsmcO0N9+Wp7n20afsT3BOq7yl54h7Ge7PqPb/4Z/HTWehltLZLA1Ohej1/65v/NU5/9WfpverKRJykc43MJynqG1ywoKNY0i22NN3Dun92iPLtOclzgc1mwk1vHzJ44RTKpSG+NOPjoKTZemqDnFeWpPqr2mEWNPp5R7wwoNzOSmSW7PsKudxk/3GexodAWXAJmAbYDXkvBwvXXC8yvPkdy8Rw+MajpHPvANvr1a6iNdQB8v4vaP+KNv7pD8qvrZCPRiFRrivXXa2a7Roofeqh6iu2/8VtSE8IGlinUfVFZFhiQYhlKeOISarqA2/vLmkDetQJhkgQ1HDD+wGm6v/hl3A9+kPmpjGTmqHua3o0Fs7MdCYstHIMvvoRfFFQffx/FZkoyc3gDXil8AnVHoyvP8PMvUH70caqB4eDJBOXApZDMQFlwGdRdWH/VMbhekN6e4FODz1NUWaPKGp8leK2p13PSowXq6k3sY+eZnu+ia49ZeI4fSnjgV25z5wdPMXizwmWa7o0Z+ttXWuG7a/Q5Tf2PYEyqJBEGbrGQyT1MZrrbEaOsmagDi+PPnUIfTvDDXlgsHPXuEPP1V/FPPoSeLPCX30TvbuMPj1E7W/hOhtca300xV29jz+zgc4MZLajXu3gjRSVdIp6m1wpdula7oWuPrhxmWqJeuyY6jACVJNTXb5A8cFqeubW88Z++n0t/+zLlI6dI9ufMLwzp/MvnGP2ZD7Pxxdfwp7ekiGZRtiydms4lC8573GSy9HwbDVKT0ZWtMC5hUrdHR5Q/9n10XzuQthgV1BsdzLTC54ZyPSNZWKqeLCC2q0/cm7LQvT7F3DykvrBDcm0fd3CI6vcl3Aht8UY7GtHUUsF5MXKdlWf3+EPoa7exlx7AvHZdUonLUkT74V7cZIrq5LjpbHmMLJVQYmCJOPcA/sp1/OMX0bMSO+ygixrby6jWUnTlqfsG1TAQFpTzLTGGkqKh2fVjVBCeu6NjCSffvLVkglZYMD0YLLPlmvDScIg9tS6hknmFNwrXy/Chj/hU40rkXNsAACAASURBVLWkZ+O9hIa1jEPlPar2ZJ/7XczpU8L2Au7gSObSXhd/dhe+/YY4X88+ip7XqBdfRT14XljXTs780V3SL3wV8+SjqKOxMN2hxAWAfuIRjp7ZRDlpg+yoJr8zQx9PKR7aQVcOXVrMnWPsmzfRWxtUj51F1w69qNG3Dqhv3JT+O+jJnJQYvFHSR/cOpSSIc9RXr4vcoNdFDfpMnnkA5aT/JNOadG+CGk0l6aXfR2UpiyfOkP7aN9CPX8K/evmETkhlGeMff4bpA4ajD1YMXk4pNj2P/He/R/2RJzG//TyLT3yI7LDEfO1l7IceR//ui5Q//Azdl24x/tAZXKKYnjKsv15R9zXp2JJ/8RtSP6zblXB8t8vkg2cZXUykvzvwGnb+2m9hnnoMtSipzm6SvHQVlOZztz/zFe/9R/7frp3/pnj8ma7/X3/x0rtyrk8+/OK7em//JnhvcF5OUlFVJ1/W2FjxgHSe4yZTnvrsz/Lip36OyQU4fkRTdTXZyLPxWsXRowl1R1H1FbrynPtnt3BrXfJXblFvhPCY85QXt+hcG5NMZJHb/tVrzM71wDnyN/bRlVRHrs6s4bWie21CMqmodwboomZwZU4+8uBB1+ANKAfp1IOC+W6K7nZwd/ZRVY3b3cAcT3GPXgDA7qxBUeKHfbJfWWfxBydUA0W1psgPPIePJfTuWBbbGlN4XFh7WgM1eJjNRKrMimBWa/Rohu/lsmCuTq7OC42tNH42p/dLX8N//AOY3/oGvesL6p4mnVgmF7uYhSc/rDFzR/nBR+DRh0h+7et0bxVUg2WX8UqRH1mSuaP42OPUXUMyd+SHHrOAtCmbVHnMHHq3PHVXkT5/GdfL0IcTMTA3Orhehu1l2H4qRk9l4fQO3/7pDsncsVg3uESxdqXmxo+dZvu5EcnMUncU0wv9EObJRCOwkhLdhi+b8MV4InR4o3kJLE1rSBJCDWWFvn0oBSfHM+ywg+/lmElB8fEn8Ap8nuKfugS10Nt+PBXjppviFSyePr/s4n1ZjHTt0IXFVA5Ve1QtRo/yoEOVb58o3HMvCntVVlL6IMsgMZinHhPjtddFrQ25+M9HvPFTD2JmNdNH18iOS2Y/8UE2f/UNjn/4YQAx6JvwcDPeVkNVK7Ve/N2ZXnYlTVyLhiqZBqZAK1RZYQorWYTzCuWRTEUl9+SMGAum8GIsG8STr2vMsYSYVb+POzpGrQ1Fz7S+Jp+V+lKuKLB37uBGk2DICuNmjkNowns5xnAgbOfGGr6u0OtrmM117GiCL0vs/oEwZM2iWJSSDdiEejOD7Yk43nY1LlXUzc+Ophpo6p6m7hmqgaFcM3KvZbWsK9VoAcPvTfp0o3lRnU6bsIHRkGb44xF6NBejRilUCMup2smCHz4tO7Jq9FjEIFJKaoLlGT4XLUwbgp9JeFt1cpI7Y8zBSAz8RdH2hWw/pIJbJ0yzCkawktRtO8xxqyWCUo2qrGgSm0wyo/DdXOalJMEnup0rfL+71L+Np6jRBHU0Ru+PxNAKBUyplxlYWIdPDC5VQtSFsiBqXuD2D8SQz1JITJjTHergeFkKIqwnbj4nnTrWX6vY/GpCfuDZet7jn3qE5Kvfxn3s/fR+49uo33wOHn8I87WX8R96gs5vfxt/eEyda+pcMb7k2X9/GN/bSShK6Khv3cHPF9TX3kTVnt4dhy4hmXmycXhmtYXaYo4XEm4uVpIzIt5VvCcMn7ZeSqfTZuU0IZWm6JuvK/pvep78G5/mW//BZ6i7ntkDGtuBvfdnbL5ccfSoIZ16kjlUp4bc+ugadneD9GCO7aeyuBQWdWsfVVTUp9cpHj3F4IU9xk+Jt14NUqm5AzKhH09R84qDp7oUp2UB6e7VKAs2U9iOWnp/wGJTwyMXUIM+FCXKetywi7l1hN1dR1+9DeOpGCcK8i8NyD55B5cIc5SNPPtPJXTvOCbnDMk8xLBLEeXpXk/aJUtXhKMrFasnM1RRw4YsHGgjk1jI6Gm8+Okf+xDJ869T/sizmK+/Qjp11D1DNrJUA02+v8BrRbGVSq2MDz6J/tILJHNHOTBhAYNkIq8RKTcSjh9OqAaG/m2LKYPRWoPNFabw6BJsDvaRc+hrdygf3kXNC3kmtWQVJeNCtBhVTb3R5dG/X3H9pwo2Xpmz2DTYXLPxcsnNH1jn8MkO/euFhLgWhVQUXh8u+482LR3t61qMk1KK/ZFmJ6rlovWy3kcQFi+ePi+LlFbooqYe5tTDHDOrSW4fU+x0KXZ7TD9wDv3QBVl4raMepLhugldQnO6hJyXleobtJbhUFsqmggHBi3eNR58o6m6C+r6nMefOSL0P7/GDLj6T+lFua4jfGFKf3QLreej/uM7rf2JA/7URZlLQuzJl8pGLrH/h2+x/eJP8tTsi7iwrVFnRvopjRSfShCHb4pZVLZqHqgqLt4RifVVjphWqtph5hSpKzP4YNZmhjyZkhwXJaEE6rUnmNenUkR9VpJMaUzh04dHjBfb2HalWHrRRymhIQhi1m0tJhm5HxpExmN0dzO4u5vQuentLjrF/0B6jOQ6JCJJ9V4wm3xfGQGcpencHc2oXvbuDXluT0M94iq8q9KyURamwbc0tZUFZee2MLoSB9UoWcZeGTwLJqMAfj6VflZX0scXiZEmENAmi9JCZ1Dh23gddVomaLdDjBWpRoOYFZlxgpiVmUmBmNWZek8ysMCuVxywsZu7asYPSUiKitqgQCtTdjpyjtiL6D1Xv20Kw1kGe4bM0CHYtqiilTlaeobryHHSeU/dD2FaJMasrGad2mFN3DdUwxXYSfB4SQWZz2T5Icb1UMjGD9sXevoPdO8DtH+COjnGjsYTW8gw/kLIabjYTQ6aoMHMn912H1wDVQWCutYR8sxRVhRIjob6V7ndbPZ7u9ZieTkjmls6BZ+1KRedQno9eExZ3/KNPYjbWhYEa9DEvvMHsDz2BffJBsons29lTLD40Y3TJUOdKGL35HLO7DVpjtrewXU02ssxPq9YgxHvUohSGuyghSZYFdd9FSCBSvyuf9zLeG1enEPEwLD3RRhQWCr4pY8hGHrNQPPE3P81LP/MZik1PsaEYXrUcPJmy+/WKyQUJveja8cBvHLL/oTXUrCB/8U3phM7jHnoANS9I9iboQjr08Bt3mD66SfeVO7hEowtLtZZRn1qXSQSY7yS43JAdFmy8sqB/y2Lmwbt1YEpPOvXo0QzWBrLYvvQq+miC217D7I2oHjuL6vfQB2OywBxVv7SL/dgIwsS69oZjfFGz/lpNsa6W2oKmgm4jjAtMGawwQnWNGk1wvVwm/Tws7isxfaUUpnTUT18i/ZdfwT77KPkXnsMsHF4r0qljdq5Hvr8gP6yoP/Ik/nefRz3xMJ3PP8fg6rwpdSKhwLklP6jRlWe+pTFzx/BqTXffYQppE9uRCSAbeVTlYGON7NXb2J11zKs38KlBVRY7yPGpUODJ4YzDxzuc/Xs5L//FhO5+jTfyHLa+VbL7O4fsv79LOgmagqrGT+di+GRZSOtWS01LozcoSygKmdhDth5V1cbzm9ePmIUVDVZZoW7uk71yg/Rghi4txaUduq/cIZlUJHOL6+XotQHJldvklw9IjhZCyY9Kqt0enRuTZbikduiiJplVsqAVrvXsde1l8Z1X2Ju3MQ+cpn7jCv7ym3B4jJrOUfMStX+EOZqBUZQXNnnon0y4/Me3mD24husm9K6MGf/QY+x+4Sr7f+icGHRpIuHXlUzCxigUD1u3hpBKE9rsoZXyDSKG1uKF5wk+z7Drffyghx/0qIYZ9VqHcphS9aUIad0x1D2D7WhcFsSkGxvheKIRcUUhGXZVLQ7DZCYsTdDJ+ekMP53iR2Pc0XE4xvqJLDRfhfe0VTVqUeKmc9Rk1oZr/GwmIb7xGD+dSvZSCKW4nmRE2k6CS3QIMQmDoXyYo5o1TBMMI4+uPK6TSnjpHlqoVT1TW7nbrpQRCHqTMDDxXbkO38lw3RQXDAmXGVxqcJmESb2WRbW9RivPpjF0Grh5KMfhvWjYZnN5d1+TPQcQtqnKipOVBrF7XUtR0bKUTNfSoZyELEEYPRKDnpVk44rsYEFyXKCmi7ZURTaqyA4XmOOFhFhrSYs3W5vo9SFq0BemP7BjajKDo5GUBRkMhKU2Gp+EbDLr0ZVtjXClVHtPKkgkCEyuHU3EEMwyfFmRTSQUt9hSFOuGYkOy+OzhEf7Riwx//TUx9p2EK/2lc/S+9Abqqy+y2DR0Di3Dq47sGz0GVx2d45CFmGW4wCTavX15rJOK7i0v56y83F83b9uesmqd2Ih3H+8Jw0ch6ZVSb8FInNeYllpXSqHynKRwrL3u6ByolvlZ7HiKNc3gTcftD6VsP18zvhjo1Sxh+7kR1/74A5RPnEXPK6q1DH00Fe/59j54mD2+TXV6jf6rR9jNIaawFJs56XGBLmUA20wx29UcPtqhGmaYWUn3ZoHtyoCsO+IJAhLK6uXL1M5FgSpr6tPrZJf3cLfuiDdWe5K56Huyf7VGNZTJrBooOnuevWcShm8Ggye0B9C+rgOthTKHE4XyfFmiFyV2q49f66OSZQaGVLHOcIli9EiX8pPfj/7yi8w/8UGU89Q90WR0by0otjuk+zMmFzss/vhHcc9/C/sHnkZ/+UWZgEpPOq7xRmHmNbqGaiALRTqu6d8o0cGxTKcebyCde9BQ7Q6oLu5gDkaU77+Aqh3VegczljCXmsmE3du3TE8lPP7Zgus/VZIf1JgK5tsJ1//IFg98/jpHjywZQr9YyGKWpUtGw2jxtpNEUsBDmnLL/OQn2R9fyXuwXKap3/fQMjNqOpPFOdEkRwXTp06TXT/CJYrFmR7lMw+Jpz8ag/X4LGQ8VY75+aEwOpkWg8FoacPgrSsHzsiCBuCyBPXEJeydPcxjDy9DUV15P5fb2RS2bLwgvS6v+7j0d6+Q7xVSBDLRDF4bcfyxc2z+42+K8VZWsvhUIX2+kuw7lWY06c6+FkFmoyfzNog0A6Wv8lzYEa3RlRPm52iCmsxQoynJpJTPzJIdlXQOSjp7C9JRLZ+JhYNj7OFhEK7LefRgIG2lZS4gTSRpYNCXUNTuFnp3G7W9iT61I8c4HuEPj+UVAmWF7veE/dRK2tfI+FDDAXo4hPC3amtT3r1nHX4yg9qixwthfBY1yrrA/HiShcUsnBinQcsNwdhwiBZubyKhjqLEhnf9te98aoSwRrdsoi+KVlDdCtLrGj+ZiNNU25b90eMFejQPzE8prE8wqNNxhVlYWViDmNvXtYS7ZnPRCwW9D9aJE5SlYtAUUkuLuhYmJjGoQrLrGkevEQLLq2q61P0EXQcnr3DSdxcltp/jjMZlBpLQ5kpJIkqipL+nRlgZY/DjMfbgELu3L5/DY9x43DKuIl4vpY2qEhYFycwGxrCW8HBZtpWtmzCwClmnPjwDszaQd2v1uuh+F+Uh2Ztw+KzsN7iyQB+O8c8+jn/uWxTPXERduoA5nsq2F16let95KQuy8JRDw+S8Zu2yI507FuuS4amSRPqoMWKMA2ZRy3weQr4oLXNamqAKGVcnSqG8a5Csrnfj817Ge+Pqms4e4uDLKslhMQovghyfS3CJIp140rHisb/3aV7+qc9QriuKNUX/Tc/xwwlbL1nM3hiXavS84tznDzh8rIOqHZ3Lh/huhlvr4i+cJjma0bkpnrNPDYszPcztI7pXx0LbGkW13cdUnmQhi/f4Qka10UHXjvzIgRfq1+YE0aFGH4xhbSAxfaVwr17GHExxmwO4dAE/nzPf0ehKNDAuhfxH96iGUHcUdV/Ru+U5fjiE/JrstCq8FywJBR2VWn7cUtuiZgvMuMCudfCDnkx6jfFTWzp7Jfmxw6VKBHyf+xqdX3uB7u0SrxXleobyML8wJD+yeA3lJz6C+e1voh97iM4Xvo7LFHVXvPlyI8NrMAvP6MGUciPF5uIlmUKEzl5B1RXxZnowAw9u2Cd7/ir61gHZ/kxocqNwaz2wToyruef4sT6nf77D1U9VpFOLSxXrr9Xc+nfOsvuVoFdoWLCiEE+6qaYaysa3qb2huKEvCjGUOh1ZEBqBuPf4uiZ/Yx+vFXZzKOnuwwFqUZLcHkGiyY5K5o/ukN+eksxEXE+e447H6OMJ6d4MZYXJSRbLsIdLNS43bXireaO38kHfk2r09Tso6zFnTuNev4o5+wD24Ahu74sBU5T4tT77H92V60009bktrvx4j/TmMYvTPXyi6d4qKT7+BKQJPkul/lGj32hq6YSXTzavY2levKqyFWOxqZFTlthhLsJshTA/6318J8cPe9SDjHqQUQ0NdS+hHKYU2x3K9ZRqLaFcS2B9KIbIzpb01SRpS/i31W6rEF4r5DUfHI9xB0f4/UNxHDbWZGztbInnbLQItZGMHGVDRlIhC6cvSznG/iH+4BAX6n2pYV8MybWuFPrsiC7F9gJb1U2ou5q6ayS0nYaaP16YH22h3uqTnH0AlaWYzXVQGr02kHsLzJkrpY2bV9+04f3AOKosQ21u4HsdCdf1u7hBjlvrYte7EmZdz4WFHqRUaxnlugiwbVdjuyu1tNJQxNP7Np2cps5PXcv3g760b5KE+j9exp7zog9qWMGQ7eYXBbpy2ExC/HVXCzPWydCVFUbGhLB/YOl1r4czuhViS5jVo/o9zHCI2d7C7GxjtrfQG+tigKdJG/IkTdtipdXQUPcT6kGGy4yM2aDPEyPSCVPspE4Z3osI3obMr7LCGahOrzF4JSGdOcqNDPvmDczlW/g/8H6yL38b/8Y17JVrJFduwwefIP29V9EPXSCZSZht8nDNfEczecBION+Io+6m87Y0hVk4yq0OydRTdwI7Z63MMaGdVZosjdKIdx3vCcOneVeOCqyPn07bzBrV74nnGajl/q2KcqhYe8Oy/m34wP/8s3z9P/85jh/3LHYU2bFnsa6xO0OS4wXlqQHl6T7bz09xnYTrn3wAPVng8gQ1L6l2BthuihmV1Bsd0mmN73UYP7Eu3l9h8Ymm6ilsLhqMYlNx59mcvWf7bD4/Yucbc5JCjCKvwa8HgWVV4x67gD2/ix4O4PYe6taBxNK1oeqDKcB25LrLL+ygHHR+/DZVH8qhIh2H8EwlFYsbQbMbjZfivbBQt1VTlZJXG9zaI7m6B2lCdekB/JntloUqNjMWmwYzt8xOp4z+7IdFBJhper/wJUzpKNcMqhZPR1eeYiNh9Gc/zOh9myil6P3C74bMMy0/B6J7sJni8LGE40uS2bB2ZcH6ayWmEg/Z5Sk+E6bK9VKKD1wE77G9DD2a4xMtk5hWdN+cMN/SDK8VVH3F1j/tkcwshz8xZbFhGFyvZZFvipMFWrup1nqiGGNdtSnLrdDXWqkD1e0KrZ6mNO/dqk+vk94eU212KD/wEOWlU63Hpo9nwvxMa6qtngi7jwoWz16k/sH3S3jilTdIbh5hZkJ7uVSfEIHWg5S6l0gmzEK0JboKIZDtDdRoKuHKpx4Wb1kr1HBAfeVaK5bMJg72jzh+tEdye8RD/2gESnHj4wl6VlJsp3TeXGoJmnBb896uts5SoxFrFrrmbe3h04icVZK2nnUbuitFE0VtWxFuMrUkc4spXQiR+KWBFxarllkI46ENv4QQm+52QjHKbBkOaV4RELRINNfZwEl1bt8YsUkStC25hLaSJNSyqZeOhLXCYoUwinIegrZHOd+yPHKzYuzo2qODBkjXTtjAcGzgRKmG5r7adg1h1Tas3wida9saIdRB91a71ngGAsu2ElJrstkNnKiy3SZDmPadbMvXT4Tn1tRvatsuGGNlhU9M+467NntUIYafodU7SdVyRTUwVL1EtG15qM9UllRDI9q2PAlspRi1bjaT8OV8ISxpUUrf63XwQcvY1PRpztFqKRvmW6+8+BdE/NxU3w73rTp5u5a4RGEmJcpBsW7Ijit49gkoCsrNUGDw0Yvw7BO40ZhiKxdd4NXrJDNLsaY59RsGl0D/lqPqK9TaULK5mmSJRLKMXSJZr032b/ueLqXkWbq7Ch++S/AQ39XFe8TwAZa0evN783LRupbQV1UxvGbZf1/G1ksV44uGbOpJJ55H//5/yCt/7n+j2PZMzitQ4HJDvdHFLGqSaQXOY24e8sCvH1PvDDFf+ZaEozQyMHtpyLKRyXDt63eYPNhHOUf2/GW0FaOmTamcSYjKdRLMpGDttTndfYfyoMYz3IOn8f0uejSXSXVzXajNuoa9I1gfMLzqmJ5VrF2xVGuKZCoC4PnnTsFHjkHRamOUCWXemwVbL6vOtlqf1erKZrmwt+zPIBevQ4koOxs7yvWETsjMsu9/mPRffAX3Qx8k+c1vsvbCUZtt5DJJb0+notupv/8p1LNPkn3+q6y9Mpa2sWC70k4SwlPMdhNsLunAvdu1eMsabC8VT9HIi2j9oEf6+k3qrT7m9jHm+j7eGK7/4U12vzZl/30dOgcWU3jG53Me+Icd8pFjtiMeudJqWUitmfxDiEb1uqGqr1mGB93KKwucC68BycXYbjwx5ynPrZPfHKMqofbdUKqE+xu3yV67hapEbJodl9TrOWZuUbXHbfQxuzvYN2+iLt8gffNomQbdTODNIqmUhPcq106KVDV+2Gs1PViL2dmmfuMKyflz+Gs3UEVJ93bB6A8/zvZv3eLoIw/gOgl2o8elXxhx+U/vkh3XTB6TNGlJHV6+BHM52Fy7ODdZlW1ae6PxCWEjye7SeGOwHfHOXU+yiFy/E7Q8CS7X2NxgM43NNbajsbkSDzhLpR6WWy5QwvQGtjIwE94vF2mKUhbL+VwMiDxt383WMntBT6OMEadjsRA2oDnGosDP51JorihEO9LJoNfFdVNItFx7asT4NgpnxNlxmWpZyyZ8oZzo+2wuC6zSOrw8N4Sim3Eb2ritedOMYaWEiWsYDqPx3awNC7luik9FS+VS0fbIghpKBDS6I08bIlVNplhi2vBla+wEoXrLDodr8FUlzFgYQ2gdjD8rBkl4d18b7gtzoU/kPKJXc6TjStLkm2zTLCOdWJKwnSo4ZmmCHg6lsnGv12rtlDGomWiB3GwmzohWwuat1Mf0TdXzpuBlHVgfo4TNCu0rLx6ets88m7hQcgHyI4vNNXpSQJrR+fxzmAtn0XvH6FmJ6vfJf+XrmDOn0dtbzHdTsoljvqvo7IuWMZmDu3FL3qW3Uu9HSptYzCLoPmeSRenTRBjMRF7JoSLj8z3De8PwaVM09bKGStAYYMzy3VUKBm9a7nwgZetbFUePSqioe0vz+N/9NN/+85+hHnrmu4r5TiZ6EetJbh6hi5rFE2dAw/UfHlL84NPoowmzUxmq9ujSoheV7PewaH6Gr4w4fHYL+/BZ6rCgu1Sd8AD3n+5TbvfQpaV7s0BXXgS7BxN486ZMIrOFGFkfeFxSqQeiRbCZIj/y7D9l6N1y6BqZxBLQv7PO5k9cp+pD+wb3xjBsFiJjlhWKtVoKUhuBaqCDqS16MkPPa+zWAN/JWGwIi9U5qKj6hs6dgsnFLsWPfwTzG99g9uPP4l9+nWRai45hJhNlOqnBw/Rsjv+9b+I//gzqm69iCodLQdWSuqwrCXuVa4rRxRSbacnymXvKzU7rzSajBTiP3RpQXXqA9PoBi8dO44eyqG1+q+Lmx/s88Ct3OHwsJT+2JAvH9JTh+KdHDK+VlMNl2mrrSYdqyzgnQtZ+L3j7wgis9jtljCy0iyKkGgvlXm3kqNozeXyD5GhBuZEzPzdg8dQ5qd3TzdFFLWGcoXiUurJUw4TZuR7TZ85izp5uX9vhjGi4bKZb9scnGtsxwnCtGCRuvYfLU+pTQtu7YQ974RTqQ09jb9yUNGWlMNOS4cvHjD6wy/rnXyS9cYheVPjUcPGXjrj84zmDFw9aNkHNC1noXGAHgqC5ZXzqqmV42jTsldISKklQ8wrlRYRNVWP2RujJDHM0ITsqyQ7mZEcV6aggndRko4pkKpoZU3rUaIK9c0eEy7UUQjTra/KKjSwTr39tgN5Yx62L+NWvDTCbG+jtLczODmo0ldT0yVTat6wwg37QcGlhDYZD/PoQtyblAPz6EL25gdneRPf74lRNpGSAnpXgHGZRt8JlEKO/Yau8Vq3OxxlhL+tckRwtsHsHbYV3X1dStReWIubV4oXhVRdtunioxeUnU/RkIWMjXJOaV5hZ1bKCjRDeFOFTSqjdhTIBrpDK5A3j1ApoQ4hJ9eQ1K83LeNvXRHTyUN+oWrJVWreOgGR1SX0uVKjJFAx0O8ixHSVZXf1UhOJa6ijVXUMdtvt+R6o5T6a48Rh75458Do5wxyNptyyVcdXp4KahfxQlydyHbLaQwRaKmOKdjNlOLkxYVYm+ylnM1gZ60JdkkjynWNMkt47p3hbG1aUa18upHztL+cPP4O7sS5bZoEP96FnqH3g/7vYefjYTx9coJh9cMDujSAoRLqtBH3NqN2jgxOCrBpr0aIHtSFjQK0mqUWUlfbwoT4R3I959vDcMH4UwE8GKP/HW7fGkLWhYrGkWm5rhFcfeMym7XxMBWfe2Jxmr1vgptj3DV0aS1u0c1bktVGXJb03Awbkvjjl8MsdurTF8fYq2TorRhcyi/NZUDKHRjM3nDphe6NHZ8yGF07feh64BDdMzog1IjhasvTrF7B2LJ3nmlBg9aYIezaQY3qAng+nKm63ntPaGY3JevLhs7OnsieFw/ItnST5yuNJOkn3kF0Wb0SALR6BNnWtLtgNhgQvVUasaPZ5RD3P8oMvaFclywENnv2JxKqd7p5KCWx9+it4/f47yh59B/+6LJAsRe5qFoxokmIWlu1fhf+CD6N95Hv/0I6T/6jmSqdxPuSbhLp+IEeQSmJyTLJ/OQU1+eyoe8zS0uQczXmDmFT7P6Lx6G9/L0UdjZqcStr5Vcf0Tp3jgdyZMT6foGnp3HBt/e8jrP+1JZ/4Ei+HD+3GaHgf08gAAIABJREFUl3C6+SK8ZFG3Rk77/qBQmt83LEPI9kIb8ltTlHV07pRSI+dggVmExasoYe9AMgb3Fm269vx0J6RyO7T11Kc30Dtb2NeuLA1mFUJ+wYu3mWhIXCZ6COXB3DlGTxdSTG9nKP+flajKYs6flbfJ37rD/EyfcrdP72bB8R99kvGzD4gxZz2L0z0e+icLXv/JU/8Pe28ebcl11/d+9q6qM493Ovf27XnultSaLNmyDfIEODgvWYAh2AhjbBEbeJBhQRjeA8ckhBjzeGERjI0dGwdjeEBM4BmBsQ1SJFuz5FZLPc99b/edhzMPVbXfH7+965wrJ1n54y25/1Ct1Uvq0911T1Xt2vu3v7/vYINJBWEQlc8wCiNR+70M8UkUXr5vM5GMLKz2+o2nUKG0J9BaUIqUFHHCY/Jl4cv7ggSlpHAwFcvxsdlKKp+XMW2NOZ0KCRCfmH4f1WgRN5qiyup2E8kzvi9tZG0X/cAXPo1WydhXYSztiGZbFl0baWIGIWTSmGw68VmKsr5wVTwlxY1DfQLhYqkYMNLCUDHSvs0FwlGxajidFuRw6O7sDTlmgW3bpdOoXEac1W30jcrniHNWbq6UGHoGcj+NVsn3wiq63BhCC7Lg1GMmK9cEWL5Uf6gMjSIZC7Y9jlIy3/YH9vM4+XMiaxbZ7RH3eknL0hWFgCA+XZGbB40BXmuA7sp5dbmI3xHEx2sNUF1p+eqS8LO8alXicQp5yVBMp1GDUDx6ej3JRwRIBXL/HaoVCbcmbrflGdqWp/FsJpun8apVK5NvEq2uETVb+F1DWCtTnAvpF7W0YpfWUY+/QPB336B33yH0TA3vxhrqiRfwH3uBwWsPE61vEqUUqXpE8dkM7R2CPHerWsbkZh1dKaOzIsoJWrH1YoKgZVFc21o27W5infGtUnVFRr0iv27m46YofJTb9bgXU4/A8VpJoGc6lTgyx4GicC0W1dOcEG/zNwypdcWBz/045x74XdT1FXqzAvH7S3XhlBiD7od4C+tMPt/mxpvKqDNXUKGhu6NszeRkgdC9kGi8CEaKqPxSiN8RWbaTtwJgZKFv7MoQFdN4ja7IbcMIVjbE9XejITLiMJJ+vecR93oMita3JSfmhem6IcxJq073ZBdnHqtuyQVKMsqMGe4anRpGazEudEgQDPv+cYxqdQjW2oTlNNkTcxit6EwGDAoemcWe8C9iQ7eWxdx5iNTffYPu245htKI1ncb4itSGuCXHgaZfCQjfeAyOn8G85ii5lRivB15fUKtkkRgI8bs95eM3BsQnzgDQn62g+iG61SPOCJHd5NIS8Lq8QbhtDL9r6JU9xk72WLivwNiJTXolGbadMY9dn/dY/h5rhOdULUoPIwycdf5gMFTDuUfX7w9zshwHo9eX8ZYKUO0e/XKKfiXAb0a0dubwuiFxoAQ9nJ3GzC/gNXvEKbkfKkJQxMjI36tlaR2dRt96wErWZewYj8QLCSX8nyjtEXuywJrNOuF4gSgn5woni2ICF3iE0xVR6aQC/G6EiqSFVjrXoPjsPM19JYyCoD4gSmt2PdSQv+928yNcj4RT46Ttjn/gUt2dBUCvPyyQuj0Zyz2LItVbIkFvd8X1vN1H9yJ0L7RuvoJMpOqxqLpCt6B25fsE4qhNStpXcTYgLmYwBWlBqSDAFPPoUhE9VkXNTCVZacaRd6NIvHnSAV6pQJxLiUy9mBmeI5+156jgjVXlekJ5l1RPZMzK8knsgJJr90g2O27+CTMqQXx0eyBSeyP3zRXSEjHifIpGfMmcQlMpMRB0BF2rvMP68KhBJHzAME6MIR2vBkh8n6KUFjk7DLMJLY8taaeEkSgYgyBBdtzGySnOVLc/nDMccmxFJiqVIkpbKf1ICxBjCItpoqwmLAiyE5YyVt5vksI3KqSIixmbtRgR1etEm3WiepOo2ZLNiSNYpwKUH1jfLbkfYNuMviJKb0VHnQO06gl6GHe6xI2GqNGyGSHBe+Kf5W122Nztk1sYoHtiV9H/rtcweNud0uYvZjGtNv3vvJvBt9+O98hxvMP7SNUj6jt9sisxhQse7UmPOLCImucNMw21J+9+1rfO9nKflFJSXMaRtFzt+H31+NYcN0VWl4T4mCQNnH4/CfpzieoYIQ9P/80Sg6kiOowpXwBvpUFuokic9khvpij+TZ3v/uh38NDxL/OO1/8j2odr5FbqqPWGqJs6PRbfvoOpR5Zo7E3z+ZNf4q4v/TRHP3SdzpEZsqduiLyz06V59066Y0UmHr3O5q4qxfmQwhOXiRaXhpku1hzLFSSDew5x4ecOUnghzexXAszJ8wLZX50XlOauI+hGk4V/fh/b/+s8APU7pknVQ1IrbfSghDKG/IIhzGrS64OEwBzbLDCVToujcODcWbuyq7QeKKbdEdTDZeLYAEjlB7Cyhp9J82snvsw//tJPcfCDz+CNVYXga++5t2OW/vYxdGyYe7NHVIw4+MFn8KdrhIvLZLMZCTPdv4dwSqI0zr0rR/UlRflySO7LLwh8HkVJ5EK8ugZAdN9t9L+0i+vPFdj/709CbZL44lVBGMolzPQ4YTWLf+kaV9+/m10feZb47sN4z51h+8VpoqtzVDNH0e0+mWqW1IUl9n+gATbixLh7YWKUR7KrjbtdtNbQ6yVGhsM8qJHQRnuodptzH7mTAz/zTDIWU9YtO7dtGlMuwPwCa993O2u3Qu3pmOIXjw/zj8KQzMy0WOrv2AYr62Q3C8Pn0+8n3kvOwwSQXW8+x7l/dZS9H3pWrsnEieehNz6WEEE3/vExopRi/Asvwr4dcO4KcRRRet4nmruBPzFGfHibRGesrA7DM13hPIKsDN9Fm3xtDQ2HN0QQIK9SIbpwWf7dZYhzuaFnTSqAp14i1goVhqhMhpQx6FIJv14fmiUGPjqbIWo0JIx3dV1Q3Z74xXiLG8Llabbwtk1DLktUyeF5Wsb40goojVfIE9Xr4jGTSUvhEIZyjqVNCc6NIqiUIJvZeo56U7xelpYZzSvTgz4ub6tcKRM3W2TTaUx/gDcxJghRuyNFtr138dqGICWb9QRxiJtNed+UII9uc2L6fZsnp8S52NOovOz8wxsLcMPeb/sdXICotvwbX2tUNjMkaEcSy6KqZUJlwzavXSd2RWohLzyXzTr+7DZ5BxeW5DuGIabZwp+pQRQRXl+QonFlLSF/j5KHcxfXyb8owZumLe7XcaeDVz5Kbq5vW3TioRQ1WyjfJ7vQTj535o5EEf6O7UO0OpKcsWh9UwpQwKtNQhgSb2wSLa1QfLQnZot2ExjW6+hikbjZRFdlIxBfuCy8r9gQNVvobEa4ozYjr3BBYi5mH4ow8wvo6SniQUhnwqP65ye4+G9fR/WkoXrhmniFPXSGix96LTv/pkXu8ia5CzEm8AnvqzL135YJJyTgWhXyeIFPtLGJyy1TXz/OuLqD4PISpFNExsj9HasQrawJcT+Xg7X/lQXy/79DEs5uCrzjW3rcFHfAxMIn8KYmbMBgOOyHOxJbHCcxFCvHcmKPHxnCqRJeo4cKDcVzm6jugN5tO3nH6/8Rf/X1v2TuPdI+ad0yDXFMVM1T++Il4mKG8ec1D7z+B/ByIZ974s+48t6Y7uEZ2UlNVUmv9hj78xcxuQwzf3QKr2dY/u59DL7zNZLca40ETa9H3BRL/OD5Cxz+FxeJA7j+1jFxTx6ryOS/YxveagM8j8nnu3T3TgBQev4GmbOLdGYLZBe75Obaskswog5wSdE6m8GrlMWfJhimDat02kYv9ImWVlDpFLpcwsVauH6+I4/HrTb/av8b0bmQj156nFMf3SuLYmAdfDfqeI+fQHke+/+4icpGfPjCM5z81e0orWSiAVjbQH39ODqb5eB/bjD9lxfBQPf+WyUfyBgpNDY20cUi3uwM+rFvkP2+VYyGf/C1y5x9cBKdz+KcXvVqHf+5s6hcjl0PSZBqlJHCIBov4u2YRZ+4gF6t4zWlLWL2bpdcJ2PwbjmUTD5bUC8ttvWxC47NZodQulv8R6wBTL/P4Y9c5vyv3cPmu++x5xMeiak3YGmNaLPO+DMrHPiN83g9w8X/884EbdMZCZE1xsDahgTeLq/KwpjPiXGbLRgcZK8sRyNcXObAb1/i0r++m8b33yOIhLN26A+LkepzK5Qvd1HpFOu3lmDfDnS1glnfkEl/MMD7++eI6w3Lb7KIjit67DWLc7P7vR62aF72e2PbJF65JC0b30/uadQUzo22/LzkfFFEtLyc7IxNFKGyWaJGA392m5yjJaiN6fVsrEhDigtXPLc7eBevE525SHThMtHGJiqfk/bF9tlEeo9Sw3Ns1qW4bLZEPdbu4F2YHznHRhJVorMZ4m43MddLwkYhQT10pSxjtNlOfHLijU3odNFWnq8yaXS5iDEGr1gUlaF9p+JWS+6951nfpKFIIVrfJO528UoldCYjXkmpAJ3PS2xHIS+ttHIJPT4mqI2n0YU8ujYJ4xVc2KdwjEKxKYgi8TqywgfT6Yh9gxv3jndkkWTtCqpeL3GYdiq/uNuTLLJAyM/S+oyFpDsQ5avLszOt9jBvceRzGq0kWiZeWydaWSNcXBKez+qajE/XojNGWpphKKhTsYAqFVDFgkWEfCk6XOs6DCUvK4oTx2d5lmLxYQYh+toC8foGS99ewxzag1lZQ2XSjD92HT1WZVCKqfzZ86hUivHH5mG8Qr8SE+V8MR5EiPeTT28SnbtEcOGGfL9iAVUooIIU0eoa6aUO3i2HxO19x4Rck419UYG991olXk+vHq/8cVMUPmDbDu3OMGYBZJfpBwlbvr+tjLewTu3xTVburkAc42906E/mxbcjHRAX0gT1Hu3DNQ48/F7Oven3OfVzFfIvLdDeU6G9PU88VUV3Q0pX+nQP1Dj0s0u85pGf5Jn7f4f01XW6e8fpzhQYlALUzBSq0yParJN78Tr5xZD6zoD26w/i794pRYddlBK+xHiFnf/pDM27Oyz8yO2yCEyNCb+nnMc0mqSWmnTHfLp7JjCNJuG1OfHUqaTo1rIErRDdN/TLwzRsR/aORyav0SA+tC1+1jcE1h+rJDu2JMbB5lh50zX2fSzm+77+QT51/2c49+k7pO8+Oy3nsoWUvnSdg7894IHHH+RT93+GM793B9HMGP50DbQnOWqdDnpODNzyZ1dpzgY079oOe4dZVabXg14fr1JBzUxx8GPz/OYj38X3vPUJzv7SEdTsNGp6UiDrbAYGffSGLGypp8+iD+5Fn59jMFORCbVShBjisSKqKa2uuNtDNdviC5JOywKjXSvHpmDbnXISAZJO47LPhgWQ5UCUCoy9KLlwqz98D+qOoyJfDUOilRWZwC9ehUqR/COnqZyBtR+8C3XnLRKGaqXz0dq6bSFZvoUxqEwGXSygi4WRRSa2Ra2PKRWonjTUd2vq734det8uiWBwiFK/D0uroigq5Bn/6mW6MwXi9Q0J5xyrEK1tJLt8AikMdCadSMflRGZY3LiwUhCVnOdt/b1WUrRlMtboMNr672yBpqzCKu4PUKkUXrUqHJZcFl0sEI8VZSEu5SHwhZRsTUqNzZRTeSGlCvG3KwVM4EvBmsnIOeIIU8qLZ04gPzc5h/VMUYW8FCzdrrQwPRmzEh8h8wvp4T0Rt29P7lM6LQZ1xaL4/Tinb9uq0lnxf1KloizK2Swqm5UxlU4PkTAYkuijSNpRIxyr5B7nsvKcXLvfeZnZqAmVzcgims1ApYSplojzWUwmLWpDpKWmC3l7T3XyDJUn0TUiekjb52SfexCITYO9ZpVKJZlaLs5EkuFj4kJG2vfF/LB415p+WRy741I2MaBV+dz/8HO5eMvB8v3kXY3yKWk3ZdNDZVw2I9eZz4ohqzO1dEq+QOIwxGwxSGT6ytsqd1fFAnqsytQTa+huPzG3jFfXaR+d5shH5myBWSReWaO3a4wjvzFH6vFTxCtrRNUcjVsmUPPL+Lu2Y0oFVCpFePkq8dp60mbU/ZD2Lsl6jLI+UTEt38MY6yqtJZ9t1IbhFTxio1+RXzfzcXN8OwUoTbS+LhOllamKsZpTQhj8zR69AzVUHDP56CLX7y9LErb1RvGWN4kzAXqzTe70Igc+3GTP3zzIpbd/irWPp8g9dVGkzwPhGaRfvEbm5ByN12zn0Ic3ueuv/xnL/7dP5omzhFktiglIpJ/xyirZh1+iOBfSqvm0jkwNCwtfJtq42yO6cJl4zzbKX8vQvr/JhQcmiV46g/G1uHb2+0Qnz4ohoq/o3rkH7+A+ik9eQYcmIVLmLm1IuKMLiQQpfpSS4sD5+DjFjXMvHoSoVgeKebyJcdsSE4Kd23FFC4sElxfZ+0PHefCr7+ML938MlU4RF3I4E0kJCYzwljbY/yMnePCr7+OP3vQJrvwrMKGYTbowQNNoCspzdZ7cUkR70qO5rySLhlMNtTuoSgkWljHZNEd+8Qx/8bev473f8bDA84WsQNYb4sYbX7suBO09s8RnL9J57X7U4y+gSgUh1p69LH5MgzDZqUfzN2SRyOdk4tPKthx00gIDW6TagEbtgk2RcehaDPHFq4x/4UVqTw9Yu82w8MayGMt1OuhsFqVU0sZUxQJj/+U4G0dg8b4yplqSdmM4kL8biAdN3OoIIXIgoZaye/eS1pIJrQ3/teuM/dUpJr/RZ+2IYun146ixquy+W21xlm63yZ5dIi7kGOypkfrSM5hb94sHio0qMd0uujYpBZV1r074Js5H5n/4Xo4UNZb0bEYKaXcO5QlZMwmgtIutTgXockkWOusATDolUvRM2sqh/cSgVH6kLVKd70m7Q7QhoZM6a7P8slmJiUjLOZRVciXkV2+ksPM86HSJNutCmM1nLWdluPPGFXWuULGtqcQiwrfk4sQjx74fQUoQjrRkRSVGmTYqJfHpMSNcKXuflOP5OJI9yHut1LBItm3qId/RFuS+J4aRgb1nI549xhgpGLIZex1a0FzP+uE4ftfovRrhcuFaobBVMBCbxBvLOPWtNUrUrRExijW1VI5IP/q5k/YHfoJKJZsON+Qs7WH05+JbkrcvNgom8JNCV/7SyDWN+COZbjdBvUXWH8vGqt6CtU2YGMM0msStNtknz3HxfbukuGy2iNttUl97iUvv3QkHd4sb/CCi9PQca9+1j2iihKo3pVNRLqGrFUFBg9Qwyy3riz2KHYfK9wWdcs8+/tYUPq8eN0vh4w5tJdtptxO3CeSOT5P28FoDBmNZVKNF7dkOy6+rJj49cTmPv97G5CWvpr2vytEPL3Lf8e/j8dv/C2d+8QDVx66JZ4enJU8rkhDF7q4qR391gb++/TOc/aVbKD52kTAr1vkm8JNdmen3yZ1eJL8U0p7yZfF0iIIexkbodp/pL1xAnyrAwRbr772P+MRZ4kwqcSl1hohhwaM/W8YYQ/al60Ju9RSDqQLptZ6F8oduqi6F3IQD2b26Sd+9+LEs6iqMRP0yVknM+5yBG0oTra3jz25j/x+EvO/Eezj1S7vh4tWkJaFzOSGhrm/izc5w4Pf7/PiJH+J37/pDTv/y3qTFplOB9NGVQmXS5C+sk12L6Bc0vX1TtgdvX3KXFt1ow+Q4+z+7wqefewOXf/4uzDdOiqtpKpWgMqbRBK3xJsbJPnuZ8C13JS6tulrBO30lWWjRXhIJ4CZlZXdYanSit7v72Dq6KjveXDsIGKZpj1XIH5+nckbR2mFYvXcSb2ICMwiJ+wOixSUpRlbX0OUSxYvQnjWs3T2OP11DW/PERFFjrGN020ZH6OGu3I33uD8QH5NKmexzVyhehtasYuM10zJ2bAErLZ0GXJkHpfBnplm7pQi1CSHJWmg9vrEoxNGB9WRx8Rdu4bFHYmb4P31HbfK4K3wCXxLV7Q7WccuS3awxIvN2BPP+AMKYuNNB9cItaCmQFIFuvCdmdPGIwqjZkry3KEL1rMNzOiX/de+BRfpUJp1wcTBGiK+ONGsJ7QmPJpcTZFJpaZc4LlgcS3EdWosNd1gFlOqJYkx8x+x12AI28dCxKLZDUBLrBTsmXevGjbu42xX/mWZLxkqnA52uzaSKxSunHyaEdUktl0T45OeCFHquWE2nkkwx0+3hvMBI23yu2GZKjfDPEuTJFTEv44SNtjWNL+R7k7ZGoK7Yc59bpAnr6qzz1mYgHAxRsBF/IZVKJe1o3bdk79Hi0xU+qSBxnU68vGAYzuwHgiaNlTC2vRTvmMKpXf1d21n+3qPs+aMFTKuD6fXxd+9k7QfuZPefLAmiXMxjPE20uEzldBPvxppYJ/h+YpjqrqG3rYDfimyMhzhcg0Xn03L9SknA6St9GF4NKYWbpfAxw91n5AIELfLjOD+jsKDfHBDuruFvdJl6fA01iPDnV+mP5+SF6YeYQo7cpQ1at0xT/eEN9v3xB7nwgx/n6m+X6U7nGIwLzE61hL/aIXthhfaRae77o5/hiR/8DS7/bo38C9fp1QqEE0X5mpGYkEU3Fsk9eobyhS7d+2+V3B81hFW9cgm1uoGpjbHzw49T+WKete/scO0XXou3vAHVMjqfJb0uCiEVimxWvGS65L/yErof05lI2UgDO8ln0sPeebstE6jbuVqnVCDxiIgXlqQvXy7iT9fEK8Wp56zaKby+QHDyCtMP3ODTb/8k1z63h2jfLP7uHUkqd9zpEl1fJLi4wPQD87z///2nfPwffJpoZgy9e7udzGxvP53GXJmn+ORVild7NLenaB2bRW2fka/ZbCXtC1bWUZ0eBx88zhv/wXHO/cd7pXWwfQZvYhwAXSqi2j2RINfGyVxcoXtwGj23TDxeIm63LXcmGiI1G5vCG0kFMgGPXrPjj7kCcdCXhTSV2rroW3+T8Ooc0dIKE594nNlHQur7FAvv3J8gRDqXQxcKws25scDkp59m5uuSF7fwj/aids4mLdDRtqTpCEckCct0KIBFnLxKmfDqPKbbZfwzTzH9RJ/6Ts3KOw7i7dyeJE6rdArT6eCfuIjp95n80kXqxyaJKraFlssKKmc3ELEtiJJi3V7zaNHjJO3DYlpUlqNKS2UXJkY/s4WETouiR+67jRCx8SCm00FZjhWxlU5brpxzb8e187rCpdEulb7XS9q8aiCkXmdymihB3bniKEECTLszLLD6/eQ9QethqxOSlpczu5S/O0gKLtMVl+EkO08J2pQksvcklR3nQTZqVAhbF2sYoh5xPIxfkIcxLOL7fSnUuj15vxyhud1FNW0456haz57X3cMkygWG/BzHo7ToknNpTkxPbdxD7K7LIUCeRrXl5ykrI3eFYXqtJ3l9fZsMbwuU9GpXPu/ZIm20cPnvHN56S35G1xbKVjSi2l0hPg9COb9TpWkl39+aRyYtRWf1YblOIMiYCgLW37BdOKItIWib1XUmH11k6dtrMif0+5jVdSYevc7SGycxiysMpstJjIV57pRYBpTyws+LomQeNlFEZ9wnvdwmTumh83ccJ21BNwZeNTD81h03R+HDcIcNELudj+clXgdKK/zFTZEJ2pT13mQO+gMWXl8mmqoSbHaJU0LUVJ0ecS5FHCg23naAw795jduefDcnXvt58i8tMij5yUsU58Q0y2g4+JsXuf+pf8rXXvt7nP61KTIn5wiLMqiVDU7U2Qxohf/0KZqzAa07doz0luNhTpRSqDuOMvZfXyR9Ikd0rMnVd+0SX4pWh/TVdfxObG3vDeHBHYJSzE4TnJ4T6a+nhjLjyOUYWZMux1t5GV/DGc/F/QHR8gqqYaMP8nnZ0cby597EBN7kOKpUJD6wgx99+H187s5Pc/aDaaJr1/FmaoIqVcp4UxOYUgFzcCf7/+XTfODR93DmJzLEl+egNiE/r91ODOXChUVSxy+RWYvojnt0945Ljz+SAEfl+zBekeyoO4/w8N8f4+33Huf0B8YwN5ZgrCLXUi7aVoiW3V63h//3z9G9bYdwVuzOcZSfY8JQCqVeXxZol1j9P1AyGetz4mS9yWGLTBX4eAf3kf3qCWpPD2juJClQ3MSvCwXQHt7O7WT+9jiTxwe0ZxStQ+NDErUb59jWQa8nGT+OdzHS8nFKF+Vp/F3bST98gokTfTnnkUnhevV6hAuL6EJewjFbbUy5SOnhc6zfVsKrTY0UAiNFX/Jl3Lh52SI0knj+8t/L4iU8qUSIYO0DHKHWoTSJMeRAzCFNfyBp2Z1+EjuB5a4lhqXOy6vTId5sJLJk175S6bTcq66QmJPoCneOwYg3jVIWNWlK4eN4PFbmzGBgkTBbDNr740wHTWQVf51uQmgeFk1DXxnT68t1dDryDKw8fVgwWA6Xc+W2GxlXrLvCdPhc5NknHBY7Fp2DMv0Bpt2Va7Suy6otakbT6wnB2QkaOt1hQWVRq8TqwfKLlCsmnJ+V5QomRcAgHLbTGy35WTZqAkD1Bngrdby1Fnq9KS0gW4x5K3W81SZ6ozX8vGcLSqvwGiXbm826kKAt0iXXLioyen0hGVtfIecpteX7h3auRGgBptdL7qdqCspaeXYJFmTjpKclhub8+2tMfO454r2zeNNTkAo4//5tTP7xC7Bn1rp0K9YPF/AO7SUu5zBXr8tYKhZk7Nj5KOiIii2oS6is1xwRl0TDCJhvTWTFK+Ph86qPz//KMUI+dbyCuNOVBOd+H3/XDkwU0T40hb/awbtwA2VIAkdn/+o6JtDMv6UMvkbVWyy+dQbv+ir5yw0qL6wR1SqMfyqfqL3WfqyJ6vZZvn+bpAqvbpC7vEk8UWXqkzkeuO/7MbHis09/gaUPdvBqU9L/tbsht6Mb/4Nn8bsRG//4NvqvPQxKEx7cLtL5qwvoy9dRmQw7H1pn74OXUBFc/p5xVCZN+8A4qfUe+VOLoCQ6I9wxSVwWnk1qvYf3tRNJKyTudGVSdrs4pRPo3YQD4fK4W+oWC88Tcu3iCvge/u6d6GKR8M13yb9rNIlX1lCnL3P0Vxb5ub2vgxj+/dlwuoo1AAAgAElEQVRHOfUrE5YX4hGvrmFuLKGvLOCVSxz9N6sQKX7xzFOc+WVJJHYws8pm8cbEfyj90NNU//wEuh+zfv8eVC5L9LpbRF588SpcX8JbbXDg00tcul/jdxT3PrbGhR+ekmu+cJno5Fkxg2y0IZPGK5fIXlhh42jJFpEiD3YTtrsPcaNB1GyBMXjjY0PSo22jJsRn7RFtStCpV6nglUrS/qpNijHZ5Hgif81ea7D/Py1w8d/cTfd/u1cUXJPjKKXwpyYwa+t4s9Nk55rs/ewcKjJc/vm76P7De0d2o8PXzoQDkVQrbXORBJbX41X8mWmR+G/U8aanyCy02PUn19EDQ/etxzD9Pt6RAzKBmhg9PiaLWbFA9VQTUgFLb90uhHVbiOtsNmk3bFFyuUMP2yTyaqpEup34+OQySZioGYR4pcIWOT6AN1YZBr+mrJNvuy2LXSqQoq9sicf9vnCluj0hsna6RCureONVvMlJ4VekxfTP9HoSEZBOyeJXKdidvxZFW294Dp1Oy3kmJoRYnc0k53AeTqbXSzxnQIoU7bywLBHdqdZcAeBMVk2zJRuLXAZVLScmhA7tSu7nKJfKoo7GSrl1LicKvNiMEN1Ncu9Ho1Zc69Ylk6t0KrG6iFZWZcyPesPY725C29brDdEubVPE5R/Zwte240YLdUHNBBmNNjaHDvKuSDIG02gJr2cgUvZ4s249bbTQBMJINqL1hnzu2lF2Y+GVSuiCXLvKZIYGrA5RAkHWrMeaEwEkhUMYbUGSdD5nNyZDhE0FKVhaxUxPEo0XYGocXW/L9y4VUQPQu7ajWz1pyRULqBjhx80v4V+4QTxeYfyZFczV6+jz11A7ZqS9VipiWm15tzLilL5xbFzQnkEknQjLz0JrSxHQw5bcq8crftwchY+R8EP5fyvRtgM27srORqfT+M0B+BomKnjLmzh308FMBf3COSaf77H42iKDnRNMPbJEtG1cet9RLIng9ZDWLTWOPfUuXrj3jzj1c7NMPjxPZzqNmRyTiajVIWgM6Byd4cgvL/PtT36AR+/5JOH1G4kqwljPobgrk2bqxWtkV0Lqu1MMvu029NOnGEwWRFHiaeJ6XaD5bTV2fP4C/aNtVr/3VpHNpzyiyTLBWodBQVxa+9U0ZnsNdfwseveO5DYlO0dLkFNayY5v5HDy2WRH6W5xt4epNxO1V+rJ01ApSrHSbMpCtLaBd2Avhz7R413PPMjvv/HTnPmd24knK6hMmtjKjE2ng2m0OPSxNg8+9R5+977PcfZ37hk6/7qdbl7cdeNOl/T5RdKbEb3bdxOcniOslfHGZKEyDZEcq93bOfA71/jPj7+ByXsWufJ/3AuANzFBfO6STPCVAlG9icllqH5jjeYb9hHevo9Emqu9l5HiIyn8+gMLNXtJoZCQC+MoKbYlw0k4F/HiMpSLMhHu3CYO3M0u4WSJbY+E1Hf5DN52N/HCEmQzgk5tq0kWVT8knCqTfuhpph/v05oZIdxa4q/jSKG03NuOuLrqVEB0YxFTyGEKOZiScFk1iIjGiwRfeZ72pE/8xjtQGw1BpMolwvnrqFaH8Oo8hDHhlTkmH1ti/XXbvvmdc0XYf+8YQXicKZ9DCUyrI+qafj/5riqTSRZwlUlLTEA2axcrR+SU9pouiJcRShHlUlIYpdOYXAZtHY11Jo1XEYK4ymeT7+oCZ72xqpzDGOJsIMWtVpiMGO25c6hCXhRluWErUfk+OpNJ2ufK9zGJ0i0WCX0qGFpGWFNMl6SdhGC+vH0ZRiNIkS0MrCzctQWdh5JTMCUS/14viZtJ0DLft5wli0JasrCxyiAcETuKMINBklumPI+41UoWVZ23n2fSiexbVHNiNyEqWi0ZbjlLiNYjy4L72cnY0MMW8mgLT0kGG76giyoY8h+FjGwDlt3n7vTWFVyNFlvp1Ba5fMKPexlxXGcsf84VipnMMNvRHXFshSexFKfG0NyZgygmmizD8hoYw77fPM3im6cEFVsRc529v32exbfOiNQeMGkP1jYlX6xcgqVVsTVZ34RAbByitXXiYkYy6TwtBqSW06N8H5Oz5o7BiLP3K3y8GlJ6sxQ+SiU7dTdIjTMSAzEMzOcIFuuoZodwLC8EuuU1VD/EX6rDoT1kzy1R+9omi/fmOP1TE6zeXqI3XYCNOgxCgtUWubOr7PipBnu/8AEufu8nOPUvZyg9eon1Oyr0a0WRyC9ukj2zSOdQjT3/bI27v/AvMa87Rry6NpRwWlm4se6x6a+doni1T31XiqX334335EmR61qnZuYWMHM3iCeqjP91lo23t8l++Ti6HzEoygSbWekTpzReOyROeagj+zDXF4c+HNbg0VhYHdiyKKGVLDqOiBhbsqndGUWbdeEepVOc/9AxovOX6N+9H3+6JrvywQAzdwNveZOd/+QkP/qXH+Rzb/sE8Qun6b5mf4K8gfAvdKPN3h8+zY//5fv5xHd+hsHt+8RUzHEiBgNUsYBXLRMtLJJ9+gLN2RQL79yP/sZZOq/Zi9o+Q7S8LMTNzSamlOfwz56i9cVp7v6uk3jTNagKAhPOzaP7If7OWdRmE9XqUDy+QGN3xvJAdLJAjbazdFqKNjdZukJnyKsRxNEZZjp/jfZbbiUaE/dfkw6IK3kwhuD6GqnNPjN/t8LqLWm6b7oN0+4QVXPiOlzOQRjhrzSI33gHqc0+U48sJQsuMMxT8/2EXxPbEE2CgO5bjhFV80TFNCabIi7JOb3VBvG3HWPykXnWD2YY7LX2AxNjEgPhnvs3TuJNjmNSAdUnb0iRks1+E8qjXt7Wgi2IT9KaUVoW/UYDE3h4xaIgVGUxB1ROml+wBX/gD6W7tm3tjY+hJ8ZQ3b7s8CNbDJWK4tpcLklhXi7BxJjESLigVGTx1pUyZmYK1RuIz01khs/c+lcl56iUxONmBH1x5/BmpoVDaHlCynJslItr8IauxTqTGeYHWpQotm0UnbFxHS4oM4qGisjRosG+w0K0HfJQTKczJDo70qsrii23KbkHjrcCUvB0rEKw05WCzcTy/jsrB5D5ynKx4mZr6B2jtb1eD7rC2zGBb0m64UhRY4ZjJZ1OctGSNhUQrW1IC6zeFEVUryeLfLstn7vWVb+f8BNVIAKNJJkeEuWY6fbAktCTjaZLrne/IsvxiiPrT2TjSlqdIecwiolbreFmEWAQUvzCMzZw16DKRcKpMpd/8gjTX75BOFFEFfKEkyUuf+AAtS/P4x3Yi5mZQF++QeMNe6BSJF7bkGtttlCVkuV49VB+QL+SpjDfJ7i+jl/v4tdtSy6VssoyP/EXevX41hw3hXOz7IjSljswkEnIoRV2l2i6PdbvnWL8v80RpzTheB7G8vgbbQbTZdDQPijZW9s+dYLPn/wSD/z6D9A9UBNYdKMhC2gYsfzWHRz5jXn2xh/g4js/wZ7cgxz5hQsMjm7HbNZRxaIs3Fqx/m07OfJrl1h8x14K1TvJP3c1eSHdrszYbKD0k2fxO/uY+xch88XXsOOLy0QbG+hsNiHBqcBj/C9eol27VWDSzoD2/jxRVpNa79OeSmE0BO2YMKtJzdxC5ivHE8mwoGO2pWNVC6bn5NxC3tPp9Mj92+rcHK2uoxpNfv+df8oD5Q9w8MefI7ZBhHFLDM50t4e6+ygHf+kl3mN+gviTEYd+/HlMIS/qp1yWaH1DvDBuPcDBD73EBzI/ysR+j3xxP9lHT8vuK45QWoOF6KPVNUoXO/R+aZMLO+5k3789jqpNglKESytCvi4XiI/spvbxp3h2/F52LTxF+G3HSC0s4x3cB9duEB7ehfE0Yd4ne3GV6l+8BEGA9jzriquBOOHhJPlSUSRKjMAqSWI90mIdynidH8f8mzT7f/6kFJ12sQo7HfxtM/jrbVhYIbM2ztybfKaKRyn91Ymh9UEY4k1O4D3xIt6OWUyjiZ6cQPX7wo9wXBEYknS1Su7vjTf47PnwGVFiWSVQPOjjTYzjP71ErBRBexvN7RkqJzVxtYBaXCFaXsHfsZ1wbh5iQ7+WJ3NyY6gYUsNrNnjfLKl1HKiX/9ciIrpSJjp+KvnrOpMR/kUcg7VJkD/wEoTDKwsJ3Qt8UenZZ6GeP0OcScu/Xd+AVIp4ZU04FqsbqLkbMFOTBe3ADnS9I5yeS9cwLufo+VPEsZhEsrgs51hewZuuEV+ZF4+fkvDE4n3b0fWO8HHWNoaRJXM3BImwarqEYF6tigook8J0e+JwnE5Bu7OlMIiuL4hBXiYtakpP0EPlB8Sdrty3bDZ55qbnstFs2yObwXS6hAuLW+93HCW/l0U+tgqrIHk2gnClxFsHEuK5MVYNaw0do7UN+f5KyTOq15NC3ysWIIyE11cu2Z/jyOdDybjasW1IXLaCABWGxPfewkAp1EBiSryqtXjwfQZ7p4efj1UwV+elCJ6ekvNEQ6RMaSXoJqCyGfx8jnhdnpMu5G3xYwN/u108pyy0zv7R/AI6nxVjSWPQYxXhmLXaYuExVUFfXkCPjxGdOo9fm8S02tTv28au3/wGF37+dsZeMlRe2qRx3yy7/+NLXPgXt7DrrxoSSzIzRf5Sk8U316g96jEYz+M/c1pa0ZMThNcXUJk0UdYj9/Ap2q8/RPbCqrh9W5K6t7YpRp/FIl6l8so7NxuIbnKPnVfiuCnugDHx0FBrlHjqPFc6HeJOl8qZJo27tpGa28BfbtAfS0kSsDFEaY/MakiUD4iO7eOuL/00Zz4yQebMDRqv3SVFTSognCxRPt9h8zUzHP7VS+x56EEuffenOPdbs6SurBIe2Y3JpDDbJvC6EeXTdZr37KJwQ+Tr7Tt24s1ME3e70oazEkanFvFfukT2b4tMv/0aqtnB27cbtX1GBvrUJLrVJd63g9n/8BS6XEQtrjL295cghjDnk94ISTVjBnl5NHFaJURvh1KMHk6e7fxPTK8vYYctt7MbaVvYxTXudHngkR/jI2/+Ey78wTHMbQdgYgxMjFeRfDN9eQE9McaBn3+eT7z59zn/2duI9++A2oRwaiycr68toGoTHPnFM3KPJn3hxHS7Qqx08uNsFq9aJTh9jdWHZ3j7dz7DmY/cJl/xtkNyLTnx8fGX6+iDe9n9kefQuRypZ8+jJsYIJ2UB85fr6G6I140w6YDuGw7DQMzy/NpU0nJL0ByQHW9/IB44zhhupOjZ4t6MFD/TTxhWf/ge9IHd0trsdMAYwvnrRKfOYfp9qn/0NFPPxmzu9Vj9gduH4yIMCW8syH8vXUmIscr3E5M4eSaxJfc6nybx6ak9HbH+rrul2HOKpyCVZAKpwKf8heepfOUs8f7tggS12tKiW10TRMbTZE7fEE8XB6vHww1FsrAmhqFq63/doYc78uT37jOHdDgOUIJwCH9DivDYZjQZIQI7u4RsJln8XLCo4w65tpOxdhK6I5Jxs9mQn2M9cFQ2m6BWrsBNIjlAFtb/zjliG2Tr3i0zCJOCN7kHzuPHyuLREnchLS6LNAwGW9poKpXCGJM4WDtjxwStDcMRbpmVOXe6tvD1huMxHtp4uPOKD1J6eN9BeD6Z9FDV5VCp2Jp1Ovl9HA0VcBY9Tu6Vu2RH1naqOicIsPdJuXO57KxR81QQmb1NlpcYEO+bPjfGDBVzViVnLJ3B2Gcl1xFj7CZCWW+eRHzg1oWkQLTv8YjlCFiExfGAYiEcRysrMFGVluD6Bnge1W+ssvyu29n7W2coXOuAVlSeX2HpnUfZ+x9O4a01Ub0+erOJOnuZ6b++JohuQ5A/VZE2s1sH9EBk9an1nhTKnm1hWnVkIuSJXrbpePV4xY6bovDBCAdFlUuJjDNxHXW+OJk0ujOgcHadxm2TAASbA6JCCq81wG+FBI0+wVKTMO9z9EPXefrbPsbpj9QonFwhCjS61cFr9gjOXad4epO179jLkV+4kjg8n/l3Y2KM1+6iWl38zR7m1AXyp5bJPXWR4rU+3TGP7oEa3vjYcJEMQ3GYtrLTqc8d5/pXd3D1B3cSX74muyTbp1adHvrqDeLX3krzDfsw2yYIFxbJXdmkV/VRkSFohJJq7iEvkZ3kXeAesCUrLImaiCLhigwGeLUpmfgGYeJNkhivAUf+2Tl+4anv5XP3fYqzP5kiunhVCKatDuHiMqbdJpq7gd67kx9/4gH+7PUf5+xPpYgvXRWeRC5HtLSC6XQlu6k2Se7EPLnlkM7ecfGbSaeHXATfR1XLRGsb7PjoU/z1V1/DT7/lS5z5iW2YM5fAxMKjWl0nvDIHcwuofbuI6nXMzm1E8zcwvuwIzeo6utkBT6GaHVJr3SR/y1RLgpJEziFXJu5E4oxMjMoSfbfssN1hF6bSw+fZOAwr94wPrQomxlHpNP50TfKbdm6n/KVTjJ0J2TwgnArl+0KQttfuT9ekjdUQVYvyLE/CTuZuIkxInZ0Oha9dYOMgbNw1Kc/QGrS57xHVm3izM/SP7UZfXWTzzhrq9sMSaZBOC4G42yVeXSO6dp3EENAtrqPkZtha/H3T+xknv5QvfKJR3yQne45bbSlwbGEkPLiuFGSFfKKcU9mMtAWss3jcHwy9oECKxMh65PQHqEYLlteJlldE8OAIzP2B7Ort+6Cz2QTVcr4qxoazJudYWUvOkcQIZDNbXXSdrB676Aa+tGUgyZcaNflU2YwgS1olKfbKtVQ9dy+GVhPyM0zCTzF9Ma7U2UzS7ndkbrFLyAvB27pfE9g/L+Qx5SIml0nMAl0B7a7DuNxDh04bM/Tl2UJqF/QpOUZl945jMwilMLGtOCeLV7EhTunEZJDIjhfPI0p7w8+doiwQJMp0urb91rQxE0Z4NL6X2Bw4MYfJpiGXFfK49dwy/f6wVevsFWBIeo7j5D0zUYxe2UTnciy9fgyOHRhGogxCag9d4swvHcR77oyMmUFI7SvznP7XhxjMVmTjNFaE/TvB05jri+i1xnBeOLgvQfWCxoB43yxhMUWvVhCjSdcyDoJEdDKK+r5yhyJ+hX7dzMfNUfhg2wu93oilvm1V2N2hGYT0p/Kobp/iqTVahycI1tr4G12iklUzxTFROUtqrUvnyEwSQ3HqZ8fJnluifWiK9u4yjFdQUURhrs/g6HYO/uIa+x9+L+ff9PsEqy16B6fp7RwjLKfxZmqo3oBoZZXMmQVyiwNa2wK6d+7B37Uj6ae7ic0Yg65NsvsPrhJ82yo3fvJesZOfmYLJMUwxR7xZx19pMshrOtsKEv+wtIoyMCj69Ms+fjsmvRnTKw3lzcnuNBwMs5scp8D5qIQh8WYDlcuKksmZl7ki0i1guSz7ftfwwBPv56Ov/1POfupOTK+PNzGGzqQlWyiKMHML7PtYzDsf/wCffONnOfPJ2wkP75TJL5MetgaWVjHdLrnza7SnA1q3zmBmaxLRMBgI5N7p4pVLeDu3c+BTi/zWI9/J973tcc7/6p34u3fK/fR9dD4nE2qrg793N2p+EW+sSnByjsFEQYjE2RT+RpdwdgxvvYVTuKl2VwitqVRCTh16zQxRCuegu8XH5eULf7XM2EtiHrj67rvQxw5LCw8IF5fAxERX51DjVQoPn6F6yrD2fcdQtx4c2vJrT/4udgGxSINbuBxiYVwiOsiiUykxdtLQ2KFp/MA9eIf2ysKohg7DZmWNONBQzFN+co6wnCauN4TLlRdSuSqXZOG0eVzJ++Wu15gti0eyGCaqN731V8YWVVaK7WTrzl3cqQmVFt6eLhbxxio2ckEsFeJSTt6ZnKintI2mSLhpnhZ7CHuv41ZbBAK+jy4WhTBfkvtr8lkbX6C3nsMZVtroCtPuENfr0k60GVhJZIV7LyBx+XZFuxQbObFdGOGjEMXye6XlORbysiBnHHk1tbWYtu+gSNpHTP9GbDxUNpMUwi66xKE8KiXIjsmI87Up5IgLOUw2ZU0DreWGkigN7cbfqPO2+x4p5+Cth6ioK6oduuRZXyQ1VPmZwQCTsdYfWblW12IPsx5RxidO+8OiPpclyujh5+5+ZTIWYQuHdgh23MUpH5MShM5t1lRGeG4mkxKhQSYtY8kpJO33VJ62buj+cDxHQxsHk8ugx6pMPrmO7gxkDisWMDeW6B6d5fBHr4ogo1QkXliiu3eSI79+Ff+Zs7C8RpwNaO4tQa+Prk3KPVBKWp3XrifFm9fq05nJCSKtEXd5h2S593skmPjV45U/bprCB6y5nVJ41XLi6JkQd02MCg1hrUx3tkThxAJxOqAzWxieQCkZ0JEhe+oGuz+j+aG3PMDEtk0++9gfM/cWn/xzVzFao7p90peWCY5fZDBTZc/H4Lvf+v089NU/5fI7UqSePit+QVonhMLw+gL+V59l/Gs3MJ5i7b5tQ6Kz/fmm15MXoZBl5qc7dGqG+q/3xQjryrz87FSK6NwlcW3OadbevIfW6/ZRfOgExdNrDHKaOK1QkSGzFm7lZViCoK5WZIJMp4cSZDsJmEEfs76BSqfwZsUM0KEgIJO7aXdQj5/g4E9d5Xf+9x9gbLLO6Y8cSSBnlU7jT01I4OlTL3Hwp67y7/7pe5mcqvMrf/hpTv3KvmTh8CZtX76Qh7UNxp5fx/iK9dsrDG7fi56UMFbTlzZcNH8D6k2O/rt5jr/vFuKJARffM0s0vyBS10YD4lgM/FbWkkILE+OvC3kxLGXQjQ7+5UVUAr0PCK9ck8WtVLIRB7bdMhL74ZCKqNnCRLG0hWxGkwxEG+Z6eY6Jv73I7j+8RpSGC++qsPzWnSIFNibZSUfX5ok264z99VnCLFx8Z5mV79iDV5uS+BU34cXWOXhtg7jekHuW5CbJ4us8XaKLVxl75Co7P3eRfkFx6fsn2fiuI8I/sxN5VK+Tfek65voi/X1TpM8tUH/7UbxDeyXSwLkSu52lMUPZr70Po8eog3SSzTXieK0CX3beUYRXLMr7ls0I38zKqoWIKh42ulgcIn9KJfEUJh0MEZBcLilOEpsGT/LHhPzbtZ5M1mnYyejTwbBtF6Sk0LScFLeAo5Scp9cXY9ReD2dyKP8uSDYRkjxfTlrXcacrJNrYSMyBMxp0SFki03dzRDQkKFsHcG3Rny1tK09CSpPWfixGmcr3RW5ux0piWtjpDMnEoaATpAJMNiUKV/s8XWwPgW/RISkadamQ3FdliwYTxVsWXSmmLF8mnRqOF/fvAj/hC5mUT5zxJRsrlxFvs35EnFKEOY+wmCIqCxeQVEAc2M8LKaJKYZhvls2g85K7lsSUuO8TiGO+ymdtjlcgxV3gYdKiwlMuN819/4xzEg8swu24UanELTsaL8g70R0IcX6sjGm10FMTNLdJnAraEz7e1AStbYEUS5PjMDVO7GsKXzrBYHdNOH+hcAZ1sZCMcZVO09pVAAO9aooo40kCgCs8Az/ZvGxB2F49XtHj5il8bO8zbrUSJ12dy8ni4kiS3ZDY1wTNAf3tY+Br8i8tECw18Rc36Y/Jy66MgXSK9JU1unvGmHz3Aq/745/h8Xf9Bpd/Z4Lu9iKDbVXxmCgW8VcapC4t0Z8usv/zH+T8uz/O/B9sJ31ljf5slWhWFm430YaXr5J98hzFKx36rz0sRnEjbQPl+7Cwgsmm2fdvj9P/kxr6e1e49HN3oLo99PQUOhWQXQ6JUgqvbzA+wo25Mk/17y6ie4bumEN7IpuxFSQOvC6Hxrl/Jq0dywOK6k2i5RWRihcFVZLFSjKhYiu1jTfrpB87Se196/zWd3yOa5+eIbrniJD1FhaFHBgbovVN0k+fY+J9m7z7iz/BZ77rU4S37MGbniJeXZMdVbsrL/O1GxSem6N4tUdrJk376DTUJoTj0WpLn7vdIV7fwFtY5dBPnubb3/E8Z//DncQTZQl/zUhCNbUJ/I22cIX2bEM328RjRVLnbxCNF6WA6HRJQjV9n2h9U5ytPS/xkEkyu5yMXY04N7fbidx4aOonhVK0vkF4dY7J33uKmccimjsVN965Xya5YLhrU35AXG8y9dnnmX4iojmrWPiHuwTpAxszMbQeSJybOx3Z6Y+qW6x8Opy/TrxZZ+IPnmP6yT7NWc3KO/ajd2wDpZOIBdPvEzx/AdMfUHn0Mu3dFeJiRkQBuYxVtth2x6iJoZX/2y84HL/OxXk0q2s0M0qJpDuxoACSmIjBINmJK0+LUtA6NstC3pWohbTlpfjW/sAWJCrwh467nc7QuRnxqHEybdUPRVFlHYQT5ZPjljiez8ucm537syt+nO8QSicozajLc9wTwzw6XehK1Mhoa1QFgRjydbtD52bjBA9bnZtduzIZAw7hc87NtgXrxrKJpBB2cRWm3R66F7d71rlZFnLVc9YMZqtzs7MtcC7ZVkFmBnLPXGJ8gvYZF+I7SFpwwxgJjW520d0wMUOUgiwmvdInaAnvTvfDhGeVXnWfh+jeYAtvSB7A1iXIX2uhmxLNQcIHi9HNnlyrc4C2GYGJT5IeokYqEN6nGRU1aCFfK99n/e5JVEfQYTyP+MYi408usfLGGTuWFPHCEmNPLLLy+hrx6jr9mRKpa6tEdx7EO35OyPKFDHGzKao2ly/Z79OteGSWOkRphR7E6MgWzdpmvmkpWBPU/hU8DEJufiV+3czHzfPt3MvgfFbsBKoz6UTOrTfb4CnitIcOY7oTGeJinvpR4dt47VAgVWNkoshnMFrReOsRDv76eb79yQ/w2L2fJPfidcK8hFuabg+TE+jWKMWBD7+U+Pyc+VCF4MXLRHkXaCj9ekkk7+KduEhrW0DnyIzwHkYWApWWNovas4OxzzxB48lJqvcucvWdMxhfXHczS22CdozRoHuG9uEaatcs8eoaufOrEmLqqRG/GbejDonrzSHPYFR+zBA+N4OQaHVNJut0SkJELe9FW6RI53LCG6iW+Odf/0E+fvvnuPCgRzh/XZAiy7/wSgXZVZeLHP7QWd7/9R/h/I95RDcW8CYnrCOrzaCKIqKlFYKz86Q2I7pjPr2dVWvuFtvU7kCkyYW3x6YAACAASURBVPksavd2/u7v7uDt9x7n7HtLhFfnUZWyJYJqonI24VYY3yN+4TRxbUwk/5bzkLhbgyi5rHLKOTc7V+Etx2i7AZJ2UHIfY5Ms9v7OWTIPPcvECyHtbcZKU80wdsAGa+rxMTJffIrxkyHtaUXzyFjipeJIosn5B6EgCyOp0g55Mo7sCniTE6T+9lnGTw5oTytah4XjFlt3Y5VOy4K+sYmplsg9c5nm7rwgU641Zj1RzOhYscWdedn4+SZ/kdGiqGeLt8EgUUK5osVJiE1shrwzS7ilP5C2Z6eL6lryaxQnzs2JIZ5SSUxE3Ggmzs0J4deiO6pribJu8bVqI9PvW+RV7DBMt0c0eg5jhlLqgSWVx9Y+wxWFI6RkIpsR5si4o+0JZ6jnctOca3J/sMW5GRsUuqXgdD5bZuhVs8W4L4q2ZMwZY5JrVINQoip6A+Ev9QfiZK29YXSGI3o700JtuTdurNtiyPEHE+TIkq9dVEVi9GjJw6rTsz+7P3RujiKC9Q7+Zg9vsysEcuvc7D73N7uoRnv4rEYdu0fI6KreHHGG7uEMFFW3J9dti56410t4WgmHEjBxPLzvRsj0ziVZd8SCoPrCOnplXcwvczl0pcyF90xR/fzTmJ3TqHweXa1w4UemGf9/noe921GRFIgbB7JwcDdROYu6sZrMDabZEtSwWMTvGtQgJtWI8Hoxujv0C1N2vCVigFePb8lx8xQ+7rAcFEeYVOm09KvjiHCiAJHBa4eE+YDMcoewkqFwpUX92CR+o4e/XMcEHs27d4pBmjGkNwa079nNnn++zmse/klO/Wot8enp3L2bQTVLXMyhYkP/3oNs/5ku+776o1x462c4/Vt7CBYaeJUyXiEvu0+LLDAYkFsY0JkKGNy2V1x+MxnU7u2YchHVaKM6PbyD+9jz+Ru0vlKj9rY58D28fbsJS2lSmyGZ1ZAwp4kDTb9mTQWvzpP/82fw21FCtk16/07l4wfSK7Y+JMBWeXJsJ9a2hcsLuYQczbS4EpO1SebtLoc+2uaHH32Qf//6P+Psp+/CzE6hx6rSrshkpHiyKoaDv9Hl42/8z5z5vTuIto2jpyaImi2i9XUAkfRubJI/uUDheo9e1ae/b4q41cHbv1sWHrfbM4aDH5/ny39/J//k/q9z4dfvkTbK7h2ozQbeahOzYxpvtQHpFN6RA+i1Bv5yA6rlEZQmHqpmXBhov2/N9GwAqTOIG+UHGJOowrRtO6CUuA8HAV65hNls4O/eQfYvJYtr9YfuwqtNCtm3WkZbqb/pdvF37SD7F09Re3rAxl6f1Xcew9u+LXkmZtBPFkLTF26b43EkZP5SSVq+uaycc+d2Ul96htpTPTb3+vgzNXRWzCjjThelFN54VYrEaony167Q2zdFXM4N/X3gm3gRwJaW1je5OI+gPSaKxejO00mxKW2Ql0VyGJdLpIbGh5EUo1GjISiPiRNeihBTRzxr4jjJxNK5nDW4s5wZd06bK+VMCwFbNA59fwCxZ7CeOMLfsdfz8iR2d24YIm8jSizTahPVm8JXG4TyHMNQFjytZTyrES6NDZ9193f0vXSKK7BFzkAy8VQmvZVUPOKhQ2yLjzgWJGR00Yxj2KgPixh7T9243jLO3TgY5SuNHMqGkgrS40waB0nsSNJuc4GtSgs6MwhRnT663ZXYjnAgz9l+rjrid2b6ffC9ZGOSmDw6TpQxcu7By9CmMEp+GdeCdNcxvLFin+GMTLu9RFyhtJJ/P16FxRXMWBkTeEQLS+D77P7lpwjfeAzV6hItrYDW7P7QUwxedxTOXSF1bRWMYfKr1+jM5PFvrLuHRHj5ahLZEtXrZJcH9Go5yWGMDCY1HAtubKDUN5nPvlLHqyGlN0vhMyqpdR9pJYqQZkvIi0rRr6bwGz285U38Rh8VxnidAaobUjq1zsbRMiabRrd6dMc8vBcvkr20Tmp+k9yVOt2D0xz+2es89Zbf5tL/VSb70nV6FY9gowsnz5O+vELm0iqDmQqHfvoye7/yPi6+7dPMfUQIj6bftyqVlnA1+gPSj5+mMN+jPZ2if8sO0Jo4G6B6fQnLXFgSfxHPY+Y3H2fpb/8/9t48SLLkPg/7MvMddVd19d0903Pu7MzsYGcvYLEgTYLEDdKkgiIt2Txk0xRFQqIM+QBthxl2hOUIW3LIlElQtCwQQdARkCkapmgQBAiSoAQQWCz2vubYOXv6vqrrfldm+o9fZr5XswvKiLAG88e+iI7Zra6uemfmL7/fdxzBzZ+YgbqzgdF8AC0Y/E4EEVO7SwWcgk+PH4Vo1BBe2cihbxMaCsCoNCR0FJmBKp1ALChqgiYlyj3qkaJsuk3k0GYFcmcXjHPI9U1y/V3dwIO/eBn/5dd/HJ/9/n+KN345hB4MII3sM1tdh9zcRnZrFWxtG3/rqz+D//sHPokb/7kHtd+hFY3xJeFTLfBGA3JrB/6rt1HaSzGaDyGmpyjnJk6gRyOoOxtgB10gkzj5iW/g9770PfjJD3wV1352CfLGKrWy9jpgcUok8UyCHXSh2nUkS02g052EzpG3anSW0cpwOKIJ1LYnij5R5v5TUeScfHml4pQ1AAgOH42ghyOI0ydQfXkT3dNA98kjBt3wKUVbayfhF2dOofr8KqbeyNA7ydB7bHHyflf5qlQNhjSRidxU0bY1IUT+mWdPo3R1C1NXEgwePUKZdrNtR2TVUsHb6YGlGdIT8whv76N/vJKb+FnCbJFoabZJJMi2YPLXtFXqmDayRdOse7klqfKSSbqvVPLMOotkKWqPac8UQqUA8IxzcblM5PTAd1lrvNWknLVCeKqOY3Lu9gmVUKWAvtsT9BlRTJ+RJOAmzoSKbAGb1E3IzDjnuvg5T88+N+48mOgDlaR0zfw8FNiFdAa+K86Y4cpYUQZJsAuEcUsKN4sS5gfm2U6dVN3eF5ZfY5VAzDoaC0HXoGRS1U2bZ4Igb7lCSUqfbbmKhg9nc/PAuMuhgrETcTwkz5sYl3VChGCYUFBWkJaTyadHgaGFe2vi9bvuMSswyK1MFHS9SufSnGcnrS8TsRu+B+YZNWSaTaBFEAJaKXp+jVkl3TeGrN7tQ/seknccg/Y4+OEQ4ugSdJpi9VeeRLAzAHwP/NgydJbh9n/7JILNnsv6y2Yb0OMxKs/eovbm0gyp7h4+SxEpgQ8x3YbfTzCc98AyQuyTemFh4BO664Ji396+K9v9Ufjo3PNhUkViAjqtR8tIErmuVoHojkltVfaRzlSAnX00rg/ROzcFHXiY+eoG2MoS5cQYeFSMM4wfPor3fotCSC99YgVTf34To6M14k1IRcqjcYr04eM4+z/0XNvL8o7coGjRlCRFcHUTpf0Mg+UA2TsfhH72VWRzTXeDS2Oo5R1fwcq/WEfpsQPs/+RjgAZkwJG1QviDDEmVQzMgqwokiw3oiEIoAdN2MUiP8/UBJiWR1hmW/iCfzKxvxnBIheFUC/rZV+EtzCPb3HJohez3wdtTOPVphZ978Wfw6+/6LC79wzMQSwvINrdJbWUlx+MIpz8l8ZPP/yw+/eSncfkfnjMk6szIWTVYpUTk13GE8PY+gm6G6PwRsMu3oJdnXZiiMqZ23snjOP1bO/jM0+/B/Lu2sPorT5K7bJWuL+8Okc4Rr0f7AsFGF9kDR5Aem81XtNYOoUCWlIdkguZiAWQOPdv7DzxfhVqFi9zZA2+3yH16cZ64OKMIcq6Jxa9LDBcF4g89hmxnj87h9BRl+5RLFH4730b5iy9i4ZkUo1mrkmL5xGKKEdu61GPTOvA9ZJvbZO/QqIHPzZjIAQk520LwpWcxnhGQ3/8o+GBELYtybtwm76yDpwrZzdtovriLwUOz+bMFOLXOt42sKG42HNcWBjaywpCNmSHT2rBYVi6RyqlSAvP9HPkx7S/erFOri3GoslmNBwG1PAXPSbnVChmOVio00Zl2IC+VCAlLqPWpSp7Larv7M1itSu7M1Td/hlVJUmSFuRZKEzIUBGYSpTaLTtIcEQPyFpANwTTqIddusQRs02JitqC1kRXOn8c3E3iSXxf6D9eedK7OFqUyRYotMGy70BZcWspcHg4QQq21Kyh1RuRoqzpkgU+8E0GolXa+VgVTQSvf14T4aU/k0REGoYECtDAy9NTYe0Tx5OtS0vgUG8STWQNGIl2DcTCp6PML7VlI0yIC8kLPqeuo8GHKtJ+zjIpuxh0y50jxTUI+hwsBmNSQ7Rr03gFYKcSJf/wadp6aJvRq7wCsXMLJX7uC3e+ZpcgKpQntrNegOh2gUgbfp6KI3dmmtr3WkPsHkBUPKgC0YC6h3V4/XTJqRU+8uaV8DzYNBqXvzc/9vDF918rvu7E1WFs/yd9POT6252s4Gba1pIZDiAdPI5up4eAceWrIgEGkGmmFgUsgKwOlPY3qTobuMR+Ln71E4ZPAxMAl5ueQbWxCv/thHJyvoLaZofLMDRf0597XatIAPRjii7efwY+88WFc/sYJlHYZoAGmAR4D3lgDDIinGAYXI5z75Q0XZKjGkVvR2YFOxTG8pUVsf+QYsc0YwDMAGlA+oDl9NgDwFJj90k3I3T162K27tee7mA8rLebVKtRwCOYH4CeO0gDpe9SeGkUUocEYWHeA2z91DOUdjZlnO0SOtGTMJCWYeTAEO7KI4Zk24iZH+4UODQq26FIKejimNs3CLIZnpjH7yzfw4p0jqDxrBlVFx8JTc44A9E4CzTeAqatjeK/cIP6F57sWCQ9DA+lr4OIZDI9WoQVQ2k+RNDxCxjggSxxKAEFPQpY4yv/Pc3QOKhWHhtFNIlHMVrIrTOehk6Q50ZCznLOiNUY/eAG110mKjiSlwdu0Y/TeAbAwi3SujmQqgN/PEKwfgkWJe58WHCw25NR2C1vvmwNPAH+kwVR+jTUDeEb3kAwY0grD1JUI/qXVXNED0CQakBswr1SApTkX0JguNOHvD8kvRcEpfuK5KsLdEV3jUUROxOYZs20Wh+QAcGaYdlDWhcnX7sOJo9Ry8D0qvOzkJyV0u0n8jUoINooJIYgJFVFlH0xqsBtrUKMRxUqkmUsd580GZKcLb2kByDLIziHE3CyReht1IimbQtFyV3i5BHnYhWiQOzSv1yEPD+EtLeaFq41JaNShByNyPh+OiCNkkA9WrxHyVymBKQXNObJWCWJMiysRZUgbIbTHIGIJ5XFqYwiG0rUdZKtreXCwtZuwbb4CqX2y3RSQ0ooxamnWKjTxm5wqehMVqTrMJdraRniYz9Ieh/IF+LdeI3sA8wyxwIfsdKlQrNfo2jMOeWoR3tYh1M4e+NwMFW2eQLLShviLV+i6GOdoPRy5QiN55xlkFQGeKniRhBgkEHs9yJkGsnoIHkuIYQzeH0OubZJw4HsfAU8kxCAG64+QrW86lRsVxTnhGr5H10EqZOubhNoEASE7j5+leyeVVPTuH9Kxj8YUecI54tNz8L7+GnijAXAGub1DnMyAAk6HH7iA2rUuBqebCA9SeP0Y7NY6MD8LeeUamYVqDex1gLlpeu30CbBxjPG5RWRVgfG0wHiWoXVNIq1wTP3z55wZpxoO4S3MY3TxKML9CIcP1lDeo4Vi+Gcv071YrUBOVcFeuw4VRfgT/XvPaa2f+MtnyP//tpULDf2J37s3X/dL575yT4/tO9nuD8QHcP3oPI3XZBiZVFteqUA2yxCDGI3VFP5ITxQJygOYBJIGQ3/ZQ309w/jJ0/CWFij7xkgaWRBARxG5KH/rNefIHF88Du/Icg7tGn8KPR6Dl0v4kTc+jD944Is4/eRtjJYsnEyDj/bo+0v7GrWXSu4YnHsyzKo2TZxzqdzZgxdpyDIDz+g4wMxnKkAJmhCVB1o5CWPzDhSgczahElEmA0enCREE7eZTOB6kgmYMul5BeVsjmmE4vNAiR2Rr+mV5RKUQOOiiemkXUZuj+9AUspl6noRsJ8LABzo9VK/u4+W1ZZxe2EVigp+Zyv9VHhV1lU2G6naGpOUjetcDENNt2t+CosqiSuzSTaQV+h4ZcDKXLCaHWy6zxxxXQ43JedW1CYAcpePCcTF0krjVMyuFeZvBKMFYuYTgMEGyPEUtNsHz3ryUJBkex/C3uggOU8iQI11qTryPZUZNUiqBxQmYAmTIkJUZZMjoGnOYVgNIIqsAkQBeZwy9PGdMPa1iSZlVNN2X2NqFLhFvxetF+YSo6DqDc3hjScWQ3fjkPeOePXM/vSm76+5Vqf1srQGRF0P27+0+AHCrdPc65/S3Dt21HCJj4lhoAdrnxHJ5oBQVgRZNtPdfwYfGOpO7+8gWHMXPsK7LWZZ/BgBt3yMKx88YFZGMESrCQCRXqek5lbkyycrw7fl0n23bZW+1FZVy9jyJwrNtfzib/H+YcYcx+rEEaIMKOy4QJhd8VgWlC8iSczwufE6R4O/Om1IUtlk0vmR3Xf+J19ikWKDIJ3PPI59AtO4WabiP9D1zrPl3MFZ4v73+xWO17Tudx24wCWhfIG4KMlz0jPdXmsE7egTy2i0SvCQJvXZkGfLGqkE3GXiq4Y01yjv0vVxq8qoKfONnxibaVzwj1MehzErnqi47lnwXtrc5PvdL4WM4PsqqBAzZkYzJjPqgWkX/ZBWyGsDvJaitx/AHZgDKABFp8BQQsUZWYag9fQuDRQ/Dh5dgQwQtBK0GFJrHp9uoPr+K6laG0byP6MGFSRKi5fSMRrj8jRP46JWP4gsPfgHHLm4gntbQgiYrJeAmsvKuhjzoAGkG0Wg4iNimQtsVK/M9aM7gjTRkMFkk8IxQEqbpYbWEYQubF9s4kwMnNyGllJnEegOnAIHWYEkKbgqi6VcHCPc1RnMc3VNl6GaNYGTPeHSUSpTWfNhD2NEYTzP0T1YpLZwT3M3s+0rUP2fXK7i2OYd4OUFao2IHjH60YJAlOt7KN6/D72UYz/nIHjzqyLfM8/LYASMzD3sKWclOIgYdSRRB2wrgqYaICxJZ44jrUsVtLICxReBNap9oM8ABIB+YMMjDAwUVyMGdfaQ1D+mUiU6wMH+SEtdDcLDBCMHaAfxBhrTi5e8T3PEpCNZmEBENljIEZAgon0H6ZmBkVARpRsfE1jYhayFUkzxCmOcZQrFyxYLq9pA1SqbIUnRtGTMycQ5kCjyRJD8WRvprFgCOo1HcdE66tSq1/FeFSckrkKPNveDaDxxuQNecUdHle4DH84nLegP5vouLsN/vCK4F3xxSDCZU7JnsKbdvdhJ1JGDzGdZzR2kq+O/6DJJzm8+YcDume8iiKcypTc0+K03PpaL2CjToWfCMP4sroO6yCSioVu14Z1uNE+fWcm3sv6Jwrhlzfj1U2JprYffNFkh2K3h7FZEmOxlb+b8tepRvKAZC4E3FMUCcFXevms+wUnnznNtjdSR6c73zYqtwfuz5suOOeItiwB07zHPFXPHMLNHeHq7P8yIKcN5S1r+KSQ3tcYzmGJKGMVVURG9QBx14x49CH3bpw8YRVOcQ3soyqSXtGBYylLoKXqQgkry1Tmi+oFabBpk2evSMT3R9OIcM/z+0mN/e/q1u90fhozUZWxkZbzG/iCBQH4hjRC2G/vEy0kYAMcrQvJlAxIAK6AZjmgoQpijRvb6eYrDkIfq+hyCOLBGKZKBlq8iQe/uovLaJylaK4aIP78QxgDHXYgOIYFfaZbj6/Are9/qP4E/P/wGOv/sOBieka1EwbfbDA8HJA3I+FjMzOewNGIO1AGo8Rlai9/OMkCo7IcoA0B4ADWRlM9AZCSiEIGTKFj++XziPingNC3PEG+kcUnvDE5TwXS3ThCwVeHeE1o0Y5T2F0RzD/uPTboAA58Y2XoBVK2jcHKN0oDGa5eg8NkOhsFrnA7NH5mjeiIGtlXD82C7i0xGiOWpLAfmkLkMG1RvAv7qO8k6KpOlj/H1n8xwjuzl3YcCLNOKWB82J/6R8gxxoQJb5BAoEwHhBDaAGg3wCNJwnHSc0YPqeiblIc7WX3Ux7SY8i+H2D5iy3oKulfHWbGS5TGADjCN7eAH4/RbrUnHyfMjJkqSBSDW8M8ISue1YiFAyggpdJ7QpgNY4guhGReJfnwRr13CzTtKpYEEAFHKoWkuOtJwhZ8QSUxwEOKI+b35liJwioYLOTx1tMcBObQSWYmShVkpKBnUUc7MRl7gPtE0qjPZpAtS+gQh+q5BkDOkGFZ5ZREW04QMwzUQ92IuWFiTlNncrHGvuxWs3xv1gQ5MovGzfhWncsR5PNZ1BrjdAgZ/B4F2qhhfnxOFQgoHwB5VGB4BAW+2/FOAlbV2E/oIWN5XYUERvgTQiQHeN0SGRvAHQOBUU92MgHZ+Lnc+hQQAUelM+hPD6B6rHCuXA+N4YfCEWTv7bkebtvnNPxSQoWZoX9dYWZ1lABg/YYZEAqVHsOlE/FvvaFQydZ4BOyInheoGnlCnnnSu0XyMw+mVw6/pnhkamAzoEKPeiSMcK0ixuzr7T/qpDOnvOpAECFDLLso3Rg2+WEjqnBEOAc2Y1bZF2QZc5gNLu1Sp8jNZTHELUZohZHVuYOaSZ/rNTZrmgGZDWf5qOAQYXMtPfMs+HzXGV4jzcNQGl+T37u5+3+2TutXbtDZ6bllaYGAlWQgyG4BNIKQ3/Zhyx58LsR6muJ4ZFosIxW/zYkrvTMG6htZIT8PDSfm5WZAVWblPXszhrCl26ispVidGaW5MsFzgPtH1BZ51j75jI+dOmH8aVzn8cjD9+gar4wZyofgJIQjdxRmlXKNGBnmVMU8TAEzwjRgQb8ASFWDukxqI8X5R8ud/dyMy5rfqUmV6u6FBBK4HmEVu3u5fwdzxQ0plUVbPUx9fIhyrsaUZtB1UuTxm9m8vG3e2i+dojyvkLcYugfK0PXyvlK2a4eNRB2GG5vTGNx7hDZQgJpT3mmDfQL4jntH6D07DUE3RRRi/wv6LMKrsFBABFJMAkEfYmsRPJQx3/K6Fq7888K8LpZ6akiR0YrQgwAKrStzLo3cNwlVqYYBRhFTnB7D34vRVb2kLbLbmLSaTrBw7DIT1rxkE6VjOW+mTiMLJdnhEj6Iw0R07lQnrn3LdKXaXBJq1W2ukGhthUfarqRu9AarhcYgxhnRNSskU8NH+TJ4SyjlThLpVntmmtvfVm+Db/vbl+fIiLBOHMtHoeGFBATagVRKKV7TWt63XpOmTBT8jTR+aKg4MXi7itLyLV5ZcbLynnuqMJnFDytcnNA/abPcMfjiNvkB0T/0vlhUoOnCpCGOCsVRKLAM+VCNy2pFtJ4sthsPCP/dt8xeXLp0OyiynLQtAYz1wZSkXpRmXBP8wP7/4rOp90Pu0/mYuXfxSyh2Ez+RqLu9t1aCChFIhCFyaKxuHHuUC73/ea8sFi6/3eoqyF7M3tN7JhiDRbtubALXVXY/7u/v/h9Kr9GdB65W4Qw6x/lzrX5LmNwyFP63LCriCsomCm2OdRwBO/4St518D2o0Qje0SPEPeUMTGuEHY1omkEJRoteTfcTL5fd8TBpxh5B3FPicbL8ftD238LY/fZ2T7f7pvCxUQx20nIIgDJQt1audZJVGMbzAWTZhzdM4Q+1g1q5pAkEAGS3h+qlHVS3KTU8vXiKOBJAbpxlNnnQQfnaLqK2h+z88UmUhjEDbwPhAcMbl5bxY9c+gM+d/jKimckVoGYg5CpJyZxOSUJYjH+O88fQk2gIQEhP/qCY1+0YYNKVVWwcTRmDaLXepGACACal47KoKII+7JLTqzWfM7wpcHJibazGKHU0eg/Uoadb+epXCDeB8+EYtdUI4aGm4ud0nVb5iiZU7eUFotgMsbnTwtR0H9G8RFpFDnXbTZCKyr+xhdKhRPbQCWp5KSOxNeRHnuUDrT/WhOxZDw9Fk5NI7hpACpwVqIKxodYuTBMAcb8M8Vz1BxQiapOyzapcJwm8wxG8QQoZClIQWom15RlYhCxODEIkkE2VyafGE271bNskPNMQiXbcLi2Y43ixAndEJwnQ7YOPUsovatYJWbBRCeZ8s7HJiQs9moj6I5oIM0m/N7wcG+1BpybnhXwnm1aa7nGDpE1MuBYxVFQwOO6IeaaJI4K8/Wj5RqzQsrBtCjsOWONFqywrhLm6nClzPzGDAky0aThzCq5czafz62vGGkfQNkR499/uwM2PMufc/RRaSO6+MxwOG+7q9pWbY7WeW2ry3wKyAsCpI137TeZFwbcVzRSfM1tIxrFRblmHZjvGmu/lBq3heSGWL/wM+qOUG4v0t+Hk6CKy5fiZKKBKZkFzV3v+rdpq4MwUum9R0BW/04SYWo6PTnPvn7s5RjKgcS+tcsgSFS9kfZBCzE6T9YhZPOkkhZhuQ+7sEnJsNpFohIf0/NrvYMbuwl5XFdC9xSWN8brAO4MnqOCyqsF7vjHIe/RzP2/ev/kt92gzfhk2YdkqPdQ4Ip+QoYSIaJUMBkRNjuFCBeGhwtw3u1AlD/sPVamU03CmfmpnD5XOIcpRjOj7L+DwP3gU07/zHEmzo3jC90JubqP1B/tInjyL3o8+hMoW+fToJAWPaZDTnGHqFY5br57G+ZkH8PrHfgM/fPUjuP6VE6huaDcg6ZTSltVgCB3HEI0G+Mw0+e5IyjvyhzSRK0EFj0g0cT5AaA8RX+35yWXY2fYOwDiE74HXqpAHhhBuEa1Mgi3NQ6hZsMEI8qADffU6mUEeXcpX22kGRDHCN7YRvDxG931nsP7+aZQONGa+tgE2MIoOzoAkRXB9C1OXEmB6Cv0LM+g8tYypZ7Yo+drz4I3o2tTWGLBWQlIuQT+YoP7ePWzdnkbthofg0A7qNBFlW9sI/2gX7PHz2PvxC2jejOE//TpUHNO9YAZFbyShAg6eKGRlTqRnxuEPMjOBEmeC16pENDSFMy9RircNiGT1uvNfYUFAj6eoEvfDFoQFtIZxDvSG8Lf2EFQrkPMtxMfaCN8wKq+sMJlyDv/yHQTlMuRcE8nRIr4nzwAAIABJREFUKXj9BGKXUAm6lnT8XkTIj/IYkioj2oykwZIV6jh1cAi9s0vGitNtqKPzpJrZ2KLMrFHi/mVxBjlVBe+OIA4GtIo3Ezrz6Rpqw5FxxcRbPoosb8eoQiFhnH7zQt8Wfyq3MIgzctINA4NcKPDYODJ7HCxTxq8ncP4xlpTMgJy06pFPCys4DZPBZMkFPFJLQ7u2lX3mXRivadFpbdAcUxxRvliB4+OIsAatkorWHpkCk5JiB5IMTnygNZRZDGnGwJIUypLlASre7zKnm0x/Z3l8hSVZW8TKLEhcjIchV7tphHNAsAmSseY81zsIkSsVjUTc/Z3hIblcr9ReF5KnW5d4irSgzDh7nmyBJyJCXESswFLl7n8xysBTSVmJJm9OAxCjlIrxcUIcK4usWnWoVmDMhO4Cjo+ok2QCfRKRETxkCiyVdN44p6fJcMyIHmAKb4PmukIWpitgrpE3IjRUxzGNm8061M4uxbwYLyi0GtD7B+R75jPwWGP4AEdpnwoaERGiZFt3OjPcQs7gjQippu80l12p/NwDbyM+38XtvkB83OpTKmeMBpsODUBHMXjgQ5ao8GGZhgpoZZzUGGQ1AB+naN5M4Bm1l3MotuRIIVB5eQ3VzQzZ914gUq7JAMq9eaj9Vbqy6RyZsyfOQMy04Y21aU3lSE14APzw1Y/g82f+CM0ndzA4QvwibrKXnM8HF8T5MRAvD8nwTRvlFs8A6cMQXWlSzMpwqwraycnVIrP+QFxATLfpUJOEpOtSUXtLa6AUksTbD+ghH45JuTA0MmT7eb6P+o0BynsK0TRD97EFyIUpl5vkUCAuwPpDVG8OEE0x9C7OQ823AUVkP6fgMtylYNvH1lYLrcUehsdMWrFp+xUl0/zKbVT2JLKqQPbkOYhmA2o8BtMaPNGQIcmHCTmBaRcpSD//DAs1T5A6OSfUp+Dd4yIGii0Wwy1RUew4OcQJMU6xnJGB4VYHfidCttR2smOdpHk7BYAejyG2D+F3Isiyj2xxitAfbYqbTDsEwaI/MmDEBzDojy38rceLGo0gd3bBu0Poksmx09oVHyxTZBTnC2pDmuJNdEa0yrSFnG2V2ZVwcfBlbLLoASZW4xYdceoZYYogw12gSTnn9tDrpOhyhFrAmTNq6x5seDm6cD9qGyORkDHnZHtK5TEcNvGb8/w5LrofS/XWn2HJywUidvE8uGN3LQr7O4N42GPRGvCEi4CZIDfb4ykSnN2Oqcm2nBBuAp/Yj7t/isRkZtVy9v18wjkaQL4/pqC0E/PdOWIAiLMy8b2FfTGqLrewE/k5YpbcbLdCsUrIkD38/JyzIMjT7j1LbhaT310gR7siz10b87tCgaktSlS4pyY2RqRjntF4ogW9X41GkNduQbRablxQoxHkjVWiPcSxQ7vKOxpplcYg7dHzpIbDXJ5v2nsy5KTI5cQ9As+RX+Vzh3Te6426bG9zfO6PveOcjM0C30UZiHYLvBRSAWEdbDmDiAEvAvyhmURSoHeiZNReMeq3IwQ9mqjJJn9Mffc4htw7QPlfv47hYoDo0WPmuw2hz8jAdZYh29hE6dlrqN2JMZoLEJ1bNgOeYekLIviBA9e/cgLvfvHH8fQjv4eZJ7cwnmPOeZcFviveRK0KubdPg1y55FoAXGrwTMOLtOF40G4FA0KDeGYGC37XpGRs2a1hm5g1JnWFto7jLVQrdH49D6pzSKGLALWobLKxEBB7PbRfOEBlW2E0y9E9UydfFsFpBV8KiaAX+BAHPVR2FcZtTi2yZo04AnaQM2NOuM9QvRKiu9pEaX6IrGIHNUaGd2aCkL0eql+9gnA/xngmQHb+OESzAR5LcElFDgDyEBlK8FRDBhwiVQY5yFsX9rqS11HmQgsBOLn+RKyBlOQF4vsThdFbbXo4BLuzBVX2oFrVXFVUHGS1CWNd34UYJFChgGpVaSAUtiVg2lycrjndW3AF0IRlgd2URnb7DoVTtih9Xvuc8qqMrwxL6ZpnU5V8ch7H+ZNe2E929+Tm9l/lvy/8S//D3SQAqXH3pm3bpFDoTPzeIkRA3haz6IUl1utCsWLbjiondTtvJoCQS1u8GVKtvQZEak7e8jNs0asN8d0+K066bdqrsFwaKR1viRk+CXGKkBdRhkvi0CNbbEygPXcp5wC4GA57PpTh7BTbh8U2mMp/x7TZB1uYmVagRZFcMamUK7Zc0rxFluzn0sWeLNB4XmiwTOUtPmm/W7uW6pv4OYZ/5bhgf1lr561+r22LcpIvZlEcnRX23V4D1wLWOblZ2bGD3pOWCcESsYIVNngry8bNW+avLS+aroDh7TCg1JWo7CrwVCMLuXFuD4iCYFr0PKPiUqTIhRdKOiK28t7cJnx7u7fb/VH4aDNxaWMoVtxseF4cwxtpN1kwRQoZMCCtMoyWSpAlD95hhMaNsSGnWiJqkkPLACpbKfpHfMRPnSXI3XjsAHCDtRqO4V9eQ3mX1F7xFCN/lZElFtKqvbqhcfitOXzvyz+Grz38OdS/d8dwe7RTJNjJlPmB45eI9pRbJdnBBIyOy7V3IkICAMCFbJrB0g6m6rBL7bNKiTg/47HjAE3wFkyat4oicvht1EjqHpn3WlLg/iGabwxQ3lcYzXF0Lk4RAhKb81NAx+rX+ih3FEazAofvaCOpM7BMuwLItur8PlDeEBjvVjA4KXOjtygfLACQEd3rt1A6SBFPh0gvnqTzY4iNIlZQHiUeM6nhjRWykgC3HB8hcqdgOmlOweVWjIbYa9E+bVsLgOME2IBG5vsUTBlRZIQLfhyO4O+NSDE13aDPyjIKVozJ0RdSQo9GELuH8PdG0JyIjiLWEGMFb2wksbGGP1IIewrBQEMYaJyZcF7bunFuv2FI+UIAWKuZc2wU8jiCUUz3UUiSe1hyu/th+ST9VttdxdDESt33oAOe/63vGWde4+YrmOExGKURowWCU0r5VOjqLIMuB+6823woxpgzJ2RhaFbbpmAxfD/rSqySFLqcxzxYQ0om6N6yXI23+gydJKQoKrSQXQvYoiJF4UCh5Vz0CmJS0fH7dxXAzCyABM/bb/bvrVdRMZw0DKADzyEeumCW6dAdkf+/azPaTZjjsC0XY07Jw5DatcacFGlCyEg5gHOGzgglVX6xDaPzwqxgLQAgV7w5NEzlXCfHzSIOkRUi0OuUL5gTjs19bRZT7rwWkEcKA87J7trLj52VQlqsGG8x5dHf6FLgjsG2n6AoDFp7jBZfmrzBwAV4vY7s1ir4zLRZFJnX7qyBT7dh+VVMAUmVwxsTwuWPqJi0hpWWogHAUC7MPWI5iWbMUT4DBCfl8Hdhe5vjc58UPlopUtu4XreiwS/NXPGgswzNmzGCviE5a5jJEBARkFY4BkdLUBUf3uEI2TsfJBt9k9NjLel1HMP/6ito3ErQPxpAPnwKvFwij50wdKsHnSbQ/T78Zy6jvhZjcDFCNE1VvIjh5MeaAbU7Gp1/veCQH96oQfZ6+aDneVBR7MyukKRg5TJErMlUy7S7yI9msi8cDAjZmYBuLQysaRKX+wdUmHBGJN04poFTCJoY7MTeqIPX61BxjOHZGehaBXpg0pBNACDjHGJ9D61nt1DbkBhPc3rfaAyMI1gjOSgFtr6LxvObqG1JRG2G8aKCLDNqC8b5eYImc8f6NQ+lhSHY+VPgpdANGm5jDGocwfv6awj3YsQtn6TEhRUSTzWUz8EN2uD3U2RVL1/pGcIyY5ZHYaSjtgiOYkKaqlWKQwjybCZWKechpVpDLs+YUEqaPLVNEvd9qCvX4R0MIcs+tQRtdppRIzqO2d4+9PXbEJ0htbI85vyZmAQVilLDH0j4A4Nk+QxscY7sF6ylv3WWTjMqig570OUQ4mBgWkYMTpXkCYg+RUpkrXI+Qfpe3rq0p5xPTnYuRdzcW7Z16IqfICCkxytM8FobcmyhDWM+D1aR5JA4UASN5xE6BbgoBh2TUadzPDeScOIA8RwByDK6B7Vy8QhONZQmNPkZHpGKYrhQ0MJnTBR3xQWCJcYa9RBTRrWUZk6FZlVWPJWOB2SRAaSpQyRg0+ntd9pnt7ixvIi0yq2JrYDuUHFLvCkm5eR/W/RNiBzRst5K9t43MRs8VfRZBkVHZo5PaTOB5224iXsltXwn8odiZqxmcUrKwVQSjydN8/xA8zozwaoOwbfEdnv+DRrnxn/L+xLkweaONaXv1dZvy/4+MfYEVqlWKAotYskzUv5Wt4h/w2xxJyW8k8eRbWxRMWWEJN7xFWQbmwAnKb2IJeIpkrLz1KqHyTpAJ2TCap8TESlC8VNq1dtnxRWJ8q7r/PZ2T7f7IrIiPHZEv/v8L6FyeZt4E50uMDcN1ukBngc1VcPuk1OY/tQzRG48dRS8NzKTPac2S38EOdOE2OtCHXZx5dfO4OzfuwFMtyCv3wIAiGYD8DxkZ46Af+sSdv7jxxG9v4/yH9cx93+8BD4/C7mxlU+Ex49AlX3KtVpcgE4SMidkxBuxbSxeLtEkN47AGzV84ZU/w7nf/BhW/v434S0v0gMeJ4SWZBlQLuHSxxdx5hMvgNdryB44QuTUlLLIZDWAdzgm7tIoBW7eQfrOBxFe36FCZofiK/TiHGQjpMFoSKTA0fEWKjc60BvbZACpNeR+h9oiSQI+P4t0uY03/kaA1ss+Fj71PLTWlLMVx4QgSQkxNwvGOdZ/4iR4qjH/2y9BjcfwFuZpddrtU4Bssw4Whlj/q8ex/PkN6P4Qcm+PCk6LOilFMlEu4M3N4PX/7hhqNzwc+SevAGkK3mpC9QfuHIrlBejDLu783EM4+gfbgOCQV2648wzOgOUFmqw2d8Bm2uQtBEC8dI0QATtRm1U9HjwBWQ0gyx5Kr6/TdTSTqjc342IQmOEbqOMLGB6poPqFF/M8psLmHVmG3NqBeuc5RLMhqrcHUC9fofui0OpgQQDRniKCuckOmpCkW2dZO1EaVK/zM+/G1GeenpwolTQZXxysXsf48ePwuwm83R6YpGwu5lGxwAMfWmvwo0tQt+7kBo5TU7SPdkKzIZr2NTsZseKkpHOeRZYRYd8SR+17tZ7wTLGFOQBXBFJQLBWxst8nmbBSDsGB1u74VBS588eEAKtWCXkzJGJeLUN2e+C1GtRgQGimUVG6zzDFEQ8p9ZxVKkAcG/+mxH0nr9dzJ28Tnmm/25FsAVeE6iTJj10p4x1D6iBWCqEGA4NspMTnkwYVMEVJ8d6kViyJFLRZWCiTDWb3gwjPRMy2KiKrVrP8NF6tINvazlEyu1jyfLdPvFYDY4wUSMZHR/b7zkpCDobEF+SM4i04d8ev0wy81XTXj5LWzfk9ecwtWtk4NrSCfYrOOX2MitMogY4iej0Mwes148SdF5xaKoi5GbicMykhD7v0OeUSFRWpde+mfDpmlKUA6FjmZqG7Pagoou8plyB7A0AremZ3dp2wQScJkZnPrACvXsPwhx5B/dIB9OoG9LkTYK/fQO+H3oHWV2+ZZ4VQ0my5DXHlDhD4kDu7hKZfeAC4tkqo1Nnj4NfXoI8sgu0emLSAGHJvD6Jep3mi1YQeDvHHw8/c01iH5Yda+mO/+7335Lv+mwt/+HZkxV+2lTZT7D4aQDWryGbqYI06oqU65fs0a5C1EPOfvwlvZRkAwLYPoH0Pam6KVjW7Hcj5FkR3CF2vgC3OofZyiNWfPwcc9sCeuABx/gwRmsMQ3v4Q8snzmPvUcxDfbKD919aw+vFHgEyCn1wh9Ui9BmQSYq8HvOsdbqC0g4RoNYmDZEmMnNFDtn+Ac7/5MVz6hd9A8oFHka1vIrt9B3q6RU67O3vQvT7O/m8HNOh5Htg3X6W2gNZQgYC320c8XwOTCqrig/kekpYHXQ6hqiWwqRYAgPeHiOZCiN0u0lnK4arc6ECXaeDX4zHulvfqbg/epVVUbvk4fDzB7f/sMfCTKzSpDChig9dqVAClKZY+8xp6/84Yqx9/BOL8Geg0hVzfcqGfqj+ATlIs/Z/XoLs9l4ispaRCKqKJxg7E2fYO6m94ePDfvYrbH38H2MkVwPcpONVM+mq/A9Zs4Ogf7kLdXoOqBPDmZ8Fnp2mSnGkDdzaJqN1uQdXJmDGt+2CLFOthyYa0DxG1ETQQPH2ZAmcN9A4lIfc70IMhIQ2jEYUQvnwV1bURsvc8RNc6DMHLFMYJxgkGb9TAnn4VlfURovkK1Pc8bAbbMnip5Ca4bGubijbOcpl+GFKwab3u2q3M9+ieCgLU7ySQ730UYrptEMkQvFp1LVm5u4vyt67D3+6Scq9Vc7ltolYFfB9idgby+i2I2RlYA0dY/pJWBRfnt+bjTKxKVb5KtYWMcyG2LRBHKjd8q4JyzCoOnUrIFnuWq1IkXBdacNy6Viuj9LRtK9s+KvJdCrJpxxUCjKkgmT8S6lFQDDFGLVcpHcfPukfbmBvbQnUGkkABlTCIou9RQWrRBVek5/tx98YKSAxsm1WqvDXuro9wsTsO+bM+NoEPFgZw4aJWoQbk7aoCid8aX9rgYmhDeNbGAydN8nsEBi2xhpK2OE6T/B6iN9H5isz5swUbZ0REj1OjEsuVdkhSY8WR842YNcG0XKy08DkT/jzKtMEot87tvxDUbjaFoo5jUnEazo4eEwVCzM3S2GvaaGKrA/mu86h96VXXShSbB0jfdRaNP3yFug9SUTjyaATx+q2Jwpk9fh7q5cuuiGcxIYB8/xDOR6q4GDPeQ99OVfn29m9/uz/k7Eph9sUUax9qo7qpUGoH4DFJJfleB7g5QDYaQZw6Dj7TJji10wXrCehGDUxw8HEKfdABFueATg/Lf+Jj431tXPnVFTT/ooSFz10n9RFjYKtbCEYR9JkTOPr5XbB/rsH/OrD5ySoW/+4YemGGZKr9EdRhF6I/oElxOCRZupHDqig2SErqIH7RamLl738TP/DNn8NXPv3PcPqzv4CFr2s0vnyJcr9KIa08+yPgifNQUQq234HY2IdcmCaJqO/B7ycQBwOkS1OAH6D+9G3I5RlE8xVUO33o5Tkcnm+h+fohfe8og76xCj47AwiO9MIJeIMEvDcCj03rgDEij2uNlV9/BTi2jDs/1Mblv91G/dosFn/9GWrLmdWh3NsH8zw88D/FWPtgBZc+3kDzlWks/Sm1b1Qcg4chVKfjVDO604W3MA89HkMNx2BcAYxWvxYFOPq7qxh+eQb4EWD0qwkOvriCo7+/4c6v7PcpwXg4gphqQSpAdQ6hL5yG4BxqcwesFJKh4/nTYFduQqQZ/GoZmJ+Fd+xoTuDWmgq6V94AlwrKBLyKpXlauUYx9HBoVqz5CpoJAb5zCOW1ET92GjxV8C+tUihiiVbq2gTQiq0Oguc2gHdegHr8LLzrm9DdnksBt0gWUCgGrGM0QO+zijCDzJRu7CJbaGH45AkE/RTBjV2o/QMqfoxM3ymjJMmt2dI81N5BnhW3tw9Rr9NEojWgJaF0ZUovR5oYBQwdu5tsLQqlFaB47vALAJ4HXi5TJhpAq90wj9KwikWazEKHtiAwzszG6ZZJRdYDNkQ4DOk6cEbKOi7oPGcZfZfW4NWqMyFlpRJFsDTqDpFj5TJ0v0+oRhS7VT15apnPqFTonJgiwO6fRZ0soZr5AYkuAkJM4Hlvak84JKgUgpXMOGDS0K0PDQNcAaOz1BVb0JqOsxAQq8ZRXkwY/gvjeeEFk/KupQIv8ZxvZ7cJXo7hEUlJHD1L9mXUjrF2GxOkckv4Ho6gkhScc3P/moIuzcCmqkBsvnswJGROSuhKSG0cxkxxanLDSqR8ZAAhWoZsreL4TcRvHvgUqmyVlAYFZUFAY6aXkNnZOKIcxCJ5mXPH47QSdV5rQu7s5gWkIcwzxiBmp6FHY3J4H0cIwgCKc8hL16hAHo8RhgG0Oe+636fcvHYTem2Lzme3B16tgq1uQ5qxhpfL4PuH0CdXgO4ArF5ybThbxKkkhSiXc5PLt7d7vt0XiA+0ht9NcPRfbqNzlmE450FENj2aWiE8DMGGY6hmldCTwy7U/gGwvQc5Xaeba34WbDAGZqegX7+GpX/6EhpfL2P43iFu/uJpqFeuuBBFPR4DGzuQl69Bhz6W/5dnIP90Gm/8/DL07XU4wq+UuRkhFzQpVypglQrEVNNJjtU4coOst7yI4Msv4PRnfwHX/v3fxMaPpsgunHCEQ50klH6ugaxRgnriHA1uV29BVXwyydMaqlEBH6WEvmQZxPYhvJGE9gTGy3W0nt8lXoDh3GTvPEcPaKcHJjXimTKdG0aQtdakNtJxQgnM125h5VNXUL0t0H80Aj+xAgAkfw8DiNlZagO8fh1HP30F9Us+Bk+OcePfmwZbWaYBqV6n/KtaFUDOGWHtKYi5mXwiEbRq5WEIddCBevUNHP/fr2H7a0uof5AGEhaGxPFZWqRjHo1pkB/FYEcWIfb70OWQIPd2i4JmVzfBji0T7yXNgL0D6GoZeqpBmWNVY2vg5L3UblC7+9DdHvEODAkWpr1gZadyYxv8+cvwOxFGiyGGT50Cq1bNJKrcwJVtbBES9OzrGC2VMHr8GPh0m8i3VkWUFlZ4ZoIiIrbInWyNa7WWEnJtA+y5yyhvDtE9UUL3XcvgczPuPlNRBNntQV65Rkq7mHxS5CMP0ERcLlMx4nuQu/sFFEC5FXJRAegCM63RHRd5ZpN9zfPy3DCtTcyEdAaBrkAqGshZ0iosOhECJZokEfgkZii2cwwpmJfCN6FQedyE8QlSynGNWLmUe98gL0pcy9V+huVhWS5fljm/G4uYWcTKqf/8IJddW3THcq9M5AJJzQvKPnMtc1L9pLILPI8LYX4wOR4WCNCO82MVnUYxilJoMq5IBu8IvcbvyCJsxH8iniALAsNhMfefQb1YuUSFm5R0rL5P+2aVYKBJHb4HXS0DlTIVnvbZCnwax+oV6FoZrEroM/O8u14npaH1UmKl0KHmDh0LA/oJfCIu20iIUuD2k5l4IwDg9Rq9HgbU5iyVclTJ3JMsDAllMc+3Go5o/BUcol6Ht7QA3R9i8P7zdArrdYiFeehuD70PnqOWWrNBgpBOD9nFUzTmVSm3UO7uQ7/noiPK61oFKvSRHZ0h5Wy1DD47TdfPXGtmFa3fhU1qfk9+7uft/tk7BqDTQ/t1jf5xBhUIYGaKHshqGbzVhFyYBh9ERDRbXgSfbucDp++BxQkNALsd8FYTbHkBi3+6A1ytQp0b4PCn3g12bZU4HIYEzK18/ugylr5ygNnHtrH31y9Cvn6VVh+BD9Xv5+oaIWhlanNvbBsHIAJskjhYeOHrGif/5Gdx4/2/hbUfqII9+hANmsaELW6HEDFJkbOlNnijDv/6Zh7uCFC2kfEqge8hrdHgO1z0gINDqAoNEnycwnvxGiEYUQxvfwB/kEJWPLCpJhUznkcp5FqRrN33IfcPMP+tCGIzxPpHFwgatjB3tQzWNP3/vX3MvRCB3ykhOz3G5gfm6VizjHKkwtCZBBLBN3OFR05SzRV60ApyeweLX4+x/eocNn5oGWJ2hlo5nIO3W+CNOuTuLu1Ppws50wD2OpBL0zTYd3vEU7j0hoOx7apSVQLoMIBqVNwt5kifpuWhxhGtDquVnDhsg1Jt+7JSAV/dRNCTkCFD/I4V4/ZM0QSsFIJx4k3wagVBTyIrcyQn550z9MRK3CpZGHcu3vkOTiIKvFwCX9tF6VAibnBEJ2fzCcsUCN6RZci9A1pFD0fgUQp1+qgZWDn0cJSrR2z8io3bmPCpKfB47m57WU8kgCZbzoxFgJooqCY2YxZoc5iYVSGZUFOHklqfG2EKAWuYaSdCRdlLrtVkg00FN88en/i9S0m3EnHTUnPvsb+36ilFRQhxgzzTepF5lASQF4XAm20O7HFrSmR3+2k9ZQDXvnJoj/07581FPkTudHtUSBE6WCD9WnM+q9Jyf1Ag8tq2nOMl+S7ehgW+I+E74rXbZ9veo/ahjfZw/9qsQIAMDwW14MCFidfQpCzzSeHGPJ+KxOLrNp/KFnrOzkDlx5aRTxS19fycS2WP09wzzASbql4/P+eFc6Clguz2nLeOzjJqkQsB3myAT7VocaA19GAAeWIB9a9eIyRISqhuD/KBI2j8qxvQ/T617wDA9+Fv92i/Ulok8fMPQLz4BmzSvGqQMpmPU6hqiRCjw64p4oRD+YoBq29v93a7P848A/rHy2C1CirbKY7+2Rhr7wuw+6420mOzYMMxtRhurkG2a+AHfaipOhGXO4fgtzaBNINqVkma2apD9QdApwd4Asd/5Rto/lEV+x8ZY/XvvAN6aQb81LE8oHD3AHq/AxZniP/FPNhf3cPqrzxFg838LMSZUwRTc0YrKaUg96mlIBoNAOTTwysVGuziBOKhB9H48iWc/k2J85/8GF7/27+BK79UxugHL0Dt7gMAyjcOkNV8eD0q5izsL/78BbBUQlbImFFLCTRr0JUSylsjsP4Is3+xC1YuY3SkAowjyBqRLlm5TKufbh/erW3wcQY5XQc7fgS8PUXnWwjyrZGSoP8/fx5nfu02eudT3Pg7D0A/dAp6MES2uk4ro1IIXipB/PkLeOCTd9D4Wgndd8ZgT1yAjmNkN2+71TjjDHL/ANn6JvTeAVilAl6vEYydUV+fT7chpttgYQj/T57Dg5/cBP/QHq7/zWNIP/gE5NYOraJ9H+L8GWBnH+ACYrcLtTIPcWcHWasC1qhD7u7BW1xwx8UqZbBOD2J9jwaXO1uu5eE2y0kxq3/VOaRC2agHYQZ6nSRQ/T70cITgS8+ifrUL5TNEH3zU8Ft4jkAwDjUYwP/yc6hf6SKreoi/7wKhU8xIc70cLeDVCrVuSqXCc8Dd+7TSZHrZ7aH6xZcx/XIPSctD/OEnIGZn3EQud/fAm3Xo22tgngex1wPvjpAcnzUmcT61IwwHhoUmSNPwPJxRqFEBuv0A8onGog2M08Rk8qgs8uNOq/G20dbhob4jAAAgAElEQVSDBiADyCgiM0grU4+NIitOClwrEyppwzONUkpFkSNsaxNQqvp9MugEgMgsNmwLR5oCxrZBpKTPKBTlThJvC1Lb4isa6AEGWYuJNxJFpDxNCipE0xLUcVKQkJvfGyK7bTHlmX+TYpK82ON5CxLI9zelc6ajGHpM5xFpCoxoTERE+8SsO7ZBqHNZNc/bl8a40XHJBM85PsqqR/UE14z5JnXe+p0Nx+QLZaTxUBIsSeEdjsH7kXNoJm6Ryl8fFc5dkVxv7zdbqPUGYIMRob2RERVoRbYb9lrb4yvGjui8yLSFHq9QgK2yiq8BxUqo6Qbdj1EMPj0F2RvA2z6EXp6DOjgkLuFwBG/9AGpljvZ1ego4OIQuh0TgNpJ8NRpBvXoZOLniClVVIp8zVfbBh1F+3FqT9xCz7eN7P/1qAArsnvzcz9v9UfhooHl1AD0YIVztwF8/RPs1jd5pIJoNc7+JVhNirwe5MAXeHUI2SuDHjpDSZHWd8owEJ2fiNAOr0EDCL57D1GeeQfBaBdkjA+DGGnEaLAIQ+A6Sn/3sS+g9O4vWU9tY+9FFyKvXSerp+c7uHzADUxyDVcoQ7RZkr+dUO/A86NUNIrp9/SWsfKGLE1/8Odz88D/D+g/kK31dCeH1E6TtMsQwoYIjyyBaLfC1XeiA0zHFMT34SoFFGXmUDEb04Maa4iJ2unQq45gGjdEYqteHt9kBH0SQ1QCqTUQ/NRg63oAajQAuoDqHKK/5SE+OsfaBJg16ZuXlVFkA1P4BFr+0idK1EOvvrRN6ZTYWFizyATf4snoNzJB4bXGi48SFxKrNbYyfmUF4sYPN9wQ0kccmpHZtC/rkESo0yyHE2i50vQp/dZfUfJ5HJG6lHVlWGzsElmbUninlXi/5znKHpKmIfJdciC3g2nNaaagogpibhXrlCsKDGLJEXCXGmZt07SQn2lNQr15GuDdGVuFQx+bzc2KQgwnZM3LeT9GniYi7kgZt3wdefgPlrQhpXSA7NkeTcpLS543GOZ9lFFGgZpQBi3Pg7RahM/Z7eb4vbjIG8kn/7vaWQ5c4mCdo4i1kvVnSumvTFZVeVtnFuIm0UC4uhA7cTFjGw4vOu8pbWmliWkmeu1aOf2N8pVyWl5VDFz7DqZL8AtpjlXPFza68TdSB+eAJlZdrUVsUpnDOrJxajcdO1u5I0oVrmZO3Rf4dLhMuNcWaT3+v7jqP5nxRIaUK7uMqNz8EDLqR5u3TNM3J3BY5su0++x3GssCZ7AHmfPECQmb+W5oiNbNxFuYYI3remClK3ELIvp7SuEWFXJobURbapFrrfCHhUC5TSDvTS52jbkULFNdGzq0Dihlv1tFZjcfkfj4aE2K0tQNvfhbddy5BvXQJvFFzr3XecwT6+depzaUUWK2KZKlJyFWZUB0WBGCPPwR9+RqNIUZJC8YovsNew+K/b0dVvGljjD3OGHuFMXaNMfa/sgnXVPcenzH22+Z9lxhj/9V38vfF7b4ofLRS4N0R9GhE+VCdLlqvdbHyxxE6ZzwgDCA7HQCAnGmAr24jWZ6Ct35A5DmjkBF3yNgNjIE9do4GPl+AJRnYxbM48du3ETxbw/rffAdYtw+cOAr2yHnAhD+CMeDkCk7+zib6/2oesx9Zw8Z/8RR9pOB5FpaR5pJMMQKyjLgwUtIK3vSRacUUgF25iZXPccf50RfP0GemNBiGt/aRTpXJDn5+hgoCxuA9exUsocFFpylYb0iTOUAPemyM6ro9sxrMzKCUuXaGOugAB13wOIMqm4gOxmgVbiBv0SaV2PHf3UHp9TKGp1Ks/uIF8ONHCTkzfXLRalGh0eni2O8fYHRxjDv/0VmIcw8AJoZCG56FlePKzS1C0zyRk8L3DmjV7gc0oFYrWPmjHuQ3pnDs+25j7W88SJydKAIWZoGrt4AnzkOvbgBlIrVmy9NIp8rgSwtugqXBNs0nrHFE3kNhkKfZW36FJWza9k6aAOUSxNQUDVqBT318ISBmZ6H7A3hHloEXr6B6e4D0fY+5yVS0WkblRwRXb3EB+rnXUL01QDxdgvz+ixC1quMxWILpBC/EHoMZtHmrCV6vQzRqhMy1muDPvIb69T7GCyXwWi1flYch3Xuz08BMCxhH4N0R2HCMbHEKYnrKTZp0X1huj8JEzMK3s9AvKq7sZidvZTgUplCyJocsCHLVmOFXwFwf15ow8njHdyrA/zrLjA9XiZ43WwAJCpWFbW15Ht1HFuEpthBMUcKrFOFho2Qcp8QeU5LCpYYXWleOeGyeKZWY1HVb2FiCu+EqMa/Q2nyLYofdfR5NEebI6ElKrV6jNsy5L8W/yYtsu+ksg+4P3H87xR0XhmeWL/JsPMZEYWVbcabl53LMLKfLFJ5yMHQLlqLyS/cHxB3s9UkdORw5Lo97vTegRZZpranRiNSW5niLgdR6NKbfG8NQO97pTDrFWxElsuns9rrpNMvvozim68JpgSBmZgBjbslKIfhUC/A8VP+vZyAeOEnk/WlqidV/95sQD5xEtrYO7B1AHRwieOkmud2PzT5GMfRzr0GsHAETHLLTgbc/hKpVKEPN+UNZ+4O8KFNR4fju2cbuV47PPwHw8wAeMD8ffov3/ASAUGv9DgCPA/hbjLHj38Hfu+2+KHyYELQqOH4EulYB5qahX78O/6UbWPmd67jzY0fgnTxOXJ9DklwHG4c0qSsA7SY9tOUS9OYO9H4H/NYmVfVXb0G9cRP8zhZ0OcTRL+wjqwBX/tEiDh6dAr9+B6pagh6NoK7eAG6sgimNlc9tI/y7JWRlYONXy/QQGthcJynkYEg3vnFpZpUyxOw0FVDlEsRUE3y6TVyVuRlUvvIaTv/XL+BDf+Wn8aXf/x2s//RZZFMV8u7xPfiHEVToQTMGfe4EdNu0Xi7fgKhVkZ1ahOr16YRxBnlkFoMfPIvyi6tg7RZYuQRx9hT40gJYvUY97FqVVspZBnZzHd52F+mFY8CDJ6C6fZoU7MTSbEDdWMXRf/QcHvitBGlN49InZrD5sxcJcQCoheZTe1C9ehmnPqmQVYBLn2hg+6+dd9dTNBtUGJbLecsmImmpN0emgJZwKKbJGVocDHD0114E+0+biGY0rv3PbWz+1ENQN24DSsFb3YEaDqEqJWS37xA07ZNpXvzoSeinHoZ+4jwlKccxDaDGb0YPhkieOofsvY9AzM9BNBu5pDfNKI/HtDRYrQrv+Ar4/CxUbwBuOE5QijyHqmWIzhD+IEX61HngkbOQXUL7mLE60EpBzMyA90YIvvwCvF6M9NFTdL+MRm5Fq8aRQ9wA4nY4MmqWOU4GACBNwFtNiO1DVD7/PLoffQjxe86BVSvUjktS6MMu2DiG6hyCZRLZ2jr4IIFu1nNOS5bRPhiSu8sYu/vHrqzNv7TCpxUsr1VNu0JRYW/JvqZdZCXWEyZ1d7nXaqmg61WnEmPVChHEQ2qr8nqdOHylUk4AV8oRUgEz4VdKNHkKQfe9+Qxr+sirVeK1MYPOmc+wPCvm+WD1mjn/pg1pTCwtaqJsa0VJ4k2ZIkLFBTfvLJssUABTfHDnHu5sC4rvUwbdid9iErRImiVsW64WY8SbsveG1rmazCJ75rPpXBv1mtkXHce5U7YQYGFALXLfkO1tgWck5xZxYUJQmzQM6fvs+O37QL1KyK5P/lGEXKn89TCgcdLznVqreM4tsZxI01XHGQTgSOvME072D0V5Wsz3AD+gYwhJfcc4g4oi4sjV6865n4XES5PLM8Tr0xrZJllziHod2UwdejRGtr4BZDQuZLP1nCg/Q5mI2NwFkpRoAs0GeLVKXELOXes6na0AHCYWKHRIKKvXzHNuUMy3NzDGFgE0tNbf0HSiPgPgr7zFWzWAKqNU2zKABEDvO/h7t90XhY9slqA9AfnaFeg7G8DOvnH4VFDDERa/1selvzcPtn9ID/bCNJBmNLlv7gB7h8SBMb192e9j/acfRHLuCNjxIzTYd/vA7j7U1Zs49o9fQftLZXQ+OsKdn78AvHIF2dkV8FPHyXdmYwvyjRtAkuLY//gcvH85BW9pETb2QWcpEVdDSlmXvR4ZWWUZWLWCSx9fBOZn6OCSFHo4Jq5LrQpxfR0X/8HH8NInfgPsG68QKtMog8Up/K0uZD0kXo/HgeUF2PBGpjSt6I3njFjfQ/WLL9PqqWnMzxiDqpF8MtsmYy1Wr9Ng0mxA9wcQwxTxfBXr/8kTEDPT4DNt2nfOaQXUaIA9/TJO/oNXMfWCh+6jCXijDrG0gGxnz6kqeL0O9vTLOPGrr6L9jQCd74khlhYgalUqIgShKqLdosJiPIba3YNuN7H9Hz4KfnIFOHOcevKVMvTeARUXl2/g1H//EhpfrIJ9cJ/2cXYG2c4eRKsJXLsFcfoE1N4BwqtbUM0Kgv0ROejGBhrPCqiY1lD9AfzDCDyRQJPM6mS/TwOnXdmWyzTId3vQ/QFUvQr55HkiCYcB+QylKeAHyG7dgbfdRXhrH2kzJFuCMcWGcKNuA0CQ+coyxH4fwfWdHCURguS2BeIpANOioOJi9NRpmoyMy7RtF8ntXYjlRbRe7SCa9pGemCeyZrsFNY4oy6tWhd7vQExNgQ/HOR8GyFfKPJ9Q33JzyIdFPQwh1hjb8Xqd7pdalSYeo9JhYUCFhkF/AOTE0NCozeKY3puRvJpVyjk/yyiPWKWcu0Pr3DMHPhUqOjZ8NqmoyDaFnf0MXi7Rfxeuh2tR+T5YreoQIBR5QVbeXeT7mGO3hUyxKNTWN8fGlFgkz7RKncLN7l+hdWWvtXMzVnkb3XGO7FZ0wzbEZEKdEofIAvh/2XvTmNuW9K7vV7WGPe93PPN0x+47tLvbl+6msU1jt23sNgbHDAGMgNiJEhlBFKQognzgQz4kloAoQglIxMEMMWAGA0YyNrbbeGi7aQ+3576373Tumc955z2voary4amqtfZ7zm27EVxfhS7p1Tnvfvdee61ataqe+j////8Rfyg/tkAI8oLs6Sh8CKhLrIFYic+OShKoyocW5IigtaT32AbVclUlyEbw5gmk7lXRvF5VcUzZ5epU8Odi6hhrYjAe7RXW3Ktd7IvA+aIqm/Nfrppnygd1MuzF+8gVJe7Fl2KR5vSxq9iDQ+YfeYb0cI7e3iS9dgWzf8D0W54hfTCRe3xG1hz71GU4uwOh0HRdw9PXcF94NabDzEaP7HBJcu9ILBcWK/TYp/prr3zMsoeJ8m9Dc4B16m35AXaVUr/e+vlv3+K0LgG3Wr/f8q+dbv8MmAN3gRvAX3POHX4Vn4/tHRFyJicrVGdBsrkhk1NVN2qM0ZDkpTd55q8kXP/hi+Qf3wAF+WQTXTuWu5pqAKObFpMrlDlLNVJc/pe3WT2xy8nzW6RPfgjTUXSOajo3jlg8vUPvwLD9X70kednNDRa7OdW1XezvPkNvr6b7YEE57rD4wDmyueP+x66Rrq7itKLuIoUlNWRz56usK1BSduJd/9OLmKqGDzyHclsU2x16rx/i+h1UZTj3awu+4/Lv4qdv/QYf+dxVbu/10Dol71Qs9jp0dyzFPMcZhe68m6f/6y+iP/catqU0MfuHACL7vv8ApzQcn6DHY0mN5JmYZoVK6CAP5pfeoNvrcuXmNg++4xqrHUWxfZlkqUDD8E3H/OLTKAc2h3M/l3L4katMr2qq8UWSlcJ0HOlcak+ZHGzuOP+TOTf+yCWS4hLGl1uziRST1ZXDKYXpSn+d+7svos7scvLhS/DMJjhHPjG+HIWi3EgZ3K8Z/PdLDr7tcWaXNN39K7gUlmcU5z9Vcvv7z9O/o0hW0h9nfvRF7yWTREg9mNC5uoYXXyJJ/O6rKKKsXRQcU1HhtAjQajoj39qkfPoi5UYWaxFVg4Txy7vMrgjqkM1qkumK4pvfT62g7kuJDaehf3fF/GxH6nRVju7F7Vi7yCrkO7XUHsNJfajw997HP4d96jFcJwG9Ge9fsj/BbI9R1rL17+/w+p+5zBNv5MxfuEL/1SOKSxuoT3ye4z/69Wz/9CuUV7fJ7k1Jnn0atVhhh3303JNi01RQsWLlEZFAwvSciFaqJqqEnn+axYUhvV95GXa3cfc9ufrwWJxsL+yi5yvMWPyiqo0u2lhMxysftaLYSBj/+G9y/IHzjF8+QR9MJK25tYG5cRueewpdVLi9I9nQ3Lor7t6Hx1DVmFXB5A+/wOjHPsnkO59j89cdZnOIvrMHWxvYm3fgmSewX3g1Oge7O/dJdrbkefHIj12uJM3b75EohZ1M0Wd35f2jPsXFMcmiZnW2gy6dcLuUlCNwWuESpCZdAv1bC/RCxk96eAK9LvbufTH5LKvoYxULGHsXZrwxoXMO88F3e++tpbiVj7oiesgT6kFC3dVUA43TYDNi6Z5Q9PbcDx9IQHvtkng73boblavq0nno5bgsQRuH7abwyc+SXr5E8dQ56l5CflKS3T7E7o4luCgqVFGjPF+uvrLLnQ8MUbUjXcHwVknvC7fZ+/2Pc/IuSFaKbAJbX67o/fJLuHdf49XvGZGsFJ0T2PpySeeXv4h77gn0qzexc/GC0gOZMOx8yf4ffDfKwPjGivzmkbiRP/MUt79lW4pS147usWPjC0fiJVZW2A8+i+lo0kVN9sZ9kZ1fv0n13DVspul2O1Abbn/vNYZ3DLe/u2b4xQ66hkv/4GVUr8fg37+BvXqWZFXgFit0v8/4V69jz++QjIfsf8M5lmcU1QjSxYju4Rl0BWd+9gbu5j2cs5Bk2OMTXv2+p7EDw6UrBXfub+KM5pm/8CX0eMzyuQt0bw2wWuNu/v/ex2f/t+nc/KgdmHvEax8CDHAR2AJ+SSn1s1/F52N7RyA+WOv9GzoN78I3KeAni1X6ixssPjLDdGC5qyg2FOnCMbzlmF3S2AzqPsKVAbqv79M9qEkKS7qwVMOE1ePbdPdWdI5KeO+7UO9+ApRmcH1K58iQzS3FZsLi8gAc9PYq8okBB8WmlskG/x0ObKawidQrkgKj4i2Rnt1FrypMJ6FzWFBe3sRlCXbQIZmX6Pc8zUc+97384tf9Cy7snrC1MadY5WxfOmZ11GX3zEQCvI7soEQG34s+J3ISQdocyJneVTXsuAM/IBBUvf0/xvLgG3bpHRg6h450ptCVXNP8ki/GOodkCcuzmnTl6O3J+1QNulTUfRlX2QzShWJ6RRaFckMCHqdkUagGSI2qDJQB01HwzBO4smR4c0m6tFL8b5xQjRJspsmmhnRhWLz7LBvffwubQbmhKEeK3gPHgxdyxq8htdJSqAeqMVo75ULcJpkGGXtMc5zqO5ER69i/xbOXML2EdGFQtQMHSWGZvGssdY2co+4lrC6NSQqDzaRCuq6lb+aXuujCxarQLtHYTPsijzoWebSpL+ipVSwAqR6/ImOq8DWQapGO1xe2pEaSc9iNAZd+ccX9P/A42UlFcXmDdFZiP/As27+2x+KDT6AqiwmV2tsqkjbJ+Su1NTmxnGesOB35Sa1jpMLpkevRuLRJddlEggWXCMqhjBNfrTS4nwcyrb+HwUjRo5HKmwmqROMS+V5d++/XNGhAkkg/Bl+fgN74opY6pFECquVrAuKcSLU90iRFL31goSXQMJmSZz6Tumsml+C1bUwY+8PLqvGlIwKnKlZwD33o1WfSH8qXEfEScCXHlx95tkLQEwIelGxS4r3QOh4jWhFEMrpPMRWNm3M4xtptb/8eUmiJlmfbn4vz9eFsit/8IemdxJP4fb+h5G/W31cpXqubtGFVx36KLZhCJ4lPGRGPFc4pqLVc6gu4hiC98nwhX9BYxoBG146kdKT3c3QJ3X1Ra+kzOyKE+ewrQprfGguqk6a4L72GWxUUm9LXxbmaauywCRSbCnt0jJ3MCPYUKs+xXYsqNCfLLq7SUKt1pMy5pqjr70Az6Lfl56tot4DLrd8vA3ce8b7vA37KOVc55x4AnwA+8FV8PrZ3RODjEFiUseTa1+S0EKHyfOLo/fKQ7kf3SAqZmGwKqx3F1iuG5a4inzjSlWPy/vPgHJ3PvCGTbq5QRh6+ZO8EXRqqUc7x121KXZ/PfInBizcwuSIpXZzQssMV6Uomh2wmD7muiUVErd/1yW7En+7Tl6U0xZdeRxmH6aZkh0vqUU6yP0EtClyecntvM1Z1T7TFWTjcH9HdWrF/fZusX7I6FKjazuao8dAbkDUTROAWuKDm8PVzVLcTF7Wozmi1xQXF4kzC2V/eo3/foQ2gHLqCuge9AwlITA5VX7H9+Rmjm77asgZdy+SXT+QzMhFLJfZsBrqSn6SQ96cruS/KwOLKEMZD9Ke/zPDz93EaksrhEuUnJykCaXqao79/he/7Lz/O4K6NE9/4Dcv0mmJ5TjG6VZPORTJsVysxZmyTdFtKirbcWoUaVRC5KFEB4iHoYiuje/1IdvpA3ZMChcpBflSy2kwoNhNWOxnFVk5+XOASRd3TmFwWxWIrIVkayqEEho/ch+im0rXzC0x5fiSpXcDmCWaQYTsptpNQbfepx13K3T7KOM799E1ufbRP5+YxelGR3T1m8eQ2vV9+ieN39UleuysQe1nJolCbtTG0FiR76XoMIP2iGYuXWkiWvqTCYiVmcMcTSR0enwipejJHz0r0oiRZ1CSTknQhGxBdWJJSCKjpShynXZpgjk5wPSkqagZiiKdGQ+zI/7sxQG9tCmduZ5ukcOjhkGTlU0mFETSnK2UMzDAXjsZGDzvqokdDMQTd3BBOnE89uNlcArVC1FiqCmUUPCfDB7jt+6YsceF3GpKljWgPtQ8oyioqqaJMH/zm41TQmSa45YpkWaEXFWpZoOZL2SAtKtJFRbI0ZAtLtnToEnQJycqRrCApHSp4YPa6TdV051VGxqBqIwV/8wRqi141qrgQjOtKUmJ6FQ6mcFkqFII0weYabUA5J3Og8VL41KdQMpkfTUeJl4+xDTqVge34zVdlZC7bGKO7HeHuzRd+/MtcYnNfZT1JUMaRLKXYp67knsT0K/iAWskGIU1hsZSgSinqfiLnrzV1T5EfleQTRe/Aki29r1g3lxT373pG5tNUgm03X8B7nsJ93dNkcxkAyVxTX1tRbsp6ore3GquTkLZ1kB1rrmwegwZV+uCzKOR9RYVTCu25av+5N+fcXWCqlPqwV2P9GeBfPeKtN4CPKmkD4MPAS1/F52N7RwQ+gCiUFqv1mixAUyFaHiKXwvLfnaH4FvG8qfuKbOqYXEvYeMMyv6TBQT4Rpr85OKR745j8pCZZGdKloXh8F1XW5IdLOhPD/OuvSh2quiafWrRxZDNLsZWyvCTIT0htJSVUQ4n+lSOme5yWH22QgqNf/wzJ7jbZzX10UWMGOdnhkuLaDq7fQc8LtHaUJuH3fOaP8Kvv++f0BiWDjRWrWc7Zxw+o93psnp9GxYmbzSOa03irqJgjj7vNshLCYRvRCE3LTjopYHFOsfcNZxjerclPHLrwO0gN0yuadCmBy/Sa5ujZIfnU0t2XyuvKSIC0PKvAQbqU/jA9KMfILi+Rf7FQjhSmo1DWkS6MVId/z1O42YLBrRXKCJpSjjTVUCbodGZYnlP8wx/7KDv/3ZsoI8dZnNP07sPWy5a992YkJVF6b2dz+b9XtgQpcaO4kZ2lEDt9QOg5G8rv3MOClc4NxeVNeremKAe9ByX5iSFdWhYXu4zeXJGuHNlcJtBqmKFLS+ewojMxdCaWpHCUmym9vapZRMOi6hdUZWzcASpjUcaSzircxgi9f0QyXZEdzEmPFqQnBcmqJjtckE5L6n5CdXmHyz+/5N63nmV5dYQddukcrKjf/xS7nzpg9g2Py2SepaKC9AtBXHiDlN4HhjFIDLwKr9IDIFHUA+GfuJ4UgWRnk2Q0knTURh83HmDGHcyog+mnmHFONc6p+wmml1B3JMCqBomoLmsjwoBlie52SOYV6ckSN5miJ0vcbI4+nGL29rH396jv3qfuKux0SjXUgp51EpLdbdSqQve6JLMSczIhPVmiJ0sxdzyaYff2sQ/2sYdHkvIMjuMDMfh0WUowc1QhjYQfx8qnIp2kXHQtwXzd15gNn98NfdvxZN1gVhnSiKHIpif4Kl8KQ+U5ppdh+xmuk+MGPUxffje9FNNNqPqaqqcwHUF4bA6mI4hqQELcctWgCVY2TNEnqDTCc9Ngu4H7olG1oNU21gtsSNNBik5RogtDEOvYlLjYJ4UEg0mh0CWkCysE6SxB1TKHJOH1osDmqRQSPTyWQqGjEXogNfCUlU2QLgxqIQajLtWYroobXadoVFKANs6jv94WoS+u5dpYQWtDsA9UGxmmA8WGZrUlz4B95Tqc3SV56U0h/IOIKnY2pdjor32Ouq9IVpDONOpeR5DulRRr1T4j4YwVQU1usRm8ebgFRuFS/xyFenUdCYLtdPqWy+F/quZ4e/g9dg0y/G21HwR+GHgVeA34NwBKqT+klPpf/Hv+L2AIfB74NeBHnHOf/Uqff6v2zgl8kkQkmTqR3UCaNgTMTCbaaqzoHDpBfv7tCJtD56P7VGNFOnfUXfl7Z+LI9xfMv+4Cy+/5EGoyI//iLbovvuEfXsX8sRFmkJMflejKcvL8FpNvfor+xz/P6MW7KOtICtnNzC7lskAF+47C82xyvyO0MkHaVEmKpzLoRYk5v4M9Oia9uUfy6VdweUqyqKhHknPOOxWHx0Me7I95zyf/FJ//8I+y2V+S9SqOZz1cx7JY+Qkqy6Uq9skElaUkuzsNbB5SXsFB2hjZQelEJnYfKEUHViA/caBgcV5x98MpyQr692QHGa51tQumK0HO/KLiwQsp6cpx/lMFozddTI8V2w6bNwhPGxELvydFk/7SpSUpLNPHB0x+3xMky4rBl/bk/ZXA/fVA0hWjNy3ZHO782GOYHH7fH/8N0rmj3IBirMgn0N+rm+CwKGQCDRJr31wlvjBRQmydqHLCbtxzfqIvC9B5sKTuJyyuSioruxDjoP0AACAASURBVHciyN+kJikcy3MdbKbIj0tspqhGKUlpyU9KCeSWxk/KUGxnzWStVQyAlJNJOxJCPRqgj+fUu0PM5TOSirm3L54oRYWqDPVGD5dqFucysjfu4RLFuU8ccfhshn5wRLHbJb91SLUzoH9jTnTJNe5U+ko16ZG2CqvdgoOvdc3nrY1SXeU9bqhrsY4oKnQlZHNdWlRl5Z6XFl0JWtAuGyFyagk2wviUVFnjUB3qVJEJPyapQHe7PhDxC59HscL9U0kiqbRAKvak0sZdORE0uUVYlkXSp5eN8+iCPAPh9xik+numaydoQyvgCIia88aRoQp5JFj72lixrllw860aB2NdSppTVVaQUN93Sdk8VzqcV+DJai2LfN3ybArnkqynhKJRoxakUbXTdKHpZny4TMfnWlBuj/ho2fS0U2bKb8iUk+e+HawoL6kPqa6HhptWTbpTJ2A80uNkrg3nEDykXEQmaaX1VCtoVTGQxYLpOtKFI1067Os3fErVk/6rCvvam43dQpaTPPcuQfszKK6UZBNN3ZeAU42Gfkw27thqkeBShzEatANLNJG0id+oJmrNbfo/9+ac+3Xn3Hucc0865/68V2fhnPsJ59xf8f+fOef+mHPueefcc865v/pbff6t2jsn8DFGdqSrFW6xEtJfR4zX8N4ZG2/UgjDg0ZcVLH9513N7hAOiLCzOamZPjMmPS3TlWL73Shxk2fX7pNOS7n6JzTWzKz1cIsRnZUBdu4TdO6B344RsVpMuLL39WqDapHmInYJ0JTn/8MDLrglcnmJGIms0739aIOfxCP3GHZJ5SXq0pN4dsdgbsDGeY2u5DSHtdWX3mF6nQvdr6tIHM1UZ01V2uRKr9qCcUbohowbEwlohNq8KkdhHzxPph/llmczTFSirWFxQbL5W0DlyftdGDIKclt+VESRocjWn/6BCV/L5bKYwnncQOFA2FTi+7snn8UGP6SiqcUo1SMgWVo751AgeHNC9s0CXkupK54Z6kDC9pkkKmfB0Bb/wY7+Lq3/2VWwO1UjRObYcPJ81ShjVuNdGLk8wsPNlFoKvRzTdi94ywvEJrsyzJ4dxeNa9lOLqFr3bM+H9LA1JKbv+xYUOyUoWp7qfUG51yKYVNtM+HWFJlxaX6jgZuxaXzSXri43TivLypiwQSmFH3uJhKlYOelWTLCtcotn5jUNBLBeyw7748RPu/4EnyI9Kyktb2FwLJyjwH4JCpr3A+Q1G+GlSXy3fmWCsaK0stFkag7QYtLWLeDoJBpRx6MpKGiXwG2LA0LroqowLlGvXuPIlMlwnj8VAVZo2x6ia4+HTvrHGlrO+XIJHqILqzFs4RAfhEKgE7o1/fk4jC+HeBCGDU7LZUYYWZ8Y2wVz4jOfoxdY2HITm3pgQGOsGaXPE4A784h9iBYsEZSHogPXjtu5v5OkoBcbJmPD3icAVavNP2qnOEPgoFTcvyjbBTEC7w/mEVUVZEX6EaxBuj6C+KvOKRuXVZmXpNx5NQBmQRgnIfPAZLi/4LNGg7fF1rxYEfBpPvjdZObRx5CfCOTSZkkK5H3wed+MO7vI54YD1+9j3vwt35z7u3A7u+i1B1jqgj1NWlyuZH0uHO5liZ7Oo0BMUXs5n1C+E3wMx8I33yLh11d7b2Cz6bfl5J7d3ztkp3UxC3jNHZZkUxfME3cWZhK1Xalbbis6JJ6rNYfDND2SBTuXhyGby8OpSHqS6r5l+4LI8YKOBFAcdpKjK56BzIb4p6zh6/45wCl55g+yTX8QpBH0Ii3dAfjzZ0SU+x269KseCGeQkxwvPX1AUz16ivv9A3KLfuInrJKQnS7o7Sw7vbtAdlsxPujw4HvKtX/xD/NxzP8GgU6K1w7UhQ6WaelfLpTxMnVOuxAG5cN4qvyhE+tvt+jo98nldKKqxI1k5nJbdzOSxDru/+iByeay36rC531n6Pp4+DqudlM3XjBT29n+3qYe8S3y/+uAJSBcheGkWLOkvh8mU8C5efoPBizcF0s4USWE58+mSxQUY3DdoI99z4x88xZ/6Ix8XxM1B/54VflPLfTmYtTW+MSYqa9qV4mPXelRM+VQgWpEuLZ2DAtNVmK6iGiUsLw7pvbJHsjJCfvXpzmokJOi6pylHCdUoo7u3FBuCynqi7KkARzW7UtmNNmiCLq148CRK0h1bfdgcwe37Ig9ONcpY5k9s0P/Eyxw/MyS5Jyaf5372Fre/eUB+fY9iK0XPVg8/b21Tta+mGReVZyEwo6UaDIiQqn36Lkz2mriYKosEneFvbSTEGB/8iFM0mnUSdZB8WyRgszSLfdu5WSEcHq0FPWibNAaHbN0cV0zxVHO+IQg7XU8pnvP6y8rah9GS9t/D31oIyroxofaLvl1fIE9tXNVpgMSn3uI0caoMgookZxWDmojsrBFuiff1NCIY+iDcL6db1x8DeSIBOSItRoKiwP+LwYlxwsVJkuZ5s82xbeLJ3Ils6FxEc9Y6NIoTVAwAXRPIaY3JGyK+SxNMV5EsDdZTE7rHFs7ukN05xD37OOrNO6jL5+HCGdI3H8DT11C372NXBdlMvj+bKbKDlGTlhPJwVoqPqtzXrnMWVStUrZjMu2DU2iqr/gMeua+1//jtHRH4KJBBE7w6tIr1WJyvNI0TeHJyNWV83TK9qmWHoWD6S2epP3KCS6DYVlR9ie6X5/ukC0N+XJPNDPUL74KjCfqNO3QeLNClEAbLkWa1k6FLR7a0LF64hn78Ks45eteP6RxWEgikgvoE3goIClEOw25adibp8ZLi8ia2n5PMK5JljXrhOSkmOh5Fn55innPm0jHFgz7nzp2gteNw3o/Iz9bGnNF46b9ITNxC7ZxgvqcGvUeqmdZUPMHnopM3KIgP4JZnFOlC8teL84rDD51hcKeic2TJJhLE2NxRbICqPRK0VEyuifqqt+fIZvI35URVZzpEma/xFS2KTVH02FShC0s11EKCVJBPLYtnzsG7HsPO5gyuT0nnNbpy3PtQzsarsP+eFF3KBFtsKH70n38UgPkFTbHld7TWxNIaYUKNJo2tSTEqbFrlCR5SeyGk1dXZDr17BcnKkS4syjqKx3ZwWtF7UJDNhQuULix1PyGde3RHQbXRIZuUKAudo8a+PiAG7YlcFDHNC8l0he1nJCdLklkh5Nk0Qe1uw/GU5HBGMilIF4biA0+z/ekjZi9cxgxz7NaIKz8z4f53XKW3V7J6fAenNS7PRCkUC4b6xc/aGCg6n3aKvjIxENBRYWNyLUF0T+p+ufFQfHG2NjHjDnbUox7m1OMu9SClHmRUgxTT0VLGI1PoXtfL/iUQUf2emMKNRkKMnq9wy6UUJZ4vUNM59vgE47k5Jhf7AeG3iFJI9cQPS4+HJPNSyhPMluiplHBRk5k/xjFmMpNFatCXYpO9rqTGQsXzFgE5prHbyiFLVHKarsIOOvH9gKTnjYnPpvXlFZwnT8fAPCiwUiGu214m96knnB/Ty6h7CaarqbtC0DVd1ng+ojLz4yhYMgTEY7UStEYrUQj6osguTyO6lfhUms20SPmzoIL06EklTvCqtASCvmz6FErrJu1WyjygKz9+EoUuRSUqalA/x/u6hOZkIuapwwF60ENpUekllZMU6UpMI0lUc50+iIrCDW8HkZRW1JF1LZYVZenVmFZ4SqsSXUI1Sim2LOkS6p6fI8sK/eUbqOFQ6gKGIPH6bdSgT3r1EqttRbqQ606WinJDFK7c3xNH+lJMEqVWlywOWeaDdKPiRl5Z54u32vX6gW9Tcw6MU2/Lzzu5vSMCHweRh6J8rlXqtoj5k9veAGRhHd42LM9odr4gaa9s5kgXkP7SBjvfdkcURpkocFyK+FPcn6Jry/JszvKFa5gnLuK+9Bq6lB26slB3ZWLThWO1nTB57xmZpO7vkX3yi/L9HukJCi5l5CHMp04WdM9tMYOc7GQlCq7KSJXePKV65pKUgLhzX/LjRrF3f4N0Z8mD13YojrtMpj3uH4750It/jE99/T9l2C0E7g0BT6hb5mFgN19KCiCkaiAGPKFKNBAN1sQsTkdprK6g7otcvRo65hc1yzMZ2z/1ZUa3DLoIN4hGxVWD6Ymvyc6n9tj6ci0TXyUIT7oQsnM2I+7UuoeiykiXDtNN0JUgPdqni+qeZvaEkBzdF18j/cxr2ESx9bJh8oTi0i8sWZ5zDO5ZevuCHv2Z7/sZBnetnwgbjlMs8Ohr+NiiQA8G3gzN5/8DIbxdWyy4Jfv+NR1Ru0wf65JNSspxwmo7pRyn5K/coRqm6NLKotQXj5WktFQDzWo7odhKMb2U/MHco0MNx0d4VM32TwVisfVE035OPcopz43AOOpxl+rskOrcBmo0iChHsjJ0X3vA8vKI/s99nvzmAfp4hu2knP2Fe9z8aI/uy/dQpVcLLcuYOsYjNrGURiI/tMjhMd0VdrOVIZtKnTG19AZy+4fYkyl2/4D0aIE+nJIdLUmPF2STiux4RTatheezsuRT4bZkU4MuBS0yeweQpZjjY+wwFzXX1iZmayDmm1vjWNxWj0bkU4Pq9chPpHSEWtWY/UNcJ8McnWAGOXo4xI57mK0BejzCbW+Q7GyRnNkh2doApcUNPdHR5Vt5tVPgHSljIxoc7pPyvJaQ6uoc1ST7E7knQZq9lADcVXWDRIY0tB+jygc8LktxiwXZ0YpkskIVJXq6JJ2VpNOCbFaRzg351JDN5RnK5uKRFVIuygqqFIJ8VUt6U49GDR8r1ZBqmZM8CujqGuvnA0HIfY2pMDZTHwx2O7hcSwBjiGleVxsJujzi41IwXZmv9KIUNDm83kvEXHIuxUGTMztSaPf4RNzPjYmyd5trXN+nNVcV6dzzclY+RRrUc0pH7pIuvSHmZIZKU6pxKqnOTg55JijP3op0riI6rZYF5vIZ3BOXcbOZN0SsMZd2cZcv4JZL6us3SErpD3tNhBjZ1ElmYTDwaXbZTOlBHxx0DhWrVYZyClV5VMwTpykkrav7/d/mCvm19h+7vSMCn9hiuquFBy5XqIVUaK76isVZTT5xHD+ZsvWKYbUr8nMUPPjFi5hvO8JmssNOZxLYzJ/cQlWW3v2CdGVQv/kl9JWL8OXrotJZWbrHhnIk0GhvvyZdWsxH3ofqSbkKkVHKzsXkgl6AvGZTMaireko4DQvhX1QXt3BaY3sZiZf28tRV7HKFe+MmumPojgqqkw4bV0/INwpwYGpNUaV842f/MJ9474/L9wTOQ3BsDf1VFL62jm5ksvjFv26RKDyqQSdHZZmfOJVPHylmVxT5RHYx0yua2e99itErJ/T3LclSlBsuE/8kZSCbKI6fSpk+v0PnqBS5OYCCahjUJjJJOSVqrOD/kS4MunZk3lupGmiyuSFZWhbvv0py5SJ2vqD/yj6ziwm9e44739Rj+4uOyTUt/Ko5/L1/8u1c+sFXfVeoiHq5qozE5liRu90XtkExIk/Ap36iW6zWZDNBnbK5Y3a1R+eo9osglO++SO/6sRinecQnKRzLMxnZwsbFqBqmlOcG5Cfr1eFdomSHGjxaoo+PcCmSaUE6r1C1pd7pkc5k/OjaYjYGUp6iqlme61Cf2ySb1xTf9BzT95+PO3yzO+Lyv1tx+3uvCYrQzXG93CMaDarhgmrSudgPIdCJpFsfVNt+jun6sgaet6LG4uKshgPsoIPrd6Uo7qAjiM+oQzVMMT1Be4oNUdJVQ1F10RHpOUqJx46RVBmrQqTVyxVqusAen2BPppiTCcVGIqqucSplKzqJlBdRSmqY+fuuaote1bjVCjVbYCciu7cz4UupXldUVcOB9FtPyluQpdhMY1MdfXucajg+gWuijaPYTDG7Y1wi16JS+Td4EIlFQviAWiPOkvpyPd0O1WYX25fXXDfH9DNMP6PuZ1HVVfcUdVdMVKu+cOjqrucc+ZSh62ZyHa06YJHn40T95DpS4kJpHQncLngwZUmT4qtFCk9RCjUgwXsJeQl5otHBGNz6TWEl52GGgoIJMVwQH1eWmGFHuDHHJ9jlCj0YoIdDz7HzSFplpeBpXeO6mSBdfk5xiVxPqA0YhAJy/r50kbFkk1rOqRB3a6dhtdsVjk+ObMqWK9xvfBG+fB13+YJUA5gv4TMvwxs34eyOCCWs2Aeo212WV2QuKcdK0MfpNJK07XyBsuJz1u1WYMFlTvo/z4TH5Z8bu1jwtfY709RvQX5+W9pGsut+z5M/gOt24M3bjQqhriWCf/Ia3L6HOZYK5CrzdYBOcxRa8tzg/Ayy+AUpc6i63X7dBSkzEKs3+6J94fXkzC5uVcRiqW/ZdNJY4Wc59vgkWtK7ogCdSFkH55oKyUE+fKqF7/6pG7/Od37Pnya5cyCXt38g/IXlUgrqFYWUNUgTzJ376PEQd+EsvHkb1cmxj11AvfymBE+Xxd/IvPw60VitzTXwiEj7d1dX62Z/0nlN4OD/Ta5cwt69H9NNb9Ve/T8+zDM/9IZUkQ+FTf19U3kuO9Su1N1xftJ6qAUyKkiw88xjkn783MvrREL/d/2+ZyXF9PlX1soDhHu2VpyynTJscz7e6lk5zQ1pH6f1mUCwf9S9XjNvU5pkOMBMJo/+PpDyHUqvSWJD0dl2hXdnXSwY+5YclFN8p6/UVJqJOs4XtHzItO8R1y0fbP09fNY/X2v8mvC39mfe6pxbhTVVmq67TZ8+j9Pn2TrXOAe0ineqgAq22+kxH9pbfecjz/st/t4eg+HaHtUHX6lfH3X8cH1tI0/fb7rbwS6XzbVYI8Te5fLh8/utxv5bjYPf6v9f6Xjt735Uv4XxE+6TL5grxZr9+Aqcx3DdIVWZ576YaSMeCXW2mk1QJQjVcIA5PGrGS5438/bpuYbWcx6eR2tIdrYxB4dxvOrBALtc8bPmx37jt+lu/B+lnXtu2/2JH/2Ot+W7/sYL//htvbavpr0j9HSu1+Gl/+Esz/7VO7jL56XQ4saAZLLA7I5J/uo+07/+bga/8FITMPjgRgWuS5AjghDnnBPeX+UrLutUzK7VOiqiEi3pjVC52FdGlhOzgEyGZm8/1lgKktv4IAV1kH8Yqg++m3IzZfTJN/0uVKM2hqiVcG3qJy8I6fVzr4ml/WwuD22Wy6IC8oD4lMt3fs+f5qf+1T/gYx/7kxTnBvS+JDs2dTxh+o2PM7gx59a3jpk/VvPsX09xdx9IAGmMEJu/+Lr0TZ6hllKMMxkOBGEwVip2g+yiaKpcS1+qxjTRcxOUUjiDyFF9LleplPr6jfUFQf7w0MRw5d8a7v+BJzj3U29K0FZWqI2xvM+75s6fP0cxTtj+ldtNxWcvRXbLJc759IEP0v7Hf/KPqVzK3/g9H8FeO4eeF5hRF/2F18EY/vw/+3G6quJ//7bvxs0WmP39uIgnO9vYoyNB92ZS5VoWgJVwGtqLUExXNW7Qj5zMH7WoI+NPZaHPVAthaRAqgKPvfo7xP/wkAMl4LJ/NUuxEFCSH3y2B3M6//qKkhssKN19IqnAlMv02lG4mk6ZIZqIbLxmQMR2k/f6c4rnB2gZDdTtRYej8M9TeTEQErf2ZUxJ5labYla+P1Q4uwuJ/um8f0XQni8dwhZ8LMDIenWukwu0NUFik/DMbpdd5LumyRAtRux08thbWJvg/da1OeGOuruKYCqVSQt/G9ojFG2ebvgiboDCePLcqmGvGxTnUsgrBWhinresKv+vRCHN0FL/D+bpYemMs9epSvym0oPq99TSAtXFejOnhVh8G/yyyrBFchAAhFadtt1w2QWnoRz9vn77HoR/X5lRCwLkeYKokEe+oyUSuyxr0eIw9OoIkJzl3RhCsk0ncJAhPMm+Ky/p7LGNyFa9L5xm4RBCqozqeYyiy+lBfhHHk66aFQsRhjXDLVTOu9Sk0/mvtbW/viMBHLQve/bdPuP/tlzn7KwfisDpZRIv/8n8+iztLjNylOrSLqI8a+GrRIcIOvI5eF5c0pFLlXUztchUDJhmgVnLj/qENx3feZ0PnMvEk588KylDVEgiZViVkIPjpdF57QN7rYC7tktw/Fpl+J8dlKWoyJ/nc6+gzO1hjIM9JLl3AzebY2VwWK68yCemt5M4BH/vYn+Tf/Jt/xPt/6M9x8VYfM+yQHE9YbmvGvznh6t+WQIdOBz0aQreD2R1juik2T1DOkU4KkRhnKaxWUlwyA/o98WDpdptCi2GHGBZ968RLpawIFbipvbmZ31Gqukb7IqUR9VFB50qcPHof/xzd9zwF1mIfu0Byaw836kcFjrr9gN4vvkQ/TXEXzlBf2iY9XqKmC0GDNkbCwajrWCX6rz3/QQmMLm+iPv+qqIJ8/6o85/987wse6bkrp+ULGao0xU2nct6ln3CzVILiLG2C3LjTD4Rg3y86QXey9aKK+IWpLb1tfWdbxqqs9ZNg4H5IQLT5Lz8rvaaUBC2eeB3a5j/+dfm910V1pXCnHg6ECDweNqinv29oIZGKui9BFaWgad7BWmkV76UKVcGDwqolzVZ55nfSLZTIbxDkeQwcodYD3vIvwjq5T550LoRqIwHbconKe9hVsb479wU12whWPEangymKpm+XS1nEikIWUb/AxUBIt/o+8G36vVjcUoV+c7ZJIQf5+SnFVGhuKTw7ltZXPa9aKMo6wvVWyKLKc0nNqfQhl3UA5Voogh9DKlQ4j1xk//1lGb9fZalsBP13YK0P0FLszibcvSf3wTncbIYajxrESYnIhIDK1gVRIQbREkKu08aFPyAuEmjJ6zLOVSzrEFB2Z31AA2vBXiiyinO+tp7ChYDTB0Iqz1DDPtoH7a6uUP0uai7XiVKYMxvooxPQ9pHBhu75QLIoImoYXqOuG95ku0xQmka/MLANp9CnFRWt4M4HSHpjjKsOUd0OdjpFDzckGJo/ckj9J2tiYPjOYrj8TrR3ROBDkjB7coOkgNf/+C7F1YKn/+8OujScPNln8rjiiR+5gSm9NbjN19JarixbCqZCkIuikEWh142uqW65kgfCOpwp4+5EtSYGV5ayY/a73vBelMbcuR+RJaWUBC40E0CcgHod7KDL6lyf1PMbevcWqFUNwz5q2McdHEmAsVzKZBjqlPkdVpg0wq67ODfg/T/05/j0X/qbfGjyg+z+2Tdxf/EcR+9xJMUltj97jLqzD9bIBOikPEZSGz8ZVRIs+IXOrQrZGHrjLZSSQpFh4q9qoI7f3ywcnugayJueQBx2QUEt81CA0G5eVVQ+dYF0WmDPbcsElyWYYU5Wbgup/egENZmTrUps36cPF0vpF2sFlVgV0m9ZJmnRooKNsbhXa4WbL8TYTom/i63lXurMy96RIIWyZabmx5RSCtdOozwCfWinSAnHihP4qVSLEtJnrM/kv0vVnhDbki+rfg9WRdyNRvg97KgTIYo65ySI9UGXc95Q0BhZGJ2VOl9O3HRVt9ucX/uexiDNS4u1fyFYTOjWQu48H8i6JsBxVhBVkODnUS0EQH6sxGsGf0/desmoIJ8O9gwREZFgxIUg3X9eTsMfo132xrX6LaIHNqJshN25P6bCpztaijfwQWqYF0IL3JlHnHdQzikni7YYGZ5+n42bteCJ81Adp5YZYnvDdzo9Gvq2QUtopPvhOKFPnSNZrMR6p52uKcq14OwtqRDh/mtB02NQcer72qhhk5Jq0Ma1awj3CXzBYeWvpzEVbZBVf4yyas7fuViOReU55WNnqEYp/TfStYDXmSZFaufzBp3LclSCvJblzWs+WIkormmCHZVmEoD5zbbKPZrUSps295oGXbfNtX6tvf3tnRH41DXD107QRzN6+xeoP5eS3byPWy7ZOVkwfmOMPTiURUOptVQXWjfmYEkii1yAGwPy4POykT+SZ94x1QnMC0I49jldlabR0VVp7/Trd1GurkgvXwKt0EVJff+BH8CNyoAH+yRbmwyOprg0Ic8z1HQhigGQXbQPHNA6KglUtyPpFd2ot6hrzP4BvS9pLt7q86HJD/Kp//Vv8aG//IPs3n6VJ/9pTvpgIsTN6RSeeQK9fyImkFYklPS6VE+ex/RTujdPxAp+tZLJ01dvd8Y0SJpyaykCrFjNx6Cs22kmf62bhdEHOcm5szIhLZci430E3yK5+YAkTSFLmb7vHKNfv42rKpJcglo3X8giU9e4okRXNW7Yk9134blR3gXVOSPBKqD2DmR3BSitpYRFO43pFz3rg4qYh4+wuyysGOtr8CRvHcwQkB3XqKC+AjfDLleoQjWoUtrifoW3hbRKKQuQM8QdM6Hwpk4kNVUU6NFIdthlhfMmjvFeBWJrWBRAVEywlsqKxHnjZYogXiv+3ocAAGjQBA/jO3/8OMk7C8qtpX7bCIb0lbdfqKpm3PgFM/Kv2mhIK9UTgwXrjxsWknCOPigTGXTj07PG9Wgtts66pkimd1F2IeBpbX5wFheCW2eaQMOPbbeS54gwDsK5ttIigm44j5i1xp5HlwRVsRBQhkc1H2A+zBNrzT+2XI8nPJE79lFAxfcOHnpd3PNbY9es34u1IC8+K2aNhxc4RWtE+VYwFoLmh1KZQT0IPihtyeofwQtyxmKPpJ5dQHjcdCYoYlGQv/GAPJfabc3xT6G1va48l2EDCJF/EwxPnUcRxeW9J89s5eIms0kDenSq02mCfD+Ww3Pn/LXYxWI9zfs2NvPIYub/ebV3RuCjFGpRQKK5/7szLv/em/AJSb2YzQF7L/S5+KUu1udqVe5dPzsdVJrIoNK6uZ1a4xYLyHKRMfe6qF4Pt1hgy1JUAxGW9fBkmqJ7PfTWprhHTyqcKRt7+zhIE8zde951NCA9DXFa3pLgJlPcpbMsL42YX0g58wkri5cxmMtnSG7vi/zW+p2Mc1JA0ciD5pIE5TkXZJnIdIcddv/sm3zoL/8gn/rf/hbf9ZPfTrmRsbhwhvGnH8Bsjr53IOjO9mYLqjbkd45xiRaFRuB3eLm7GgwEWlYKZ73SQCvIu6KsKEV+PlZO9wAAIABJREFUqXo96XtfTdrOF3J+3Y5PE8kdMA/2BEnL8maiak1edj5H9fuobkJ9boPevRV2dwN9JJNDdWkb1A7Z9QfNZ/0kanbH6MkSjqc+oM28R4aH1dMUNx5gOxl6VaJDAEWFqxvyqNJKJqgAcRuZvJLNTczxMcnOrphOevQqVLYP1aTlvFo76IAKhJSUexhaDym0YNffGLg1gQWnF4skaVK5aYo+mfgFJYkpC5CARCXalyjRUrMpmKoBLJWgPSAGoXkWUyXx/OpaEMFwr0KKq03mTTQsFrIAWO/gXDVpI5yKAYcK9Qp8n4NP5eX5WsojPLPyGdV4A4a+fRTxv3UMwtg7fYw2cvEoxM6jtJGbkWeR8OqM8ak+3Rg0BqSlnar036W6nYYjFa5XqbiJcraFwoRrcp6bAzKOCwtJ3qCrp8ZWDKLa13aaU9ecmD++VLZntfJKvsT3l0YP+sJpS4JDdyVII7SC4ibAcz6ABAn4cQ6VqLihjO8zRhDIJIHU3xePpoXXhSdo1wPaMGf4vg5Ia0BkTl+fylJR5VWNQEL1e7JpSBLcxhCbp+hDH0iuCiJPyKfz7HyOHvg0t7+/a69F8nPt+Vu1f1943jN57rIMO5s1DvJa46bTKMRRadqMLc9PtG3u19fa29reGYFPmmA3B1z/g2Ou/OyS/Ict9uwW+sERyd1DLv6je7JzDxNlIDjXNTbsQJ2VYMFPgDFaLwohfh4cNu8L1adppXCQxaO+cze+T6UZtqyA6qFdqFsuSTY3STLxoQhlDnAWd+Esejrn+LlNNn9zj/6vHUvgVVZQFCwu9xl83u9UIiysRa3VJv6FHHq9RB1PSI4nuL94jt3br/JdP/nt/ORnfoaPfexPwqs3UJsbuKpi8b4rKONIFzXp3hR7cITzyg2VaNwzT2DzBL1/0CACHi0J8HKb4AoNxO7qGhY0C3PYRStNNMNrNZWl64o2/3c9Gsm9OzgiOT4B69j7o89z5l/vgVYkn3lVELjxMPJLHEs4maATLW7VdS27Jr/Y2VUhwU9RoG7dk0UrS7GLhagy5tVaoGI//D50UaOv38UcHMZaOgDpubNYryD0HSDjCB6Zvmqn8x4SR7VQIBf8c5ReM/7V46HUYWsHVOF4lZHz8+7lQflmi4UEqh7dAbC1l36H++a5D+Ea7NFRJF6qU+Zpa2mU0B4VcPjAyAVEyvM5XJu7chrCVxpc1fQ9svDbYMUQ+sa5dTJ4eN5Oq6aUlvFhXdzNB97e2jHC+YR7dOoYocyAXSwkcAwk3sCN8gFfROEwzQIbFkT/HaE/bFm1kAC3trjFNFcb6fD/dz5lowhB0emB9OgA8K1SRfGlusIGwCcgzh6pMwdHhLQ3XtRhDo7WbDHWUBto+jakEK2T+aNFcBeOk4qmfmuvQ8tksYWatc4XpSU9GIKl04hxeK/fkLmyebbtdCbnWNeo+/tof92SVjUN+heDWY9OBUJ6K7W29hryLJ5+/uWaMtxq6tNjMsc3n/FFT9uEaMDM3mZyj28O/kMKiP7/rr0zAh+luPGdYy7+UsHsSode5zyTx3N6B2PufqPizG/A9q/cwR4cNaQ36yBLvSGf30H4AS/RvAW0l3EqktFIiLB+kolVknULBjeihBEVkxM59WrlZedJDArIMrA2LqrJmTOoRGOPT3DOYcYd5k+N2fjisQR1j11gcbmPLsQIbfir11E72yJ1T1qplFAzaTBADXq4+VJ2570u0298nOW25ug9jif/aU65kUXC87d93w+gK0sG9F4/xPVy1NJP5FcuoA9P5JzrGiYL6HfFsTak9PyCp/v9ZpKp6yi3l7REa8eVpZJCU0rQJc9RiSqNkE7ysljd78fUpCsKuHaJ5eUR+eGKdH8KzjG4W7N84ZoY3t0/wV6/KURt76xLsN4HXJqIH40FvVjFiUj1e7CzKU6sS0E1tNKofo9EaZmI/UKkP/2KDCNj0KMRqtvFrVaisJvN0QNRtzxq4m84Pzbu+Ajv9S32RWg6Ib1wTlRrWvsq4FKJHWtJej35m6/15GYesveLlUq08JgS8bpSnY6o2vImLRIrzWsl5V66uaQIFyvZffZ6sLslAWJZyXcDLtFo79USFJEkukEGw5jwO3d738P5ZSXjvrANubgdPLVJzTTpNd3vY04mQiLtOMx0KikHZ0VNt1isLZiR6wERZYrHGPQwJxOS0cjzcqxcZ0hPxDTkqWNoFdMWejzGLRby3Fe1+Kz4ZyBcx0NKt9jnGjOZyXn7dLE5mUS5tM4z+UwIeCOpV1IlQRot7r9a5oCA4p36TgVNau900zK+ZdNEVBSqPEePx5i9PUGVnJdpZyn66iXMK68LauKDpuT8WfERSry/z1KeL7dYYqbTteBRhbITSVDjeUTMoylhjEQRShBBdDox0HtUgAfIcQNaVtXrQoOguOt00Ntb2Cg11+itTezhESrPqJ69yvJszsanxCKlvnvf37SWsjecW0CVAqrVeq2tttW9nsz9njcq4yhrrkVJgeTAGwsBUHL5Iub2PU9+r0nP7srm6hHOAV9r/+nbOyPw0ZprP3GIKmqySY9yq8PZH38ZlWWMPttn9vwZzM4Ibt/zCpVgrtXsDl3gxIQc6molA9APYleWUJbrE5ezuKLG6cTzh7wp1qyO5LPAH5LAyO/wyip+3hyKHJo0FwO3g0N0ZRl9+h7BDj1ZlYxu70sgdTJBbW9iNwa4+w+EN9AiKzqlvWHbtIHPi4LBjTnj35yQFJdIH0xYXDgDr97g277vB/jZf/h3+K6PfK9MWPf2sM8/TnLjLu7cmbh7oarECTtNhYg3mUXOlFyLDwjbRQ49fyfIZgH5e103HKXQ74GbIZ3VHEMpgY673Rj4qHt79I8mcl55jptOGbzopaRJwuL5C/S6OerwRKSoj0AQlLMigffqJHX5vNyz67eE0O7hb1dWqOUS9cRVSSNevylwdturxAe9qteNfCY7l7+72iMVbSmqR13EGLECnTfVxk9zERRx12gn00b5ERa0U7v7NVWYH9+659MPoZBjItwEV9W4aaNaiqkfT8hV3Q4uTXGLpTwPxqJaCJELz0sI/CNXq/Uv6wFd3L37hSsisFXdyPdb9174JLJAWB8I2cVCxnrYiXtkxPlgOy42xqDzrOGJefTMVevHCPwpwve3+kl5N/iIvPhF2TkV3+cWC48a+OsoG6J6SIMGJChcpzz+vvioNYLY1bUEzkrHANuuTiFNzq2DNL6UhV3SBNctzozzv0fZ+leyVohFV02TUqtqkXuHfg9j0xjc7Xvy+nwex609OIzHd/7ZiPe/Pb7DedZ1rBfYDvYj1wyEDyMdFl9/aJz448fr9AhJ8Ixyj0gLuaLAHhw216UUdv9ANgxlSf7KHdITHxhFvqLBtRBa1etFGX7g5qhuJ1pChKAnBNF2VfjAyESUXzbAw8ZTKxDVw6ZBJ5i795tCpgja1v797WtfU3UB7xDnZmt56S+MIE249w0jyo2Umz/wDPbsFmQpq82E5FBId5F42FoMY52husauimgU2HaBDq6mIQgKMGw0KWypJcKiqZIkvlcmlVM/Pi9t9g9k8R30Sc+dRc8Lyms7mJ0R5twmrptTXxFPCbxUUt07iDsPkdVXrWsRGX2Y1NVgwK1vHeNOpqLemi0Yf/oBenMDXVm+6yPfy0/+4r9g8cw59HBAev0+XDiL62bYbgpnd4QfBYJKvXGzIVCHSdZaCY7qJuVgZzOfSnFxYXR+ZygpDiE72/k87oDk4h6GUq1XjCXjMWxvUl/aEX+eVgASSOv9z9/h7kd3cRsjyd+XlUxEnoTqfNV5N5nFVNjt33+Gm99zFtXvYWdzQQ08aduWFXe/eZc733E2+thE3hA+2LAWO5nJ54xp5NpKN+mq1n2PgQ5I0BRJrS0uiU+xxD5dLhv1kN/JRkg8jFOPniUXzkfPFrtYYJfLuGC4soQLZ1EXzhIrqvvJNtzDUPLFLVcNUlZX2FWBLQpsWcUUT6iObUv/9/a/oWZeVcefmFI5pdiL/jPt4M960nJdN/9vp7XCYu8DwhCgxDRUGcwzvTO3bjgXONeMO9eQucO9Cf1lg/TYuaiSE78Yn2bzqZKwcLu6luu2cnwX0hRm3ehUramOmuf3YXPMVuDwqOfDI1XOK59i0N7i9MSgJ5YQaR3Lp6mkw0zDS/S/h6YCOuOP1+alxTShMREZdX6cxDmwfQ3t6wsoT4urE0j/zet27XWV5etjJXRFILmH82unKcP1+p/QV/F6nWvmJyNpO30084j+w5uLOFaCP5MVNMwtl764q47vD2NVabVm4Bnv+8qvOTqJyGNsPiCNyBhNMPu19jvT3hmIj4NLP6Vxr71J9V/sMP6JTzMOO848Z3HhDGZ7iLorcPtaHjss3IEIGiD5qo4DdC3HfIpAF5GWtjtx4GT4SSQQqu1isf6Ag4dtS8z+PsnmZuS6ZHtz3Os3qD/4LOrLN1BliUEm7OSZJ2HQA89viZNCa0fnnCdOA6QJ88cEOlV39mVnMZvjqorM//1bvv+/4ed/5If5rvd9u8jl8xQz7JDeP4Hp3MPCm6KWguhN8lC6zzpQophRPvUVdqCRQwU4ZwTY0Sou0JBJgLOGqjW7RLtaoZMEuhlmkHnidOVJpbOIOulBnzMvLkSWHQ/jZcrWNpB3XXuScs78Q0vsUY49mTbcKN+UVpw8Z3CZ5WK3K8dcNUoO4cwUJLvb1PfuR5n4I92OT3NHYN0VN7wnqFhaHBs9GslYM7aF+DSqJ+fJtEopIWjfuv1wP/q+rXYGoBTZ/mH0o4oBW/hOvxjEiT4Q8YPnDoI8RR8mdYrjE1orfSWk4q+wU439vi61VkmDkgiKYxuZvjGNI3QwqnMuHsN5eXx7Bx2PkaW40jZmpmXrGO37FZ6r0Deq4fqENIoYO+JT2g3HZ20RCwgtEDyLYkrPmSad4xErQTBOIZbt5yPc0yQBL3Ro/G08etKSRse/YSNCAjzEWVk7/kP3xv/qCbfR76mVviIE0610W7OhXOc5AY1/Ues7lff7iqip/1sMAE4HUdAYGEY1YLI+37euQyUJ9Te9h/RXvhDvQXL+LOb2XZzV6EEvoj0q0Y05bKsf2j5Pka8IMVheUxmeDlxbzv4ydlVD3G6rYoH6m95D8gufiX2WnjsjXnC/A81+TdX1zihZMdy64r7xse9HlTXqeCpGfuMRdjKViuKDPubsJqqsxdhwtmjy73FXLruAIN+mKDEP9luD/ZS6JEvF0C3LcEUZXT0jPA9xwEc31kzsy9VwgOs28kdVSlE/t1xipzNWH30v/dePRDY+nYrXTK8Xiaj64nnssIu6eyCV01uKqDgJtppbFehrl+BkJruMK+fR9w5YvO+KcHru7Yl5XW34yc/8DE/9/Pez89Nd8pnUq7G5xuYKHBy9O2V+xfDsD930br/zdWjdw/fRG6fbbYjEfgcaOApNwUWpjG2Oj1F5TnJmV048S8VXI02kJo5z2MNj9PamSPcPj/2tkcXXHB2hu92YAtKbG6h+t/HqCakCPxmH1Fhwe3ZpAgfHQoT3xOZkPJbz2N4Erdn7hjOMb5Sk05JkXkqRwu2heCylUqfIdBKm17ps/fNPC+LQDqROqbXa9vQxcPZIwFohVGdJz52V8+3k2H4XMxavKj1ZSpDnuUKqqnGTGeb4uAnos7QpL+Cs1LbKclQnFyNCz2UDhKfSMoBDKczhMcnWBnbSyJXX0genCcXhWTm1+AfVm+73G+fg4HrcSo/FFirBh3nGp9FcWUaxgisKdLfbmA62nHtD37bPLfCqQmrPLpeC5Cm1doy1UhSnjhGOg1by7Cx9atynyARFeZiv1FahySZLCacnBDxvVTqjbQrYui/hX93rRVVY4BA+1ALa3U49tjhAQUod06k+YEo2xtHtvH1NuteVtK9HddFSK80uV8282RofsbxN3Gi2uG2h31q8Fh0cjAPdwAcRqtNZ/+7WZ+Kc0uI5uaKIYpX22FRZit7axOwfNOe/uYE7mTQcnCyN6cQgHIkS9iRZS3mHcdUmpEdjydCXw4GMMfUIVVo7kA6fCX0xHMr1BOTMyKb63y7/37e1rMOZ53bd9/z9735bvuv/+eDfe8eWrPgtU11Kqb+jlHqglPp867VtpdTPKKVe8f9utf72l5VSryqlXlZK/baKgiTzEttJMRs9zPkdIZr2u/HBsvuH6JffRM1X2FEPtjeEiBiULoH4GjgLRYlbLEl2tmQy83Bzs9MQ1MDO5riFuK7qzY0ov1bBpK+VIgi53lDc0HXyuOCSJEL49a7J/dePcL0cN+qLBLzXkwAuyBznC9TN+0JcznKRYLYfeGvXJj49HuLuPvDwqxKfnqqSCu+9HPv843Lewz5P/fz38+q3/AjzC4rVhqbcTFnuptRdTTnUpHMYviElDlS/i97aFJIsQkJeg1+NEZVUV65L+feRSJ2fCNv6yUn3eo1yKSy8p4zHVLfjeTsWvbuN6suEH/o18LdcVWL29nD9LoyHUvQxVE4PzqqR62Uwd+/Dg4PmnCoJYs10ipsvMK+9iX3tOrsvnlCNEsptz+fRCn08FyfjRAwQ0+MVW587Fl5MQG28XUGE3/01tSH9Ndlxe9cdSgn0urFAIRpcppvCkJ70jFK4PJMg0ld8htaE6VNt5vhE+me1Erfafk8QHqXke9Y8ZZwPnpqFa82E763aaaRD6VjYNKZN/OKPJ7ujdSObDkFP2/G4/f+Qpmu3FuIUVUxt9C4QlVt12uSfVkDRNpUMqqxTxwjHkeAlaeaR8G9APtrBbPhslkY7gkjubfdTvIDW+bdVb6fQOyAKNGKxYf2In3bQFpFXt379rfNQeS5zmZ93QqCm2v1+GuF7FOIX+v0tWrRo8HNwSJuFsRC/V5+6V6Gb7Ho/tH+a+9qkAsPvkgY7FSBa14wN1yLdh/FrXUvd1iBqutOJxGOQIEh7U9ng3qz8PK99QVvVehbQUqFdhf4N48bf79jn4fzD8/E2N+fAOPW2/LyT22+n5/8u8J2nXvtLwM85554Gfs7/jlLqOeBPAM/7z/xNpdRbPzGhWUtyNEfVltWFPvby2bWFM5B8eXCAui/kO3N+RyrnDgfRb2RNxuujfH3lIum5MyRbMTZrJgS/kNV370GSkFy+QLK5sfYgyi4gQT9+RYwLnaW+eQv30qu4W57A7Hdi5BlsjnF37qOu36ba7lM9dg7ObNNUvrYorTEnE8mdLxb/H3vvHWVbdtd3fvY+6ca6lV4O3e919+ugVuiWWgkhCwXkJWQQGBjwyIAHE4RhNDZjGBt7mOWxx4IZB2ZkgZG8bGyPSEYyEmCwwAKpFVrdSp1fh/f65VD55pP2nj9+e59zqrpBNgukXmv6rFWrqm7dOvfk/dvf3zfIjdFp1228xuxYKSWBo1pDK0F1OzLDX14knBaoWUbw+Dns0gJmocPK77W48+d+hIff/T4m3zRi65aAMoFwLonh4dTSv1BSrq0J4qIUHFglOHjAXREuITuWdGmTpsIPCgL06jLBvpUqVkPFceVNY+Yp+uB+ghVpF5UXLmOur1f7Yh0pWnXaqONHMOsbggYN+ujl+txgDDpJ0K0WwcICaiocFbPYkxDbMKgHAKWq4rOS4C8OCPavEqwuE6wsE95wDKJICjVAb4/pPboB1rL9khUmt+9zxogGPU5Rl65LdINS6G5X/qfT2e3d4n92bSTdbRSMDUSoevh5Hobf7ixHbwyJz6wRXtl61iCOlVm6oJI9dFeKZ50kdf6Wa0vYNBODOk/OrhyL3UBnjWt5GVEouraYSRvxA7v4E7r+8ovnaEA9ufAD5J/08PbvrdpLbqByx0VFYf3/endh4nkrTcfemuBr63X4476nOKgKpCb/pbEOa+oWTiXfVnu+a1WdO1vuRlqq4wJ1YaVUpdqS/2+Qjv+kpeItenuAPe7QfiLkeYpAlbXmjodtPgMdt6oqln3khG8HNvgutjSO46Prc/Zcm9hwZq74R6Wpjnml8IrjxnGsc7x2va7d9eVMPKuImOZn73HErtBTU+5C3fw96NWO1Tlzx7XiEPoJr0e2vdDFtfJ9xE5N1s+q17S7r2yR10WTL86q/6nXb62tCy53Dah+b9e1VvnAvbB8TZavWPhYaz8BbO55+VuAX3I//xLwjsbrv2KtTa21Z4GngFd+5a2QmyfYGGEihWmL3LYizZUl6ughmS2XJWo8RU/mlIM2ttepZqF4zoDr9ZfrmzCaYLtt1KBfm8t5EmFRVBkt5doGdjxF9XqVwqtJOkQpbLdNsG9V2jGO/IsxVYsCYyR8tCcDZjjOKLoh5XKXioAK4lC8slzPjkqJlFCtVmMWretIAhc4Wq4uuMFDUIdwbSSS5AP7Kk5PPDa0r1vu+PQ7efS1/578pWOshmDueuB5g9Cb55idIWqWYtuJHF8n3fXk5yrTbGcoLad4N0JV7Xez7RU7dMwRjH2xV83w1zax1lJcvCRFhitevPJLFDq6NsLLctQsw/QSQYCUm8U2W2kgx3ee1gqdNJO/+2vZWIkT6beIhjmd6xkmUpTdWBAX3wooS1RW1ORXZ0Xvi6dqUbViTkzKIvcgb3DIqvdqbEvy2ggDKmdlv42+eHYzZZsXFfmYMJSWVmnqQsVxkFRc2wrY2VyQUL+/nt/jCcDhHkpfk3RbfZmKhPysZS8CxHMgDVAXIe4Y7SqudF2QNQfg+pDuRS6ea/2qXofdjeb4ddi9xcNzLX5b/OdWBUujEHT7KrN431JvFIfVvngu1+6fn2MHn/t3fy48iq2bqEyjqGtuo0OiVFCjD7sK0T1oVX2+m1ESDa7NXi7N3k0P6v2uCku/Xv+1V27vC99m8euPTZWVWBdTu87ZXrSw8f81Gqh27Ve9PbW6rCpAfdu43RYUx1h55lhbhU+rIKg4iypJRLzhXP1xZpB2Xisj/XqBiiNUtbgaRocVd88/Y76Gi7H6q/L1fF7+tFt3wFp7BcB93+9ePwJcaLzvonvtWYtS6geVUg8opR7IzJRyuQvzlHBSYiPN9NQK5W03oBYXpJCp0ouFAKumc4LhnLKfoJKkYvUr/zBzrQezvSMDexKjlxadMkTVMReqHmDNcCjeLz4N2/ds3efbKMQu9NCu+MFa1Hha+aFQuiLIWvGgGU6JdzJMElAc3492xY5HsXY9PJyMkiSpSdrWyEMtEfSlbMlAryJHDL66JlyjMMCGmvDaDtGwIBkZ1OcXOPWJ7+GJ1/9bNu8qmRwIURZMoFCGuvCbpxJOmOWoXnfXwNmU8pssx05n8mDz/kn+GDX3Iwx3tcXsdCbxGR75aSAAKo7FIj/LCQ7udyRhXREFy51h9eBTRYme5ZhOLEVaVezuJnfa3BvI2cphWrVarvhS2Eg8SnRWEK1NaV+dM98XYxbalIsdOQYeVfAtLG+H4Ga0VbvLEW1tY9Ay3rdEB7XE3z+Is1ycs7UW52StZTvnKSrNUXnhTPRsxQGwaSqFi+cmTKe7Z5O+TePcxW0rlpZWGNaDSODaPc81m99L2PyTFo8i7UWwdr1H1QiFH1R928O38ho8NrtnQPSqnF2fuRcN8NeRL4z3kMgr+blT03mkRzXeD1R8o2p9fh1VO2XPgOq2B3DnuFEY/TEtInnvnuPePG7N4++LHYfkPCsXrCpW6uutEnNUWWrm2Z/hr4W9rTLXAqsKDK9gfK7t3LtUxquNcw27YkKec3t8sbi3uHP795ytOyVtshpBrffVFuXudfvPaqJLewvQRmFqsrxShfniRu7hoHpNCsugPpZx7FpdjWPlCvA/7jqws1njfLlz/DVodb2wyPJnfeSf66w/Z3lrrf1Fa+0rrLWviEyEfuhpbFHSfvgi8bkNOk9todNCiJphiPLheZ5kmGaorSHBxhg7kDTy+gZWVbVt05Ty+jpsD7H9bk28BTdw+BtU3muHI1SvIy2dXk8+UyspDKwLgGwn0tZZHFBubmG3h9WsXc0zyo0tkY1vbqGfukh8YQtlkZZKr+vIfqaSLssOGTFRSySKo4kWmBsPiXFc7AbTdkuKrNkMtbkD19bRsxxGE0ysyTua9rql//EuJz7yg5z95l9k481z1l+iyQaKvNtoh0QhNssxm9tSHC4v1kUN1AGuDkUzw5FIpJNYihs3qCm3TwAqigiWFgn6fZFFb+9gJtN69nf0oMzy0hSKQtyytRI0rdcVRC1Na66ALzKyHD3NMO1IkJ+KUCjHysydzH2eilS+KLCTKZUNgtISjeL3zRiCcUqykTM53iVfiLELXUF/3Oy+Ii2XLqLDP/gaZGf5cFtJVqtt333BS0EFVbvH9jr1DLIoxFJ/nqLmWdX2VGEoPCVnR6B7vXoW6+T1FX/AGtR4KkVVEu8aEFQQSLEdyf/Kw7sxSO3lnexCgWzVPqnfW7ciqs9/jrZVcwBsoiu+uK+Ok2/xmsbnPatg8PyvovrMap2N66/a/r2tK/8nTz7ee472/u63pYmaNP/mVU97kL1qcK8/cPfxbfJ89iBh1lpBMhuDZLWffp+DGqmqCsW9hYd1xbozs6yOkf+7/9mjta69qBzFoJK466AqAqTAUo3CsebT1MW/O1YeuWy8XllEaF1PLPz58Euj6G22lKvWpmtfKjd5VWGwZ/vjXfeecZYg1cSryAXBceiMbiUVyhwMFrBFjm4lohp0r1X3YhDI5C+Oque3R0ebzu8Vsu3tHZpLFFVE8P8qnt0Ly5/L8qeVs19TSh2y1l5RSh0CXKgSF4FjjfcdBS5/pZWpwG1GnmHmRjKDum3KXkK+dID4kQvYbgu1GeANuoRAqlHWkp84SKA1ejytHIarfCnnjFpeXyPUWtpe44m0bdxgDuBl7+X6BmEYyiChtViNZ5kotDotbKCxrQjbSUSq+cTTGGMlSsE9YLUj35qZuD7rLEO3E8p+Cx2HqLOXoNOYoVU3QClk1VYLq5XM9K1BnT4nN4q12Dwnv+kg8WXFAqmUAAAgAElEQVRR/BBF0rJ64gwqSTCxIsgsydAQzC3BPOSm7l/j6Tf9a17++e+k+INVrAbteFOVd4mxhNO5IAauhWOzXB60fkZdynHVxgALQkwufAyDwo4n8pCNI3nQJTHK861sLeG2T5+rFT1ZTnj8qPC0wlA+fyKGZNZaOZ/+oQ+Qz9FGSN1qXreJvNoMcIO6Gxjmaa26K3LY2CY0VkjygJplRIVhvhqjCyvo4GgCSwu1bB5XADrY25sHVktDBqvcoOWVKE1H2AoBKQ1ECtttCWI1nlRxGL7QNPO6QNMOcq8Jy7pGXLx82SMoRQmTaV28uoezGPXNqzDQ6j6SA7276HmuB7J7j/UDrLdD8LN0385oGiDuaZ1U6iNb+6/sWrTLMLNhxZuoUNGmvNsVss28L+W3q7GOSunZJDs3Z/+Oj7E3jLR6T9XK2aPw8q9VP3rhRAHKbV/hCre9svq9x3TPtlQ/O8uDqvW85zg+mxSu6/PiP8+39YcjWYdrO1sjPyu3DRWvxRVzz2rVWQu6YXYaBK7I342WWb/tec0Har5ebZt/rVk8NI+leg4rCX9uoNFaMrVZpVdRVl5kpuId2dS3mxyCH0dQyLFVYSj8xK44gXvOkJlO0e1W9Vp1PPIcUr0bsdmLUjaQq+Y5rnhZ1e9fgfv157BY1AuRFfzpEZ+PAN/rfv5e4Dcbr3+XUipRSp0AbgE+9xXX5geEQHwfyHLUZAbWYkIlKq6L1/DBmh7KJ9Bi9jZJKRcSyqW+tEFAerhK73pg2dkMNUvRy4siYS3L+n3+gaeUVPVphu1KaKnudbEL4puiipLKoiTQrjecif14mgoXwxl+KV94AWo4QacFph2hVpYE+mxwY8DfGEbQrCiStpOfGScx4TCF0lB2QrGUD7SLlsiF/Lq6DBZMAGWkyPqaeGKIzrZ4+ee/k8+//NeY7beUCZUDqXJKKUB4Rg7RUoMFiYsAabPEUe0Z4gfhOEIv9CvLe7XQrz1A3ACvk8T1ykuRkLZa1bH3ajKUEj6O+1mtLjsSt8RO4BGYanCyqKzA9NvYRAot3XKEbCstQ9Vuy3Xi+Eq610U7dZ3ptwX5KUpxM55ndC5Nyfsh2bElGPSksI3CXQOh/92m8qCs2qtVqGTNKxCPlMwp4Bw5sqHc2jXT94oopeW6Dhvhpe54iw+JmBeqMJQIFieRVr6V4UnBIFynVgztllxLjgvyFZevMAtVFaqjdnFk0K4If462VL3qGumpWkXNwdSTiD2S4jlTu1oKzkm82WL17WpXEHoz0wpFCoK6td04T9U2+XZqQ6lVoTb+c6Kweua4A7F75/64VlezDdNEefYcZx+E7Nv0zXP1LEQNaq5I9dVsxzVQMGvqZ4gjGld/c8d9FxLULBT3LlU7bXch5tddnd/muh0CU/Er/ev+vHpUyW+zP09B415pLE2lnwq0hB03EB9/DQL1xK5CHRtFiM+ayzJBd0Yj2VbvgB6GEqYcS9C1bymrrhM6ND5nV2vNH0OPAPl9U7r2SNp7PF9YvurLV0R8lFK/DLwBWFVKXQR+GngP8GtKqe8HzgPfAWCtfUQp9WvAo0AB/A1r7Vcuaz1nZP8KXL4mrZ40I1wfE1on2T55mOCMA48apGAAtTFEjyLK5R7Z0SWizQTWN6sb36buQp7Nsds7hDceh8P7CZNYQvkq/pBx3g5z7HAo8u6VZdi/KoNzFAoPI82gdITcY4dRkxlma5tyOERbiz6wT6Ip2m1ptSTSzlAXpwRAducNBJM+6rGz9THQCnInm57PawXUYEFQkFmKyksINK0LO6iixN52EoZTdBhKa20yZevWkHAC4dQS5BYTKFrriuIPVjn10Lt44vt+nrvu/y54P1J4xXHlVUFRYNYn4lO00MOuLqHHCVy8LNyjKILM3dR5gd0eyoNgaYCOIqwfXP2MT2tUt0Ow0MdOpmIfMBqhV1ekdagUxBHm6nVRUOhACoqVJVgaELZaFVJio1D4Lx7VmcywS32KAwOCSYZOFwHERXsyhXYLOxqjF/rC+1ldQucF5eoCVivCjaEUyZlwlsLrO3SyknyxxejF+wlSQ+vhsvYucW23ykMmy2oek5/VNdsHodgbmNlcDCPd36yLCbFRQNmNUaUhsIOKgGzdcav4Fu4B71saSoeUO0PCQwcIfNHqMo3qAkpVPiJEoThgb2wJoubbN3Jz43Zg9+9NZKRpSOgLM7+vyidV1y2vXaTZ5gBcefKYulAMAmn/KVUre1zukQoaPDxjKv4FIOTx5uDq+R9aobKsMs1TcVyTnJvrULWhItrtk5d9WyvHsSyxxgX2+uvOo2S+YFN1wauUkuibZvG5y6SvgZ74xQ+YTYTJt4qckWL9Xo0qS6zWNZ9AmT958PTrdaIP/3/NgGbrP7dsXMPN//XFt7FoVwRaU9Tb2mi51Qq7uqVpfKt4z+vN33cdp0p91uDrVNvo0LRK4WV3/U2uz5rIDNQ+Pv59haC2uwoVdwyD5SUxFWxwv4KlxTqw2HGv1EIPu7nt3ufGgVjMW20pQbPyTM1R2gABKqyNJa2xaMc//FosLxgY/lcUPtba7/5j/vSmP+b9/wj4R/8tG2FjaSOQ5VKh5wW0Euz5bfHXmaXMXnyY7lpPyLJ+xpfEtWonL9A7U6LSUiy1CVuJ45WYKoPFQ7BmYwttLXahhxqNq4RngUej2i7fZcDopUW5AfsdQRhKUSRUN34SoxcHsA1mPKZ88UnC4bjuTbuZvxlPUEoRbs9JD3RpOa5O9dmR59M4KDdNBcJPIsnvcmozNZ1L2yUOJHC0LGFtHQtMjpX0zgZ0rst6Q2NRVmM1hDO46/7v4ov3/ApvW3qjFCNOCaQiKWawEkioyhLd70lxoCQNW7eSXVlSuIgJZYVjpcZTmQlpQaJ8ICfWCirjAhxZ3xADw9lcHhiZ+CSpQJKiy4uXCQ7sbwzEgrRJ4WkFdVMKNU0JrKXsxKjJxL1VyXpxqJYvDrZHWK3IFveRXJdsIpXluzyH1DQlzgqCacLoRJekLNHtuEawHL9CEIW8CqE0TvVVeTA12g7KKRGbRpo2CrBxKO1MxMtHqdjfQDVKFURV68ijJFUG1HCEiqOKI6SUKLu8nNkP3lh3vKxHEkMwMrDYghqFgN3Ip3+9mQ1lGlwSX0A1eEvWZ7v5/TCmQhia76sGLVVzr6rP147H4VABbwEhf1aAQymtqVusngiMqtfhicy+GPWTJD/YBsGuYqDJWZKbXtf76vk2gcLuKQir+JOGd0wV3dFcmu3Ehvtx/efGZz+X6qdSsDVaks+BrFXr8e2gZlFaWQPoipAs101Rr9OhHf5a2JUT5luHe5DDikzuf/d0A399KFO3Q31r0dbSfbeBVbtNKfes9uegcSybLW1//nZvf6Ol5gtS/EfI9RYMepTDsexbuy2WFEpRXFurOD/Va9fXhbpgUwm1zTJpJXsE2lsaNC0s3O8q0Ji5S5D3171r4Xq16wvL12Z5XkRWqMkcm8ywz4xq+/+ZmMcV166j4pj2vUNGb7ydzu98icnb7yLIDCZUtNYz0qWYsqWYL2oWzue0H7rIP37oY/zEza8jOHiY8uo1PDHOWkV2zyni+x7nqZ9+Cf/m23+dd/7RD3D7u58Uzsp0hknFy4aD+zCDDsUDD3PpJ19D+5pl5eExemdaIwClqQI71bHDzG9b5fzbLZ1nbuf4ex9CDxYwW9vodptgX1sSwB99mrW3vIJjF5a5/tpVpocUQQrxjmVyFHSqhAytIZrAwZ+7j6DXhfnckXeFq6HXN1DdTuXGq8rakblcW6tdZBFOj5mn8H5429Ib+Z2H/gtvePgdBD+zgi4MRStAWSTlfXOGPXOR+ctWOfd9hkOrR2m9ZxGmOUU/pugEgohc2IEr10lvOcj5HyoJH+6SbMH+L4wxkczmTaxRhSUcpaisYPTWW2n/9cucOXOA2392HUYTgttvxgYKvTnCbG1XHkyn332cU++/zuTUfnoPXSE/PCA+s8bkjgMEqSEbhPRPb6Pn9QPUIyPleAKmlLBRNxjpdovW554Uq4Oilqv7B71tDI6DB0NO/9+v5Lb3buBWLC2oeUZ2ZAl975fQL7mVa68esHPKsvywYt9n1qWQdQ/xYrVHdGmT8tIV9MvugEyKej0S5/HAP6wdYgNAFGHbCWd++m5u+cAVkbt7FKAoMSsL4jW00Gft9YfpXC9I/tP9qJe/CP3kBYrRiODmE5RPniE8eoTZbQdpP3wRvTigXF937UCDLYU7ZLK8Ji03B+NGsQd1AWFWBwRFQXl9rfJ6UpHjxEWRIG5liW63JaIEMA4N0MtLqDCgOLhI8PQVWB6g8wLd7VBcu05443GKZ86jXnYHeprCxhb2hoPo4YzyyCLx2kQGi80dyhMHCZ+5hl3oEViLGixQnHmG8MQNFGfPoe56EZw+i775Bkw3kXUcHsg6rEVtDSW+xRGAzXSKKgohsDvURt94DLu1I67fsxSzOsC0QoJRivURHEoRdtrYzS3ClWWXJp5Ly9pNDEyaSojleCxGqIU4tXvDUNXtiKmpczq2s5lEqPT7lcO16vcEyWonUjQHClVK8WmSkHwxIfr9L4o6cjoXvuRsTrAyqIjx9kU3YRUEZ69Srq3BcCTPilfdAYEievwSdqGHuXad8MhhKaSjyPkAGYqbD1N0Q3RhCXdSgp0JxTMX2Py+V1K0FOHMEk0t7bWc5AtPweoy195ykGDOs14niVFphk7zCm0uN7eYf9PLUcYSb2UEwxR15TpBp0N+6xF0YVCFEZf1M+eFl3N9jfKe20Ep4qeuyMQU5Py9+FbUPCfYGoI1TF59E63f+hyEIeGBfRRXr2HGY7bf+WqWfu0LXP5br6J32bDwK/ez81fuYenDD3H13a/iwGcn5IMYG0DeDdi6VXPwMynpcsTgPz9WF3rGopeWuPC9t3DwvhnX7mnTv1BiQsXSf34CM5lh7rkdff9jkrM3S2H8ZzuWfqXFwgscH/70HJ8/08X6PrQ3dXJqFSG4SVvBjEa0P3I/5p7b6f/BY8SbGVlfky7HzJcDVAnhzFK0NcNX38C3/N6P8eS/fjH5sVVRcjmCbrC6SvLQedThA5z8yc/yzo/9ED/zdf+B0++7ifymQ27AdFbqOyPsAw8THjxA+7plvk+x/pIe2ZGBDESRg8bbLeh3UVlO98wOiw9GTG/J4AZn1Kc1ZmcoJEOXIn38l59h7TWrdNZLOlctZQyz/Ypgpih6lqJryXuWvAdeWUYUywDTIMHiDcA8nO8dmfviW+TbALYsK7WCnUx5w8Pv4A/v/I9EP3WVK69uEw1z5kshel6SrXQEtZqVHP2ViN+984Oov7/G1df2iXZSlLHkvYBiqUNxx40E05xDH0xIdiBdgdnBFibSmFhjfRHQT8gO9OheSrn0qaN89z33cfqnFxm99gRqYxsbOci43yM4cgg7m3Hzr41hc5vu2R1sEpP1I8rVAZ2nt5itRpgAbBQwOyKcIaKQYP++Xbwcr4zyrqxmNq/aeyqKq3aSTwL3kllbGlYf0Fx5036mN4vBog01pt8mvrRFcNONqGnKgU9vsfKgYnQjXH1D3RK1cUS4NsIMuuiTN6AmgtLhBi+SuHYH9vJ4X0ynGatftlx74yGykwdqREFr9Nq2tCLHU1Y/fY32vY9jXvcy7Bcfl4iOfp/yyTMEt95McfkqydUJlbQfdvEM/qvianbJhy02dm1pT7Ata6M8z42oFif1t2mK6veqNkTZltZSsSwKOm/4VllBaKSQb7UwsaiJdFqiJjOUKxrLtuxHudyVVk4SOS6Va0M1nmwmEo6YTkvUdC5tUr/NpRFjTEeQrVzbm/yTMBD/p3iP1NsgKEU7QfV62CTCdtt4vxesdY7WWkix1ta5Vb41FATiwWSt8LG8y3IcCwXAWVyQiI2D6cSYWCwZTEu8u4p+jAnU7vaPP2fOIoIgwAZK0MU4kqLLIcwmCWTiE8fYWByLhWema26dW8pWQJnIZ1unnC0TKHpQdBRloqgsXOKIvKeq1yt4zT83i9KRhdMqkDnraYqWxiQBBL4lF1B2Qsp2SNmOsEmNBqogwMQBJtZyTwViporSmFaEjaMKoSpbimBlmc233oLZv0R49AjhwQMsnh6z9Z13c+wDj7D44DbhoQMsPjZi61tfzJF/9TDhhssR1IrupTmrDxaYSBNODURik2LcRJ08o0xgtj+m6MB0X0C2oKqWWNmWc2pb0Ve+915Y/tyW50Xhg3UPzX6vNvCDCkpUYSR8ide9DP25R5i/8hbUZ75Me11mqN3LGVZD73JGvFNgQjj1ww/w4a//ec7+mKK4ek2KHydLtZMJXFunfMNdnHrXF/i7938b/+9rP8CZvwHB0kBmC46/ER48QHHlKqsPbNG7aMj7ivGRGBsFUrHP07rdVhq4dJWD/+oLtJ+OufBNy6heV4wOlcQnmNlcHm5hwHxFMV0N2P/JNbqXrRRvc+idF9Qn3hEkSIVRLXvfa47XUD/Y0si+FSV6sFA9dCsOkyNb29IQ/MwKf/Hxb+J3b/ttDn3jBcp2SDR17bFpTr4QUyYBvQfO8a2nv4MP3/rrLH/TJcp2ROvajHBq0FlJ2Q4xSUjv/nOsPDyntWaZ7gtEOZYZgrQkHGeo0mAiTbQ+5uT7nuKX738Vf/+e3+biXyqh0xbUBuQB7cjJ9oGHUQt94TelGUFmsIkUBwtnJrQ2C2yoicZiRGmzHLvQrQjrvvCrU7gzkbP67J6GT5EnxcoL0spa+dUvMjxlGB6T9+mRuMDa0QSz1EPlBeah06z8xsMsnraMbnSnZjKTFuX2SFCsfks4TcOxXDPNloUrHDw6YPMcO5nS//X7GZ2A4QlRCNqxtF3NcCQoRFFgzl8iu+cUwX2Pkr3lLoID+1FLAxnUdkaEhw5gnzxbo0nUUPwuZVczQbwi39YDXtUesgaVS8sRLQRPM5vJIDSZYnZGlTmcJ3fqJJEi3BHg5QsxxAxdoTObSwbeTDK79HCGGs8EFRulqOGY6MoW5up1ymtrgnBaORYmrKXRqt+HNEO32+idqaA445lbx0TWcW2N8up1zHAs6ErhC5KiCuyseEFNXx+tUblBT8V0Us0yOc+pXIO2nQgHzU/cGopRcTaf1y0kf7968z6n/vSKSBWGtXt6kkheXRRK4R0JMgtI8RNprBKkFqitEbzSaTKt86LGkk8HVO1/gGBWEE6Fu6TSTIqt0nnkpO7aTFPC4RxdWILMiCjA7W88soRTiCaWaGqIxo6yUBp5fSyvh6OsdqYeTrA7I8z2DuX2Dsa1qoPMEs4Mel6KAKGhnrQVSdk9/1z2YTArCGZF1b72IgSdCh/TFgUUBZ3Lc9RCn+FJzfR4H9uXEOZwfcTqvZd5+sfvgHOXsEVBsDlm+XNrnPnxO8kPLRCkBlVY5qsxnd/5Ep2nNkg2UnHejyPC/atYYymHY9prlqKtSLZBGUswp3LP1plYBqi0kP/9GiwvGBg+XwofqG4ulSS7iGfeBdhmGbP9MeaeF5F85nHsa19K8gdfJpiVTA9EhHPDbF+MDUTOHSwv8S3/5Uf5hVf9O574l68gO7GfYGkgs9UgoByNSB6/jI4jbv7nBX/lEz/Iz7ziQ8xfflIeOI4/Ua6tEywOUPOc/rk5rU3L5KBm464l0huWd/XZbTtBdbtYa7nxQ2tMj5Vc+Gu3Uv6Fu+TGVppgeRHV61Kcv0i6bJkeVFz/+n10rxcUHUu6CJPDoHMoOpaigyM+e2M8N5D7AqjJB3Colh2NxWtosIDuOlmz7ysH4ueiC8PF37uBtzz2l/jY7R/F/J11rEbsARZidGaYr4Sktx/h+keP8fZHv4uP3v6rzH5qh8uvXwBrKdsRyljSlYjs1sOYUNG9ZpjtU2zenjA+1pIZYifCN9rz/T3Ico5/RPEP7ns73/+Ke3n0765KS8dLRLXCdlqENxyTB74LhG2d2SBfkJ9nB9uki37m6HJ85ilqOkcP+kKS9q0YTyT0PI6yrFyPdRztVlAV3tBMZmSLjwmac+XNBxjfeYBspQODHsH6UIjVN58AY1g8PWbhabj6xn2M7zxAvq8rkviODOTl8sIuzoJtxdiuOI9XnjpKPFfEH8mw8BSMjyjW3nyc7M5jmKWecMnaLdSgj15YkAJzeZHkDx8iPXUQs7YhfkbLA4rLV1C330S5sVlzbZxBZlUQ6wYZt7qQG8oZTyZ1vxe9GNt2115ZVoU0PgfMebX42bjqdtDdjjuPCbbbJl0S7lI2iLAuhNjfP7Y0knO30MX2OthWWEnoK0dxa0iXZCafDyJUt13NoGUdpVPlufW0GkTSBl/Kq/Ks43F55FRpJfuTxE4F2JKvdohpSXFi4wjTb2M6CWUvkW3utMRmoSWZbJXRJNTFpE82d7lq1XFyRH8cOusNGitJdiKfbVqCfhT9mGwhougGlO2AbOAQvSQWE85up0KelNs304koO/FutFErik5I3guxSYztJBWCpuKofm8UYqNAUPbFiHzBqSPDiLyjmC/DfEUxW9ZkA4myMb2E+QrMVxXzJU2+mFSvE0fV/jaVbumCJl0MyBfEMgStoN0i7wXk/YB8IaRciFHtdrUPZSek6Mk5se06X8skoazDCQDyvvx94awhSB0nLQiwYUB+eImb33cWvW9FgqsDTbHS46ZffAb9yQfRuWG2GrJ1S8j8G1/K/MQy2XKM6nQoz18Uo1znLWRixfiIZr4M2UCRLooqF6DoyLYYd5xfWL42y/Oj8FHIQLozlHyidmvXjBh3IYdTw/Rwi/nX34G+/zFmb30Z8R89hC6RQffijLwf0Lou+VKn/voX+YFPfh8ffst72fjb4vFTLvcqGbnZGUoRsDXmlv/hS/zP934nOz82RHW70td30lrvBRM9c52VBzboXLOki4rRsURk6UXhVFcy6whWV+D6Bv2nAiZ3zjn3FxPCI4fFO2c6Q2lNePgQwUxclNNlxehoyOApISAHmUIXMHgaVJMD2bB390ZjNAbtymhvOq1iKNRgoZrFVnLoQFO0Ag5/YoL5R/v5hke+hY+/6DfJO+L+HEzFjyQelqRLEYc+uUP0vy/xtke+m9+984Oc+tYnyPuBGExaCGaGvCc3cefSlHgb8h5M92vh7uQGXRjCUU6ZSOHV/cxT3PYPt/lX9309P/bq/0K53KsVFZ742mmBVqSH+lj3oGxdGgkcn1sWHt0k3dch3J5XvAyzvilO3klj0HEthUpWCw5pySVHKEl2tWisSzrXiwMO/MenWXnIsnN7yeatITZ0lgbzlPDSJsW+vjhVnz7HwY+eZXgStm4JKSMt7wPUaEKwvuP4G9JqUWnuWjK6Ij7aLBNZf1kSDBbY9xuPsPx4yc5NsHlrIq0Up4az2zsw6JGsTWHQp7zndqL7Hhf7hTiSlkYYoTeGBLeclO2IY1QYVAPeLlIzPBvp8QWSJxs32h5NebgnWPv4F5Ewa3S/j+13sf2uDJxJ6JyznXDAtz7cwKQKIYOrXEjUqijRo7kzA92mihMJQ1nHeIJVSmwCkJaIKlxrM3X5VHvWYYtCXMhdVpMUxdahhKp2gw5ckVqRWKXAVqURG4QsBwM6zQV18dwSr6pz/1flpfmizYVZ1u1D35I12NA7tjvEyYWV+v2Tex2sVpSxlqe3BVVatOP7VKICRwAXewBR5Om0QGcuQqYRsBnMS4LUe0y5NpyXyHvrirxAD6ciJCtqdFBFIcmOJUghmEOQgc692kpXr+vMoVLe9HA6g9nc8fl0da0FmXVfwuexeVFFAqlmfd64X3VaEszK2hYlkn0PJhkqE7THphm6kFbtyh9eIBpm5KsdEctcukrw+ce5/JdPOgRuhr18DX3/I1x+x43oO25BlYZoZlg+XbDxooiio0k20grd88a0Ko4J5hZl3bN8DuG8npyGc2c4aozYpny1Fys+Pl+Nr+fz8vwofCyVr4NxgYu600F3u7vMtIqOJhqXFG3N/M0vReeihBr89iO0rqeMj7WJhqX43BiLikJu+5tn+KnXfDPbFxb5iS/ey+kfEb8b1W6DMUI4e+YCwfIit737NJsXFvnhT3+Kx39qgFnsi/twmsrNmsRQGlbuu86he3cIMsvOm05RHt1Xp26DtF0mUw6993Pc9g+36VxRPPq/HuHcj78Mdeww5fomZjgCDWUL8p5ltqowIRz87JzeBYsNYOdmCLyPndYyk7QuC8zJbFUjQLOCtDsd7HAEm9sAqEP7CQ8fJNi3IjC2kRtzfLwtM8b3HuA1P/7DfOaf/ALFB0quv7xDNMwoWxpVWqZHu+T9kOCfrvDWv/luLo4W+d1//nOs3d0j3EmdOkkeTNlSwsqjc/Z9KSecWdZeGrP+kh7z1RY21oTjXB5aB/dhuy1u/2c7/O4PvZ47f/4RTr/3bsZ3HxXVmjGYTgx5gQkVKi9ID/bh8nUIFO2n1pndsEjnkSuoeSoqK9eiMFvblR2AbrccalhU7/E+LTbLRPnnrjfV4Ph4EzkGfZYfWOe2923SuWY5/40hl775KLRbmJUFoityjLnhCLbf5dS/2aS9Zrn4xphL33SY9Ngitt/FDHr4VHTvKK2GLiqkI55D3mFXYjeEsLvwmWe46Zeu0lk3XHxjn7W330xx4wFp62yLuZq9cl0MLYOA8tp1pm9+CeqZy+IvtdSjfPKM8L9yiSipwi2t3Y32+CJH1aoomr9raa2AK6IcH8TOU3S7JdfdVPgzosqRIlFN5zIxmLovA8HqCqq0mE60q81WISFJJAWGK9YrN+NYZvvNdaiixLTrwkNF4rejtBI0p5TIlaqN1O0QeA5cHGPbouTUi4MKmS191M10jsoK9LyQwmHuWstRCIHCtCOCeYEeziAvUHNRhKq5KOgqx/BItkPHgoxVajCH7Oh2S0xSrTgul+OJtKlGI9RoIgrG4ZxgXqCMJZyXhNOSYG7EeLOgaj96Dy2Udv5V0i4t+gllT3K9Px0AACAASURBVOIW7HzufNBK8oEgR2iNTQKZEORFbVYZhoJyJRG6tDWHx1pxZo9AF2BCMBGUiUNSlCDXNvCvO3sFhSCd/Z60OD2KbQ1h6lqhTv3oW6TB3AiZ21+uzr5BBQF5PyLvC33AxiFmNJLNiwLhDmpRAqZLUlQ/81dvIF1OCCc55fZ25YPW2pTCrNzYFFPDTofWlsE+/hSjGzqEE8NsOeDIx3YIZobZATmu2jnY+4nl8GaIhpZswcrzvevVcIFMEJVwrfTi4L9llHxh+TNcnh+FD1Rwui0K8XSx1qE/bceJ0HSuzEmXQoEpA0U2CMlfeRvpa25FffZB4lEphNrAwdXGogZ9zOoSt/7th/jRL383H37jv6A4fxHlEs9tnqF7XczOCN3rcvtPPclPPfwO/t3Xf4DTf7uDLQrCI4fFZ2U2r8iRwaV1Fh/aYnxIs31rT2DumaitzPZORfS0Fy5z5INPklyNSE/NOPdt+yviZu+cRecQThS6hLyvGN6QsPrp6/QuGuKhkgeasZU7KWUpDyUXxeBlw146ao3FzOaSqj4cYza3pc/diuuZeVGgc0Pv/IxkPaV9bc7yZ6/w1sfezu/d/lus/qWLlElA99yYeKegfW1O69qU1rUpi5+7TOu9S/zl09/OwrddwbRDOud2iMYF0TAlGuUE84LW1SlLT8yJRpZsoJgcDLFKoTM3mx9P0Vc3YGMb/cBjfOjzL+e7X/VZLnxHIcjG1TX0NCM/tEg4L7GdFspY7A2HhCgMMiNMImyvbucBEvA5m9fhnF7+DEKab6gwsMYVtjX6Yb0LrCOwq8mM8vQZVj9+npUvK0YnnK/QZF7xQ9Sa5PiaJ86y+omLLD0O0yOW8RHJUtPTea348Q6581SuGY80VByGOijWTmeUT51l4ZNnWXyqZHJYMT7WFqRRadT5K6hOm/L8RUFZbjlB+2NfZvL624RbM8vEgK0UwYB3XPZS5Wd5+NDg9Pil8XuQloIK5HlVPPr2a5Xa7Z2MK/8cieNQaY6aZ0IKzXIZtDOHvLnrGq2kaJhKhpydTB052CnwHPIXTg02zwnn8n96Xggnxb9vLtwONU1hNJHzXxRUCdlxVPF6BH3Tsh06qCdbDu1Q81wKt5kLlW1kkKnSolJHjE6dw3uauXNdVMevSgX392mVxO6QvoazcWXu54nlngic5ai8dAiH8FqCeUEwkyJIaSWF7TyVbbCmut/9udNpw5LAcdqCubR+MAY9F6sQm2ViLzJ395FDuqJhSTQqCaeuyDMl4czSXrO0NwytLUM8zLFZjs5K2muWlns92smq19U8q3l5ntwPJFsFybY8S/z9pQrZv3AmX8G0qHhx1koRGMwFnVJZfW+rWSbb6DIJ42053ktPlLTW5mRLCcHNJwj2r3L+B29n8aOPYJb7hCdvJDx8kIs/cCdLv/MY+tRJKTZncv9NbuxRtjXdc2PKjc1dDsy63SIcKaIJRBP5nmzLtWJL2U5rhCvX5N59tRaL+Ph8Nb6ez8vzpvDBuAem94nJ5CZRYUiwOMCWJdPDLaKxIVsIQEGQSq8/+tjnMa9/Ga3//EXizTllogmOHRGH4J0R6uIVVLvFkfdovvXjf4Mn3v9yzKCD3r9KePCAEGnLErMzxEynHPwnMX/1Ez/Ae17zG5x+3+1kN+2XAcvD1XEkvjWzlNamZbZPs/XSZcwxyWr1/hAmTWXmMxpx40d2aD/SZnoyx9x9G+X6OpPDQl4uE0F+sgFMDis2X7mP7uWc/jkjsyvHR6iCGT0c73vj4BxTPW9D5Pg+cNTOU/HB6bQqSDbanInCwHF6siNLXP3Icd706DfzB3d8hNnfG3Ll6xcJ5g5q1pqin1AcWCQaFVz/0HF+645fYfT3x1x5wyrBRI6PzkrKVkgxkM/uXyyJdyzZomL7JslTM1sOJWklqHaLYHmJG34Tfvm+V/Ouu/+Ix/6XFdJXnUINJ8Rnr5P1I+nHA2U3xgw6KGNpPXShVoiEkfNgKiquhs9CU+2Wy7hyM/6WcAe8aR5KXJFVS46Z9r5GxorirNMiPLAPO5my/MUt9j0AV968n/T4krTggkBmn8Mxweoydjxh+QtbLD9kGZ5UXPmGfcxvXNltDueNB0EGv3Yi3B3HqVBKiQw5SQiWlrDjCYMvXGX1kYLhjQHmxkPStlpdxmzvoE8cl9ZPHBKsrtD+2JdJX3VKgmzTtP6sKKwQr6o42WW0VxeEu+9PGRjLxM2iXTuhciZ3btXVepqtsKqgk0G+aEvhUXRlXVX7zZPNW7GgEQ6d8kaMyrfEtKZoi+N13nVohF+PX0fiCNaBkJ+r/w1DUUdGTu2jlfB2kFYZZo/hnv/yQZwO+bKh3BNYi40EDbaR48aEQSUkqI6B40o1XagrT6jMPVuSuPKaqQbTyizRtUWjQNCQQJRPJg4wkUa5Z6cKtLRvm+0x1zYrk0DUUloLR9BdZ2VLU3Rkf0xL+DyVoisI8Ll1aC2KrlhX7SeAMlZkPUXRVpSxqhBg0wrJe9SvO5WWid06q7w7WxV5RSegaMt+4c0+wwATKlGKhkoI7Z4TF4YUrYCyLdtrWsKX03EkrVXHyVJt4RuaXotku2B6uI0JFeVTZymuXOPIz36G8sUn0de3KJ65QHHpMof+6Wcobr8RrqyR7Ejbf+mJktHRgGQrp+jFMjalqXi0BQFmMkMZeY7nPUvRhvmycMaUlmOtPKL5gnPz12x5fh15K/Cstw0306mYw3W74skSCl9k4akxVkP72pxwWlK+4S6Czz7K9O13o778hFTzR5cxo5GsYzKj3NohXB9x6w89yIff9C849xNQnL9EeWw/tiir5GuA+Jk1bvlrX+AnP/XtfPD1v8iVd2cSepnnouDyve+8YPXey/QvlKQDxehEF1oJwf59YoXe66HaUmyoR57m+PsepvtUxLm3deRvVnrfgzMG7Xrh0RjSRc3kUMTi7z/B0lNuVuD7981ZpH8N1+ZyEQJ1cKOzvk9T7GgsM9uFngyuZy4SzAuyxQRVWEwScOjTI/T/tszrHvw27n3JhzjwjvNkgxidFhLg6eSwaDh47xZveei/53df/O858O3nKPoxeizu0qowFX+jc2HE6pdHtNcMeU8eXiqOIM0wg67j8Wg6n3uGO95zlffd+yb+1ms+xrm3O2lwGNB79DrFSptoey7w+XBGfmiR/NQRuLouaqtmWrQfPLKsQlVUIvldFVG3EZLog0Vx+VG+5VVubGImU+z5SzK4zmaYhx9n8VcfYHiLETQHMBub2DzHjMSUw87mmEdOs/QbX2LwlGF8g0N+cokXsbM5zMRrpTo3WV4jCaakHI0oh2PxWwFB8dY3af/m/Sw+XTK+oSsD1aAjyMH6FsHxo3LstcbcfRutL55l+obbpa3rjfN82KQ/VrZGZ6o2l4+B0LuDQK0rbNEI4gPOo6Yr99l0KkWmjwxJEppRFtYhcMpYzM5IinojqIT30CJJRLK+uSMD7ea2mF2OJ/IZozHl+qasYzSW68zltdFuyXFNElGFAWzuYLa2RBU6GmMm4h5uJ1NpTaSp8Hagau1UBn2Ob6XmWcXNohR+j5oJKqV3JqK2il2h5zlbWldGq03zQFuW0nItcof6ZNKSnKeVqzdQTWB8VAIg3B1j0bnbX+P4PVlJOHHrm8+r82q9qsul1IfjjGDs9imJKwQsnJSCwllbtfJsg99jU7mP1HBMkBmCudzjyj2Lkm1BfaKxJZoYwlHqJluGcAbx2BKPG68bix2OsaMRZjYTWkO7JeTgwhLMS1FkzVJBudz58Vwm7RzucV5c0bggnJQSkTPPCHoiMFGzDJUWLvPQ0lqfY+KAyaGIaCyoT3DzCYKlAZd+8jVEFzYw+5cIbjlBsLLMpZ94DdEz1zDjCdEwQxnLwsceY/WhOcG0IB9IwRwcOyLbF0eoKKRz1WJiiIeKeMeiS6oMMZ0aKTjzUhS4X4PlBY7P86jwqUzk8sy1GRxvxT2cdKdDOJcbYL6vTfvKjHRJEITZvhh1ywk6/+nLZH/hxagHHkV/6kFZXyr8D91uUV66QnDkIN/2yXfxL1/+73jqn96DevwZVK9TwdzB0iLFxUsEK8vc9s+nvPOz38//9ZL/gDp6CO/pISoLlxCe5fSeGZPsWMaHA7ZfcRClNbrfk16z0iJpz3LMdMrx37hCdqDg2jvvxMSC9EwOaeIRlG0oupAuwWxVM3zDLXTPDOuD5NOqfWaZh6S1rkJZvXOyD4L0i81ymM5ERdPvkb7qFChVqbdMqJgebhOOM8a/fbBqe2V/cxNKiy7EMLBshWQLEfODXbIP7+cdj30Xv3rqP7Dz42OyQwuVH48JFHknpFgUonr3Sk40tWzd2hE0bDKVmz8Osb0OLPax4wknPmT4Z59/EydffInHf3QFO56QHV4keuQ82XIbAuGNZIOI6OFnyO+8EbO2scubxjYgZFuWgpxkuaBiWlV8n0rp5r6b1LUFnFokPHZYBvgoorhwGdVuC3EdOPAZGN2g2L57H8GRQ5X8ubgmxpG618OkKcuf32DfFyzTQ4IUKk9Y9Rwidz7tdC4DuONyhQcPuAJEUW5tVXlCutNh4b4LzFY147uOEmyOZdAY9CnPX4SraxQXLqILQ7m1Q+u37mf85jtqZMfxoKpcKjzCY5+N9LiWW0WQBUH0OrG0o6tWV23HjyscaQziMlEohXzc7aBzaWOXiUMZRiNBS6ZOGu8Vnu0W3u12V5q8NbKOIBDfmNkMqwUZaK5DJYkQaL2DtVuHteLT5Y0yy04DmUkSZwOhGvYGnjQc1vvl901rsKAz4d7444YxDSWmrgrLKhTZe/rooIo+kXNgqFLrm8GoSgnqqRUmCrCRrhAUgKIXVfe5nc7kOASBoM5efeeJ1w2lpIpjykRTxlqUaY7gXpGrHYqkIkHWykQLIpPU8SsmEbQn7yryjqBSWGk7FW3IevXrtixRmaCrFR+pIvlbTKycUi2qPJ58a85EDrWKRKTg+aCVZ1grkmMWR7VKTteKqrwnfx8dk2M339/CXr5GubHJ8V94hPVvOIbeHsOV65Sb2xz/wONsvOlGp3yLyDua8TfcRnxpm3whJt7KpFswGsu15Vq92aKiaFtMKKouq6kQ17wvx1EQrYYA44Xlq7o8PwofPyPyDrLOgM57gZSb26gkofeHpwlSQ9nWlN2I9qURNoB4pyA93MO84nbiP3qI+Vvv4umfvQdeeopgZZlgsFAROotzFzj1/Q/zvb//A/zbb34fT/yDF1Fevoq++QaR3RaFwJfTGXpjyKkfOcu7Pv49TE4tS3ilI8Oq0is1NMHlDZYe3KKzZpgcDLj0HSdr63ffX19eJFhdwV65zuChiK17cgZPGoIMrBZiYDDHPUQBDZMDAcPbFiuVE6ZOk674K+4hq7z5XatVDx7WSsHjBjs7naHHU2wr5tz3GdKlmNajF2mv50JuBPLFFgfuH5P97EG+7sFv41Mv+RDp/jbRw+dorWcUnUBUG0qx7/4h+h+v8pYvfw8ff9m/ZXQsoWxH6EI4A7q0lJGmbIVE23MWn0yZryou/ncnUUcPUj7+NHp7LNJOpYRg+IWz3PaeMRc+dZRvfu3nYWVJWgmLC7SevEbRCqT1NC0pbz2G/tSDzL/uNmf8pio/nGYOjpnPBc3zJpl7bOY9x8CmqQyi0xlKKbZfeVi8aiZTGbRcXIQKQwa/8wgHPpexfYtm5xWHq6JTx1Ht3xJG2POXGXz0QfZ/Pq19XFwh4EnAtjTY6VQMLl0BO3rlcfRggWBxEd3vV0WKmU7BGPZ9YczwhlAQjrLE9KSgxPn46LOXCQYLqLvvoH/vGSly2+16IN0Ls+9VeFUHzxVDzghTT0XFpDsdVCuRz+h10P2+/Nxpo/p9GVhjGbxwg5Bd6FEuddGFxcxmQnJVcjxtJ8GMx9heB7OxKS2DwYKQmROJn9GOnBwcPYwqLeVIYkjsWGbOptuS19w6KmM5R8RurkN3REKvk6QuWDxCE7g2YJ5VCJ032CMvxMdnIoHHTGd1AeI5U97HxxmwVmo5z9vxx9v9rNst56fkvKdaiaAHDRNBqxVo4bXJzkoRGswLglQGf6zBTKeOO5O5dbedSlGjJ3PxIXLkbM9DDFIjHllRIDmE7jlTWT84PpKdTMWbKzMiLHGqxXi7cKiOIDt67DKr5jnRRBCfaGLQo7k811PnTj2Zolst2V9XGARz4zhHDmmbu3vOiCpM5wadFVWYrc1rnpPffqEuCI9MzdI6FV0rlLUcuD+laIu5ql4cENxykivvfBHLH34Ys9SXfMGbb+TKd93G0oceRJ88TtEN6FzL2b45ZHzHKvHGjGCaC68MIM8rr6aiBcm2Ih5COIFghuOsxoJ2RaE488/nzz0e/jku3rn5/++Iz/PDSMBKnIB3eW0afKkwlAiCrS10q0W0PiX67DMUr7iN7TsXSbZL0sUQXVrmyyHhvpeK3LNf8sT/GHPq/zlCcH0bzA52NidYXUWFAbe9d8Q/+MG7Me8v+VuPfIF3ffYObnrfSfTnHhHr8Vis2s1szh3/x3U2vu4QO287RLJ1kIWzM6JrDonRSmZFkxnLfyQP3atv3McT7zvBLT+TYh59GsYTIRa7QerQv3mIIx/qs/n64yw8U5J3FKMbNKp0RVAM+YKoG9IlTa/IK74OUBMira0VEY6Uq4oC1e2gHLlSuAJpJUnm4mVQmkOrR/ntX/gg33r6O1j7aItDn9xherRbcXqSjTnJ32nzDfv/Oh//1x/gGx75FrY+0uHQJ7ZI93UoWzLrjHbmrPydgLcf+zHKQ3D11W1WHsmJhrkouJRC5SUmDtFZyeFPjjn/1h6v+9UHef/nX8ex3wzofeos5uh+gonM1tkacuL/vMLjH7kN+8QjJOkxzEKH6a2rtM+NsJGoI9KliO7dtwtnxFoZjFdXKC5dro+VDkRRA/VDNEkk8LEoquwf4Zc5Sfw8RemMvKu5+j0vZvHpnPbTGxV/RC0uoIyl88QaN15ssfbKZZ5+1wnaVxWHfv8aPsFblUb+J8tpnVkXWffSggTd5kWVK+QdlKvkc6UoWprr33orS4/PiM9eF4K0V4EohT5ziUNbA8r1DdQdN2MfOyMGadfEEkB1O9idIXqaiQHedC5tBaWqllPVSvEmhqbE7smQ8p+Hs0NQSUDr9BUKV4ChNebCJSnOtMJcuSZRFZ0O5WyGThLK+VwQLKUI0oygExOsLLPwxAg9mqIWB5QPPyFxE6efQt31IvRkDpMZ9qWnYHsKtxxFX9mS9sbOiHC6QnhgPwtPDFGDBYKtCeaZi7KOJ55GvewOzOmz6JPHKQdtWcep4+hr22JTMR6jOx3MbE54bYcSnNmfwU5mcq8c2Ifa3IHFBdRCj3KxK5EPY2cXUIgXTLQ2Rg3HwtEqSqwWN2aVJML/mM0kwmM6pTKLVIpgoecKIk2wtARrmxg/YckLdBBIoVUkqH4XHEKqCwOFwSrhy5RJIAVgWRIeOyrXeZ5hZ1aUjbh27OFbxOfs7FUpDDsdSSW3VlpMF9ewSwtS4Bw6IOasYSi+NnmOOXEYE2mZ1GT1dbJ9c0LeV4QTsFoTHlogubIAiLdP9fqRAcl1CRPm0H7CxUFFxPbIazYICTJD2QpRSz30dCotRxDzPxdbYadTwoMHJOImkiImuCZ8PHP2AgDlSg89ztBphiWmaGta919g/OZTLDy2g94eYScTyiMrJFuOw1UYKcqOrNLackWmI1ebSHHwMxOypZj5gQ5WKzrnrqB6XfHK0sKf0iUsP1qweUdIsiUtST9pSrZz7LmL6JPHUYsDaAD6LyxfveX5gfggRY7udKj8ewAfJ4DSqCQhf80d2Mefwt55M/reLxGPDCZSxKMSXVhamwXJVk4ZKU798AN88HXv56n/KaS8dAW1JIOGiiPM1jbq/BXyN7+cW9/1RX7kvnfyG1/3C5z5USWOx1AVGsHqCsW5iyx/cYvuVUPeg8mRlrSMctc/bgZTXt/gwC99meThDhe/cQk96EtAZZ4Lv8BxT4gjRsc18yXN4MkJ3UsiEw2n0NqAYCrxFUGKg71dm6JJIDUyA63Sr52Hj81z54Jde3V4qbdKxOCt9Z7FypF56W2XKTuxtA/yEp2V5IOEciGm/cCZyudn4e1XKHsJ8dZc+vy5oVhIKPstOvedYenxGcmmZbovrAYGlZfoaS6tl1ZIsDHm5C+e4f2f/gv8vVf/NhfeZlH9rmQz+WthQWSu9oGHCW84RnnlGnpr7Apa4W/EOzlBZqC0RKOGyqPbriTR3pzPutlexa3wXJNm4KopKyTIF5Mrv/4gw5sM2yel9aHmmQTqbu1QLvewgaZ89An2/cfHGTwFoxNWip6ixAYB7IxQ4ylmINe1Gk9R8zqstFLjZaI88a0OO52y8KEvMLoRdm5qO/mxWCqY4cgpnRTm3CWyN74MnngGc8/thMcOo5cX8fEWRDFcXa+ymvy14E0Ad5lf7iUzV/+we+amCond8O0J44pJO5thhmPh9kRxhW6pVkLgTBerFpG12PEE0wol687N0j3HSk/mwnkC9DxHTWaEa0PMxqZYQTgunplMhYzrWnW6La1nFUboiXNDnqe717G+iVnfwExmTtWVOc8akbxX94wLnPUEaOHXiBsweVFxR1RZyt9cRIUNtCBHWtfXWRWjIKitu8hcuKbsv01TadE48rnPPqMtiIh1BoImCiqkzEYS1WA1FWplM0FsKuWgb/VpjZ5mgvhAJegARCX2/7H33tGWZXd54LfDCTe/HOpVruqqru5WJ3XTkoUkZCGwQWBGAdmaMUaYQdbMYmaBx+AA41nAyGBYmGAkwiAbsA2IpIQGCdBgxQ50UqeqrqpX+eV080l77/njt/c+51U3zHhmTavWrD5rvVXd991374l7//b3+0KqbKBy4eM2jNalErEoqIjWBsyNP/bfYGTAM7LeEJmBGBc2uPRlXrf3ORuM6R7oD6C6PXK3t/5BPLOeSYl9Vhm1i4xgnqzNAkn8PWPAxwWp1ZgNHnYdg1yRX47WgFaIN1KwdhO7pwVGR9vEIdQGYneIqUfWcemH7gG7sU7O9jsDTD65jcs/dC/y+TZ4pmE4QzIbofYXz6N2eQ9h1xZsgYQ8sOjvyXjLIGtx8NQi+Tm8czMrbMu1IL+gV7evzXZLFT4ukG/fYGvzYEyWIZ0MoB+6C3j6RfC7bkf8yUchEo2sJQADFDUy5gsHCnJhHn/vL96PX3ndb+Lch+5DvjQFMT1JN3sQQO11UTu/Ad5s4OS/yfGOz38Av/LQbyG99xhEs0EDcRyhWF0nF+BxiublIeJdg9Ecx97dE8iWKMPJk1LDgJxex2Mc+fg2BqdyXP+u01Bvud/HJPB6nXhEV64jbxuM5hm6pxqI95RXdqWT8GZdRRPwjsPCKi20VdNUZMbMSaLtYMdiMi/kjbp/n1FUoPE4ghjl2PjkIXzbC+/Bp+74HaQ/skfSXGVotaUM0okAxe2HsfuJJbzpmf8Kn3/NH2H4oz2svaFD7YpYghUG2UQAdXIJYAzN1QLJDMPuqQijg3XKFbIxE0wbqGlqFx7+FPATX3k7fvANn8XzPzxLkntrKAhjYFoNyKUD0O06xMIc1MYmmn95FdkkuTEXDQloQDUCyKFtKVhJMe+0KbYgJKWXT72XQUn6tG7D3r0YxHVx6BmTEiZNMXGOYbRksPpN8xjePot8IgZrNSF2BtCtOsSJozDjMSaf6aFzAVh9yyxGp6aJ29RqwASS4hOacXmvAOQy26iRk7gtJAjB43aFnaFzARgtMmy+9RDy25egO026nlISV6bTIrL3zDTYl5+Gmu3A9AbURgoD6F4PWJghdaQzvHReRS5c9GbpenlD7WvHAFQQqmZEbSyXTh7Iso0DeLTL/Y41GuRmbnklphbRNQRQtAJvs0BqJMvzCy1/LgphKsRznaS+vZFN0PHk7RCsUSOPLctDAWektmOcbCYcsbpQ1AaybRJf+NYirwRyCxinJCOX3dBmZEkqfKXl+kUhTCihWpF1baZMLRZHZRFTHctc24uLMsVbaf/sstC6JDvLAWFbXYH0ijEdCeiInJvzVoCiLqBigbzhTBwlFZ/OuTkM/efrmNyfycjSOkszakUXTh0XW+dmac0+7XkkXx7i3+QN65Rcj8FkgCJiyNrWpbjNUTRIPWcacfl6i0PVpW9r7ld1larCvM6RN8mN2edsRSGKpkBRJ6RX1QPyNLNtS1UnR2sEkq4BYLPJuOccEpdLwjRqmLigIcc2eiUMwPICxVwbJ355GazTos/OC6hODcd/7TL4l58BTwtkHYHuUYn0DWeQHuyQQ3UUorh8DXp7x983RgCDJU6czRpD1mKez+O9jOJg37P1Sm6vtrpuocIHXEAPhz6n5mZzNSYEOTcvRki+6R6Yc8vQb7wP0ee+CjAqFMJeAR1yBL0CxfomTn/fU/je//w+/PY3/jI2fzilFWKLJMO8Xoda2yCVRHeEU//wq/jez383+j/YA2oxtSVAg7czuZM3tjHx5BZqWxpph2FwKLb5T6rM7BICcmEeWN9C55kAo9eOcfWbI8iDS8SxsHlMcnEeIqGbY3CQYzQrMHFeg9suhMiA+oYBt0CIUcojA8aGXfrNIgeMMe/jY5IULAypaLOuxoR2UI+/aIVY/GIP8sem8LeefS8+fedvI2sL8N2+dXglv450MsTi53cR/1jHc36Ov+s80qmAPD8KDTHWyCYiGMEQr48Qdg3yFsNolsME3JrMachBRhL6Rh2NL53HmQ9u42e/8M34/jf8OYq5DvTurl2xEuxs2g0wZTC8Y4GCS7MM9Ut70M0IhgHxxgg6FAT9g4pnvbldxj5U7h2PbrgiR1FAIhNuwhP7MqnAOMT8HBY+voyJs0D3No3tuwIKQ2QMpj+E2O1DzbTAp6fAL17Dwh9fRf+ExvYdAU0kFhVh/SF4b0RoTpISPyQvsM+VA+rr7gAAIABJREFU1xJoHWdATE9h5uNnMXFeoXcc2L4jhm466bggXstkB/HqAKbdgHrL/cDTL4J1iGvjQxC1AZ+bsX8XlGgYQMfh+GMv4+fzEkPDqhQ7sIiI5cSYLCf0xAbCgjNC7Ro1KmIkSddNSER6nZBCD9rQZF8tsJzPjDHgiVVUDgb++rCAPsM4npAs20fexVyXYwdPMhin5tKmJLY752bHkQNKV+uKksrZOTDHe7G8OiMYWKGhnaqLMSIHW8m7l7479aDlSXnFltvsgsUXAw5B9uGipKT0ifCSnJu1ZIAp0R7vdO8KQOP8mux1SpX30YLgnvfCM4v4GEPnrWJt4DleSpEXlfsqa8LHAkm8HgWwgsZhVnkPL8rX/d8KZlt4JQLk1WyKFkgOWXKO1kS6BrX0rGTfI30Zoc/OuJGFId33SV5erywnfg3nmPzSdchhjmKSlISmPwB/7AWsvOM4tUFHI8rReuQZrHzHUYgzJ0mBmxt0LhfYvDtE3hKItil4mAWS+Gg2VJZn9jxogBeEdrlxRVhkChqUNfbq9jXZbp3Cx/EMlLI+FM7jpKLwEoAca2RNAf3gGYiHnwO/7ai3UM8bEmKskLco9kIszOP0h1O87/Hvxr+566N48cfvhHnyLMk03aBdr5FZXquF2361wC+c+R2c/RfHgM0dGsgyMgJzPiMsL9C6Mka0R7EVmJ4kbohdaUJrIAqhu30c+PNtyAs16EMJVt9+CHxhjgYya++vIkOOpjEwniXlU33NQAeU1p5OMO/c7BEdoCQDamMdbfevypnllUBr8sppNYnEKcvzWtQFkvkaxDhH77ML+O5Lb4d63zaGdy5Qxk3AUTQEeGGQztbBkxzDTy/gHRfehj88+adIvmeXeuuSk4eGMeSLUQ/RXC0Q9A2KOgW6Fp2oTIbO6fywyQ5YkuHgZxl+6ak34/x/3QC74yStcK1JnRE2CJYDuk4OzLixDvbcReiIQdUCRDe6+9QtxnJ3UIlO8JO50X7yAVAGUzrkh+1/r2mSE3Hn4gitZY7xvMbO6RBqpk35UGEA0R2TC+3MFMx4jOYVjvGcwd5tIYqZFq1u6zVaXbp91JZ46SIteOlLAm1zxKxEvHW+i8Z1uj/2TjWgZyap/REElEvWH8NcWwUAiJkppMdmCGUptJ8YKO7BSafzcmKr/ntTS+slGy8nXShdPp9BQC2iOLKclowQJ2dKaAy1Hwprc1Boamc0iOTsCzRDrQQmOAznhKw4rp8iCbDjY0Ep+oxmg9qzStP7lYYR1ifFZb5FgW8rIgjp+ofhvvgSEwjKaGvUqZiyJHfktq2lqQXMlCHzxoq3jpEcPFPUqtW6LLgKcul2CF+JOtp/XXEEkMt0GNDiyV5/M7YO2ElCho7WNZpnyhc7vCCEFgZUlDlVpxs3Adt6tMT/WgBlHa5NmvlrqmLywnHnwh2zu+4sCOj8C07FhwCcXYVRZDOiBXETdQAUNWebQO91r6sa9+omU4uIf1SvE+euUlQbzqAFgw4JIXKFEB0naNYyxnsVaedPBABSWC4VI8WoEH58ztoSLM3Qv/8AxvPWEDXLgPkZ9N55Pw587DLU2gYhjHPTGLzr63DgE1fBhmNkHbLzqN8YobGqEW1lUA06L7zZ8I7lUArjeUZZizVAhaBkenrQCfEBHQOr1/76Z+7/g83glUF7XkV8/ks266JrktQjPybPPE/D2BWVTDTS6QjJ2+6BvngFrU89jXAvR97gYIYqbT0aobixAnF9E8f+uzV8z6f/W3z47b+OF3/9Xpp0Wy1qee3u0SCnFOT56/h7f/IBfORbfw3nfuEotVmmJgmpcf4wgkNu9DDxQg/1TY3+XTNQCyRxhs2hMd0+WBjAXLyC4/9xHa0v17D3UIZL7z0AszRPXJ80gxwy6MBatAtgcCBEcyXH5FlbyLWsPbxLDg8Dr9CiSUX7mAPYNo0zSTNZBtMfkGOua3u1m179JVINFXGkMzVMP5dh7edP4M/u/g+I/vEqtu6uQe4l4BkN2ioWyCZjzHw1webPHceDT3wnHrv/ozayYgwxtg6wqYYOOcLdDBMXM8TbBskUR+9wjHwiJgJiSn4bphbBdJpoPbOJEx/SeO+bv4SzH2ij/9BhsO6AHHADAd2qgacaLM0wuucQFQWdNlqPXUfRtJP/gLxQPBl+MKTVlG0fMCH8710SO3OBrkXu7zcXz0C3ogEbjIiEudnH0p9sYPppanutvLFF1zkOyNF3OIaux8D0JBY/t4OpZ4HhAYP1hxrIpmuESITBPqWZsxdgWU6FoJOXMyosTG8AMTcLtr6D+c+tYfp5hdE8w+ZDkyjmbP5akpC5W7+PaHkTJs8RPHIW2fF5YGuXiog4gOr34X18nNRal6tQj5S41paVU3uExf3LrDmdQ0BcG8VuLivOF5BSltlWrohwvBdnrukS2oWgyS0ISg5JloOlueeisECC2bR3AEBVBi6pDbzvM9z5znKv4HMtHqfqopaxa9sFlg9DMnBW2CI0V/6HO2dg+zdG2u+0uWDeZ0trX1gw64dkXMp7VebvEBYhbKaWK/asMrEoCJm0DtMOCREZoQc8J28b5hwcHCrleZJlG1I7CTy3aI9FQp3bvZPdG3fuFD2r3mCQc/DMFlwu8sSeYzkCeA4wBVuM0bGIsX1d0+9IIVhRtvmh3/KFxnRs9B3at05FajwaBGXKQGMhCP0KyFTRWGUcDVymROkYFW2QAju3S3INTwuS+V+5gYnPnMPeGw5DuMXplRvofOYF7L3+IIqrN5BOSkR7BfZub2LixSFUXZJ5pnWfZnEMJzDJ2gbB0MAIigbSEl4VqYPyGfNF6qvbK77dYoWPJejlGRVAVqnjBikjAR2QA6gOaBAefuu90FkOMcjQ+t2HIRIFI0DGVFOT1DowGmd+8hp+9u++BzAMz/+zWeiDc2DzMxCzMxDzc9QeSjOc+efn8MHv+i4YxfEDf/D7eOFnjqG4/xTMcAwzGPkwUr7VReexFaiQYeN1bXQfPAA93YbJcvKXsF4h+sp1zH3oKzj1SxlECrz4T2swr78HejAAV0DYJ1RHB+QLs3lvCJEZzD2RYe5xRSscZo0IK/40ejjaF3PALEzuih4XpaB7fZjegAb8tpVFa434Whe1tQTR1hhypNC4OsKbfuIHkCqJL/yzn8XeT2boHQkQrY8Qb4wRbifgqULj0gBTPxbh/h/7AJ74nz+M7X+lsHcyRLw6gNwdI9wi4q0YFZh4cYipsxmYMdg5HaF3ogaWFVAbm2C9IRU4WQ55fgVf/BevA9MM7/3gH+P5Hz2I5MQsxOoWZTsZUmgE/RzF/adQHF+EKQrEX3geerpNqycpPWJojI3tGI2Iy9FugTcapZzcORfbsEhTEDrBo4gIskJ4U0PWG1DeVG+AqT96Fid/cxv1DY2VbzlAUHkgKQBxt0ctra1dzHz8eZz8jzuobWmsvDHC6tvmkc02aBJxRGbAZ3bBGEKNajG16ASZ35l+n967tYPmJ5/C4Y9eQ31bYeXrm1Bzk4T6FA4pJcM5c+YYwmvbUOsb0HffBra6TXYOjlhbbeMAfyXPoJrI7otB44p0se+91cBSRxRncQTPTXMI1yih86lBE27ACfKvtKkcSsJGKfTWNky3Z1Eei9A6/oz/DIu+KCoeqp8BgCIr9np0PE4y7hLhXcSGLfhcrlb5kOkysmI4JlPEQpVFo1UsAiA0WLkQ06IsAO05JLKvXTxZjpELytW9gfXaCcrzXf1x+6KoYOU2eoIVBlyRxDvs53ahaE1W7SLIWB8fOjdlG4p5groreivXMwyoWFQUC+LJ/1pbA0NN3z+mxYTIaaIPhlbS3ssJUQLo9YFB2NcIejaE1xgrVaeQUqd4Ahf2sw1lkiUlOskz8m7ituAzORGfmaDFblno0T3IhCivDd3QEImBbkRYeDSBkQzpTI3ibYZDqG4Pjetj8l6yIhE1GKJxbQzRbiLepszAsK+x/mALYqwQ7dAcZcZjylQLiJ8V7lEiO/VhAZdFWaVuGL5/PH8lt1cjK26VwofBt7OqvhdOCuqC6oqYQ4414o0UPDcIBgXxS77pfpinz8K84V7wR56FHCoUc22onV2Yfh9qZw9qYwu8O8Lp938Vv/HWX8PyDwvoKzegZidoggsD6MEAejhGcHULp773abz/8/8Af/QNH8LKD+SEIFSVL9YKf/LRNTTWNJIOx+B4C6xRI9Kpm0jb5MXCnruIQx85i/pTNVx7WwOi1YIKybOntmEgx7QiEhnQOywwmgvQPLuDziXl+Qiw8nTH53F8IWiLCFXypspzS/4zutenyadRp1Xu6gYAIO9ExBmoB5h7pIfwf+l4R+b2u1eQT8ZgSqOYiMihNpbQkcT8l3fxdU++G4/e93uYes915FN1WtUr6qkba2sfrQww8VwftR2NtM2hI+l9hvRUi9RxUYj6I8s48zNr+Nefezv+xzd+Flf+VgjTaYFlOcJNm8JtWwyyO0bymkPgU5Ng19YAoJSlu3MDePNLkyTl5OyuoeU/AIRUaJcZZJEMcAbdp6wos7vnTdHU2YuY/P2n0D+msXeclErGqozMcERQvjZQz7+IqU88j9Ylg/5Rg+6xyHMlTGbvJ+eMOxh6F1y3uXtRd3vlin1zG7WPPYrOZYXBiSYgJdR0iwoDY8CaDVLtcA795vsglleQn17yBYgvDqsePjeFlJb/ae8lF9kA0KRrnZudT4xOUx9U6p5V3miA2dBXY3OxnCrKITvaeu8wren5iyJq9QhBrZ3+EEZpigKwRHOdkgu36faoTTEc0lhRKJJkBzRhI5DWv0WB9Uk5xMOA9jFJqS0xHtOzlKakzLJOwP7YGbdBn8zniLHUEvCUKhGYUWqRYCsp56xEbhwqUcnqcsWWK9DJwVlRtpx3a2YlD0jK0m1bWv6RNpbrQgg40wYss2NASn5DxnIkzTjxRqZimIKPqPBmcey9wFzYKYyxuWUVrptFnYwrXFWlvWaPUw61HbssWpMWtoAwlddJfUXtIENKtjFZLLAgpOO19yK3nEBmnc6hdRmMCvii1uWhyWFBqeeKlGC80fBtR5bb1rcQCHcSGMkxWAohRwrRdgIxPwsex1j5nx5CcGkdemEaYnEBvF7HjX/yEOTyKtRel/iJEUfz4cuYOpeC5wrpFFEO+PEjNO5Y0nh9g8JJ5QgIBhQ4bSyfSWSkFGTqVVXX13K7NQofg7LHqx3vgXnIHUVBEHdOrZ+8FZCEWTCq3DsC7L7bIR4/C9xzGvKLXwX78tPkneFM5wQH1rfAjx7E+770PvzbB34b53/qfrALV4GJNvWFGQefmoBaXYOYncHpXxrjOx/+Pvzqfb8FLMyWRZkjHdbIGbZ5qY+opzFYEOjdv0j72m6Xq1/7+Wp7B4f+eBPJsRTrf/dO6JAekHSSgWdA0TBQEZA3idMxvG0KtfW0nJD8OdJeAQP7UJs880TTcqLS5d8pRSusmJybs3tPgBUaPLOOzBFHslCH3Bsj+eQ83vPiu/CxM7+D/j/uWYhfI29LqJpE3pbIZhpQH5/B2174NvzpmU9i5weHyOdagLQ8AM5IgdEhNVN9LUMwMuieaoBPdGiyT3KYeuQzxMzuHo58SuMXHnsrTr72Ks69fwbIcqhmhGC9C6YN8qYESzLoiENvbpFs/+pq5f4xpeMuLAeh2yeCp0N8Kh4+LiOOlIO5zYYi5EzMzdJkm+XQ6xQdIaYmYJTG7OOkuNp5cBZ8dhrOW0ltbgEAeLMJ1e9j5i93MPukwXiOeUdot1/e7dhGCyCnuAAWBJAL8z7wU+3s0qGNRuCtFjoPX8d4imNw3xL40N4fgaTzMUpQLF8Gy8j4Uzz2ArJ7jtE94ngf7j65Cbl5WUm7a+M46XOmoBrkTwOHLoakQgMjRRq58lr1EyuLJkhS1TAFkBsutSZ0f0AKqeEILAqpMBmOiDuRpr4FA2sFYZQmpIgxMqJLUhoL4hBmOKT2xTgh877hyLubu2M0WUZFpQ2IVQ3bMnPoqZR0P1g+FHN5Wq7NB3jSLNOGSM6auEtl0UD76iM/bAaYzijY0xVdMIay47xJqbG5e6Ict2zRbyT3pGITcJ+JBQCqJu2xkXMzxgl935hMA+EtHkAKuFoMl3avQ8rgcvEx/r6w6kaPOHNyeFaxoIWNdNxLBhUBRcxQRNyjWuTfZbO6Ig4Iy8/KLfJos85YIP336IDeqyNJx1chW+uAlTlhQnhk3UgGLbhXdLE4onuT0/liEZ3fokXigMEStcaS2RhqcwvGGBz6yDnsvOUo+FYX2j7Dh//9Bey95TgZaEYSKmQYPXAE0WofRSNAtEM0AuzskSAnJ5Qs7TAUdXJuzluu3UnnJW9Irwb0+Xmv5GZeVXUBt0rhw+Dt2/0AV4EB1V4XPIrQ+uzz4JlG0aCHXowKsMIg6iok83Vkb7gTePoczAN34PzPPQRz5hjE3Cx4HNHqcTSCunAJJ7/rKbz/s+/Dh7/913H2p84AWzsQp05QSyDLbVp7D2K7jxPft4z/5rP/CMNT08Bku1Qdud6xlOCbe+g8t4vatsZwnuPGO4/CBYuCMUqinp+DmJ8DVjcw9XCI3a9PMfU8rYhUCKtKI5Kgc3PeOykxOEi2/T7vxxJG3UBcupLagbJW874hRunybxgjmftgBAQSV9+vkMzXEJ5fQbSbE2mVA/lsA/OP9lD8+Dy+8al/gM/d81sYH2pBnruGaDuFDjllewUMcw/vwvz4LO7/y/fgiQd+F4NDEYpmSO6qqSIjskhA1wMEewk6F8YYz3Bce89R4MQhqPPL4FtdKn6iEKzVQu2RC7j9p3q4+n8cwTu+4RGohWnkrQCGM8i9MWRCaJ4cKWR/404UV28Ai3OenGzyzKeEu80UuW8N8jAof+ecwm2x7TKT9JgcVbfffJDeNqK8I2VRCl6LMfHxZzD7dI7eMY6dv3GAJn87GarBkJLS63WYi1fQ+b0nMPt0TogELydGN1BCG1qZD20enBDovuEIRLMB0Wz4Vi8YI3fjPMfMV4foHZHEcWo3oTuNMhSTC8gXr0HOzUC/9naEL1ynl204K4D9RU9VxeNeqnCAfMEkyAvGSOvcHIUQrRZYrUbOzc0GEa/rdSIVOwKvIq6Gadag2zXyRMkyOJUPlIKJAqhej4jg3R6dw3YTPqvKys+ZlBDzsxAZPc/MmDLzKCSbCtOgz+CdNl0zt2BRyqvTeKMGxinMlxfaLyI86dghqllOSFRuHY8VIRFsnBJfKcupVWafQ3ZTS8tP8AB9h/Pxse09FoRgtbjkMVmiM4uiih9VSaamfSWUR6Tk3Mwy4tb5e7Xi3MwCMoBlnIONM+/cbKTwrSKe0QLISE5mgW7sdUizdb03SWqdkzWJFDSdt2BQQI4BOTaQiQYbW4VfmpWvjzX4mNpmzKXXO26dO+dGQ6TGtrQU8buc87wmVRUrqBAlQ03y7uJWrWYkp+ti4yOY1mA26BZakUt4oTH3eAoVcsCQT5uYnMDau09h8tMvwLTq4BMd8MkJrL3jBDp//Bz44SVkEwFqmzm2zwQYnJpAsJeApxbBstEg2iLLRQOIdsi5WSR0/C4yhRlybnao16vb12Zj5mUGvVd6a7Mp8xD/Rpoo7ETtcoMcgVInCYq3vhZFTaB7XNLDUVCBkDcZmCKejBwC9S2NZIJh4RPLZI5Wr9HDPrRBipKSnvN7TmDvZIzmaoH6MzeoJdJsUG5SmtKgqRXEzDTqf8Tw1etLYBfrkCPmB205IiiXaSBrMYwXNU7/0hpMt1fC+XZlzKLIF3TiwAKuvnPJoiOwckkiwmlZ/j8AHPrDGyguX/VGhGW0hyOs2tV4HFProVYjBZnbtCaEpd0i5cxghEv/8ASiLjD9bEKyWFDxFfTsKnSQIltsUwxFBEyeHVtIn0FLBpFqyF2SZedzLQwORfjKz/wyfnrnBP7TxQfBmAFjBlpzjJIQRSYABpw5uIbNXz+KybMD8OUb1EJo1GnVnmXQtn0hWi3o2w5h9842ihoQ72ioiHmZaNaiay4TQgE7/+FhOgY3kDpDN9fGAHy7xxcIlu9kisK/5lbpADB6291oLHdpQgD88TNlwPcGUNMtpDM1qJgjGCiE60OrZLFFqDFAocGHY6iJJq5+Swe8oHvGS345HQ8riGehAwYVA4tfGEJeWIGT1juDSghBLQrBgfkZFBM18FGO8VID0XYKMICnBRlSpgWS+Rqi7RQ8LSB27QrZIgLGchloZ7lFGvj+Vb+TeluZt9rtIv3m+1G71qfg2I0BdDMG740BzpDNtyASCrUVowKqTkpLFRFSwIxBvJGAX12HWZwB39yjNla3DzE/Szl5p06AZTn05jb4/CzMbhdsok1kfUMTsDl1FPzSdZjDi2CXV8BaTaitbTIcXVmFOHkM+vJ1iAPztPrf7YJ1KA/Of0aWg915EuzGJvTRBbA0RzZD7uU6FEhmAsihRtYWkIlG1qQFl0ysAs0QjaN5bYzg0jqZTEoJvbsLPjkJtb1Di64s83lh9KCSvQSPKMwVUiI/vYRsMkTYoxYRQGolGBCiYTmNWrKSj1O5h4xgaP7+Y2CBhJibhbNH0MMRWBhAnViCvEao5fXvPI7ZpxMEDz8PffdtkFt9mDjEjbfNYOHnvwxx5jYKinUcwbwACyRGf/MuDJYEeE5jXryrULvSx/BkG1mDIxgbBAOFaG0AvHgZfHoKu288DDnWCHsFwrU+9PlLELMz5KcmyA/JMIqS0PUQLLPt8kvXoIdDKrClxPbfuRNcUctMDjVq1/rULrq6Aj43AxNIrL11DrO/8ij43acJAXz8OWrFHT4IKI3r7zyCxrqGFiQzj3cLRJ9/FuzQAaiLVyBOHPH3HTswD3XxMuSxI8BojPVvOw4tCclOp4D6mkHWZlj65afLRWiWQS7MY+ttxxD2NYYLHPEOXaT2Hz4BsTAH06yhf/sUmn/2PBhj+Ez3I48bYx74vz1Z/r/c2qfnzUO/8t5X5Lv+7C0/94oe23/JdmsgPoBHeUyWlZERjPvWBYsi5E0BkWm0rivwHMgbjAzcMpJMMgUUdWA4z9FcVRg8cASYnSK79sHAG165JOng2ctorBcYzksM71miXCg7UNCkqMCiCGpnD09dO4jj81tQxxJkHePVY26y0gFDMDBoXOcw/SGtenMq4ry7bZYT7yQvYLZ3IVJARbQqqPawRUZFnHFy0NV1asM1Gy9z3sr2hE4ol0gnKUx/CIzGlkyrPP+BWfl2tEtGiTu3R8hbEkEvs1AyoW4mDiAHGdqXE6STDLuna8hbErKfevUWBAUeyn6K5tUEP71zAv9k6iKOTOyCMQNjGKKgAOcGYVwginNc3plC63qKrBMie81RsFaT+Ee2GAUj+F0NhuBX1pC1SRqqIgYVki+IFnTNYa+BCh23ie1DKvZxnpy/iytw8qIkwDppc7U1KASCQYFkqUW8pFyVvwdgohB8nJNvUa+AijnSBZKRVz1kmDEwcQieZOCKrqeKCOUznCZOeiMNqrSyBWR3DLM4bc3UsjIHyvFDxgmwtUtqloAj2iUkxvGgmNLQNcphMsFf8Zh77x7r11MN1HQ/laIHzCa4c1CBZ9+vA1JUGSFowuHMH5dhsGIETlwHy01htg2xj5wPlM7kxiokq23bLKd2oDHUNrFKI79vvj0kqD3lkIoqyuZk9s7N27oBG8FsS6lyem66NsZmPXmCsCuu3Xl7OY7dzRtj8IZ9QpStM8boWRe2JSQsh4eX303n7+b92j92eMWYPbfMts+qvkHGgX37uF7GytTLa1INCIVt5ZXX9aZWBgNsEBS1IZ0PkX1GyR3bksftPWUCcniH5LaNR/tRKrGYV8e95Ngr++33n7MKN42XbUd3T9uxIpni0AGgBaHoLMsh52ehL10lwnxCAhY5Pwd19TrMaAwVMs9XijeNLzpdkC75o3GYQtH1YFRcgdnrVEWg/fm/tdtB/3/ebo2sLsDn2tCmyRvE+nroLAcDyRCjXYPGhkLrWg5mgN6RgFRcY5I8Zm1aEdX/9KtI3nwXNr9+DvWNaTQu7sJcuUHQaLMJKAXV7aH2hbNozE5jfHwaO183i6knJcy1VSInNxp0YyuN+l/WcblzBGopw9H7V3BlZRpiNULzOrMrAYBxKn7UFvWI5cI8AEIRlHX2BGNkMJekUDUq1pimyRyuU1HQ5CdS4vtoG2ZHQYkaYp6cjOnzOGBKBEjMzgBKoVhbJ9luq0lFj1NxWOO8uScGGC/EGM0K7JwRGCy2MP18AqYNimbowxB5rjD9XI7RrMTOmQDhgTaaqwXC3Qyq6bgJgEgV/tPFB/Gl7ZP42G2fwS/uHsEj3WO42J0G5xqhVAikwmAcIXjkLHinjezkIsZnFmHEAcRffIF4Na0WOZsmRGQNBjTIZE2GsG+QthmCISFsIjNQIf0/nSADJpiPAkB1le02W+Q44jPxUmQ5GTmZLoBoeRPJiTmk0zF4O0TQy6jgHac0YVlEJ7q8jaBdRz5ZQ7rYguxnRLQcFySvta0QOQQpE23xo0PQxDCCnXDs9c8Bs3wV7Ngh6IkWWKcJ1hvS4DpOaMAsDDBOkEwHiBnAcsowUjUJMczJ2DFVlM1leWlGEEGWZTlNEo6/8TIDsDHGFyM3P6dFjUwpnb2EjgRNXFZazFM7UQccKuaWA0KFD9NAUQ8gI/J3Eru2WGnUS0TOKqcYY2CFoiJYKWqFuRGiEUBEIfJWhCAiThFzpNYwtFJx6yPkPsPofZ/BgpDOyTih4sUVNQYlqsLperGAro8z4+NObaQMOQI361Z+LXzIaDWegknu24bOUJRZdSGMhg44iohDBGQG6NEdU6pYtYDlEwG6Wvz4eot5FAUAtayse7Rx9ysjPo6KOKRS9DpA/J2IniETCF/4GpSTtki1RXxLzg0kSdypODMlOgoQ50qgLOjcFgaUBB8IKpoBy5Wy6jeUrtoAgCCkMZY8K/sFAAAgAElEQVQR0i5CBhMJsLEuCzN7XEYbmNguVKqtRXuP00LKIG8w8FwgZhxqbYPGhKJAcf0GmAz2vab6fYjUQEUMRZ26CgDFcYDx8poCQJ6BFwbJBB1XEbNSxm85b0XESlfsr8F2q/NvXont1kF8gLJCd7L2iuMpZerQyn84TytLMVZorCmoCNb3gdoIAMBqNdSfXUF9U2E0JzA4PQneaVO/OwxIfVKLweKY1DLn1hFvKwyPd8BazZLoGlAMBQCEXSC+GuLK6jQW5/egDlTypewDrgJKwSaC5dhzHkhNI7yLMKuReRXTtkWXENJDq5KyIBLlV/gCCFnVhK5s4/itRlbyJk2JOGpXz34rCuhAIOgptC9lCPoUlVHUBFhq+S4BtSbofTnaV1IEfYOsw9BfIpKzU2/piAYwxgyu9Tr4xd0j+P7JK3jT5IvoRAk4N9CGQXCNOMytgm6I8MIq5KhA3hSEkNmWAKVp008wolZW1DMoaozOkaFzBla2uvx1KIpSlXPzfQWU3Ac36LjVmjbW96ccjEwgEa31IcfKehmRYzSsN407p0YKsCRHuDGAijnyicgTNwH7ftsacco9riwa4hb8xq6UNagYCkNgYxssSaFrAfRUC4zfdEycQY6Ib5G3A/BCI+gmtIIWDDwpLBcu96tpZ97pJdkvt1WQoJf93U1/yuwqn5nSdZc75Y8u30P3dLmi96Z7VRWUlaRXv6+6Wvabhs+Dchw2upwVXyJ3niroj3/N7buBzVDSXrHEC22l4uVzSPtvyv920nADa2yoSqRKVyZk70Kt7bFZJNKdW8enYbD3hz2XdjzjzslYuf2pOhvbIszuY4l20n4Yd52NeQlSwoxFhxyaZREnAL7Vtm+7uTh2BaKzOHDIBkM5q1S/l9nPuJlA775KV99r0cfqGOeQI3dPuY9xyI5D69zna5RFj/tY+ys5pgLWcLr2vBaTj9vBJfq6IqfQ7KKAXDoA3mx69D3sGeTtCmpjNHUnYM+/s37gRFnwRbR/nZeGqy93X7+6vSLbLVP4mLwgXxW3udDIiuW7tr9WIUM6IWAkVe9ybOFsQwOFHNNApHt91K/2Ee9ppG2B9PQBiIkJ4pWERCqEtq2DwRC1a32kbY7s+Dz41ISVmyoymNOExAQDQK5EWF2bxOTkAEUNcJEZxrYA3CCuh2MiCwaSSKruAbFSU13ll9oHxdmdlw/WzSeKfCNYUJqw7dsCahU4nw6TZcTp0JXJOgz8BCTHCvVNjWAIDA5KqHboJzAdcKgayY/FKEd9SyMYGBQNcmR2qc7KFj+uvfVI9xh+tXsA39dZwQNTVzFZHyOUCpwZSGFltza+IVjrIuwr6MNzYM0GHV+hvHsztxMQQGGIKiSSo2E0KQFAMK5Ksl1rpOKjUp1InVurk63bFZuLsKD3UGuVFQosyRDsJZBjmlzzdkgrt0obgBUWWUgyyJGC4QxFk3KfmJ8I7YSmYMmbdtL1kwR8wcCUzRMbJ8AeJawbzmGa9ZK/5BYHwppCghx4wRj43rCE4m9GvCqqxP9HUDtzSET5ua49s89B27W4qpwU9zvbmtKCe8SBSUnPhSNDA2VMi83q8+IHVmlRSe4/kzmDTyHKYspyXfxnVFs0bpJ0E5Arxqx4wbsXM3d94B2EvT+LgW+T+c21eapbNe6jouxz3+vbWg4xqf55pW0Ixvy/L7tVCgFye7cfVL02lqtSvRYAylbXTZ/nDSzV/qKXWWUds+Rj/7qy55Dzfa/76+oLLXsN3XX8q47J7TevLBY4vIlk9bj8MQmG0iLF3m8B/X1Rp7lESwZoGqdZo45iZc0bvOrhGLxeR7G6Dt3vV7h4QNArC2IqzPU+V3Hl0EFd7rM3CrUI4kv8tF6h7VXnZtpumcLHSTz9zQrAS0LtgydH9HAyQ/ye3pEIKmJoXy0QDGlCBuyNVotJIXFlBe3HbqB1NcXgYIjR609C9XreH4WFIckdpQS7vorW9RTDpQij+49ALMxB93ow3V5ZwTMg2maIL0TYvTyJwekMyUw5EdOqw3hytt7eId+RTht8ljKTtPV7CYaVFb+mlYgOifPDFFDE5SqFHhrr55KmJB9G5Xdu0LC5YbzVhJieAq/VoAZDsmLvWUO8QpEs1P5NbTPH1NkM6QTD9pkYWSuA3EsQjIpSZgsg3kgx+WKK2qZGOkFFgOgmCAYFtTw0RygVLnan8Yer9+FHNl6Dn5h7Bu8++ASOTWzbRZ8hAzlno7+zi9pzKyjaEZJ7j4J32nTOB0OwgAIQScFCkRhRzyBtc3BFMlmRak/OpnPB9ykCb954LS5zpsIAvBaT2sl6ruwjOttwSDZKEV3bQ9AlHk2y2PS+O0wpkvVapUx4o4ugm0EHHOl806bUqwrCYSdpZYnxKaBiahsYyTw/wPGOzGAIrKxD7Pap4Jqbtg7eVEwFA7J1kCNVyqmlQLg9ggmIf8Ny4mcw56CstfWT0S9dgdv7iTkuys3IkFK2YON+AvLFla4gEq4wsEgPL6zjbwFSJhUKXJWFh1PEsSpa41AL5z1ki1kmBPkJFYWNwShtATyiUinMPApUkWlTEVW2ebwJnkOoKoiGm+QcskJvsJ/Nqc3LrDu0qXKI7GfTudnfRvWtVXeOdYkm+XPpXrfIk4uoYPY8+3OqyiKNMWYNDCsCCMdzci1PN0Z5rhSzhSshFq74MxZtM56fYxGoCgrmin+R2/2xmVnGthhFbmysiP1Mex/6c7Lv4QRYSuibqfpaFQW1/wu6Bj6qw61rrIWH5wi549U3zyfl3OH2n9frPkxWTHYIAYpjKqI50RLABYo6A88I8RZpud8sDPcLKDgVWA6p5woW/SzRRlNZHL+6fW22W4bj4+XYnAFc7p+8nI2+XS2riEEYKkTStkD7aoJmbtCTAaEmzjXeypJZliPSGkVtCcm0QK3RgB4nELUYCEP6LmsNHy5voogXkExJBEdnEAyG5AmSuxUOfbYcAzwXaH3DFtbEBIJ+hKAPGiy1nVCYzTEyQ3DGKDOrXie1mCInUjmiVQAU/a2w3SyRANX+PT04+9taRinwep2UUICf9FyPn1m5KbN8Fg1AtFs0OBQGzGiIYQaYADzXiHYCZB1qJdbWBMSoAGy/nI9y4q0MDFrawLAYozmJcFOQKRqAURIiyQJwrjFIIozyk/jFoIfvn7yCvoqxnTTQGzQwBUL44EjfSiPYnUD39jbCg7Ngvb51dM0gMoOsxa1DLbW1ZGqQNantRSqryq0iBEwl7Xn/Ct/473Mrtep7PBlWlYUKywvKf0oyyC0DI9pQdWsoVyWN2oEeeQG5DYA1oWoSuhaA95kdkOl6UquH+X9VDI8q0HUDDeR5QZPPOAHXBmyyQz44tRp0f0AIujLUnqzRdSoaAcIhKfPEMCPvEg5qX5jKz1+1WZ6KMQbMz+4agCgnS8Cigm5/DZnVQXvEyhdAClScGLrPqQAr94EpDa1s0VZt2xpDKLBSL+UgMV4WCIAtDqz02hdhlTaYc1F231kl+jLsJ6NrN0m7gsNN6Mau4o2939z3s7I1pDT5WNmioSTXOhSy3Dfj/ZEIKa0eiz8HsIiSP9cM3MsBK6eDAUZXvsuNnS4DThflZ2pdFm83tcb29cNujjUxtADhuS1ACnseNPz5cXEWPrbDuGKXCiJf8JiyaPEHAIuIVq1CmDUkBRVWMNXvtcWsJrfsm9Efpk15iuxnuv2OxuUc4RRrmOxAX75Oba3xmNrKkx3oy9fAG3WIlP7GSKJbiJQWY8aO9UwGfvxw38NzRufD7Yhr8fri+WuDO5hbHI15JbZbA/Fh5QBbWuWXk5EpKEVbh7RaDgZU/PDCrpYlB881WtdyUkSFgN7eoWreKoX09g7q57dQ3yiQP3ga8sACdLcHvbtHhMqYQjBNt4fa8g7qGznGs6Q84vOzkOPSsZTQHYOgD6xdmcbE1BCjJYWsTTe8ThK4KATmJrDBkCIvGnUiN4/HHnGRI+NVXGDk+6Aicv38686Xs3vncVz+bpwA1p0WztLdhpqaLCNDt6KA7JPjrKoH/sFsrhSIdg3yNsPe7U0rSc6IdFgL/PeKQYbmSoa0zdE73SKS6jAjyTrg21rjPMAXdk/ig1un8c9nzuGb5l+AYIYm7UASz4nTRMFWt9BYTaFiCX3nceJjDYcwgiEcaOR17gcRw0DW+AONIqpwE6pFDqMVX0kgtQdZNYF0E15l0HTuzQCIxAyAJRToyAYjBBt9BL0M+UIHrr3FxqlHdWAM2HAMudmH7GfQkUA+36HPsZwNWrkaX8iLFJ4gTzsBapMq5YMP1WAIvb4J1h/BRIE3p9MBqWJ4oqDqlB6v2tZRWnKEWyPoSNKEDEKxfNjty7UWbJuGVSftqqOzEL5F61auyu6DCQSFSwZkiKdDTm0V6bKg6PnVASfDRck96ZZFIZ0/a/vv0t5NmnkyurNuMHkGLTkZIgbUtjOC+1RuSEntUi5IZZNm5N+UFx4RdAsr12ozgr0Egai2CV3792Y1E9OGzASjkLLCROX8Vf/eIWgOgfBcFLJToLYg9lsnOHdm7lzLQUokVv6/axux6v3tWm2M+SBPY4sIGApB9knvDh3TgLGkZVMZj70thCtY7f3p505OCJ7j3lDRq/25dUgVGWHaBSGnNHtdk+TzFVpDRofcOiSJ2fPIuB8bvWKwmivmCuUqAmTP4T5fJof22EWzlow8sJIU6vyybZVq8FYLejyGunCp5GraQ483jS3g6f73mXO2QDdFYb3ZKsW12L9fRoKOTb7yra5XN9pujcIH2OfcbG7KuaHqn6OoOUjVWoFzABoYLIVQkYBMFBprZKYFAKzdBG+3qG1gyaK1r17DaD7E6K4D1FaxhGHWapCyJJDA1i7ic2uobWYYz4UYnZq1HwifNEytCaC5LNG93kG8OMTocEFOndanwzmfMmdw1evRasLK0lWlXnGmhTB2RZHB8lkqJ6nSAvCTvDNki2O/Ijc2Y8jl7LAwsH4YRCpGloNlBYwkLkrRCqAlRzAq0LmUIugZjKc5usdDFK0IYEDeClE0Q+saS2hQ1NMYT3H0jpJxIRjAmEEgFepRhlAWWBl08Ocbp/FT27fhh6fPY645oIJNabBOi5Q4nMMMhgjO3oAYZMimYujDi2D1GilJOIMck2ki0wbByEALUkfIpLKCMhQBUEU1PHLoisWi8KiG35Qi40c7OTmTSmMt/SEs70QIkrmud6FiCTVl7QVubq0xRhLZzR6Zy8UCulN/iRzX+a+4/Xe8A8NhDT35Pom2TlPKOUtz8HYL4KSWYin5iIhRbs3lFPLJGiEtjIwf/TlwP06+vi+b6mUKbYfEVNAKQiJZ+Zl28nXcGy+/riI17KZ/gZIb41fv9poZU7YpPA9GWzS44gYNN3Hr8pgqrTvm2h2VzwBQFh+O56KI2Gy//K9HxNj+YyAUr/IsVtvO7nzZ73CcHj9ZV1tfjrtT3W7aD5+Kbn/oHOOl18MTqg32yex1idjtvza2KK3Ow5zD+0c55Z8tLsoiBP5YtSjvZ2oz0fdoaXle7n6rnEfjyNXeAoERciM4BXhWs61si8iRp52icN/mCh/OPMLpxwNYZJKRsstIe+0s6iyXDoDVYhsgTWpP95r7WxUS2hztkfJOB8wLTbwlBuAFKnReGHSVA8Y5cYBelbJ/Tbdbo/CxvWSSFof7fuUGO1Pk6FzU3quHFwbxniZVDwMGixLDxQi8MJg4N4J6/WtQXL1OK8bpSTLJMwa618fEn58HzzW2v/U09NffCwiO4vI1chK1aiszGEB8+TlMfP4SeG7QO04PcdAz1IYy9BPuGUw8wyG/3AZTDMXre5BzM/a4LPlVlBOY6g0obfn4YZJlG7vyyA1kUsLpBOva1dJfd+rSFNra9PNGA3pnj9Ae63LrBmNjDPhEB0xwqG4Pe3dPgRUG8bUuRKpQtAKwXEMOMsx8dYD5x4ZgBbD+YAymDaJruxBJgaIVEsJWaEw+08XcX/bBC4ONB+o4c3ANnBsMxhHSXCJXAoXm2Bw08DvLr8U3v/B2fObMpyDuOAVojeLKNSBNwScIPTH9AfDMOdQeuQBmDMYPHCfkQNB5CEbakkkBmWiIHPu8Rehc3zT5uFWfG/DHY+J1BVSQ7gu0tGo8AIQ4LM3C7OwSWpfb4MUkBfIC0ZPLEL0E+eIE9PwUOfju7lEGUZoRqT1JIS+sIHzqEnhvDG2LHJ4RB0CkgEgMxNgg3jGIdi18Lhnk0gFCKIQgRMByukyaQq1tQPf6EIvziDdG0PXQO/fyTIEpA9klNVg+UVbX5uVWmFWOT9Uzxz+apix6GBmJqoDBBESO1qGgYi0S0CEJDkjejpdM5Foy6JARhyMKaUIAoJMEJqKinIUhTH8A3RtANBvkgcUp9ZpJCV6LISYmCGWII/pu1zINJH1GFMH0+96BvfoZ3PG6Gg2KGeA2R6sgbhArtFV4aZ98LlIDnmpKQDeg1k3mfirnr6rssufLt0QBOOm6d1IvbFK9lGVRA9gipHoPE+JEuVzwYw/TJcfH3/9xTMiuCyeNQkLAOGCShKT7zE7azpsoyyleQlLBySwHrESlaDHKU+LaOBNRR+4Vo4KyuFxLK8msc3NO2V3WiZmcmgPKHBTc+zv54gCVVpem9hELQ8DokltkUHb8I1tsZDkZDwYGLAgpHgPYz+MCvP9SfUOTZYQAWCCJ4ycFzDiBmJykhaLNlzPjhJ4/ziATYDzNUcSEHsmx8VEgxnHm7MLAmauKnEwXAXjhiSNhf83k7K+GlN4azs2dcM583QPfD7m2B72xBZ2kkPOztPKWEpjqgI1TZEemETx7BerEElmmc4CPc+goADiQTcaINobQz5xD+pkjqL1zG2xxDliznjc230W97k4EZ69j7V0n0fyONWz/xSIO/fSjEIcPQt1YBWOMEt9PHoXu1MHOXsbWu+5CY71A/ZGL0L3BPo8T7fxghAC74wTOfqCF1nmJQx+9Cr2zS+2o6Smweg16awfIc6x/932Y//dPArcfx+hQE3JU5mEBAE81VCwgRwqXvz3Aoc8q1D73jIdt9XAI3moBR5bA1jaBqQmYOABbt2Tqw0vA5g4NYAcXoC9eAW82iB+ytY3sU3O48aWDOP6hCzRwxJEN2NTU/gsDsFoN199zHFkHOP6ry2Tu2KjTYKo0oQ9Sgk90cO09R1HbNGhdTxE8cpYCKpX2VgC6T0iPuOMUPv1nH8Xpj3wAxz/4NExe0H41GzbrahtisgMwhmvfcxoHfuYR8LtPkxPs7DSRnjttmDiEjgLw6xvQe13kb3oNjGCIvnKOyOMAXO8dRkN/3Z1QNYnoiWUqFkcjOPKnK7aNtbYHAB7HWH/ffVj46Dn/PjoQQ9lrG1vgEx0M715C/7BE51KO+Mkr9PeW+8NaTejtXZgkhZifpTiKLKc2ZxUl8kotyhNjtRquft8ZHP7IeRuVwMvjabUok+vYIezdPY3m1THk+etgrSaKy1cBxsHtypVFEdhtx4Dlq9BJCh4GZWHnIxLKSAgX8Oo8fPxA7t7HGVirheLadfLAUYpiKhxyFAbQO3twLrYsDOn6NurQgwEVGkJQVluS+MgEgFp7vNMiB+elBd+uZdOT9N+TbXITNgam1yfLCfsZyOn+9Z+x14U4eICuUadNuVRpBjPRAusRH850e2UorQ1BBUBFknVGF5029GDoHeVZq0nvTZJ9qBF9liZZNGdlsKaiQEqdUoyCSVPvDQOARBWKTFJ5qwm914WLiGBSEj9QCH+teOhy0OzisLB+VUEI1mqgWL4MMTtro08o0FhMTcCkGXS/D3n0MMAYistXIVot79wtThwFAKgLl6jgTlOo7Z3yu40BuIA8THJvKA0zGtHiYDyGfvBOijHJFfg4p9T266tkOnvXUXo9KcBGqX+dTbStYk9TW7IooPt98NMnqOhJMiAvoHd26f+t4tOhd2qvC7kwD93rgx0gvzS1fBVycR4mScg1u9WiNpV9fvhtR4EVctg2ReENYdPXnkTwxWex/d77aYz/4jmkD96G8CsvYPs778HEuRGCtT0q1hox+re10X5uB6oVgz39IvF62k2o3S54HCF73RlETy4ju/cYwpUeeRa9cBGMMfCFOagba+CdFpiU+JPVX3pF3Y1bpxfMfR/6+6/Id33hG3/mVefm/6tttFizMvOAeqXDkffR6Z+ZAgCyxz+6CHFlHXyUQtWoYmbGQEfkPmyiAOyBu7DyxCIu/OhdlKezNA/WbgGCQ0xPIry+A3ViEfP/7kmsPb6At77zMVz8Xx+EEZzQhyCAmOxQDtLlNeDEIUy+OKaWzx1HSOpeWOJpYZ1kjYWyz19Bc1ni1He8CD3ZhLbRAFAKemuHpJHGYOE/b4HPzhC35ewWirqAqpEBnGEMyUwAFTHkLYHbf/ISBosS5q6TMHeeIMXW7CyYlEgOtshdeqKOfLoOFkfgM9MwV2+QQ3WaQr+4TK2SwRC62wOLIywvz+Md3/5FvPDjRzB8w220Smw3ACnAZ8kxWA+GWPrMJv7+O/8cz//Lwxi+6XZaXXMO025AzM2CNRvQe10s/dkOJs8OoAWzfkl20iwKGxgZ00B05QZOf+QDOPc9H8a5f3U38je+Brrfh55uUzinG1wBzD6RQh5YAF/fsSoLTkaQ4wSsOwDvj2iFeuY4ukdDdI8FYAcXIJcWIWanIY8doZWnlOgfraF/kCYMJiVZAdiWoVNw8DCgIshOas1Vhb23nYI+tACvqlMKpj8gh+zdPTSeuobGmsLe8QDdt5yg9wnuLRJYHBOPYNcicU49pq1TuQ2rdBljOsuhB0PE2wZ7f/ME9LGDVCilKVRvYD8zApSmqISVHZgDs+Ql5MItLaLAGAMuXQOrxWQG6rK6bAHEwtCGiRIyyKzyyQWYMkHmjszxghiHadWxTynj2hpS+lah2w8eRXROqy0JpSiUNgyp4I1juIw1FlDYqZGidPeNQ78yNgkR3o0xRPIOQ/BG3VpT1IhTJymbykg7absw4YAWFCbL/A+1EjkV87ZVQQWeKK0OXJtMCCK8OjREK++oTftRIyVpo+GLV/d3Zdue7VOusjAsi85mHQgCfw1cdpVD4bw5YVTJW5MSiCKwOKrYAuznEFFEi7W2qMcURGoM3QPNBhU3zRp0i6wxTLtRmgcy1+5yRR6HsUgI8a2o/Vu0Ah9grOohTBx4I8esE9jXA1qYSQlWrxHXTIp9/DowjmKiBl0PYWoRTC2i4jAIyITVJdW7faqR+so0azANusdNPbaZeIJCbpXyBqWGE9qNk0dpjLLPWrg+xODt92LqNx5F44UNqMEQ4eYQ/b/9Gkz+xsP0jDnByMoW2s/vUmHcT6joObJUFopZhrwtgNkpqJAjW2yjaFFoNYSA7jToGWm3qCB/hTcCcF+Vs98ShY/JC7S+uIz8yCw9MFEEPU5ooE8StJ9YJXg0EBAbXeS3L4ENx+Qy3KlB1QLwjILq+N4QRSPAyZ98Hv/Dt34az//QArC6QYOf0jDNOoor1yEu3EDyDa/BiZ94Gp/6yv3479/+v+OFH5ihh0ZrOyBbjsCLlyGfWQZPNQaHIiSvOeRXC24g482mv/EPfvgZPP/ZU7jy7VMQs9OAIUKv7vcplJBRq2DvdUtQxxZgrq2gtjpC2qFIDrI7N54gZ0ZjzP/JFYgbW+TVIiVYowZTFAh3CIrlzy1DfvFZWnEHEnx2xpv1maKAHo/h3Fj1OMGZf72F3332tfiXb/o4rr27IMQoENSiYQx6fgrs0CLUuWX82uNfjx958ydw9R0amJ6glRpAq+/5KbClBehnzoEv3wAvDLKTizSpVQZ2MA4+PQk9GuH4B5/G8d/7R1h+9y/j0jslxMI82DChpzIvgOlJgHFEX3yOJv2JFmUgNWqQiwsoVtfsIB5RsTzOMPObj2P+t5+DrodQG5tQ6xsoLl2xLYUCnT94EpO/+TDU3p4PFuStFvGe/ApZe5KiThLUPvYo9k5w7N7VLvv3UxNQW9vAzCR4uwXd7aH2ycfRXFXoHuc0UAsB1qCCEAWdW1av26KRkXlm46YCgjGC9jm1QKb/t69g7xRH9/YWtSijCGJqgvY/SWFurEE8sww11QbvjZAemgTuvZ0WDp025PwcdJJQMO9ulwoARd5JHilwpn5Vozff3qi0uLwCiVb/vFGn99k0cD1OgDwjBMYVc/ZHZzlUv0+FpkOXpKDWofUlMlkGHseEiHFBrZKioEmuUECakXP1cAjT75PfkrDxAC3LsxKC0tht0Ci1W6xa0waNst6Q2pb9QekllRc0Aec5nL+WEyR4d+VAEnLpTCld6KkzrAsDGi8AOjZjaP+cOjCQPtJg3+Y4P4oQDj0c2fR2Uz67aUrHU6uRSCEIKHBUCrB6DLQaMM2aLyBMoUoJutHUdnUxH1bmzoKQjE2dU75TMEYRBYOOxn4x5+8Jd784i4coLItsTVYTOqDoiaqPj5GgxVxg3b7dYiPLCYUbjWFshBCMtmHJnBzPC7rnmOBU5NRiOg8WRUaSltEzxrp+5wXtvz0XTAYlD3IwAq/XsfnQJIrTh8AaVBjx3R46T67j6o8+RIi80eCbe2g/u42rP/p6pMdnSTlWj2CWZoH1LWBlHSzNaWGgDcTJY/ZUGQR9hXy+DR1wZB1JZP4qX8kV01mVwPnq9kput0ThAwC614PopTCLc8CxQ361qXb2oG6sQW1swUQBTC1CuLwJNTuB4MYORD8lSWwgwHIF04gRbgyA+Vn8/Ke/Be963WO48E/vIKv+TguIQlJVjcaoLe+Az8/izM+u4d9++m/jO1//KNTsBHi7RSsOyzvQoxFUv4/4qctoXUmgQ47izmMQU5O080YTpAp4I7yjf7CFuTet4NL7TyL/xtd6mBsATWSr2wBjSGZj8MV58CvrYP8ne28eZFl233V+zjl3eXvmyz0rM2vvrupV6lYjrMXY8oI3wJjNZhuPHDBGYiUD0Y4AACAASURBVDwE9sDMgGHCjEFAADODQWKwIQCPscEM2GCDhUYIhKWW1a3W2tVbLVlVWVm5VG5vv9s588fv3Puy8BBE4EHuiOkbkfEqX7187767nPM73993cX6Q0FL4xCcS7uhykaMXawuixgoD8pVZlNEED/pTM0a/udEYV48Jzp8VdGh2Bl0qqKIQ3W5Bf8iZfxrxI5/+bXzfM5/mlT85L4TnkgiYFbgoIDi7xsbPG3703/9WfvA3foxX/vtFeu9cr4Iy1STDNWKCtTPCfXljhyLWZBeWUd2Z6eCeJLjhWCD2LOfCz2dc/Gffz83v+j945U9sQG8gKdtKofpDVNNzrcYTIe/OzaKHYwk31AY1GKHuH6DmZnE7+xVXQyUFZmUJs7iIWVhANxpShBnj215OJheYJmGHURUjUBYBpUFk9/WCdEZx+A0XpEht1jGdDvQGUuDUa+gopP3SNt3XC47ee1Ze12lKcews9AYVqlT6IqlGHdOdwcx0qugIKFfoEbrdZu5awXhBc/i+C+RXz8J8Vww4Q2l5uDRFpzl2/4Da5gEu0GJtkCTV4H+aHF22Xyr0xk/QgvhoX5QE08dTaBC+ALC1aBr06pwvqKa+LCoIpue8LEKCUCYIjzLZVk2QwFgQp6pANsajS6LQqhRJkwnOF3E2zYTk3T71Hj6yotrPMgPLWSHJVu8hLU6Xeg5Kyf3Setreq4q9YrpPUeRRBD0lxfvvjlaCGPmixEWhXFMePVIVEuYqgnAVMlwWXs7K/ttpq7VCW0A+w3iUozxPtVjQF98mdR7RUoGRa77pzU1LHkmJRAZ+n5USlMxKzIQLREHlahHTNPgpqbk8vzYK5HOjELy7cUmyt6F/rHnkLArF3DTUFGH5vIxBDxG3T/HIipIrFhpBWbQSjlIsx9/FIcSRcHBin2xvjAQDGyPXA0i799wyZmmhul5dIPfr/MtDIfxrcdl3wyHZ8gwXf2JTktkbDdxwRDFT5+Lf2cT8uy/CeIKthYzWW4LWLC9i23VZpG/vYDfvCmfLFujcMlmIKsuHoqar+8J5wYIzv35Tr3Pqq/LzZt7eHIWPEgia65uoTELjyhu65BYAqDQnW+2Qr82ht/akEt89IG/LRVY0Jf8FwN68w6N//hr/7BO/kf/q2z/Bq/9Dh2JrWxKAuzOoZpPi9Rvkm3ew7TqXf/gl/q+Pfw2v/7GahGbGArGb7qxkdgWhpD9/6QYo6J2vMXx2oxqcXD5dIerZGVR/xOEvnWHu3Tvc+daQ4MI5abF0WsJd8DLeIlIcP7dCfvkM7et9nIGsoatMoNLFlzTDbO2Dc/TfJj3tyo6+L8aEyrcV3GA4lWLHMcVJD704LynGgyHF4TEsdOk8v8njP/qAv/PZ9/ID7/o4ebchKEWSok4GqHFK0W3T+tQtHv+L+/y1X/7N/MB7/2+2f0dKvtjGjSao0QQ1SrALM6im/L0zitFqjfHlBVFthR5qn0zEyLHVJPzkF3nsQ1sV8mPPLFKceGNJ52Qf1leF69Cq4e7t4KIQe3cbsziPm5uR4qiw0p5ECMnq/p7A3c36w/ETRTEd0H2hWobIqjCoEIrTihwVhXR+6RrtrZyTC5r9Z1sUTZloi/0D4YXMzaKiiPzefdqfeJ3eBc3BU02KmbqgAHEshPOSQ1IWJaWSrEQKnMXlWVWUAXQ+9gozt3JOLmkOnm5QdBuy0o5CXJpJLtvuA0GeWjXMG1uo554Ugm9HWqBmZdkH/grS57LUJ5On1Uq5Uhf9h2aGp7lN5nTLo2zHmGkby7fuSidsnPO5eE1pA4WR7HujLjL2SSIS+8JWE6HS2kvOlfejktwul2bT1bEvDFyg5ZgGUrxWhNjyPUAK3dC/R5ZLa6oUUiDE7erfWV6hX1U7KgiEl1SLZTwoCwd/LFQtls/zKAinyeOlitBNlVQVUnT6GtMSykuWP5xP5axvM/qWZOBRJ9/+c40arh5Vvl0u9iIGK8ezQkW8L5UyZmpsWF6HaSqt4qyosvkk0sRN75lyn/FjtFd1ujisWkpmLMGconQ99XqjvRs10+crc8H/CLf0tFih9HIKQylufNvTlVy1wgo/sSgeIkXbRDg8Zv+kahmWKC/GwGe+JOPj/Cx27IUgz3+R3W8/B0YL+hQG8OI1dr/9HOaRC1XBW98dc/g1q+RzTfRh3yOcFrO6ImN/o1GpzcpisCSfW08id37xM82mfGv7am9vjsLHgXnsEfTqMhyeoEYTuHwWs3EGfW4Ns7ggg0CaYwapEJrPLRMeTVCBofbyFuZBHwA9mGDjUFZvacajf2uPT71zlngzZuNTMTd+Z0sq/1ZDQkSVxn7lDVyacuVv3ie+FXP2E5Y3/uCc7EcQoLuzlarEjcfE//JF5v7FNaLDFPWOxyVYEyp/kDIfa+Pntpn9QEF7U7Pz12Nu/4lnsRfOoBbmcKMxUU8GDJM5koUYNRjT+devMPf8Njp35HVN1PcIxEwHNyfqp/aL99CTnP3f9QTDq0viQVROoMbg0oxiZ49i6z5oTXB2Xdp8w7EkuBvJOivWFnD1mMf+4gEf/b738NRf/xKv/djTDJ/dqAiaejjBri/hwoDHP7TLR7/vPbiDmHd++CVG7zwvxUzqCY2TBNVoUPvlV+h88ibRwZjk0RW4tCHkRCtO1qrVRD35KK4ec/Uv3ORbv+P380u/+FPc+Mtfw+CbHpdjmaYy2WiF2j3EjkaoJEU9cgG7vlgldRc7e+JuXELi2giBNcuFI1CLp6ti7+MCHnXz5pWuKDCdVsXrADznRsjZrX/7Gud/4jqduzl7z7U5+NbLmLlZ6dnfuSd/Pz8HWnHuJzdpbeXsv73J4fsu4FYXpDBTuuKW2EmCPelT7OxWYbKVbYOzU/g+DGh+8lUu/NQ9WvcK9p5rcfgNF+QaCgLsgwNBRPcf4K5dx5700Ccj7DufwC7MeJRtROlIbbozlVOttE1827Qsakp0R3uej3oYZVBG+2LFh0h6pEKFgW8HxbgsnbbxvGeOHU+knTEc4foDdFagZjrSVmnUpion6wnCPm7CeYKzHY0EkfHcLDPTQWdWrCrGqZBsy4neOXkPTrUUxoIWYV2F5OlmE2U0ut0Sbl+zgeq00bVahZi4/oDC+2+5wRA3HON6g2kERhnLME5Q/aEU675wc1lWOYSXn1uR7YEyWV4I9RbnkTRAeHo+uw6tsIMB9qQvQonhSFosgxH6ZCjI5zhBD5Kq3UNRVBYLqlETdNA6XOz5N9ZJULO3BrC1EBv5os1oVKOOCkT9VjnEl/fNMEGnuaCwZcvUOaKTAjPxKjelqnDU/9jzZWFbqk+VR6zCXoqZ5BIyqrXfd4v231NN0solG79gsbUQF5W8JIXudHBZjt3dl/Fhksj9HweQJIx/+ztlcXQyEMPCJEXFMa1taQnqVssT7w2t7Rx78w7F6hzmcADW0v3YGwSHQ4qFGR8fFFQFtZ0kDNYi6nuJqFFTV/kT6XoNV5vuZ2lr8tXd3oqsgDdJ4aOUQo0TkTM7URXp3mhKcixXZVHgja9khZfO1bFLXbILK6jBSFYYcSgQ40ynqtLdY5c4+yPP8/EXn+Sbv/HzuK37wvkxBjPTIVj1CIpznPsLL/KxF57mm7/x87z+wTXyrXt+RWqnShznKHo9zFducvBki+HXXcV41KGUT9ujY/KbmxTbO5z5udsMX1ogfMcRW9/Ywe7syWrYSx2dFn+a0ZUF7KUN7N4DajtDSsOyklvhtF9tZRn6qM/iv7hexRS4TPwkiqMjmbSzVKTr93ekSFAluVUmMH3Yx+weC7IzHKNeeoV/+sJz/N7f8Cvc/q1K0JSjE9Q4wewdyfH1r7vyd475qeffxZ1v16KuOZZi1aUpeE6C6/fRt3ewRnFytSO8rJIXlaboB77ATRLcF65x+ac+wPXf/xHufRMQRxSHR6jjvpzDOV+kRCH6wRHqlVsy+M22KzTQWWlhucnEc0EGsqrLcikKT0lzASkYTno+ZiCt0EWl1XRFNkkqzo49OKTx6evM3M6YzCvhQ3h5tfOfK8jPNo0XbtK5mzNe0AKNN2rStqn8W8SErwrhDURSW7XcrKht0NJGyjfv0Hxhk5lbGaNFzXjFc2y09miOrtAWegPC2/sUzYjg4nlULMoqpZRkf5VoQ1kUnI6uqNAfe+q56fOusDLh+XtSGSP8kZL/U0xbOFjvuFxK4/3/uzxHTUp0RZyxyfOH/l9c1HPhoJSrYusVbyWhd1xycjwvx/NYXPleJUJUiIEhHnmpCNu1uOIAqaJEALNq8eImYvA59QKatkFPT9hlUemck7/xBGzx0copfXRK6XqlkioLXE5xfPw+V+Rrj3gAU9S7ROHyosq+qtROHkVwiRSDKI0bTapzpayX6pecI/+3qhD5PmEIeeFVa+qh8Feclc/O8uqcl+Ohzi3hICcY55hJLtlykwSV5b/6+TTz57yYFpDlsQLMMEVNclnk+MUN1n/fkljueUyM5Z5TmYXcThGzLK3ud5dnwm3LM0G1jKG2m6CGY0GplbQR997/LI1PvY71nDFlNPvvfweNz9xAn1urkM+TK23sxgpFt4He3q9Cr91gIPvfamJSOaZlxqAZ20oIo7JT98XpWI63tq/q9qYofBwIVOwcqtmY9kCtJV3t4GaFF1Im2+pxhq2FRA+GwkM5HJJdWCHcPkSNvKfHyjx6poPKcsyDE8yl81z9m0f80qffzo0/+zZxwJ1tw+oirtWQFbuXHV/58T4f/dTb+d3f/Clu/cV34QKvUKnVpu0QbbD9PjO3EjG3unoO0+kIWXY8Eel2pwPWkW/d48ynUtIvdFn/ltvw6HkAD4NCMBJnYhsqJqsNkeDeuEvn05viiBp5SNsoilZUSZLRirCXVTyE0shQNxpiaOhJkYDA4/VYVrKFFJeUirQgwCwvcfYX4We+/BwffO/HufY/rjB59oJwl/ykpGoxen4OvX/MxkfhT77vF3jlh1YYf82juMEQOxxS9AV5wxjhUb18j86NIViwZxYryXoVq9FqoVstVj9tK87P6390HfX2x7G9vkwmeweYhXnY2ZdJotnEecdU3WjIqssYURA1fPuoHLi1wrUa0lbyHj8qCNE1rziKYzkGoahfVBxXhpcuz0SNNRF+VnHSo/HibWZv5Bx+3VlRwRnxmLLDkRRrcUxxcEjzpbvM3szorxuOvmZN0Lr/wF+oGpw9sVR7pVI5gNujI1mBNhoU+wc0v3Sf2Rs5vfMBeK8oV5q0aVMRp91kQrh1QDHfFo8hfz5KZRxKiyRaeSQn8H4oJdJz6rnq+UD+z0V+xW6MFG5+1V2Z3clOPUzcRiZ3lwnJ3sX+veJA7vPy+lXae+tokTd7yXQp+y75JFiHqwXSZvI8Fxf471e+V5ntlYtqTsWxEJgL+7BSSUmrqjQbrTg9UTj9TB/54saTKZpSFmpp6p3f44cLIqWrVmvZDqyCLKtj5E0Bs1TaU2VxY0zFTao4NiVh3DlZ5JziVWGtoCF+XBC0rlTY+fPtrCyaQuF6qUrNaGQxGQs6JaqtoOLFqCCsuFDudKFlnRSNJedJI7Elp/K7hKMD09wx/7xHwtzp71X+BJoq6BkqNV71maeJ9n5fXWzEwRuq60EiJGx1LlUQQmFRjYbcGwudKubCDscs/73PU1w9hz44FguC4Zilf/B5sU4ZjCT4NwyY/coxk9UGwV5P3tsYr9yV71YMhgRjx2SxJh5TARR1PX1tHEy/138YZPtV2t7i+LxJCh+lFBwcURweyWpybRm3vYu9u0308l0mGzO4PCOfiQkGKRRO8qGs8H5sKybcOmByaQmVpJBb8k5NJq3BkOL+Dm57F/KCKz/8Mr/32z7JtT99Bndnm6IVo9KM4vAYOxyRb91DHw+4/IMv8I8//m5+77d9kld+aA5XkmI96VBphQojws9cIxzkDNfqpO+4DFph1lZQ9TpFv49ZWiDYWCf6xJe48DdeY/sXz3Hju2dAC+NfFWL6ZVJXOZn233kWLq5THBzReH1/6qVyb49wbwBaka3Nidvx7gmjJ1Zl9e9NGp2X2Lo0E6n40THsPkDlBXq+K4NgkkAc4VoNkYO2GrS+sM3VP3fEhz/zPn7waz/K5h+wEoqpFG5GCN+0m7huh/YLW/ylT34H/937Psrt77GwsiBFhZdI6464MheHR6hrN9FJTrLcQLfbEgbYHwhRuSjQzQad5zd57C9v88j/+QHe+AMf4cb3dFAbq95FVQmCMyeEbtvrQVGQz9ZRvkVl5rvo7qxwjDKvjCm9YgYj1MqiEB19AWAniZ9EcjE9OzyqVp26XqtW1tXkW4tF7XV8Qu0XP0fvnObkqflKjq2bDfFr8oWTPTom/pcv0top6J/T9B6blcH7lJt3SX61/b53lHbVgF+GH7o0rSTlxd4+tV98gfbdnKN3LKKXFzGLC5j5OUynJYuDk75MZrMt9MmIbK6OvnjWc27keihOev7YpOIrlKZyzDxfgTwXdZBHMgTt9EVA4aYobKn08atZ51EXO0nEFK78jmWbrFRJaS3oSjlpZnlF7q0mwyyr2oPTgcJ7CyWJOP3mhc/GclUBT7nPJUqcZqdQEz0tiMsWTllA/Mf+7QvK0+3HcgwojxVBWVB788yiqCwNVGli6MnNzj5cFFYoRVK2lFRlf1EqEqXwDHzArqi6qMV+4veScKV8vElZ2OnpefGKMpWJUaNzEqtTIuyqsFQ5cVkuiFGJfOWnlEdZOv28sqACVFZQhD52Qilpq+fS8itiMbWsnj99Pku0sbQHUHrKBXJOvkt57iLhaz1EYvfolCrECNYVPizW+3ipMPACA1HWqUkCRpNcWkKPUsxhr1o4bP+RZwk2d2Wh4HlR23/kWcztXfK9B6hJStGu4V65SeOGLEjy1a4sMi+fFw+iWNrHUT8jmZHjrxOhLEi7zU75cYUVdeJb26/L9qYofJyVCdbMzuJqEcUrbzD++icqo7PRUkBwdp3weCJQYZqhkww9GE3Jl3lOvHWM7bbRRz2Cl15HNRpVr9uORnB4jFpd4mf++W9i7fwDdr73KdRLr+DqsRixFZLM645PCM6uceVv3udn/vlvYuP8gynR+pT0tzQnC794k8b9CVkrwD57FXd8gp6bxSwsiBotTTHLi6A0G//4DurikAff/TbCQUEwLtBJQdgv0LnDjC1mYsnbwk/JN++iajHDJ5alFz2ayI3tyar55l3qd3tsf9d5skurctN64qIKA3SzWQ1+7qSHCwxmeQmzsiwk6OG4gsxdLcLtPuDCzzj+t499G5fW9rn5PfNClu0NHj5pYcDFny34G//y23j07A6bv2uxUmy5STKVbntzOHPjHvHuCHdudYp8HPWEx+NbdfmdLS79dI9HfvIDvPEHP8KN3zcvq3nvnmp39kTNkiTiCtufUMx1cBfX6b37PKO3bVRtKziFMhyfcPzsEsfv3hAEzA+0LhGzuspZ+/TEZwym260moqI3qCZ3M9Nh+QXp4Y8fW5UEZ0+ILXrSPrNJgmm3aX/mNksvykStAj+5lzJoqNpdbjyu2hsqCODJy5WBnB2Oq/OqGw1an9lkvKg5ePeqXAtpJqiUj2ywvR5qOKG4vkm8eYBt16Z8l9OtrvLe0WZKNj1NcC4LiLLN4xx6lAjS4vfVjsXMT9oz2ZT74wse5wmnp0379NC3IK0Vx92yrTccid3CcITtD6SN6Ff5VVJ4mkqbeZjKRGytTH6ly7V/Dzcai8livy+ISjFtldgkwQ7H06LA38uVCs0fI5GWi+Nwyfkiy6uWLkkyvdYnSWXE5/wxq4jqZSSH0g+NH5XE3Rc47tQ5Of3vqvXoUZaHioJJIvl8p96zvP/luppUyKdwZJLpdeARJj3JMGOJSCmPU0VaP6UuK79/2W7Cy+b1OMNMCvTEGxUm3t9onGBG+f/r8yVh3aVpVSThbJXOrqoC3JPSJ0nF63PpdGGDtehRivL7r7K8EppIoeEXF751SZaTN6Rosu2mGGvW66z91BsM33EW7fmEuhaz9tPXGb3jXIVq6STHrK3gbm/hjCa4dyDH6N4OwcY6hKEff8S1OeqL43TUk0Lb5bl8P6VkP4tT99pXaXPwFseHN0nhU/bKi+NjQWDimPiXXpLV+3hM836GnWmi7u5Ipb3QktVMo4ZKpHds52c9B+SEfG2ezR96G/bcMizMVbENxcEhxfVNLvzICxw8v8ITv+8at//0O3E378DGKnppwfNEEoqtbZzRnP+fP8v+p1fhbY9WRmDlwF56hxQnPYJrm0S9jMlSzN0/9IQ3CvPKDD/RK6Nx/T6Nf9+i+K5Dmtd2KWJNshCJhD21pLMBLlAUjYDxe69iLp6FICDpyA3sjk5wSUq4uYfptDCL86jDE1Y/tkd4/7hSOKkoqvyQSulycXAovBeleO2PncVeXCO/t+1VdFpcqjdWqb+6w5WPPODGtTN863e8gLtyjvz+jhRJYSBGYN02tZe3ePQn9nnjCxt8x3c9j31kQ0i/pzbdnUV3u2JieHeHyUqTu993hcnbz+P6feE7NeuwskhwZhV1/Q6P/P2DyuRQGTFUtJNEeBnHJ5jlJeEJnQxR1pJ1a1gDacdUsvSSz4EW3oMuREGnajVOJ2eXK+6KmD6eyDFzjv7XP1qRgU2rWXFw7GhE7cXrtLYSeucjRu++jGq30LUY0+lIm1FpIcZOJkQvvE5zayzttjDyRcQpjxRfXFUy+3qd3a+Zqa6vkiOi4riaMDp3cvrnNMWVDYperzrvxfGJWB/c2JRgzjBADxPKaI6qdVEa5ZXk5tOS9rLlVVr+lxlZJXE2CoUkH8c+JDeuTBhVHKPr9WnbyTtAq0BW37rTroigkvsWVDwJO5mIuZ1XnamGtGmV8WGVvlgt+XSusKL2GY/FWyYMxSW5UccmiURWTCbT71rycZJEeC4+M47At5bKdle5KvehouXErMKgQoxOFyoVauN5Vw+1MLSqfldmivaVqIbLMzlepUcQVGrD0+qvap9A9tXzRJxXablmfYrqTZIpUppmFTEcpOVUonAuy6UlZIzI2eNI/r/m242e8/ZQlEm5aDlVOOEcGEGr8VEbrizSjH+d8f48tnSmNlVxXCE8StpcVQgrPJzbWB1P/7lZLsioUqCRa84vkqSdGwrfL88FbYsjsJbG9UNspw6BFoqDtRx+yyXqn3gZarHcS9Zy+M0Xqf+bL2POLFMszqImGb1nVuHR8+IsrbzLebNJsbePHY7QccxoNRZCd2Z99p7CDoZyzce+FVuiP29tvy7bmyOyIlhw7z73XwMI/AqyGigK8ZyJJTW9uHqO17+3xuV/mHH0aI3GQYFOHfV7A7a/oUv31UzQoYmj83OfxyUJwfqawOr9gfjzzLSxNzYBMCvLFDu7wqHo9Qgunsc9OITlBVk9nPSFZ5LlDH/LM2QNRdwTWNhMBKFxWpKRdeJlopEh2j7B3t7CdGdxhaXY35d8qq0dWFnE3ryNWZjn4JsuMPP+LY7+wQbjZUX7tqV/TrP4hZSdd0Z0XysYnDGc+btfFrfoZl0US7msbm2vLzEOJ70KElbdGSkIR34VWA6oWS5wcck3CIwgYJ229Ny1rIay1VmiW3sikR0MYb5L8foNgnMb2E5DYOVxIh4Wo0SKpjSjWJnn6KkOaUcRDiRIVOeOPFbSxjMKk1iKWNP6Jy8QnFmRCWs8eWiyceWg7QfFf3X90zzzox/k5Ipl9lVF7dCx95zi0s8OGK03OHrUUERw/q9+sSJvu9GomlyxovKpiOnGyOQ6GldIhKAUzhcW6ZS3sLokk+LOPqrdklW9c+SXVgn2+3L82i3xfLqzjTq/Lsc9LyAwFPNt9N09aDdR44R8bV7OUdnSOnXvqdz6hHDAKNRXrj/cssmlJWfmu+Q7u6CF0+SeeoTX/psaj/2vJ+y+d56ZzYzBmZD5n/k89z74LGv/+pDjp2fpfnaXfHkGczJBn0henPOu2mWbzZXtq9NIEFS5Zvi2jTp7Rq71WoBKClwoxFkXGrJOjLIOG2l0ZslrRtoQGsr4nsatE5KVNvHLdyn2D8RzZTTCzHQoegOJivDtvypvzrdvy8gHdX6dbK5BdP2+qMV8DIjpdGTF3mhQDCSeQpWRGmUkSBRJ4Tw7Q3ZxRfzD6qEoHb3qRjlHXg+qyUsVDhtqyYzKHbqw1QTtNNRuH8Fx36vXhpjlJezh8TT6o3R2V0KudlkurauGENWLy2vkjVA+L9LYQFHUPQclkADTMlEdJ8eyzMoqk8Lb/+xzYnEAYvi5/wB9ZkXOZ2lhkOWomQ7Z2QXCOw/kHhgO5bhfPo/KC7LVWYL9vqDLvb5E8gC63WLy9vMEoxwbGYJBitk9xtVjirkm5mgkrabjHsXxsXjkPH4RfTwU8rZvJ6soRK2tVG1BlQjyYw+P0efXUQPhy+l2y7epQnZ/y0WiviMcWqLjlGhL3JTVQNSCdjjCXLmISjLStS7hVzYrDlZFwr50HlePyGdiTC9FjxKS9Rmiz74OF9fhjdvouS7jqyvUPncTd3YF9+pNdKdD/uga5mTCg3d2aewVNG8ek3cbBNe3IUkk/Nnfp/ptj+G0Jp+JCQ8lSy/Y3MV1WjL2b6xhHxziHj3Lx178ka9qrEPzkVX3+F9//1fls1789g+9aSMrgv/0S/7Lb86z9m23her1vYTWrzaCQPrf1jFcr3PuFyy3/2jBmZ/MGS4FhGPHyfkuy78yZOddTeZezUhmDPYdVylqAfqF1+HCGqwu4EaJTOhFgVlYwDVq5F/7NNHnrqOfvIq7t0v+xAWCYzGvMtaikhQ915VgzMSRzGiCicN6x04QyaL2zqQ2ULJyfvIyhQU9SjAzLdjawV1ch9c3ZTAPQwZrmt4nzvL7fujf8A//0TcwXNWEfcf2e0NmrjsOnzDUd1wVf5CvzRFO0kqlAvwqhQWTRLwu4kiKkhLdKCdav2obPrpE81YAY9/3Xm1jeEW3TgAAIABJREFUA0UwKRi8fY3WtT2yqxu4UBMnGxT3dzFuieHjK6CR0EbXINofUrRisnZIXodg5MBB2lToQtRqaVsTDew0cPTpK7B7CEvz6CTDtmqo3UNRb+0dCEF3PEEvzvPMj36Qz//wh3nuz36A4ZoCB8uftdz6HS2wsPp8Tm8jwI4nqDxHn9+A4XDKiwoDn8s1Dal0I0F6Kr6Bjy5w4zFoaV/qOCZfaKF/5SuoJx+FrKBYmcUphU4LOO6TPnUenUmmWtiMUXf3KM4uU8R+sg8U2RMbxHePSC8u+/BZx0NrjbKjEPh2gl9JB5fOobb3ZCCd6Qi3wRdU5tFLMsFEIZP5Go/9tWNe+cFZrv6NY4pGxNwXxxx/19tZ+/Evc//9T7H283cFDZ2I50m1A6eJwGUrzKnK9bdCpSpCv8YOBhgQCXVeTAts580Qi44EXrYi78kix8uFmiL2KsvQEG8dixNvGKAaDUwYoGZnMNbBygJmpl1FftjDI9TsjLSWPHrkAk1070iMAxPJ9FP1unh0OQcri5g9JX+XF5I/12pKi8o6CEPscETwYIDqDXDdTuUBJv4zSoJDM7ChRmmHjRTOKpRxFEpXhUg4yAUBiCNRNYaRV3WloOPpGOccyqhTJGSPrIUxepBijEZPMnRm5LjlgQR5Ggl3lfRzUXo6JddOGXJsQzmf1nt2VQucwyNUqyXn7qTnCeti9kqW+TZzLsiHktwxtdAWkrBzKEAnsaCUi3Nk7QAba7CgE4MBkvVZJvMBwUKNcJgT7dVQgyEqChmcbWKW6oS9jLBRw17fRId13Nb9KSJ4qujOF9uobhOTF5K3Vbo1F2ADsJGiqHkye9kustbbSWhcr4+ZaUohvbgAzTrc3cYVBePzszRe32dysU3reILzMUd6bhZ7c4v0XY8Rf3GTYJiLKeXtbdL3PCnBq4VldL6DsrD3joCFsEs4LAiKAjueiMjCH6/RRptgVLD9tTFzr0SYxNJ6dYKKI7mXrcUOBgS7x/+ZM+Zb2691e1MUPgpkkItDr6YppoqcUwoGnTtGCwHnfyzjjfc7Hv3bA04eabLw8pgHb2uw/gt7bH/LEnPXEsxLr6HzHPXoRey165iFeexwhDIac/Uy9o1bqNGIaGcftTCHfeMWeq4ruSyTBLN3gNtYQQULuL0DagcZRaQJ+5DMBkQjn4I9Endlk1ixLreO4rWbBMuLQipeX4WjEzGy+9Jr8NzjBHf2yO/dp/Zgg3RG8Ysf+noufv8ttv/ReZSFpZcKHjwZsP7xMdvv9aqs4YjgeIxt1NCldJexTDZQqSS0UpBm2NmWHNu8mBY/iKJC5QWtL98X6LcoUMMx8Z1cBpJGjeBAk250CV++A7MdbKeBKRYpdvZoGoNt1FBJSjHfomjGhDsnBHuKtLNEESvSliLuyeRqElkdZw1NMHaSaPz6pgysWYabm4UbdylGI9TxCWZh3pMuHfmde5xcOcNzf/YDvPjnPsJzf+YDDM4q8qZh9ZdzmrdOeO0PdznzyZKzU6BO+lIsgyBjSk1bfpWkXcjdqlEXfoS1WK/OKXk0zjmC69uo9TO4uzviHP3lLfEgCkOK8ysEn/oK+sIGoY/5oF7DHPTRw5FX9ohvie00CF54BffYpUrlglHVeVG5rUzPtJNiwV7fxGU5weoy+da9KhQUW8j+eQ+Z/IkFjp6Z5+r/fsyr/22HhV8xzGwmzL7S4+B3Psnq336JOz/wLBs/t4ONA+FPBKbivlXSbRAia2W2p6auz75Qx1pZxYcG8gDbiNGBoWhGvrgxZJ0IVTiKmkHlgl4UtWmRoAopANIzM8SbD4QTNpJcPg6PZRK5t0ve68l3fnAg33c0lomjFvjJDrLVWcL7x5RWE8oYWUnnucTUjMe44xNQ3qHXv4fyiykVR2TzLQKgmKmDdbJYSmXs0Zmr0F1lQRdKJsHcVQidzi1JNyacaaF2D6gcxH1bUwpsHzbqUR+VCeHaRZGMfaMRdrVL3gwwWkmrOzYUsbSPnJZCx3o/GOWQpHIr+6cLRzARLpRe8JEyQSAT8eK8twZIJSsvF5K2rQdV60wZI6j03IyEBYcGlY4k9qPXr/IGTVEQnelgRjk2NuhJDkZTu7lP2OsIspNk2IPDCm1t3eyjjwe48YRi/6Dy61EXNuSat2JCqMcJ9uCQcOcERmPhcc17RWJRgAKTgUkswUgsCKrWH1A8eIBZmkM1G+QzMVFdxC08OKi4NPFhQr7YoXaQYuthhbDpRg1m1og/dx3OLFPUA4JmHTfbJv78TVlYXlyneTAkHHZo7Btq2yPxOOsPKGOAyvunsTXARoa1f+cwo0zaiLUarhZT3L6LmZsVisRKF+7+Z06av4btzZ6c/tXY3hSFD0pJG6Y/hEZdBoPSCbkWS6ZLYTETRz0vOLlY59w/zbn1xzXL/9jR34jp3M65961LrPzKgJ13tVi/uUIx34brWyTf9Az1z23CuTXhOfRHmBWZUMyjl8gW27iNLvraFmQZ9sIZcA5z0Me26+hWk7Qjqy+cFGCTriEcC6SvCnk0idxgUb0m7bknL6MP+hQX1zD7J5iFi7iXb5IPh5jZGXE01TDY0Az/xQWKWdAZ5I2A+AjufnONuWt+sg5DVH8kMHlLBmlOelMegDFyOZfclUmGbdfQY2lFlf+nCosLA7IzM6TtEJNaajcPIAyYbHQrFCs8npA8fZ7aG7uMrizgznVovZjjTnro8YTR2zYI+xlOK4HGj8cUsaKIFFHfkTUU4ciRNTU6c+jMkdflOb04LyvQZh09HMP6KkGS4qIQt7PvYyiEwzT7qmK4pnjuz3yAF/+Xj/DMn/8gaQeOHwnY/to5Hvn7PW5+d4eL/9xzdUZjVLNRRYiUKJdM4qX01qMrSeoDP4spDyOKBPGp17Bnxd9JN+uwvYdaXQLAturo3pj0PU8SfeEG2WPncZGGwhG8+Crq3DouMNhGVCFs9h1XpTjwXReRM/v98BLjMjoBwJxZkfe4u02wsU5xf0fiLRp1eW0UYnf3ad4ZYKOAyVqLx/+StLMmCzVUFjH35R6Hv/sZ1n/sJdSZFXRaiN1DqSAqPLH7dCuw5LCcQhGddahTbSc1FnWPTiUHKxiIOSBaQd5Bp3lVDNlaIAhQLRQjNwt6MCGaZLLY8XJtFUViZZGmqPkuQaOO7Ykq0vb60qb2fkkEAXo4lgiT/kDI3+VQ0mpW4gK7m6Hn51BaS8p6+R6eZOuSVCJfxgnGOQm6tA4bGXRSkNcMJhOkUjlHEWicNhA5nBbE1wWK6ChF3d+rBAfYAtfrU2aZAVMjQPCp7R5d8qotPcmIDh0UjqIZEk4KdEM+wxqfg2U8CoUUPiAIkDNKiiLt1Y+NuiTWKwWHx+B5VcXRkXzWTAczFDKwS1NBRzyvhcKiJ1mFMKpmQ7yinIOFOUG/4tLsUNrj6YUlsnZIWA8x4wwTGNzde9jxhGS5QdiMMIOEIIrIt+5hrUPduC2tbX+P2kwUZK7bRNciVH+APToSMUKjjkmczwCjsjopESObZmIi6/c/PBaenllc8G3oe1IUKwh2j7nzezZYeX5EfPcI1R+SXVolePmWxBD1J9Te2CU7u0Dw6h3yx88RvHaXrFujWGmSzBqCiQUN4wtdouubVYaa68viKVlqEPZSdp+rsfAVI92CwqJGE7E8GSfYNMXsHP0nJsa3tv9S25uC3AzITVoUwtov81yM8ZlQcqOdnJeBIBpY8oZm48cDdr9bBr2sqZl/JeX4kSZnPnFMcWcL86BH/thZoo++SPL0WfRwjDrqCf9icRbzxBXY2Sd49Q7h3oDs6jpuZRGzf4I+Hlbk6fTsAiZxosIaFSgH0cBWhGRlZSViAymMlDEUW9uYwwGuUUPf2aVYnEEd99HLi9JWmySMFxVRzxGdiE37+37H56rjUcTQfdVxcsFPyIF3gR2NUaMJthULTF5uJaHSm5upSSKk77qXgZaGWVbM3qKb+9TvDQl7KZOLAo3Hn79JeDwRbkYrQheW0eMr1G/3iR8kDJ/ZgKV53HBE7ZMvV9byaSckXWqiLEQDKXBMCllDEUy81NSvoG0gkRr5rdvog2Oc0djNu9hWQ5RjcQyTBL0iRUbt0FHfdQzOKp758x/k83/6w0QnkNdh+QXL7e+c4eLP9qb+N1pJ0VOGhZaTdXmsQkGa5FqTdGZ8cCzZVPrsshz34lfQA+HsqO4MnAykLXZPokOi7ROyJy/I9bM/JOhNUOur2Bub3vjxGD1KRTp7MhGTtTK1HqgiI3Irg3ruf3eOYnsHjvuoVpP87pbwAkYj8u37QpQcDNHzc2x//QzB4RBVOEZXlnj9/TGtL9xjvBKDUszcGDH8lqflOIc+y6jkepWO1mlatRpcpYpxlY9PKbuXC7PAtmsiJfYOvHa25RO+m9h6QNGOKZoheSsib4ak3RpZKyCvB+RNiSCx7ZqE0frjYMc+SytJcIMRttfHjsfYg0PsYEB+bxvb68n+DYbYZh3brsN814sOfLvOe2i5wVDe66RHcXiE7fen75FIZhdIEYsvepxRkvmX++w/BzbyBYcWno/KLSa1hKMck1qCYUHeCsX2AbFCQPn8LjVNt9eNxtQTyaeF401HyXNcFJDOxthaIH5d9YAi0uQNQ940FHVNUZOFhQ2ULDJqSmIiTi/gy5gWr6hTXs5NEKBrkmBOGJC3pChXYShFbmkpUEiRWl6HLpcC0Q6GoghzrkKhKBwEhqCfYBKLzgr0WDg+Ls9RtZhgUqATCRK2B4eVI7ReXkQvLcjP4jx6blbk4FlRkbR1w0e0aJ8DFknLT9qq0u4qzQltkog9gnOiiI2k3YiPi7GjEUUzxM626L6eE/QTim6T4uCI4GhE9tRF9Gev4a5dl0VGf0J+9Sz6xVew51cJ90eE/YzBmkYVMFlpEPYyTNcT7SdJ5Z0W9DOyVsjszQJnwEy8Qq0ey7Guecf4zq+Hc/NbG7yJCh+X50IuHY/Fkj0IxCPFGBnI8pyVf7PHycWQYFSQx4rJQsiZn4xp3UvJa5pkxhANLAdvm8E99zh27wHBK3cIzq5Te22HyYUF8p1d3NEx7ouvooZjiqvnJHTu3i7h6/fQJwPsTJPixqYM/id9gs+9Jlk0nuRoxhaTiEyxqMlNiYNgVHp/KPT5DezuPuq4jz27jLm7J2nURYH9yquo9VVWPpuSzCniY4dJ4TN/61ke+W1vEA4cTkMRKRo7U7lzZfeepOieTO4uMNWgXyo4SnMslWToSY5txrha7INXhdMxfGpV+EeHQ2qbR0LUPLuCGozRk4xwt0d055D6Vh8CTbDfo3HjCNsQYqhqt1CFIzwY0nxtHzPOJZAvhHAojtS1I0vaVP7YgfaggprpVCnrxc07YlsQC1kboDg6Jt+8A3HM3nOK+oEl6kHaoeL8RD0Yz2natxyb39mRSdKTMEuvF1VGXkSR+JZkqayEvflhJbmeTMTAsF6XScr7cdj3vE0mscFIJokohJM+LHbFWXY4Jtw5Ib96VhywM+HCmJVl8lu3pXD2Nvv6ZCCeM3qaZSQ76x6+Cy2gNfrcukhgB0N0rUZx9x5mdVlUOGmK9a7T63/vVe592xK1+wPyuubKT0y49qfW6Hxxn6PH2iK7HRZScIHIvksZbYnSaK+aKkMpfZRBlV9WyqkRREWPUok+8EodlUlbQxWlFFkiCswkx0wKwkFGMCr8cwW6JzEa+LbUr5L1nlK7qJr4Iul2u5L029RbWWgNB0eVoux0zll1jLUWnkgQTN8jywXF8teBa9bF38ZoUCJQUD4zShVC0i+9Yiqn8PLRKMy4kAWVcxX6VMZNiIu1+NdU1gVZ/lCwa6nsK1s41gjCBILs6MwJjzCTllYwtgQTK4/+3yaVVpcKgsobp1STloaQhBKeSiZOyng3cR3HUgimmaSgZ6WFwdStuix8TWoxw0z+HuR1hZNzfTQS5advKdvhCJ0U6BP/PAiRezCUz0ozKVSHI4kmSTNUkou5bFHIOOZc5XIfjqXQ1PnU30f5QFuXiFM0cSSRKN4WQXkjSLQh2u6hxim1B6m4OGuFunIRF2jCL98kfd/T6PMb6CuXcKEhePUO6dc9hbp2k6IjRdnMzYKTCwG13THBoSc0FwW605L9NwYzzogOJqQtLa/rCwettH9QWS5F0q/D5uD/c6PCtwwMfy1babtvnUzy3izMzbSq1ef+e5dYfv6EoysRjf1cfFTmA+58f07cL5h05evEPfF20LMzcGZJCpnlWeKX75J947Oo7izmscuyajWaYrYFywu45TnScwvo3UP001dR/RF2eQ73+EWKmnAV8paRx7omaxrSligw8oYha4kUnbUV2DsQ+XWjhh5MJFZjNCFfniU4t4G7v8e9rwup7zkOH5dQ0vGS4pWPP8Jv/4FPkDdhsKFIuqri71BYXJmwfdwX5VtdMoAqMq9SU28Pb96nh0kVaKgS8T4xieX47QvYmQbDK/NM1tuooRBVzdGQfKnD8LEl0sUmo/UW2eos4wtdJksNht/6NCoICG7eZ3KmzfCxRYp6QNqW1agNFFlDMZnVKAdpS/lHLeqUmhRf5pGLBMuLsNBF98bSApubQW+cEV8M4NLPDth/h6b7Wk4wgXQWnvkLH+Tzf+rDDOUldF9x1QqVOKZMvXZJKr/LgZFHLa6slTmcn5jwaiFAVo+FJTwShDA7v0Sx0KE4M49bXRB1ntbkGwvYdgNVWCZXxEMpX2yTnVtEP3UFt7WDa9axjRr5mrQJrE/CdoEWx9xI3Itd4HOwAkEYlPcq0YsL6JUlzNoqxb0djHdsNivLqDDk4DuucOZvf4Htb5in84Ud8lbIY39tn1d+cIGFf3+P3vkatfsDyaPKvLFe2Q4tTehKQzivrJuqoPyq/1Tx4wZD4YCUwZaZtLtUmkmOUmFRqedgOOdVT8JbsaESBKUprUI1I9L/ivcRR+Lc3G6i57rS2mtL2KpqnJbIG7mvTnwYayT5W4BM3HGMarcw7Ta6OyvvUa9P30NLFIWbJOgkg6OeeIOlhfzktlJR2UDJ4ibSFLGmiPxPbPyPlnveq8V0s+6vs1NRO6eOYeUbFXhE21sJqEzGIlVYaUlmFp1NFXYukIVXESkZexrTn7RlSNu+bToay3csbRqG3nm9NMos/LhqtJDlfWFkFhbkeb/4cLUQV4uF01arSXHRqJHMhiTzNfJGIG7JSpEtNhicrTO61CVdn4PFeWmp1WIGG3XGl+bJNwTdcXmOrsWCwh2f4EbjqvUIkK20ydfnMfNzFAeHUsxFEUWkyOrao18+rd2PhUopzPycWCMMpe1qkwR1ZlkKoUYDXYsZXeyi0oz+uRrpUhPTm1C0Y9TdXbInLxD/8jUwhnymhnp1k/zqWeLnX0NFITrJGa01yGuK2oHFaSXv12pWsTWlcm+y3CBZqlPEMFpvMNxoQCb3RkUiz/NpMfjW9lXf3jSFjzLegdXD626SiAutc55zY2ndyygaEcHYEe8MGK1o4pOC2X/VxClF9u3HKOuYzGryrpDHbBTAjbsiu1yZJ34w5vBdq5UKJW8GFM2Q7IxECkTbxxQbSxQtQUiyrgzS1ggfp1zp6dwJ5D2WRxuqqqVDXqA6bQ8Pp4Im3X2Am21jI0NycRE9O0NjW1FEIkutH1pqB45wAD/909+ATuF7f8/HyJvIqtWbMZbZMiowlVmWmun4pO942sIIginyM07QJ0OZbLui2EhnpG2YdWRQqd8+Znx5gcn5OVmBaUXj+euYSY4NFVknwCmo7Y2IH6SMnlrDDYbUX9ul/vEv45TEbzgtxyaYOKKB56ukSH6Nl3HbOBT0qS5EdjWU9p1rNSAw5MszovCrxYzWG2CheeuE0Yqj+7pYGFz9iQ/w6h/6CDaA40e0RHXUajLwe8ibTHgkaIVZWJBjaIxMTqeUTYAgREEgfjyNhuTvhIZiZZ6iZtCb90Xu3Agprp6DNMMcjTD7xygHZpyTL7SEbGsdebdO/vbLkKTYl1/DPOhX/CkhdTp02foCaRv4QqMkALOyiItD7N4D2dWNM8IdS1Py7R1cr0/n5hh1YYPGnqXYuk909wg70+DSPxKi+t7X5qjecPo5pQOxm0YQlGZ1D5nWnd6c847DSq6z3McfKFEwqmSKtKhCeCoqE/K/KmQCV9a3PBViyeAcjKYmgrrVlP3xJnQ45xFfXXlhKd+aU0aj+tKqYjQW35o0rUxIy0yp0jwRoysvoMqqQHn3YeeE7G29nYBzVZsLJ0RiLJXKSzmP/JQFiVboSSFEaus5Pc5VlhOyD646jvJQFkK+nRjHkFvM2OdJKRlLhMTs0aZC7ivtkSedyz1lMrmvnGaKRk0mPm/LezCVik5tBPW01hO45fvbSVKp3VQYojLJ9CoDVqtNa0F8UlvtR/mdTCIoX5lEDmBHI4LJqedLY8iSzF4ehxJZtGLmKghiSWISr6IgERRZ+3FE5UWlxiy915Rv3VXXejmnGDm/4SiXvMECgr7QAMwoJX/sLBglXmGDkSg1n74s53ySiFFsOyYYW44f0QSJw4WG2v4Y6wn51kf16NkZnFHEe2NMImhdOCim40wm7toV4vdV394KKYU3C7kZGQxK91R36ppQhydo1xFVVKQZdQxz18bsvavL+s/dY/ebztDazhktBCz+WINb35tz7h86ohuebDjXxj5xEfXqbZz37OluhQzec4n2FyfUbx5IsOlgTL42h949RO3sETTq0J0h+spt8kfWxX0TuZCLeknYlXC+ItSEg5y8Zgj7Gdzfg7lZePwy7s59VLNBsbOLenBAdGYFpxXFShczcbgAll/M2H86JOpBY8eiHAxXNT/3oW/k8Q+8zvCvIgNYFFZJw2Xukh5NhKwaBLJSL2+wwAdIljb6uRBb8+UZjHO0XzuWySvQhMcTxudmabx8X1ZSczOEX9kke/I8+lNfovnsYxXpMpupEd87Ibo9wT5yDnd3B72yRPBvv0DwPb9B2l2RcHsAakcFzijyWIjNyjr01p6sfPdy1NwsFJZi7wF4BU84aFHMdbCzLY4eNaw+n/PaH+7yyN/vcfs7Z2jfcnRuUBGe3/6hD1YGdSoQ+br2njw4CY+sfGigksBWnjCB+KooYyCxqHpd0rU376G7s5idA9KrG+IGvr4qg24cCXpmNGZrH+PRiHyxQ7i5i/Nhh2hNcOEcxd1t1MzlKgqjIlM7hNsDMtn4Lb99V5LE6zX0XJf8zlaV92PabVhewG5u0btQJ1qMad8esfeH3oFTipVfPkTllv6VLo/9lQdc++FVHvsrBxS1AJXFvt3lb7LS68R7Bk2l7NOJSgWhkOpLwrNRXrEVgEbCHjNRdRWdCJWL540qHEVdrsci0rgyrbrTFA+eRLhFOo4pjo4w3S52NEINalJ8O1cZRqpgiKrXBcXNUlynSd6pEd4/wrSaFAPJiTMzHVntDwbYwUDaskqJOWI4lry5tiRyYwz5bINAKYpOTYzmYgPeigCP+qiyRp54jk9mUZkVxMNC1gkxq0uo/UO5L0cIwXgwlONmc2kneVRAGb9o8dekGw6xa/Nks7Eopkofn5pvvZmpuqv07al+RxZO4cgHms7OiBliEEjR325WAZ9mbtYHgzqK2GD8OTYzHYqTnvwehdhagE4ExXODIW4sbaigFmNWWphRLsfFI4jRvRP0pCVcs9FEuDzGoOo16jtj9NFAvHn8/Y1SUx8f797tJgn2+ATdm6CGY/IjUXiWraoiVEJwdohnWmFRuUScmFZTWkh+3MvbMVEcY2/cFkXgJBGjyHEOS3O0bw0l9qgv7dKwP5ZA6fc9S3DrgXDyxgn5rdvkX/cM0UvXibZFHXgmneHo0YjOtZFE5vT7qFiMS4t+n2L/gMammLgGY0v9dh9X95litYiiNyCY64pdxvIsbP4aJ863tv+s7c1R+JQrlbJdcbpYDAJZIYYh9fsjhhtNJgsRs9dTdr75DIuf6zFZbhANLP2NiNVfcNz73jGXv7+Pu7iOGowJjnNYmEPtO3F1HY6ID1IO3nuG7s+/zOQ9V4kOa5iDAdRrAoOFoXjcxDEoBO4O/M3nlRaq8KRHj/SEg5y8FRIuzInB32u34Nwa+StvEKx6w76jE5JnLhIdyIq1iBWDlYDWlqOxn3PwREhjx2ISGC9orv/so6yqL1aHQymFc8Up3xUngzjSKiAwPvm4qIJAy9cp6zDDlKIRoSc547WmeJDkltpWHxeHohhzDt2dIfjCdSa/+Vnyuibs5wTDnLCfSjJxGTS4tgR37mOuXMRpyGuKcOiwBsKxrYJYTSbn1QaSd6UeuyiEx5199OyMZOpAFYqqum2yuTpFBL2NgDOfLES99bMnbH5nh+4rjv45zds/9EG+8D99mG/7u++ZGhIqJZOf56mo0mG1JH5aJ73usrWa51U2Fk7DcIRqNrBrSxT1UGwLBinpux6jdu0e6aUVgt4E3R8Lifa8xHAUsUEVjuTqGaKdPtlCS1o/uSVwjrwio3sFjhLzS4WoVJyeqrvMwjzMdqTIAswjF2H/UEjWzpG/cZNgdYXZN4YMNuoUtYClFwfozR12fudlVv7dA/JmwPDRea78+AiVF4IoeFVXmcGFD8RURSG+eIaKd1KuSkuuj/IrZ33kSftWUsWZJBV3SRVtVJLjaiEqKzCNSIrmlveuyS0kKcGJwu6L5b9qNQnm5yAKMVrJvdqdQWc5Lo4IeoNpHECaidJnnBBYi90/qNy6g+UliCOM0rA4h4ljUfgZTdAfTt+jVKiNJ5i+EHZNP6FoRpLH5s+jMwpyIeQr638PDNYHYiorBV58kKAfHMlCy0cjuOHwYY5UzrSYtFb4VEYyyzAGnRaEvRSVSPtJJw7lArk+A+EROi33UKXo0njitUeGSlXXXLfibnHcA1/I25M+Ls8I6nWCvufDZT4yxFkfKWFFpu6RYzEFVZgol7BoX4Qpv1+kGemFRbEvcA5dC9FhQL55F3JFOhNE0WXTAAAgAElEQVQR0ULHESaOpKCPY9TOfjXmOx8e64oC24jQzqFrsYwT9bq0QEu0q+RiOSeWBEqRe/NA0gzygvDIm1muLMm1ftIDpSX5/fCEfHmN+GXRkRe7e0x+6zsJLsxTe/U+xUoX99I1Rr/9nUTn56m9vkPy7GWCQUpRD3Ea6oeOyXoHnVqiTkfu5TSruEYuClDDCTpHuEHWeQqCpMa7oRRc5uTXp9X1kI/Y/0+3N4dzc+OMO/PH/wQbf+VFcSjuDyofCLRi/5+co/3hGRqfek1iBSZJtXKitF4v+QnlKjWKKHo9+QAtvIUq/8YTOXUUViofmyQVxF+9Fh56/UOutuWmvbX9qb+173wCZ/T/w96bBl2SXNdhJzNre+u39z779CwYYACIGGxcBAokKBKQRYcjzKBoEQ5DYnBAy5ItykFbwQiGZdNShMOQKImgScqyCZOGQMFLKART3EBxMUhigAFmw+zomem9+1vfWktm+se9NyvrdQ+XHxx0WFMRHV939fvqVWXlcvPcc8+B+f2niefDpdWym/bvexiqcdBPvBAGvBgYKmNaPRW+b7z9fvydz3wa/8NDj9DkvSTJfbcsoQd9qDMncOFDO5i9e4H7/+4u7KUroR3ikmRd5NAb6/CzGUSp15dl93tBO/zgt5S0BMM4BeJr1r0RCXwRCvwTHM0HvwmHd2bY/oUvtURWRhuUMTBbGzh6/51wBhh/7qlQIiyqu26xoOCMye8A8P+88Ht4tZni0W/9fvj9Q6BXAIslKS5nKT7xW7+EdQ189Ls/Bn04pXfSNKRYe/ft8JeuEkw9X7BdAnFGZAETW5Xg7STWA1wJI9VRguQ41sbRRR5Kb4Wkf8Ohux5wAHDlP3s/Tv3C00GwTww4xTLi/A/eD5cCd/yL8zReFku4ZQkzHsKKds1wyJU7CfGaxC8MaBEnpSi4Zy+qkHIOlgHddJj3nkir0XMFOYDYcTv2/mLStPR/neeBiA6ANHbqhrg+UtZvxahTd9MCPAZ1UYQxS/YLVesmD3Q0XkL/8oyKOAoulCGHeZUmQbH7pu8nPmQuiJ4NjnzaALTPKaRgtvV43cslSUC9Wvdz15mr5L4UizSG5wnVeG17rD6DSol3ZA+P2CqB3ODj82FuA8hvTzYJsikwmqrupI3k+SR1aAwhK2XZpq5YaVyPh6QOvnK+o2gdoYy6KFrLicgepKN0Hs3xejyG26eycG8tzOYGVWpaG+Yvxfw1y36DYlcS+t9gENTifVVR5dmgB3s0hWYrFflelaQsTGm675/fNaQ/1U1HwkCeK8y1POf/Wv3pN1TduH/2lD/7iY+9Id/1xF/6b29Z5eZbguPjFVCv+dZ9uFfAnDhGsHSeo2pYM8Na2i2wQ7IYGHaM/ySPbknoTRYVUU4FEAY6mRBSakP3+2HnGD4DtANuZWESNeTgPq3Zy4cn3KbPXBJOqag8h87IJ0k5T1B5WGikwsN2gqhwOKD2JCIXeBi8oJGui4fLAbefwSeGCKIppcJUltFgu4kvjCpy2lEZc+P3Kt1OfDn5p4nDtrRRuC6XQYd2udkRnfdGwScI1TZSjQII4VYhmTPXocgD+VWeu3PwAv5qM8XtyRCzt54gPZiMKrr8eEAETK8xcx52rWCFYdemwLh6RPxzVJYB2+sUXPeKVt0YCGamMpnK4oyc2jJMylKyLJwr9om6WftoqTKLX3kKqM0N6EEfyFJqF0P+XzCGdvmOyKtqbRz6FxxZb8CLV5kO9yMBqsoysg3IUrrvxFBJf5YCKZe75zmhrUIIZmdsZbjyS6qF5I/8W/pO3I+AzuLW8bKSvqHbdgobGJYhkPHV/r4J/BTaAEXXk2vId8T3GH+lidThX+8InKeVnyvPBqXa68gGKIn67OuNCW3aAEf4OEIsVyvVf1J1t3qtKCUZnl+quYC2XcHBq47Oq9dpkyyleTjPAkoauFE3ORRzvYL3VrA34QrBSFZC3O5b/pHuvoOIaC+VhjccUvGmFHFmVDQ25Tz7rqle0V5TjjiQ1q0dSkiNW3KN11narRT0PuJMudD/QntHFXo33HJcuSh9+WbP9gYcb1Z13SqprkWJe/85CdeBxcwA8OSc4baPnic0QUoqTx6Hny1ad94hSZTHKIdfLmEeuh/JdA574VLr+6N0iNh1QWWcyWgInNiGni/RvEIQqNIKvuFAST67iITSeCBpJlQGI8Ashfrqi0hOHgOO70Bd3yM/ql5BA6Wq4f/gSQrQeNdgtjZpl8LGhzrP4ZasRuwV1JPP4afe921QZ9ap1P/aLqvPlsDWOvy587jtf96HO5wAwwGgFfT6Ovnz1DWpOQOA97DXd0Pqx6yNgRMD6PkS7vpe+JxUO3lGetT2FrCzCVVWcNd2wz3Kc4ddZECAVLvI846crkvlnvkXnsPx107Anb0NqrTQl65SG7NJpd3bR/ZvriA3BtjYgL7zNqjDCflraQVT5FTKP18Ens6j3/r9mL31BH7r534OZz/1KNKJwtrLDk2usP7CAj/6vR+D3j2COslpwK116GYENBazu9cxmMzJC+1wAvQKzO5ax2D/CNXZU0gmJfTBtK2CqetQnuoFhdlcg+vnMFf3g8WDpDFCv2Q/KepA7Q5Wb6y3nkLaQPcKnPncNbz8g6eQ7wHFroOpiTMw+J3n4E9u4+QX5sSpMBquX2Dx4A6Ky3Po60cwlgi9/vAIetCnADulQBDrJJnvexkLbyZQnq0lyhouT8l3K0vI8TqhcvWgLD2ZQTsPtTamwDFLqZQ4Seh5Oe2l2aXdV6yN5B280wAcoXCLRZj49WhIaY1+j/o0L/q636P+NWWjSR67Kk3CNZQxUGtjSoElSWtLYQzc0ZQ2H3lOfBfIbp82QmZtELzibEUGqz5eBEGIiSAkcfov2E0wCqj7/Vb4kq8ZPKIYDQEYec3SllvG5rgqz4GqajdPgiLGyFdTw81dQNMokJX7ooVUDwfwC0pJuuUyVLsR56YH5R1sWdIcKxpNeSviqfqkWExpHQUzq0g+Y1nBXRSEDcFUVmxPVEHWEj5Poadz2P0D2kwWOVS/IMuUyYzec5G3nLpMijSIRa6KHAqsw8PoYkdRXJAWgN5100APem0JP6NahA6n8MM+jek0BfYYGWpa5EiltKF0kwlVku3th42WWy7buVlEPesGZjSCnUwCAhQ2y3zQOOYNEKNAekCopp/NoLI+Ee2zDKjw5vENOG6NwAce/rWLcHUDc9spuOMj6Mu71DF6BTAjryVX1VR9M5/TYOOJ0jOfQ9IJBJMa2Kefg9naJDfvkshzMon5pqZARmnY3X34y1dgNjao8+8fBviaAiCapMzaGL5u4Dj9Ae8pIJNqHV1BlYau+9I5Kls/sUM8jv0jeOegtIHhckY3n8N7Bbt/yIhR1rp0a3FQJjjb3XEc6qkXgbUx9NoYfjyAOn+ZOQ8F3GQKsAswAJjBoLPLoMkph5/NgwR9c/4CwbprI+jxCG7/oE05GLI1UMaQg3uSQK+NSf22IRE57yl37eHbnZ0Buz5HrufBiZx3U7M5kukCePlV6BPH4I9tEY+rppy9Hg4AR+aNfj4n760kCYrM3joijgrxVSn4/UMMvlzj7KcexQt/9ZP4xckWBrrET/zUD6JeS8ks8OAQZjKh9lUKansTfrlEcXkOd30X6igj64wsQ39OBqrpU+dIDbhfQPmSyOVVTfolDGV766AuXSX4lN3pfcmfS32b4uykbKLqF5H4BwBnSUl37xC3/0oP1XqOi9+cQNcKymoMXjoObxSSq0ekAHs0gVou0b9whe4zT6HKOfyi5iC/hjuaMmJkoDWd01UfsA4mKm9H3cAI+mWYHK8VEUkZVfGzOS3wTHpFQY7x3phgfCq7a78sQ7VOJ0UkFg48btxsTto8bBwLa2mh8p7SeFVLgvaNorblce6dJ+kGoHsN/m5vHcCaR+Eaqi1nd8sSKm2J3uEnIyne8jxgNFwpC7CDbxx87VtEmQNgSnE0rYYOc6dil/EgmxChCaFfc4omLoUn5LVd/APaGN8zQH1M0koyJ0nAxfONnHfTKbQY1XLArYwhgrHWMHNGbbhtqajCtt8LHdAS3zTAlNNIdRFshny8USzy8F1+0aZDJS0kqLcXvpi0Vy3p96RNfwGkZSWG1hEHzU1nJFMw6MHvbABXyBYFpgrjLk6T+rIMQa7ndWb1nDjdE4qqOhQKX1dtOlOCsvhd83XcgjzR9GAApRQsr2Vv9EE02lsbjXkjjlsj8PFod4VGo9rqIX+l4rRDGuwrwiG7oLKknXdVt4NFJg2GHP2MeCeUQutRR475O3CUa1OKqoHG47BrC7tUIcnCtLC+LFzSyWVC4FJhlSS0++3lcP0MZo/QHvEVopsSJMYBIIgZFVrOD3NLfNOQFo8mMqEHaGduLfSipLbj+2gnElqsqPKjbCFvJm+LczXxfHh3m6U8aTqscr+8tfCLZSs5kGU0ySL6XGRu6V2UwluF40ETgi9L+PkySt95RvHast+QggKCIrMqSyodbprAF1G9AkgSpBOFX5xs4QdGu/jsdIzDBxvoJkFxMSUE4fAoBITiUeWyBOn6Ggme5bSQ60GfSpOt5ZSYhs/SkHIFQGmhpiFCMDjg40o65dIuvC0l9jc5XFm2bSSfGQ+hlw2yA6DYSzG9zcEsFVVO9dJQ9oxDA9HAUnUNvzWORApJCT12p5fdtRdz0fhoGkayutwFKgkWXktUni2HUhwAxw/lOmnRlhfjb1isVZwqAtq0lKN3L2nqTntymjXmEilG13x0Dfl3uEb8DqKUCVVm82fi8vMAlkb8ktX+LAGSaB8BAYERAj2tOBLMrKRw4jSwJyFI2VSsHpRedoDTN55Tug0co0MqzTrcq3CPLU9Hghi/WHRkHiQY6NyHjCHnoZisDe/aQI2fWfG78aJSzu+OUlwupN+8V7IqQyQIwvXAc6JB57mFiyabUO88VM1zbN1Az6gaDYy8SprUW9e+W9ncOs/UB3vjuRtSnPG8jW57x/wveqGdz6t+n+a4b2Cq683jVgl8AC5lpxLFbHcRPIl8xJsJuwLHk+fSAYZ3mFwZEMiUBq0q7GwOZBlVBwBBc4G+mPPpnicohoE1cCMZVWTaw++2KR2BPN3KoqDmS2jr4EcDJjovg6N6vBB6+W7hBkgAIZvQUUHKuFpBaQ29rIh3IcEKtxE5kVOaxZdVIOUCoFTaZErEWyHkGd6VzqnNaVfdANUKBsuTql8sCInjXWfg9sgRB546yqu7brBJkv4t0uB7OU2S1pIOCaMMTu5D3oN1VL1mHb1zLlcWq4K1lx0GusRnp2P8B8Mj/PjFhDRG5izqyEiWVHu56QzJ7rRN73GQ7fcPWS07haor+AnD6Gxy6Znw6Pk+AsoxYwuMxLRcIq40u+kRn/fRgns0hbYOam6QHg1QXNNY7jiUxwfkKH00B+qG0EVJO9Y19PVDtlqpCC3kZw2bgoreoyxI4d16F3EUovGgI+6C48CBg3fqJ7pdeIS8CdsGA2Gxs+FZA3nV1yE48NaSc3wkSheQFOk7ug064mtI0BGqqATpAVoENeboeR8+D2fhrXndgK6zQMXpFnkeua4gNCtBB+J2vtm5gCzx3OU0afI4T5sK3wZ+9Kpazg59LyLBSa6OkvcF3lAy+tR5Hz5618zBcVVF/aKqAd1wGznAtUrTgdenFWDRBicR6X9VKiGcFzsYmR+ioKbtJ3zf8nzyTnieVob97Pj9KUEvGG0Jfcl7UqnnTZwKz01oXedVSHqzbsKcFaNRQkYG0KYoJdBViCpC4/HUDbA9a1NRBVjFm2NDbfgGH7e6xs4bcdwygY+raqo+GfVw7ZvWsPOLL1POebEIC4voXwSiHZMWpSMq8KYqQlU6HVJ2UXEVjbMhFUOeLyropUA6ONCKbGndanI4S5VFWof0juKKFF+WEB0S38+hXrsMzyW0cu+BBxDteL11AeVSkJ2qhX76ZSDLKNUwnUHP5oRQKU2pBr5P0ZMQxVVYC8wItfCLJfR4RPn52aJTrgwASnLTxrQLA9BOKrLjrqrWG0vaRdreIppc+feV6j5rkqJ5+RxNxvM5/BxQy5wnHhV4IZ4XXSVWHfL+moa4CFMR4rOkzTIeoMkVfuKnfhCHDzb48YsJnvn4T+PuX/0Y1l8YIXUO9Zl15M9epDTHbA69vobp/VvoXepBLRvoZQllHY7eeQKjzz/P1WwKAAUWCuiQJUUfKCy4oI2kR8aLCqBsRCrl9ogXID0YwM1m3f/fXKPyV6Ox8eIS6TzH6FWgePwVzN5zF3qM+OjlkgJcGRPeQy1K+M01qKOEeDC8URCtLMgfqW2IKmg6i+rNNH2aBp4XIIgPmhDOOdWpwkIeoSTxIe3F40/6G9DOA2Bj0biiJ6AOIfip23cglVXCuzKmRWglSImu4euKKm1WCb+gQMIjKnQA2lQGgJjA2iUx6xaJ4nu7gaAsn5Pr8FxEVU7yMSpRB9AGNjppA7u4Yi4cspFhpMRpGn9aBUHPOP0cyMZNCV+D+DGs14Qsjar/+J4XhO0GJJrfXadK0DnaVPDcGzZdcl7mGamEDOTwCA2TDY7cb0DSLbyz8E3EjWNekT04oHtJKZ0PTo2qa3utmKmkHqXCUO5FK8BkIeMQ+pPSbRaiiYIYbbp9F2irWV9vcwO0HFHeWHs2ZX3z+MYct0bgw3CrShLg+XPYeem1FupNs7ALkVLDkHZSPPCTJJRp+8USvmonOpqkRL/FAb0CZmMNdm//hrJauhVeAHoFBQmzOezBQUteBiho4clRAiAij2qClZeOoHM2k8QVEOKkNXFApjO4yTTk1oF2wKs0o1RLj/PQlhde2ZU4F6BwPRxQ1c1iEdJjYK8pt0tEPlUUJONf1YzQCOzrWpKlaoMdZGQi6BdL+MMjFn7LaF6SSVSIrhvr8Mtl0Afp7I7jxR0cwDGPAN6F8s64YkuNhvDDPvSU+Di+LIk0Op8zSZBL/01GPJEipzSUUjRZlzXWX1igXkuhG0J67v7Vj+HlD/0zfOhnPwo/KMjleoMckpX38FkKUzpM7xwg329g5nnw4Akl5L2C3h2LFPo8BdaGpGFTVvBYUrC6WEL1+7STy1KS0O/nUIuK2v/wqLsT5HbqTJyyCzaGDGm9B+wApvaoBhoX/qOzmJ/wOPP5HnTtkFsi99vrezCDzVawsqpR3XMM2Wv7pB59NKHAnHWAfJaG9JXXuiUxp1FKznpAg4TqpN/vHULVDdRgEPqXn3NqpCwRStxvQuKWxUdxf/Q1BSt6OKCx3SNtIKQpXVeCTqXbIJqDcNUrKOXJQbCIBapeQfeQpjRm+j0gRnj5GiqoUDccaJjwf51UF0Aq6WHz5Dr/F8rJxTKD0SjFYzqQj5umS4Tt8HgUB2oIGyIIAiljh79TsQXLKoIo86XKMv67h3e25UkeHXUCH0F5ZCOp4qqsrQ24HheYzInfog6OKHUPUGGDPDvABOmMxAaNAZZLQu+kMixnRXmxphBJDpl/vKJm0aZ9Pk7Lq8UStm7o/fOmKfDG0pTe7+ER4NkKpCg4zW/o/9IEmEyh0jToFUGlhGiC/i6ojjJcxSVokpxbLttA1xjqihFvLQRSjJzSnJZ0A1SxFBoOIT5i36jjdTLu/04dt0Tgo4ocF3/kXTj1j/6wJeEelox2zHD9M2cw+KdrKH7zCRrw3nG0TARId3gEvViEMmZRam2RCkJ9fFkCsxnM1ib0cNimvFSrb+KqGkqLfPmMfF4ijYoYRgZ4IHjFaYUaqqqgHjoLlSXAky+ENJObTIDJBCrLUL3vQaQHS+DxZ+ki3oXqEblfe1RBy+Ly4D34T//l/4F/8vCfC7C4Qg07q2GUhrr7dlz9wDYO32LxwD+6BrdPBEUA8JNJyLvr4QDY3gAOJi18blj3w/vAa9LDIZeyZoQCASFAkdSWq2fQ1tJiU+TwM0bWOimt6OCJwtcW/v1vx+TOHtY++3iLVjkPHB5BHfWAEzs4/Jbboa3H6HNPAop0RBQvDnafxOLM9ja3v8cnfuuXUHuNH/3ejyHdmxOnZ15i/YURPvSzH8Wv/sv/FZeaKT76fT9CwcalK7RAZBmyQYHi8avA5hpVgCiF4fMJpa0UCS7qPIef+oBwmZ1t4kaVZdBPAUAIFkPb3lqqnEsSeLeSZpDD++jdt/9/5Vs2cOKXr8JPZ8jOWWQXEqCxcHv7UKeO4+s/cALJHDjzhw2woGqY5vIVmNEokNfTwykwGlAbL0si30vqgdtNKUWLzaqOjyzM3D9CZZox1E+0Dm72nknw4ZE45RWeVfSoQIu4XyxprDAK6A6PApeK+gqT2uOddUyOBgKJVyUJ3AEVI/jKUUWTjE2ufAxVS/K7zNNy8zmn5vg7XJTCioP2kIqJEJbVz/D7jtMiAGizUTL6HOm6IKp6BNCShIGOPg9dw4TNVRx0EDJKwaHKMuqH1nWQBL/k9Lm8v4ibqPp9QIQWG1rwzXgIf/FKR8cn8IacBXTSpg4DN4/QPXc0CWkdz4UKyFI6b21AOZRvVfoD7yhKG/qqhtcNVFW1KcDQzlXb/kzOFrK3q2oY+X1f0tylVMv/jN8nNUYgJ6ssa9eDNIEu+oBzhMRGQaYomAcis9ARvKc537XcLNdUnT6ijCEF/yRpEco3j2/IcUsEPl4BjkEZOAd3NA3Rsyy0PlHd1IqgOU6HHRVYERNpCq11ELqDinZNANwh7X70gErRXVW36EtAiChdZbnKKVQ+aMUwMqdZmKgXSJDOww0ywAPaOqz6svhlCXjA9lIYRj98TNhTGgJbB1heKRSqDryUkKf25PqsrINPAJ+6Fo1iN2jJ//umJgSFU0hCeBVhQqUiXgB7H0kJbPh3kspDhvuTUmbdK7rpms4L7i74tpfAppzrTtKWoAgAyxJ6voRyHk0u6T9JV5o23eZ9CExUlmJdAzNnoXePKFDp94DFEqlz8IMCl5opTiZD2H4CM1FtcFJVpEA84NLpKHWhspTFE1tvJfEvkj6EPGdUxnYXPmmjxaLdxb9e/1/lhSgF21NtICCVUs4T0jGdwyyApkf3GLgUkuYRUnFZEmInhGXpZ7F4YaQdowz3P+34fMvLQOhHwrVaCXCFmyHk5cB3iIi7cepM/q1U+N24n4S0jlwjEtkLJFi5hvQJ4aF5Itx6ACFnJFU2soAr1SXRC58nvo8YNZbz8b2E1FX8u659RiF9r/K44pJsreBtFJCEdrr5ttzHY2klhe/l+ztt2QYOHd+wTnuukMYlLaS5j/QKQq5VRCZfuScVCOhR6lvOhzmb28V5wKiIBB0FNoGjo+DjIHIl0JTray2pvRvTfxIYdzzomATvV3TZ3HQa0Dkh1bvZrN2UyDWr6sagJb4v1igKnB75SNRu32iGzZtVXbdI4OMyjdt/5mnYOKgBeIKocexvlPC9A6j1NfjJtFVdTNMA10ouWRlDZE9RMeWBRYqmLTGSlIwpSAKXjwMIQUJ7c7STFNVUvTYOO31fVVCjEQ0EJlT6ZYmmlyD7/WfhWLemM7F4T3LpayP4ImdyLt8jDzzFwUCYpJ56Af/jd3wEcJdoFxGRLX1Zwp97DSf/+RWcKgpc+8i92O5l0AdTMgJNDcHVuwdQeQa7PUa1voPiD1+gqiV+xiBoxiKKvvatLobcOusfiYBdKNN2HjpDUFYWBVQ4EqUEEJADv1gg//LLyL/MdKA6Smcw38peuYrxr0wo3WEMCfPF71yE+SKU4aPf/THYtQLqpIWZTEim3hjUZ9bhUo2Pft+PwPYT/Man/hke+LmP467PAtp6NOMC5795gPWXxyjHGi4BFjsK83srPPhjGfzRtOUkBG4Z7zaZJByqgkqyOFGKJm0lAawYgwJBMddbClphLfSIJAJQ12E3ffpfXWpNLoGg1q16A8Bo3P5/XoHdHECNR/CSxmLeVdBZSpNQSRiIoaKuGyuR32RReb1Dj0Z0H0nSQQ9CMMVO9wExiioeFbuUdhAURWTVgHY0DW7kzVgArlW8Fe6dXEMnUVm5arWVpN/KZzmlHiqIgCBA6rmPBg5XTBB2TESNid4qDalfJ2X73oeUDaVmdKv6Gx8rC31oQ35enWl4tqsI9wCWtqhXig44iArfE6cZJY1e1TSnSGpKUl7LsqMsrfu0GRJl/JjbJW3VmZ9jtKqk1BVqDmgA+hmd97FQaZHTe1wsaV6oOfXkfKdcP6gs34wr5Tz8sA9/hdpJ93rtswnnLqIyEK8p400aGI0rw/iVAhvSG9PcXzS8NW3fE425JKExLPMXz8VCEl8NcMOz1A0VdiyXNI9+A8jNbx63SOBjpiV8EbHno52WSlISjjt/GV6UioXkzDutoL6redA3TcvdiSvBhCCbE5HWzee0EHEA0qI+beDV6fDOMZFUAyKuJgJkPBjN1gbMMxfgtG7z0UA3mKtq+AuXW+E3rmEg+D8NP2Wi9dbCT4UHIrvNlbLOmsrcx69WmN05xPCZEq6fka9NkSJxHm7Ug9cK+dUZIR29Aq5U7YSYJlRokxGvShARtZLTD+iABALWsngbyemLdQAFpEx0Zchcj0YtShQZN8oOWiWsKFzXcFXFNhKAWBmgJm6Pmy2Io2RpstSHU+jpnNJBVR2+M3/2IvzGmFJjE4UHfu7jePav/zQeOfco+tctlhsGyQKYnjRYHAOyQ0B5YOOLKYuj9aN2dkyerFkd2bWk4V5BApCyoMpkykJscC6ImQUbCBbKkwDIexK3U8UQqm6ofJ45B2Tj4KhcV1NfTK4cwh9NyNvq+h4Fo4sl9PoaoV7ZqJ2Um5qE0wT2txb+TzLprgRFKs+o2CDPWzI8q4jHCIp4f3UOrUCyDZFAICtleybMB56Ja4OOkLIWVMF56Dxp0UqxYvCuvUZcXcSHj8qsQ3+PPqOUgnMeOlFdmYbw/qMFX5SFgUDyDTw9RhRCQBWhCyLy2dkMoV1IBTFQzgFGhQokJSXf8v2dX28wiRoAACAASURBVNYAKFBRxgSESd5JJ5B0UZECf293/DftNRVuDICY6xgQHJOFdKnq9zjQnlF/S1nxvciB1AIgDTGdMZ+IN52xXIlidXsAnIJrulV0UcCu0gRqOm/7njEhXevjYlMZA863OmOB32bC3EVmuEkIWIVfCIBUy73qtmWUxo2LaTqob0DeLJTJuyR5Y4A3+c3fkOOWCHwk327uuRP+/KW2BJcnmOb8BcD7kJpCmgWCL2rebUpaQGDWqgoLcVdETbUMfs3+VJGHUWwr0KnO4GDL7e5BpZTaUUa3i5YQm40J6sjm1HFSOpaSbKmG4edVnYHqWiiWSZC+ljSChb1+ncrs05z4R1rBvfft0F95AW6xoM8ul0gmFVxaYHHXBtKjGrpiTs6oBzUvkeweUSqladrKMmk31/rIBNE0gMroZaKQlE60+41L/oOAG7vHB8hXSK/eUTVav08pyTSFXyyg19dg9w6oso+9uaBUq84sgazWbAiYEmIlKY3FglIeW+vh/XnmjahFGTg9d30WeOTco/jif/dJPPSPP47sCBhetJieNhie9xi91iDbW8JMlnSfwwHrF7U+VNK/PBPGIfIKEdIlO9ZglspIhrMN/JRSuYHY7SN9Ga3hlyXswWsw21shuEZdw3sPu1jQ+b2DsDSrq7tkqrp/QG29WFJQOWVl59mCA+qmIxYXKl1i1Kezs9ZhnLTpTeZdCMLA/A/pQ2HxBgd/qxwNx6mOOA2wJB0j4YB4sSBIE1qoVnb8iiv/ZGzEnJhwDXlObbqoQRQ0OLYs8YLMWccBRhT0cOq542MnGxLNCJfubtg61ZJxSkXfxAss4t6E8mwV3YNUV8oiGqMIcbpK2jJOsTB/xpVlG7TJfdHLaCtH+T3QRuImEbHnlL5e4TA5D2cbQuHjEnrvO0hnmCekOlRSyKJzJNQGQetiv7aOHljbbt5a2GvX+fKe1gAR0Vxp3/Az5mmu9AWgRRy9V+GcrBlKR+bHkrITjo98xx+BnIZ2k764muJ+Aw6PW99O4o04bikFJVUTlyFIsocqIl50ZeLmSg4x0OzwDdIUovMgdhY6z1skJ8qRB/4Lp8qCt1eHg6B5J0Vl7Dojh2d7NG29nqSkuW54MW4HdLDJiBbDzsTIE4HwMDwHHDeQqJM23aM07bB02Z1EVZrBzCr0XjlAuZ7AFYYsIRY1VeYoBd8jt+XQlp490rKuJD+AUAoadrIF+43FnBygs4NRGQdtZUmpMtFhClpMtLjKTkoZzeRTflZBD+R9OuYx9Xvh/0O6UoINQd4WC6jGQm9vQm+uIzl+LBC3hdOjrEf/usVD//jjePpv/DQO3lmhXNNYf6FCNVLQtcPlbx6hOj6iflU3UKMhQfOGyqNlUdK9IqCO4d7ZI0yeNfgH5XlAdHSeM8xtw041kIfrpu0PjFyofi/41om2SuC7iQHubA518lirr1RVXBlVQ4+HdD8SsEa79w7/aqVSaHVRbfsZe3YZHST/Q7vEQY9vU6HccVcupEIAKJYacWpYRTwc2jSskEEjHo3YN4i3V4eDc7NrKNXq0cRBQcxJkdsM+kHR/QsX5I9opxuOmBC8yvuRvrKC5IbgybdzojxHZ36U34tkE1SWBVK5uKzLNcK4TCPenqSR/5hnCN8Z84xS9nkzhv31snBNsMkupWJpflC9IniBBR+5aBxIWjIgLKHPdjlMMQIjm61WC8132yY+YtFZ7zubgYAKRgFXoE3IhluC0VXNntWqQG3CBiPMBf0e/d5qf37zeMOOWwLxEfETv38IAKR5sOSqrniHCkByqTSostaxWibuug6RuCtLiuyMgTKuJbTFkyLvpNxiQQuSEN+EPwDQYBAFT2NCCouqq9BCszxYgjDasmRINwkTpdegsmdGVmiQRCkkTgfQvzmIcGi9sMABU1lCn7sEF5P/ANJw0Qrp3KHcSKHLHGZaUkm1dWy30AZe3tpQQhyCLfl/gW+dJ5TFx5NztDgEsmh3JxpbV3RMIvld+WVJJeLWUkWFs/C+hdvj9AEWS0pxVRXdB78LCTDt0ZTurbFBXNBNZ5QqY883X1VoxgWWGwbZEXDX5/4avv49P493feFRLLYT9K555Jcm2EwUXEbBqlss6fuSpH0+DmwFdQj91LfpLOlbIXXQNFQdKETUKGAnHoFuUzxaw02n8JNpa6SpNHy1CAhlEI8UwnFdQ+0C4hMGrcPO0kvbrZbQru5QXw/5WUUVrCUuh3xOOD7y3KuoSfyVEmzw91GFTKuMLpuNTpAj9xJtHFTW6hYJWtLebosgxIFOfI2wGMYbDKnSYRK4KCLHCEk7NnXY7QdH9D8qcLxZW68egYS8ggZEgWprf4Lue5LrufZcrEEWz4ud564l1Uz90q0iUje7v1X0SHH6VPhHotp9s/Ny1A28bBZlAyhEda2oYEAERf+ItrupYONN7hlgpNB55lAxYrNalt60pfNhPo6RNdH3iY9AzYjXDE4/xgFVxa7ueUZz3TcozfX6mNS/O8ctgfioLIXu9UJlit7coP9gBMIcP4bkjtuIKCvpKobQ9do4IC6KdzAxYiB2AHo4oF0IEKL0mPQonw2O4fFgE45GmkD1+9DjIU92kWJvCAI8kmPbVA0wI3M7vTZmE0fic5jxEHp9jfgsEhgB/HzRDkUGmzYwOzttPl7Rrsbu7gWxRZ3n0L0CdpN29/3XpuhdKbE8lqNZYz0LgH7yM7bmocy/YRJxWHy4HSitZVsrjCJvd25aBZRM0JVQ+i45epnwLKUlVJpREFBLuki3qBmT0nVRBK5QIFhbCz0edwUEWeTM3H079L13YPb2U3B3nEBz9gzU7acxfeQOLO/cgL/3duiHH8Clbx6gGikML1rs/G6Kd/34o3js730Sh2c1FscUrr13C9XY4OCeFHrQ5/JuRiDWxvTsgtqwc7wWB3nm4ugBOZqrJGE0g57BLZahUktlWeAJSXrQL8vgE2S2NskbbTgg7aeTO1BnTsKMRsD6GGptDH3HaerX7GMGAOrMSeIjsCu13K9floTWGdPp8+0g/JPB38Gtu8jboD6MP0aBZCxGyG28uw3vk5HCsBOO0QapjpGFFWjTnSra1WvT3fWvIhaxxkp8DWdbzRjmYQk6GyMQnfEYowQAxD0+8JBW2ypGaU2rfxVSjEA0x7iAYAYU2URBVufCK5sI76O2jO5X5gpGG0WcNBR8yPn40twmN0OmYiQ+fsYOqhvNKTc/X7fE+ChYk81ieH+MrnbbvxuUK6VgThzroGB6fQ1B4XvlEP5NCNIZ/VQZ8zzjyqvoXKA7OMsUBxMQtw6PRzik0XsP14vbgO1iOjYtbx5v6HGLID4+VBeoLIW9dh1mc506fFnCHx5BqbV2ADDJFUwg1etrBPk3DVA10YRBA8ItFtDOUWAx6MEeHrW5chlMPHGQ71OPUsl1HfSAVJYRtyinSdKkKYkQsq+NHo/ax6nbqgC3WBI6s75Gi1ZdUYqsp7swO+e3hdwXTPK8B2wFt79Pi2ClabfE6Y6gzuwI4VJL2iHpoznUvES/7GF2+wDL7Qz9C3MkVw+5bVrugCiT6n4fhp2Tg12HQL8A4CxcBUJAMoLFYzuAoObsXUuAjHadSjhXosgrbb4sYcZDqsZLE9i9fcDTLlr3+wjWFVpDOa4SYY0W4hNl8JeuAt5jMCHD0XR9Db5p0LvUw/TOAYrHr0INelh/eYzpSYPpaYP1FyosthM8+LMfx9d+6Kdx7y/9MJTVyCZAOkULazOyozxVLOlej977MnpH4OC3qkisMk2AQqwkiACvx8Mw4SqZeAXBFMJs1iOfsLKCPbhO73ixIMHANIG95zb4VMO8coX0k7gdkBXkxn40BYoCftgHDthMUVRiNVekpFE6ztou5B6XKwuqBNyInKgVoqeMS/lMlC4OfLAYzeQ+r5KUP9+SbhUTh4WnE9ImOiLV6nZzECqzmrpzDe8oCPM3vcbNFsYuH6n7bKYNhgAE8VQgcInkc6GgIi6DjgUdQ+ASXUMqypzvNFHwIxOy8U10hsI9AF1kldungwYBLRl4tfAiJeFElWYd4rfKMvKx4+KH0H7yzOFaafv3GAHunCe0RUlbSMqKA7LQTs6FftGZp+OfWndQsLC5i48IrQkBiWpRRzKCblrSMQftnXPyHdqEgg1+abTmyDuPOVihT8T9xHP6znTn1Tfy8HiT44NbBPHxjWV3YhvKfN1kShDpsS2otTH8fNFWfiDaNTYNBxI9DkxyiKAWgNAhfdOEHbeorHYmc+6svmaTvrqmqJ9FBKmEuSIfKbajoI7OZGV2BYbWgQAq5FdfNySyJuXOWdZ1ABatIibMurJsuSsyWfV6rdgf7w6JvLuE6hXw1sFsbgCJhhv3yOMMoLTXUYN8v8byeA9ufUiKwtYSApCktChwIOTrhvgk/T4jEjJYk1DBIKkelVFpaEDSomcIqRzmfnjvWz6KtS0qwBOb47JWWEvfLWhPnrcibHx9MtlchF0enINeXyOpgUEvTNR+sYRaNsj3G2CTUl7lWGNxDDClx+5DGbXPBLj3l34YL/6Vn8HRQzWuvFfBS9eQZxQEQ5G7uSoKQlnSFCraNcYVSbCW3jfzc9x0RqJ5UskionccJArq4yZTaof1NerXxlB/mS2gJ3PoypIQpVLwsxndx2IZxgmUAnb34Xc2obRmXzRBYiLSqPQhRpwQ9S1Jecqu1jd1ELkLAW6SAMypCX1EdtR8tPYyKnA4Ao9DUAje2Qs/J1gdRKmt4A0WIwWda6gbrhEQB4Dvv71G4AdGnCdBS1S0MIaFV75O2oz7dGuoepM0+usJ1Mk1V58FCPfcaScgoK4BqWWkS8Zl+8E2lSd9J2jZxGlGqR5b5ZlIe9VMOnbtuJV7J4J3xMUyut2EZSlzhUzg26iiaAVR5dnkfJZ22lpl/DlB3XgOurENOfgxUTqKizBu8MXjdu6k/gAOilv0q1MBvHIuzFXCQxKSviDigU/GKFuahb8DvCk0uu3v3r+J+HwDj1sC8VGaVDd1lpKQVJKSeGBZIimKMNm0u+M2F00WExS0qKKAj3eD9AEEHgQA3yiY9XVo72/0WJGdZ8P+TzxwtVQQGQPUDFNK2s2zgy/LmmtWivWaq73KJlQl2bKEMQZqbUwy60AXdVEqVHZ45yNneg/HlUD0Sw5mfR0A8VgoF16juXwF6swOVFkD1/co7bYoYWYDsmi4bQP1eoGsktJLzosLlCt5eZmwsqwrRucs/VXalBco2R2G6jV3IweHFgvHuXsyhoyr7VqHeX4XxlCAwEiPF48b6yiABIB+Dygd4DUt+FpBHU5g2eLCN+S9ZeY5KTInCVxCJeuj1xqyfLg0wbX3bkFZjbv+9V/H1z/8c7jnMz+MxbF2x+qi8ldwQKcY4VNKwXnfMdgEECqcNJOXgTbADf5jnDaKtV68s0FNVgPdqrBeDzqnINP3cyhNqGIIoCdTar/ZnJ79+j78aADsH1Jwyark4T2GL5UJvx0zwZ9odRFh0Usf869qTlfGSE/E3ZCgUaqngmpxp03YLFQO54LsAaEELqAC4Tujawg61LkGv4dwDdbVipGFEAAx70qqulZ5HGr1HfI5V0u1oaAfbWk7aQZF5eAS6MRtKukRRq87QpCrh2pNkYHw2jrX75i6Mnle+lCQG+CUj6tL6CJvf3exbGU9bnZYeYYbkTHvPY1LMQ/mwgCxsAi8OFbcVwAZKbMchaBaIThhDtkN4p4raSVBYwGENLLvtLfrtrcn8VcfjcvOu4jSiEF8MqZFCAosnCRJxcX18ysVYwCC7Y6vG1Ky/kYhPgDeJPncIohPzM/RvV67ECuF5up1wDqSV5fdoPctF0fSXpYk3BVzQ9pr63YiANqFK89bpMLHHbjl9QStEZ4cSMSQd/+WIfZeATMccEqGd/vCxWGuSjx47cEB+SkJV0IgV5mAEQdDTcs3Au0GZXdjD0iQEEDgLagsg80Noavbm1TanZL6rp/MkF44QLmRwg7zdrfhXSB1h4lHFizepYXcfpqFHWesXREqM6SN0rbaTufMiWE7kfAaGE3oXE9I1MZ0/nhGgYQIG9JoVU1pSVn8nSf+UkZ+Z7AWyjry3uI2XOwouAzI9pa4/nCOxW1jZBOH4QULc2Rwz2d+GC/9hz+Dcr3dzetBL1TAKIbwvXWMMrZVJ575TTHSIG0MbmOdpYEDJIuoHgza/qhNSKuAuVuqyNvnrGsKYmtLGk1aQ6UUIOu1MX2fyCwYAzWZAce2AKUZ4eP+FPNMonHY+XtA5Xz7RyqJkoTeO0s4BKRHuCwxiXhV9yYaiwHhkd/xrkVTgJZjIZWRAKcRokBUxtHKNYREftNryL1Fz62inwFxEDQhQkuUbivCgoGua8uuvYvHccQTvNmxep4DyBiJCekuXtCpzdKobdtK1MAl4o0HAK5qFTSMUR6tQtDTQZCkAlb+dPrEzblGXlLfaRp4RFL2r7iwIObT0Gd4cyX3xO+tU9klfUPaqRPAcLvlWSgAILujou2z8rlVZE3GQoQWUSFGqyEERWl8QbekXcWzsVN1G4jPNxlT8pWC1Dn2j4u4kG8eb/xxSwQ+rk/EXJmszWhEi0GSEvcjSdDcd5oWC9mdVXUrVsYCZnCWBAb7vZakJw7CUYd0orqcpVHwE+WS+fDWUgqmqttJP01psWPYUyaYdtLQcHee6JAUda8XFjUtZpsndrr3j3ZwhPPRDlr3+7QI8meS48dIpG5ApZHi4TO5owA04Au6T58mFGhtjOGHPZjSYXLXoKNw6m2rsRPOVTW1ZZJE1Q7tTkb0WCS1dQNkDgSoPaj6JsQt0EURDFJl8g7X51Jsb21L+pZS8BDsthOor2vyaOv3gRPbmD14DGo0hLntFPRohKN3nsDkoS24rXW49RHm91bIDjzMZImdx5dQHlhsazSFxuaTCv2LGvf9L4/i+f/4k0GEMewkeTdM+lGU9lQC69tWT0Y4PRK8+rqhtG1UGYIkgeKAWY+GLRFaFtfRkBaIPA8k2qAfM+jBFRn8oGiNHiUlyEGnznNKy1oHtXdIxHVOO4aFE+BgwXTQmnixuGH3LzwHTtVJyqz7GX7fkt7ixTakbrmvqDyPAu2VlI/0J05Vx4FwG7jpkApZ5e1I0COLzc2uodKk/UxMYAZC1VNngVvdobs22OgElNyuYXPxOqmX6Gaja0ZVSIJACOE6HrMNc+tugr7IM8RVfL5u2oBSKjel30bPGII9oL0u948gwyFIBxAC4YDORsiO4nk6bEoklc4ovWeh0Y5mEd9nQFeC31ZEypd7Amh+k0DTexYxtFEfWUkXAuG9h2pADlpDuwLtOW7nDkGeidtBb811x414wbUcJU9UBcu8H0EhV8fNG3R4r96QP7fycUuEnGoyh0tYNbOu4aJJwdcNsCyh/t+vwr/tfuir+1g+dAZmaeEyjfzcLprja4DzqNdz5FdmwLzEC//gnXjgH5yDHw/hXn4VyvBCbC308R24K9cw/wtvxYUPaJz4fY/xb70IbKzBnTsfOrPZXIfKc9ir17H4rncgO6iQvbYLNJYCILlHXwM6ge73YE9vY3amjwHug756AHvxCi3QDLOrQR/24hXY97wF2cY6ygdPo9xIkcws8qsLTO8ZIlk4mIWDzTXSaQP9u1+hsmpGVXxTo7lyFUAbuQp/YeOzXyHV0cGA0oFMKvXsOVY8ZZFbi+d+6t3Yfkxj6188TtdZX0MQn3MedncPyW2ncPDuU6gHGlu//AR8WcIc24Yf9qGmc/iS+Ch6axO7f/4M8kOHdNogf/kaqWw3ln56T2X2VQ2c3cGV961heMmi93/9IVc8pfA2D55g3nuYjQ1MPnAfRs/sotkeInnxItztx+Efewrum9+OdH9BdhznLsCdPgZ18TpwbQ+D/SOG7Gv4xQKjzz9PJqGzGVSW4sEfIwkEN58jeYEm/eNf6LeTEJeTf8/f/zZ87tnfxtlPPQp4IFko2Nyjf0mhWgPyA+DgrQ3e87YX8fN3/Cb+5vnvwL/9vXfAzBWggfRIweaAskCyBCZvqXDy1xLoxiOZOZjKQVkPKJB3WuPgEg2badiexo/895/Bf/Op76fvXtJ10omH4zh9ehuw9vAuBv/0HvTPHeDg4S2sPXsIvHweu3/5LRhcaaCcx+GdKTa/tkT65BLIc/i9Awo4qhpmNKLJviyhElbRBsJkHQdDki6avecuDJ4dYnn3FrLdBRanBkhmFi5VSGYN0q+9yhYJzCPrFbDTGZKTx2GPbcCnGsudAsWVBfDV55HccQbn//JpDC86HN2pMXrF4eCsxuCCx/Bijf37M+QHHtVYYXDZQllg+PIRFqeHyK8vgcefw973vR3bn38Nh+85jYN7DMbnHA7u01h70aHuK9QjhezQox4pDC47KOcxeHWOJjNIrxzBnTuP5I4zcNf34N9xF0Rza3amh3y/QdM3SGYWk9vJgy+fOLhEIVk4wAODP/g63NER1DsfhD53Gf7UNtyTz5NZ8YuvQo9HcMc2yEYmz6AWJZAYeOa3uEEOdTCDe/HrrIDcJ0kGRRstVRTA9jrsqEC1kaMZGLiEU2QeaHKFaqRw7Oe/iPL9D6IeJdC1R//Xn8Dsux7G6LHzwGKJ5QcfhtcK/c8/TdV/e4ckG/K+t1HA8sSLcA/dDf3EC9B3nIGqapKCkADXGOy/+wS8AtKFQ75bI/nKi6geuQ+vfSiDV4ApgXxX4eTvHsIWKc59pAevgGSpkO8BJ37vEDanINErQDcOelpBH05hr17D3vf/OQBAcWCRzB2Kc/vA3gGOPnAvlAV046Erh/4zl1HftoXkmXMoP/h2KOeR/eZXUL/tbuhTW1BPPA9z+iTxL6/tUjXqPXfAfu3FsIG016/DjEYoHzmL7Atfw/S73oZir0L6+EtYvvssst95CvO/+HaMvnQByFL4PEWz0cfhvX1sPHmEeqNA8ptfAhQCCmSGA7izt0G/dB6Tv/AAiqslfKKhfvcJmJ1t8vhLU3rPt58CnvmzWVPfPP7o45ZAfCTn6G1XTj1UvXgqEdT7U/i6RvHsJSRPfx26tKhOb8DszWAHKczCwg4yzO/dwtkffQzP/Rd34fp7d6CKHOb0SdJGsZbUgM+cRHF9iXt/7DGUI40X/s592H3fcZitDUJpshS+rOCOJjCnjmP4zFVAKczecgL1/acjoUQVYGE3m0M9/RIGn/sKmmGK+tQmQcqcBvPOwx1NoddGyF7bRXX2FFyqMXrqOnTtsTg9gFl6ZHsV6pGB7WlU62mbAqsb4oNEkDP5HLHgoVIMzyZBQFB+D0CQ+Ne9Hh74J7uoBwrP//134OpH30nPsjEGtjegjIYe9OGuXMP4V56hz/29t+Haxx6ha166SsFPSmXd9uo1rP/y4xi8fAiXaizvOUapPM2pGOeBPIMaDaDOXcCJzzyHptB47e++H0cffhuhEnkGc2w7qG3bgwMMf/UpIDHQf/AUcaoAmAfuRbo3h9o7hFcKamMdrpeSdID3qM6ean2i0pQRG1pE3GIJu7tHaaE4PSmchAidcvM5zn7qUbzwVz+JD3/nF1GtOSgHLI55KAuU60B+JcGT//oBvON//88BAF/6vk+gXnPwGqjWPZQDdAPUAyC9kiI/sPAKKNcNlpsJmp6BzXTb/xVgKofsoMFP/uz342f+k5/GfR96CfUAUA6oRwq6psWld02h+dw2TEUcifUn96Cv7sM9dBfGr5RQzqNcMxhesqhHXGrPgUjQlRLy8B/HNVAtAuBSRTYBUglYe5hFA1M5mEVNBsOMlApyaXa24LbX4IoEPtFoehqqYfsP0LOlMyaROmpf5YHZiRT1gBa7Ys9hcH6B/gWqVrQF9SvdK+ASAN4jnTooD2jrOeDkwKBP76HYcxhcWKJ/kZS5AUCJCniRsTccv//UkJGuAmyusDiWounJtT1046kNFKCGfZjtLbhUQw378FrDrI0BKwiAg1rWQFmRBYmgOokhT7dlA2UddFFQFWhd0VxS5CRXMBrAjgrYQYpqTPflDFD3NZYbGtVYwaWMZsirlGxR6UOaCx60CUkTqLIKqTqvFbxRoRhDFTnfW5RObAiZsyl9l800vOFUtfdwqYdPPLyhtqY21OG8Mx6Kz/tUQ5cNzKKGnlfQswWJjxoDmwPOAF6RmCgcVYjWPU1BbF/DJwpIDM0rSsMrGjsh9V7GXouSdnSUIk4TTP/8WWBjDLM2hp3OkF2hooN00iB96hW4+Rz5ZZIiSWaWbGGY7N30E2z/xivQZY10nyp+DctO6IKR6QWl4HXl0QxTKCtVYZoKUYQTZ1eQujfoiLN/f5Z//jSHUuqblFJPKqVeVEr9lLohLx4+97BS6gtKqaf588Wf5vfluDUCH3DELJUjUvUjaSQh8404pZGQa3h6cR9mVqM8s47syhTlFpfGaprMt7/qMblTYfGtDxBKI7o5kttmm4idP9jFxjPA9IwCchK6c2VJEH2Whok/OVoiWVg0gwT1mS1gc61LpObDlyWyx1+C7SXAW+4NvBQ4qtShRcihWkuhGo/5vZvIrrfO5vPTBfLdCnVf0c4OCNCrXIe+iFMHMcQvYnCRv1YH4o8qENZeqbH2rMLRXcDed9xNbXI4hR8PiTeVpnCzOdZfqjF+UWN6O3D9O+9G89a7aPJmNVglVUeJRnpQwuYa1bEh3LhPE7/RPHEw/0kpjJ+bYPSqx/y4weyDD3J1nuxyszb9dfka1FvvI3PaOUHm6nCK+u4TqDcLQgOtD+m5ZFJCDQfMqeEKn36vVdKWarfFkvhArEcjhGyx2yDOFfC3Lr0L//DkY3jPe56DeWCCasfC5YCugXKnQT2mtv/i5dvwD669Bx98z1PI7j9Cvd2gGXosTjhAAfUGvTNTU0BkM4V6qNH0DVyq4Jkz4lKe2AH8w/Pfib915tew+f7LODprsdz2qIcK8+MK1RhohoDNNFRVozo2RHXPCSSXD2DmNY5ujunOiAAAIABJREFUT7H+2GUc3JOguMQpD0k3tZ0l6hc6Sk1JOqld+MTnyhsAeQbb03BFiqanYfsJmoIWSsUaQtLOojrtNS2U3mg4oygIqir4xKDpA/XAoClA1yuAcl2h3FRwKQVG8IBLNFxm4HsZnAH9varQ9GghrAcaTY8CAlt4ND2Fcl2uQc/tUg2XG/gsgctirRyeY7SCTw1cpuFYyLLua1QDGosukYVfoelTECcpQW809fWEhfsS3fJUpISZ+X0+S+ETbt+Efk+UvcHl5B2jVaPp3rSCS4Cmp9D0gaZQsLmC7dGcZwsNl7aBUNNr5yeXUcACAD5p51WXaviU3p1LOPWcUtv4IqV0Et+zLYA6fK8GjKYAfq2B3WhQrztUY8BlFFDZNdueXwNczud7KewwIz/Boq3GrQeE0FVDjXqQEK3AGLiUxozNFZpCU/tx+tcnNG6gDfWJlMvR0wS+EDpBCjckOkVxtYSqG7JyeecDcMMMZmsT6a9/CTixA7z9frh+Cj0a0TkAfj6HXeuhGRiU952AHeawQ6rkdHPyIPNcVea1BnoFqhG9C5sLl0hSbcwVfJPjEx+fBPBDAM7yn7+4+gGlVALgfwPww977hwB8AK3b2R/7+/FxywQ+IdeOiHfCjuuEBFGevjm5QSXZnJLQr16C8h71Zh+DF4+w3MmgSxLWW//0Yxi+6vHadxhc/sgdVC1z5iTc9T1asBva9dpnX8Lmp7+M/iWPS999BlAayR23EcFtygFJVUMfTJGd30eytKjXMtRbA6omEmJjpDTqlyV07TA5O8LikXvgyhLm+DH42Qx+MqHgznvaQVuP8sQQ2aQmKLehncL45QVsHuWqRQ5dSIIA79wjHQlezKQKSHb3oeRUSNTeo//CHk785lUMX1W4+l6C95uLl6EmM0oHzuZQWqH30i5O/voV9C8pXHuXx5VHBhB/NLU2DrsyADBTeu56mKDaYtPSJWtfNIyqeA/92mVs/9rLKPYcrj+UAHkOd3hEqMSAfk/nOdlF1JZE/C5eJdg9TaDLBvlXz6G65wRUbcP364MpfL+AEkKyVlBaB5J1ayxJ1WFSvRaE+QwrsxqDZKHwr/7tu/BXvv7t+KW7Po8P3fUskDioGrA9oP9aQrD/TGHx/Do+/dvvxydO/wY+fNfTUJmFrgBdKnjjkV8z0JVDMrXIjiyS0sMbFd6/cgThm9JC1w5mCTzz+bP4iZf+PfzX934Op85eg0so4FKOKtPgQG19ch2LYxnMrCYPL6Oha6A6s4mtp0rsPTwOfThUpwlfQSomXSSRIHyZyN8uEM21YiNKQFc2pB5M5aAr21HddssSvpfDFzlgBDXy9BzTit5JVUNZcOqPECRdAS4FXEJpvnTqkE0ckmkFs2ygygYuVTBzMqyFB1BWMCWhCqby0JWCbgCfAGYJZDOHbErX0EtLiJPz/CyM3DoLaJDCuSekiQIuAIrvrfGEclWM6NWe0kE94tZBEwIB05qFhjlO7FaEr6UUeX3xvagsIykLUaPnCktvNFVDgu5JOUI45N+6BnTJ/BzL6Idu/584UI7uv6a/K0GB64b6XMmIm8TFjtGW2tJn64Z+Ou6DltA0KE3fUWuohYGea5iK2tBrQFV03iw0TAmoxsEZBbNsoBcN9JJlHRitIUTTIymprWEdoU+K+j2NlahRleLnYo6S91Alb/aqmtJ1zM1TDTm4J8+fh58vaJ556kUkVw6BjTUsP/JuqMMp8NXnkFw7glofo/zwI3BnbyNuYmUxeGWK2ckMdpBCNS7o/ShF4qtwHqqkgN7UhApKm/qyog2X3Pp0RUn9DTg8bj2Oj1LqJICx9/4LnnZmvwDge2/y0Q8BeMJ7/1UA8N7veu/tn+L3w3HLBD4AOkqlMhl3SLOWJtdmXEBpDX99j1j8tYNuHJZnRuhdXKBaT8I1tr5yhNHXNY7uAcoPPwL/6gXonS2yNkhN0GfwVYXtLx9geiew/J5vQvPqBaiNNUJoAIAraAAgOVjClJZgzEG/1XTwMelPI/3aq0gWDvVQQ7/tftir16C3NolPIyXIRqEeGpiFRXrxsB3AzmN+qkDvWt0iOiKMFQWJNzu886E8XKqyQiApk3xCuzlVNxi/1mDwisHuu7aRnDpBWjJXrsGsjVm4kfg6ay/XGFzQmN3usPueHdIu2j9sK7+UItTnqIKuHVyq0WwNadcVTCUjIqN1GL84Q7HrMX/XHdCjEVxVc4k+pUuwLGFHOfzFK8DWOvxkRuiRUrD3nkby5ecpwBLkrbFQy5K4RVlGCJOQ4pn8KIajwgNCFql987vzTQObeyRzha9cOh2Qn2996HksTxDXZLnjkB0ogvONh1ko/OS1d+PHd34fH3noSZTHLGyf3qcgQyJeaJY0sbsEhC4YRkSUosU2pQX7lVe38T9d+AD+2p2/i62Hr2FxjIKuekBBQX5tDjOvUfcU9GSOo+98EMnuFOnCI5mUmJ3KsP3YHi2kLMsQ0skxwqNX/Z9Uy/ERQqynxRM56R/JAmt7xDnxhqt4pLKG2xLOhUBDeUpB+dzAHh1xFRNQ9zTznXioi7hzSUERFOCKhBCDXkbXSA3swWGYO5q+JrRX+MkGsDlgKkBXHl4p+v2MEQ2AxgHPNUTA9fD8jsKCpUGBkKWfhLooeA0KXOdL+MMJVE0BhXK+VYgGuuRlKfsHgMbxws5BqOiUSaURB0CKS76Vo0XfJSoi94HazdD84BWl4zSnIr0GVfmFStn2ngK511OAd7Pybq81oVRSKMHfJW0A+akAnzm43KEpAJ8a6IbGhc8cbO5hczpvagdbJLD9FLaXUho8TalfKmpTl/BzGk0Bu2uDMm/omShApf6pPNoxbAj19nzPojvlswRusYC78ySnnBroO2/D/P5jqE+sYfj4ebKWuedOzO/bQX1yHYOvXIB+6TxUnsFlBmpRId+3MDOy8KHquCIIyiJL4YY9qKqGzfg9ebSVuuJHKan1/38f20qpx6I/P/Q6nzsN4Hz07/N8bvW4D4BXSv0bpdSXlVL/5Z/y98PxxwY+SqnblFKfV0p9jfNqf5PPbyqlfk0p9QL/3Ih+57/iXNtzSqnv+uO+AwCR6yJND1IJrlkPg2DYZmcUOrrfGAPHtwGtkV08gF7U8Bpohhn6Fwl2NKMRzLUDnPrVq9h8ErjySIrFB98GN+5DWQdz/QhusQC8J4uA3SOsfw249s4Ei7/0TWi+/gowHoaFlh8OalkjuzpDsmhgj69zeaILZd3yOT9fYPD7X0e+12B5cgj1rrfCXr5KKR1tUA9MgKXrYYL52S1k1+fQpSduQaqw3IzKOdsGDlUDNzgRB3E0R67tVUUVc9ayiztPpsuKeC/jPpKZxc4TFXbf7nH922+HP32cuERGB3NQN+4jmVvsfKXC8JzG/lsAddtJ2OkMyFKYzXVauFMD5YFsv4RqHCFjx8ekJ5MmpFrqPKEtgx7MrMLOl6c4vCPF/P33wuxsMVLD6J+nBUsNWUhyY0x9ora0QJ05ieKZCxRISpssS3o+nlAD54edxIUkHo6ypAApz1tBQmPQv0RByOJ6H//34+/AD77ybfiFO34bb334FXbmBuqRR76roKyC8sCnv/oI/vbFb8dPnvgdvO9tL0BtVGHhVBwgK09IDZGcPZoeQeLe0GKqvEfvGvFVkuspnv7SnfjEsx/ED9zxReiHjgLfyBlg/61r0Ff2aKFLE4x/+2XM79lEvldDzZbwGqg3+wSrW9um8bSiZwYQV/PRP6NEfej3lAJxCeAnUyjvocsGuvZIpjUhPksx6XWwR0cwW5twowK+n3MKQsNlGjYntNWsr7FLN5FllUNAUqCBZAHkhx7JpCaS/6Im8Ubn0OQKcA5mg6Ydv1ggmbeokZJssALSI4/0qEY6aaCXNVTFlTbWE5KRZRQIeUfIFAc3ADiNwv3Ec9qNAzRvaIH2/QJqOKBgMGFULFSl8eLc2LbPScrDtTwrcNWiL0si+TckzYFeAd/L4fIENtNoCoWmR2kfSsXR/VlxmuDgSHhjuvJt2pLvW+UZ/GwBMdj1RsMnmkRkFYLURrhP61pekgQmKUIQ5bUiCQ1NnCdt6XdcQuMC2vO9yXnm+CyJ54OygmfOEbV9NF6so4BdUzBscwVnKCBT1hMKrvlcST6FatEqZquIR2N7JNi6ONEnYrn3gHPoP3URyVdfgu8XlOa3Fv0nzsN89UX4QY8Csl4BM6swv2cDxeU5fKJhexRUiYyFvHM7ziDkbZtTn1fGUABX5FQtW+S0rrzRhwdaUtSf8R/guvf+XdGfn32du7oZPHQzllAC4FsA/AD//PeVUh/8U/x+OP4kiE8D4G977x8E8F4AP6KUeguAHwPwG977swB+4/9j702DNTvO87Cnu8/2bXedO/tgFqwDEoAIAiApWaRWSlZE0Y7oxBXHVmWRFFl27ChVcUo/VLFddiVVsirlSiRbkbwkSsVLZCu0JVIiKVIKIS4gQRAgNgIzmAWz3Ln7/dZzTne/+fG+3ed8dwYkVSmBqBK66ta999xzz3eWPt1vP+/zPK/8DvnbXwTwDnCe7ZeVUt88tG1Zz0cpOnl4KfRJtYV59gLKIzwBun4OuzYA5SlQW+hbOzAzWV0PUiTHjwIA/PYO3NcvYPXjr6KzTrj+ZxKoSYn6yCLgPZLjx3i/4QhuYxOHPn4B+Taw/oRB+SOPQc0quKPLzcp1NIHaH0Ft7yG7ugO7kMOvLfE5yrkCYLQCgNvcRPqHXwUZhfGpLvDwvVAry3Bb21h4eQ8uUzxpaSAdWpRHeui9dAum8kgnHsms9fxacuNQWT2UiIi7BIJfSE0IzNvUmGGkpTqxDD2cQl3fRH5lG52v30L/isbmo4SdR5Y4VbG7BxqN+YW9ehP5pU10XtnA0c8PUdxS2H50hU0n94a8TyB+jkuYvSmKGyMo6+G6CdyKBC7GQC0tAFkKe+kKcPUGzGs3kQ0JO/emGD9xhp/14gKn3u4+Bl2zio76HWBnH1hdgrr4OqMI1qG6m581VRVzkwKSE5y086aobEB6ADTbassBksh8gyy9WgSSiUJxM0HntQyf/dJ5/NgrP4yP3vtx+ISQjjTSoYIrgOKWQrqvkF/K8YmnHsZ/deWH8SunfwfvPnsFZIBkzGRNU3pJaXmkE4t06HgCzXSE8+EB21VI94HOLYX+ZY36S8v4xy//Gfzsg3+ApXu2kQ0ZOVl98jqG77kL3fUablBADXroXBsi26tAeYZkSsx/ADiFEktHYF6eHYzz7kR0jhJiBVNLyqUmqFpSXbWHqmWCF0GCFrdeePB+pYWqPcyUgyVV2Vj4V9eAskyKTWYkCA2Q73jk+x5mXAqRmLkcvkg5jVDyszI1T4BMOm4dw/L3Ys/DjGto16CSPud0KYnze/S98Rx4hjSespx6S6eEdBxSXE26hYMM4lIPnji9QoipbB4E7mDCZ4MhHqeTIl9Ph4Knes40U1lRAkqqycyIr7Mk6BJIx/zum7JJaQGCllnhB0pQGEi1AQXl94i3cWBJUCWntiIZ2/G7lo4I2ZCQTInHW8tGoNmWQbKRIt3XSEf8zJUHsk2DdDNFuq9a2wl6VkPPbJNKE95itk/I9gnp1PPx5R6lU0I64WtOZp7J2YJEakf8bIHYD5UxvE8thptlCTPk4tbdS/vArU1W7F64jPr0Gup33ws1mQE7+3AXr6C6+yjqx+8H9oZw7zwH6rBtgis0Zse7sN0EesYVB1RAR6MyFEBVw1SEZOxgZi4qBaMhrIzfbzcAjNCcbP1+EsD1N9jvD4hok4gmAH4HwKN/jP+P7ZsGPkR0g4ielp+HAF4Ew0gfBvDPZbd/jian9mEA/4KISiJ6DcCrAJ74pp/jiYtWijdMkM+GyUhpBXrgDNLdEtnr23C9FHpq4Zf7vCIajVFc2kLx8g3OYy9y7Sc/nUJ3OvC7ezj8vz2Fc7/wZbz6Xx5FtZShPrECWuAJ2SwvgaoKbv0WDv/y53D27zyN8ZEEr/zMKUyP9UCb20BZxVUy1TVoOEb+yjp8ZlC/8zTU3ad55XnyBEL5i8C3yT/+NLr/9ouolgvYwwtITp/E5NQA6dije20GW2gmOztCfXwZyhIGX7iMbF8g6jewvyfhBhz0YYn2/ACrwaYz9pIQFZj+7DO8UjpzlFdFZYUT//467v9HmyiXNF75xcew/+OPMQLiCf7scQ4iRhOYjT2c+q3rvN/f+w7s/YVHWbq8O2pWW8T8ic6rG+i8ugnSCrOzh0DjCbyYUpp7zwGdAm5rG6sf+zpO/utLqAYar/+t92D27nPQnQLJxhD68jrcsRU+9vIC1HgKtbqM5NoWACadqyThUiShlILS7GMjhGmzdoiNAJXiwDqQTgM5ezrlYywMoAYD6E6BfJdhdTMFKAWKWwav/P453P/rP4OX/4tfwb3fexH1gJCOANtDLHORbxg89anzePw3fg6L6QxP/eVfwuPf96IQmBEDRDhiFdceP6dqMUG9YOBTjWwoCpkagALybSD59CJ+9R9/CFni4H5gB3VPYfzgEXQvj5HuV6hWCthDA9jFDvbP9aBmJRa+PkQyEh+VgPDE1KwEgr4xDJRO1fwcjT05QPSGuWY+kQBCZNUcTKRiNOkZAalr6EnJaprxDMnGEGZrJCqiNrGYgw1SEAIxK9d6N2voiuD6OeqFBHYxR7WcwXVTvpcJr6R9K0vJSAynCm3BvBJdkyiiEtQLOcqVFNVKweikmOgB4HHGU8NfIQCaU2X5rkM6YVWbNwou5T7O6FLL00trTmEFhERUqfF3raDaQc+0ZK5HDBq9+JK55v9qy8F/K1WobVhUc4CX7VG8l6Tle0A7pG4g6QbJCoaSEf0L6bVEx+CVU5QuKrpgHaeUvKjaHEkqjmLf17Vw1qyXZ8FptPntDcoVgiqEsTKgPQ5N4Cjp36CSjLylgMpJ2pWvVTVpb9fyZTMGejKD7vdQHu1BrSzzO58mSC/exPRwBrIW9r4T0EWO7AJvgyfop18Cbm2BUoPB77+EYn2KfGMCX4hB5NIi/HjMqPreEOmtIfzqQjy/SG4+4Cf3RmaHf9oaEd0AMFRKvVfUWH8FwP9zh11/F8DDSqmuEJ0/AOCFP8b/x/bH4vgopc4AeBeALwA4Ih8YTvyw7HYCwNXWv90x36aU+qmQ+6shxmu6zTHgzqI7nZjy0qMZdOUwvWcN+WubmB3twica9ZEF6IUBvwDjMfL1EXDtJtzmpgwiQtyU4OrYkw57d6dIdqfAzU3oXg9ua6dxMBVDxMO/dwWHv+yxfyZhtn+a8iAiZoUqzwCjYXbGMBMLu1BA330G7uYtmNWVpmJ3gIyNQf7Z51ntFW8EsH+ug856yYqFrsH0cM4cn0dOIb05vPPDiIX7fKxqjwNQegyGghmXTO5QGvqR84DWMJv77IOUJKzC8h4rL5U49LTC7n0as++8nwf43THcYg+q1wGJQuLQc1Msf01h/4zG9HsehFsd8P0hTrsgMUxuTRMkmyMkkxo4tsYcp7KEGo6hkoQL0sokuPyVLSxd8JiupagfOgds76J6xyngmZdRHROSrnWwRxa5EKf3jFwFxRoRmwW2+9qsimaMwagxmi7KpE+zkoPZuubnmiTYfaeFT4HxaQtdAuWyRz3w0E5F5Ofh734Fe++oUR52sF0eqKsFD9vnn//w0t34mcs/gn9018dRD1j95HIdlTQ+5f4R5OG20KiWEmw/yKqd6WHeXi8AdZ/7y/qFQ/jp+z4LvH8H+XYJs72P3fv7yD/9LJIbO9ClRTVQUGWN2fFuVA+FUgoQB2x5D297527rZ57fHVamAKrIOTWXp3C5hu1ncIUB5UaevxhdVjWv5sP3xMAvdDiQ7qaMyiUJfApJ+0oqozH4RjXQqJYyTFcSlEusIgtkcNdNWU2jFVRiYHucirOFhssQA6JqoFEtZ5gtG1SLCWwhkvVM80reGE6dyiqcuVZoOFcAQKwWq7us6HJZo+5CVYNGo9g3FVHjiaSYXI+Enb8b9EyLZ5Tifqw1p2iFaK/ynHlx4d5JyheQ4DDlAC/wrMolDkhdbiRlysGM7ZrIP/SiigpGrCHodTmr2CCqMQ6STVRFUZFxyq3IYAuFusfKKpdzUOw6BnbBw65alMse1SJzqZQH6gWPetWiWmlvJ9iFAnapgBsUXF+vywZ/rmDbhmrAikekCY/fRlRdGT/fWMvNeekzwpPSipVozvGzDRwfpeD7Bfx4CtvntBPSFOr83bCnD2Pho88AC30kt/aB+87AnlrDwm8/BywNoO86wb4//Rzlo/fwY15gew3V6YBmM+iCf9dLi/B9Vg2z2o65e+H9CxYP/Nw7dx7b/4TbW1HODuBnAPwaGCi5AOBjAKCU+jGl1N/h86YdAL8E4CkAzwB4moh++xv9/xu1bznwUUr1AfwmgL9JRPvfaNc7bLvtNhDRr4bcXwrx8zho9R8KvElAQpev8UudaFQnV9B7eQN2wIiEPbEK6hXA2irotavY+tCDMA9wJ2XlkeMikkmC4t99Ecsvlbj2g4ew9aMPMAx66jjfkCwVh9EK7uY6ev/2S1i8UKM+LGm1WSn8CFnhWQc1msDc3IGZ1rArPfjHz8Pt7DUlCfr9pp6VtUiGFWbnDiEdsUpCeWC2lkeVDwDYXgJTekzPLMkNY/XWnIU7MO/AC0TVVlOEsSGqkmUFgs5SrL93EVRwuslsjVCfWoXeG0PVFvnVXax+/haWXvFYfyIDdQu4C5eghxPYo0uA0dD7E6TX97D25C0MLnvceleK8lAHlCUgUbRQJLgqqNoiWd+DXepg/PAJ6MUF+P0hIzLLi5xWG4+BW1tYevIKOhs1du4voAZ96NpDnz2F7JkL/Bw6OSs3xszPouEoSkMj58naZsVbVpHHE12+xSEaQON3VNUMjUuA+J6HXoUpgXTfoFoiFBua1UIl8NKTZ/GRCz+A//vuT+K7HnoF1LUwMwXbIWS7GmamYCYKdLGHpz77AP7q1Q/CBg8SCSBAiKRVU3qkY06v2FwhfWgPyRQwM06lZbuEZAIkU0L/NYNfeen9+Bv3fxrJ+h78oMeT7bsfwPT8UeZPVEB9chXlguE0huHiuaHERLSICM69nnlhkd/TfgeF88RKJYBmJcyMUzS6JmhRosETK1dGY+ZykY+8Kig26nPdDD5RnErq9xhVcIAp+XtIIaVjVou5TAkHiv9mSkK6PYE3zTFMRSDrYGY0dwxtgWRCzTESRhFMRUiHNSMo1jUlVgLxOBD1BTnRllMpbDsAKBLlmAWr84qMzVGJ+D4bKQdBNO9KTU2aKWyjLIXP5PPTdK44aEToWlJ75Zpnoy0jY6ZCHMmVp4h6KSX7C9qkAlrS6vMI9fOIkWFFmLfLcJ4RLecY/QGjMcHPCJBnZxVUqWGmCmYmKScF5r7N5H2Q7aTk2U0tp0Ajl5NVabriZ6RrijwY0i3Ux833UX7mku70krozhs9X+h8J+qOyFP2v7/IY0u0AX78E89Jl4P6zoE4GunYT9OIF3nbPXUzqvrkB5BmSnQmqxQTDsz3xIeJFhB9PGeUM7vdaQ1VWUDFGeJnQLJwuKzXMvh0cn7doI6IvEdE7iehuIvpros4CEX2UiH6htd9vENE7ZN//7pv9/xu1bynwUUql4KDn/ySifyOb10VGFuRot2T76wBOtf79m+bbAPAEYJrKvU2tH+6s8A56bRXm5g4PvonG9Nwq8psjWT0bTE/04ZZ7UGdOYvudADZ3oe86wZXRgydQniM5cxfyzz6PlZdrbL8DGP75d4M2t2FOnWgmTm2gFxeQHD6E/HefRrWcoT62BHQKnkhbRmRkHcvXN3ahK4vZWg716HmYI2s8sUynUeWhBwPQ0y8iGVbI1ofMjxBZbPf6DN6AYWrFqQ8lvAQQNbWWQh0dIvEayubr02j2OdJFIc7I/HddFOyJUZbYu4+w9egydL8Pur6O9OJNYDpjTs/eEP7iZSx/7hpWXnDYeGIFZmkJ9PoNJFc3eVC2Dtgdgq7dxOqT17F40cMVGvVyAT2eQpVsTIYAldcWmM5gxhWGdyUYPnEXy53HE2B9kzlF4ync9g7sjXUUX76I/g0L6uRwBefr7fkzSJ+/DLu2AEo13LEVoKrhzxxr5L9hkCPPfJ+a/YF8WXKQFYoMBmv9EPQQsWt4WXIV9f0hfu3076BcJnjDzs22Tyg2OWjp3lT48gtn8Z9e+h78xpnP4MMPfxXlIeZRuA4hHfJ+ZqqQbyt89uV7mewYuTw8cZjac2BXOZipRzrklMpff+AzKJf5DVWWkZBkyukgMwWqlxfwy6++n1UrZcXuz6VF58Wb2HtgEenEww5SzFY06gVR1RkdSwhQmNSMaSqCR4VXSNvIQB7UP84hmRLUoBc5JMoT++IosOxa0j00nsAJR8zvM2pJCZsOZkPPQf50xoo6x6t45REVWfBA3U9QLin25xGkhQm9CbKhBFOjMcukixy2o+aOoUX6XC4pVD1GKth4T0ivjkCJgdsfQc0qTnl5iufJkn3PwY0O6S1EhVEMIoZj+J1dTuOMp1COmJsYbCeShBdNiWnGNUDcgDNQqkFpAj8ccsCkZcyrq8hVU7WDKR2SGZ9PIpyjZMbXGMwBIfwj5bhP+0xFuwklxo40nTGJ13J9Kl15Dl47BVsSzEr2ohGkilKuiUhGM29lSpJuk1SXJehSQU91NC+EBvO5SgVdaqjgtmIUzNSKV5KB76TwvQ5Uj2vxsTtzE7wC4IVpybyfZErQJXOpyPD7HrhYSiuoysN3pYZhIoak4uMDgIuF7o2ghmO4WxtQnQL2HWeBV69gctcC7Lvvh+73UD98DnjlMiZnRNkri7hiu0LV5w5W91MWjNi6WTRY8Su7cYvd1kccAJEUOiYx9mzzQd/0Rm/S11u4fSuqLgXg1wG8SES/1PrTRwH8hPz8E2hyah8F8BeVUrlS6izYTOiL38rJeCGjyudop64+AAAgAElEQVRK7lnH2ia0swe3uYXuxR0keyWbi610YTsSBDiWuFZH+jjylMf4vWeB9U2YQ6vQec4VzrVm2/7FBRRPvoTDX/bYO2cw+r4HQDu7sSaLEiKa29yCWegjHbJ1fX18GbQ4iIMCVzI3nB5xDmZ9F73LI5SrBey161FRFWvNkIfuFMCXXkB5bAHJ1CEd81s+W8uRjrxA2Qwlu6KpUUOCYhyUskfkQptmIp+VDW8jOJwGWWyWYeVrCvvngJ0fewfo/Fn48QT+ELtWqzSFXl0BygqLf3QZw7PA1oceAJ2/mxU9tYVfGnDx0aVFoKyw8uQ1pCPHhnwLAt3LgAmlWCnS7UBv7WPxtRqjYwbTD70beu0Q3GgM1e2KsSS7RlNZovuly6Ar15Hu8SRCmQaOrSG9sgHbz9hsLRhMhhXy6nKjnmnV7Yn1tKxtiqqGgDE0qbvFJpEef+P1H8AHvvs5dO/dhe0SXEGYHmWya7kMKKvx5Mt3R6n7j33Xl2F7BNslzA75qPqqFglU88TucrYvsF3DKYLCsKFfZhgNEl+SX/n6+3H8u1/H7J4ZXMES9mpJQTvmEykL7H19hZV3VY3+6xX0cAZ3eBGD18YYHzVIRuwLRWKkF75UC4mbm4gDwip8D+5IzQhGjktTgBj98JmJMD4gPJ1Qr0z6rEoSqF4PfrEHnxpx85XgqCwF8QCgIBJmwGXMGakW2dzQG14YpGNGxZRzrGZKNKiuYAtExC8cw6fCGTKA7SDypZKJZ/VX7ZoUYDC6y3OWuhsNlxtOoaQaLlOoFgxsV4mUu/nyRlIYnQ5zhsSYUGfpvI9PG/8PCGxqAKMa7xxtmsVUVfOzKgqgyOG7nE6s+obNAzOFuqtQLfCXK/i5UaLZ3DFhDg8pFTlvECQoWDrwAooNAMNz9AkraCk1EvRI+lLO2+aKzRMLkbFnKShRcH0PN+B0r8/AJoKpjttdR7YnujFuDCi1LESUUrBdPn4IcoMizRbs2mw7Cj5XPLZIHw7cpUgglnEWacLBuFiRsHKPMD1/rEF/V5aQ7ExA58+i84mvItmbAitLSLfGoAfPofjUs/w5QsQ3E4vF19isVTuC7nRgFkVp2n6XjAEZwHYOvCNJC108mFZ+u71p7VtBfL4LwF8G8H1KqWfk60cA/I8AflAp9QqAH5TfQUTPA/hX4CokHwfws0T0rVVjIz+/AgcaUqAxUIdWoBcW4C9egb5yA8nEAQoobk7YY0E8OOp+gsG//ypuvsdg68PvgN/ZhV5e4gF7PGGIc2mB7f1/+zl01wnrjxts/+h5mJXl+HnwXFxOLS0iu7aLZOZQLaSo1/o80ArqQ94zP2Qyhd/ZhX/2ZT63x98JP51B9/uIkuFZCdXtIjl1HFCsQCs2ZzAzue5EodiqEUiKIfUFQApeVnPV3oMyI1ZQDxwWW8+rduT+Bhfptc9tonsD2HpYYePRAVvjVzWwOOA00WgMv7sHPxqjc1Nh6yFg44kFqIUBaG8/qj1oOILf2YW7eQvZ+hi69KiXOzwhC4kzkjmJQKMRiq9cRmebsH0+wf7jJ1jB5TltoWTl62clB1lnTkJfFTDR8SROCz3k1/YQKkG7vCmc6bviWB1gZOeiaRg5Bz+ZNKutwJGqbZT5BxNKX5b4gyffiV86+Qn86Onn4XKCqhWUY+KsckCyp1G8luOjT747Bj+U+7hiJQ1k+2ykZ3YZpTAlAW3kRzxXdCXGhaVDMnGo/2gFP3fm9/DouSvwGQdbQaLNyhdWe03OMD8q+cwzwN6QV9KdBL2bDuVKjmyfmmcv1hChHltEx6J8vbXMvlNTYqRXizLLi+pJUEtVS2CplKQLmUcSgoG4ONEALJdogHPRtE7Lat9UjNzUXUHNKkY30mGNZFQzsqIUdO247Ijj5xzQD13zMaI0HpwOykaEbMiydlW6qApUIXAGOPXsfENydoz8uExSbRXEwJC/awd2ks+FmJTIIizLoMQvilER36CfQeIexjgrSiStWs8jyMZUq3QEJH0knwvMkYEBsEmfpH5IyNcRGXYNShVk3rwgCGRuIWqH5+w8n5uct7IuEoxDuovfbwIk1RVSweEZKaugZxq6VtHAEJrVY7oUA8NS1JgI91jUoRWnSlXr+gO6pVopWeXD73IfxZE/pumkr+v9KVSaoV5IQL0OF/K9dpPRrWdegnviQehbO6Cr1zlN/9wrcE88CL+1HQZblKsFstd3YMYVklENP5kASsMsLEh9Os8lK9I0vuvBmy1kHWIK/puVivkTaW+OeeFbvUjpt6Lq+iwRKSJ6mIi+Q75+R1wTv5+I7pXv263/+XuSa7ufiL4hyag5E4aFqSzZQ0ZSXwEBotoyue6e46B33Q+VpsieuYDshddRrXWgHCEd1ShXUs5XW4uzf/dpkAYu/MIjuPmhs1BJguTMKU55GM0yUu+x/M8+h3N//1mQVlj/yP1QRsMcWo3eJ+zdUyG7vIXuq1uAURifP4Lq7qNNTSxZ5XJpBAfzxRdAicb4P3wM5fvuBwCY1RXO489mQFXDdlnFMFsrQEYh32XeQbmcQFlCZ6NunJsDbwdgaercSl1FAjOUbkpzBBdioEE4guOz8zj6+xu4959sgAzw8s+dBdIE/rWrjDossJkg6hrHPrmO+/7JJrxRePm/OYXrf+mB6IOhFgYxdQQNFNeHIKMwObuI8vQKf5Y4v6K2QMqKlcXffwWn/49LcKnClZ8+D1UUsDdu8n1a4EBIJQnUZAZ/1xFAayRfeglqUjK5ebWH9PoO7KGB+Hloljbf2oFaWYJeWmxSON1uRH1iNe+qYrQuz1ntFThCIf2TZTAThXf9m7+JjWqAZ3/8f8Zf+KEnYY9V8DnYEbhSsD1CMtL46Gcfw9mP/hRe+7FfxU9+8FPQJ6ZwHUK15CW1wmmTbI8l7ABQD5hsS9HFlyJEnEyBn/uX/xl2yi7+h//4X2DhgzcxOcZFN2crzHdwOQ+q9dFF7P0njwOHlqGfuwB4YLaoke1WSEpCuRQ8ZahBciRoPOgtM//yN4FQ6G+hhAoTWwUtEDM/eHD/63V5EqgrYKEPWuhFrxhoJqmqwDtxHj4LKA1/Jw3MVhVmhzgACq7LurT8bmtGYcLE53ImufpUgeQ4pPlcZ6tKaoGxPYSqQiSkYjBGws0JfZiDDeFhaaAaMLrC96S5PS7jmlmUJkLSZpQzlJ9gg1QWQzTlKaQ4aZby5OqIgwxBx+KiRoXzEbRCOEehsK0tAFc03k+BWelTHetp8e+qGZs0GAFqL5yci0EPjImqLjKCBhoZf8LzT9vIXLg2Bco9KPfwGcn7wVwnX7CpoU/FwDBpmXUG9Cfwx4j4+GlIaUq6LWVUkJ8p4DMm1lMbmQQ40A7iipCi1Y3nGVKmUCw8dQ1qf8RzTqeA8h7mrpNCpk55PHAO5tgRuI4B7j3NatROimx7hu33HkG12uXabHkOt7vLKXJxcEZtQf0uXMaImxfEh2wQmPD7qAIB/u32prc/lqrrT7IF07jYhBgZBmal2bRKWw/X47QJkgR+ezdG1OVKjny35to94NzwyrP76F1RGJ0GZj/0Lrir16GWFnkV06qzxfvuYXQKmPzAw7DXrkP1e1CDPgJpMTo375VIZuLcLEU14+pDYGxlDJILN5BMPKqBgX7H/XBb24xqdDsg76PbbVCqJKNaVmgAFDBbES7D/I2K8O8dbiKCJDamxdKkQYmUQqg+zlB7AlXVGLzu0L2hsPXoCszxI1yrbG8fJpgGGg1Yh8XLNTo3NUanCFvvXma5+P6QV07OMak5NUiGFUuIc8POzeKBEVsoHGgtBpcnKLYI44dPwBxa5c+esJU7oziOEZ3xBOr0SfhLV7m6tVKojy4huboRZaWRTCoKolDzSMkqnFzLRE5sE0jKOERLgPY5aiAZa3zu2hn83Y334ufXvogffPAFlGv8TKoFj2Ss4qRjxhr/09a9+Furr+AjD3wF9VoNX4gZZc9LrSUIOdZHF16XM+nZGx2PRQowE4WLVw7jN268Fx859TQOPbiJcpU49ZULsXXGJFGXyWR172mkN/dgal5VlwON/uUpX4/RTc2y0I8kQOY+IWhQSPWGPqZUgygKwsHkbO6rPmn1RVEMhaCSVTkUERSAV/SUaF7ghNvdQjaV5wkWxO7VRrysfMoTMxWJePdo5mxI4OBaxwhGeBygMqIEkok3bTk3HwgEALTk1hCSPj+zcP5hAibDKRk1q7h/BgSJwAhGu8+301zxOj2jQkZJ/+RSO20T0vb/KuIvH4KdeCBEOTkCf8yHsQjRBy38Pao9g5OwPEclsvHmWUrdqYBUJCYSpzlw4XQaWxwQkHhQSnApuGyKFTJUQk1QazS0mBiyqrHhEHFg3gS/YUEAa+OYyIEEX0Ob6B36XqQFiDINgcOmNdcPK0uus1jkjLysLKE63Ic9vIDus6/z+HhoBdWRAdzaIjrPvQ71+jobDxo2Xsx3PcxMFpRKQec5o3rGcEDbzaHKOjpaR8K42EfEUkzm2zT9/v/l7nyrX2/h9tYIfMI4U9tIrAwKKJIq2ypJQJ00EkP9oAM6ugZz9DCyq6yo4oJwBsU2e9joooC5sYljn97A8ouEjUdSzD74CPxij5VJu+OmRky3C72+jaWvA5sPJZh++AnYy1c59RMmiXC60wrpxgTJ2MIdXuQ8fJhMAsnYe9DePnpfvYbOrQqzkwOox94Je3M9qjZIN6tGn2uUqwWSsWXOD0khy66sYIKxWVSI+OaexUFVRx4L/60Scz5G0iI6FaB2ANTJke3XOPRsiZ3zwOYHToKOHWbSnihNAIDyDOlejUPPVhhcVti9H8CJo3DDIYgIZqHP+2m2ks92Si7rMUhhD/VB3YJRtpBqsZal7HtTrD43xv7pBJP3nENy9IhI7rnSPBJ2gg6FHs1dJ2GvXYcZzpiPMeghuympseDcXJYsA5bgB1kaU1mBe9LOrwfioUrF00X+nu7zPuOtLv71s4/i529+N/7B8U/jO9/1MryRlJUQmZWUM/j1r30nfn79Yfz9I8/iQ498FemhKU9KCtDOx3pDuvRsblZLYUmZzEgG9GzI6QezleKFZ+/C/37hPfiP7noa6UN7qFZ4ciXDvDBd1gKrK6iLr0M5j8GVErpyvELOG1KtMrohVYbaeAf6FP94+6StNAcBmDFRX1kvZn9NqisEEX46ZWlvNwMVacPvSXSsT6aLgkvHKERfmnAfyXBgl44IydjCTD172UiZAidcI93tcuBQC58pHEPGFTJ8jHRskcgxdDC5I4r144Jzc/SGUfL/oXQCmsCj8cThAABZyqmuQOwOXjIHUmhxHIm+QdQEFmBUltPZMu7lOXPYJFXoUy0cm4CKtNCXlJ9ZLO0gH6vrgGYxLYA0fw6EQwTvWtXZxT05Sfh8AVF8tdJKhOi1FDlMGoCTICtM9EQcEDvVunEAPMFLUKRqeaa15eBG7lMI6qKPjyDdjAa1AiKA0SnF26iqmDNVt1RpAVlUiu0WtEG1knHQIT5F2Y19RkoBltY7j+z6HtTzF5qArMihJzWmJ/vIt9khmt8r4U62fKlcP4+vTuBrhgAucA2VlAF6u3172lsj8CEZfMVPRIfK4tbGFTlZC3P1Fuwgg0s1XDeDXe2AFnrwV6/D3Nxhe3YArtBIjh0F0hRuZxfuxVew+snXUGwS1h9LoffG7HLrPMzaIQDM9ncbmzj0qcsotgkb35Gg/JHHofZH8Avd5kWZllDjKfTeCOmNXXZuPsQ+OKESOpSKq1l7Yx3JUy+yL8/JLvQj56EGPdB4jO6NWYsoyTb+1UKKfHMKI2oS7cATWkvlFu4N/9Dkj1Uk+BmolCsehxWkStmgK5RvsIf67Gy6sYP0xj46F7fQvaGw8yCw88hSJIPTrORc+cY20pt76FzcxtqXx+jcUth+1zLMYMD71ZYLBBJxaYHRDNmtMZQluE4Ct9yLk4Ea9IEkgVu/Bdy4heTSOvI9wu65FONHT3FB18GAn+XqIJJ+fVcI5A/cA7x2LQ7O9SEJuqoKFJybxZcHAKcfgmy7FRhGLkWrbg459viBc3A5Oy6nWwmyyzn+3ZfehZ+6/Gfxv971MVAKmFLBTNlTJd/RSIcauNzF//X0E/ivrz+Of3j8KXz/ua8zR2emxAXYQVsPU3skE4d03zKCkAvRNniupEA6BPJthd4Vg+nTq/hnr74Hf+XeL+Dw3VtszFcB/Qt7mJ1cQDoVEvOJI6AiQ/pFTgtqK5Oz0s3k0k6Thv4TuHRtfskdWlALacvOzcqS8EoaLh4ALkAarBWsh64sK9dmrMKB9aK+kyKbUmyT+R3M08n2CdmIuDApyeSWarhOyoqtmguqBoWZds0xQjFXVXPgo2cOsc5Wxu7PoXRFlJwrLWiJ8K6Ey2Iqgik5/Rg4M4AERyFmJP4/iBw91sDiP87fRLEPUESM+tjWMwgIFFGDTgr3Rtde1GThnPgcmSMF5slVPhZSBSD8m8ZRWFtqBWMSLMs1E1EMGlTtpDBpw88DEZJJoyYzlRRl9kC6Z6D3EpiRlvvEPKl0z8DsJUgmsj3UbCsddOVisExip8BBqhQprVufOxO36JKl7pDxJrwz4b1RYm6otGJekjizU1UxnwjMCcXeiIvCrm+wBclDd/OxhmPettqHf/geUFXD33OSC9ESl5eZHc5hewlU7RmdFjPI9jiCmmkLpuLnNoeetnl1b3YjvM3xwVsl8AHmfCWicknIp25vH1Aa7tghpNszHuAVv9RukHMudn0DvRduIt2VaHxnl1cA8nL73T0c+cwtHH7aYvzgEeCLz6E6vgS3sckfay0bHA5HOPKZDax91WL7gRSjx0+DXrgAVQp0bVorNOeRDCvYQQ5/8jC0uD+rjIOOQGIj51F85TK6r08wO9KFvXQV+vAhzA6ziksJumP7jG5UKwWScY1iq44vfxPotF4YbSQ90aRyAkROjg3ZooMzeag8Z8M3IqTXtkGdLJIyKTFYfaHE8gvA3r0aOx/5DpgH7mEZaJqw4goAlIKZ1jj0XIm9ezQ2//w7YB68T5xdRS2jdfTwybYmSMY1fCdBfXQJZB381g6gNLQEN0SEpRf3sfiaxf6pBNMPPw7V7cAs9KGv3uIUUDAy6xYcfN51HOmN3fgcdJGzc7MxMZcPkbVTN4dZXIh2ACGwjgaTohxEnrOkt1PwM5QJ2OXE5NZK4QsXz+AnL/0oPvC9z0KdHcN1OE1QLUgByZSgZga/e+E8/uq19+KXT3wef+79X0Tn7n1OsSSBr9EoaZjIq9mduMNqmLCdEsBnPIGPLy7in770PvzcPZ/A6KyD7QCzY30UF7cwW9Jcry5LYJc6KL/zPNS0xOKFaay83TglMyKhJGUaJOjcp94gjQpGFMgASmu4THPR0JQRPG80r7aF4Kk6TeHYgAxwuourc4fCnBBVl0sVfC4IaMpBRTLj9JgXh2hKmcgOMegL6SpbKOaBJK1jZLJdAdohpmYoqCVz4bOEhUTGaJ83WpApQVRSRmQDyTnU1nPCQwlNyTNFQDSBuVS6isFSC2kM3L2AUKRSP+q29BIrzXzCqbXAX3I5G/p5IV4r4dt4I+ozoia1BQDyf0xu9/E8SYwLlWLeDVtmIHoStS4ymidykVY5R6PgcmI+T8b2DwGF4e0En1DLcFE13KHAbfMkQgUxiBSH7LCPNypSA0Lh1XBOZAInS9CVMBYCvGAVSTsZxT5tAFSPKQrq+BEke1MkN3bYSDJLoY8eRrI7QXJtG1jsw1zfgtobwhcJ+pcn8IkSYQ0XKIUn+FCUtuJ6cjToSR9iC4W51PGBRezb7c1vb43Ap53qAhpJubjJhg5DObvDFq8PG+8QreCX+tD9HvzmNpL1XV6FnjoO3e9xeYYOF5pzr15C9xPPYv2JFNUPPcYr71NsKp0cPcJB1v4+3MuvoveJ51FsEdYfSzD74CPspxEs0L24JU9nMBt70LWDW8i4TAYAs7Isbsoy8dYV3OYm6OkXmdvxrgf4ekRK2rlVx/w1KQCeYLspp9Mmgex4h5dECM3zROc2ua+VuhC1DQBGM67dgJrVcEdY7ab2R8iv7GD1qU0Ut4CthxR2H17lY1U13NoiD1L7I+j9CfKruyg2gO13AjuPLLOaYTzllaz30bFX70+Q3Npnf43CsGJsVvK5H1rmsiLbu1DXNtB/7gaKHcLOfQlmD57kwHHQQ351hyXyIVUgZE934RJzKlolAqJCR3x6UNVc6iJJIixNYTXtW/cnwO3BAVopJDPm0mS7mlVBuxrJ5QLP/L/34RdPfBLvPnkVpCFlETjoMTOFZE/DX+rhdz/7HfhvbzyKf3DsaXzg5IVYE4l9e/i7qT3SoY2WBqGaczJlWD+ZMM8lGwL9qxrm8wv4hxe/H4un9ngiSzWom2NwpUK91ov+KKMTGacGn3oRZlzPozjOxzplYaGBaGR4e99pbpKPCEcoPxCCGUWctmEzQM8TU11DTyqoWQk9qZDszWCGpXAeRK1TVtCVoDQluAaX48rz2T6riChrrB1sh4MTRmpYAKFrRvt0zeq3cAw2PORz9RlPqrYwcMF1OKQ9jeHaYWUlaiMnNa8Y4UlmTLBOhCfE5RQEdQmoRODNANIfJd3dThWF9JpzwnvyvKCqainI2QpQpTq7qmqoquaCnpWHKYmNLUu5VkGi0rFw2Fzj44MWWR7C3+FacBRTOAetMUCIZShgHdfsCqqumj1pTBk+3/M7XntWbU01kqmCqcAGhgB0raCnCmamWJkoxoYIJoRR4Sb72wbVYVNM2e54W/hCbTmActInice+IHTgn4OqS44xnAFpitnhLgeUVQV/+RrUtMT+o8eBnT1Up1ZhL12FmlXYf+wEsLPHRquyiDU3ttG9UcJMa7gOE7LN6nIMtvxkAj0Sf6qAsIVZNtizhJ+/XY3epK+3cHtrBD4EHnzaxEppKk04D21rmP0ZlCOUR3vIbo1hewko1bCLOReuPHYY9up1dK4Ngc0deEGKIhLiHfxshsNfshjelcJsj0HDEXS3C3trM6InKmES3NofXMPaVx2GJxNgZalZZWhZFSVM3DSbQ5hxDdfLoE4dh9veYYl2DNyaaD/78qtw/QywDUQ/XUuR7VpRpSjUA7Z1L4/2kO63al8BtwdALe+eOICEul6tchmBMxNqh6l33gcQcYX6fofVZnkGVdZYeanEyteA4WmN6n3noayD2R6BOhmTAgWBWX1+huUXgOEpjfL7H4Fb4sAPwaFUNyqXZHOIZFgBayts7Dgrgd0hIzCLjPygqrH0tR0sXnSYHUrhHjoHNS1RH10EXn4NPk+YE1Fb+H4Gc/cZuGs3kGzsS8AizyfI9oWrw9J719RlEsl6KF8BcGCIIGkXUvTwwQquIMyOckBeLxBsjyfVn73yZ/Grpz+G973/eUzOl6jXLHMvDGAHHq7HTsS/d+UB/LVr78H/cuILsL0ErmDUgtEf9qKBVlFmbDsa1WKCnQcA2wVmqyQlHYC6yxPutUuH8BP3fB7pn9lCvlNBTStMjqTIXl2HHpfQJVv/U7dA+T0PQV+9Ke9Sw3VqXjAdAz3V9vU5iPpIGQrSADoFe6lkCVyhYbsp+xEV8k4EdEMMJFVZQ5U1IwO9DCCCL1JeJQviYzsNSuPzZtSs+hrlUopyUaMecLkPTqkCvpOwPYEBVJZxUCTHcDk1JSv6XAZktqjZQ0mQIJ8Z9u8BYt0pfqcaZCGQhpUDbM5+OT7l50yG+TWxKC4Qi4+SZd+XQCKnYAYYUAwJ3kgrUK9gJVjNvESVpYxMhMC9xePjlJ+cV3hEBNQ9HmNcriNSBc0lE8L446XUBg9EaYP4pI26ioxiBVgi55snoCzl0hVpwsh0uAehzEWi4HoebsGhHnjUPV6kgpjU7xYd6gGh7vN25bl2mu1nzAHr5LEwtc9aXj4dJgvDWjGQZBSOy27oho8lykIl5+I7wktME1BiGsVmkYJmJXzG5VygNfS5u+BW+uj/3tegOh2kGyOYe8/CLfUx+NSLUN0u9Noqo4FZgtn9XBDZdVJeYGcZaDbj81caetAHiRM314xrz2WCNknQSZ2GC/R2e3Ob+ibOzm9KW1Ar9L7eh4SImzSGfEpDL/TZabS28I+dBwC4biLW7NypfMq5eS9mYMp6dF65Bb+x1ay62twOWZ3pooBeO8TckOGIAwgvg1b7vmiDjZ9+gleQM15Rahtyy2AIPGFI3WUKg3/1VAzeQlCikjRymDgvbIDHHuQgQiHCvW34PZyD/uLzfAxRHvnpTNRaFsmxI7wimU6hBwNOXXUKHmyLrFlNes9OppHYqpm7sy+mjqGGU9tOXVJDNOhxIUWAc/GASPgFGUgSqDTFa//5OWgHJGPIqh7CY0D0tfFG4dhvvgqaTDn4CfepXW9MpPuq04E/fwaUGuhJzekR6wEheiovPA+joZ5+kQO6IAluP7/WahwAc58UD/Ba0n96oQ8/GsfCsiCP/Y88hnyXn58WGbTyvBIlzQGq7TZV1bMhcyxIKyYyW66MrqyH7SX49D/9NfzhDPj08EFcmq5iY9ZHJla3E5thJZ/gVHcH3zt4Eb/4k38J6Qbfc65e7RsLfq1BRQbfLzA+2YWpPOqe4ZIXNb8XtqORTD3qno4VxXtfvsIB7mgsHj4uljEJ9yn205ACCuiYBJZ+OIS5/x6ovSFooc/9p1MA0xmnKg4vQ9UOdqlAMixhBznMzMKnBq6TQDuP7PIW/NYOlNFwe/sw990NbO2ATh6BurEJf+owr85vbYFOHYFa32aRwc4+q2umU3b63ePKOWp5Cfa1yzCrK3yM65vwdx2Gub4FWuiD8qQ5xt6Qj7GzBzccIjl+DNTJUZ9YgplYzNYKmJkHJQrlUsKmnB2NdORQLvG4k0zZEdmULKHvXptCv3w52l9QVXNaeTTme1hXcWJXwTwQ4HRgSL1kGfzKgP1vjBIDQNOMcbmJkvYYnOZvQg4AACAASURBVHoSkjunnfJPfoW5kPcJX2U8hb1+A7rTgTp+BGpWAUph/YdP4cgnr8NdvQZ97jRUbUGJwa0PHMHqr3+e0W+A5dfDoVAPNHDPGYzvWUBQWCUjh/zWGHpnhNl9R/jdqDzMqIS6vgl4h+qhM0LmtzCjErix0Sj/wruZJECawC32YHaGgPOw125w8CeGm7P33ofgSm1Kh2RzxH1mOoM+fIiv63uPYfXXPweztsbo/SYXMY4p9ftPQ8140aSnjAT7y69Ddwr40ZjHhTRhr7VOB25vn520vQfuOwNorkvnc8Pp+9QgeepFDuBl7NKdDvTaKjvKH5HCykTAzj5oPIZeWcbwsRPofuyroNrik+5ffpmIHsOb1PKzJ+nY3/7rb8pnXf6J//5NvbY/TntrID7A3Oo7pLeCB0ZQ2ZBRjYrEtiYyT40KQ4ODh7KC6vWYmxKkuHKs4M7rZ7NYCV71eg33I0kxVw2dPHTFk7YrJL8dlARRgcCwuCkJodZNVGHJqlq10RovstcWQTIOaG10JyI2wvtIk1hUkiv+miZQJD+nKkNtowomECQReAhB8t0pouttLOIJnvBgGf5HYoAij4N0fF4A31vHqT9tw/1HUyHaqJZiSaDfqmYZqJiI3dZEwUaiHmLeA/9/e5VLrftD1nKw11a+xefX6isp1+rycg5z7tZhH8OInraEaqDZL0VDEBo1V2U9mbJhoU8V6p6JfcIbjTa/TznCH86A9xfADwy+hgf713GkGKKfliiMRaK57w9tgS+M74aeObhBDupIqYNW6YCgFlJlLSkm1aAHqrleUg1CoGuK71HkoQSErN0vyc/di7nWqjB+x6b4vkCj8YaJ2xvVWizQGdLZgvRG/ks4z4TrvqmW/DqeQ/u9OKC6PHhN8RgAQpVxiu+lpNED5yqMI/IVf09E0aZkH2Aeztd3OIe2D1L4W3BmDghOS50EpZo+LelcBD6Yls8NKib5OfTHOS5p+z6G7wcWU20UuknFhWtppoWYDm1zlGTsi9fcVlaF8wh/kzHgtj7Tus6GE9X633Ae8nemBej4bCIXTevWNaHpOwevu3U/ov1CSItL89MZp8KDuaNWrBY9MJ5o6/EN251oCbGodHOfbysI/HZ701ryzXd5E5oCu7tOp5F01w4SQhFBSjTICafAegCJrKiJxRA6vGgATXhVCFPwikZWtZE3JMEDpjNQnrNyLKxcZT/yTbmDdMKrK5ezdFTXiMEXW66zaiepBa1oIQ8hUCHnOK/fCjBUW2GhVfw9vtzErswqVY1kUunm+4FBKjrIVjWPz2GSCUoCxatJPZyIRwlD2kqI0LE+k/f8fnrLfzMaoTwCtSZAshTVQsmE7483gAnusVo1qA8AXYGfs9ZQnQJIFJS1IKUBkvtlFAiGV8qeeFxrCSMCVyKQQ+NMdCf08iB61mO+V6imrRSbmAUDTXiKpTOSsUe5ZKQOlnjRhABcXH0ZYXQgbSK03RjCKekfjAh9evggDL6G7yo0anoNm/UAY5tju+pyF4DCyGao/TLMpIJdKOC1gqoNVEVxIA+BjqpdUwRRCTkoIGZB6QIISfvAYN3ud98A9Z0nPuv4P5G7IveWAn9F5PrMr6C5/hxLMwQCb7sFuX37vU9MK9DlABvttO6dnnV74gvH1WhNOtQgLrq5V6BwL9BMTC2+AkWODDXf471s3dvwboafqRXoOAeSBV1Iw84F3qFfEx9TOfD+UE1Q4qmpAq25rxGI9wktHLOVmp8TRXjMPbt46mF7y+4CAI8/cFG1yRvR9CHn5yT0c8+G0Pqf9nbpq94DXgOa+068F+GcDgZsaPWjdiNOQUfjR4Sfg6KNx7S5c6Fmv0bpOc+L5Cby/tCPHAGt9yteSxigWovNeMzAvZTnqpSC/7Y4NwNvdf7Nm9HeOohPe8A7+LMMJD5RsZYOgEiuDO98kLz6RDXS5iRhI0IxGiTfGNmpRNJqZRnTJKrIEcmdob6W0tGqXVtEToLLZQURlAbhborzb1iNkigW2giDShJZuakmAEHzOxR4gjm4KkiSxm8GYBNC1UwavlvA9ws+77LiiUIzJwdSg4eyhD0lqprTJ0YDIWAS1ChC8o5JjSoYPkqFewTZfBi8xAE2mM+xyV6zyg+yfSgeUPysbOoRdTsNyTJcS6iZFfqCmLzN9RPn51eMB/oRX8/8xB7t4mWw86Ws6EKQEGoAGc1SVMtcEdsT47v2R8kkbyqPZMYDmu0a5mqF/ULf9IRL01X80eRefGaq8T0djw8uPIf7uzeRGwutCJ4UrDcY2hyqspz20Aquk7KCqb2SbZ1zmIiDauY2VCKuwr/B6x4GbtW6n2HF3epfvH1+pTx3jPARIeDRwmMy7Xui4gLnG55PC2FUbeThQD/gdLFuRcat621NnLF8QUAv2tcQFhrh5/Z2WUzh4One9nv73h3ok56aWlI6LFwU7oj4tGPUO6EHsn+DSsnPccJXc2hGNKs8eN4HUaq5624HUsLvCuhT6F+6/QxkW0S2GhSGDl5Da0zne6HnP6993APo90GVdEQDD17XwRZMW40sLsPntlG5/IDRatgGCOLMx6WU5yBenB4491aJpRiEhzGqvYh4u31b21vnKcjARbJ6bLaHF4kHyiA3ZUIoV7WmMKi2JzgirtFkLVSacn0uMeyCd3OfQVXFPCJr434U1C1KAeRbqSxeQbscsRp04PnEJoEOvPj6+IaboZIk+sm0X9BYqG9uZXOHlQ8whxgFDhPJKtwt5LDLLCUmz6oLMpqLRC504fo5XCEEVOvYyMx5DqC0bpChQE4O+5UVf1aaAHnGgVdIrQVUCRwYsrssBz9saEayakYzcHkHP57w8ymKJtCMD8WHB9l8b63aSTXFHW8rBvkNWkgLxgAnGDoKyqiC2aExUgbFw1TEstRCRQQrrM5Z3cSeI8nEgQyXcyAjE1hEDwgbsz5eGh3Dx/YfxqemBt/fcXi8cxGOFKzXmNgM+3WB3bIDOA8zqTj4STR8nswPsGH16BvEIqiNmv6Dub8jMc2ElN4B7I2ePne+h7fxAQ++q63tnH5uTazyntxx9X/wM1uBjXIU/X7ifgcm9uZvbv4YAdmxEjC10kxKqflUwx0QH7T6LYD4rof+3KiJQnD1BmnCkKZreW4FFGZuYg/tDqNy9Kx5I7QjbI+T7YHgIQSb4VrjgkLH5zU3hs2Nwa2A7uA4Fz4z3rvbT1Ddod/MoWTx2tp94ACKdmABE/aZ63/xdOYDnzkFp8c8WiepVpVmzUJL7l/YpkIwqjkApzsFOkofOOcDwVdYgMo7S5IJeLt9e9pbI9UFtCDJsFLkDku+gbc5r0yS29bQODBQh8EyvN/iYRPQHd0p4AN5OZRwAKMACuD0UMFeLh6zSLiNBGUZ6DR7dsUqyNoy6kRhJXwnB9y2VFVe2DaaQ1DNgjWMMQcGLyX3glwjYY+rWADwEgiGtJncPyUOyBBX5TiyCvwey1jk2dyAFDlW4ngcXnoymlNqwR/IaBDSyOMJKIM3XNwRpKCJhITZelbBPDB4DbVaCDxVuB9tvkJYsSuZ3N8o2An7tleFzs2R5wFwGrT1nAHwPVMQMzvAK4giRkN5A1N5DsA9wVBwDObB36UK6Jloqa+I+2umLWrSGNscL8xOoqcu4r2Fwce6TMI0ilB7g4lNMUMBOIK2Hl74DT5P2SiwhbiQVlDg/scGfdz/4+pckIFYdDKkPw5O0AdQlDds7WAmegE16qX4TmkFlbByjcldfG5Eikn2cizyrc/VzWdQovnZx6BBzlcrwDeob1xJh5SSkqSPBBexRlb72SrFc6Qx8X4EzkobuYj3r8VRi5XAjeLMbPC5uZNHi1bAwYozUkIhIo/tR6BkDAjohmkplwJ/psWnmT9w+N5KfyeSDneC6kbUo/WZxjRAjwIvPsTkdK55is8wjk+tOl58Hwhztb38/Pk3QYVpuIjhWgOSFDy1Dt6bwHFqH+tOjd4gEBEVmNIQtKaFtoUxOwQnrWNFGxB5LvG+t8ekdgvojryD8b0gkkWvuIMHs8NvR7mub7w2/FPR3hKBj4JiIm6QHQb3UxBzSiSlwYoZTi2pTIzeCEgmTGx1BZgrohgV8ZMJ/O5eTN2oTgG9sgR3a4MHXGsZynSeya7WQpUl77e0CJQlK32sjRNb4gGU4InSKFQ99q3QFjBhAhLJuC4K4c0kjZEgAGiunaNrH+XMyjMnIkKxB5v40qigwiGCXuhLPt43hOf9KRuP9buclpqVTBIejbliMC2KVFUCmrqGGk85wOx2mBcV5N4yEBARI0fheUmQpHrdqBBSSkUej5o0p+2KgPyoGJDCmMgL8qMxMBpzle0kARHBD4fyQS2Uy3pO9ziKKy8AbJoIDdKGTQyXl+C3tqOhmO71uJ5TmrHL72DQKMiyppArlWUkvOteDyrPmNsjSA57wegoN8/2uM8pyCQvVdbzHSueM7yf8gCGNk6I1htsV1087e7CU/un8bHuFv722vP4zdECLlZruFYu4xYNMFMKalZCVTXHAwmnKO1KD3pmoYcTCWQD6oGmHlYMPsCTnBVCZ5gAiW4LNOdam/gct7WCZaJ4PZHbE/7mOMDioqSM+mhPHAsbRIUhcyX8/Ge2Gmkt3jGucZxWYiMhisI4gcSg6IAnjUykqrLznxUQ01bwOPfZCnPoQiiTo52KkwYpzAUQPMmGoNLHz2sHdipJmzRxaLehVuDFnVLC92k9XzRzljqw2AOB+WfWNk7NIWgM+7WD1pAqvRPm30ZXIvLqI2rHx2uhT577PgjROTlcl7byf1KBnhG7A+cUmkb0OJqz4nAuXq8Ox5/jz8xfF7X7Y6tPtDlmsRRH6AOBY9VCEskTlEGTznIUeXvxfEONu7Bwb2Uo5sp9aIMQBb/hQu3t9qa1t0TgQ+DVdnA9vi1qDy7EOqzwZeXhm0hc1Q4GPCD5VMhqwcMnpJa8hypymKUlnlxVs7qI5R5qC2DGjsV5Dm0M/P6oQXXQkmd7QqIZCXAZoK1COpKVQ1s+H5pSmOMhyAsYxxYFRImqDLZI5B6QAmCalaL38KMxTIu7BICJyCQvWUifac0odPAFUYLWhAnSis/RrOSgrZND9XugyQyoJYppTTKkDRSVoH6X9xtPQNMZD3qyEorpAPBKLXiqpCPMIXQB2aFZCV0AKs85OJlOGdmynpEDgasZuQB3Atca/Dybh1FVzcnZ/biRFCPcg4BgeQ9yUsFeaa4NJvv44SiqNxQFW3/EAMhnTKrn0g0eShk+V7l2XXv4XKPu8r7aEiY2QyU3QluC9dwXfnO0gB/v7+O3xh4jV+A6LTYDeri+is3YjPVwgxx6LOlFCcjjxEPcR0N/1ZZrwumSywI0ZHrfBDNtRIw8ADO/PaQmImrWoIzqwKSj2vuFfiCPS3lOCyoXuDqS/rFi6NcqOhmN/uRvMf3aWkFHQUBIhXkXq74DiEEerGsCpFYtNr4Pcn7y+cEAECAui+G5bAxzvZqUUuCzkZFJXenG3iFcm+dzahzWBR0JpnqeAC+odJHHoqUgQWqhgSQEXXxdTuk5Kk70GaJmDJhrIYAI91PrppYZuO/wfRRyMPkGdQmTufQJRaHYrFx3MCFE82z5muTgUs5COd+4M5Pn9zcgHtYCOpX/lz7fMmVVioM5ViUiPqO54FHuTSjvc8d0Y7tfxG1Nn7/NyDGUHwKkgr2ktisPdNhKI35KO8UajtsuAaOUXKeSft4Kqt7sRsBtRKk/he0tEfgA4AnVy8AZAp6DdYSA6KPS9u1hOJ0Hce0IJFels5QVPLYGeRmYqhpKShL44COjFZRKmhIHzgG1glJMgFNZipDK4o9pigGyqgagFC3r9FZwE65F6TA6QSUpn1N4udswPhBTVXdcFxx0G5a0gdKKzzsM7CGvbTQQpMx3IH+qNOUApHJxcFTiUK3yDChLRnjSFEHizqk6xYRnpRg1szbeIyiAvIpGczE9mMpjEu6USsRozHLgQrWFylKeTIULNWeZH3hLAF+PTDrUWtUd9Gq67ee6jitCInGure18WkJWfz7RMb2gKx9XubryqBZDJ5PPTRSIdMNtAaBLDy3ojwNwNOcg0kPBk8KEMhhFuFit4bfGHn+uN8Lx5Bk4ehRPp6vNudsmkFO1ha4M/KBoSh0A8ytwhAmZ0VFtCa6bIGtP+C1eVnOfWgThdmAU9jm4QqdGzUVETYopfI4Ev6zua/VzpSLiokK6KaQ62scOwbkxkrZp/T1sd07KEhiEAsexhYAolDwJSsh2i9eFOfl6SCnF7WGODM+7fapGQYmf1W2prSQR1JcXLvNcJh4XVNsmQjX3oa2Ei4Ti0O6EUoX7cpB8HoJEKfZJBk1wRiTGipr7TEhBhWMBB8YzsF2FmicacwkRTmkjyNdFUUda8zveLpAbgqt2HwvvqdY8FwT0xpjGv4jQHDucp5y/T1rX1b7H4fPCe9+uih7GZiCivpG7GLaF2pGSBtV3SFPe1g4GUkZzhiHL4MVs8U4pvbfbm9PeGuRmwgGyWwvxSZrYLKxqw0DEK65Qt0f4BODJUOe5TGw6GtLF+lWCbCituJhigKINv3CxxlWo8m1MrJFz0L8nWKnrmgdF29FNnZgDfJ+DZLa5QU0mTGpPTuFv4VhADBAjnOtEHg/MpyPCyjtwMJKkkboTcV0gpeLAwg7QntGfih13oRT7/ECCBC0TTFg91rbZL8/ZpbQ9N1GzQgvlBHwCIRFqBH5QsyrlAqEkAyKbh0GIzAEyvkP/afedEATRgYE/7Cr+PSqkOkKqMMvmVnhUVVxjh5pgLhBgdS0FGuV5+7TJ/YdzDXb1ZuphSt73VHcHS9kUmbZIBO6vvcG1chlfmZzGF8saT+Qp3td/RaqFN0FUfKbOcbFFpeCLVDhXjcR9TjbevkXBQbaN1BxsB8tUeN983eFevmELQQO1Vuexrx/YLyABaAVGIWUWUmpGt5RbLRTq4Lm3uUDhOOHUtZEAaf79iscizMnX2y2gOzEIiv8rX+1ndLC1UjZR1RnezYBiHfyX9nnHc7vzfW8XPm+uuXUfD4oE0NpfNcEA2uPMG1xHkPTfJlG/07HD6RzsZ+F5BwQuIF9h3/b+B/vewRRh4ATd4VybE7gDAb99ziHoqSsJnvVt29rvSuAiRfXdnJVBWFS0F2vt95fk+AfO8U1u7Qzcn+TXW7m9NQIfaSooiVoQZMzNU6hOTNHIKrx8PtVcsT0VApsH809qyxN2mGi9A9UV/HTG1XM7HVZxpSkHOiRMe0Ef/KxkUytrUXcbu3fmTqjo2Ksdw+IAF5sMQVZAYSJpVmlGOQ5CqwF1ImohS60BOpgXzg0KrRVbOLZS7PILIK6cEiPOqKkU7xSORycX9+bgnSN5ajEtpNmMU0tpyv8vxoAqIErOg8qSg0PnoNI02vnz+TSTRKgdpGt2vFWdTvQ1IqJYLJQsV1GmsuTPzvO4epwbQBPdECuBucFPi2t1s1o98LN3YmrZWgkaA93rzq28yRPb/RMaPxxPMDX3w3TfwVQElyq4Qko5hJedwH3VeiQzh0Qclb938CKOZPvItYNHUHKluDUb4MXhUXx071H89qTAf9Cdse1+baHC85FaSaq2XKS1dqL0gphEIqJj3qjbJ5z2BB23vfHodEe1Vis1poQsO0duBhqCapgYECbnlsorHDukgkIgHVAeIr7u2s4/u/+PvfcOtuzI7/s+3X3CzfflNHkwA2CQFsAC2AW4kVxSMklTpCRbVqBKFLkqmYq2JFtll4qUVWVZLlmiQlEyKZEuynaRVKAsUqR2yQ1cLjcQC+wiDoDB5Dfzcrr5pG7/8etz7ht4VWVVSSD+2FP16mEuZu7J3b/+/r6hbBVVo6tvRZaclhLhKQrPNSrke3xRfe9z8A4yuy+0KrK8naKVVXr5N6kVq+tYjlnveGerzUiu0z2cpOq6/n97Hvf45dzz+bE/HCsa34nE3bOPEv2954v83z+GXlRobMWb0dUCsVJBlrs5XnC56ftR2QXc04o65nkD7ygMptfpHhXr8ft87N+od5zbvUXJsfP69xlbwj0t1eOb9ou8Y18ui6/jxVWF6sNxMv49Y9E3bTl6RF5N3be/aWvyW9u7sr0nWl3KGPTyInZ3Hz07A0c9QV8m4q9TPPkA4c0d1DDFvnSZ+P0Po8cZNgrQd3dgfkbym7oNzM4R7qjHlf/uIS7+A8Sy/vZdsAVmpithmvOzFBtbTD70IBvfFrD8fEHrt6/CTIfi2i10oyFE2E4HFYXkG1vMvjkhOBij1jckMuJY4eLSVAqPWoxaXWL3j3+Q9u2U2rUdivW78nd8z1jPdCHPGT17gfpnX0GfO0W60iYYFOjDIenJGbF970+wjYigN4FWk4PvfYiZf/2yeN6UAaiAGwzEpn51Bddp4u5uUxweYrqdKpfJaY2dJFQJwVpx7ceeZOElR/ufPw/OSraYR5JUUYid/8oy/WdOk9c0nX/1Ii5LMfNzwuvpDXBJih0MCFaWOfrgSVZ/a0hwNMZduyUZNmWfXCvscIzLM4ITa9z8U5eo7Tnm/8mXhdMFFRndFYX824fvY/ODXVb+6YsE953Bvn0Ds7ZCcXcTfeakqK6cI795G7Mwz90//xw2hJO/uoPZP4JOC3oDmOvijGHrQ7MUdcWJX95AZTnF4W3Z52AgUQdJKuTwOJbf7RZ/5m/+Iv/zT/1hQKJKbAj1HUveUER9x/5DivDRI/7cg5/nH731EbIvzRGMpeCL+q4qAoMxHDwIf/uTfxQ9KUSmnubowjKhxsRPTC+G87wQPsLfr4d86l/9HI/+xI+iU9ApoCHsu8oZe+/pnI899gZv/sTDdH7p64RPXyK8fAs7GFI88xC17RRzMGR4aZHmyxvkt9fh7GncUV/g+zIqoRZLVlqaeXTFTNsiZduwbOMoTfaB+zF3+0weOknYT5mcnxX0yyjMuCC6sQNZhnnzqnC1jnpiEJnnxIsLEAZkKzPouRbq2l2CM6fYeW6J2uE8wyVDc7tN/2RAc7OgvtDi6HyNcDRL1tQ0duZRuaN+/YB8rola6KCvrtN7YpVOXjB44gSDVUNzu0PvVEDndpM81qQtRTScI20qmtv+O+404IFTuIMR7uY64d4hxeEh9fvOVhOdSToEPSlC9SjFaYk+CPsZLlCSem8d7oXXKJRCP/oA6tYG6uxJijeuYi6ew91cR3dmYbYLhz1UvS6RCKUb+kS4crYeoe7uSkEZhiJi2NlFKY3LUoL5OVSnTTHTomiGsiDwBUVRC8hmDLExFB9+DAvCP/vqqyT/2VM0L29j726RfFAif+Z/+svYxx9Cj2Zwt+5gL92HygqW/p+3se9/GNZ3yDe3ZOJvNCoFnD4aEB02cFoRDFLMIKF44yr2mYfZeTwWLlkKUa/BwvPyzG6/v4YzoBOIeo6FF0WgkM1IkaEKhxkm6N4I+9JlBj/wDE5DMFrFJJb49iHuzibR3pgyAgfnYGuH/KGzBK9eJz05hyosS//idYqnHyEPDebrb2HmZgEo9vZBG4K9vswx4zFEEc5adKdF/uBpzAtjxh99iNrOBH3lFtml05ivDhh/9GGaL9/Bbeyh4wg9ajC8b5b45j6228BOJoIKlcRya3GtOvbtm2T3rxDtSsvY7h8SrC6T392kHQZYpdCXLsCr/3Hn0v9f27fqrfcG4uOKAru1I6TS3T3scHQPiVc/f5liexd1bR1lDGbnCPv2DVnNLcyi+iOfk+NwcUR+6Sznf+wF3v6z59h/agEVhQRnT1P0BkJqTlL06RPEexPO/fUXSLqGq3/xfg6eWZbsq9HIK8sK3HBIcGqN8PItMIr84XOoi+e8OuMYFOssdjjC3lxn9ue+gnKOfGUGlEY3xJnXZR5J0Yrmy3fhwlnQmvjyHXRvTL7UwYxzzNEEWwvJmyFFO6bo9ej831/BjkYU+4eClJTwcCEKLLuzS/H6WxSHh8IhSjPsUBRpdjymlGaW5o0X/8kGaVtx4288w/6f+KCscLsd9NwMpR18sbNL64tvk7YV13/s/Rz8iWfBOorNbTGFNIJg5Vs7dD59meDtuyJDPndK7kfZU89ylNHoep1ia4fTP3OFqO+4/deeo/9dDwlSVYsxCwuCBKUpvPQmy//kBVn13d0W9C4w6E4Htndx+4cSqhpGMNNh7ede49Qv3eX6H1qkOLeCa9ZQzQZqkqJ29ln552+y9lMvSf7TcIRZmEfPz0mOURjKcxGF0vr0nKX/6Z/9Yf7hn/lJLvy+K4yXIK/D4JSmCBWjRU0wVJjPzfB3f/77mWuO+Fuf/BnGyxLGOFoRhNAGismcIhyoKnsr79TIZxq4eoSLwnul1mmO2e3z6E/8KK/8xZ/k4z/4OwzOTL9T54CF1tsh3/hnjzLz4o7YL0RSrOlOR4oPC0W3SXSYCbqnjaB/vt17D4roycZlSnvVHjnuNeUEnbGRIIY2VBLyaUoU1KsR8xyCAD3TlWdEK+xwiJmdqbyDXKQlRX40wkWhtD8LacdJBIMIBnrnaiRzgn6GQ0u8lxDvi1rPhgYbBdjhWIxEQ8nRstH0O+Q7IZ0RdDYaOuL9lOgwRU0ka6ly7I5CQWPLdmcUil2BUtjYkCw1yZrHWkOWymMJbdD1ukjDazWqlHqoEADhw+kpUlWisVFYceWqQrMkZfuiR9dqUjCFAbbhW9RKkbdCkvmYtBtgfZu/CLVw04LpfSlb3WXsSvWs+ffOxUbCQ43I/12ey3vlUeNKSZfnFbHf1gN51/31ymvyfuQNhEMUaFEh1v3/8587raugUuV5PCoXZF8ZUyHrlReWR1KKeohthBQNb+ZpfI6Z8YG/obSoXMnLU0qQNOsqRM2Nxrg0Jf/QY+hOWyKLJgl6lGGThGBcoG9s4tIMMxShg0msKIOTRJ6FVo3Gb14Wrl1PgmlNt4OenRU1aBig+iPhKlpH0Yo9ci4GsrruzWWNmVotfGt7ZB6WpgAAIABJREFU17f3zJV3Trg1pQy5RHuqgdhZqNfQ7TbFnQ3M4gLuzesixe40UaOJ8HzqgiC4omD+ZcfgpGb8gYu44RjdbGBmuuII69OJXZYy/5Vt5l91DE4I4VM3GgJxeu6Ki0JIM/R+H3M0kRdvZRHV7VSFR9naKiMxoldvM1mowWMX5bgjyf+qWkVGBgCnFHZhFnXURye5qIZaEaYvSfT2+MuhpqZrJQnRTfwLWQVNavEp8uiFyyV0s3RCVqXhYJIy++aEmTdlQu1/xyUh/h4cQRhJ0ecVcbNvjOlekb/X+/b7UQ+ck+LkeL4aSDtyv48zBma7qEZdWlelQ3KaykSapXTe6tN92zJYMww/8iBkOW40qrg2FVrk1XHB6rIgd14BproduVf1mkRGFBZGY+J9SGdibE2SmV0tEsShbMU4J9L8JBWUo4wOCYTcbn3rTrhM8Hdu/x7+/InPsPLsXUb3pSQzTuT5QNZypG1p5V2/s8DPbnyIkx+4w/i+lGRWipVkTgb8rCUTpvZu4y7QFI1IsrjK1pBScu3CAJ3CX9x4ip9Y/Rrve+4KwwvT75wsKrKmn0wiKXKjL73G8NKyrG6BdL6GXt8mmYuqyVZZVxm2Vf41ZZuibFcdd28uPVf8s4dSUpw0Y4qaTIBFLK2+KsMMRBBQIkbGoJtNIauH8mO9j4putyAMyBuKrKn9JCm2FGlbkbalhWcyUVY55V2gw6CawHWnRdZQuDAgaxqZZP135HVN2hbfGp0L38gpquRxG/nCZjQSk9MolDTyWoiLJQne1gKyRkDeMnKOgcKG/txrATae8sLwCeeU1gGBdx8PJOFceZK1iuPKSR0lvkau9H8pHX+Pt+dCn9fmz9tGmrxh5JrVpFDIY4XLM2xJpo9lHMrrqlJQuUBjfTHhwmPttVKJFYa+UNLT1pIfM1QgbfKivOexwcWheBIZTdFw5A1H3nRkLXEbRymK+rHP2wpb9+ccamxspICN5fycdeSxnEsRS9CuC2X/NjL+uhtsHAgqHE6PE4AolDkgPFagalXNH0pLoRbdORSEN4xQa8tgFKbdxnz+6zDXRZ1YAS1oaPDZF6pgaRf7YvjcCVwcycKrRKr7/UqKX6LHznhO1DFvIpdmYgJ7zEfuXd9KJ9n/1D/v4e09U/iUD4ZptzGzXZm8QSbMY9JwNdvFnDpBfucu+sxJijubPs04wOwPBJbO5UFv/8JXaN+23P1QyPb3XcAOR6jZGVxvALmQRFUQYG+u0/7F52nftmx9zzlpc3mY1A2GMrGmKXZvH3VnC5UVFDMN3OKcHOc71SaAG42I+hn7j3YYPHsWAN1syIM/GotUXGtJGm+EuNkO+nAIufdAiQLC3VHlG2E6HeEgBIEkAM90q0lJ1+tVX18GKRlkdbuF6XSkiPCtCuHyyIozur7Nwmdv0dxwbD8p3j9Frwd5jpmdrTgX0fVtFj97m8amY/d9mu0PzkK7KUTbbodKCac0bjBAOYedacLSvPBpYEocThI5jstXmfvcdeq7lp3HA9T8rKTWK4VuNQW18s+E7nbkfi8uVInLGI27u4XqSPuh9ACq7VnuflvA5rMttj+8RLbUEii8VptGfZRtyshPdq2GHKf2k7/neQUTePMz9/E/Xvl+/sr5f8ejF9ex0VTOW9tT6ALMGGpXarz6uYt88tRv8fD5O9jYSp5bATiIjoR/pUcpZnjMkTmaOnDjeTwUEor7b3/jaf7g1U/wL+77Df7L938Nd2pCEStsCGHf86aGY1SzSfHEA9Q++zLm4jnIMpnojaZxq08x35ruw9l7eBFKTYsgudjHn2U9LWyPKb70OJN9p1Yk36WsP7eiuvOTtUtTQdCiaPqOeLTIjFJsfyB8pRxMIgIBnfm2olHYAMKhIxwUhIMCM86E2J3l2FBjxhm2NxBl5TjBJBIYqzMwiXDKnFEEQwgHVly4Jzlm4q9x7lWeUSQFdpIIGT8rqiiS0lsL8CIGUZXqpKgUftqbnlbvv1/Rgy+IPBevcqAufX4Kf88LkbFXiz3n/HU8prIr3+/cVRl4QCW1N5mT9z530/w2J67jaC33wvPTANRYxi2X5WLHkBX3oNfTHK5iahFROmFbplye8lEp5LrrVPn7WPhMu3d+Lv5LKrVy7bLSq6mYno8/JylWCyloNNyrahM7CbTxfDrPn7Jgxj6weDQSnlhVBMl1sLfuiF1GlsLuAXqYoGa7ZN/xJGowgp099CBBz3TJPvF+3Nm16j6Edw+YrLVxjdjzx3RliFrF32hViUJACnaMgST1hGnPnRpO+Nb2u7O9ZwqfiuilFarVlM+OeSlUK88sx9UidL2OvbmOObmKSuThtu0GZn9YTSYqjpn9xj7tmzA8qUi/8wmKu5uoTmtKAj7m5TPz0h7DNUXysUfJ79yVVkmreS8xsCjQh4LOuHp4T9EhBz39HV3bIepbxrMG9/B9glQ0m8Kv8IWcU2o6+e0dokdJ5UuSz9QIjpJq1+XkXvrWCMI0JZwCPtB1mjBMvSYKt8I7LB9fCYUBLknp3Exo3oHe40uY5SVRNB310LWa7MsnwHevT2hseOTn8SXseIIdDGX1VUp2gwDVG3rybYia6cr+S1OyctMal6S0b4yp7zgGDy9jlhblO31QbIkWEQaoMKLY2CQ4d6aaHPTiPPmdu4LIeWt5k4HOFINTlvGSYrAWM16JKzlzqdgjywS+tk6+v9mUwTLPq5aPKiA+hI0ri/zNt7+b37/8Iq3zR2Rt4TIUNYgO/YSdQ3So+IfXP84nFi8zc/aQvCULnzK1vgpKTHPMKEX757a0JCgnRZXloCE+ULzw5ln++63H+VvL3+C7H3iVZM5R1Bw2kgLBDWS16YzCJQnbH17ETSYE/QTbH1A0I8wbNz0S6VfzYThtQ5bO2c6TfcufEm0t06qtTOA69QhRSQAuXyPr0FkxVa44hxuOKmT1eFvYJLZSXuK85xC+YMmc7ENJoREOIRhkmOQYKVgp+XMuiF9laqeOf4cUPlAWTzkmuVf1VRURJbG6VPlZKX50KgWBtGOQ7LbMThVFThAkO0mww7EYJeY+Yy3Lp5YAVfHyDnVc6cTuFXnTGJVjhUdJNrau+nxa9EyDckuZt86dFBSp7EvnThClXNBkXZK4rSg4XZ6jU8ntK53fKd3BywnbIyVoPSX6u2kbzWmFyo+RjI1vfSbF9HNFJQrRacG9Ig6q3KzjHkMVGT7PfWF9zCxTKf+8ea8vb+2gfdFa+fCUaJVzFdpmVper7EY10yGfa1Isdqm/dgeXZqjZGfL5JsWSfKZubfjgYgWThHhvghollSpP1+uiFvUGlarZ8FFBxwjZ1uHyQsbUfx/J/V3aSiXgf+qf9/L2nil8ygLHjidCiPTtmcqYTysPtypZJTXq6HaL/OY69uoNqdQ9DG6OphMnd7dY/uwGc5ctu49GJB97FDvTkhbIKJEKXPme/MY2s29a9h6OSH/PU+S31oUcG/l2RJmLNRyht/bRvTF6fk4IsaGEkrrS+Esp7N4+3Rc26NxMGZ5pYZ++hD04mEr0rQXvRYRSqNku7B9h9gbyIptjkHRYKtP8E1W6z4bh1LBPKaw3/iPLsEd9GE+kfeRt8quJP5dVlqrFhHsjll4YcHifofehc+ilBXRTiHt2OJS/F0UEe2MWvz6kc8NxdM5gVpbkHpVtrHICSVP09gF6MBYzxNmueCqV6Jiz4qFkNMH+kIWXhvTOBoyeOkNwYlXuXZb6444gLyrX5eLuJubkGsXdLaow2J39KvYiGMvgaSaKyaLIyNOmnprklTyTcjAaj6Xl5a+vqtcrRKQkE4dHmq1vLPOPr32EH7n4JfSTR1UgaBErgrGr5M6bry7x8zef4o+df57w8QOSeesnAoTL4Vf6Ks0xgwQ9ziU0tixM5OAI+w4cBLsh//L1J/jzd5/m7689z8oHN0gXc3CIX9XiLK4QJANtWPryPv2PPwgvXxF0UYuK7p7olBJ2P+4j8k7fnnJ7p9y6PMTSOBCZXGVino52bjyWySCOvTLQt1iDYy2W0gLAr+bvjVKQIiYcWvQ4F+O4wk985t7jPO71dPw7bCitsnDokZ6kmJruHecuFYUQirVvNQbSFnJGFiUlf6bKXtPeQsBzYlTZFizRXuPbK1WqfdkC/CYeOWXrGaYqLef88yxolIoiuW5G4yJpZbmAKjpDonOO3aJ7FmJMeUZOnqnqvEu/n/wY2gP3+sscL9asncYBHbvmyjpxry9UJf1XDtBgUlDWt3ycnKNTSoqVwvrfbmpCWBpxWu5RgilXRt4cex49f6c0VgRfLJWK1tKstFpUe37ajEdAtQFrCbZ7qMvXpSBsN+/9DAQVCwLUaIJdmcfsibO882OJHQuNoswvdHGIG4+nhVq5qHC2WnS4wk7d57+1vevbe6bwKVtbOo5hYe5eqZ+XOud3N3DNurQoWk1YnMPMdjEn10SFkPssqdBg5ucw7TYuzShurdP97BXqO46dJyJ0f4xtxqi8wCzMT313Jgkzn71Kbd+x83hI/vEnUf0RtlWvVDBukmD7fSG8be9hZ1uYlSUPYXroOIykYFCK/NYdgs+9iBlbhifr8L4HULWauC7v9mSADRQuCnBxCAszsLWLSjIZ7P1mewPZf1Fg0wx31POrmiliVRIiK1JiFFL0+0y9ekSW6vIcO98RsuL+AXqvh76xSX3bsf+gof++ZexgINwMP0DbwyP07gHBjS3mXjwg3nf0n1jFjkbotrSbqsl7PJHV/u6BDHTNOnpxwbtyO1S7jel2hI+yvUdwY4vavuXgQsjgfWtSODWbYB1mftaHaxYVZ6i4s4lZWpBHwxgpGIuCYv+Q5m+9ydlf2uW+XzjkzL/Lmfv0VZI5hd0/EO5Ju41uNqAoBF1KEtjeo5htQ7clrbt6DcIIG0E4cNR2Fa3bisPnl/hHlz/Mf/3gF0R5MoZgIsVRfOCIeo7mbc3h1xb52Ssf5Acv/A7x6QHWQDChQnNUlsv9naToUeLT14PpPXTync27jvZNaD5f59O/+hQfe/X7+fwj/5r779sg6oNOHfbqTfSZE+hxhq7XKF5/i9avvUT60UdFZVi4KRcrL6boC0xbXkr7hYZHJ44nS5d/z6NFqnCQZoLa+NaJzm1l56CiUBAG739FUeAmE9xogkpS1GBcyYldmkFeYBJBgUwivkc6l9ZJfGQJBwU6LUm/ClsLsM24KrJcmmISKV504qrvMJlMOrqQNpdKcx8z4YuZRiSLC98+rq6J96ZSk0xaKIWgXMGoIBzlFeKjnJPRUzH10Srl+JZ7EB1x67XeyXha2KgSWczySvpfWkpMX3xfmKWZtOVyh06snKP3iDKpk+cwyz1KZSvXcV22gLSaqqLK7wWP0hpfKHgbAL+YkTZOJoslP8YEwxwzLjDjAj3J5B5aR9iHYIBvKzpBv6y0ZMO+OLZHfYdOPYLm7R5UZqUd5b2NwpElHFnMxKNW/njNKMeMMvTE7zfxYcNxdA8yJH5b0+KyXIiqIPCu/KB3j0TM4Cx2Zw8708Q+fF4Whv2hfDbbwj5ynyzoLp4R5BLIWxH5UgfbrIlLvm/nYiX26J4FjKIqtEtFrRsLIbrkRr3rm3sXf97D23um8EFpdBRSDIYU124BTFtdnuQXrCyj+iMpFqJQkIhWk/zmbYJTJ+GVN9GDkZCGk7Sa8J112MMjFn9rg4VXMsYXFnAvvE56ahY3Gk8hZmOwvR4LX9xk/tWcvUdiRg+v4r7+miBRJQSMIAYuz9H9Ma5Rk/1bV1X+VU6X9+xpfuM2rVsjRqeaFJtbmLVlirmOyGSVH9AbkaxKlhdw/SHh1hH4AczlmRSH3h7dOSeFRElYPU6IBMkp82ThKjm9Id5GAOrOthSQPldMGc3c5SGzbxUcXAwY/cAz6JkuwcoylSrEOzrr0YT514YcXAgY/sEPoLsdzNJiNThXxNiigL0DuWdxiFlalKJwZ1faJp587bKM7lsDZq7m9M4GjL/vaVSriW41yTe3cGEgyjhr0a0WaEWxu0d+/eYUxo5CzOI87uwJbD0kb8eEvZThB84xWnGotWVBHoyGOBJV10xXjnt1SUiRrboggUEAsx25TlbUKllLVrHJ7RY/c/VZGr93i/6Fgqwlq9BkRpREeQNwiuF6m3956wl+/LFfpvuJTfoX84rELCt1XRnq6UlO0Y6xrViCYo3BBVBEkHYVWVuQjJs3Fvk9l7+XT136FQ4fyck6CrO2gr1xm3SpKfcxilCtJvFX32L8kQfRL76ByzJf0BwjNB83wYRjqETZOtWVsSW+ZQBSOLh6RN4QZY+NNNZ40mz5T7McOxhIeyAMhV/lz0vMCEWVpBp1XLtB3lRkDU3eUBR1LX5ZCoLxtA1WIioV2d/vT9XrQmBuNcgbQuYt6kLAzb2/UlmUVQTtyCvCInlvbJLgGl45VY+qHxtpbBxg/fE4JaReGxvymhHfMN8eBby/mPbHZqZcjjJstORTea8jF5h7UKB77kdpf1GvQeyfizgiawUUNSPk5pYmbRmyhlxTXYsrhVN5new9aJjCfrPJtiS4x5GgzMcLr+N+Y84JwTgWcrcrA1eNJ5M3pP2b1xCkWvNNPxfOi7wDQgiftuuL2BO2/T5KtEr2K2RyGwViB3DMvdkpRJRRjoPWToUcIAtpoyt0XHmKgl5ZQg8Tgo0D6LZQjRp6eRE9mBDc3YfZLnpzD7t/CFFIdGMHGxr0JPUkfnG0t8Nh5casxgmqXpd7oeC4N52KIqEYZMeu8be2d317TxQ+ymjM+dMycHtiaaVEMprku58iWFsVBZP1K4XeQJj1UYi5eB67ty+OxoMh5s3b07ys8VgGD2Mobq1T+42XsYHi4AefIbq5JxN5vSaKsrEkshfXblH71Rc48S9vYEPNwZ94VkI0Sxdo73Xi0pTi7iZs7kJghG8UBKi2SCVVyQMoCor9A/jqKzQ/c5neH3hKCLXlKjO3mN4EGwUi8+02KshVX1/HzHQ5+qMfqHxmsLKKtKMRNknQ9RrmwQvYb3uf+PHAlIOQJJ6LM4CiIFhdRrfbqE5bCNZGwlvdZEJwZ5/u597mxOd6OAWb33uG4uSirFKMRjVqsgIajQlu73LiM0cAbH73aYpzK9XAUq0S8xw3GEoo7N0tMY0MA9S5U7C04FtVokrSV+/Q/OKbrH56i6yhufuHLjD46EWBsj3/oCQjUxSYxQWZZJYXyK/fZP2PP8DtH7xA0YzQvTFBPyHYOqK+OeLk53Ku/9EVbv7x86KCCgPscCQrxFwQGHNTSOuuEeM6TWyzxuCUFB42ErKsyqC2rbGfWmCYRPylb/9V7LcdMTzlSDuOtOMJnCnUNwyjzyzxVz/9XzFMIv7Chz+Nq0WC7NzjsO3Q/RHBniB6th5i23X2ns5J5hV5XcjTwVDRuB6y/UunOfdv/hTXv++neOr3v4Lr9SUzbpBN0QGlmTz3APGvfg0VRSSPnJIJqmznHSuQy5aHK3klvlgvM/Kwxzg/1nMzQlG8SUzAdJIq6qFI5z3yaIcj7P4Bxd4Bxc6uKAYTT+yu+fZe4YmpSoxHrZEWnpkILydrGZKVFqOVmMlKk2Q+woZCbHWxcLtMSoWSld9hA/kxiSNtGyarLYZrMZPlOslsiK35dlY9Fm7GaCLih7F4LKmsqCTXwdgSeq6dKMHk/dJFmbXnvOkmU85JWdCUJp3HEGzneXMqE7NQlIJAS4FYr0NdrBgAil4Pe3gkCGqaEQxzgnGBSQXpiQYFcU9aeC7LxUW8VAhah41VtXApVWkoValfVRBIq7VUmJWUAuXHYSUosfL/Xy4CXp0orXNVeM+qcjYpay2LxNSUFLZjJoRFPaSoB6IOK/fvOVPHScxOiZFhaQiqkwKde36S8YhUoH2hJbYFRd3H64TBvXEgSYpSimJt3rd2RRLvokBELJPUvyMKW4ukXTVJpeh0VpDMekx050C4b962QNdr6GbTo31OEMM4OlaU+fOuxTJ+Zj72xws/3t1N8S1V13uk8AHJfVJxLByLIKiKFcIQncikV0oAi2aE67TQRwP5XCn00gLBmZO4kXjWHP6+x1Cn1sREzfd6Sz+d+Ne+RvfahK3vOMHh9z2KHU8Izp7CtJqyCqjFAoMeHFL7t8/TuZHA2pK4Qafe6C7yRDYvh3UHh/Kgrywwfv9ZMfrzhDhlzFQqXBTU9jIOH5lFH0k7zMZG/B4U5O3YQ/E1bKsBy4tUdvFKV4Z/JV9Gx7GsHkqX29APaMdJ4R4lKgbDyrxu5yNrMNOWYx+Opb04HoPSmDu7dL9ym9adgq1n2jDbxR71ZfCdmxFEYjLBbOzS/co6rY2C7adasLwg3i2BDJQqClFRVB1jcXCIXlrg8LF58oUWaI0dDNHdjqgs0gy3vsHcVzao7Vn2HgqEG+Q5VnZrB1WroefnADCtJvbGOsHqigy8CoL9oay4xml1TXRmCUay6izmmlVv3SUJtjeQwb4Wo4Zj9GAiSKJzdB/bQyfS0rIBxEcQjDxp9guz/O9vfYj/5tJnaD+yR9FwmESOIerLvzETaN4w5L89x89d/QC2VcPFgaxwSwk7VPwxlQnRNe/U+Nhjb/i2gUzm0SGEQ1C5o3Ut4IdufZifPf1bcn2jkCI26G4bs7ggMtxhTrCyTP6++wg+84Lc95LfVb51fkIkCOR3GHiXb496hdEU8QkCQcwc6EEirYhMHKlNIm0J5UAlmYTdHiusXO5jQpoNXKshvJjc4voDSZ/PpdWlvWwdB+HIYSa5oAmRFFjKOszEEhyMZALPLa7fxyQONUkFITr2HSYVYrMzIsN3BlH9TCxBX1ROFNZPSBmVE/pxvoh1FcnZBqVbu//ME4nF2Tjy7a/jai4pRsinrZx7QletIMguMILsZqmgc1bUcVVWmVYSFxOYqYO0k+dQJ3IcJQ+pJHQDEsmTeQ8hNw3ZBaSwU4JQVLEnEy+kKJEU3yqyk6RSpFU+QCVXyk3baiqnMtwsycZOUS0GTOqqz6WFWEjrK/PcN6U8SV7OQxR28rzeY+vh94tz7yhsEn8NimORNL6oDgNRh+U55va25DUaA9t76IM+LM7h2g2hL2xuY/Z7MiY2arijnihNxwn5Uofk9JzsO8ul2BzK2CWDkhRHrpD3oWxnKS2tOOezEFUUiSrsW9vvyqa+qTX9u7x1g0X37Px/gRsOBdE4pkqqzLOM4cafvcTpX+v5PrRC9yfsPbNINLDUtxPMMGW82iSYFPROx3RvTChiQ/2tbdxRHxVH5JtbmEsXUYd9svMrDE7WmPmNt0gfO4sNNfXX7sqEeNRHz83gFud8+yzC1ULyTg0baZFMOjCjVEy5Qi3p2fsDspUZwq0jXBhQvPk2wckTFDu7MvhHEarZIDu3zO1PNDnxBfHryRuG0XLI/Av7DM93CUYFZlIwXo5p/psX0K3mPe0JFQQymTXqIgtWfvJutYRTkaQyKJSFT/k7CFC1mOFDK9S/+Abp0/cLR2VnJC/zrQ1YmBMX7P0BjCcUu3uk3/44TkFtYyDtvcCg8oJivi1y0NGE7OQ8NtRM5kOCkbj5hoNyRagpYk1te4SNAsK7+9LqS3PY2qXYP5QixznxaBqOKB44hSocyXyNvK5p3hpw92NdTv4fb7D3PQ/QuTamd67OzJUhweYhbjhGGY3t9WUAGo9F9u+9llQUCtLV60uR5Qs93fI+M56XVfKjRs/ch0ktRaTRmSXeGXHwSJf5377L8KFl4n1BlVwoxczo7Aw6s5hJwWQxpnX1iMlqCxtq4oOU8VIs/AY/3pWyZFW4apVbhlFmTc3Mizu4KEQPx7jBCBZnsVdvYtZWcL0+Kor4ty/8Oz72w5+kfyogGjj2LynO/rUvc/OvP8eZXxswWq0zXNEs//YBzhhcqMUjauQFAKNJNWG41LeHy5gVP/lV5H8QpPHpS4SbR9hOAzVOKWYbmH6CjQKyuRpmnJO3ZELKWqbKD1NeBRYdZUTr+xQLHfSbN8UrazJBz81I2/rcGZn8B0M5ruFIVv31mqCyWY79tseIrm1RrM1jNg9EumydtL7X7xCcOUWxsYVZWsQNhmKVYJ0UOZMEl2diXnnuFGrvkPzsMiq35K0InRQUjYCsbdCZI2voirCrU58/pqf3ygaKxsYYs9sX64vDI9TsjChIfSutXIioKJIxzsu0Vb0uE+JMm2S1IwGYFmyoyZtCrLYVkZkK1XLat7EUXvoN7V98Hl2LUWdPCgLy5nVZiHgOSr61g45C9MoS2eoswZV1KWrHE3kvOk3c7Q3sw+dE1TZKpU09HuPGE1QcM/zQRf8+K+K9lHBngBqOGT+0SjDI0OMcs7FLvrVNcPIEyYUl+XyYwN0tit6A4PQJKaL8M6Ws8Mbs/gHugXPCe3vrqqDXcQztJpufWEHn0v6s7xXUbx3BzkGFSKp6Hbs0i7p+h+Khs6ivvU4ZACs2GRrzwHkoLIdPLjLzyoEU4Lc2sfedQL99m/EHLtJ4bQM3GFDcfxpz9Q7jp84TffoFaYm3mxRzLYKNA+xcW8QxmzsVl8umgmibuVncXJe8WxNiflGgbm+hum1ZZM52KK5cw1w4x6fe+l9fcM499Z90gj22xWdOudX/4S+8K/u6+af/yrt6bv8h23sisqIyWGvUZcJWSuTGWkvEUBDgxmPO/exNbvzgGc7+wl3SU7PooxHzX96EvUN6334/7SsTTGrBwfy/ehUVR0StpiAnewfYfl9iK27dhTAgeO06M69r7IWTRK+vQ7uJPTgUVCeOKXb20KMx1lrhiIxTwkmGbQlpVI1FyaSUqvKCXBgQ7PRgNIbCEqyuUGztoLttQaOModjZJUhTzl+P2Pqecyx/6jbq5DwLL91m+MRpmr/5BslTFwnX91DZjFwjY1C1ECaTaX/4Hfk7LssFzm02ppOWVigTejdWaQ24SUL8a8+Tf+hxwt96Rdyau23cxjY06tjbd3HXcmy9Jud1ahkYAAAgAElEQVT30AXiL7yKXpiXNtDuvpADtUHdVlil0Z0WetRBhZqaApVZTOK9PJICE2ii3UxiOK6sY9cWMQd97M4eutP2uWZWuEyTiUwMX3mZN3/6aS79nUMOnpjHRgEnf2WbOz/4IGs/9Q3UuVNEizGDU3W6V9ZR3Q62UUNNJoKuxTEuSaWwGXvpcK8PC3Oo7T1UiQYCJIkgT2mK8tltjRuHMlmmGdnqDCjF/Gdv0P/AaRo3h5j9HrbdFNLuaELzzR2ylS56nNPeHzE52aF+dU88P8YpZmZ+WuiUhYBnAVaEX58F1PmlrwvJOs1wzaZI1g+P0GdOUNy4jbMOHYV87Ic/yef/6U/zsU9+ko3nAta+kHHtf3mWCz/+Im//+BOc++UxR+elQHEzTZHQl+qycuUMVW7aN303FXIdjPBXgoOR5ygpVGAEvTGq8pxyoedVeHKnyR1YfIq5IzgYY7tN9LU7FIMhJo6xw5EQy7VMxC4Tjx6cleJgklREWqUVwcEYN9NG39iEKMQe9UTV1/A5cL5AcqMRtt+voiLIZGVeto1tPYTVBTkfrTx3RVXBuip3otrzsnEp3lyVPeY0GBAlZpLhBkNp/4wnslDBk1ujaEoS9giQcsfcnbWW90WX7ShpESnr0LlAPJKqjpeS+2Pxx1lJpxt1abUoebJUKGatbjDyPmIpbjjGjFviMp1JKHCxfofg1EnU3AwuK8SraZxI0ZkkcuxpSnSQYpKCvOn90qzF7u5RuxbBwZEg2KUdxWBIfG0Hu38oCFZZYPcHsDQv41PZxvZoiL67gz08Ehd3j9AImgfhyBKMfVvXcwmVEV6oO+phmnXUbFfulS8uXZoJ+Rhw12+jFxeY+fW3UJ02Ki9I3neO+I07FBdO0Xh9k2Jnl/y5h4mvbFGcPyGF0NKiXNdxgo26FMszmDu7EjnSqEOSUJTnnOXkWzuYNCW4U9o7KFS7LfPZcIiuxZj5OWyn/h80Tf5H2373sY7f9e09Ufg4J2ZdqlGbkpJDnyUUR5XPSHrfEqd+o8/bP7TK2V8eUMw2cYHm6LkV5r+8Re+xRRqbiUDB951i/5EO85+5QbE2C4/dR/DKNQo/mJpuR5CN2RZmr8/Rh87R/eo62dMPEH79qnBnorAKM81WugS9idirW2lJ0Y4ldym3AsVaxAV0r0+xuoBOpYevO6dxN9dl8PO5XgQBwydPMfvGmGs/dJqTnxuTPCgxGnvf/zBz3zhg+PAK4TDHgKhk2i0ZNNOsMs2CKSrm8hzlpeoqDAU2L7ey9ZXLoKje/zD6S6+QfOcTxJ9/heLiGlFeUNxaR587DbsHqG4b22rgLl8TKf6XXqL4+JOwfJH42s508gwDbLfJ+EST+CBFZZasE5IREowKqAfoSQGRoGVBuwXjlMn5RWpaY1s12NmdJiT7sNJgZZlLf/eIy//tDA/+vUMmJ1rkzS4nfn2Puz/8OI1tS/vmiKIW4PxEM760SOPOVtXeVMZQ7O5X/XUVBKjdfWm7DEcyEUYhRDX5M2KpoOKYw8fmmXlln+TMPOOliKzeQOcdGlsZLtTsfuSkTIBa0VpPCT7/DXrPrVBECpM4wrGj/5EV2rdSRsszmIyK/6KsFD9l6rvOpcBw2kuwn75EFhmiL71GfmFNsrAmOYwz8g8/RjDIyGND/1TAxz75ST7/0z/Ns3/5T+OM4synEq7+2BNc/Ntv8fZfup9Tv55AYIRIH0yJpIQBqhDX65KYWRIxlWFaFDoLemoDoPICdg8wWY7rDzD1uvzbWiyFXWaxszUo3Zx98SQJ8Uqcya9uoGo1sPu41XmCwFCszBIUBfmZJSmWN3YhCLC7e5j5WVyWodpyHEUjxLx1SxDOThN3dwOzvESxMospCvLTSwSNOsVMC7PbwO4fYBbmxEslMDhrKba2CfY6UgiuzPo2VyDePDVD1hTEJ68pgomrSNc6d9V9UhbquxmqsLhaBGlaTdi61aQ4PPSREzVgIi0WnxNVEV3jEJIUbA0zkXdWSMCIyWUANlLVPovIR3K4e4+l7kn/6tSKcIaAfGOTYHUFFYgbuq4L0dzlUmworXFaE6wKR8/u7KFmWmIEq6TFpsYTXF6gAsNgOZbCS4kppzkyqNMnGDw0j8oXRf12MMFcX0c16gwfWUEVKwSDjPBgjLt+W9CZW3erHD9XZgQqhT21BGuLuLdvUezsCB9xoe4DkDVF5ICIoF9Dbe8JItpooBbmJZNwdx/drFOMJ8K9qddlkaY07okHUNc3ZRz1xoYqt+Tbu+j+gN53PULna1DkTnzcdnbpfffjNG8MMJt72KVZdG7Ze7TNTC1AOTAv70s2Xacl44ZSqJOrqLxgfGGReHcsLuW3N1HUKyPIYv+QwPvVfWt797f3ROEDCFTtnXMrmN0YmeQ9aSzYGzO80OH8Pz/g5n8+x7mfu0V+Yo6FL25w+NQK3U9f5ug7H6RzpQ9XbjJrTzF67CTRp75GsLoi6qAoRM/PiRNwYVFbu+TDEa1uk+TCMvGVTVwcw3iCnp/BFZLVEu4Nhcw2TtBZjh4luDhAJTkuDsRR1vfS8+s3p3boSSqkybpIsfXiPO7wCHt4ROPtA5KTXc79/Bab37Ek7YjQsPCZmwyePEnjM6+SfOghdFGId5DnzzhP+rY+jqK8Ps7LVl2ey0BbqXc8GmVMVRDpK7exWtF49S7Jcw8TfvUNrDHoVhN7/Rbm9EmKW+ty3EVBeGef4qlHCL74qkwgWSb8iFYTu7mN2o+IG+cq/kZtZ0JRk/wklRUyUY0yTFaQ37iFMoaw25B8sivrfnUaiWKrN0D5QXzn+87z4D885I0/2+Ghv7XF6IEl+vfPcOJX7lCsb7D9I+9n6WsD7CRBW0ttcyTwfpZVhZ9pzondQamEUwp7cIhaXULtIdfoqCcRJP2BID+ThO4bR6iDHmquQftKH+0z4Yp2jXSuxuwvvoh9/4PoJEf3J7A4z9zXD6qMIRdo2m9kZItN5j9/i+HjJzzBU1bvpatzWQSJEZ1vEV6+hWq3GH78UWqffVlW3drg6jWCt+V+h9020emLbDwX8Oxf/tN8+W//Yx7+Bz9KfTfg9KcT3vqrF3ngf7vO6z92mkt/T4jTIq31xU8mijqXppTeIuXKm2N8FRUGlXrOjcfYVh2tNXm3jmnUyGbqmJFc66IZojJLEUt7MBjbqqVnJt7pOStgcRbGieQb3d6ShUZeYPt9AsCNx7KKtk4y7vY8MpV5GfPJRVicl+J7e0+sK0Zj9M1N7GhMcAvy7V3MQYtiKC69JQ9DvLsUptPBtuuoSSbolHcLFoM95fkplmAsaEzhIy70MZsJ5Rx5TTh5uj/05pi5BIru7KLjWIQOpb9Ved3LlrVWqF6Km2njIk0exxWaZGNdydxNYlGFIjgG8qrCTf1urJCszfwcTFIpnJzDLC5CHAkCVhTYXkJQr1d5VxSFEP2zDHVyFT3TxTo3RXwOe1OfLqC+vYoZZxTNEDOSMa94+zrtvMDtH1QikcJZglqN5ssbIjxJUzkVv0915oSMp0Uh1g5Jiu310Tc2xDpjeQk9PysFSpZjEuF9hcOC6CAV1+M4RhlNvruFHo9RnVPo2RmKZoxpNWWf/X6lbNXXN0WtOfYxP3NtsnZI8+wpXD2m8zu3cXlO1glonvGfPb8uxPxTa/D2LUy9xnyxhu6NJSbJaIr+RArfLMVpg767BUFA7ZWJmC/WarKQD4We4Ori9F35Cb3b27cQn/cGuVnh/WWOerIKbXl341L15NU841NtatsCly6+nJOdnOfmdzcpuk2at8eoma7Yyu8eCZl555Dab76KeuoRdr7rnOTxnDmJq8cEqyvoVlN4IFGI2T4gfOEKh8+dEjn6hTPS9283MSdXfRgh2HYd2xRHYz2YYFsxthGJHL0V4+pCDHV5ht3dJ7tvFXf/aXGLbjRERTLTxaUpyYkuQT/FRSGdmzl3vnMOLBRLs0SHGXppgbwhElntEQo7HFXKMUCg/yiSYy6JfkUhfJcogpm2wN2lQ7VHfIp+X8jegSH86hvo2RnhvKwuoR6+KC9nt4NaFjNDAH31DubECsmDa7jRGHt+Ddeqo5cXxUtHAc5R1MUXxYwzdCpFj420BAyWkl+lxSDsKy9jz62hz51Gz81gVpcl9K8lKonujYyiEbHwVUO+3OXGD0BzfURydh595oSspm5sYjotVBSJN1IcYlfmhShfq4nUvd2WlWHg0SHncFu7Ar8vzgkXaDyRAbEnHh9cWyc/s0S0vo++epve+5Zg95Bgt0+0P8EsLZK3Qsz2EbZdk3DUG+vCEbp+RxCW0GCGGa7TFDJq6km8iW+llO2KYqr8UYXDDoa44Zj4Uy+iz55i70eexVy6IHwFkBZQGLJ/SbH2hYz4sODhf/CjvPbnfpL27ZzDCzHzLymSB9eo3T2myCl/I/dKbmwpsfYE/OPvZmlyV/rSKB+xEosPiQtF3l0Z2jnZhzMKk9mKBKzyabwFgBon2G4TVYvFC2p2RjhWxuDyguLwSAJpy7ywMnMJpgXZOKHoNqWFHMfomW7VTi6L3uLwaHre2i+qlKoCSVWSo/pDIdlaUQ2ZYSqkZn9fzKSQiIriWLDmccWORmTZ1kkr2e/DZWJhoOK4Ki7tJKnQDXHHnraAAO/ye/z3scLYF8o6tb4QctMxwDF1585yH0HhptmAXoWKs0Jg907iLhP/J+0zDO+Rspfye58/qOK4ypnDCpFdFd6WQitRpRlJKldRVNl/KC9UUT6+xJWRHX4fLjDeq8t6lWldilTPt0Mpid4oD8sK6li61utGQxDcOJyaqJZ+Z0VRKUxVLEaQxfKMqFTHKc3XN0nOzFG0hWfmjno0X9ticn5RxAiTCbrdkv2FAaOnz/v3OsA1ahSHR7LIPUZiVlEorv/1mvjNhYFc+ySVQjQMsMMhujfiW9vvzvaeKHwcon5QUSR9+DyfEiq1EiJqklD7jZeYLMY4Y4j3ElygOf/PttBDqbhtp0HzRp/eMyfRq8tCystz9Fu3WPjSFkffdhZ291F5Qb61Q76xiVldEXh/NMYOR3Rf3Wf4xGnYPcTsD2Uiv32HMo1ZjRLxcAjFEEsfjSTzK7eyCkhzWXm12yIff+26vNxRiGo3UYd9UQ3MzxH+9qu40KBHE+rrfU79X1fZfbKD2e8R9GUwbL+8TRnMSSgqMpckIrUsJ6vSUdqvNkuzQpemqHEiXJHjAYiAuXBOpLI7e2K5v7fP+Pc+ib12C717hOoNKfb2Kxm63dmjODzEHR4Rv7VJ/v4HMHt9VJKR37xNfvsuOpEcpPBAcsj00Qg9mBBtDwh7KUE/EROyek2sAVpNCY39xhvki20pSvoDaW/4nvlgLURPcro3EiYLNR76G3d584fqRLcPsN0GK1/cZ/MPXKA4PPIBoxY1GKEP+rhGrRo4S6sCOxpNlWdlmObegQy4nbYUkX6g3vv9j1DUAvKlLvnD5+i8ssvoqbPYVg0bB+Srs8RbQw6eOynS7tiQP3k/ajhBLcxRKhDzViRp7MfcgktLd3F8VpUCtIwCKJ55SNRZJ1ZRR32W/sXr9O+fQccxut1Cz85CEHD2r32Z9Y+HBOOC+q7j43/yk3zuZ36a7tWUwSlF1gqYe8MKUjlM0EcjlOe6VEoUvx03NCzlzKUXlfMohY5Cwhvb6N6IYKeH3u8T39zHbB+hdw4JDyeYcUZ8kBLujgiPJkR7I8JeihnlBKMMsz+QvLrLV3HDkZiI9gfo5UW5Xwsz4tK9u4tZWyFYXsScWEXPzxGsLGPmZuQ7xmPU5auodgt7eCRmnMuLMoEuzMmE3m5jTq4SrCyjT61hFuflv5t1iVuZJLhZycGzsSSO5x15X2ygfPaVb0tqhTVly0n4SiiobY1Rd3Zkwu0PKmRMGYl6cWkqROogEPJxpeYzlf2AGicEe2OCwwlmlGJ6KeEoJ+xnhL2McJhPfwZiIhhMCoJxXhWYOE8IL/1rtKI4OBTn86GMZcoYsfzYEhWqSzOxu+j1Ye9QWjWj5B43Z2X8WOwEDdOD1DuFezd7r8hyeV4Rtl2aClfPK8ekzZ+JrcZ4Aoc99N4hbO/B9q7wgErkOk0FeRyNcaMRbjQiHFmiXiFiiVzMOG3fm7pmuXB5DvrgXHVueApF+Uzb3T3Z3ytXhIBeiLt2eDBBv3ad0Qfvq8bIsJ+iXrnC6Jnz8h2TBDXTpXl5i+H5rmTk9QaYhXkfPivqYlcUFL0B1qt87c6eSOXDEJckFDs74s4/0xWe0u/G5t6ln/fw9h5pdakqkRutJdOqFoOOhJU/3EXFMUff+yizX7jB4KnTNG71cYFmdHGejWcDzv3rnrixFo7G+ohifUP8bU6uSYpumtG6NmDvex5g9vIANdvGfeN18vU7UqQYTXBqDWcdtZ0xvY+ep/vbN8nOLaMXOpAVWGWgGVfSStWKMftCasxnG6h6iOknlTpJ/pLGbB6Qnl3ETHL0kUbXYtzeAYd/8Anmnt9h+MAi8d6E8ZOnmXt9xI0/copTv94jOzGH0wp9/WaVo1T2iJ0vDFQ4DfMEhK/iXVcB4WvgSY+TpCLvFleuYR64gDrqo86exAWa5hfeYPid76P+6y9hn3wQvTKLui6ZZaXSydVCyC3hW3fIt7axH30CtdwleOs2WSOSAjTyCEA7ItoTtZgeZ2SzdYKjpFJPBd5rxKwso0YZ2dklwvU97EwL3W1RXL3B/M9/ncMfeJyZyz1UFnH0wZNc+rs7XP5Li9z3CzIIrvzmLoUvCDEaN/ZtuCTFzckAU1rG6zgWKD0WdQ/ei8N5ArzLc9xI3FibWzk20hxeaEl8wrhOvJ/h4pDhWkzarolkemTZfqZNc7Ng0tWYczXatxLC33mD/LlLDE5EFDVobPuJxL5DxYXnapjpZ7XtlGKhKynruSPoJzR/5eskH32U+KtvMXnuAYJhzu0fOc2FH3+Rqz/2BKc/nXB4IeY7/tgP85n/85/yiT/yJ9l5X43OLfE8UUkmPJS88MZ6Bpf40NLq/VMop3BWQ9kiLQpUmTgex/KOHvWFVNwfyLNVkk1n2pVkGWul5RIaSTIPFNYZ1Hwbd3OdYHWZYmsbO99BW0u+2MEYTbLaIQoNwWBCempWiMxRgPGu1iozFHMt3I1bBCfWRHK8vSOqsMUOgVIkax0ia3H1iHS2TnA4ke/w6JUCVJpJYPFoAsvzFTqpCkfeDMhaBhRe1edIO/JOBeOpMaLTCjPOMc26JImXPDylhWtSxu94NFbVa6Ks9OaGBAYVIxyfdl08hFLEviHzSJ1R5DUjDu9agRPOjzVUfBuUou0LHtupS5tOKYm0mYiFhanPCfoLHpESm4FgaUGIullOsbWN7raxrRg99jYck0SelzCkv1ZH5zWwEA5ywuEEs7bM4eOLhKN5wl5OcDBG37yD7rTpPblKMFomPEoJ9ofYG7dRnbZwaDySVFIclFLkF9Yw40W4tk6xdYCZ6aKaTSYzwrcKR5owNtSGDdzmFq4Wi4u7v77FwaGoqtIUMyPCENsXlac6fxp10KP44EOoowS1uUd+dhlzfZPhxy5R+5Xn0Wur8gzd3mHwiceo/crvoE6sSWu820ZlObUdGXuLtXn0Vc/dLAtYHxGjux3y1Vn0TEvmglsbMhfMdOXfHvU4Zg35re1d3t4ThU8JvlfeM8bIy+q9F8z8LMXBITOf/3/Ze/NgX5Lsru+TmVX12+7v7svb+/Xr7ullRj0zrZnpGcEgyVIgMLKNwDYOIjAIKyA0FhiCRSYssCMwxgqbANsEEmJxYDDGoJARoG20MxpmpjXdo1l773799uXu9/62qspM/3Eys+p335uWRKDujqAz4sW7t2796leVlcs53/M93/Ma+998iaWff4mj3/EIC68d0r095qF/XPLGd21w4Sf3mW71yQ8rssBDqa9cl2sGBeX1O5tQ5NRvXJMUxQAH++kUe+uOeGcLCyzdXmL26Bk6bwSF4Ccfk8VqUon4avA6Yv2l/JZsiGgpBGqWFnHbO+JVTibkh0cSRprMxNhaWWH1Z15m/OFL9H7lBeoPPMzg+TuUZ1e4+A/f4PZ3XGDzl29h14ei4Nrvy+QN1YBVUQjy0y3ESCyrpgZYR7zKBKnHkhyDXiojkJ07S/3y67L5PP8yKstxVUn/l59n9vH30f3C69i9A1haDCHIAnd4GLoyQOgf+Qbyr17B7u6jNtfRsxrXy0RkbBr0NzoZZlTiM0Vxd4Tr5QJ5KyW8G0DNZvhr18kvXcRuLqMPxtjXrqA7Ha5/4inO/p0vs/P738fqlw9ZuFyz89EtnvjB6/h+l6NHV6gHGd1rC/IeDw6D0Wel3tdhRvnQJvnBsRiEeYYuhvJehsOmUOn+If7UBnp7DxaH+OkU5TyzJcPWz9+gPLdKdjRDjab4TsHys7dRs4rq3Br1MKd/Y8pstcPKrUmjT3LuNL0Xb9N71eD7XSbnF5MODDToTqxVpVKUwWP2RtilAd0vXhE+19ExHpIic+cnP092aosH6k1e+R+EyPzSf/sIa1+EWx/t8O1/8I/yc//47/Px7/vj3P6IZvGLXsQFgSSsd4LTI1otrgl3xFT2gCCCaf62uYbvCopJp2j4bUtdRNxQ6jF5HbVZHCqImumDMers6SQ6qq/fod7dwziHvXOXblVL5qD35EbD4TE6y3CHRzLunEf3OqhTW7IhHYoRZ2/fwThPffcunaqmvi7OT35ma/4aIUvUex82+b7wapB5rWvRKPIKsrEli+gOearaDiLiZzuirUMoReKOR4JwDGWMxXI7PmYvVQHVCCE8ZYVoHTMx3SAUw/ReJDJCaNDMHL5WSTMnieJ5D9Y3hY6dQ49m+JAp5kZjsuUl3GiEmx6Ds5iVFQn7FwWurLC376CyHLO+itnahLJCj5VwfI5HknAS1uPe7Sl6XGIHHbkX76nfuMqyMTL3nCDPfjLBAYvP3hDVY2txVS08mMMjsrNnJIw2K+X6MaHh5WvimKyvkS0tCjI5nSZ+j5k4smPJooyhs/rGTUFCT23Kmm40ut/HHR2J0R4U7v0b16Hfx4xr1NVbeOepFgv0eELvp38Nc+Y0OEe50sG8NKH3089hzp2VteDMFuwe4LbWyO4c4jODnkiWoT08TMKy3oE/PhauWl3LeAv6dN453M4uZmEBs7yMWl6EvX+7PfPfunl4p4sLvhXtHWH4eJDQUUQuQr0pyTaREgPs7eO3Vll8YZ/t/+hRNn7+KgdPn6V3u2R8fsDpz0x55Q8ucfFfTqkHGe6xM5hffE48wulUPJ2+ZJ/c+dYzbPxKhi9yyq0B3Rdu4qcz9PKSLIr9Ll4pslElpOnMMN0ckE1kQ3OZTtk4ynvMXojVKkW91CU7f4b61cuY4VDQhKhDMp1Rn1tDLw9RownlhVWKg5Kd3/8+1p/ZoTy3iis0Bx89x8orU177Q6c590tT8VIhcC2iMJyTLI2qxsc6ND5yMYTQ3K4hJLWBGoXUyWOn6CwPsS+/jn7/4+idQ9zKAmpS0vncS8kDcpfOoMcl3NpGX7qQ+B6+m2Nev0X12HnMrx5TXTrFbK0jQnRKYXsZKkjc18OCYnuMzw31QkH+yIPw+lWiuGPU7WE8QQ17lGeX6FTn8HnG2U/ucvO7v4HTP/Icu//ZB1l6dczi5SnbHz/LnY/XPP6/bjN6jyixehAuVFUJgbSuYTKhuLonUgXTqRiISqraR+QpatTonX38cIA6GoE2HFzMWbhpufafnGXtKzMOH1zC6yWyiWfxpSOmj/aZLRqmqxpd5xSHHld0mA0lE0fXsPTqBPOrzzP7lm+gGuimanHgbkR9Fl37ufICo8c3KPYrJh99kP6VI+ylUykVvvtzX0ItLFA+dIrpRocH/+WEV/7Me3j0r70unJ79jLvv7/Lx7/vjfOpv/m2+9bu/J4jkWUEltA6ihWJ4KaWbcRXCG1Kp3IK3+FDrSGWZeK9aSaiiKPDBmwYgy9CLPdS0FmVmkNT22lMtNAiKOe6hrt4QIu14DKc2yHo9yeoqCsrza5jVRZRzlCs9Ci3lCnTgpGAdbqkPl69i1teg18UfHpKd2sKeXSfrFFQX1smdw26uUC11KDIpdaBBxsVsBiG1W8dwFwaMwuYZXivKJSnHUA0k9FcuSHZXNm3S9V2mhOQLwt+bddM71P0+9vBQDJxeV4yfIk/9pbQWpLHIYfcA1euggi4YAN0shNWkMKnLFV5nITsuzGslOj/VQLH+6fAKB52E+JiFgcz9fg9T5CJOaXRCRlURSsl0O9Kv2zuoB85JLcNQkkJPy+RsHZ3toa0Yt/mRpXOgMQ8/yP4HN8mmm5iJpdibol+7AUXO4TeewUxPSbbX7hj1+nVUv0d9/UazAYTxp4zBXjqDqk7hX7+GvXUbPRyiFwbMFhV1NyObOIpCY46kJJCvrZTV6XaEc3Z3B72yHHhjK1KPMOpBvecivHJFEL/hgnCHxjXqzBazB5bpfuENmM3Ipha2Nig/9DDdX7ssHC3Ab62x/ZEVFm7U5AclZjTDj8eYxUVskPcwq8uwuoy/eYfq0inMaBVvPVy/DUUu0hp1jd3fx7QLwL7b3tL2jjB8ANm4Yx2s6FU6J9k2AyGlKuspNwds/OI1dr75HCs//lVmH3uUhZcPOH5kiUf+3l1e/y82eeAnjzBX7+D6fdzePnprA3fzNu7ONsoYNn9BsffRM6x87ibdr+3LwmkdqqxwxyPc9RsSjx8OWdpb5vi9GwwuS2hNT2sosiBpHwo/Zka4NGVFfjjC3rpNdmpLUmbv7qCLXLyP6YxsVuKXhJic3zrCrvRZ/4lXOP6mB+lfGZFZS/f1KdMH13jo77zB9e96gFOfCgud0aLw2tJb8eOpEDqjCm/gZpBlIocfC086K7bakuhX9L5yTRChhQH2176GeuQS7ksviPT6bEb/l57n+Pd+hOGvvCYyA97h37iO3lzH7+6LJtLSIvlX36D82Hspnppg/qQAACAASURBVL8GnJaaV0qRHUsWSFY5qdkzKMj2JxR3jvGXrwnkP5mKrP72TlJxZmeP4tKFJIy4/+QyZ3/8Klf+xFOc+z+eY/QdT5KNLGvP7bL+SyO+9gOnefTvjJuq69bhDo+lDImVsgPMJKNHMpOk/9xogl5ckJChtTL+Bn3YO8BvrqF2D1h9fko1zDj9ywfsPrnI+ud3qVb7qR5SsVfSuevo3S1Smvhs2bD80nie8PvEw/SefR33sYckDdkiCE9U4a2R0EndvNfBl24KCf+Ox64tkH3tsujZGINfXmL2vvNkP/8so+/9GAeX+pz/2Rlf++8v0L0hnJ7FK5bbH9F863d/D7/4f/5d/sNv/n1SpkBJjSQVycqhqr1wNWyTHQiJDyahmiKUIyklPNjtSH0rreT/WRV0cAzae6lnFEog+EIlgmok5eqtDRFP1EbKRWzvoId9/NER2f4CeiRjuqhCvTfvqXf3EvdPWY/eWBe0JBhrdntH9LIO5Rp+NMLs5+hZBdv7KO+od3alvlJ8xuWhCI0uyMZpOwZduZDRJdweU0rKXedQYaYN4gNi/Phc45cWJMtHaTE0FnqpUDFO9GRS6Y9wDn2pF6V2D6ArSRJS20n6zfYzeR9GJXJzQpyiFAKC/nQOgkq0VlA7CU16KWtjBn0oq2SEmdVllO6FhIcQ3up20SvLIaytUNNauGAHxyLoGkQYe9sb6Ikgu9Hgc5evstjvoHePQmKF1AnUa6sMX9iDnX0RKByLJpAe9MkeOC8coaAPRF3jpzPMzb2U5JKd2kqUAcnqcmRjR35YoqZlKr1S395FdzvC7+p1xQDt9aQIsrPobhdXVmQ3twXBfumKzPHRRBwRa+l8+nmqD72H/IuvyZivaopPfYXqI0+Qv3BN1s5rN9kcTxk9tkF+dVs4hFmWCpX6usbu7sPuPjhLflX4PUR19DzH7uxiej10rydle95qxAca5+vf4/aOUG5eVKv+afM7g4hdi68SFjkfapuYhy6G1E0h01FWgmCA/F5b2eitw968FWT38xT2IfBjkoeqdVLvJdaoAVIGCzTe2bnT4XctKdtWUk5j6ilargfgvvRi2mBTFk38uXXMPP5Ic98xqyH8zWstHIQix33lhXC/Zv663suknk6bPtOmKexKDEsJfyNWCMa7hG4BSTMpVZOOhT9VSMsOUvZJHt7N30PsI3tqpenXyJN1AsXTkpz3z35N7iXwTCIxMnJNYlZG1MRIG7B1smmf/L+22Gs3ZUMMYn9oCQnqfl+I37GMgtJSQiELnIuWkm/sm1gwV0qOtPj/1jbjLaJwRss4bPV5FC1Lnw3Hx7/tPZLRVUXUThBDl+mkFuxy2eQ6P/mrzftGjA8fEb84L2Yz9JOPiZBmZtI8UJOZ9IvzgvR4z0/+8o/x4R/4Xga3azp3p8JNs4EkuruX3mciPAdEMT1DKHuisoz640/SeWMXuzLAbB9iVxcx2wfy3qIB0O/KfXTyppyKls243hiin/kaPPkI5va+kJJXloUYnGeJ4OqjXEMQ/tNFLuq4WuGfehye+TL6A0+gLl9HLSzIRn8oCu1Y12hdhbCer0XMLl5Dh7p2fjSGhy9KOvpCH3VwLNk/K0P08QQ/6IoAZCeTEHfMOAr9/fyfW+WJv3oXxhMJ25QlqtfF7R+ktSXpd0XCrQvZZUUB1lL+Bx+Qbs4V2UiyyKKQYrtF0cBY9bvtBKmrt+W7Hzgrj/38y6Iaf2pFFLIj2rS2TLU2IH/pOm53H/3geXxXsmb7/+YVOL2BOhqLMRzXlrDe+otnJOuwyNBlLX3lPX5xIOE+6/CHR9jdPbKtTfzigpSdqC3+4BB7dES2tSncsG4nFA6Wtc9u72K2NsB77J1tIVUXBf7iGVw3Twahrhx6fyTjaWdPVKczw+E3rLP4Cy/hHj6H//xXmvI+ldSANKe2xMBa6Ms9KYW9eTupa+N9ktRoH0MbsrOnA9JdpNAm3lPfuJXmRmzm0YflGrNKSlYohXv9qhDqHzzH0SNDFn/iy+jFIT9942++tcrNF877M3/+T70l33X5T/zZd5Wb37SFcIMqCiHSxRTaYIw0wn8Kn0vRSp9LKMXHzTgzTRjDVyKKNRU5fpXlwvfIsqb+DaCDRg0EjkNIOU3nhXtDabIg8R/r5vjMoGsLZdXU1NNaUhd1ixwaJo4yJ4w6kLIBWjcGXFuJucgFRQrGkCoKSfEOG5PqdnF7e5KyHRZ1lMasLAnheToVA8YY2dzHU4G4AxJkt7fn7yUoy6ZJHDZd3evhJpPmvNCXsQSGyjLhaXQ7mE5YaIxOC3KsExT70mdGMty6nVAY0+EmU8zKksji55mgM2ExrLeW0NNKQh2lxeWywetAoLXdDDOp4EbMlFGNYWtEy0RlGV6X4HRYTPtJ4NCNxiIDoAtZ7Moq/C7Kz7FcCmUl2XHRa4+hn1nZbCixSGERjIU6ZNghxNDBs1eaDTPUXsIGRWnnKNop5xcvSFmQtqEPybj3eYaqaqwxosg8LkWnB9Dey6Lb68iG0yv48A98L7/6P/4QT/3l76Xf7dMrjIQexlN0IINibQh5iMEjZHET1I6FsD/99icpdkv2PnyKhSsT9j9+lv6tivETQ5SD7p6lXFyhOKixvSWyY4vtmlDsU5SJs194jis/8DEu/pNbYmC8/xHcZ7+EeuoJ/LNfRb//cXEuXrgMD19A39jGb62h7u6izmygR1PsM1/m+vd/Exd+7Bb+wmnU4Zj6jauob3wvLlyDl9/AP/6g8Hau38WfXkPf2YNTa6hrt/HntmQ9qURLZv8jZ1h86ZDJ+84A0Lk9ZnZ+hWJ7RLWxIAJ8WuNXFtAHY9ywi55U9K7kVFtLqM++gVleRi8vCfq0toq9uwO1CKbag8NmMy5jrSnJZD08n2M7iuH1moNLHSlLEYeDB+UI5N4ghxCyzVKqe+3IJhN4+KKIBIb1tD67ykt/uMtjf9ay853vJZt4ln/qa9z6zvehn3qY0z/8LIdPrtPZren81HO8/D9/hAs/XdKJY20atJTKmaBHtUtoizoOgp87u7Czi7dO1qgLp9CnNyUD7muvypxbWsS954Ks2dMatbgga6UPRsThMXpxQTRzyhLz0EWq08v4TJHvTphtdFFWUvn1bIoqK3Z++1lMtQ5Ad6di+Mmv8er3v4/8SHHuCyZpQMlaUCRdJQUiC9LtoocLsoaHNVR1OyLwOCubYyETDmtRSLauOzhM63l0IOOe4a/dRIUwp5/NJFT2wUexIVS99Mnnse+9xNGFPvwz3vr29mMdb3t7RyA+S2bdf2ztPwWQ0ENATiTleUHk6/cP0A+ck+NlJZvCaCKEXefFw53MUpq5vXU7bcgqwJEuFCLUvSAVHtKcYy0r3ZWaNr6uE1ISQyiq05FNNRhiiQsxm8nAjymkIe6cYsvRYw/ZMFRBkFFp1KOX5G9VLdlS1ifY3udGvMxeISGohQX0ooTI3OGRyM2Px6gzW/jrt3DTph4QWjVlLUCeIRKcnW+eKcvkM52OKLtOZw2qkWXJ+PTHIzkvFGaVQoq+0VgJ36n60q++WzRFB4NnFKseA3Dzjlw3FD/0lSAzERUQpVXRWlGPXhJ14SKT2jidQq5pAkze78jxG7flubY2UIfHIY24kjG0uoK7fbd5X0Uh/RVUY1MdJSNE1MRlcVIfyvtAgC+roC8lcybW//IB8VEhrChIxbxShK9q9OpKCufKi/TN7/HneO2w0CYkKeowxfPD97jHL0oZCggaSQp9MG6qbSsFmWZydsDhhYzn/uIP8eBPfQ/qOKOzq8mPJYwAkI08tgPagu0ospFkmmWTcE9asfbjX0WtrTTv2XlcvyMSD1rjullCQ4EGETVKirDmUuJCXbtN+Q0P0HnpFm7/ALUgejyRS+JG4wbdRPgyvixFbwbw57bg1atU3/gIxR2pFxXFQqnkfaRQEwg6Gq+xtIjd2RVuiDEiZvr+x2W+FXmaj75oIcAqhJDiZjerRbNrVnHz2zbo33HkR5bB87fF2JyVzZyKWjiR1N7tSJr2SPSL3OER9gOPMFstmKwZhldKUGA7utmklPyLZTR05YLR06zf2UvX5Pf1VTAa+7WXyM6fY/bQJsWXL0s6+UhKV0w+/hi9GyPUa9dEPHJ5SZDxlUWu/p4N6j6gobsNZuLp71gGP/tV1MVzgqz1C1RZo3dD8eK1ZalkXuT4wyPc0bHo3ywOJX09E502b61o28xmsu4EEjbWiuDkwxflGfYO8OMJajCAzVXKjUEq56FLR749lnehFO7ly+hFKcHhVhaZnVmge/2I8cVFbKEZXB1RLXbovnhTOqoj67fPDP72NirLsPv7aYxgzNwxtCE7vSVrfq/bOKiVkJfdaJzWWJVlqAtnZf5Fp0gpUcLvdvCjMSrPpWbk21Gr68J5f+bPvUWIz598F/F58+Z9g3p4nxYuCVsF0T0jhk6sXKxCOmYktabfpyqFSqJgmDIxc6WpS9R8t0txeBerE6fzSLCnCGOphgMRBbhidgzMIVViYHWDR1M1RR5VIYaPVsJjAMkOa5OTQRaEmCkCAa1pdHiYzUL9rYAUeQeE7Btr5+BXXzXPJGE82Uw9pDIXPmR7pXCXrpLeiC8rvA7nxfBWDBlq3ZwXvk/FDJag84H3qLK5dw+hWGoI4cQMPnnwxpgCdIDSVWakDllZJaNKKppLfTIfPxsJsBEpaaFPaJ1kAXAWH1xqX1lULhkuOJEMiLWc0AoVMb2YfpvLe1bxO0Mqbhw7KqCEEu5SklofvcYTBlF6JycPhfpIafzleXo/KVsPMEdSTT6Nmdj/sSK31nij6dw19Lt9Hvyp7+H13/13ufRzf5SZynG5pjiU1GhdicFD6am78rtyEn6xAlSILP+wh/vyi2TnzkopiI21VATYxNT2vBUujYhVDKeFNPji2r6oLW+sybtdGOD2xLjU9EXzRSkJT43H4jmPZQ1Q45mgZNf2xPE5lLR6vTjE7UiJEh3euTs+lpBwvMZoDNqIkRTWAvfF54VIu7wkobflpQZFbm92AaWUe8igrlm4vsrgX32Bo+96Crezh3/4Aur5V3GPP4R+/Rqghdx8PBKelhPxSTudogMia45n6GFO/3YNCsykFsNTKdqJFMr6ZIDNhbuiJMHBoYiJxr6eTMh3x014fWUJnKfYL9H7xzhr0YuLwrmblaJU7jYk49CDsh7bU9hc3p86OBaSbm1FLiIof+vjcRMiD+M99rXKgh6bl4wvnWW4g0Ppy/C3WF5GEgtEF8eOd2AyIVvok+8qfJEJd6yyMsa91NHTq8uCVNYWvb1HJ9OBb1mjBhlYL5zDUI8uZRFbl2qVyQFxGFVcQ8IxvGv2nVmZHJIYnk9rlzG4ssKE7D01q2Rdig7xwazJWC4KedZ329vS3hGGjwcxECK/IGY1tPgV3lrhAATv3EMYkAGVgJBxZFPmUSIWumZgg2wqMYQ1x8M5EasFUVX1SqGNASv3pmyTKh5DJkCDuJxUaGjpVWACNKp1COvptJCme4z3FEsHgJCvZ0GuXylBX8qy6bN4feT6beNOBd5E+t1oMeoCZ8S7yH8KHJJoyBndvAtr5xFS5+fPM0YKMyLIAM4nefrUInndWpQ1zXViHwV+kR70Q7hFpaKSxNBjW/QrpmV7TxRs870CXfYltBfuzRd5824ichI/H/s86deQzovCmelzICGzeN+xxEpY0NvHmmfW6V3oTqcZs9DwWQK5uG1EqkLS/pOhFNKpgeDpByRxPG0Mwdii4xD6U3mP8Z5eYVDHXS793B/ltW//+zz+6T9EuZpROYWvNbO9DDuwqFLhuw5zaKQI51ThOhJS2TQafXcf+n3qq9eEDH88SmUNlPdS7bvfS4rKsfo7RS7cm7pGLy6KOKaWTBxljAh0djupf3QwEqLqL5DCrvrmHUGJrt3EliKKGdFKMS58Gru60wFj0F1xRFwIpSqlsEEJW3fl8253TzLNrFT89rOZlD+ZlcIdgoDmZOAnkGUMX9yD5SWWfvFVGb/bB/iFgXB0ul38Ql+QSpDwY1XLO9ThmesctXNIr7LYhQ7TzR75oYTddSmheVW3su6iUdtCfLzRqDzHeY/aD5IOSkutwL1j3HgSDHmDn4zIb+7Leysr1EJwFkdSNmi25ik3asgd3hQhlKZZNEYyZKPidCwfkmeyPqngVBjR/LJ3tsWADM5GDAnZ7R2Zt1HgMHKf2pwlHwqNOo/f2ZNsvEyI87GaO5nB7x0I0uw8fjSScNtdQ312jePzHamvRp+6rxm+NMVNRIk5hqUTjydKCFgrtIH2GgMifxHC+jgrzlZdCwo/mQoSHAwiNWpRA+o6rQHueCTq4hMxBu3ePu+2t6e9IwwfoCm0GZEEHxZ33SAAPqZlR7JyXODj5uxaqEaLLzFHDA1/U8mAMoloGGHNNsSePh82XqWUoCNedD9SnDfeE8EAyguoSlHmDQrU6dqBcJ10d3RjtMhztEIgpmV4zEqBjL2XFGSC12IM+FD5eDYL6IdqFsU2d0cpfC2bgYRzgipra+JHfk1DAleBH2Oa67Ztu9iXwVBrSOKu6ZP2xtx6Tu/r9HxAqlwd+8UnngxN6CdqL0XDq5UWqmzLIPMOCKm7ESXxToy+toF5P8SlrkTYsk1SDqHOOVmB8A4S0hb7KIbPlEr36cdjRLQntLYRF1Vw4b73E/t3bpwphVoK5+eNpIGPCJN1qIxAhnXku2M6u31mKufxT/8hnv9t/5CnPv8HODjsk/VL6mMDhcOjIfNi7GjwtQKn8CbcV5ZJ1s5gEEQQS0FLvUNbi5tO0T6oF0diOWETcE6yb9IYkNCH291HDxew125gzp1BWSd6V5sbuJ1dUXLe3xdeXlWjV5eTJ50t5wF5qNCLQ+zV65jzZ7GXr5CdOyth7nANt78vGi8T2QTRRiQQJlLqwpzahG2kpIDWggDYlmMSOFnE0Gc0YusaTm/Azbvs/vZzrH7mBtPNHv1DIV3bYYfsWCQdlHX4mFpTilGFdfhiCVU5erfGon91FJWPG2NA0BBBEaVaezNWfCWGujq1KevWflCODuncanEhzJ8Q9j4eyZjqdYUrWeRilHiIei8uA5QPsgdhjfBNWNZbi+r3UQt9IdJrLUjQ0TFmfVXSzGNofVbCwSF6fQ17Z7vhCRqFeIQav7acwmjGGAl3BTQnOmJeSbjeH4+FH7i+Kt89neEOd1H9HsqDzdVcFXs6HbRrxvA98yw4ynO/h2eOEgApQpCZJjSe/jcS9k51Ep1w8ZzH7x8kigPxvLcpnf3drK53kOGTWsuI8TbE1J2gEQJ967ksJR8yNACZOHHjblvxkdCsgv4OCLdDq8boiS3wfaAZlDHNF2Q9ULpO1wg/SBoriHJn4LpIuI7mu8OxmB3lj0fzBk/7PtrGW2z3C5OEc6MHOzemU1jK3nO+i5tuCO3E5yByMtqLQgw9RXQontvWf5n73tZ9tv8ezk8GBYEX470sRNFjiudnmfCYiqLhzQSFYF83BiHh2dGi1WLu00+pvEcb5Ql9Ea/T9EMIE1gLlma8GSPGBTSIXxpvYuCohHS5ZlykbLIo0/DrrzyqOy9C6Vseswr3qLJMUsK9zJMEzwN+FlLVtRJnIctQ4yn5MbhcU65mPPX5P8BzH/p/+cT1j1Loms8vX+Di4i67sz6rnTG3J0OOywKtPLl2VE6MTXtHyjO4kegdqTzDrK1KraOpFB7100DqjCrs1iYemrt9V0JKe6KUraczMdiPC+mnUJxUZXmDiIVxEvWE3O27UpBy70DWgcjNOh7LxjKepDAqINcIm50Km78H4fUFB8pXtXDB8hw9GAg60O1g9/ZkvIxFhVzlhaBC2qB0ibp8Db26gn31DfT5M6z+0mXc1ip1T1NtDtN4cytDbC/HOEJtL4tfWoBeB/fGdXRQFqfIk1/hi1zCOkqlsQeIoRXR4lCWRZS3Q0g1OotlCZ0ObjJBBXFPP5k0joYLSLo2klyQZdQLnpXTh/SKihusoiaGekHmgHAwVYOae4/pdQXFCmUu/HQqPMuDQ8zpU8JbtOG485I+vzBIhlMiBQd0Xc2q4KDJe69v3RYV5qPWmuwaA8wfHoV3LuidPzqmXDpPtaCoe1AcZ5QLisFRKGbc7aQaXsB80ktEXKOzG4650WTOQQTZF8zGOrasRLB2PBZ6w9GIKCnCeIoP66oK61k0pNy0/HXXgXfbb0175xg+WiEcGtcYPwSUJ9RV8jakgUaDxRTgq5BB5VCGwN1oUoBPFl2cq98SWzRaWgJy3unGoKJBM+Il7mlR3t/RhJ28auDbBECpRPz0s5ApFsMSgdwLiJceNtxYILAt756+tlVEMCEjTefFL52DkOc8m4hCBWhc8HjXwLrQeIiuda0Y+25/VzDw2v12T9gPE1A6A7QQHKXwSgsnJarahgr0qYxJr5t0ZKKx48tSELRuF5WZUD+pMYRRWqQBIjn9pMGTbss0odLwWT+bzcsBnJQJiOToVoq7J4QSW6hMLNbY3izuaSeO66WhcCVAQgd165mgQZ9ieDGmb0eeTzSWonLwdA+9uoKZQXGoqJzi4LDPJ65/lL919rP84M4jfGDtOpm2rBYjJrbgwmCPo06H2mky7aidZhSzZNqcpqKQEEgIBUkollBrT8vxukYHFDFtdCHc48ZjQWH2D+TvR8dpI0/hkFY2ZuSLNONbaq6pTge3J3XXfFRNnk6b+VLNbzRxI/PWNQkAQQbBrK+lzSoS7xPqG/SgVJZJ5fUsC3IUYvTau9twao3hywf4IqNeKDDjSjSOAsFbl03WqKolvOIOjtCDGqUWmszBshIybiysWwcuYBt1VDoZhvhQzibOz4jQQDIC3WyGCoZiNHhkcx+JynANZR3GdK3AgwlLVaxsr0Mtwsh3FFkQlRAxF7OZolyID4Z4WcpcbBmhKmRf4jx6PMX3OkHfSmgEOlwnJp3EcReTVGJhWjeZimEdnlPXHh3mja5pEhqCgjTaNOsezDub7WPxueO8izxPLxzCZHgr1YTGY6g0IthxzQ/lc3SvK/3/dpTrele5+Z1i+PhG0r3dItE2wvda4b1Kg9/XVRiYYYJH46FlkbdxvbQhn7RcAuoT97w5bpFrGQy/0eYCETqGQJwH5VJ69UnUIRlDJ4jCKePOC9dIEKpWr3mPrm2ahO1U/eah1fyEbh+P9wqtDb8JeaXPtfRk3iw8dK/R83Vam/cT3294zhQKqms8IawUM9JqKZSpwkIS+0hZC1WJp0hGZew3MRC0bHqR09Xul3ZftJt3qExSX9GSBj8XUo2LdjskmPpLy+cib0eH8RX5BO3v9F9nfJVVE56LPKZgDIsujEthlqTRFM4B5sPF4X6jro0z4GtN1i8pdM0P7jzC96+9zN/Yu8hQT9muh3R0hfOaI9ulCkXEjHJ8Lh80HIj4vgNiohYG6VmSTlPcWLIMVYiH7kIV9rgxqzwgeqG4per3xFCyeZKzQOmUCo7zTap9DF26gPzFawTOT8y0i45D5ApJdmItCEsexnsIU6osw49G6LXVJrtO61bWZGuz1M2cjnNGLwxwGuqFnoQKtcL1MlTlcEZjpjVOz6MHKgs6NdZJCrnSUE9D4d6RpFhPp804iRl+rhV2jhmKwSlwLiCXUc8ohthLkb6IekYpKzUIDLquZ9ib0s1q9swQXzhs0ULR49iOLYbxW3NfGTFos+FCGBIxRC7ZdiZyuaLxFI226ERoQijMpxBRXIvFESE9l+p1k3HlqwbBd7mooqcCwCfR9Tdxgu/ZI9Jzh3uIkiVhLMX+JRjRPvRLDJG5ybRZJ2rXhL3ebW9Le4cYPiQjJ25s3vtQh8Y1G6XSqEwE6OZ0ZGzr/4iSnGhJvO9+rWUcNATl1uc4gXbc7/OxRW8M34jyRfQnoDcpbBbCTV43xNjkGVg3hxx4GzK/4s+RTDsrQ8aBR8VUjPY9nTRUYtjtZPirHY5TcWLPIz5zz9j2jNoI25sZPpGIHo2VdL0m60e0fVoGXzJ6WsJ6wYBJRgGANShjRaW3qhtNHWsljdoGRPDkM7QMUXlm0vEYDozCmifHVgxjJWSx7YG3Fs4UVm2PkxQCu88xCJyh1liLSGgksIdx5SclUZwzIksR7Uncohgms5Zs5NEVzPYy6mPD55cv8IG16/yNvYv8qZXL/L2DUyyZMS9PtrjY3SFXlr6ZcX22gsG1PN8QSokhprrGjyawuow6GjWZlz5kltWkFHvdDeUbIvwfBCXd8bFkcIWq24CEBqxNOkO+LBuicrpGM+7mrmEtftIKZYZruOCVp/cZDMokCRG4Vn7/QMi5McQSpQzaG7z3qRaUODwBuZjWkhE1KMhHM1QZQlPJcAnGfllJv9HayIscannOqL4eicdJAXrO8NBJTsE7L8WIZeCleeJBUJMw9z3NHHezWeLvoA3dW4ZbxSpoT7aboyvo3xGjWkfDsd+XORZlI1SzNkX+iu73A2IXjJLpTJy1weAenlybF+eCjICqyoSi+bJMRh0n1nc3mc7dP95hKkc28qga8pFw/XxdCwoVkNek4N2+j0B1SGtfuj/djP14vyBol/dQlmks+zJr5ESi0xJ+bj6u8P7eferd9ta0d47hA+JVxQU+hX5UguaSIRB5PilE48Om3RhI0Zpv83+a7zlh+cf/v571DyGer+6dEMx7Er61MMY0zvQdbbLwb7I1qsYBFTG6CXdEJKL9XUqT4KF7jKETC044f94j0igduCknCX/p+sz9PIeKtFt8pzGxqv0sRiME5BZpmVBaIj1vXNQUvvJyX4inLaGo+N0G18kxUYcoXMPnjcbOvc8x78nN9Vf7+VTL2zzp9SWDsfUeMGmTVCr+f8I4aocBk/cZjkWuUwxvtsex0Sn0kxbVQPTFaTxhDEa0xwmiqrodbEdS1u3AQuG4uLhLpi1DPeXvHZziv1q6xb8Y9RmaKSPXYewKnNesZGOMcqADqhOdy0knCAAAIABJREFUjhC6VMFjV+MpfnVJMlu8F2IwSAS1RVFRpsVLgRAWa8+b1hoQEhjS8WioxmvE8EtRQFE0yGncKNvSC+EaaR63r5e3lsMwjv14jFpZFu6Qd2DmDc8oZJmkJgIh3xcZGIXLNS4vMFMtmVlKSTp6XLOKHNUpBCWog1ETS09UgdgfCP7J6Glxv+baybUpOk0RXWhlfsaCmgmtgORMTjccW+f2yLTjulmBiWG6GpIqTobTY5/G9Ragqxvl7W4suqrk56gVFj8TwrnJoTBa+GoxQcRZVFmKwXZifU4IW3yGVgi/GmSUiwrbg9mRpu6fRLzfxAn+zbSgmB4VuAWdDGMjhp2jExI5qEE1/m1BfHz49+95e2cZPhHpcSc27NiSYRQgRHJZrHw8FmFej49VjNNiYBtEoi0W10YvvGu4PScgz7jxNAhQs/nNG1rtWJRs0OHEe583lTgIn7fIhI9/TugRAQFroyGt/0+GCJsLND/fB6GZP695dkEo7s2Ymr/mfb4zkCznzmttXPIx1zxL+7yYWu+bxSsVRI3PHIjuHoPCNs/ifPq8iuU02jB27Ed9n3tu9ZF3fv7+0z2q9C7nCO1Wzovec2quNXZa71Y24ZZxlDbfYCi1W3sTc804wNBkrbVS833kHYR+Ub7hpKTF1lq0BUovKetoITIXI7brIUtmzL8Y9fmPB2P+6XGOIaevS6Y+w6FwIeQVQ87yPC2Sbeg3NZ5Sby5hDiaNppP3UhQ1GMEp5Bs99Yj4GiNooLUSOoiE7SjsGQmpUfX3ZBg3GktAFAxt+jFcI5aPiC1m4Dk3r9oeruePjiV1PpCu0QoKkl5NyhAKyBsIEkRQV0aDPi4lq0kp2SxrK2tXVaf0+EioTd8fjB6llPRzPFZVCU2L9w2IERXRyWQot6gB1qK8uneOOo9v7YZmpjiediiyGmqNqjQ6dmMM5WbieCrbRrvjetZCgNvfE99J+9yEcAZjVYWs2UwHR1eMVpX7prwNoLD4Oj6Xu8eZFVVrUBZMdQIkaomuRl95HrUP/MrocBGdHObXUWjmYlW1ni32q5t/du/S+3m3vb3tnWX43A/xgRPIS/Rc2nwNTSLHKiWTuJVl1XxW3fv/iVDDPSGx+5Gj29c96e3DPMKjT2xokODYxnhq/axaixQNt6YRxXMSAknf8XVQlvZ9nJh894Sq4o9xA9D3iX23r0eDfMwZgpFw3Pq+dmZS0ydx0/Spf6K2kJCbm2PpnlvoQDRQoeEGxGuKpx1DT60N7OuF4drPpJUspif6LXqWbYL7XEv3E6/Tyn7DJiNMZyohBnJPrQ0amo3Z+5bUQTgnkZsbQ1v6LGy0c6nNzf2czMKzHUXdBd91kHlWO2MmtqCjK16ebDE0U/7pcc5/vnDAjxwMmPqMse3Q1yW2nYrfMsobDapgANUWsz/GLfbQIyWbfCC+Ku/FuGkbyfGZWz8rpZrNpC2GGcn9qvm/MYDd3Odj+v8914hjj/nx6dphzziOA1fKT6awuACHxzJG4/NCQjojVyaW15H3F56pm4FGDKEgO5DQgWbgMNda6E4M8aTQb6g/1XCTRDsnynYIEikbtzInkOr7hVlpNvd6qebR1V0W8hnPjbpUOqcaBuJ6RNGyWGKnuicjMmXBGhr0KhrmCf0N76C9pgHMSnRQZPezMhkh6bsDly09z8k1KRr7mcLl4HKwOSEtX6Wwn4zbEyhva030LY2kuXdzcl+JHKmI7sCcExAdvTj/vLWNrtq/BfL/76S9i/i8gwyfQCAEEjwvPzeedyqSCQHW9JCpJsTiPZFY2ohQ3Sezq93mBveJv7W98thOQr3pdoIBEBnzIZ157n6jV588I9t8Jm6y8fwQh4/n3sOLiVyYtsYINIvam2lEzHGVAlLVfq4Iid8v7Vq1N3h1/5/bYSXvGuXj0HzMVmrxmgQ9CWG8mI0CyUiMi1oSZ2zrEsV+sRY1CRyfIIEgfRQ8cd0a7ieRr7b31+6ndO6beGnt8XXCCLrn7+n7Tp7TbNBKqZTRknSE4jNGo9HaxHUCghp4eIfOyv1G6D9yfmazxPExhwbX8dyeDLkw2MN5zcXuDiPXwZDzIwcD/tjSDX5i3KXyGTv1AkY5lB424RfkvaesnBRGEbFNve+gU1BtDUQ9OKqT77nGgWkZ9h7meWBzRkErxNQ+9nXm9lwpnhNq1+13FZ8l/j0lGhjToJKRYL9/BMtDqe1UVkTicry3xBcKNd58Pr9WyO8WPbEh5dlJ+Z0QyhIhQDsnnxH1qlSQ90jzMoSqUKpJanDdRPwNnSB8lZiRmPrKNjX35sJfYizlOxmvba+RZZbqsECVmuIgzKUiJ4Vb2y0aYESnqCX7EOZ/k6Ua+lkj17Hi8HmQkhdFJuHpLJPntJUQmNN3hf6owzp2Eu3JclTtUyaaKb0U/w0Oc7tETRN6Vqm/kjPXWpcjgXsuatAeG7HLg6Hnq5beXBvZtXGs3yds+G57y9o7x/CJnlV7gWohOrHFwpb3iP7FFjeQE5+bP6U1IH+9mG4KiQUU5KSl3lqogZSlFEX/7n8DLY/rJILwZgZLWvRa55yETd/s8/G7o3bRfbyXdFpcmNqe1X14QHP9M5fh1No0Wvces5MSRyn2Qfs13IfA+Os1bx2qIxD5HKLnnXjdxjQ6KErd00/Rg0a1BCtTOLGVLXgyZJgMzbb3eP979z6QNu835u6HJOUZcxl16bnaRur8GEqQfLrHFu/NGLxBCmBqQMNxWXDU6XBku+TKMnZFCm/9xLjL7+lP+eQ45zW7Sa5sSpFPtx2zbpyDmcZHrSGbCb/HOjKlknBfcnDa7zfMR9mgCTwuQXAbMcqI4gRDKc8lbBaf2dJwvlTLw/Y2jfMUQjqZVdhG2tK/4FjEa1lAeykz0O8BVYN6aZrPxX7p5EKqjwZb7VK19aitpLc2cHd3cEdHmMXFZl631puGoH5iXgc+TnsMJKJum5MXHSfnmbPs26Gm9nD1Hp+BtZo8s6haU+xpEWJtO2y1bYi71s7Pl3jdgNp514S8YsmI9C7qOq3p3nsp42M74HMpyxPI7PHzzW22+nsuUUKO6crjCkF8tJUx3/RdY7jck7XbdlzuNyfhXqRI6yTJ0G73vLMUchQD9u0Keb0rYPhOMXx8ayI4L4tySsN186iPUviYxRANoAAFK7jHip7jq7i2d+ObDau1uaTzT3jxbaRnLpzTyrKJxOs0MWxIa1daFsfoFbU3yvaGemLxnAtLOd8YfXP8E99AqRE6jp/9DbQ5Tk+7f9p9dIIDFT/Xvk/vvJT1OOnFGBoDQTvZdNvXT3yVgPJEpMw62Whaxf98eD5lSGGnlJkBwoeobIOGBbhaVXaetxHf+Yl+ajLI2izcE8Zp2/jxHjhh9NzvM+lwK7R1D/pwHwPY0nB4bDP+McHLNOF9Kzk/QuhzGY7OprAkVUU2Ee/XTBW+VmjlqZ2m8oa+meG8TuGtymd8cpzzO/sVRr3Bjl1AmY3GYI0oWXQ22uEApcS4VQrlHLOtIdlRmQqqchJhvF+bG8PmHi6HaqNmc+M+hGHnsvjkeKo8H42E4HDFrCAh14f7MzQGRhwvSskmPRygYu24+P50SPluZ10p8MHw84pQpNWgFhfwnTxoL5lExFa6btaiwNWZ04yKiLKLIc6QXed88w5Ohs+cJWZqpnPb550I0xf7ivFGTl0a9FShrMJMAwKVi0p2KrxK+6Ot0OVJegI0aGbs3/Q51+jg9LvN/Oh0glHrUN1ug8zFEGB8H+1333IKsrFPHCTl7jO/0K0+icfvExo82dqIjxK5AN3rJfkEyWRU954b50s4drKQ8bvtrWvvDMOnvQfcLwsrnRfiwca0FnedRONQSqDSWUNejHoi0EzMdsz1JAennZI952G2P8v8JE+fjShJm0AdCHmyYcs9SvzYzi1aKWOsnfXjXdA4ube0QbPJtPpLK6jd/ftuLrQ1n7afNFfisTai1OJDnOyfuWePz3rfuHW8rpbIY7zf6Gq2qlerzAg1R/sGWlZKNEiiPLxFjB/nU3ggvR/VaGe0jbaUhZP6Y94wFJTnxLGAXqQK7nOEaSck6xMp7uk9nuyGE8bzXGsVc02bRCTMprHT8u6NEc5PlrX4AiG7yHtBrwLyFXVwRNVWQsW2QMpROEWuHVlwDK7PVljJxjgUfV2yUy/wmt3EqDf4tp7l2dldvHt43qCI95+yck44HqHPzdQy2+iSH9fkgRMRs+JUK9Eg1kLy0WGI/RqRFyfzKPJpGk5ewzFJod6k+WWba8R3IS+r4Qw1L1DOaxNgddbwiYKjpcoK3+00G6rWogKtlKSHu3gvNDwfo/GZFyTPWqlmDlJnLGYBqYa3FYn8qT+8T+GtFJIJ81YFg2xuXLeQ1LkkjPhcrT5oNnJN3fcMlqZo7TjeK6gWHXU/9GWRC3G7RUZ2AfGZS/gIfdLWrorOoW6PkbYTB6LaXNXQ76YabyrLUpVzCXHV93cewjhQRodSFQGwS/Z46/x2wkX6/H0clmQQi9GcRC8j6TxwtVSnI0as95Liby0oH+r/hedPtnPgoX49buZvdXsX8eFt6vnfYLvfwDCxzIGbN2iMCQtKMFTeLH4avD5l7iO4FxbCZPSc3CDj4hf/IcbQnEF0H27C3M9tz+R+4aPAuWkrBX/d9nWJzSfCffG+Ii+kHfNXmpOGXORs3GMgtYxCIKFMc6n7J/+le1VNiKt9rP397YUwIQuB+xLDKFGULm+Qjfu2dspyuy9+o+3rnd/ywlOq+VxIQfpqTjBTNeMl8QxaY6gxctT8u0n30np/LWJu7I+kYxIIwAkhbRWs9d4nQwQP3ngqp6mdxiiHwUnKOmC9HMuVZccu8Oys5BvbyszhnZ1MHohz556urCzZ2DJbzsMm/+tIQ9wv+zB8R+qzNvkd7uWkfb3313aKovBeG8VKIdLW8yRUK9yfDfycThAejKGLyDFJ71NAXx+J7EoJqV0pmExFmPTMVnPdk+tRC9ltz6X5LEI3P5berL1Z4kY6HoeSJqn8trs2OXOtNWDulv39f26HZNUJcnq7hTXCtzRwfFw7Tq4p0LyzE823br/9vCf5jHPCt+01um0I3QepSsdjaDwUI02IGidPPeF43S/k/W57S9o7A/GJ5LdW4TiPwMW+rFJ9Hru/L95rIK+qTgdXlpKqOw4S8sFLMMvLogkx6IsaaGTdR9HA0QR/dCQCZfG7ux2pnox4Hj7WBxpNcAeHCQlJ0ucRqQmGFHlQmY2hkiCjT55B3aqlZERSX733EXymwQEmpmA6IeNq2Sxcv0B96WWp3RQE1CTuHRCkuPE78Tx0vz8HQ6cUUeckNBCyMdz6Er7IUJWlXpDsEpdrzMxiOwZdWnRpUeMK1TGo2mEXpG98Jgs9ntZ5JfaFV2XD73SaRSQsXlEYzk2nZOfP4Yd98B7XDWq8mUbNKhEvsx49Dnof44mI0vV6ifujFgZwPJqThI8QuD4aidhb5BPUNWr3AB8WJz0cigrurBEjU8GbROlQA0k2xNHTDzbqr1oJbyADU3mcaTa1GD5S3uMyhbIIlyb8T/A6F/7Z5+4z9E8sruHn6un34AotpExAl+K9K+tlE1Vy3e7P7oEJHJlQHkAXOXQ6SenaB3G16bc/ydqPfxU3mbIZjAZvHaOqFEXmqiTp9ABKD4NhuYF3DwPwM9ee5Xdd+BDXvv9pHvjRW1z7rlOc/tSIOx8ekB951r9wwPjcAoOXd7ErfbKr2/gix+yNMK8dUBjDwz9zxOf+t0dBnaM4chyfNZz+R1/l+h/+EKf+989w57/+Jkzp2fzlO+w8vcnaZ28zfmSNwXNXKB85Q37niK1/cJuv/vA5lDvHeFOx9Lpl8Rde4vof+RCn/sZnuP19H+Psv7jKrd91DjOD9c/cZfTIKgtfuMbskVN0XrnNy//LOmf+UcHBAzmbf+vfsP3HPsbmP/oi9YcfxYwq+PLLmI11/GSCO5Sim340TrwTP5vh65rs/DnK8yuos8v4mYXVxzBv3KE+v0H2qS/JfHjoPLx0GfXgebi1LQVDQQq9Ho248kce5cxf+wzZmdOMv+Esynk6d8b4TKMPJ6iqxt3ZlnlUSImWNGYAMqmBdv2fvYfZNKeaZjz2fS/w0t9+D1v/qsPyz7/Ki3/hIZSDR//aZSbvPctkI2fluW1e/S83MFPF+b/yOV77qx/h0l94BrO6LJXdB/2EjlhjcMsL+CJDj2ZwNMJfPMP40iIHD2S4DjgDxRGc/vm7PP8nV1h8MROuTQbZCM788j4vfPciD/8TKWCrxyVqPEMdHOPKkoMPbuE1VAMNT6/T27YMXtsXoUClBAka9nEvvMIrf/1pzv2c4/q3asxYcfEvfZZX/vrTrD+nWP3RL7J19QyqqvHbuzKnHzgL+4cSrhv0UFWNvX4z6ep4azELA9x43Chph/1Fr6/KHjIVxXC3vgS1o/7KC+hut6l96B3j7/oIZiox/emqQTlYuDplsl7gMsXSr1xm+t5zzJYz+NH7boi/te1dxAc1l/3wNrVFteqf1t8uv5y4n7auRvkdHyIb1bIoZRo9LrHDjvA6tJaMHkBNZ9hXL2OWFtMC0c6IUP0uftDD5wb3xedBG8zSosCp0YghIAudAj/oifGgFGQa181kA1Ikbw8PvtBgPeazXwn1WHoJCRG2v1xXLwxA67TAmYmlHoTaNdZLZeFCkx9V2K4h/7lnpTPadbVOpqWf8Ajvt5m2m9naRPV7+DzD94rmD9ZL9okG2y9wuab74k0JIUYjxQo52Ztw3qCDzzTVgqTs1j0NHjECwlc7AyiwuWLlH3yGWBU7IUUpLTfA91rLdy4IYdDnBjUpccMuelwGroQQRvXeMfX1myitpObTbDZHEFVFLpLxgMqzhOZFxCiNtaJICrG+LNEXz6OOx1IrKdRM8lFVWBtUNxThHA6kjyN5OlSKjqrFAPS6wQBX8wT5+H7aRMjIj/EeN+igJ61QZ1nhe4XUezqeUa8NyPbGUFvcQg/Xz8kv32mhS4JUzC6uoaeW/NY+bthD392HLMPeuTtfQ6yV1dJIDjQon69rfvrK5/nQX/xepuuKwU3P4UXFyosOU3rqnqI4dMIjmgmnS4UQoplaMIrjsx2Wf+zX2PuxcxR/e5Xhl25z51vPsPkzbzB99DSdL12WeT8Uo4A8J3Jn/HCAKit2v+kMi//P57j2o09w4Y9cYfwtjzPeMM01vnwFd24Tc2tH+iLW0nIOvziA67fh9Caj96ySjSzaOvK7I1y/QF++iT+zgR120bMa28uFmK3C+hF4Y7aXY6Y1V75jkYv/37YYBPvHaX7YazdkrkNDbA0Gaiyd4UYjVF4w+s4PsvuYYfxIyfqncvKxGNnxf1NJ2MzMPGZmUZWULFGBy6acxz/3POqDj6G++qo4YMZQP3aB/OYeRx84xcJnLqOKgu1vOc/BI/DAX/oM/pvejysMs5Wc3ccMD/zw87C5hjo8lvG3fyD1yPICfekC+x9YxxZStX3xSknn2gHcvkv9xEVU7TC7x+LArC2mflOVw9zdx/c62LUFCUdbx3Szx3jTUHcVnQPH2r++BnmG1wr7yuuYJ96D6+VMN/u4jmKyKuT8/l3L4LVDJmeHdH/2C/inHscOcm5+tMu5H/wcN//005z5m8+mulkxy67++JO4XBBT19HUXc3Spy/jV5fgxm3px/VVGE/SMW8dqsgZP/0Q+VGN7WiKg1Lqrs1q+OJLSUAzIvVHv/eDuFyx+NqYclnqjg1euEN5YZXpmhg/xUFN99aIT/7aX37We/+hexbo36LWOX/en/tv/vRb8l2v/bk/85Y+22+mvTMMH73qP5r/7vkNMOqTZCJU5qsa89ADcqy2+CyGCmRR9iaox85KVG2pL19J/BhVFPIvLNwiq15ihkPs4WFa7L21mOFQ4NWqglzIh342wzz6cGNcxD47KRwYFlj7/MsN98P7hqcTCZDOCvIQeSkhnRXnGvXYyNcoK9xoHEJfOmVRpE2600mF70D4AomH0848iqnRYTOz+/vN/RAMgqJIz01V4aZTMSTG42Zi59mcbkXsH93vw6ULJK0SkPvXWt4LJJInX3k5/N2lBTqWVEip2mWJm04x730UNZmJ0RCE33w3ZMwE44fa4q/eAKXQqytSXyn0qzIaNRjgDo8SSZpOR4pXGi18mMDNUFkmSFCWQV0z/fBDqNpjgyHntaA6gvyoQBJ28nsuiJDt6AhgomuPLTTKelxHMfzsG6Fb/Hx4oM2xQAzu6RPncLnCdjXKIvo3WoyJui/3Y6aO/svbgkxu78HmGr6ToQ/H+IMj2FwTD7fbAWPY+/ApVp65SX35SvNe2wZzO+OvvS60/n7t+5+md8fz+b/8QzzxQ5/AP3mEe3EB2/UMX9OYymNmkE09nf0aXTqy4zI4DmB2j5k8vM50xbD8418Cpbj2ifdz6pkJ+5e6LL8ype4blAczs+iZRVmPubOP73dRkxnuzjaz3/4E05WMxX/+Ba7834/wwHe/Qf3Uw+w/1GX55SnVMEPX0mf5UQXOk98+wPW7UggzM0weXOH4TE5v1zJ87gav/LHzPPhjh0zP9DFTMaqzowozLsW5imOvdmlcT84N6d48hpcuk0pHBCKuWl6UKvJrq+IoTKaoQR/GE4hjzQtx9+Dpcyw+v8fe+1e58zR072jMVAi6ZiaGT2ff0bs+whyMYFYGtLMhzrr9A6bf9iSd3Znc71deYfptTzJbMqx+5gYH33ga5WD4qVeYfOgSLlMMXttndmpIfijG7+2nh5z6+7+W1jdf11J6oq4lpVwb7M6uOBlLixx+yyMsfeE2zErKBzeZbHUoh5qV/+sZdr77I2z9zBXKBzcZn+4wXVZs/IPn2PsDT7Hy1UPKtR5eK7LjiuKNbeqr19D9PnpzncnDG4zOFAyvzsifeREdan650VjWqMcucfN3LLP21Rl1z5CPavTMcv2bBwxueFb+4TOYlSUxco5Hyfk0CwNxQg4OZe0J5GlfSnkMPeg12adVlRykWOpCDRdgNsMeHhPVy9MaHuaN2dgQxe+iQC0vpmzX4/duMnjmMvaBLczL1zj+HY/w6X/+599S46B77q0zfF798+9cw+edEeryJFVRH1Vb7znHUW8MZfGfVLhOhq6cJE05j+1mmJnFDzuomYXLNLyLshQjoSgSEVD1ehKCgoZE6D326Ehi9Hkmn1EK1Q/hshCb90oFiX4fMswUc3WVIkkTUHkBPtS4aWc3GA3rq2BMqkisaos3GmWd/D6ZyT2++ErS9Enkz4hoRKMnagKdTCud435oUI14mgqk4WRkGg1ZL/CnOpheTzbN+Nlw7ym8RvCm+n1Up0gLWbtQaCQZJu07rcjbQoTjcUKyUvZRQLNUp4PrZuja4voddFk3RQyV9LkrMqn6HRWBpzMJ+cS+iEKAIcwYw19z7yqEU33MLgkGeLEj1zGzHF1avAI9k8wxn+mUsgzgCoNynjwSHmsnocpuJhtlkeFDeKNJnT1BcEx8Bk1+JF6lKTW6lCy16D1nvQxvNLqyuMU+3ihMVVMv9WT8jGcBocvRRYHvd3H9goUrE3y3IDt3VjaZwUAKhkKDcsaClScNMwTxeeBHb3Hl953iiR/6BF/73r/F4z/yCepFx8IVTXHsKRcF8SkHimyisR0tYcJS0B7Wh/RfvEN3exd1Zovnv3+dR3/4gMmZARvP7LLz1Crr//oaOE91YZ3s+i5uaUG0c2orlbido/fyXTq376JPb3Hxv5vywv/0BOc/6Vl/Zo+9Dyyz9umbTB9cp/fqbXk/S4NGHG88RnW7dG/m6GrAbDVj9L7TXPorX+DoO99Pd6ci3xkzenARM1bMNvrkh8HLr13S7lGVJZtaDp5YZulVg16R8Lq9dUcKld68LU7b8Shkb2n8eJJCj3GMqllJ/9aM40eWObikcf0KMxWCbj6SMJGZeVyhsIsFaNDTjqCQPpQFcQ5f1XTvTvG/+mXIC/SgR+/6Mf2XprjlBZY+fRmyjNn7HsB2FMMv3sLnGd3LO7iFLvvvXeb0T99EbW3g9w8DEqhxs5kYDefPUK8OyNaXqZf7bL+vz/BKhbtxCzebURQ5xTVBPmtg62euUF+/Qd7rsHRHs3T7Ls5a1n/xKtX5NXEKnCDc00e26Na1VLavavLDktXtCWpWUb//YawKY8g5jh9coH99ysYXJxQv3RQkttdh74NrXPwn15k9sEbKcm3tJebSBZkXmYaNVVxu0DfuynpQVXgf9JM6HZSzuLJs9pALp1DTSgzfaYVZX0VZR/3GtTm+jtAyDGpzXd7/bJaiFv3FPiwNKVc6dI5HLDy/w7vt7WnvDMOHFlnv62VzKY85nKHKSsTROkWD/AB6LDotqrZQVrh+Hxc4DyqIg0U2vq9q4UFkmRQ7jDLx2kiGBchmmGfC58kzzPFY7kXrhvsT4O9EGA3fYSEhLREGTQJzzqLyAqU0/vY2AHY0Rve6DZFPSV0bN52F529IxspIiFblUggvqfcmteMQLtLzhOWkjxTRhYCsuOPjVPVauQxfTlBFIYtdWUoIUOvUD8lYCi2dNxyS3zmW/pkjNMd3KJuFK4x4XToUXIwZKUG+P2a8uED81DOLGk/RmZHNLzNiRYVnR4OaliHsJmEtuhJGoGw8cF+1DEKtSFpCKpY/oSGShnMmZwboylP3dEAPQFceXQviYzsaXYUwg1Go2uMzCXsq71G1x+U6GOaaxat35oZ1Uhhu/S9dpZheWsEbhe0otJViiwC6csL9yQRhGry8K5lwR8eYfldQsFmFOzpGDQf4oyOUVpjxlP2Pn2X1V0e43T3hlhjTGJ06zA0MsTxCylCzTZ9c+67/n703D7Ytu+v7PmutPZ353Pndd9/8eu5Wt2iphSQsgYwYBGJyCBjHVBlTuIAkhEBixwkmTv4JVZhUQioGTKi4cMIUATYIMRqQhEBqSa9Fd6u7X/frfvPwKaYLAAAgAElEQVRw53vmc/awVv74rb3PuS05rgxIXbF21a1777nnnrPPHtb6re/vO5yQ9tY3DXn4n/0gL/69f8p9v/z95O/qsXu7Se2eYbqsiQ9hFBhBLWoaMxOuQ9SHycVVel97ko0PXObhH91n95dOsPb3j7j+rauc+PiMu+87hUmhcS9n8tYtTGoJ1qTlaSY5wa19pudX6b33JOsfeIk73/0wD/34i3BilevftsbmX0y5874tuq+mbL/3FMmRtOGCtYZwssY5NjIUieHgwZCllzPqN/q8+mNfxvn/5tPs/t23UNsLqW3PyNohyd0xNgkIBjM5vuX1nVtsS9N5/khQyslE0ILZjCLLCc6dJr96HWoJen0V1x+g2i35HoZS9DgHQcBkI6Z+a8x6mnBj3TB4KCM4CMgbCjODtGMIhw4z9QWT0agoECQwF6K10orxyRrJO5+QJPjPXGZ0oY0N2nQ+e8j2+y+gClj70KsMvvYiwQPrRAdTBheaRP2CzitDtr/6BBu/cQU7Hss4WUskkFQr3PVbhMNlbH9AoE+yeiknXanBfecwRcH0ZBszyUm7EfVmnVvvW2frD5tMt1ro1DJ7dIXG1SF33tmheyXFRgozc2StkHhvQr69S7C+iuu2yFsRo82QYOpofeg59MaaLFLiiM6lES4wXP/2DbbSDY4eqBMNLZ1XRtz61i2cgs0Pg6rX5D73Iab25h3M2qosgmYzdKsl41K9LuO91qiljgQ/J7EUyR5V586eFMz1Om40ErS0vHeCsFLeOo8w2bv3CLZOVuOaiiP2H2uz9Jkjol6K7nbYf/s6XOYLvx1jfP+7ub1hCp9FqPDY46V80znyboKZhZj9AttIMEdDXD1GpTm2HmH2pgKHZ3mVfVOqt6xHAVAa024KHF1LcOOJt0ERAu58BexJpY263EB+de6MrtRjzrenyqC6qt3m91fHIa4wxz6MqjWkCAsCdKdVtVhY6Ur6unXiV9FuovYOUO0W9ur14ynCzuEywBbY2XEfmdI5FOYctnJSdTBXBHlES8ex98mIhQejlRQczQboNqpZx968PZccGyVws38NHcfQaqJqNYpmIqGMsaAf1kg7QFlHEUpb0gaKun8tl+U4X9yVfj1VLIQ2ArF799uiEREMx9i653RZK22P1c48+NDJpOPSTIrNohD563hy3LyuzIXyMuzqOBnjDdfk78GowExydBagU0tRMwTDDJ3JMc+bEXpWYGNffGdWrPIDQWlU7pVBhSWvh1C6z5YFjr/OymumbAmiFCb1qiynUT6TSOcOnVusb6mZmaVYqgu3olYj69awsSEeTOSajaWN6OoJNomo38uw9RiztiIoxCw91uKs0J5SRVeqVUpFE7D50RE3v6aBvdwkb1vu++Xv58p3/SznP/h96Fwx2bDE+5rJhiPqK3QGOlWEI0UwdRRxROdj1zGzTbJHzoJzdH9SceXHC078Ss7RfRHNuwU6d0xWApLDwheZHpGNY2ywRnL5Lma6Rv7IWTaeHpI/cpZXf0Cx9YGcw/tjWrdzRpshjW3xsHFGeHPKQdqJiPoZKrc07klbbXhfh41PFYze/2Ws/txfUHzVk6AUYT8j78boWUHeiufjQlbgwoCwn3LwZUusZDn22k10LZE2dhSSv3ZNWiRZDkd9SUf3rWudxCLYGI7QUUgwtoxO1+mdN9TuAWim6xZzKBYZZuYoYsV02ZDXNCYNpejOLWZaYEbSWjczR/D8VZHURyHBxBJvj7GNmI0PvobLc4r7ttC5I7l2iKtFtP7VMyilGLz/CdY+PYDlDmo8no9buRQAzjnyrRXcmTWGZ2s07s7onw3ZeGWCG45JhhNcr49+8CxqlnLy5/8S1W5Rm8xgPEHdfxJ98x6b/+ImR+97hCJW0NBS2NuE2tamFOr9EUEjIok1tTsj3IPnmXVi8pqhqGnqt8YMzzVYfS4n3O6x8uwV7GjE4N//cjY+MWJwrnaMllAubPTpk2TrbYLdAba5Rt6JiW4d4po1VK9fLZ5cs45rJKhenzKew22toYYT4VQ5S7C+KsjW3e05Wp3n6HqCXlnCPXAG++JVuY8addxRj+btZdSNO8ze9SDx0wc0by+kvX9p+4Jub4zCR1FxSFhMFF9sgRQFZpShU7Hy12nuJ79Uvk89VD9N5y0Db8xnp6m0nHwLozjqoeuZTDS+RVKF+y08D2exgwG65IZQCKJUklhLUqqZyyRLNAiQ3vFiwaK0eFN4lZM7OAKgGAwwhYdWy0OSZdj+UFRoFeJjqnZXmU5fqdzK/zP6GCIDUvi8PhJEJTGqluBG44qkq2tJFQthe325kactdKslq1kjCdG6MXcotZMprt9Ht1py0xt9TKkmH9ARBIIEudhLteMAXSJl1lVID8qnW6epuKF6fxuBuR0qzau2D4GpiO2l1FgFgRSgi0V0aQ1QnuswmAsbXi8BXrAqEKWWoYg8n0mBjY208wJNkRicUXPFrzZVS8+GWuoHo1FOWj54gvXrZb3ltoj4OKOqtqHy7VynhGfkNDKZazCDmai8igIzzoRwmeXSBsl9C3OWYYYTxo+0SG73cb0BbjbDTmeYlWXcdFpJcqt7otyfxew8YOepBkuXLTtPQfOGJn9Xj/Mf/D6uvv/nefJT38nR9S7T0xnxnZDpsiMcKHQs+20DCKaQXjzB3XfWOP1Pn0MFATe/92Eu/GSP2z82ZPMnQ25/ZQOdwepzKb3zIfVdSxFrgomQpsO+Izu7xt2vaHDqZ59j/997jNXfvsz9P7XJjf8q49RPGW5/lUyMBw8FhCNHfceStzWB5+7kRYDKHeN1jUkdzdf63PqaJU58YsLB330HTsHKZ0eMN2vUb4+ZbNaobU/JmqFwf8ZyjosaLD9zCNu7mM0NXG+AXm5T3L4rqFoYUPT6BN2OXM9RCEPhfCxaMWQNTfPGmGCasPemkKzlULlidC4nGBhsrDATCCaCKNpAkECdixpTLnMj3LMHz0qb9dnL2FAxPtOgcW3Are+8iM5h83//LMWDjzA73SUYZex/95NEA0f3+UPuvWuZzd8+ECTXOnSzgUoSVKNOfuce5mAIcUTjliLrhDTuFeQbHXSrJgjYRre6J+9+7xNsfkS4hMVmV1r4J9fYfucS9T2LHsn1Ho4swTAjv32X4NxpXBgwW0nImobsgTad33uB4OJpVBERHwpXsfXKgFtf1yHe67D79SeJBo6VSwfcfu8KNoS2UrgkQuWm4l6xd0CgNRwNMIMRetRETVNZpJW8zrwQ9Mw/5vIclaXovR5uOpVw8+FIeIRaOHEq8qoupQQpuzVDH9RRayvCC5tOUZvrDE7FtPOLJPfGmLOn2D+/ICr5Qm5ffFrvF317YxQ+js+dgF7vcaA0LjYiyy4fs65Sv7hQWjwuDAQ5iUIpEnLvZJtncw6JlucqpSCK5uZbzuKyYq6eAipX1dLr4fX7tUhUNfJ75TKslXdaXQj0LFtRIPsIc4mqJ9pJYZKghiNUHIEXEn3ePCkWWhJQrdaP7WI5cfn2l9O6gtrFqyjFZakovEpX1NKTpPLUsIJyZSmL/j4uz4Qc7ttoTmsfQull1xYUVoohpaQwjELZj0zOoZCQSwWR5+uUKpjQCDE0FMK2Mz6Zvfxs/rxXHJ8sE9QG5qRxr+6oNt/7L8mhVdbb6667YJRjJhlmpIXjYxR6Ki0zG4eYqeyzK5GtrKjq9pL7g5FjopOgOvcVKli+n+eLLV5ZZlJIsaMVKrforJjzyDSimHGI/N+oqr2nirJY8a8bBBUpW1m5PlQcebM1K4NyHEn6+GhyvEjXCmZ63n7WinDgMKmj9ZohGjp2bzfRueLJT30nl976qzw8+26CoGA0a0Erw4URNnaER5qor5hZxfKlMc54RV8Q0LwjfCj94WVwI2ZvGpM8K8V13lCobRivK+o7iumyJo9rLF3awwYNVBDQvjYThDDNCf9sBZ0PmD4ywb0Q4gLIawplYbqkqO/KayjrSLZnOBOjnCNbrhEOpTUZTBxZQ6E/e5Xi3KPYWkDa0gSTiLwmRaxJfRE2zHGxkbZJYYXTYUXJpVtNUIqg2cT1B3K9pjIO2aGopnS97pFJBNWykOw7QBFoyDLJVJstOYJExh+diWWCzqX1GkzARoqadejMoofTKq9Op0K+RymJbiivIeVVdqXZpgLygnAMrp7MuXZ+rCTPpfXfqTNbqzNdMtT2c2Ydv+ibpLh7u7LwOXsSe2+H5OCELFR29gnDkOzcBmr7gOSwSx4rTOrQBWIZoRXKeo5jmhFMCoqaJhhb7GRKtpwwXQnRuaN+a0zeiQnGYCbZHClNM6K+I+36RbTWoOeLCZUk2CSU4jMKpVswS4Wr58fFcgFWPoZSwhMMA1QR+rkm9NYrFiblqsdWYz9Ko9otKXpGI+xogl7qSIs80pghuOj44vRL2xd2e2MUPmrO8ZnnpJQGbOUFUpB2IlQ7IooCslZE0IjImxHKOvK6IaoFwiGZ1uHpz6LjuFINuTL3xRONy3ZTcW9bBgX/3EU2vysKgaSjELfckRtD43OHZIJRs1wm5pLkXJLcjPGE5jmqUfFsjEGFIcXmqsjye11spy6DBEDhyNoxQauObcSwt0/pWlsdmzJAzxcOFWK2SESGY0UBzFfxxd4+KgikpWU0aqkrxNFSmbC8JD5E9Rr27vb8eaUaxRcOZnkJFUobZ7bREl6KJy2CDLS6EN8bZxQuUOiDI1+U5tVAUSnHZCdl3xoN0nYMRZusHUHextaELKzqEapwFO0IVbRwu3tS3E1n84TmMrZgMbW7/Pl18QfVsVlAY8IXb2D7Q3TJp4pCWdl52TxGS7tIid+HnIeyUCwqtZoOA3QQUJw+IZwny3HuU+nfVKr8lCK6tlv5QbmFQrAM6tW1GDXLmD6wIc/RiqIRgoOQLqrbIu8k6HYNGxmC3lTaRkmAqddEnVYUVasRgOUuajyFRdSnJId7FG31mR5Hj7QxmRCZa/cMkw3L0fUuD8++mxe/4l/w+NPfRbg2IU8NdjWFYUiROGZaJmvVG7J0eUnsFAZDlv/8DrNzq5z48wHT9Rrnfj4na+YUiWbpck4RK7qvpOQNQ323wEwsajRh5cUcVa8Rv7qDy1LStYZ/jYTzv1Bw7f2aU38i3Isi1iy9kpI1DfWdAjO1BP0ptb0aNlB+UoXe+Yh44AgmjqNvepTOiwMOH2uTNSBrhBSxIpg4iigCB2nboFxM53BEfvU6ZnlJkIuNNfJ726A0s/c9SePSTYn08iopO5sJ97DVRAcBye4MGxkmqwFZvUR1kGgRDSaDbCPFmgjjgWE9U+hcYaaQJ4aaLYgOZxSXX0NHITpJiHfEL8cpxeYfbIuvzdoK9Z2c4HCMiwI2/vA2bjAkf/A0nStjbLuGWe5KITcawWwm3jZxTP9ii2lXMV1VTFcizNTR+ZPbcs+e3BAU9vYOamON7q9ewkUhem1FxthLL0G3Q+vXPsH0/U95Kb60iHVuMRvr2Gu3cHlGVIsx0wQ9yVAXztA/G5G25bikzSbBxNK9kqFGUzZ/b4Qbjske3KL7yoTZaiRIzGCEs1b4iSZHnd+iqEe4eAWnoGiExIcD1HiK9dzPEgFX42nlSK3SjHyjM7dNmWXzuIxn+8cyuZx1mPtOU3TqqBdeQ9XrmK0OrjckOVghvvQaxYOn4eou7WsdvrR9cbY3RuHzuu2Ylf2Cb00wlVWvmmXoRZM96zBaCdSfWfQ4xWpvHe9X/SWfBWPmhnoVqdVh00yg2EVkqMwLU0oIakCp5ihT0VXmUQXjvUK0rpDEKrwR5jdHGMjncw49mkoxMZqgjdxQ5f6gQQ3G6MJSlAWBVlL8qDk5+d8Y1Apz9Gcx9RsB2MoUaOXdqUt5fIkcafwkG0Xi41GFQwYVaRxboMtCLxRPE6cVeqbmhY8VbyIbirrHxsYjRtFcul6IvL+MbbDTmVf5CT9IZSJp1qmsrpVD+DOFEIjVLJ+bSJawNqAoqkLTlWnn3h7hWJDp4jGDOXrkCe6qlqBqCC/M72Pl6p1lgnL5Yk016lIIltdA+bwSEXqd3B+Qa6lEgbQS758sk5Vm6cpcFq6BEQ5bXkCWYSY5LtTi65J5sn2g5b0cqGmOdg41npK2l0juOWmDTaZiV9BoVG1BNRjhljtS/OSLeVPzQnp8qik+PYEh6lshMu9rpqczgqDg8ae/i2ff9ss8dek7oAEHRw3opBQ6RGcGG4AbDOldMLT/dIqq18i2lolfus3g7WdpXOnTe7TL3fdYzv2mpX8upHUrZ3Amon09lcKkp0h6fY4unKX50SksdVBZUr1G8+Ujjh5f5vy/nPLqd8YsP6tp3srpn4lo30jpnYtoXxdO2KyriW7lYkWwYWjeLRivyeet7Vl23t5m42PSAgqGcr3lDUV8ZIX0XjiSHWlf61qNYv8As7ZGsXeAWV+DPKd+eY/ZgyeJtgdw9aYQaO/tyD2pNW46JW+GBMOM2l6O0wGzrsKG4AIBY6wBNQ6wieeNZQpCQYZUyDHVpGk3hUs0HkOoKWoBwdGUvXeso3PH0m99luzL1inaCSq3HLzjJNHA0nhpl96XrdO+3JurRb3wQDcb2NFEOENayPXBxBHMHO7EGvaFVySYRimKgyP0ZEr6nscJ//DTsC/Xs1KKYnuH4j1PirEnc16bKhzFzi6m25VxKAqwobSV1bMvod+2RjhyqAKCiSUaWKbLhlo95uCxDtHQ0nxhj6O3rDNrK2rao+h5UYkydH8s6OssO36/6/mCUi0ivwuLIDOYCYpWjtP+b9a5hTnKo7z7h2jnKMZjGI/R0yZqY5W0bQgeO0d4MIbVZUabX5xW15dCSt9AhU/JW6kCRctQwYXsmqzuRwGjSFshNjJkLUMwKrCxpmiI4Z4OtBQ8yrsr+9aInU5BG8xyV+TspaqlTDNeDCr1fjWqXkfVE2w9nu9roKuJl1jM5JzxbRygSq8uJ47SkE8pn+sik37RrokzqzEU7bgizarckjcjwsJRNCJKeXyV9fL5ih3nqPosr9/KibxcyftBGqh8ksocMe2jP0q5v0vEDbqU36KVgBVeeabqdXleHJK1o4qHor3Bo3J+UPOyZhdAUDrfVrJ2J4RpHwapve+MikJRMDUjisRQNCKKmhCNlZEC1IYal4RVJpMu99MXrK6wQs4sC1ljJOQQ5kqqMui2KI6Rw1XgVX0lxyvLKfp9dJKIe7TS6KWuOEUbIzyokQyudjIRFLFWq9RjeTfxx8PL030rq7xu0J4vpBTm8qvobkfeNwwFNvfk2GI4rBYD+eOn5eMuJXKMjSIu24RG4RKZQHQ9IerlorgLBcnTzgniE5WLDUFS8vUO5mgsIZxFcGySaLxywOCRFYKpI20o4kOYbDjiOyGjWYtwbcJTl76DTz75a7z7uW+j0Zwy7NdQqaZIHGaqUCtLLL0sVgP59g5BnuM2Vmk9c5d8c4nu84fERy3uvDtk82M5acvQvJ2RNQ3ta6mYIm6ssnxZikN36y6F93xqPXOXfKNL99kDZidanP+XOc4o0rahdTMlrxs6V1OKmkZNZiT7FmsUaVO4PpMVTTgS1V7W0Ogc9t66ROe1jN6FsLJnmKxqwhGkDY07ERPeE+WjabcpdncxS0vYo57IwIEI2H/HCZajADfNMCfWcf2hTM5BQHQ0o6gFpB1DkeALA8TDKYdwrEiNgvUZ9jASgNcprHYoqygST7oeix+Nqtdk8TKYiuJVw9pH7kCW406sER9kmIMRLglZ/vPbuOGI4v5TtK4JCqSiEFUY74GjxXQxihivGmwEWRtpUxUKtb2PuXAGVxfyd+Cv2eiPP4M5tSXBo9bi7u1iajX4k0uYr3urd6oH7Qt/s7pKsbsrY/RwglFK7r37L5C2pRCUwkc+b+Nuiu6PWfnIADeZkD9wivarI6Zridzrs9S36AucMRTdJi7U5PU6qrBSEC4ahxqDy4u5MlYGW1xRYBsRqgikVTbzClEvvDmWsegsLHc9arYki6U4gtGEZD8nfOkW9uwGenuP1q2lzz9ef2n7K9/eGIWPY17oLD5cBgwuhtiVi1DrPMKA9IMtPvk5QGdF5dhsFyIvjgVx5nPJrkrqAnNmqSgyfBZUlQFTWLFVL8TDo3qN8m+lHDnwfCNXBumJcqMyJVS6QhxUaW5YuArZwHu/KP84VtxZX1+gO+uoAhftXL0wf4L73EyZssjwra+yCMRNPOTeqoz8qtfIJIivKG0B/MpPRQgaUbbWigI1AzP2rZlQI1lQXtptXSUHdwUSrRHHgjp5IjMw9zYpClHapQKDY6UY1Gkxd0wtj13h5nwaOTgymbuSWP66o+dVXIvy8UVyuPhIUZHdtefOlM7PZm1NODJZJqviLBUTTCUZTXY6RcUxZn1tbvSYZbgsIxjMqv0GaWmpwAdXLnB9sMh1WKtJ0TYe40ZjuZaNQTebUiiqOemaQKEzixlbgiPxuikdk7VSqMmMotapzq0bTyoHYRUGc1sB5zC9CbZdQx9ZKdIWUqSLpTpmZglHjmCiGQWGqK+YLjtoZeSpgQa8+7lv4yNv+k2++ZWv5yCZsR20KQ5jsprF7uzRO7dF6xNK7BKMQR0NKE4sEVzbZvbwFmnbcPZ3xlz91jon/sIyOBXSupXRPx8RTBzRJ/foff0mjUvSZtat1vw1buwwe3iLaH/M4L42u09qNv88Z3gqonVTUKPll0TlmTUV8Z0CXSicNsLDMIq0pWjcK0hbhnDk2H8sZOWFjN7ZkLwJyR7Muor6jiU6yiGO5tdMafhX+obVati7Oyy92GBwf5voKCe5diBjgbflyOuS7xX1C3SmUVajnCLzOgIbCRfHzgzh2oRsEmKnBpUpT76fF6dFv19ltBmtKyf2wRMb6MxR//irpE+sEe+EuChg+KZNwmFOdOuQ6bllol5aLQRUGMh4GEWCIAHWKHFid6I0VPVEhAvGCKetsCgy9AMXYDQRJNzNFZTm/gtzCxANFo1RYsBYCjlKhBml4N4uNtiQ6BgzLwqzZkAUGMaPrBOMCqLbR0zPLzNZDYiVt7JYuPVLE1CVFXPX6wUlZYWgO1ctVnB+fCvpdWkhPl7ewFIWjcpTNBaQWz/WlGpTopC0ExBc3MQcjlG1GpO1L5Gbv1jbG6PwUczdhl9H3hVFl/xc1DTWgNOBrG5DUdagS15JRF4z6MwQ+RtXJzG60563J7zBn8ulwKgkz77o0d2ON7Ny82LBX7gOQXtKibWQ/uxcvVT+7n/WcSwrujDE5ccLOOccWSfBBQoTG4q6RzIKuRnzRgDUyRsBn0ODKzk+1UFagFnLIMXPF7xXbmEofAPnBJVo1CUKYLG9sdBa0XEs6E6jIfEdzquqnBB7S7lzUQ+kd55olBXlibS6BLKvdj8T5KGcyE23e6wtqKp2pCZPjDw3kqgQ61tdzsvEi5rB1KMKbq5crMtIj/K8lMehLBZeF0D7OQnsSounkzGoeg1VEwNK20qkMBnPvP2AxfjC2jkH7SaEAbYeVe+vx6lIX1uegOyRHmlLLRpizttgrtdHDQZicBnHqGaDwFvvE4YVcpc1hW/mtBLVkwWbBIJCaoXzLUY9DAmGxZxYHQup101nnvTu23U+fFOPlKxUX+dVFdzcI+1uibw/FndhnUE4UEJkXk05OGrQaE755le+nt+6//f49lffy/6gAUsz8nGAOneK5h3JcHNZju31MSvL6FdvQatF9PxNwo0VbD3kzO+l3HpPxManCrKWoXFPwk45u0XztrcwyHK5h9MM/dodaDaInr+J21ih/dIRte0ad95dZ+2ZjLQd0LyTk3ZDgisTooEc7zwWw8DcIyclqmMDKXBsAHuP+TtRyWPK4VVhAclNjyLWEoqDI8xyV3h0YYSbToXovNenHhp23tpgWa8Q34mrnLWwPyNvRthQHMGtARsinMKKDwY4yNOApZUhvX4dl2uKiSHz1YAeTlEb6yKV39tH9UfoeoJLQlrP7ki7ptUkPsjRwym2VaP52W3ccIw7uUq8M6JoinkpYU6xvYP2CyVdrzNdUdgI0q5DF2JXYLd3mb37MfKaII51fUKK55dfI/9rj5PXZN/qSqH6I/JXXiPY6lZjnfJqTdVpyceMY9xRH+0zB9XKEmlHCh7lYJpqdAaNOzPUNKXx/D3JUDu1QXxviNMtSuJ+xYG0DluX81fUQ3RmxWJjoThxeS7zQzl+lo8ZI8RzFWAjjSrEvRulMBXCPF9Y2kZCUZN8LxdHwqu7vUfUywmu72DXurA3prbzJTn7F2vT//anfIG2z0mjnqeWl0nXzpMjg4mQE804lxVHLqtonVkv8XTodltWXQu8HrK0sibHiszQdNoykWgjLShrZTU/m3kej7/4Z6kY6Hl1jUQlWPQsQ01z+Zpl6Nk8PgJj5qv4LPVcDllBMJuhC4uZiUzfzISvZKa5PDazoiia2eoYVARXY+bHbJGjouZFyLFtUT7tV/bOec+bcv+cE2h4MhVfnEw+sxoLF2TxtVSayfGYyuSv0gw1mmAmst86k/NhUivZQtMCM3XVl27UhXS+AA+X5ODKTDLLsKMJyskqC5CVlpJWkSqsoEEgLceyoPFqls8perQ5fry8LcBimnppnVDGgxTDkSjvAlOdS1We84Vj4MYTWeUGPlaj8CqlaS4u4plcG+W51ZkUuOLubDFTsduX77l8X7AWqK6jQq5Zskw4HJOJuEnnzudi+c/ii29lXeUBRJaL/L4ku89mkjOWxHLdB8Gc32At5AXZUg3bqElGW6mE6TRRucRQBKOCYObQqW97xA6GMrkM+zUOJnW+/dX38oGLf8SZ5UOCsKDWnaKOBkxWtCAiiQTauskUwgjX68NSm7ybENw9JK8btj6ccvcdBjNzDE8a+mci9NGAyaqGOBKTvSSuFGrla6i7O+TdGlk75ORHJ9x7R0AwsQxPBoQ9MazLamIEqUr0orykYjBTKGrioeMCMCm0blqs8SLMBpoAACAASURBVH+LIBg5zNRim/NWuPKogW61KGNiikORdYd3Dui+mtE/G+JqIXlXTCdtLBNoMLFEPVFXBWPQqW93WWSlnmlcqhkMazSbU4Ikg9hiQ18wezNLNxjK/R2HFWI3uW+V2cV13FGPoqbF/FUpphdWKc6fQPdGFA3/OYpCrmkj176KY2nf+n3ROYRDCCcO1agL2jhz4n01mMp4sLqCzoSbGQ5z1HCMG48xK8uykIk0NjJSnIcGO5CcM5dmck2WkUSTqScdyuJAuEXlAk0xvbhOceEkuj+maMSkbe/fFopJbRlJJEixoMgqt4LiGCMFvrViLOvFMMceU0rG5KlEsJixjNdmnM4VwaUCzDn0NEXn4jOmJjPJ2gsC8rrBbiyjZoIGpt0vAu7gPP3gC/D1Rt7eGIgPUKqWKll22frSSr6XWVTlQK6hSAJsIDLEItFkVi4uEyqCfh+ztHS8fQNyQ89mlPkpdjxGx7HwfpJkfgFbhytSVGl9vtIV5VYgsnr8akUKDf/aJbHUDxSlXL2SRJYkVisTtchXHaoWkNcCtLE4Y0EjeUVFTNYMiF+P2IBHeXwoq1Yi2zeqmiCrrfSvKTdfQClj0Bvr4uUTilyTKKxUT5WyJwoJTmzMQzYDmTyV9l4xIJ8nMBSxFm+TeK7q0jhwc+8ZQKS8INyhMIAwEvTED7aoueLLaWmdOaOwiXio2NAIUhJqikhTNCOMXui1Vwq3hQDSz8OL+rxhnOV3rQk2N7CrHaxX7KncSqsNINXiIh0G6CTGdhrYQAwulXXCq/EqPVUEsuIsJfmep1aquxx+TNfMC7U8l+MeBFV7siyq8MGuOo5lgLFybJ1WoB02DigSiXTJmkF1TStvQPn6+wEf7eFyf4p86zY8GONCw2yjhZkKxG8O5wafOi0wM0M4EkQoPBIeT6FDVKrZDtrsDxp8Xfp+fv/hD/I9N97F/qxBEScykQfCsdP1OnYyRfm2p9GKMDAUd++RbC1jBjNOPN1Fp5b+RUPnZeRaLfy503K+3XSC9RlzxhPag4MRKkswR2M2PhlipgWDcwGdq54Ab6kk33kiqE/ZTsmacpyKSAk/aaYYntKgJCjzqGNwgcixAVStNndkThKJT5nNYDIVlLPXB6VJdqck25Y7X9UhOnLU90OSnVnV4la+mMUpdA4mVRSx+PqoXOGcJnchg1wT1zI66332jcShqCyHOK6iWiQGx0BoZGGYeUTT+r85WZjoqRB+9TQXdWAcyT2Ob/N6NWzaoioOS4TS9vqM16OqeCzdrV2WMVkXZFHPHKF3tifNMJM5mq4cqFQKCNVt44zG3rqLjiOx2HCOrGkrBZvToHJf4HvKg55mgmz6NpZYk2TesFQiiZRvT+WxJij8QsEjPtY7X7s0rc5h9ZiTe9YZKdYg8IsLzecZmeV4g6DjRov1RZ7LQmQs7W43naHTN3h18P/j7Y1R+Liy1cC81VCy/ReUSGVUQF6TSVbHGhspcIoikh59EXmfi1LJY0Pvj6iktann0mmzsowJZVJiQfVTSZJneaXscbVQSH7+BnBKuDmlPw14TgsyoQNSYESh/D0vhMJUOgiX6cyhrgo4ZRWFX+U4o2SFEC+qD+aoj7yhTFDWfp4baGFyq1pHC4/p5SXfe3fyuQJdydWxVmTagcEl8fz/vDmhQtpkKhWeC0EgycuJWejB+2Oi8as1f0gC3wKsdk6ctV1FMLaVHF2KVu9vAhIHocSwTcwF5/3+yofJLvjOVARFVT1HKbeAkpUIh6P0JnJeCeaKgmJ9SdpGpmx/OCnCAk0wnokjsk+mt6EcSxfouYrNSLGhpzm2mVDUpJBTMqdVGWbKeHSmVIooRby2KqTxKk9OCOoKpP1Vr4uCzMdllIGpSkssiA3EQyprGkwq5ziYFF7t5bziJcdOZ2hrUZGT98tBBUiBleWowhIMUmZrCcFYY17rYTbaVfGmrASS2gDx6dGgMyMF0GEMSzNuHCzxPTfexf965qP80J2neKV5kcZOId422kv+a769EEVSBF27hYpj9OWbuLObNF/uMd1qsvXhnCLS2FaNxnYur+Hv1zLEV4VzPgpXb2KiCE5v0nj5gPRkm1N/mrL3RMzWMzPiga2CZZ3/KiI53zYCHBSJSMfzOqhM0I7+WUPjrmO2pECBHs6kFZ5lVaukTL2vuGKe46fHKUUjor5tOXhMkTUDmi8fYRsxRSfCRr4AKxdUDnSmcMbBzNtCOIfLxRepyDVx3S9C0kyI90ajDgPccFRxt+IrA1ELNuoke+L1o9Kc8HpfWkXrK+jRFFsPRT0Iovb046Wq1bChQ2e+IEzkWKlAJPi6kLZnvlQjzAqK23fJ6jKuBcphl5oYHyBtJn5/vZWDmqSyCPMIq53N0LNUUMgokvs8R2g0RopNM04hywivbouwYOsEujemds9zBdNsrsq1IoTQqfB4ytZt2d7SUejDSsv9KqrHKIqK3pDXDCrWhIOSI1oOQOWC3IAfA1zNt7s97ynsZ3DYh+UOOEu8t4CkfyG3L9Vbb5xW1+dkdS1Isl3JxSk4xoVQDr9cng8SwVRaLOUEXuVTlZOf577oZlOSdktuhn8vvGEf1s1Jt/Wa9KN9a6JstczbFYVwe8qVUOnjUpnBqYo05wpb+fjICh3mTrxzx14bqoocXN1UpVpnodCp9r1UF5SITUmqs57kuyCrd0VRxWwAcyKfWhgMtIJacgzCL9tobpFHpDWuFmMbcWWSp6ycp+pceb+O8lx9DvG6JNZClXmjSkVU+daFq45vGWzoFOjUtx1LTo/zP5ftLrdwzMq/+d/nXCD/wscci6XIqVzFy2Os51J9W48oaqEUwh5JUc5VhZ4qPzuIGqSw0k4p27GFb836tp3KnUwEhZsH6MIcWTTat2nFeVuCbakKJu3l/bqE8ZH9MD7WRDg/XrFS2jH4Vsaxe8Ta+bErCvQsJxzmpG3fdjMKczBEzwqifobOHcFUzo/O5TybqUzU+ThAKcf+rMEP3XmKnz75SQDSppi8udEI1RL5dRWca0vT0VyKu5v3KFoxye0hadOw8xa52WdtA922pKAPR7JCjyIh4xbFPJi41YSbd7HtGtGdPmk7YOMTkthdlCaECqKhFYRlKu07My3PIbjAoTL52YbS9hptKlo3C+GgtRJRQiWJeI+Z+YR4LHfPo5BmOCPZL6jdVYxO20oZajJLdJQRDSzB2Pkv3/IqwVgNTjsZMwpFUWi6zYWICX/uKgNPa3FRiF1p41a6Ip9veDM+Y7DdFqrbloUMzInHC2NCtWmwoVds5hCNLIShjwTxaJlW4qBvi6oot4FfGE5nc1QTpCgIdFXsEBgx5VTikVVKyJ0GG7iqpVdd087hltqors/YUoq8Gc5bw6W31sL9Wzqv24qbKW1XsTIpx0ItnytLZV88UusCub6dWUD6F8d5kIVHZOScRuIth7PCT6wnqFR84mztjYE7/Lu4vWGOvBQk7pgLsbOuklGiJLcFpdADyZTioEfcaYkpVxSi+kNcVxwzCQN0u4VdbkmfO7eookBPUmlBzVKYLhQ2tUSSruMQlTYkgff0ptyU0wz12q2KgK3qdUFuSq+XskXknKz4FuTwhEG1enKA9mozN50y6whCYlJNHgusLWoDv6KZiZV9za+KyyR1ZeRGtQi6VAUKRuGc3xOGFZfnWACmdxzNT3QpagE4mC3JwKUsBGPxJ1HWVYGcxhN106WoIiwDKLtSkZd1akl2ph6pCisFhc5tFdYJoPoW3e2IxDUw2GYi2VbZsvCkYvFCUiPhH9Wv9mSydg49nBI0E/HjaNRQ/RGuLanbLhbysWpJkvd80FOykpxMfeFZyPVUOV2reUirUnNELjJM1xLymgyQErcgeUk6C3FnBW2xgSIaWO8+KytgkzpsqNB5gDUK5ergHN1P3qWSzpdFRiATUxl4Kw86shNdXKSxRvtrwfN2Vps+EFXcsKNeRnA4wTajSt1mDoaolRa6N8YMpWjP11oEf3wJ9cTDuEigfL2xht3eFVh/NKquTbz7Noe2up7CICDUivt+f8An//sLJLVV6pd3mFxcpfOx66QXT7B8aYzqCb9ErSxhd/ZQ506J2ipOeKV5kfdxkd/9vV/hG5/6Bl78L0/Tfe4kRazYeHqN21/R4MyvXOfWt58lHDk2PniVg3efZulfvyaigsuv0U1P0/nQDr/10p/yLe/5Dl78kTWS7YD4YIu1z0y48/YaZ37tJrf+xmlO/swltv/mo4Rjx8ofXaWoB/DsTVpa4W7c4aWfeIwH/8GzTN7zKLXtmaAQFtSVG7jpjPQ9j5NcPWD46CrJzozxZkI0KIh3xhSNCD0W1+CXfqBB42qbZLeFySDubRFMLOa+DaIbB9jtXcyDF7BXrqPPn8bduINut2g8N6L+8bGIC2YpR++7j2hgaf7+c5gsp3nfWdRwgl1q4owhXasx60jhao1GF+CURhcGa9YITgy5/CNneNvbL5Naw/hvrPHqf3SRi7+0h9o94Nrfu48idpz93Rrh3phicxn3qee58ePvIK85Lv76kJ23NFn/hM+omqbotRVJnQfcZELrNSqScfN2RvyhT3L0t95O7z6/4LGKrBGz8cKEmx94jPwVZMFaGGadButXHdd/9THOfffLIvUvrUUCg1nqcvddy8Ifeugp4l5B/VqPe1+5QvO6mi9wnSO5O6b3cJcOcOVvL2EDx32/Nmb7qSYn/tmnZaxdXoI8J9/eAW3Ia4bAOYJhJkIM3yKlyCgG4qxd9IcS45KnVUve5ZmMXwriwwwKx2wlQqeOGCoPtFL5evcdLVDiwD1dlXFhq79GcmWHw7dv0f2Dy8ze8SDJX974fzNl/j/fvoT4vHEKH0BWCG5hNYDP6UpFXmnuHUrInje6Kg4P0eMJLstQrRb57i56OKpyp/KDO3BHCwdjMhGodgGC1s1mZaDntndEgZGlEMfz1ok3xlvkiLj9g2qSUlFUcWoqXorP4FGFhcFQ4NPKiTqoQkHbv3GpSlnH95flSboitybW4WyBnRbCgfDRFyWpruj1K7TDzuwx4rPzvjUYIxyDBRdp8+pd4cX0+oS+/WdWV6RoiEJsb1CZFZqVZdxwRABz07skFt7KcFTtu15fQ2lNEEfzyT33yItHMFwsKhflSeT6bo6azlCdNlgnlvdZJn4jRUH65Q8R3zoiPdkhmma40FCsddD9Ca4Wky3XCXpiVgnAZHL8GBSSvVMiSThXXU/V+VyMtFhY4SbbE+H1JAF6mIp5Ym6Fj2AMth5WURZoLcW1tVW7i9xCIJJ/m4TY/cOqZVWqssr3dM4dQ8L0chPnDEpZov20IiwDIh1OhGegeyNsp4F59S6sLaEmnmx9/RZqaxN18w56Yw332W1u/Ng7OPczl7GDIbrdlvfpeom7z2Gr2kVlZpl3oC6Jpp/4Hx9k+Tee4ejb3kyyd0Dva09iZpvcfWcNZ+osXV6id8Gw9HJO79wWzTsFk5VllIXGTkHa1HzjU9/A73zyQ3z92bcx+bo3M143mGevED3+OG40Jhg7UTUdHpE1pHDtXUhY3TvL9rtXifprfOuXt/nNT/wK3/rQX2fnbz1G61ZOcOllwkcfx/WHmIlv4RqJrCCO6J1PWN05w/a7V9n4E8uDP9fjyj9+ggsfGGJeu8PRe++n+6EXGL/7IfJE0/7TV5g8dZHWx68zfuI0nT+/DklMttkleOE67uwm6tY2D/3MBnkzEsLrvUOyM6uov3gO3voI9u42djbDKCWIwmAkBp1RiB2ORH11eMi9/+SdnPzwEbxyHffoRabrCWnTkCdK2jwlQJK5OdkZQfl05ggHUuif++2U/f+8X+UbnvqTlN6bVmi9EvGub3qGSRGy+39scee9y7SvFyT1N/N13/w014YrpP9Lnf59DU58NKd4+VV0s4leXRZEyFpo1Nj4o1vSPksS8jt3MSvLLH/4Bt3fHqA218lXmgzO1SjOn6D2Bw02fu0F2FwnW23SP5eQ3X+S5u/XmHztE2JFMiqIDqei6AsC1n/h05gT68wurjNZC5mcbrP52zc4/GuniQYFyc4Unn0ZgNnbnqRoJXzNe57h2nAZ9dMBg4t1ev/T4zz8j65TrHVR1hL4kGn9Z59FdzvY0ZigVO6ePomaRug0FW7Y6jJ0mrKI9HwxHccEf3JJ5qB2G7Qi9Iix6rSFRA4eaXZs/W8viQP0+dOyGBuOyTeXuPfuZXpvn9L+9QE2VLz4E6fh73yeefBL21/5phYDE79YW1svuy9X763S1CtVlN+U5+G4tzyE6U3EWRaELLi6XKWau/EYtMFNp9jhkGDrJK7dkIlo5kNNsxzbaVDUI2lXPXNZVCHLXUEhoOI2uDjEJhG2FhBcvinoQRjimvW5p491wsOwFleTVbe7dU9aBJ22oEtKCcLki4FSOn701hOowhFMLVnDoxq+dWEDRTgoyJqGxm9+Sjx0aom0yjKB9O3MB4v6mIbKN0YpKahKt+WqbajmWWErS+TLcmzSTiitmUIUKnlDwjaLWDhN7ZcH2CQgb4WVigioUJy8Lgzd5tUBTinyjrS9ZFUq+yDEX4U1itqfvYRuNiQFOY6kJz4TpMzFPmTUFxD61i7Kp5q74QhWlmDvQAql8QTiCLu7L27SMIe1YQ5Bu4X8tIXHjim+ylaZf0zFUtipJK5cv4t+H9PtSCHrDQt1syFBrbNZhZjY6RSdJPPjb7RMfp32fP8W2wml2m+RYF0S71tNKVR8/IlLM0leN1698+hF9Gu3hZgfhdhOA/fiq5jVFezhEbrdElj9zDq6PyE91SW6dYS7s42q17GHhwttwIVjsiD9l8MqSOzR334b6m/usvTtdySi4LBH9shZgs9c8YafNVGeBcEccYwiIcX3B6h2ixf/sxM88MPP8HvXn+Yrfvj76fzBi+x/8yMs/fKnUQ9fgFdvii2Bd1EXxFdhRyOC06cgDHjh76/zwA9+mg/efJpvft9/wNGjXYpYsfzLl1APXYBXrsu95u0NSlNMOxgQnD2N6w8F9Wq3eOWnVrn4fVclVXswhOUuxZWrmJVlWfTUkzmSmnlj1MkElruws8cr/8UjFCdSTv2mQWeOxgvbZFvLBM+9hmrUsf1BVUCWvlW6VpPX8UW3y3MOvucddK9M0X/2GVQQope7cg3WxVbB1WJpAzFvbx5DDz97BV1LsA+cwYYG9YnnMZ02xeEh7iveTHj3qFos7L65xuaHD9C9EXvvPsWsK75FuoD2p+/MneELiz08qsbh3tc8VKGa3Y/frsxL733VKjqD2r6l9acvc/S1D5I1FEUkbcH6bkHj6Wsc/vUL5DXFyi9+ErO1SXZqhelqRDgsiD72WQbf+AQA9Xsz9NMvoB68wOChDmbmGK8Kmbzzakr4kb8UP7CNNXpPniCvKYKpIzrKGZ2MWPntl4Tr5G0OcJb0TWe9DYZEHOU1TefjNylOLKFeviHj5PoKappSbHRRL12rWsHTpy4SDDNcqAmOpuTdBDNM4fkrcyUpgujf+YEnsQY61wpGG7KYWbo8o/biXW5+5znWL03ZfSLh5M9/hj8Y/eKnnXNv/TdMjf+fb8nWaXf2+3/kC/JeL//4j3xBP9v/ne2NgfiUPB1PcC5XK+V3/MAc3NqXp/t2EsbAYc+Tlr0yx5NTda0mxMfJRAbkKBKORJajDwboI0+UTcRIj6MeDIbSxgqMJ/5lmMkMc8gclXEO+rYKIS0Nt7AWNZQ+u/NcEdvrV5NU1W7KMuhJW6N9uSfma2letXOqQ+IfT7wfi6jMbIUYuNJlOHbVBFt6Dx0z5ytX7ECp7HHOobOcYF+CEoNDafWUCEY4MPP3UaAHY8yRJTiSFpFLwiqBXVkrnB9A7x6BUphDKa4qJ+vCzv1+gDJYVo2nXs1lcfWk8sVRIChNGFDs7leomNIKjnoyYY3GPmT186S2ykmgUnZpcyzPbJFPVv6/CkI5v1kupO4sJzh7Sl4qMBKcuLIEk+mce9TtiI/PUldImT4CRMMc6fJtVR2F5NduzNGoajddtb9VVIotCM6eRq8uQRhgWs3q2lB5gWvVobBS9F6+LrJ7eyBIXH8ASqIBnHVC8tVGULjAEL98TzLZfLK08LnMvDgs/Z/KY1jtp5zLaGBRP7cM6i4v/oNVHv7R/ep/CQJpc9Vr5Ns7mE5brtHEv4c22O1dus+dZPJ1b+YrfvhJPvY//Czf8PhXMz6hWNKKnXcssf7yNfRyV9rP93a8qaTEmtj9A1yW0332JJNvfgvv+aG30p7u8ZF/8j/zZT/9H7NiDDtv77L+ynXyJx8gfPm2LJB8ZpNutbDbu6hmA9sbo9dWuPjfSbv6xX+8xsP/MKX/2BrmgRXqn7qO21jGvXwNvdSVAqY0pHQOd3CEaTc5+bGCxss90s02R/fHxHsd9CyXoMowQKWpWAf4Ylb8poR/VLrEB6dOsvZn28zOLKFBnJ0nE9hYhfFU1IJHA3RJvkUK6sX73haFFOf9CVqJX72bTDAPXERd2+HeN57FBooTHzvk5C/fgG6b/PpNhqdOS2vmBclHy2/cknPnPZ7K4hmt6DyzA/tHgrw/eBb1/BXU+dNsfPQQ98pVdC2h/9UP0f71T3HrR9/GmQ/uY1+WxwfvfZjOBy5x+z99qxRyvT7BcERjNEad2oRGnc6le3J+opD8qYcJb+6jbIfmp27QmM5AK/IHTst5vHASdnoc3S/31MbTM9JuwMrvXpGCsgyw9vyqcH8sC2AgaMZClJ5O0a/doRiNZYF98w66Xkdfm1BMphVlITqYSis+y1GzlDD3KHs11siCwaYZndfEZiW5NyY+lMVQfKcv6E8BZpyx/mmLe+QCfPLzD19f2v5qtzdG4VNuzlY+fOXPos6Sm90eHKIaknyMLWT1GwR+NSXFkUoa0Apw+4cUwxGmKc8vs5pcmsmgE8fots+HKgqKyRTdqAPj6nnlikw4Ib4QyCZS8PgW2KJZXukQbWezeRFT5lotZI7pWg3qNfR+X1bCgUGPfP4XVMQ8ABVH5GVYZTnJL8i0i8Fg/l6l6dbrD+viL37y1w3hnVB+bmPQh05M4AKDm86wgwE6CFDdjqi8EpHJVkGWznsBDYZyzLoLoXvlZ/EDckm0ttOpoCaztBr8iUKYTOZkzCynGI8rF1xVrwuaV0rsy0wuqMz9yoBV3RJXY6VU9Xq62cD6ya9EINx0JgNd6cS94H+kggBVaG59yxbKImqeAiQ0SZQrKCoLfVWIAkhnXgkEUjD633Uq38/8ZjhHehbPB3jVnycvO8fuO9exAeR1hcqpnK/NzCeW54IOrv+rCSaOcZsrqJvb2OFI0J6VNvr2DpxYEy+m7V2KJ+7HPHsFvbaC291HNRvoqQ+gDKNj7cDXXy9lsTjcMpz8ndvc+MEnePBne+z+0gm6P6m4+b0P07xjWf7zO4J2+GNve30YjarYE70kyMx43bD2Gy/wDY9/NR969l/zvvet8+o/f4iTv5hz+aeeIN41rH0mZ7ThjQqB+DBFTzP0rV1cAOM1w9qvPM9LP/EI3/q2b+JMZ48rv3A/W/8846V/8hjnf6Pg5n94kfpdaN7xr3GUoSey0HDBGfJJjrm+zezN53n4H21z+UfP8cB/+wJqucvoLWdpvLTL6KvfRLIzJWtvEYwy9DCV4lyDOhhQv9qH/UPy+5bovJqy9+YmG3+6w+ShE0Qffk6UnRdPw+0dzMP3owbj6jrQ/pqznQbq9i5JYbGPPijqH6Xh9j3sdIZNM8xSBzZWcVFQkaErwUOg0Z8ckH3Vmzk8E6EsLF27yfQrH0PnjvDPbjFdOScqwts7uBNrQlJfWaZ+T3iF0cdf4uhb3kTjzClpZzXqonJNvBFrmpEvN5ndv0qyOxGEutthdL5L2jKMvuYtxAeO8QmF/fa3Mtmw9B5dYvg1K8SHjvGmIvuOJ5msW/Tpk7iG8PVUu0Vx8w5mfY18o0P64DrBKGd4OiZcP0k4LChOrmCTEDOU4sdeOMnRQy2W+xPxkcoh/Ohz9P7OW9Bffp7kQ5/G1GsVUohSBPt98rvbYpZ5gIwp9TqqHqPzXLiT3Q5uNEHVE3Qq+WLUEnj+ypzr1KxXx1yI+CUJWtRjrUt3ZPw8tU4wSIUTeXcHe26LrQ/dk8VLf0Bx/ym+tH1xtn9rq0splQAfAWKkUPqAc+6/VkotA78KnAOuAd/hnDv0//MPge9FfJh/yDn3+/9X79FWy+7t0fvk/Yw+lnYrLRtBfXS3gz3qVa0D3WxiB4OqVVGuUnS3I6sz2ZnPQZAqcm0U4l69jk0z6emWRnFluyMKUbUarlHDXrt5HB0o99W5auIsW3LFYDD38im5G3ahOPKFhptKAVEc9jBrKzKIZZIvo+o1it19gaqPBGrWzWZVqEkRJkZ31ifPqyCsVoEVNF+qr8CryaTWLXp9gYp9YVj6fpSQvKrXxEOjHuOef1k8Ssooj5I7pJR8xjiStuCV6zJ4NOryt1IxZ50Ykiklz7t+W5yyk+T4MS+Jx6E3HYtC4RH486q81LncdLNBcXhIsHWSYmdPihil5v4bJT8rDI7xsKrzG0YLeWELCJH/+/A73k44KsgaBpNaspomnNhKSZU1DGZmyRMhPpqZyLqF2CzFShFKWyCvKZb+4BWOmSguEKyrNpc/B8O/dhFVCLndzEoukKhZsrqgZ2Zmafzxi8JZ2FjD9vqSHTYYohp18nvbBFsnsXv76JVlOZaeh+VGY0EtfGzF/8nee0dblt31nZ+9T7j5vpzq1ascuqq71UlSSy271QoISYwQA1gGbGBsjBKy8bAWgyMesBkzA/bMeEAJJEDjQSCLpBESSCi0UOdutdSpQld+79XL6eZ7wt7zx2+fc281Iv0hqWctnbVqdfWpe++775x99v7t7+8bMndblbVtX0CKz76rrpTY+N7TjF7sEdUDKhd3ufCzRY78kkjl4/EyhbPL2IlR1G5TCuNuD9PtCUIVm6TangAAIABJREFUxZiXnsJ76gLb3/cSOrOK/X+6w6c//VFe/Y63s/Qazfz9hsJ2zPbpIrUl4aYFzQQdG0yg8dsxacEjePYq228+Sf1Kj5VXlfnqT/4Kr3v7O1h8vcf+zxtW7/Y48NkeUS3A+hA00vwzCos7EPikz53HO30Ctb1HdHwfwWaLs/+yxr4/Ciit9elPhFQv7EnSfTdxcQeiwlLtHrZcoDtfo3x1j/TsRezdtxCs7dG4fYbKH38VdeqotHGX10TFlrVkXZ6WbbfF2qLfxx6YI5qqUHjsedm01ati6tjryZzlzFdziwxnQJhJwNMzF9C3nhCekDME1bedggvX0NOT0pL3tOS+FULsuUuoYoHePSflunZTCk9dI93aluGWPUOALpWkaN3ckrnN96Wo7vZFYBDF0upf2aJx7xFGnlihdesslXNb2FKIXttm7+8cYuSRZZp37qN6YQ9TDqUF7muCtYaE5EaRIIetNmp+FtY3SU4dQj38FCiNPzMliP/EGOn5i6A05u++JOcvBo8/jx4fJV1eyf25bCzcSX9uFjM9Bucuo1zhlZHH1dkr8jtNSHEzfE6VS1LsbO9hdnZkztNaKAZxxHDeo65UMDcfIamFBPd/DW92RuazJCVZWqb19+6muBkTbnWwz13ks9Fvf7vV9S04/iaFjwIq1tqWUioAvgz8JPC9wLa19heVUv8CGLPW/oxS6jTwUeDlwD7gz4AT1tr0L/kReeGTFSc3ZHNlCIrSeNWKwMeuFTWsgsnM9qwz4mNlQ9CaYc8YK/1e0+vnURa23Rm0OFxm0Q2IjyN8Zos5biEfNgnMwj9tkgyIskP8keEJBGsdilGCsREnBw9R3egGSTFRLA+MUqTPnR98zgt4Kpnsd+iG/cULPMRjyXhU3v45gc+7fSeLdgt+nEjfvtPFdrrClTp8MD8PDCTd1opzcbtD2mjg758f/Lw0zYuenD/iyNB6pCZcqTjOA1xtVtC54sO2Ozk6pEZHsNu7on5xsLUqhHkEiRqtY9Y2BgVbxy0uWaHqeFAZsVmF4SCM1Ni82M6LbjeJLv/kXQAkxQHik7nW2mHEx4DxEfdi51mZIz4F0H1BfA790a44Jw8fWX2a2qHoCsv63aOYQJGU5HN0jCgA+1ZQIAM6tsx9aglSQzo7hr66hm230TNTJFN1vKtrmIVpdLsPy2uY4wuo89eEXxVFIiNvtWUzUSphWq0byPrADeMWYPUn72H/x6+w/oaDTD26zdW3TjDxXMLOj7bQ948y+2CT7r4StSdXSCfrQloNQkyjgVKioFt8+y2ETcvUh58Arbj0mzcx99sF7v/AB7n33W+n+Y8a7G5Wmf2cz+ZtiomnLHFVUb2ekpQ01SttVv5uDb9jmf7wV3j+P97BiX/3LL1X3cSffegDvPad76T543voT4yzdU+MtxUw8RTEVaisGtKCorgZo1OL3+hjv/Ic0RvuovjgOdqvPUX1uU1Qiq27pxm51KVxuEj9co/2fJHiZozfijAlH68di7rOU3jXt9i75yDVq23aCxXqT67QuGOO6p89J4v5rcfRFxZhfha125Q5amjuTWZH8S4syzOdBQQ3miIeQAj43uQETIy5AkaMW9GIsV7Bx3voaaLX3k7jQAAWpj76NbqvuZmgleA/do4r/9PtWAVH33+JdN+EoJdL66z8/eNgYPr9j7D7D1/O5J9fz59tSkV5bspFTCkgGiuKbYKxBJsdWN9m87uO0R+T+IqkDEHTEjYsG3dBdVGjI0gq4LcgbFq2brMc+9127imlGx0p1otFmnfNoyOLKShBUgOF1zUETXE+N4EnJoVRwvbtY0w8vsXVt06iU9j3Sw+x+fZXUFlNKX3iMfyDC/JsrG8I/WFqkmRpGe/oIVSrg2k0hYdZKmI3t4UCMDkuhpPVMmxKW1VVK9hmS9aLehVTFg4jicE893wunsmeE//gAnavQf/OY+jUoCKDf34RuzArY2WzAcYSHZzk83/+b775hc87vkmFz7/7/3Hhc8OLlSojhc+7gI8A91lrV5RSc8AXrbUnHdqDtfY/uvf8KfA/W2sf+ss+t67G7SuC73Q/RN9Q+GSKJOV5OboB5JyPvFiCXFaYEU5J01wFlQeUOnmzKhQEybm8eANPRGWoiGt9ZN4cycpazhcZDilVSuWql+zv2WSV/7v7nGxxpVBAhaE8kJ6XF2L5Yuz4DOnuLrpQwDhyXpaobjMeT5JIIGIU5cVhnnkm136AuGSLu5O8m5bwezISbi6/z1CHggSs2mqZ9JwQVzOyq/J0LpcXO/sQyiWSS1duCITNrwnkRZMKQ9LN7XynlPF3MhWbLhRytEGVSyTrm3jufmZIH+DIvk6NNjHuClh3nbPQUefIqjMHbchDRG0UDTg1Q/deLrCMv8b3vRRlLElJo2PXaoqsM+xTpAWVmxAaXwoik+XRpvLaNFR4sSUpKsY/eym/L3/VYZOE1t85KmadRVlQvNj5l3RNnlmnUyj//iPC4ZmZEhJqdt1nJkkvXsHfP491mV/p1rb4Iykl3jKt9g0IVO6lNIzyDPkeZc9b8po70bGhcahIdTli91jIxDMdsNCfKFC+0sBUQ/wra+KFstcQFNT59OjJCUGcFmZYf+UYtWsJi9/hMf8lw5fe+0Hu+al3goWdk5rZR2OaCz6VlRQUFLYjifXY2BOy++wUVik2XjnG7k2W+S8aPv/+93Pv//huVu+B2QchaKY0D/iSD6ahsCUIQLDdwV66Js9su4137DAEPu2jY1x7i+XEb/TpzhYpbEYkFZ/CehcbaOeWLb5dWaFqn30em6b4B/ZjNrbg2AHsucvY207gNXuk5y7hH5gfFPAO2cieTbO7JzyimXGxKzh/LX/WbK8vRN2M2J6jp8JbtKEvcv8nnkXfdgq1sgmJZKCp08fg4qIgRiVxsVepgW6PZGUVXS6T3nY896HyHnpanmnfz9v8ptdHhwF6ckKGhaMcpFvbMu4mRolmKhRWmiSjJYLLaxLKeWASE2oKqy05f2UdtCY6MkWwLvEUGRqi2l2Zr8dHBCksFWBTglzNoTn04rog4PWqtHNnpjE7u9Kmvetm+V7FAPXQ0+hKWZBMNw+ZtszH3ugIanyM9NoS3sy0oP6Oh2cXV2ReGR+VNacYDs5VK4Jqb++SNpvoUkkKnWxDOZTTpcIQfWhBiiNni5Bl/qW7u8SvuxOvbwgvrGB2dvlM979+u/D5Fhx/I46PUsoDngCOAb9qrX1EKTVjrV0BcMXPtHv5PPDw0NuX3LkXfubbgbcDFCkPCpQXvi6TYicxBFW8yXF5KPrRoIWklJBhy0VpdZQCvLVdmfCDQYAlTlGRbu8K4mMM3uy0oDWdrsDAnudeJ66fptWGVht/36x8oQzdyYwCh8ipth8JROsJB8X0+nkrx7aiHJnRxaL0zU8fE6VTJUC1h8zDtMK2Iji5gE0tPPa0EEOHTNCsXETx8MkQH5uKhD27bjBIKLfSMrRpKtlnt58GDarRBadGQ4nxmC2GqGZHCqqLV1B33Ixu98QryZGZlbsOqhcJOnR9Fe/EUdmxZsTeLKJjCAEyew28+VkhDPeigXliFiCrNSpNMe0OZmtHlFCzk+jlNdTEmBDItYJaRYiGrSK4XRoOzcpbga6gGw71VL4v1ybjZ2XFnHP+lVss43D3uJAR0yLoyBUHRlQqxh/weQDS0OJF4tmR5SqpdIAKmYJl9Oz0jYjckCLnhnPW0twvLs9pUYz0Mnt7nWhxKXdGavXDB2UROziNDxKGOzlKf65OMU6IFibwd6uo5TVpe1xakuLXWLz9+7DdXk5INs2W4zc5tE4rbJwVQSnWwPpP3MPc756je9dhJr+0xMqb9lNdSVl+dYX+rR0O/VrC3s2jjD6zIwnpzyzC7BSeVqJ+Sw1L339Q0Jr/5ymmz1/h3H+6jf2fMTT/cYN7fuqdPPif38+pB36Y0uerXP3BlIn7fVbv9hg7Z9k7XKa4Zei+qo6OYfa3vsbSu25j4YPPUH3VSfbe2eTef/4uvvR/vJc7f/k97LytQa8TMv4l+YzR87B3uCzGg77Gqx5HP/U8+pabSJ85S/TGl1G+1uCmX4Wz76lx+GMpOzeVqF+L2bqjTmHPUNyOJWm7I67PpaU2eqRO897jVK606N0yS+XMBp3XvITSw+fFcuLuW0mfOIs6dQS1viMyaIe4Evikh2fhyXOodgeiCD06QrK2Lhub1MjzVihg61XHC3ReS77kXcVVn4Ln0Z2r0L5zBGVg4r89RftInbJ3CHPhGlf+ySFQcPh9F0iOzOGP1mBzl7W7KygDM7/yCI23vYyxLy9ia2V0q4stF/EcSTiartIfCyhsTqGjlPi2A3iPX2D1viN05izllUmsht53HmHuoZjVuwNMaCmvTGA86L/hELOPxKzfGTD3oMbvxOie89py89TGy8cp7o6ijCUuz1BZjWROrC8Qbk1gAo/ubJnK2Q127nsJEw+ucPlNI6gUFn75cXZ/6GWELUPpjx5DHz2E2KBsyCZ0fIx08boUgxu7mGvLeHMzmGopfyZspYTq9LChL+diF+eyvYuaHEcdXSCph3gdMb3k8efQxaLkGWYItzHoy0s0v+O0ZJdFhvDpq+hbT+L1UsLFLWytQnxyH3zhLyx53z6+CcffqPBxbarblVKjwB8opW75K17+9bazfwFWstZ+EPggCOKTxw24/KlcSpuRh5UosrKWSzZhEMtiSZLITshaKPrYbtfFTUjonJjUFaCrod0WZKBSgq1dR6Q2KB04f5oQdB/bk4wdXRHDwrx1M7xD9l2bJhLFlaitnB+PQzRyaSiOYxIEUCig+9JOM4GH7kQiu1cCYasoRsXiG5NfvKGdhbuIThXiiKnW5tfthWqnrABSnqA0uiMkQdWL8kwxG/q5GslGkQS1Ko1u98TVNXN79rUI8TqJwOHdHiaK8aN48PDno0FafqJIc0o0p3CxSYJSImfPnYqzoNIoEuOwZhNvpEbSaOBnnAhAB855tt1BjY1IQZfZ0wfB4P5oLblJjiwt1zFzWh0gZNlrhxPiK8viEN0fVZjAOdMKBQavL3+CtiWz0VfGSnp1QG4IqVLwe0BvyHgzuy5KHGTzQtJa59ycUllNSUNFVBMLAOupQRyIAr9jCTquCI9jVD/Fdruku3voXo8w8DCb23jjdXS7i4lkfNl2B42QM5UL4WXYuNF59+RS9Mza3wrJ2Ytc8WiR4ikSLpOOofhUmbiasPIaQ2G3RlT3CGYmSEaLBL7nYih8grb49NgoRo+PUtjwKGx3WdysUrJw6oEf5syr/m9OPfNuwlJMUi4Sj6RgFb0JKUKDtqBpNkkobVhUrUq4F7G7VaVi4daHfoQwhadf+RFuefBHSUpF4tEUZeQzqtdd9lrJxwtD1NYuenYGtdFBLa+jRurMf2aEcK/H9u0+9SvWucJb/N0+cdXHb8ZYFaBbXUyrTXEzQvdjvK6BThcdGRnv1qK7MSZNxci004WRmtzvJHGWFw6NTA16pAZBgD8jhbI1sikwu3uoTkeQszBAu1BcXQjRkWwedWwIOoOwVSyCUkE+M6ss/DPnAQ7mF6sQn63AlzZy5ubsaeKKj99K0YlBd2KKzR6m3SUpgt9yhHsDtasQbvfw2wEmkvN+DME1KGz38TvyfBpfQ+ihEyccSRLCtgvcddYafjMiLUpbUTe7WE9T6USoVge/Z8UA1Ar6CeTOzNn8mPPVjPwOKhD/K2vk3thQFKpqiL5gAz8/JxxO5weGIHzKhSMr1xa3N1hjCKJmUpOH36rYuNxBt8kzVjK8/L8a+f2GHJYXfYDoN+P4W6m6rLW7SqkvAm8E1pRSc0OtrnX3siVgYeht+4Hrf+2HvyBUUnBkNwn7AVhD2mignHdN0mjlWSq6VJT+rCPoak8L8lIqSRsmg6N7PcxeE392BjtWl5iFpRX3Ol+8UJxbtGm2ZGKfGIexOunVpVy2nnnlWGvl4YkjWQwKBbx6VXZ44PJ53MIRJ3lrSo+OyK5tYwesIehUxePE5b5oXzxivHgUen2MUgxLJt3NYJi4LQWPGeIBDY3ujN8ThIOW1taO/L4ueV4lqaA8rVYuY1WlIt7CPmhL/1r1xItI9SSp3mxuyQNereAv7BOIf6i9lRVb2TVCe3iZAsvzBOrPFGu9PvT7udxXl4qosVGS1TW5l0GIaTTzXrpqSQsyk+aTShijdmZlOFm4aTnCpEO78uEW+EP+RjpfoHJfFaB6PaY9G+QLgxeB34XCjqGyKguCjiQINBrxJJfIDoqisCGLZdhwP3d9S1RxvpcXmwqk2Mycpq2FOKE0WaVxuIjxxTXaiyxeHwp7Br9rCVqS4m5bbUyjhbeySdrt4U1NkW5u4rd6GGvzYtAmCersFaw1mFYLXSqRLC2LIiVN0alrB6apFI6xKFrsCxSJ0/evY2sVvH5KfGCSympCd8Jn8mkp9tOi5tAfGK7fG3DwjzuYckB4dZN0ZVUSvvt9Zj55WdoUSYwqFZn6asL26SKzn7PsnNSUPl/l1DPv5sw73svp976bvRMpE1/VNA4rZh+O8fqGwrOL4mOUptQWI9Ca7ZvLzP6ZZeu0pvRnNRrHDbe+/z0oA42TKeNPavaOKOYejtk9GlA/10ddFi+aZG1D7nFqsAuzRGNFilsx3dkS+74AV97qM/95WZR7+8oUNvtE4yHBXgxrm+hqBb26h11epbBWJG21KTyVoCbHxSH73GVp05y5hJ6fxVxdknmgVBTTxnMNbLmMnprAjNUgTsWZ3I1fFQgCoUdHBhuVksv7KwSkBQ9tUvx2wshqG+WUkcWNPt7VNawxHPj5R+R946P45xZdJETMvvd9RTaHp44z/qVrmOz57PfFfgOw3R6FyRq6l6D6sYukkNZ5ZdVglSLomNxQ0bu4zL7H99j9hy8naJuck+ZdXGHukU3U7adRaSpGn87GgiimtBGheyna8X+85U1UsyVE5yjOcwKT1TXqT1Ww19dY+IVLoBT62GEmv7CI7XRIrZX2mdsYWM+D1Q1RBa9tkm7v4I2PDRBp6wok5+GWnZNBLfxDs7aB7lRljunLeE+SJA/2zY7k8lW80VFKKx30bhvVi0hW11CbW4SzEnxsnzlPeGHIc+zbxzf1+GsLH6XUFBC7oqcEvB74X4FPAD8K/KL77x+5t3wC+G2l1H9GyM3HgUf/2p/jedhMUTMkn1WumLGJIUtyVtUKnudJ37sfQakohnkjFVScSqtr3+zAdbbTlSKlH2Ez1VS3j9ePYW4GG/iDnU23J6/r9yVs1KTy2ump3BciCzW1RmIwcCZptt8XLkoYClclX8hiKY4KBQefxvJnpCq931oR7XhFNpAWh24VSccq6F4RVtduLGRecOgwEB5Qdi21kmd2yIROed4Nvh/24Cwm9PGafWzRRzd7ksbsuD3p9q54ILXa2NtOSPqx56GzmA8QrkKrTbqzA3sN/EMLQnx2qJGK4vwa2b4UH2mrjX9wP7YYiroE5PWuxZfxtFLXYlS+FKR2cwtvepIsp0rVahLE6HnCdVA6RylsszUgm2cqrsHFyf2icv+jKM6L7tzo0KTsnAyJK9Ku8ntCUg5alqBrSUoeUU3aTv1RCbDMyM9eTxAZvye5W0lJE1U1pYUZmYCHCM1Y67Le3Nh3BPe9I0X64wrjCaoUtCFoG4JWik4s0YiPHQ+oPY9M0I4vYhoN/EMHiBbGCDxNNFYijB0P7tgB+NoZt+s0MqaNbAiU7+dhlMTxAA0YUliiNFt3TzP52UvofhV/eZvuS+cp7qTsHQ5IKoqxcwmNQwFzDyRc/p4yB/4konfbPorz4+hzi+ixUbbvXSCuKCZ/4zHM6jrtmXlqSwnL9/rs/0LM1R9MCUsxp9/7bp5793u56dffxdZ9fcYeKHDtTZryckBt9ghRTTH1ocfoTfiEj+xQW5xj6bU++z8XcfWHDCOPFem9uskz9/wWN//6e9i5r8vIA0WuvVmz7/MpSa2AuuUw/plrwhPr9VC1CqrRIVxao3nvMSrX2jSOVTn68T6Xv7vA3Jc9KotCYK5ca9GbLRPWayRLy9iTCwS9iGRuDH3mCsnx/ejHnpXxdsdNmCeexT90gOTqIv7hgxKls7GNqteIZ0bwnjxHcnURb28ENVLHbG2jx0ZzPpaNYpLl6zlPK0OyvWIBPT5CCsT1gM58EWWgtrJOe6KA1xhHGcvye8Qc8OBHLhGdmCNY3kV1+1x/6yF0Ypn8tYfp/Xcvo/z5PeES+X6OoqtKme5YgcKODF/VjzGjVezyCp1pjdcHEwgiGFUVpcVpdt4iJoYSSSPk8vLiJLtvOkb9skO3YiPIdj+CKCIa8dFFUVFaT1HsjWLnJlHtXh6qbKslvNER2jdNUu1FLL/zNnQEsx98gvZ33Q4Wyn/4qCD6xsg8opS0F5tNmJrAS1NRQY6Puvw6LSHZYSDzfyDGhZmIw1qLNzaKGa9hyqFYGliLWvMH/ldujvZnZ0hWVulPHyMo+njdGK/bxRyaIy4GBBdXYGGe3pFJkf58s49vIz5/I8RnDvgtx/PRwMestZ9USj0EfEwp9WPANeDvAVhrn1VKfQx4DsnT/Ym/StGVHxmikf0dl8idLU5pijdSF/l6R7x2tDPxU6761s4bxgsCcFW57fVId/ekaAoDvHpdCoC+7BIJfDIFg2l3MO1O/jqBoAfcIHCLZBwPFlW4gfibK6dggE6EoZjLubaXdU69dkmym7RT1yjPy4nYpt1Bt+vCXXHHcBxGtjijJa5Bzg3xVhx6NEzEzls5xqAbXbTWkm9mDGZ3b5A343nS3ktTUcXtdlDtrkiTW+086FRp5eSeTp6/swdA2mo7C4I0V6NlBawuFqTVZUx+f0wU52naqlBwho82twsw2zuSSdZoyu+aOCOxwMd0OviN1gDNcTvk/PpkxV/298zQcFh9p/RA2q4G7dbCrqW0KTB50DJ4kcFvxnjtPmm1gDKh5JpZjWkIKhO2DV7P4rcFkTG+xoYanQSotW30UBGWjQOclFziRWQcBZ0x/J4Qo4NWit8S/xkduZbUbJU0lNaVKpUwm1sDaW2vj7/ThUaLUGvY2pGW7fVNuQfuGput7UGeWabmysaLGSp4ho6Jh4WwrFKLGaniRQbjK8obBrUGaUFRW0qIah6zDxmWXhMyf38kBfbBOVhcZexzl8ScMJRrXl1OsVrUW80Fn4n7fZJykb0TKTf9+rs4+0/ex6kPvJvtOxImH/WoXo8pPX5JTAgLBcrrslGxHkx8zdI8EDDxRWjvh+IXatzy7Ht49sd/hVs+8B527oiZfMRn/aVw7CNtVKMNxQLJ6hre+BhmY0vIrOOj1M7tktSLVK92MUWPA5+OpfU5UaS80iWaKFG62hTe2tgY7HSwew28Toe03cE/vwgjdVSxSPrU83gz0yTXlsUFfFFAcG96Eru5jd/uQLGAPzlBOjUKvkTtWE8L0hE5hMXTmF5PFIB+IDYBSVn8gJSisNmldKUvm4xmU1CHnQbWpBz4wLMy7pQmvLjuLA0MMx96AtIU79ABqs+skbTbkuyeiSGQDWHQnMC/uo5YcOzKe6YmKa8bKtdjdJTiN/vSUj1zicm1Ufq3LKAjk5/n3GUmrtewMxMyB2Tp5z35zpXLTdkIRFJ8q0YLu7qGrdWkPRXFqA1BTkvX29i9BvMffFrWg6lJ6l9dgzghsRbVkKwtE0Wy1q+uC0d0bVPsUCbGUUkqPCMElVdxIue6zkk+SaTA8X2S5et4vXH8UklsCVIz8B7LNqZpSrqxiT83i15qorebolBtNlHnY7w0xR7aj11cobDb+LrP2LePb/zx1xY+1tqngDu+zvkt4HV/yXt+AfiFv80XuUE2qwZBpSpQQ0njsjh4U5Oi4pkaR+01hZfTjyQKogm2ViEdLeNdarq2jTDvTd/IojmkBDPHF9BdScsVnwzJxSIzLkQKDp2hDf1IOBUuS0p5Xi5nz3xoVKVCng4OApPGCSrxHRLUy/2EVLGAGakIZ8XTgl4AOgwldbjZARegl7eOsmulBtfmhutnh913M88YjTVJblKXzo+i+ylBX8zYdLcH1UrOoTKttiiw9hpwfD9+nJCFeGZFDKnJc8+IY9TkuBRVWa88inLkQFpJrmA6JMZdKhWkQhmLrg3MJAEJI3TXTo2OYDtdCZ1tNqU1WS7JLs5v55werBm4OQ+3BO1QAYQZFNkvjLcwjhyuNMr3iOqK4rbNL2Fa0OjYw/ol4rpPd9zHBGIyqGOL50C3tKjAeqQlz6m/NP0RTXWkJmPFWolLyWB2kLHte7nDdVzRBO0h5+RAY6yPKYryrj/qY3xF0RXt3sQYdstJ8UtFbOijfR9T8CUwNk2xMxPodluUMIWCXHPP8eOcm3BeHGd8BGsBKUQBOscnqDx1HW99F6IYf6pMWvBIC5rOtGL0+YjmgZDqckxzf8DM4ymLrw+ZfXSU6vk9khMLWF+zd6TIxMe38vsdNBNa+wpUl1NW7/aIR6S9tXVfn1MfkLbXTb/2brZf22VrO+Roa4G9oyUmfn+HYLWJAYJWQmPBp76YsPIKn9lHExbfoFCjEbd84D08845f4ZZfew87r+sy+vkiphySTlQInrmMV6uJW7tSMme0OyS3HMY/t0j/tsMUFnfoHJtg9RUBB/6kTXe2SHmxTftYndKz5/AmJ1H9WBbYiTFxlJ+fxjx9Tp7nm0+SPnMW//BBzMoaytlpJEvL+Av7MRN11PIG6cYmantHTCbbHZFSZ6nvxSK218NzmxLhMDo+o0Nm0nJIPFJEpwZ/rUpvskR500elAStvOwnA7Eefo39shsKFNUhTtt96Gi+y1H/3MdJ7b8O7ck2Q32zjozWqXCYaDQkLgtTqQgE1UidZXqE/eoSg7aMTj6TiYwJNpblAPFcnqsvzLecVleZ+4ulaHrSrjEX3E7TnYa+vSZSQtahE5kEvTvBnZzCNZm4Wq8ce/SqGAAAgAElEQVTHMNs7pKUAHfhsfO9JdAxjv/kQ6WvuJBrxKS0t59FAuuOUoq4NrkbqsLouG1rfIx4tEi46pWO9hN6zxGMlwiU18Ozp9/FnpmVtqZfwdnzpFLgNW7bGqEJBNmSNJtHpeUKlUMUQbQ3m8H4paFe2UaMjdE/Nwl/pcPcNOr6N+LzYnJu/jsplmJtRKGAbjUErqh9JP9ohBh5IrhHgeZp0excV+Hj1qjhp9vuDCh1k8ml0Ua0O6c5Ojl6YXj8n4mYFknU/xzqH4cxPJyuOMuk81shDHEXoSmWQodXv5zsI2bl5mO1d6dunRiY835ciTikhqRojaJU7cqRnOG8KbvQKctfvhmiEYYsA10YMN9qodlciAbKisu/e6/yIssR3vbKD2drG9Po5hyjjyGQu1crFFRDFpI1G/r1y3pb7jrpQEC5Rr49xizCQy+BttginKdaIczP9vvj2RLFI0Xt9xzD2xGAyQ+PSFKW0FJcZ8TBHdnSOxuVFtSM2234ftH/jNQYqqymVpS7G1+LdUvRlJ6gUaFxSvSSyB23xGtH9gdeI1UpCVYseynrixmtll5up7/Lvlnk4ub+XNyYobPWxSklquCM+42THQTuQRcOZAto4q7rEA8mzVnxKjCHZ3pHrvrGNca7lgBhjZlwxh/jkRW1G8lZqgEwBla9ck41JrSwtSjcO/a6hvK5IKh71qxFx1aO2FBPXPPY9kKIjQ2++SnG5hT13icnNg6TtNrpWo7Aj9696XSTrY+csWEXjsGLsgQLbdyTc9Gvv5uyPv5eTH34XtcvgPfwMkxuHRF4czAsiGBtqyylWKcbOWRoLPtMPG+JKke07E2754Ht45u2/ws0f+gm2XhUz87mmcHoKBSmsR0dIFpdyY01/swWT4xSWdrGVIqXrLfZ/scS1N1aYeyimu69CcU0WxGRtHb9SkmdpeVWu3eKatOZLRbh2XVogl6/mQZdmewevLsWP1+kIp3BsFDsxSlIroDsVTCAWHF4/ykUDueu4MXnRb3b3ZFxsd0T5mKQkzSaFNfHIsVHM7MfOyRjzfQoX1sT+QGsmPv4UNknwDu7Hv7hO6osFASDIS6EARtRJZmtHfl6rhep08PfNEu5Zqhfl56tejKkVMVeXCLar+PMi9lVRgqkWsYvXCbZKWHdeVKBG3OA9TbC0NYiaKBYgiknW1vPnUoeByOlLRUGR2h2mP35W+JPz+/AvrFPwPUF8WuL2nqGadq+BmpnCNlrSVq9WsEqh48GGKwsDzs85lRaeR7qzi7YWbS12e0cUwzlKPBRb0Wrjzc0SbnZQq1uieu31UeevyLN65ACsrFP8WsS3j2/N8eJhVymdk3Xzls8LD5MKQbcQ5oGceTRBJsG1No89GG47AfKQFQqyqCciU1Rxkod85shB9nMCX9oHTuVCnvnl5d9Tl4qyqBQKg5DVSAoz5TK6ZPc8lK8Fg5aC1sJVyV7ncpOyfKJhhdQNYZLDyJjJiq7Bgm6NHfxxRVkerwHyMCfpwCXbXStdKgqa4nYuubzffe/MdiBzoNal0sC754U8JCu8rKwAslk7J0c5zKAlF4a5k7QqFnKH6TzN3vfBkcgzZMd0e0LQdj5HQqSOXIEbD4oePRgDeQvOiPouJzNnSNOwr0/KYLHxNdZ5pqTlgLgqO1gQXk/GBTCBSI1N6GFKPknFJ656pKGW36tQEMJ9oSATZ6Eg17tUcrv6gvxJhB8ESBq71iJdLgUk1ZC0oMREsSvKQ3wZq6KUkwlYZUn3Sks7cd+UoIxZYV4q4dXreLWajGH3TNlUiJ5yXRyKpMTqITq+T3bSLgXe68qiYgJFb1wcrPcOh/jtlOaBAK9vae3zWHpdgPUVezePog8vsHbvpASOpim6F2MCTVLSFLYjeuOa3ROa6Sdidm42TD7qER/tcvLD7+LcP34fje9oow8fYO3VU5Jp1u7KMxdo4rKmsN2nN66prKXsnlTs3GqYetgjOt7l5g/9BM/+2K9SuhRiRir0TszkWV4ZmmkdyV1FMfbqEvge5qvPSX5eL+XIx7ZYfUVAaalNf7KA7UfC2en2BJGsVsS7ZXIM0+mIUGJ+BrO7h3/kkNyjkuOfaIVXq2GOzIs6sdeD5VW8nY7EOfRTVGJIJ+uYiTp2/wwcXoC5adThBdT+WbyFefTEOABJvUg6NYKZHEFXKsTjRVStip4YY+37T7L+35+AJKF96z75nhNj7H73rbTffDvp0ooYYZZcKKvnOV8oJe1hrTCtlpDjCwX02Jhwm7Tw1VQiv080XsSbnsIcmpNiPZW5qj9eEPL2wixpOZQ/lQLJSEmI2rk1iPuvJ+ijNz6GnhjHGx+V6+Y8qZJaAVUqsfWWm9h7882ka+vECxPs3D0n78/8xDLkMo+mccqqjEaRqasyBFgNKcNA6BAZmp/RIwoFlO/l3mdqyIE+n0t8jQrETV+FAentx8XOoNUBz6Nz50G+2Yco0745f17Mx4sD8VFusU55QfshlnMZotDrCz/HFQYK8tZGHmbqeWJMtb5JJmeUosMIz6ZYIHUmh3ZqHHt5ceCDk6bSqikWxak5TUnjREi8GVHZSZ+tBqUkmJHUOLVB3y2q3mDnnLd6olx2rks1VK1K2nOqiUSM9jJvHHBohOPS5JdJKxcWOYTeBH7uAJCbK2olrYlMipyZPSYifVdhANt7N/zemSqNMJCHO0Ov5mawe035rJQ8/kESt/38+mqXBv7C4ke5RdOaNEfIbKOZL6zZTkmFgdtZWpQRdC5LQs+KH3xfnKKNzTlAxJFMhtbm9gF/wT3766S05zLt4R1bdriWV/VSA9Xpo0shqp8I/G4MSgX47ZSgkRBsdzCheN+oRDyObFGKwFQHeP0UlVjCRjKIK3DfRThHzndo2KLAWkqXZWetM8sGpaRADjy8NKW40cff6cj4HJ6kXSCrir18cs/umW47vpgbYxLI6g8WgqGi9IUmi5k3VbDeREUxZn0TjAQHG3+KoGFJCiW8rqGwJ0iY37X4nRQdeYychzTUbN2qGPnUOmFjStyJ4wS9tIF/YIbqlRhlLMUtg44kkqO8HFC9HrO1HVK7DCe+9COcv/cjvOn6qwib0yIGWFnHpgavHVO7KvehuGUorUeUrxfx2x6VlYhN9xmn/vx/IDCguhFeTwxC/UOzJJevutgXT4pn35N/azgDvO0GaqyG2t5j9uE6AKuv8Dj2ZBlTLsLahhiC7jWkWG+08ha96vZJez2JZYgdZzAIULUattVG77Zl8xYL2uo5xaJysRTKWmylKAtr0YNY5c7HNhQzUeV5qF4i9hNJitEar5ditnbQI3VKmwZlEUSib8S/SWsKu6lIyAMftdsWbmMUkcfxOFdOlRjhhwWBLORb2xLg2TJiOuhc7ktO/amvrglSG8corSn3IgnXXVyFw/uGqABWxkIUCX8zdhL/Tg/b74sgYmGfvDZJSZeFH+U3eqR7DYrbEkWC0gSre4RjoWx2XJhstimWWJ9pMBZdKYnAwogiDaUH84a1jsGtsVFXigUnurBRINl3ne4g5sdtMLPDG6ljy0V0q4/Z3sF0u0JCb/ZQvTh//oLWkOP+t49v6vHiKHwswj1xC1CObGTtiYJzNT5xSKzamz1UvYLd3kMt7EPHCbYQCFFxfCSHH/3985jxGmkxEO+FOBU+xOyUJGbvtbDlsiAYpSKmXpbPiRLoxeBp9MF9ECXYpVWHyojzbC7DThJ5uK20HXL0wfNkB18IsZ7GHx8VQnWmUutHNL73zkEMQfEAXizIQdY+CZsp/RGP+u88hi4EjlSaOhmp5FbpcllMDF1bCpBiKxwkwmduyNopQbCG9PAsackHC/2xIPed8TtGCLvmgPhQpBa/I46t0Wjg2jtuccyQDgNeZAi2R8EZMoq3jUJHKcpY8ewASAz+4iZUSrKjqxUFIYkNqhtjiz5WK7y2U49ZmyfB63YXOzuF3+qIWWWzIzlB3b60J7RG1ao3thWV3Fvb7eUFsy74QlIHVOjlSAfgFE3SbuzOV0mLdYwHJlD4PUtSEMJxFtvR3lcgbKaYUGGVyp2a00ChU3kdVvw8CsOxJ5mPj6cHRo8ZUmMtyXjFoUdK1DJ9VwC7dpdKLPF0FSZfgr/TJS0HqP1T8jttt0jHq+hSATNSFiJy6JE++jT69tNSzK2so8dHMWsbOcKhi5IknTuXAyrzRHLjdua31jj7X26mtDlN6fkNeocnKZ5bIT44xdhXNlHtLsW9BmpmkvCxTTg4z/S5VQgDTK1E9RJ84uwX+Z676zz3b+YZfWof1oepr3RYu7vMwscX6b6qTtC2FJ5dpDZ7hNLjlzjaWsB7+Bmmv3SAN11/FZ9+/gHe/OoZzvz0JMWVOcIdmHqqx9pLixz4+DLdqTqjH3sWdeouqsuG0levcbQzj/fws0w9eAB79TzP//wdHPu5p+i+6U7sboweqQi/5NISKgjpHRqnCDRvmaJ4YJK9uSJhM6VgLUFTxs+Rj+3y3M/NUboSUlofEz+jXSMeNN2UsFaRwqxcFE+x8RFUrycIX6kkooZqBet77N4xjd+do/y5Z0g3t9BHD8kiO1YFrelPluiPufnDU7lXjzIW4ynGuj2ef1ud0/cIiT363oBrbyhzZHsWu7HN1s0eadFy+PppCisNzM1HSZ88w+orD5OU4NjOYdZfXmfq0RK6F6Fb3YFXmjEUn7zM+j+4I58rqssJhU8/RlpQnP+nB8VLx0DtGkz/4QUuv3eW9EJVQnZTRfWaZeoT57n8vn0c+uHnZXMzPibiCN+DWo2Vtx1Hx5awZSnspJQvbrP+hlvEG0uoc4R7B5l+ZJedW0YY4zjL92lMoDmxfZLlV9SYfd+j0kp2ZpzGzdXJa++EdoyZHSEtCjJbeuIK4fqWtOeVgq+dwZueIljbzAOgzdVF0vvukLZYaiC19G+fw+tbwj993PE243zTsfJjt2EVFLctvTdNYzXMf2Yb3eiwfc8+xj61Se/lxyk9+9e7vHxDjhc5GvPNOF4chU92mBSLN1DgZJyMyO0gltbBpKRb23ijI6R7DXSrjUkSdLVCsrUthUCvj1etkFxfhaVlQTLSVDhCaZrzUnSW9J6mpBtb+XdQxSImg/rdz1aFQj5ebKOVfzcVhrmLcxYtAYLYKOf+nO8kIOexqFKJ2u8+DErlYavZwoOWdpkqlSg4YrPppcK9yQjVjmeU7jXyNo/pD7X2lJaH38G7NklESu1+X//KGr7nYRpNQk/nqd42jlFBIC6+nkfabOLPTEsQJmC7XWfhLuiMdcnHptOR3Bul8bIcLT0wxvPcwqmKBZENG4NNUrxV2eHquhB/tdbiPuxsB5LbjhIu7xDPjaLbXeHWjFbRe23wPZJ6Ed+Y/J7S7ZLbISiNTWJUv38D+TvjBGU7zuH7kyMvSlPY7MmiEnp4nVgkrsag+in4mrQcoCMZqyLZdaRqLaikilN5T2oxJX/Am8jHu/v5w4gLyNiarMsuPoFgpwfJECKlESl0x+Ct72BHa3jnr8HUhLSgul3slWuo2Rm4soiemsSsrLL8M/ew8N6nxWKgWhFF4dho3gbIduxZZEhmnqfytofm2ffvZ+yjD9N8290U1jbYe/0+vN4UK6+qYPwKE2cSdo8cZPxczN4b56gup3Qnx1ApVNYS+nWPt77mbfzBI7/Ddy+8gu5330VnSgJH/VtvEvQjlsLfNltENeFi7B0tMblxiLVXTxE2p3nzq2f41P2/z3fuv4v1d91NbTkh/Opl/JtPYRtNdCwFnAkVsZId+97RIpPr0iKb+aLl2H/d4dK/eAmH/riNd3mVvVcfof7Jp+jcdzMmVFQ+d4b+y09Qvf95+nccoX7/BVSpRDo7hvfURTg4j1pa4dR/msFUChKcut6kv38U/wtfwd5zmyiIuj08pQT1bXUwvT620JPIDa1Jd3bY+rFXMvPHl0jW1uG2U/RnyiQVj7ik8iJbWfHCkbw4KZBV6vxx+ik2jjnwp336/74pBHbfZ+HzXRqnx6mf1bzuLU9gUFz6vaOsvnqS2nJK4WU3813f9Qhr/TrbH55i96Rl5gs9zKWr8pxPjmPHa2KsGZWY+dRlTKMpG8W9Jnp0hPEHlhn7bA87N0E8Xqa1PyQ5to/i/RX2/d4lzMw4/ckSrf0h8U0LlD5fovvaWwHwO6lkfl1eRNeqzH7kadTMJL1D43SnAzg6zr5PLtG4Y45wL6Gw1iJ97jzGWpKXvxJTDnnzfU+w2qvT+r/qNI5VaPzvd3HTz10gnRlFJQavKGHR+rHnRRxjDX5qMO0O6tAChAE6iiQbcGpK0H6t83O6UIAvPonyA7kmWhG4eZRaLVfDikDCMv97V0iWr6NfcpNYgLS6pGMVNl45z869PUZ/v09S1jz3b/fDO/6StfDbxzf0+FtldX2jjroet3er1w+IxObG75Slnts7TuLtdYUIpxV2Z0+URBn/pNUWrkOng2m3JaeoXpFea194QCpOMKNVTEkkuTx5BlUqiZ9DRbKwcJJGWwwxxRBT9PHPXMlN91SlTBaVgbXC7k+N9KnjBLuyLi0zZ1SI1q5F4xw8y0VUati9awadgNczxFV9w8SWhopwLyGu+5T/8HFU4OfIDXE8QHwqJSEKO4VHnkeWqc0Yals4qTxKwfgo6XgF42vikUDksanF76XEFR+USJOtVtTPNzBFn7geuvBN+VwTyOIokm5L5VIDtCapyURjfZ2TBW2ghSPgK4oPnpM8nVpF1Ci+lpBWB9vjS2/feh7eyqbEeyhZCJkYE/PFeg06XSgWMBtbks32AvLy12tx5UjiUAp7ZvB4A+riCjshD0fSIt3dwxsby3O+TLcnuXCttqTNl8UR2XQ6LmrAESY9T8j3oyM3tnKze5I7Stsbzpt2F12vYhotQRMhL4jxfWyzib31OPrKqvCGwoB0pII6czFvPepaVRAd54USzY8SLu1gl1ZQlTKpsyB44e//QtVb1k7b+aGX0Xprg4UfuoDn2qDJ6YN4T10cJFn3evKcuAKQgvDibKMJo3XO/NQUN/3MGT5x9ou85p+9m9pnnmPnu29m9ONPoo8dwl5Zynl7QK6sMc2mBEAGPmd+epIT7/oKf7r0BG968w+xd7JOGirG/9uTcOwQZC1sx23TpaIU8s7nyO7uCUo6PsaZX5jmpn92UdpOew3U5LiQkCcnpcVXLOTFLI7QbbtdGB+F1Q0u/KubCY43mPhIBZ1YKl+7TnR4Gv8r59GjI9ICdgRZ6/hymbmpHUKIt3/wTsafbWEfexoVhOjxUXl2iwVp6ZVCKaSH50YXbgvAM8+jS0XSmw5KevyDX8MbqZPu7mHvuY1geRtbLJBMVNi4s8Lsl7bRe22275mnP6qorBpQUH/i+sBt3oidRDY3N95wSlDNyDLyiJg/2kLA6qsn0TGUt1Kq9z/P7htOEpeVmOBHUN5MqTx6hZ3XHSEuKSY/8gTevhni+XH64wWCdoL/4LO03uJ8eFb76MfPoE4dpXmsho4t3XEP68HoxT7+l5+RezoxRvMlM8RlTdA1+K2U9lzIxCfP5nSFjPgf33wA42l0lJJUA5KSpv7YkhRIZ6/IZtWtJ+n0COrsFUGRfZ/+nUfw27EIHXZ7JGMlvFYEzzw/4A0Culhk5e13YnwYuZLSnpFnaOx8RPHsCsvfd4ipJ7ts3F5i7jef5jON3/im5lmV5hbs4R/75mR1nfmFF29W14uj8FHj9m79+sGJr6fushZvckIWMDeQTasti43zH7FRhK5VAUjWN4WsW69KErjLgsrIn2mrLam6TqkESDUfhLlvjwpDIdG2O4OFEtk95rv1oRYdIE64Lj4iaw/k/eEkEZ6PWyT1zFT+mdZxl1SmIlBKiqhykfT8xb940fQAHch75S+8ZkNGkBmXJVNleWMjg5DESkmys5J00F9PJALBttoi/xx+3XBrJhEPDttuD/giGcIGN3rUWDNIV8/UcM7UcXgByEz1bLcrLQFHaDbtrrx2KDzRqwpql4WYqpGB91GGjqlySXyKHAqV3Y88lsHld0k2VZZ7Ztn+/tswPiQldQM87MUW4wtSkzkqZwnuacHxMTyRuGcho9aD+U8u/4X7nRdaqZFzgEpSGnfMkRaUuEGnssO3nsLrW6KawoukRTr24JIUiSNVWBcFiapVJRJhdQM1MSb/vtfAHpgTBU0vIrmyiD89Sbq5RUa8l1y86IaiJ+cPuTG+/M9fzv4PPM3V3zjIoX/d4/p3TjPzaIudmyrUr/QpXFzHFoLcoyoLoM0I0mq0zqUfmae8apl+aAfVizn7k5Mc++0+F7+vyIkP77L0xnFKG5baYkRvwqe8HhGsNrGBL/Eb65tc+enbKG7A7AO7fPpTv82b3vgDmHLIhbeVOfmhHRbfPMH42YTuhEfQsRQ3YwqrTclganUhDIjHy4TLO9itHc7/7GlOvneV/sFxCs+vSfzH8f3oVkQ6UsRrRyTVkGBdEFiMSLHN6jrRK05hNVz7zpD9X0ywSlF54HmS0wdRD3wVb2pKzEp3GzBaR8VJ7vybuWSn85OYYoB/4Tp2bhK92xIeFQxCQsdGseMjYmkwxAmTFwHPXcC89BS7x2UDN/7Rr5C+/DRx3af4ma+x8p6XYgI48LElkivXMK++A/+xc2z+/dtAwfiHH2Ltn97D/B9fx+4IB1CP1MVmY2cPCgXM/mnSekhUD7Aaql++QP+2w5hQ057xaR5UxDXLsX/5GM//0ks58CcJnZmA5kFFVLcc+1dPcOEX7+TEfziHqstcbTbFqNHGMXZukmSkQHcqpF/XTH1pld27Zhg5uwfW0p+u0B8PGPmT59h742kqi13WXl4BBbP/50Ms/utXcuj3N0mfOy+u+8aK9xvgzc9JYVupOMKyES+rLBwa8biyGb8pmx/C8IZwaXwPUynJJvrStUF4shUOpT5xGOIEUymS1kNILeHFVSlgy0XY3EFVhBf2maf/w7cLn2/B8eJpdQ05DGc8nyyOISfUZiRW97DrctkFiwoUr0CKojRFF51LcqYaKjsOiDPG8sdG5Odu78q/+76QR7PXxZk5oYeeHMdu7QzULWFwg9mb0kO7eGtFxZHJhEtFZ3DoMnfc+5RSpKNV0EjOUsGT3Vv2Mb5G9RI579QJUnANig7T7YkixKEd+ffJFGIMLf6Z/NshQWqkLu0SYzFF4XGkpQDdS2RXaS1WjwHg7bTl/51XiHFp0KQ2X+QB9OqOTMiZC3Xmvp0t6kqJvfvGVq7OyA0kq2VR2Dl3Vh2XsMEU5vI1QTcyTlUk5pGisJACdqDoQjhWcCOy02rfIKvPUADc+MptC1zhk1kDTH5hUb6b7+WhuLbbHYwp38MmqVgQuDFKmhWt7nsEQV5EJ4tLN7TS8u/pxk2OPAH1JJXddJZLlxNBU2y1LJNsL5J4lb0G9voKXq2GqlQw27vY9Q25185awN8/j2o4ea9DkKwz4lS+T2aGeaOJKEOCA7l+I5dTOved4uA/OsPZ/+U0N/3sGZLTB5n8f88JxyGOUHGRtNdD12oy7rLnRivS66sUtsWpeffmUb70y7/K97z8LVz7B4c48e+eZuMHbmHhg89I8aY14SM74ojunncTSQs03IHacsLeyTpveuMP8Ok/+R1u+S/v5uTPP8va206z8IFniF9yhOpX1p05Z4yxRsweowhdr6PPPA8HF7CH5znx88/x3P92E6f+7WVarziMjgylRy/C3BTqoadRE+N4jQbW8wYKxzhC12pEIz7VSw0OfFax9tKQ+fs7xDcfJLyygT1xFHYa2LVNlKdJL17JNyDK98WQ0w/wyiW079G/ZQH/C19F75sVpGt2Er8rXlm204XlVXS20RpWrMaJEN0f+CqTOyewWmPiBP+JcwQL+1DTk/htiwkVpl7Gm5zAW94l7XTozEoOXP21dzFyJSG5sigbo8zduF6DksT56HYPvbROkCSYo/OYVpvCahNTCCg+cI3JQsjea46B0hTXNcW1DsUvX2WiVKRx3zHQisKmFlQ0TWUutVaIxt0uqtPHv7hIPQyITx9ExYnEYGyLJ1txZQv/+D4IA6pX2vgrOyT3yeYnffUdjJ9NYX1LaAxKCR8uQwxHKqhyEWsspibJ7LrTQZUg3dmT1mi/L8pSIN3eyedcc/IgqidZkZlhLp6M6WHXfJumtI5JSGxptUtacF2M0Rqq2WH59RPMPRiSln1BjL4Vx7ce6/iWHy+awucGh2Hj7MNB8risJZOJG+drk4WHmt2W+wCNV61gOn10vS6eO3EiQXNaiRmYkxrqsVFsEAgEv7Yhg90txLbby03cVOALAbFSEgJxBr07xEcFzkk5k9Z7ooYy3Z4jTJdksnIS2Vw9VROYW1/fkNfv7omjqJPUkqboUol0cxs9UiM1FsWQ+bUzmMvbWVpho3Qgn3/hdTXDi6tCoUguXRH1Wq0mqgXfQwM2SdG+JyZ4voepFDFXlmTX7goalYqDLJ4naFrRtVk2t+Q7OO6UcgVitmtCSySHaXexe438mucqI2vlPb6P9TxUEuR8qHx8pCk29XK0J+MgpZvC0VK+L20/V9TkSq9oUAjZDCUbWjhy5M6kWCsozN7d8wQtQ1zRQkAva/yOyWXmSUXj9awgQoDfs5hACbE5sejUYnyH/JQ0o591ZmcZonJDMZYOCp/U0LpjXhKqKx5eX1oQANp9D6tFNVV54HnxYJmZFi8aV/Dr8VHStXX82Rm5NtZKVMLMtBi5ZQZ4mZrPXQudIXFD92Qw7iz1/4+9Nw+yLLvrOz/nnHvv21/umZVZVVlL19Zd1V29aGlJNBKLLGFhBtsMYMDLeCxAjcZ4mRgz4SUwHg8Mg2dhoIVYBoPlCBsHxiaQESBLAiRa3bS6u1ql6uqqrjVryz3z7e8u58wfv3Pve1kSY43/aHWMuREZlfnqLffd5Zzf+f6+y6cusf7nTxE9foyDv+tg3yxXPqQ4/s8W0XFKPFejdPE25vTJQtjGnbkAACAASURBVOnjBgPcoO/l9SlzL/cJXrxE779+hMd++r9jeWKDl3/4Z/jmV36AnVOO+rtOEu3GbJ2u0lhZxBlRwNjE4kKN6SbMvTIgevkam996CluNOPPTT3P+bz7DN7z0N9h50NF410nuvjPg0CfmiSf244wibKcSTBoZytc3MbOTpK9exjx4HEoljv/qENWocfPPOQ5+XJMdP8Bwtkw1PSwk8eEMKsmkkI9CjCfZ61SOUfTpV1hMzhCs7rL6jfuYe24d98QpUQXeuIOanCi4bjgn4od2R+61jS3ckf04Jaqg9NZtUaGuSRtXTzQLo0nlTU7xizWX205cvoZ+5BT21aujoORjy7grK6j5WRZ+f12K+DjBLc3hXr2KbjSYfykhK8kFVnv+OpnnURbGr+02ulZDNxtkV29IyHGljNnqwL55UdTtdHDLS3BvXdr3+/cxfTFD73axRw7C6qbEueybZ+pShn7gELZWEmfzwKsFowi3tiFGje024WoL1+pQuTckvX1XPNnm5wjOX4P9C/D8F0m1YfHZeVl8KWj8zgXUzFRR7MpcIcciWN/Bzk/B5Rvo/ftEJTc1gZ2qoy/KvcDMpFzqkzW057ypWg3XHsDWrgTFhgFqS4ok8QAbqSF1pUxldUBSD3EvnKeyfKCwV0lv36F+9yBpPSTcHuDOX+JPt6/N9qZpdT0ZfUuBThSrzdywyl/Apl6TlaC/eQslTo6ChGHRc+behrREvFlbzqXI5aIqitATTXGAhhGylLdavIttLqFXlcpI9utJbHsnBeuN5PyAM8aVKCZhkFVGtSqTz9SEfEY5FJljvp8gLrClEJQiu3Bp9D73GRiqMTRkD/x9PxSeB5V6ryFzYFGeM4xxlZK0uXx7jTCA/gDX60thceSQHO98dWZ04VtDnOC6XbKdXYL9S6NjYe3oWHlJL85Ke3JyYrTfxhRckMJcMk3F5n04FBRjagK7sSWE3DzCo1IWhCVNJddodV3ey4eg5kUuzo1UXT6/S0WRR3nE5uD+f/NzcOtvPYFykFZApQg6l4FOwWlR+aoMlPW/W3D5vKZAJ2BLwnGwERz+je295wkKfoYa44zhHGtPTmEjRVqWz8vbZWYohVYe+rj4Wytgrfiv3Lgnxc/CHOlcE3PtHnZ5Ht0Z4u6s4k4eQr12Q4jkgwGq2cB1etjtbUFCOp1RdEW+f+PnELj3t9/JgV+7ztr7DjH7/DY3v22amQspG9/XI/xsk31/1Ka/VKHx0l2y2Sb66h1UKZKJyBfAt37wYcK2Y/6XX0QZw5VfOs7SxyL+489/lG/8wR+k9Tda7GzW2ffJgI1HFTPnpL3XuJ2RVDWNGz3uPFUn6MO+X3yRS//zo5z8sVfpv/04n/7lX+Q9H/wg7R/cRf/GDJtfH6M3QmbOSdJ9/W5GWlZU1hN05gjaMbx8keTdZym9eJXeO45Ru7AKSrH1jkWar3dpHavRuNant1+CS4N2TFYJMb1YLAwCjbm9wc7XH6FxtUPrWJ2pz66w+v5l5j72kvjOPHqc4OJN3MF96I1dueey0XFNlqYILt6UBVW9JnzBrZ3CQ8v2B5iJJsxOyRgXaI+qalFSlgL0c+cZftOjtJdDcDD3sZfovfcRwnZK+PxFrv2IqI2OPXONbP8sZCIYufOXjqMszD/zHNt/+W3MfeaWnPxhLNE/zuGqZWwUiC+QdajUEW71YG2LjT97jOG0tHSTGoRtKLUs62+B+g09erwjWXdbjziO/asupOJerne7Iq0vl2m99QAmtqRlXSwcgp4l2o4FjS4Z365N2XzLFLPPb3L9z8+iM9j/vzzL+g88Sf1eRuXf/zHBoYOQWbK1dZRScl/cWCE4ehh6EkSdo1luY0vEFbPTMsZUK7gtiXpR9Rqu3ZEFc62CrZUL6xF7/rJQJnKrCucKDtnw8WNiMhpnEgp7cJ9cK+u7YB3x4Tk+9Qd//41vdf03b1Cr68e/+laXUuoJ4J8DFeA/AD/s/oTiRCm1jERi/ahz7qf+v74e3kyFT/i+or01Xvgo7/Uh+VFC5M1T0cWbJi38a5QRozbTrEv7xxv3Fd42OfG3UhaVVq2CvXpjLN2cPQRhtBhPqXKZ9M7doh0xjk6p3OQLBAVRopDK/X4Aj4wExeSa94rt+oZkJvUH0nrw/COXWXSzTra9O7qpnCtUX0X/2aMh4i8xytkqiqfcddfvW5G944miKIWuVArUKjcNBIqwUlevkl26ggrCPe9LGPp/xdTR1SpkV64XSre8UMtfk8v4ValEtro2KnJ960D7QkZFUfH9VLUiKNK4O7NXYOVBjeL3M+lbUHK+Cp5Olo1aOf645cVwTlDeY1g4pqoCaP3Ft6AzR1KV8EWnpdgIBg5nIC1rKXZ8EaQTsN5RQGWS3ZXL29OyYvp3rhTXzf/rlmV0vu4BbKAKjpDxhHLTt2QVjTWgM6j+xvMoYzCzM9hWu0DQ9MIc6dXrQvBvtQWR29wShQpIodNu70G9ihapHRkYjkzl8tZXRvoNj6MTS/tQifrtmO3jJWa+2EOnlsF8meq1XbJ6ieDmmrT6dltkrZZ4SBmN9u65bnkfa09O0ryecPP9AQc+ZfnUz/0cX/+3PoRysPmQYd9zMe3lkPod4c6UtoboOMNstsUPanEe5Ryr75pm50HHwU9mfOYXfoGv+5s/wJ2nFEt/6Ag7ltahQDLBDJQ2Y5SDYLuHu3pT7sFeT0wIjaZ3Yoab79ec+JUu/cUqpc0haTWgtN7DRdKazUn7OQmfC6/jkpTg8EHsnXvYR47DCxcYfOAJqisd3KtX0Mv7hd9RrxULqvxat602enpKcro06Msro2s29x2LE8nQK8n95UqRR3xEmu1evIA++yDq9jqkqZgpPnQMrt2WYrcqPkAqzWAYi/KoWiV79HjBLzOflzwv5X11ci6dLpdEAQjY7R25N7d2CBbmcNMTDBfqlO61SScrhNdWIQoZHpnDaUVptSOPX1+DwDA8Mkd0t+UXqwGkmSSpZxluegK1tStCk40tCCOyI/swV+/I9VsXF34zP4vd3hH12lvOSOs/1KjPn/fIf69A4q0P3zUTTdT0FNnKHclIq0q7iyjErdyVW3N6UsakcjR6rF6DUoTb2SVrdfaMyXvc6ZXwB/XRZWw1Ql28LufMc9yy3RbJe5/A9DOi1++SbW3ze4N/+aeFD6CUeh74YeDzSOHy08653/4TnvvrCKvtubHC56t+PbyJWl3jpnL5pnKzQGclnV3VxFCvUhJ+g9ECO2sl/JByCaMVthph1nZFPuxRisI9eDAk29qRG9lazL4FWdH0+jIhBcLVcL6Pa31KeLDk3UA9ujTueCz/OinKPDyK1kKc9qZwhVs0MmnrShlOHcUZha1HKN/vdVpLNlQ3hgf2y8T8wvmCD1C0Y0CKs35/lE3lfBsHmcTtHqfnwAerShtIPXZaEIzdHlRLonozWo5rKUR1xA3XXrmOevQhdHcgRmlWTPryFY/Ipwe4W3cxx47IKjZH4PIVrZeuA9jNLcyBJSFJD+IilBMYBRNmmaBN2zvC49o3B953xnVEPq8adem3dzowNy0xAbnsejAkdyAWHpH3osnz1AIppvcUvFqNpdfLdbdzQgthuezQsX9eBiaWAieLRrtuQ4eJxdgy76HrRJAeIT07Jl+d34P2fEUSP0AmcQtOQ1YGMxTUCMAkmqykxFPOQfPQQVx/QLo8T3DTc9xmpxkuNSklKcnyLMFOHe6soc8+CJdvCCfJOszB/WKn3+mKPLndKYr1nNi5x1cLWP3wO1j6V5fpvfUwM5+7y51v2U/jdsrt99QYPNTnyC9l7DwyzeQrWwwf3E90fgX2zWF8ceHSlFt/4SCm71j41XPMX77BxZ86w/JvW9of3OXr//bT/MH/8QwPP/tXqHyywY3vscx8Bu4+GTD1mmP3aI3ypqU/10QnsO+fn2Pl6bMc/Oh5Gu86SfvpXb7ub/4An/3pj3L2J59m53t26Xcjpj4TcO8dhsnXYPdolcbNjHKkMc0T6C9ewZw6Rnb5Gsm7z1K9tsupZxwXn57m6K8nbJ+q0rwRs/nYJKVdS3krZjgZErYzsoqmcluOX/sDp6hfbdM5e5bmC7dpf9sT1D7xiigd33Ga8I9fwz14BHN3C2YnZczrDXClkPTYIuaPX0V5F2k1PUV2b00m3SSRQqlcwjVqkukWGim4vEt4WguIjKG/VKPzhHBMZn/tFTrHJqiFBnvpJte+/zAox9GfvUJ6bIlgog6bO9x7soaysO+nn2P3u97K9Geu45p1dG+Aq5Yx/r6IZ2rEkyHRzgJ6mJI+chjz4uvcfc9RekuOyr1ZnIHh+4+w7/Mpq28LsaGjsjqD0zB4/yH2PZex9njA0mcVQS8RZ2qlxJ/MOdbfPk15ZxIcJLUFand9tuCZQ4Rbc7jQMFioUr20wdY3nmX2c3e59i1NVAYHf/J5tr/vbUQdS/U3nkcfPwKZxdxbl7F9dprsxm3UyaOwuYNbuYNeXBAD0rwtX6vIOckfy13Rt3ZgfgZ15ABpPUIP/eLqhQvocnlkp2FF+aev3qH9vjMEPYuOLaVXrqMfOYXppUS3tnCNGsmD++E/fvnt/1/appRaBJrOuWf9378KfDvwZYWLUurbgatA9z/n9cVr3iyIz9vVN1FkTuUGebkXi1ea5IopM9EUhc/4ismTKfEeJUXa+LjiyU80ulSStslkE3vjNsCXt6h0znkI5f1224Vaa8821lJSPtLCDobcn+NVmOT5VYGqVsjWNorU+Wy3VaBdIlXvy+rGozl5i6rYChXZyGI//zsnkhZxHnkWVO64PLbZXq9IJs8RNDWGzuipSezW9sirAvZIsJ3nI+mJJtnG1h5p5552W57V5VeuRXyHs3JeC0m351GFEl+R7bYEwet0R8UfYBri+2M7Hcz8nBREULx3cXo82pYn27vhUN5nMNhbdHgXbNltmfR3/8JjYlpYUegUbA70pY60rAXlSRGjQiUIjw188aOk9ZWWVdEKW/j4tdHn3R8GOm5kmGW0nzyEyiCtaHTi0Inwh5QbfbaJofHvXxKk4dAB0hvSotCVMmppgezKDYLFBVy3W6BgttsV4qfW0try15UyumgD5udVXjCG+CiNWVogm24Sz1VQqexTdzGksiFoyp2nNEf+3QAbGaLNnhDg767JefHXsvZkU5QiffwEWUlz+z0RjeuwfcZRvyEFZ+eQpXFNM5yCuZclgLS2mlFZizGf/1LBsev/mbNE2zE331eheQ02zzoa1zTn/odnePQnnkZZGMzC3EspreWA2r3M2zS0Ua9dK+5JNxyiqhUGjx8hizRBL+Patwcc/q1MuFqxpbTRJ50oyfeyDp1YzJ1NadXMTou1QqeDeegE7soNOHWUdKJE+Mp1WJyDtU2YmkC1pYAnkJBRcaYfwP592CgQl+31rcKnS1cqnoulvUzbClJhdCFzdy9egLc/jNnsoNKM9PpN1FvOYG6t49IMu70NSgt5t1oRDy7rwzuNETPQjR2cj91wvX6huLT9PubEA3Kdrm/Lc8olCAL6TxxhOBlQX+mL+q1RQn/uHGZykp33naS+MpDHJ0ro338JMzMtSJ03RgRgpw3OkpxeJlzriG2AUrjb90SpW4rEbDOzhbUDi/OwuS3cJ2NgZgrV7ePihGxjQ1RdMOKFZpmY2q5vQCiePK4unj2srgvyPDstxyIM5LE4EX6Vc2Sb29IBqNdkvHFuNH76+UOFkdiYTNRlUb7TKvIIAfQDh6RNeek6djjkk/bfvOGIz9G/9sYgPhd+4u/cADbGHvp559zP3/88pdRbgJ9wzn2z//sp4O855771vufVgE8C7wX+e6DjnPupr/b149ubBvHJt/FJy1kt6ex+U+USZmIOV6tgOj2BSb0bsk4S3ERDLsZGGZ1lhSuquCh7w71+n2xjE1MRyadu1j1htlRc1CKnHuIGA2y3h4kTgUBBJoKc65MXF5kVw704KYoeoMhDwvMmckm7BjHNOnZIBv+JCsFuv+jXO60xnT62WREOwblX5WbMk9CLA+T2ImU5r0U5SK0AD/cVfnnrTx87BEDQ6cuAl2a4SoTuDWVw29qF/oBsdR19dBk9GAo0DMI9AlRvKBb83R7p6rrYyufcn7yABN9ykoLI7rYwc7MFlyfnZeXPIxXSrWu3yba3pWCanMDt7KJnptG74hWkGnVBn+JYIkW8GZyuVaSllx8LrWVgHw4ZRb4zUmblbVClCu+S3Ko/qSrSimI4qXABZCV8gSMoDEDQcyirsAaUVQxm5LnOgEoANXqu8/LdcfWUCwQdLNSKFlSWkZY0NoS4oYo2RN7eclq4PuCk6Ov1yCbrmO26hNpqmQx1pUw2P4XZCXFrG7gHj8AXvlRw44ID+4vrXBmN63vCd5IUyI9z4xlmGffef4B9v3kNt3CQypVVVr/5ALXVjK1TAS6AA59OuPJdJY78u5T2sSbNizukp5YJtrrepK7B6nefxhmY/8UvEF66zcoPPcDy7w14/a8alj4RsP2dLb74jl/l4Z/7MIN3tyl/usHKn1HMf96ycVZTvVNGPfgENlIsfPQF+jOG+otrHPrEPK9/0LD0WwE737PLoz/xNC//yDOcfvZ7KX96gpX3wfyzjo1HNbPnHFk9wr3tFNHLV+R+rFawc5OU//gKqlmn9cQSJ365w+W/3ODwxxN68yFZ2VC53aW/v0Z5Y0A8VaK8XcKubZAdnCIsRyQHmpiXbtD/hocpf/IcRiv673mY8mdfxT10FH31NnZxHmUtarcDUxPEC030586hOl301BSqXoVyiaC+KIhPZrGtludgWSE4O1e4bAsfUBNPRAyOzqMsTKxt0DlQparm0K9e5/o/eisAD3zkGvHRBYLtPmp1k5XveQCVwb6ffpbWX3o7U7/9mtxfYQhlaSkro+kdnUInlrBZRndmRPX1+g02z0RkEfRnaihbRacwkz7MylN1bAj96SrKVVAZzCRnufWOGnMvD9GxRScZuhej+2Ij0t1XIqoH5Kk8pckqaWQIOrGYmxpR1aqtXXYfnqH5iuP6d4of2oGfep6t73srUcdS+7db4vmVZeg4kXtubgZ7+x7q6DJs7pCtb6Abh2S+WPPxP7WKSNH9YxgjRdfmNubgErZRIa1FEpHhHOrcpdH97MUjTNRxqxt03/MgZjgnKM/rd8kWZ0maEdHVddyRg8TLE/CJf/MV58H/n2wbX2VR95V6/18JkfnHwP/unOvcJ+L5al9fbG+ewifvlXrFixrnk3jzOdvtSXFitAzWYZ1Cbmw0rhSMeu+TTemHay1E3YGEKtpOR9w5qyLPpNkQf5DYoznDuCD16lJJ+sJ51MD4qjxNfZhjJgRfX9iAeEGocklUBV7abAcDVBiJiV1OuE5kpaITmfCVsjgCFFZaRjD6PmPk6PuJ08LfGZnljQeW7jmeuerLGFFUhAZjDK4coNuZ+Ju0ZRVot7cFBYoisomKxDwYgx7EEukRJ7DTImt3RmiQMbjQcwgy6zlWdtQ69JwrKmUhb+axEWkm52gYF6nwBcqnVbH6U1pjnRDe8WGBSo0KA0CO7W4Lh3fSthm02wXJvThO3hQTkM/LkSZ/rbnhkKShSKvS1jIDT85sOcq7Fp044oYmi6QwSr33pcR+CIkz7Dh0BipzxHW5Pp0x5NHA+blVcSrfMf8eShHXFfGkyIyDLoRdJwnwHYvOHHHD4IzCdbrYdhuzUSXr9mXFOTtNPFUhXFogmSihh2LxoHwxnIdM5terGjcrzFfgOSJVoIxyfMxQ/i+PbCjviOIs7I7UbdOvaJxRrD+uqaxWSJohKiljogjVqBP25Lkuy3C7Lap3IW6EmE1D2E4Z9CLO/NFfRVk4/85f4cyXPoyajElqZeIpS9A11G9bEiXnM+yJMjKe2I/eMISdjH43omnh9LPfy5fe8S85df5pzERCWjXEUxkqU8Kl8RlPeDRQRyFMNsUs099CC8+Bji0bZxX7nhOJtI0kK8sGStrDSSzBsu0eQVvQlLAn17EulyWXyUl0i/K5fC7QUvxrb15aqQh3xF+LOe9H2rdC6rfdHrpcGoXReg6iKodyDStBJ1XmCs6a7iWochnTHyGwzijUMEZFobRSvTIt7IrTvPLXQE4nkH2GoJtKe2oYiyoKwMm9YRKHjiGpK/QgpbzhSOrCcdOJf7yfUt506NR6zzIn94TRuH6Cib06KpMYDt1L5PO9walKUmy9IpFDiUMNY8xAFiMYQ9S+j4KQT5BW7B/I21dxUoyTNhRFax6UXTyWL4jSTOwpEp/X6EANvWLMWZQK9syyqj8k63RQ1mH6GWaQSgvaR82Qpqj+sFCHvuHb177Jc/92Czgw9vcB4Cvlebwd+A6l1E8Ck4BVSg2AX/8qX19sb57CB8ZaIxbw/geZLRLIzeSEEH67whXQXn2lvGeKHsa4JMGEoah+hjFuIEF2gE//rktVnkqxUfjI+MIoa7eL5xU+QGNFjYsTWYH5+Ii8xbWnDeUHnJzpr6JIlFx5WnDeJroj6hHTqEtRlxOCjcb2+pieqG/y45K3a4rixnuv7OH+5LyVcUQjP7y5dDzL0K0+2mjJN8sy7M5uEbmhjBHycC4v3+kVELLA47aIzNBRKIo3JU7aAFmnO2p5+Uk1zxHT5RIMY+Hb5Khakgoc7Lxjsvc4yRV2dntHJoVOVzxdsqyQ1NvBgKDdLc6F63SLfRs3nczz2/KCcE+QqdJFgKw8R66naNdR3gRlHVHXomNH2Eow3YSsFqJsRFrR4CBqyeAbdi1m6Ai7KXqQCYcrMugsQK1uSV5ajr75tlZeJBIGhfou6k4T9hw6FXJu2Ekxg1SKJMDpOjaUqBBVqUg7MjcfHAwJdgbQ6hAFRtoXmUXfXh+R5I0R87Yx3tm4N9UegvNYgOvss14SbR12oiakbwPVNSuO4yVN/VZK3DQs/lHKna+vsvSHfcxODw4u4lbuMvPJa7KKLpfAWup3MlwAM69Aezlg+g8C0kqZ1smM07/4Yb70wZ/hzEc/zNbjKXOfl8DRyss3pSVcKVPeSOTaNIqZc4rWoYCpzwR0D0L50xOcOv80Fz/4DA995Gm2nkiYfTZg7S1w7F90BXEpl0jvrWKmp8RMr16D6Unql3fJmiXqN/tk1YCDnxRS9GCuQuXugOFclcqttqCYU1Ow1cW12wSX+9gkJbxwS2JDKmV45Qp6fhZeeg21vB976Zos4uZmcGubhK0OrlQimJkmm5/AGY3xrSw1iGEw8MHFvkUcx1Lke26gbhmsUpQ2+lRuDCXMs92meruH3mnjbMahjwhx2SktRpOdLg5Y+MUvSLv0yCEaX1wj7fdROy25HgYDHOD6A4KDM4S3NkXNtL0jbfpZMZusriWY2BK0Y7EPefUK8/cm6T26jI4tYTuWou/SdWbv1HAL0zLxW1uYoJJl1K53JPDXZyWqnTbp3XswNVXEDamtHRxQvSO2GAc++kUZ0+bnaJ5bQyUpqXNFSGw2HAodYm0dMzWJW9/EdvuYmWlUmmH6voiJY5R37Tf9pPD7Ut76Ir19F9OfJKxVcT3xTrN5m20M3U7vrhIszKNvdcR/yHttqdcSjLW4Q/txN25T3m3/yXPhf0Gbc+6uUqqtlHoSeA74K8D/9RWe91T+u1LqR5FW18/4v/+Trx/f3jyFz/gkBSOeT6hGOUV+otVzs7heT3q6u5Ibw2CIa9ZRnZ4ojCarmCutwim4IBgnKdqb+aEV9oED6L6Hkj1BzQ2HPsk3LCZhPT8r/CFfXKlkLDfLE3jJMpTWEro37qicZdgkRZkUjUQguMxiZqYkcqFZRW/LZ7myIBM6DEXh0OnBzu7erKmczKxGXJuCV+NJzqMicmSY5xIhNwNkSxPoYUbYHxbKLFOvyQo0CIToGkVkrQ6cWCZIUpGdJzGEkawIPVk8/47Ktxp1LveP42JQyPk8LstQRw7KLmW2SLbPOTsSEupXXlrjsrjgG+hmQ5QqlQqqWpFCMeyLcigvImB0fPLjMb4pzyEbRznkgpP99MWPCgxJQ1HeGnnoZCWNLhtcqImbAYMpgw0gqXnlVezIoz6UNVCWkNGspBhMaBoTjaL9qDIrxV/x+TK45kaPcU0RdUf7bkONsgZXEsXhcELs+yu+LWtmp6Uo1wpXq+CiAB0EQtx0FpcmuMUZdLcr5nHlsnDigkDOqffJGuceFRwxDErJvnSPT1M/d4dwdReGMcFcjSzSpE3NYEoxdTmmtRzRWInpHIiYeylh5b1lFv44pHZpC3vyEFk1YPdImZlf35HWMBC2MjqLhsatjHtvNySTGdMvabbf0+fMRz/M+R/4Gc78/IfZ/OY+G1sRD/T2S/bWv22JgZ6zhG3hATVvptx7h2Hh+ZSV94GZSHjoI09z4UPP8OBHn2b7vT2mPlnBViOymQXCL17FNBpyDSsl13S3R3bmCMFrKwzPHqF0c5vesRnW3hJy8Pc69PeVqa506R5tUvnia5j5OdQwwWYWtTiN29jEHpjHvXxBxpGzJ8hevog+cZTs4hXMyaMitb62gj60n2yyhrm1jl3fQOW+Xp0eql4VE8tKRfxten25j+KkcDu3G5sEgSzg0nqEmyihMkd4r05/tkywHqDSkDvffQqAxX9xnsHxBcqX7oFzbP1XpySC4tdeIH3qEcy1G96kVRfmf6peI56MiO54M9lSCd2sk67cIZ44Stg3pJkhrRhspKjvHmS42JQoHqvJKpos0jR2lkjm60VEjrIOPUzRgcHduoethuAClDdVDYYJwb4FMYXNJEJDTzSxW9tkVbnG177rBDqG6V9+lvQbnyCeDKjevIWrV1GZRQ8GMt7WJFJGTTShK8iaCwzJVJloRaHKJWyzgt51JJP+sSiScShORMHWqJE1K+idQNC2tveR8x0LVSqhowjb7jA8c4CSUqheCZ2m2AcOSDv+7hZqapLe6UX4BG/s5ngzIj4AH2IkRi/pEgAAIABJREFUR/9t/4NS6tuAtzjn/tF/zuv/pO3NU/iMtW/2bGOcH6JQJr44xvUH6DjB9voCW/b7aKXEJwYwRosbpzFChu4PZGC32WiVG5bQrT6q0/PcCLWHoe/SRAYtwHV60t7q90eIAowk4Hkbx1lMIFLQPK9JGSMrNBh9ttFCugtDdGYLwp0qRaC05EI5JxLlPYTr+yZL8ORU9WWk3j1bAf1K2yta70ry89rGyN8mFqK0CoJRkRiF6NUd7MaWPOY5RYVUNCdyGyM8mziRpOP8nBY7JEWGLpVQra4oxjrdEdLjpc5ujODr0lTQieFQUu7jRKTogyF59pG0FOOCvLsn0wz2BJDuQcvGpP9iQhYUxy0/t7V7ltrtATbUBJ1YvFIG0r50yodHOkfWEmPDqJ2gYvF10YkQaF2oSctGBpvdtlzPnmu1Z/NWCLnUvbY2Q2krFk7RIPXFknfJVoqoIzwIVS55BNIXfUkK7S7GyrWjQcJ7SyX02jZZHMsxdA67s1NcQznikxPbGS/Kxq6r+ktCoLbVMjpJcUooZcHAUl1XJHVD82ZMWjU0VmLiZsDiH6WYQUa81CS604JXVphdW5Z2cqNBaScBK8fbaZi8JHyp3aOKic+V2X4s4cwvfJjz3/8znP6lH6JxTWTXs2vLZK0WOjoghUFqqd8VkvXka9BaDph/1pFWDVtPJDz40ad59Qee4dQvPM3GU0PmP92WFXipJIX1xATpjZUCEQs2OjA7TenWDrZeoXKnw9IfVlh5b52F52N6B2qUV4cEC/Okq2sEh5flIN1elcXSyj1oNISDdu0Oav+iEM4X5kgvvg5KEyzMkV1fQU9N4ZwVMcHMJEmjhOlVsT6bywxj32b3sS/eGyy33sjHiXCjh+70IM1I223Kqz2xM0hSFv/1a7J/UUj5ypqgEEox8+vncXGMObgfc3WdLAgL8i5x4gOJM0xscVviRZXttlCdLsHSPqKWo36tI222fkJWi3A3bhFtNQiWRcmoBilZo4S7dY9wPcIdWCjGMJVaabMbTXh7a2SpUC1DnEhwa/7cMBI5faWMacW4TpeFX7so1+6B/QRX1iiFAZkTxRzW+kgKGW/1wkgIoapVKcASWxRVKhU/Le0fc/kCRStBnp1DOwebOzJW55xPN/LhynZbclw2B+jVLfEk6w9Ql24K5eLoMtxdo3ou5U832ZxzLwBnvsLjvwn85ld4/Ee/mtf/SZv+Tz/ljdnGwzXzn9F/egQgszJxRlHhR6OMLi7QohAIjO/H2sJNuXirUkkmuixDhaEgN4Oh9OjHXVXDyBvdxX5CMBK8GEWF543yDqa6VJLWkFfI2OHQW9EH5CnXeR5S4THjUQqVc4f8CrvItPIk26KYUSPkZvRl1Kilc9+xdHY0uea/jxdGhcw8R0mskyKsUkZVq+LqnBs65q2Ycav8MERVK+IUnHsZ5eS++/ZXWmz+s8fPqycRi6omRJVL6HpNVD+5N1Lukh0E0hv3j7s0lWNcinwemLTWnD/2Lo5HRY8etQaLFpzNcMnoOXuOQ34cC6I22FDQGxsFZJWQpGEkQVz55GwrxGQXaGyosaEhqwQktYC0ZgQFKvvrJIqKUFFVilC1ql/RCzdMVcrCBSiQKY9+BRpbCkjrEVnkpfeDoQzOgc/ZcrYwhMxNIlUgJqB23wx6QlLfXZKiq1VMs4lpNkfHXIu6y4234vJrTmmGx/fhmjWROvd6BD0pfpxRDKblebuHI4Juxu7hCDOwtPcHrHxTCacV7Ydm0EeXWf36WTGYSxJ0P8WGItMvbcYMphXbJxULX0jYedgy+1xAcrzP6V/6Ib703/4su+/rynu8e47g8PLIeiEypGX/HjOK2r2MnVOwdTZj9tmA5GSPU78gba/K6yXsRI3BsXmxvbAWvJM1IBNVkuJW7ohh4LmLvqC1HP63m6y+LaJ6s8twtoQbxpgHDguHsN0uzidz02SdrkSK7J+XNtrRZbL1DcwDhzFHl6XFtjBP9sCicIsGQ9TtVYKdHnq3ixqkqCQjm25ipxu4A4uoo8uopQXM0WXMwSWCpUUZD4GsWSKdnyCbm5Q4jZmKEJWnJ7n3HSdY/YsnIE7ont4nqOnMFDt/7jTdDzxKdusu6cKkFNP5vRr6/D1tJGS42/eKWoOZmSK9dRunPacotTilGM6U0fvmsYf3yTotc2AU8bTwz+yhfWTVkKwWkdVLpBOe85df787JdeivYzM9hZmcxExOjMJmN7fImnLvbHzbKXb+7ENk91ZJDsyw/TZfVOX2FjmKGYb+XvJecXlxb0Z+a7mhqAs8vcAIl9AlXvHoj0muaMstMHLbEpQajXWBELFzH7fskQdQDx4VFN8Yuo8t87XYlHtjft7M25sG8SnSsz2vQ3g4dpQV5KF4N+6X0+v79o2QCG27I4hKnEBLIEiXjVXzQShoQA7hhyFua6eQSBdoTCAXtgoCeW5mcZ5XNN4uyttHefspb5MU5nheVSTvnWdIKcDbzuc3XjpWkORhnSATenGA7st28o8prXDOt22U2/v/8GWFkTKe5Lzd8giY894ztiCSq8BALu+NIlynI8cgL5x8S0CFIURpYUCY9+nlg3M0amxn/H643VbR7nPj39GYsUFJHK5dHMuAlZOj41hQJ/+d3TAustDygm88WNMlcZG9tUdpBqN2l832FAqy+5bazR6m7T09UltkmNlSgBkGmGFG2PbkyyRDDTNR5fnnKRsW0LIZIMGPY5+vlBLUedzoEcA6KrerwnMIfOEJfmUZgYPSDsKn8L5Mzjs/qyAUeTSIqeNwWFgVqFurRRRBni7PGKm7uF7U3sXCqGDOKL2+KsaB++ZQ5bLI1lsJaRYImXNgad4Qf5vpi33iyZCp1/pMXDNsnC2x8FwXd/MOC5+2uFZH2pihobSyXWTDNVYy6ncUOw+ELH0qY+0tMPmpMpvvSnj4Ix8mtOBuXGLhMw63swtLC+hmk/L1TZyeQTlo3BTi8ew5h8oUa2+BqU9W2HhqyEM/+zQXfugZPvArH6C8sQuLC7jtHTGps06OtxXCvarVUJ0e5oFDqHvbqKkmw311lv5wwPVvn+DApz3peOUOZnEBMzcnGWiDIWp9SxZIpRJcvwPVKu7aCnpmmuzqTUGHZ6ZJ765iemLgRxTC/AzpRAUTBXItKYXuDMS3qi+8uFyhSrnkz6Oct2C7J0iHR3xK9zqSRD8Ysu9fe05JGFD9wg1cu4PrdJn67Zagq/vm4a6ggvn1WRTemfjRFB5lvR7p2gbBoYOYoUP1vOI0y6heHpJev0kwWBAlY/F4THr9JqY3h56V8FysEJbp9bHOofqDkQmnR6KzrW0Zt9MRvcDMzqC3hTsz+/FL0jKfncFcX2P6hiKFIoi4GJNygnLOy7EWlaSYrufzpEMRbySp5GjlHNI0KwwdGQ5RXTPifPp7sxjH8nEmTYUA7bMFsRbzyhXpGBxZhuGQ6os3+NPta7O9aQofOxSzv0KynVfPYxO+CgVpcb2e+FAMYylQbASNelEoZFvbghoFYYEI5QhRMeFaV0zAgCA8ShVmdySJDGDZCH0Rn54QqIwmhlx9RgiTEnyara3vIT+PT7jOt8R0f1CEi6rxzJexzKbMk4Vz1EFWFWOTepqgogrE8R6vI7RCB2q00jHlvTEEzhVRHYXHjV/NuGHsFWuZcJPabSFmh4EUNzmZG6QYzARFsZ1u0apRYVScs5EjtmR1FQVhGKKMHb2n0SO+kD+utteT/n63J62uoYRCqrJvd/m8MPqDAnUyE+KKmxejulwW8m+vV5wzFQZiLpmfu0ptdJz9sVVhQBoZ7EwNGxlBdJCVrR6mhO0EG2lcoHBK48oBqiJtLkCI4bFFJxYdZ9jIkLXbo2I1L9DyQn9sc1kGJw9iJyrYSIsCxqtuVCKEaRxSgHl/l2x1DdNsCmm500XFiRRZudJwook7sEAQBAWR3vaFuDrujr53R8YUMn6/L/+vsxz70Qr9w5OU74q8W/n9K68OCVoDKfr6ci6D1/tFiO/+l4agFRd/4gwnP7or7sK7PVywDGGAziQGwQUalVqarw1JGyWO/WoXW41Y+I9tCZrsx1z+scc49rFtyUCarqJfvYyZnZQYiu0e5UgT7AzJ6hFoITLbasT8p+U9PvArH+Djz3+c9x95O7pUEt7T7HShklSmTLa57e8xuZ51pQytNuFrQ1QUcviz0nJSszMylnT7MjbVa1JwVyqw25a299QkdmNTip61DQkBtU7ciKtVKWLw64Q0I2gNUDviuO06PUEouz2yOCnaufl+5enhLrN8w795kY++8hRZK+Lwv9sPf3eNyg8vSKr9VEMQjQuvYxYXpAXX8orHNMX1eqSnljE7u9hOR66NzArZOIoIP3deCo9SCV2ryZiVZkx96ipucZasFmE9ElkaxLTeeoD6tTZpPcL6sM5yskz3oXkqf3CxyBxzqaDuenZG0JVyRNYoYys+yHN1rTAjNfUaBAHZ5hbDtx+ltr2viNxx7S7xqf1E6130dg2GQ2y+YPPIZXrnroxBvqBSxmD6Awm/TVPU1i623cEMhsVjdntHvmso7s1ua0f2w5ue5ukBOCvJARNNsu0djEfwdbOB3dxCz83gtndRnR7p5tYo4ueN3t7kaMwbsb1pCh/IV5v3tUrGJk/27xNFULsrhU+nh2rUIElx5QjV6aGmSqJoWFv3KIsnDfd6Bfcjb2s53yKTAsUCIW7opb55P90b+qlqpdhPlbs75/wIb3hXeAv4YqdYpVjHODcnh0WN9wZyna7c9Gk6mpxrVWxLiNvZ5taXHac8xDUvPIoisXC7dr43LXBxsX9aCxpQIC5JgXbgM6xcznvx38H2ByODrkCkmyqKCkNAKbhKhRO1M3oP1CmtEO9FoxXmlSsyYOTqsCwTOB7IpcWicopIju4j2OiQzNQJNtoiZQWRaDtHOlnFtIe4C5dRZLj+oCDMYjNpRY1zssa5Ed6PKQ8zLNRk/riGqy1UnEhxEidFCzW/JooBN/BtuXSs0B3/XSm5PpcWR549+ZZL2PO2Wl4gb/cwuT9InIzabv49XaUkyMSRg9hKSLDZxDYqqGGKadYlgX2igev2YbIBWzuCHnhlUNbrgTaissuv1TGEctzXqECktGHpYxHdEyV6swad1Ng6GVK7Z+jNa5wpUdmoMJzUlDctSV0RtR2JzxYrtS1ZqDj5917h9R89y4n/s4WemyHtp2QXLhFUTuOu3sTUj2MrAerabdSZI6hWl2ymhsks8WwVMyhx7B+/wtUfeYRjP98hur0Nhw6SvnqZoHZG3qN5AvXaNdzbTqET8cvJZhYw1hLPVChv7PL+I2/nE9ee4xv++gcJOgmrZ6tMvzpN61CETqF+J6a7GNJYGdKfjajeG+IUpPWQ8r0u6VSZoDXEdYaY40ekLaYUrt0Rk77BCEl2iRSirt2RFmucFNlottdj6689SVpTzHxpQG8hIqkoXDANDmklWcBB1HWYWPheOnXgRIpuhhn6D17mk3/9nRw/f0lCfB84xPDHZyHeYvOp/fTnxBhy6VaTu9+yn8Xfvs297zjBYE5R2oSl/3BLrq+jB1AXrogUf3LC8w4V9Hrw8ElRLk1UMIOUzFrcF76E2twiyD3TGuKNVlvpwsWrhLWqjBeNGjhH5XaXnW89jXhcOeHH7cSoSyvY1Y74tS0tIDxVQBsG7z2Lji1maAm3egT1GjszAbUk4eb3LhO2Yenjt7CB4spfmuboj99CTU6IiWC/LwvFXg+zf5+ghNahGnUJ0M2tSTKxJlGVkQAlf8xMTRXzkUvSkRBgNCiP2uKd7qiYNRJ8rScnuPGdS5S2Ftn3O7cwk5Nc/LsH4W/xp9vXYHtTODdP6Bn39vD93lvFy2jHDAIJQ4Epc7fNJBGjwXxyyTIJ04sTmRCcw964LSu0cXm0UvLacknUU1mGu3VXbtaKEBoLZ+M8NNKvQFj3xUdmC0do51toQMHLwTl0oyFQt+etoL1Zn9FyY/mBgWrFe/nkjsh69Ln545klu7dauD3noYX5gKmbTVyvJ62/MJDvoU3Re84355ysvHMeU64gcw5XiSBzuEooypRyiMosWTVCWUewuisp9xWRH7vQc0GUWM1ntRI6tejr92SC7A9Gq6z8O0ExkBTeSIEZtQLz+JHxvLBAeu56Y1sUez1BE1ytAtst4bVMiauqvXpTvlapJOihb1GOZ6blxoSyL/7cjTtsjyGNeSso507k51tFUZGzVPTuWx059r7gLIqFHGXL/VQOygpP3Y/wjPOi8sLn1t3iHOdFZk4+Fv6Y50TVqmSLs5g8+LLdlWOyvo1bmJFjNz0hmVSnjmJfvlB8rm40CnO8/N4reBH5NqbwQivufs9ppi8OSRoGGyqCrvVBrhJjYgNJprdGEQzkvOvEoWNLVtKEnZR4MqS0PuDa31E88OMJ6t4mzEySvXpZIkr8ccZ7LalySSaRUgm328LGCcNveZzS5pDLTwec+vDruCP7UXGKvXxtFEwM3uBPf9l76MUF3OY2/Xee5NP/9y/w+D/5EFlJfJuiFpQ3LcFQWnfKghmIrFklVtqeRhO0BqTNMuq58wSHDsg13OkJIrG+gZmeIlsXd3ZdKhV2EQXR319bzjnip85QPneTu995XFy6A0XYc6gMgqE4d5uBJWol6DhDxcL9wTlpgXmnZrPgOUt+PNFTk7hqWeIZlvbhtCJ7/RoA6Tc9QenFq7S+8YS0Bz/5KuvfcZr5371Jtr4h6Jcfq1x/ICrP7e0CRU3OHGbneJm537jI8PGjss/tBHPudYbvepBoa0A8XZbHuynmc18ke9fDmJa4OAfdBLPRIrtzT3a3WiU9tYwtGdKqoXKrLYT8zW3MzBTZ9o7I7vcv0n9wHzqxBK0hw9kKKnOUnr3I7rc+zMRvfVHG3YXZoj2I8wucoWQ9qqqg9tnGBmZ+Dru1U4zX2fYuwfys5ATmqFqjXoxrttvFNJtyH0YRttsboaNKM3z/45iBxQxS4gkxO3RGUVlpsfbOGeb+9Xm2vv0MzeuDNz6kdN9Bd+z73hjn5vP/7KvP6nqjtzdF4ZOnsxfb2EVUcB+yDM6elNVpL8ZWI3R7IPLDXoythPJvrSS91UvXJZbgvhiMojLPg03DsdymsfRyl8QFfKmMkVyjsQJlfHXvtDftA0Gb1jc84TorOCR7OBTIgGymp6SAGA6lELBupLCqlAvn6fTGikx0eZ5M7mEzHHoezGhALQjJjJCo/HfZd0GGbK9XKKcKbkjuY/OVNt+CE5h4xHHaoxZ74iFBfLQamfPlh92IfJXUSkyAdwjOA2d1rVqszABPKgxxpw6jOwOyiQpmsyOmaakYqmEt2WwD0x5Kgv39W35tj5tjfqXtft6P/z7BoQNS9OY8h7zoy32V/MSjBrE8z7qiiM15Pi4KZJLKHMlsVYoch/Q03KjoUdYVj6nMEZ6/LuTnMCyUYIRhoXZRvYFY8z+wiDMaHWeSCB/niwFX5KlljbI3gstwUYA99yq6LKG4eCFBgYJBYXSZ2zSMh/JmO7vYdz9GdHWd7plFqjdbkgd1vU0yXWEwExL0LYMpQ9SxpCVvzpfI93MKKqtDwosr0qqOQoaPHqH8pVv0zh4k+p0X0GdOoTd3SFfXMTPTMjnldgc+gDVZnCR4/Q4Mh1z6Bw9y4scuQKnE8JFlgk+9iDl1DO5teFl2Rra5tec9VBhgO12yJ8+w+XCFF//hR3jsnz5N+6ilfkMTtRxxUxF2xKcoakvQbHk7Q+X1bGwJuind/WXq17sSylqtYO+tScHho0JstytqUX+f6nq9iKlQtaqgiIeX2Hp0iiwEk8BgShVZb2FXIlHyIigPwNWZQ6UU3KrgU1/ATE7glgVZVLdEXZYrzmxTjFjTRkmyvX7nBSGYD2NZTJQi3PVbZGePYV6+XCxCdaUsXMYjBxku1clKmtZyAArmXuwS3t3B7bRQk03ShQmycoD5/ZdIv/Fxos9fRE9OYGcnsKUA9eKrpE89gh5mmG4sJpCVkGSiLEqz1XXsUJRyBAEYzeDYPFlJTDGHTfl36kIb3epjr95AHz4o++4XSXZhGvvFS4Kopym2KzmMZnZG7s1KSYjrpQh79YYsJnIz1Xy+MWYkRAGJv9AKpifEbDbNpM3qi7Y87keXyzI+e7Vprn5VRsPiPPbyNXS9Jj5CB5f4xJWf+tPC52uwvTlaXX41Oc4xEM7BiJXv4hjd83laaYb2LqQqTn07Q/gVaijSWJd55MRmoAPpyfpetnxADlkmo5wuEPOy0CuF8pvAt+CKlbonw+aIk4K9XB7rxojSPi4jNw/Ms7CyTCSoOZLg0+QLDxu/unDDeMQ78NEXpKmsTvwNlvvkKKOLPJ+i7ZWjD1Z4NAR5unRa9L1z23szPyvIUeDJsiAIU7eHjUcrVN2cQuXeOb5wIk1xQx914KXX462bcU6UwxdlYYg2GkoO1WzgqpVRG9FnjNmcLGwdrlaWwioK0YEuiqysFhXXTi7LHkcN5fM9aTqf1MdCZqXtafdkvwHYjS1UuTw659ahclVbrtDTWo53jjLkha0vRLXRhWu1qR4Sfs59sScgxU4uDcc5sp2dotgdtxEAUJUKmV9lqkMLvphywgPy5Gsd+yBbxBtIt7vsvG2JiXMbgvT468IlafG7HQwFubJWiKZ58VNwnxQb3/8OFj67yevff5Cj//QlrvyDx1h4IePWe6fEqTqFbMH4NHsjifY+28wpiDoW00/Y+ebjTH3+Dq/+6BwP/sNV4uNLlP/oNdSxI2TnL6L3iTLHDQayQEhSyUBKU9JrN9ATNXbffZTJZ29x8pl7XPjJUxz/1SGlF6+ijhwiu3zNG4dWcMOhvEeWoScmvERbFEarZ6vYEB77p0/z0t9/hod+9ml2TyeEWwFhG9KKorTtGDYVJobhhBEyr4OsrGjvD5n9423UrbukrQ7m6DKqVpPianICe+sOulZD1WuozS10Y5JsZ6dAgFQmra/+kVNMXO6RVQOufrdGdwx6qEB7YryGoKsobUMwyNtf0kJU1pFWNIFSsLQAr9+U8xqF2BOHGT6+jPnCDTqP7UNZR+0Tr2DfeZr0Gx7H3Guz9XVLRG1L9RPn2P6ux5l5YVO4QNrz7kpO0KONbUpG4aKAoBdheimdQxUmXnxNBCK7LdTKbcLTx6FSoT8bEg6HkgK/swunj+LSlMF0SPVOJonyfrwrX1kjXblTcDPd9AS9QxOEnZTw989h3nYaF2pKWw6zOyBrlth49zwz0zW2j1YJu5b6py+y+l2nCbuOyddCL07RqEju0/T2HbEZmJwg3dj0pqV7uZjOerFDoaaVhUy2uQXOks9Q6dq6/LfnCzn/P3Y4xJw6JiT0nV3UtJC4s6kGnQfq6JNTVD/+MvrYITbeMgtX7p8M34Dta491fM23Nwfio6fdk6U/u/fBvNXlCwaXWdxjJ7GRwQwzWVUMUrJygE7G/q6IukT//kuCUPjWSUEezp2JKxWU0YWrMyA33BjSkz+mohCOHBTZY46gpLnfTG6uaItk8uz23REPZJzg7BESFQmRWi8uSEp5kopJWZIWxZMLA0ESKiWy169LwKf3BSomLY/45CRplJb23v0kVSgm/bzVla1vfnmMRbc7QkeQIiIvEnI1h/Ss+yM0Kz92xpA89bAMyB61EMRhrLXjPTt44UIRyJqrzsYRiPz9VBAQP36sOM9BJxZfkzFkI22WUIlFf/ZlvyNjPKt8G/9OXj1YoIB562GMwCtP1LgnTkkIpJYJKJflFt+pkK86XKSFxpVz8bUUytajMQBJMyxQHXmSIGEgx6tAfBxUXt+QY10KCodbZ/y1UokKC/94aUIIpVY4H3roJxTjUTejyEqG8u22EK8zh97tYLe2RVq8uj4qtvNr2wffFlyxsULa9Qe4h45C5ug8UKf+71+i+62PUd6IsaFm90hEZdvSn9ESY+FDWp0WtEenMP1KC31lpTDOfO3vHubEL23SOTFF/dI2/UOTlNZ76JtrqEYNu76JUoqs1Spc0tXpY3DpulwjTxwjOr+CatTonpqjenmT4fIUpXPXcQcW0LtdKWLH3iPPrEueeph7T5YYzliiLc2FH3qG4x/7kATM1i3lu4a07ihtSx5b0BdeisrkuwBUtjLqr25JAOnMJHayBpnD3N0YqUxByO0gLuS9nogGakLCdYeX6B9o0D4YkJUUu2djyjcjbOQwA4kuUakUQToFHSOtt0z4PzqFqX/+rLTZTywLMn7lNrlCUjUbsrNG4+pVCUK9s44ql0hX7mDqNdT0JK7dIXnoEOHFW5DEZDu7hdpRP/oQu6eaxTmNG4qw65h9fhNbCckqIeFml2S2jkotepCisgxbDgnWW2QzDUFJlcR9kKSjvMUoRLW62G3xltJTPhsxy8gOzLF1poE1UN61JFVN0LdMvLwOWzsyHpZKMNHA3V1DLc5jb9zyyfZpoUrUjbqcj+lJcXUOQ9KVW4VrexHQOxwWCF0RclwpS8t5qikL7J7wt+yN2yOk3GaFsMMl8YjyYKTlaOcm0Wvbwt0slXAHF/jdc//TG4/4fO8bhPj8b29exOfN4+Nzn4ePMmO+Nv5vPUyLfBPxjGCUaZX5HBzr/ERlvFdLTkQzEq8QhDLglLwng5fKAwVJOPfoyf2CVBRJoGCSyU8qjsMkaWFxrtJsxGXxLP/7i4OimMoLE//6vF3CMPZyy0weN1r+BfIsLOURsMI7Jxx5SZCrhHJkJwrl37EfFUr7pOC65HYAw2Fx06owkj5+FBWeHi4bkfqKxHcE4tVRKK27QUrQSzG9VPr3nRjTizHdvT+Fn45/PePnOYoKr6QcDclbOTYywgPSChdosqpIu3PFCOAVLl4Wr83ImykviIxcBxjjP1sQLxVFo8dzfw7r5HxbKSiUzZVamfAs/P+jkGIo8+ori+Q2peLvI0Ugvu/vf4byE/QzzCAr/pafbC8JOpfPD+QEAAAgAElEQVT95uiL80iRUrJf/p7QcYbxqKiQX+VY5eTewWJdso62trG9HnZjS9qJ+erW2qLVWrRqc48s/3v61pPo63cZLFUpbyas//UnqP7Gc+wcL9NbCCm1Hb05TdAXng/4oscIQmIDUK/fpPfUSZiepPXkIU782AUu/o8N6hc26D4wRflOG339Lm7/nHwvT5rNjQVVGKCu3qL/ntOo2WlKl1fpPnmECz8yR+3CKr0TM5Tuthk8fgR14+6XvYecXxlTWociohbUb2j6ywnHP/YhLn/fR0j3xbjA0T+UYAaKeMJhI0grkjkVNxVJXUJp65d3JdQ3y8iu3hQH5koAYShRML3eCAHO+Vra37+JWHTYakT5bo+ZV3r8P+y9WaxtyXnf96uqNe3xzHceerjNbrKbbDa7KYqCbIm2ZFsS5ECyLEcQLMsKLECGngzk0YCDPOQpD3mIBTiI7BhxjMi2bMOW7WgwqWggRbMpsslmz3eezj3znvdaq6ry8FWttc9t0UGAiGwkvYCLe+8+++xhrVpVX/2//2BzyB6m2I9OqAaOauAph46673Ep8icDm0mIbtWTzxLnUX3zgZy/SK69cgFfVVRXd6gubOJv3oVE489v44ucxY++TPnyNepbd1h+8knMpGyLXSXuxbonxGSz9BTHlmzsqDvQe1jLXKg1yXiJGs+k6P7Sa1QbBWiNmSzxk5nMy+/epl7LUbOF5H9NZnAyQY2m1PdDEntE+Ts59ZUz+FdfJ1l48pEjHVu8hsH1CbNntmBjjflnnqG+dgF/+x7lpz/C/MlARI5eaGE8u/FETGOdk+tycChz3dqgmZel0MlQg/BYoA640STYdTi5vyczSQkI4pAmmLoqMdubmLNn2t/XOiBYQyafvipo3PYGk6fXHl8G//QP/x388wE+Phitrmj2EguHVa+TEAUByEKnFS6VXbiukX8HR1tlEYjW03BSompldfJxyyUqxikE7kfMpxIFUy2LYpj8fV03klzlw3tFwmzzDXSzy48ttqb6j18mxiKE9/aDbvjeK62PSG6OgahpIp/FB5VZ4Cg05Nz4OZxHNT4+AcE47Wsoz4/ttIAA6UQFabm4RctrWYmrChYDbTFgGpOvxvvI6SZPzGWmuZy+DiZ6nlNybRVakJFb1cj3tW6/v7WNv43ysZCVRd7lgug1RW6iToX9ReJ58/8ITq+03Hy4Ig3vKxo9aikEI6lWxpoRRMWbpqjWpUVFZ4HQAnVpcM+Oi72SFo9LFMqGtlyiGjeC9oREpKVtezUq8ixtiOSqskHmHQpFrUGD7Qoi5ArhHkVCet1LWvdohRDJAV+k0jIKJE3d62G2t4SPAu9XdUWkMKCgZlrhL+xgFo70YEZnP8X+4KfwSqI7krmcS5coyoEK+V1S+MTH/WJJXWjsuzcwH9lCba5z4V+LudztH/c89z+CWhtSbhRkd3dhcx2mYvpGNAdNM1ymqG/cwmxuoEvH5d+Qhfr2X9I89/c9NtOoYV8CR1deI/oXKVOgayEy21yRHgpv5anf/K+4/hf+Z578N38L3a1Z7mh84kkPDbYQro0uFbaQy1avFSRuHX/7fvCzWpDe2BWPnc+8gHn1TfTWJv7ho5X2YbjIaYZSoqR0vRSfaLq7Hpcqqus9/IZFnZnijotgqqcDr4emNaqcQlXIZsuHLDalcMciSlBBtekThark+tT9lHSvCu1wIZ+rJBXEMA/IcCWLug++XSjFYkOTLDyzM5ri0FN3Zbwsdgry/QX1k2fIb+5jswwzr1lud8j35/gnzmFu7WLnC8xMVLjeGJnfu4U4jzsRfKiqEnflwU7DSZxvaZKZZ7GpyY8lUkI5uX90LREwGIO2TpDV5t52gXunBPEpcsgz1NoQpTX17p7EgEAbq+N8yCSUjbNSCt3vidK2SPFaUDMAHmkaxW6Yi+3hkThhn9kRornWwZ9NeGG+KmWj+20ohx8ef/rHB6TwOV0ersrDI/HShwFtOyLJjNwBm+vWyh+hcqAUa8FTR+zWvaSQR4li8GRQWotMMbY3kgSTZa1qK94IVY1dL9oiwwRL89i6CZMHThQfLWKhm+8SzQKjRB5rWV4Y4qJDqG95HqvcIpdq8jfCwhzNEr0X7o4XzpBf4S0RDdgiknKK6+LwTki6+onLrfIomCkm62vt7y7lXFGVcHZHJpDQNlRVTRIRLuskedhapttps7BrG9tBslCoUHjoylOsDdv2Umi/+fGkIW8DgQi6pO4keCO/VxdGPBoVjZcN4d9GBk4cQG0bajUzLf4/jrNV0ns4383f3jG91MGmqlEqRaK2rpOmTSXmjyGfa6VdRWjruAR0FcarbRcruV6+ITfreO3DWDDLYXAz1phSzONk3OW4LBR9SlENDLryVD0jxZaVYqvqy//LtQRdebKNAfnuDJ8lkEirV2sd2qReFuZQ+MpHC3wm52mIDcbAN97BvvJRvFFMnxzS2RU7g63Xp+jXb3D848/T2XdUPU3voWW+rcmPBCVxmZyT8nOfYPiFd2Brk+5XbjF9+Sqd3SUHnznDR/7hlDd/ecDF31yjOKgY/9lrDN46pn7hSZL9Cbqs8Ilh8cQmvd95A7W9jX36PJ0vv4d95hKHnz3PR/6XCW/+7U2e/Jc1o5cvgEcCR8NrJFUN8wX24Ij+/ZJyLWG+o0nHML9g8QvDk//mb3Hjx/8nrn3+b6I2Suwsob5Q4mcGM9O4lFDUecZXO6xPlviPPomeLuHeLvXVM6g/fovUOdjewj7aQw/74rEUIm2iL5iva5JHI5ZXNlluJFQ9aWnZXJEdGvxJj+LpCcuHXRkjph1jHvAmXCNn8fM5y5efAQXZZCLS6v0j6BRk1yVg1l88R7Y7kdiFboful98T1dLlC6ivvk396Wfxa31BcZWSIsQYFme7zM4q0qkUfaMdUG9r1HObnDyV0Nk0KAvuiYusv7NOMlrw6JUtunupkNuvPsngnS3UrIQHj9CdjhRYYbNndnZYXtkkGfdQr78HN+9iej3sKx9juQEulUL6+JpCuYT137uJr2uK+RLfyfFPXib5ytukl85j6wo7ss097usKzmygHx0xvzig8B5fW9ThkVhplGVjNukmU3ks8iazDLY3sP0Oi/NdvFHkh8J3VNdp2lxyI4u5oq9rqucukhxtyuN3dumsdfGvvo4ZDrEPHjJ4veDD47tzfEAKH05xCh5/PB668oBrCp1kYVHBMdYZJZN+LIDCzaqBJi4i+taA/K3DTR0kz6rIW2LyY6osSesNiE/gSgBSgCjV/t85Mb4KOVc+yrVDEbWKRphZjVE0SILEHnhRj2mFsg6XtC2lKA2PfjxNuylJRNkVVXCx6IGADrTns0Gqjk5oEtzzTHr/s0VL6g4FiC8r1OFJS4xe8bJpiM1BKppMo8MwjfKlITrHa2i9pKxHFZExQvQMhoKNGVhE7CoHFbJbqpwY+oXFXUWOTL3CIUpDK0FxqsiJP29PRDyvK89ZMezzzpMfSRyDID7hR4mSdpYO6KICXTpBfGz7uE/kHLhUoStRBunydGH0J6q6kMeTUUDRCkF0VNW2+vBJM1Z0z6BqkTvryqGtx8zltZJZa3aoJ3OWlzdIx6XYPsQstuhQPpmi19ck/DcS4kGqMG2ae8TsbMOyJnEeM1NUw5R0VDE738E+8Txrb4x59L1DKXAGEuJarrXfy/eguHHI/NNP03n1Jv7sJr039xh//Axr1+fMzxU8+WuW7GTB/FyH3u0p9bAgeesObG/iHj7ClRUFsPyej1C8fhc9KeH8DsvtguG7U+bnuzz1Lyqu/2TKR/6hOLjbYd6+xu4eqtfD1xXT8ynFoSWdaOqOonhgmF+t0N2aa5//m7z7uX/ItS/8PKZbY0uNXmpcx2MmKuSoKYrDSkJhT2ZwPMZOpiR39mFjnfr2XewPvETuvTg093vt+ItzB+AGXZTzFAcVLslYbEqxaHNwmafa79A5P2XxsAcOdKXAqUCGb/lG3nmyR5Kb5abBFLHXlfbOWl/UkAdHVB+7SrYo8WmCe/ICejSHgyPUE5dkfC9LCX6ezRt0Nx1VmGUW7AkU+YEiWTryg5JsU1R8ZiHoUfLgCGpLfrxJNrIkc4teWNS9R7Ip3FgX/6s4p1mHvXuPZHJW1Lp1LQXEsI+5fh9dPytE7hqKA0+y8GLj8PAAtzlATxaog2P8E5eYXx6SXw9WAbGlbgxqKfNVMqka3hXOS0q982IEGzaUPsxRcXOpZwu01qRjMcTUi0qQ1ljwNNxCJxwepUgO5uhwDRj2Bf165QX86++h+z1m1zbgTb6jh+JDoAk+KIXPaq2zapWvT1+kumfELyRwJrxRwT9EIPRYAHkDnTyXCn4wkB2uC+F+80XT9lJKQREdmxNJVU8MZrGUWIxgNe7LCttJm0V+1clXV5FjFP5etgu6KnJRiGklwaXh9VxZgbMszuRN0OXj50FaeQJ5dwmtrFiMOS9ITyyUVhRKzTn0tkVVVtCV6G3D5roUMc5jB4JmqbKWmAStBIr1HuYLyRDSCtfNxKskcl8WgvQo61CLJeVQiMfOEGDo0Bao2y9mlp6sG2DiwK2hyDEhCJFKCq94/l0irU2zsI2kVQMu16EQlWufAuLTVDYFXVsYmnZCa8aXXYmyiOc/tFqdnK+6KxlbVVfjEhmPLhViqQlCQF17kqXCZlJglAMZfy5RmNILIVZSDcjG7lThE5ErQWpWWxce10lxuaHqJtJajR45pcdlimQuKJAQPYVEnMx1E39iM01iFFVPi8KqV5DtTwXx6RSoSqI27NFR453D2KE2hODaIIXeEZWRAH4+x3bOkIwWLHe6FA9m1Os53XszXCfh6IUhZ//giP1XNkinnuW6Ijvx2KxtDU2e32bwpVvS4nj7JtM//3H6755w+NIGg5sLjp7rcPjJhAufh9G1Pv1bc0lIv3uMeuoKyWjK+IUd+r/7DqwNsGsF6ovfoFs/wdErOwxuzjl6rssT/7binb8+4OwfQf/2yms8eVk4GlnG4E6LKuZHnvGTUNxLWe5o1EbJtS/8PO/+4D/ixS//DLajmWkPoxTbd6ilFL7znYT8kcd3pY2SGI3bGOLfuo7Z3sa8cZf5xy/TsZZ691HLQwtqStXtYA5HVBtnqIZG2oIesrG0sXyiqEvFou7hMwdW4RpemYwZG6lsxlCelfTz/F5HjBL3DlDndiRfLTFwbkccsg+PYGcLc3dPWjfbm9hvvY37wU8FFNijyhIdAoGnZ3OWm56qUtRdTzpW2FQxvlowvaBYbiQoC909RzJZR5dWHl9PMWVCd8/Rn+7gjEHfuCuoe2IaXqLZ2WGxnmOKhPRgiN0/QNc19TOXqHoyFwIkM7kne/f3cLM5usilddYvcK+9Sad6GhtMalWaNJvY6tyA1DkWZ3IKPxRH9Psy76vlstmE+bJsH1MalaXYMxvU6zmLrRSvFWlfvmu+KmABoTc8fRlfO+ZXB5hFD+U86ZffIt9fw3/lmxJIu1zSfee0Me2Hx3fu+GAUPuGIbslAs2g1nBTrxK+idOil7GjN0rXmbyBtlcAJ9WUlhUyaBDSl3dl7JzlQKkulGCrE/t3naatA0gqqSpj9WmEWdcM1Qamw8wZd1mECsvJ3VSOtZyUISXRSDr/X9Pe1EQRA+2YhbFASpEWinD9tq+MeK3DgNF8AQltLVHCq6c2stCyioV+Ahxv30dimq0KxNxf0xy+WqGG/RYc8IaLAoQIZ25cVVCXJQq6HSlXb5nKC1DWtrqVr/WNWFVihrdLkocUIDutR2stuz3vpYFlBOE6hJeF1mpT3aAS4XOJXkDYVuS51hW+QosAzWklsB0imlqqXYlOagkWXkM49+bGV/1v5HC4x2IzGZdeUHrOExHqyqQu8EBd4PqrhvMjzWxfeKE/Ws5Kq38Pl4RzVwmEzS4cpIT1ZoirLYitFWdkBm6UNareVc66kmlLzkmqnL8Rp50RiH/lkEUEEcUPv9+T6Wys8MW0ajocbTZpssnRU4ooEvbTMz3coB5qqBw//zCZr1ysOXkhxCVQDhS08eqnwiad4tGT24mW6b++hN9YpHi2o1wqGNxZU/YTh7YrhTc/N/yLh6X++xBUhy6tXNAaMxZVtli89RXHzQPxgtjZxa10GN+bUvYThrRKba574jUrME7sJ+e0jXL+D//qbmKevAjDfzigOKrKxYTlU5EdCZPaJx84STLfmxS//DF//nn/Ky6/+NHOT4dcq9F6G7TrMVJOfOEg0arQU1d1sjlp0cdZi9/ZAG4pXK5affJJsKRWzPT6WFm8eTEMHPbR1pGPC2DbMg3rKJh7bc/jMsXnhhJNxF1cauW1qDVahbDsPJhNBMxr/ms0NQZ5jvqF1VM9eJBsN8GkiRc94Cs6TXL6EiwT6yLerhcCcjixmKUVi3ASgID9xpLOwEYnTd+Vwr71F8mc+I/NaQKbUssa99Sbq4oXWwDR4ZLmjI3R9uUEzRXiQkt4/RLkeLqxW8T5jax2tlGyWjo7RvR766mUWl9dJ3pFNjQC/4bUqGe96KcR/aqExKGcbjqQP1AEVBBgq0WFzZ1G1kLshCBesP1X0xFa6KoWSIEKGVlE2X88pPvoM/sYdAJaX1uEtvvOH/79/yv/Xjw9G4aNkp+KxtIQCKR4aSbiOHB6F78gu2eZadtrITdiYwwFme7MlataWmDDuQ8K3r2rcYkly/mz7vEiu9V7InwGZ8Q7qYd7AT7Kbbzkm8h7hNaxpOT5W0BaPb4jFkaeDAlvo5maOi3w8VkmyjbGi1oJcRY8ehHTojUGtMplXi7d4xPZXIPq57TVBrionfwcfJEGBlJC5u5IybdfFl8RlSShgwjVKpPWiugWoDmU/SL9DEaecIBmodkL0StxglQ7y+Fh4KS1FIASVWiYmc6nGZQptFTYJaJ9RAf0Bs2j5XXHiccsYCOtb9IdwXSOJHBrCblPwrB7OM76SUXfkeuvKy3cJE7hLAxKUKmwKdVe1k75t+UBeK2ymqXOFKXWzm4/nRNAehUvi5BmQID2g6ukGOdJe1CTaSgJ23c+adp/yovCxmfgeoRXlUAMpZV+RjxQ+T0iP5rgs8LRCThIR/TRGVIA+FL3DPhyPm2sSiyOzvYlTCmppvSVjydPq7C5I5hlVLyWZeE6eStn6VsX+CynJBMxSXJH1UjE7X7D2h7eE/DsaUw0vkh4uGD8zYPDOmIOXhiQLz8X/6Lnxl3Ou/PuK2bUtOvcnqJeexxyOODlfMPzdd2HQp+5nmNEItdxidnWNwTsjDl5ap3+3ZHYmZf9FxeXfLpvX4KXnUA+P0J1CYigSRV2IT48zQlxODw31hRJbamxH8/KrP82rL/8az3/xZ5lPcuxmhZokuI6nHGi6t2t8kUrx3euKmV6nkMLbWtxsRva1G9Qfu4r6g6/Jxiu4n/siQx+NUGsFtqsb3h8EdFGJirH2cLg3ZLA5ZVJ2IRQ9OJp5T/c6LDZEiZkXuWTcTSaNV5fvy2YwfTQWg1SjxZW528GnCfU71+GpHSHVp4mgMrmMj2pgsIXHJeByh6ulBbxck4JXxj7oWlq0yUevUYfHzVKxqDT9Tob+xHP4O7vErD0VbDL0+hq2MHijSPNM8s8WS+zlHVzqG6sMXYcW3+4+rqzQWxtwZhuXpbhvvklhDHUkeRsTkHJH3UlIgLqrGxsUHTk83oEOnCtrxTh0xUDXFSk215QDma/Sqdy/WRJUkdHbzRhsP0cvKsphQpLK85PZnPzRFPvGO5jtLdzJmOLGPh8e353jg1H4eFr2/eoRF7RQiKiwiLqIgqhQ+cfdeCXIgDdAkcvuNb5FWeGX5UrPN7xInrWJvWGn4wOxV2cppNKWieoh2Z3HIom2bZHIzsUbTZLnLQqzwpeJMvQYmCqfP6AW8XWCGR2E9wiqhkZyv6pOinLNqEILXCa1iqY87sTsLN47XBEWQGtRtQ5SbJEzY4w4uaaJIDoKiaTQsSgMMm5j8F3TKNBi2y6qTpTzzd+RD+NTpChcUeuhVWMsqZJEWmCh5aWtxzshk3ttAo9Gtde7dlKsRe7Sqm9SM75WVBfRYDBJ4yBjNTxVDP3acZmNZaJfRWRMKYZxdaclN5ull/ZXrBPC53Opos6lzZMsJFW+CTx1NL+vPI3XTTzSicXHoqsShFHVHpdrCUhVwhtq+EGBzxV5bg0StJDz5LUWZDK2Ru1pzlksinEeRhNYH6DG0xYRUkrCbZ0XdVhMrFeKqp9Sd7SQvGtZpE6uyjnu7jomlzSqCovF2EKRh7amJplWqMpS7FdiUnfiAmLmOP/7Qmh/+L0pl77QEZ7IxoBsbCUEtLayiBsjr3EgfJv8xJHvz7GF4dwfyUL56JWUC7/XEXn/xhBGY2kvVo7iyLJcMyRzqAFbgJ8Z9FLaW3OT8fwXf5bXP/tP+OzX/wpH4y6l9uAV6dRI2zdsmnxVSYZbuP90R2wx7NER+stTUUW+8DTqnbsyP3VE9q1Li1kafGLQVeDtKPA1qArhFxkYPxygCkt/e8r0pIMvNT6MWV/VJNNA+ImbuFTcx/14IvdXpxAeYfTmmgufTKmObNpK1/qUufYe9Vo1Aia8WhGZSMHjQ4vbhNYu+0cou9UU++lc5le9dxxQ2DDWNEEgERLgg4AD70RwcjJH1/2GUN7klwX1mp/OG7WoLorHugC+6RjIJjLcK0GY4r0XD6EkWHykmZyPPGvk7TGrzqVS6MXC1BtZR1YNcBt0X+sG1T2FCGnTItzfpWM1R/H/r8cHo/D5NkeTexSO2BLwKiw4yIJ0Si0TduN+NhdjsLpuBplSSoyjypIYVspsHp6zOjiVFCcri6lZ2hADIMVJbHUp7/GE/4eohpj4DogyBogeOyq8HlUtOUBWNTez8qFAkHdt/+8dEWURAvgK+RRa073H/3686In8HsCMQ5DnssTUTrghse0BwYyxkp9PUvEcKusVhVh8TfF3UVVNsnCBo0LT6pLXAoVMOKr2In9f9TgyupnkmpaXtVAKvKxMcCXOxKafFZdjUwmx+LGeYIv2rE4wq5yn1e/w2BHPZz4WIn1DUI5oVihckjnN9/WaQL6PxbhqJtnIw0jmscKJY8OfnqRXjnQc2hWplqJnxfJAOWlrKeepuomQm2vfLBrKCt/HlI5kIX9TVviNfnA2d42btEpbBeLq+FFRgtvttAsoCP8hLhqxbYoglDYPfKOeCgaAgIKTJ6XIF/sJyB/NqM6vk945gKpCT0qUcySTEuWhOKxIjpcsLnTp3Zmy3Cq48h+m3P5LPZ76tQPU4Qm599hzG5iHR/L+VY2yjmQs915xKHlQnXtTMIrFTofLvzXhzg/3eeLXD1ie65O+taTup2SHi9BGlPakS0NbcSZEZkYpfq1iPsn57Nf/Cl988V/wqa/8NbT2zI8LkqltPbecE1VQUTSGoMpofFmJmmcylQDTb76HXSxJeudkDlobgAseTmEMJTOFzQAUtlL41EsdosCXmum4oDNYMB8XMBFEx80XmLFUHm6+QAczQJ+IJYVflrBY4K9eQC9KebzXlYK2rjEb6zLvhvMZnb291qEAV00L1Swkj82Unmwc0LJKCnwzr7B7B2Sjp0Num5f5YVFh9w8xW8FrJxTVSmvswSHJpCSKTuLmRC1LVK3QnhDXIe8h3M0UX1WSfl4PUdtbglBDY0DYzHkL8VuTe0U82TyEDUDb9uLxx3LZ6CVzS93VEgq7kEKrSQhYFeFMSlRZkcx6JJNK1qU0oR7kZBfOSdq789itAVz/ttPQh8ef4vHBKXxCang8GmRD62aR9ArZLaUy0KJixTspSJyR1opLQoEAzUIKNJV77Nl6HZACFbwYrANN2x5JaVpULtFg2kUPL7tI13AkVNNKiRlJzXuGo/lM4XP5sIuKiIJHNeiVcrJzF5LwYwVMk2dl3vfYqcRgaFs7ccEP39cb+dyqEtt4hRXkxGtBrwL/Qy0FzVI2tqXCDa/D+ZCLJcWKlu+nY0upaQW2k4Ji5fw2xYFuDAzjd1EBzdLWYZUOC23SGlQqhUdCI0+dGmPwdZiMYj7XqrRdpe8/J0DTp1o5XBKI1IlcB5eoJirAptJeMqXwsOLj8nuh+EHIn3FspqEtG8eQ96ohN0eZfjM8Etlde6PwNWI4F0jONpfrqEsZr48XUD4ioadOjBLVUeBTqJCD5GazU+dBKQVZuHRlBVT4QU/+HbxSVGWbqAEAXVmSmXiU2CwjP3bMtzXFPizXFekCunuW0VVDNgPby0i+dUtcsb1EvvjU4DoJZiLy8qqfkO8vmV7u0X0gaq/zX6y48Ve3OPeloYRhvvYePs8gDwqeTNyDk/GS5XpKflAyv9jDZYrOgwXzcwVnv1xy8ye3uPB7EkBbPJyKcIFQxIZ2pi4VLgUzUdi+E07PZsXRuMunvvLX+Oor/zsvfvln8GtLIEONZ1LAV7VkqtkVHy/fhuOazXXhK+Y5+toV3Lu30ZsbcHiCNhvYThquL+1nqmNrRaFLjcvAJR4/M8wmCWatwlkZ57pb4MP50FkqLazFQjiOSSIZUolB7x4KDxBBW9RwAGmCe7CLqndE9u692IF4ce+2eZiPrKCWQuKXce7SMH4t1IW0uszmumxClaAjdaHxuURGuOmMGHwr979Grw2pU7FhMMbgffAKSxOxhFhp6TmDFGveC0q10xXfqzv30YuFUNOCIanc/66Z11yimmIoIszt/Gne/5iJaL78cQmt43qaBOfmMM8YQ3T4t7mWVlcthWT68IT67j3M+hpMLfrW7vvmnO/I8SHi8wFxbm5g+pbz0bRq3OkFyet2UpfWlm+UMK3Pikw2UYZJnp92MSYUVrG6r0TiK0iPKA1UfH6ALYVQ6wQmX+HixPemIfP69vX1yoKulbRwGidh3ZAE4w1FKOy8VuFnqu33/2eg0SZ6wYWcqccLpRWZ9qmfWR9aSrJo+CQUPSuLmgSytm0pnxppbxgFiW65Q8iom6QAACAASURBVIm0JLR97K76djeZtXLOnRfCcSLnpjk/IJPNyoTTFD2rP091QJcCqmciu/3xdlccHOr0hOtbFEx+3zSO3sncYeZOkBxPaHXK80zpJb077HCFXCzIiIokz9gaW4bnLsW1WZdRfu7l30GOLu0d+aOXYqGglzYsyO24UzYQmSvh+3glcQog40dbQcZ0cDePhxsU+E7WIGu+rJqJ/pT7t13ZLHiPWpZSYCQSk2I7aUgqt0IQDW0AG2T/dUeTTkWOrTxUAzi+Zujse6oe6FmFv3oeNtdD3hmo6QIzFcuIZObI95eUmxm92xOqYUb3zhSXKq7+6xPy3Rl6VsHVixI/4AS91ZNZ41ydjgURK/YX9G5NqNbkNWyhufJvT7j7OeHfVBsFyWiBKV3TxjYlp6/hUmG7DjVJKOcpizJtCM9pKm0lP+iKYioXcj151o4t53HTmSDN84WQx8sS99qb6DPbuJMRrPXxqahFk7kN4y5wfMrW4ym2Q30CPpVrZBcG35Ui35eVqDPLWuw75gtUp4Mf9PCTCe7RPhyPcGc3hc/SLfDLkvr+QyFl97qnblNldCiSjbR743hykEyRBHm3kjPnBCk14yXu+OTU49nYoicL3Ggk5yhLIc+bLEM3mgj5P9EiSokt4bJq5kp0QJXmHhXc5d3JSIKc50spqi6fC2P59FwWkSploTF/9R7qQGTO0parE6IuVJa2JyNsThq/rdUp2bf3i9eBKxnm87jK1jtDCZEtKymKz2zy4fHdOT4giM9jcP/jfjWR3BwXQS07M5up0OYSB986V5gK6qCE0Xkuk3wd4h+CoseFFpguirZKTwIS4lwgtilpD5SlEBRjcRLbFE4WV68iwqOaOAW1mmgNNEZ9SrUxAK5dRPG+bZPEK+Jll/S+QiJEGUT0SBndSDYbDx+tEDgmnNfHiLvK6HBDeil4jEHXFS5Pm3BRVVbyXlUliFCaBOdg10xOMW9HOd9wgXzwU4pgT0Q+Vvk+aCXXZaXlFNstIvm3DVenMfgL78uSZgxEzsGpVpfWLaLkbEuOb757aBk6B0aJ6j9OjMbgqiVKJw1i5ZOVoivs9kSpJtcoSvUbU0XCbjSMFVGjybCJctx2XLS/0/IBwt9ObBN8qlFlQAdNbLWtjEEV0Saa1mhEEm1uBKUKGws9D/b6dS2FpvMoXeIWCymAvJfHY5xJbK2VlXz/XMz2zKJmfmlAsrC4gSYdldgOpJOacmjQ1lP2NN1HThx+9z0+geWGYuMdK0XT3V1prQz7qMMxbnMgBTYiWvAqJT2pWJzr0rk1ZnptSLG7ZH6px8PvNTz1a8eouw/kPNW15CJ1i4abYjuadOwoN3JcoujcHTN9qn2NS59fgDEko6X4BE1rxhfT8P5yHWwuOVkoMNPQ9vKK+XGBX1vyiS//DK99zz/lh+pfgEcHYgIYnd+tC3lgcv+rNMEtl6fk0ibLsPceop+4JNENWuOHhSj1fPgctJwSs0TUWwpcprCZcKl8onHbcm3jfYoDFcjNKIWaLSSwc9CXyJrdQ0HvygqMJjmzLfEly2WD6Klm4xb4hUY141452ZxV3YB6erkndNgc2J4EKkeum7bIvdotgmv4vCVch3lGFXkTOI3zwWPKQG0xy5X7w8n3j5sx1e2QbKzjiwxOSszDA+ow76n4+laoCixL4eZUDjUv8cbgu4XMOXWNzgbCB42PRXWwD9QDHZHBUDjF2KPQXldJglpWqMkc4f7ZxuokGS2wxyeY4VAK/v0jvivHh4jPB6Tw8R43XwS1Vdku2ErLYFuKO6xZWDpLSzJaSvDd/oR6s4euHTY3JMcLXDdFzyrc4TF6bSCp30EySiA4m4vn5fW1xt5/KIO1U6B6HVk4l6XAv0UuUm6lMO8+kokpMeLXEXffZRVaRF4IltbibAhCLXIpokAI03V4zRCj4Y3cRMnENb3jWADZQpEf1SzXk0BIVpK9E3YtPpw3O5q0LR3nseVIzuNKK+eUQ3GQdifdjridFimum1Kv5ZhFKDoyg72wERbmddK9CSRGvGUS3eRU+UzkuNKuUfTvzGXBDTEK3qiGG+VT3fCX/MlIlBRZiiq6Esg6XzZuthR5gwB5LQvqciMnOyqp+ylmHvKzFpZqmJIfLJtzIA7ZrTFcHF9ysRRuEZ67EljrStuif4Av5fHeH91A9WXS81kqi0dXimVlA2+myGAsbrwkpgmX5dRO0UNZYS9syf8jirnyGVXtmvYj3uNffR2ljTgQFK3BYwyMjEGr7sdfxgCd/Yq6MKCh2J1j5lKQmlmNTzVv/NebdG6n5EfQv7fJ4C2ZdNXNu20oaVQjRgRoZbcKCI/r8iVu/MUhV//NIScfW2ftm8ccvrTB5h8f4XOD8jnFoyX+XE52XGPKBLNwUvSFHfCbv9TjuV85y7v/5RoX/sDSvTESN91HM1Tt6Nydoidz2N0nGw5wJyM6r79FcvYMyZsl1/64y7f+m/N89L8/y7s/t8Xl35T2mK49nftTcNC5N0XvHVMc5ahFKa/xjfY1ANT2Fn6yxL/zJpOf+jTb/+mI6bUhO390Qr1WML7aoTisxKfnxFEONOnUCKeHDMj4ofoX+O3/7Vf52K/8bTbetJjS070/Z3qmoFdV+GEfNZ1T37uPWV+TUOS9A/AO3e1KqPDuPtPvf5aTJ1Mmlz3D64Kk2EwJ+ld58jK0lXxLJl51R4dUUuC7XfZeGmJzxdlvleitDaqLmyTfuI5/4gKum2FGC+7/0DYXf/0W9e17VH/ukyy2Uzp7FflrS6rNDtmdI9R0jo/WFsDg/3yX5fAjwt8qoHPgGLxzgs9TbN4jGzvM0tN9ew+3d8DBz30vnX1HNrYkU0v+5j289+z/3Kc585u38Wt97CCX+BnrUV96jbprSKde5gZr8b0ON372vHCvDKDEFys7qfHrA3h0wPzTT1MOxK+q9x/3OfiJF1j/X/dwk0mL6gJmUePObNDZLXHdlHKroDOdw2LZuGn7haBGzMNjdYUbjXDZBcy0on/ft7L4RSV2KPEeD/PP+KMb2HyT3oOS5YZEq3S/NMLsF9R/7mXUaIl5cCgKu4f/+aXxw+NP5/hgFD7QEEpjqyNO7ECTlJvdPxHY82SMKXLq3T3SC+fw0xmmyIU0t74mOSveNRJ2alEu+DKEgHYLgTfrZciL8lKM+LAjiOTbTkc+XG2p791vEsNVp9PmfpWlIEuEfu9iKcGmadKoDojKAUDFFPKyontXetR6VmLXOmIKuLTi/tzLMfsj0u2h7IKStA0MXSxld1SWks4+mTaO1A2iYUzwMGzRjLbNo/GHR6h+Hzo5xnt0nop7a4iwcFkiHkUgScZFjgFUlqBnS3lemghaFKIr1Ggir93vNq60Kjik+iifBikMwyLeEKojKhMUWio8Vtw6Qi1K0rU+6sEjkjNbqKOReKDM55jzZ9D7R9TatAn2dd2m2IM8FuNH7GkUqHGKXnGLjkWQG40wIVJAAT7yEoIPkZ9MULYjrYpOB5VnstOfzlB11riRo6Ro1W9N3k+qXk2GXzGgtEqJMVuA26PKzUeEsl6Cyeg+mGMOxFvHdQvxk7m3h+l1ZKwDfq3Px/67kursGtPLHXr/9o9hfU0caTc3msId59t/R65YbBtqsSooL2/wxL/cx1+/zdp7Bqxlq6phdw89GLB2NAXvSR9Ku6e4Y3F9Gbd6ssQNCno3htT9DHuupPf2CRwc0XUOdTTC7u2j14YStdDvCSdiYwOzvU29+4jkyau4bkHnZobr5aTPjPC/XdC/PpL32D3EHh2jOgXeedyjfQmO3NjAnNmh3n2EefoJ3J37+JMR5pknSa5eon9zirr7gH5Vw+EJiVuXGIpMzAlJRLKuFoKQqPFMsvYeHfCxX/nbfOuX/j4/9LO/wPR8hn/1W/Ajn8KNxug0xY8nImEeT5rxqZJEyMedAjdf0Pv6PZS9wIXfeIR9sIu+chGyFNfNZGOYJ6Lke9y3zAW/Jitoj93fZ+OtS/LcqsY9fIS6fU/ait96V7D1bpeNt9fwVYXudSm+cYdifQj7h7C9SfbaTezhESpJ5dwNh6jtTeobt1i7sWg2MPmtA+zdB5iL58jPdTBzSzKtqW/ewX/mBbr7Mv7MwmFmFW40pn75WToHFr8sUaMpZllignrUhueqygnhernErfc4++VK0NZUkN7ugwXmq2+hdrbxSULnK9fpDvr40RjObtN7KDYkKhVLDJyot8yDQ3yvQ/ZIIjxM2MT42FZboQH4fDW815Pe2ccvS5LESNTFoAezOS4IM7wLc2ya0rszo+5nZPdO0Ft9SRl48ipUNfntQziZUD1zgeRoxnf88Hyo6uIDVPjEoxlsq4MwtD/UaNLwdOJN6+fzZnet1wayUx304WQkC0op0tKGgFuWcDIKOVRVY9mPtVJQBOTEl5VA1lmAbFfJt97RxGs44RIpY8TwLzorW4FJG7i1rnHzOSpEZGAtehbQLa1FZbWCTOhZiS8y1LwSBVpdwdw15yM6EbtoMCYnr6UCNYq05iTKX6ENlGxtChJWB7XaTJyaVVULQXlZym7SWpHbhgVQlyHSwilB0XTdPM8vllJcraqAgvlZ9OzAWtnl5rkUBrWYjKGUFJ2B89OYWR6PhTexeyDP2TtsC4okQe0dtt81XItTirFoAxDHlQ+RJA2qqJod4SoC461FvfRRqlSHCBFQ1cbpIFp25JxdDr4nSNtNBXJ1w0kK5yJ94/YpNLO9WCK3Fe6NF4X9x5/FGwOJFkPMciUeJNFNa0vvj1FLQZ50MKEjzwR5qmp8R5KwWSxRX7pFuv4K45/4FGuffw/O72Dfu9Wq6FbI4E1xGNRxTRF2cV3cn7UWtdB8jrt5B3P+LFhHfeMWutNpEKp4qE5HxlWWUuwNMEvLpX+ZUZ4fUl/bIP/3X2X6E6/Q+/Vdxn/2GYr9Ev3wBP/sZTiaoZYVSa8jhNbdPTqPNrC5Yesfd7j9Fw1XfkuRff41jn/iU/T/+X9i/GPPMfzaLvbyhigCD6fyGk9cwY+nmPNn8dM5/s59uHCW5PYj6tEEE6Ik/O37kr11MsN3c9RoKT49Lph8GlG9qUGfjTctP/Szv8Bv/5Nf5Qd+8RfZ/eXPcPGfXWf6uefp/M43cMslyaWL+P0Dccn2HjeboTvirBzjaNJJjVvvo6dz7Hu3pP301gF6YwOTmMaDp7EhWJkvfJZKG+XsGWxsbzqLPntBkMrZjOrPvogtNN0/fJvOqzdlvE4mVJ99lrqj6X9phN3ooq7fxqwNcfMFyeVL8nn3DlBJSvpg1FxT1+tIC6/fbZDq2YUCfuIV+v/6VRZ/7RUpcoxieqULVz5O79e/wuKvfw/95RJ7fIKvK3Seo3pdMZHVYDsJi0+cAX+G3m99E/cXXqD/1pFI0jsZ9XqB3t7Cbq+hb9xl+v3PYnPF2pct1Zkh+R+8gVMKPeyDtRK+HEj97B1CvwdVjT6ZUN+7L21eHebo8Rh/dBS4b1L44YMKMrToG95PkTcGt+hghzGdYSZLzHiB6xXS1i0d/ugYezJCf+I52N0nOZji3rvJh8d35/jAFD6yMK2a8Fkw2YrXS+AdLBZNzoqbzjDZmrQcghEXaSKkPusa2P59Mu/Gn0G3UGWSSFsqKpIgkJPDn7mm8TmB07yRFS6Ncq6NwQg3iApJx1qplj8RJy0XpORptCVdkb9XIRU+Ij7xOaGYcmWF7vdOZ18B0c/nlAt2XG9j4nZdQ55K6y4qvGrVklq1Fn6O0eJJEpUNEY1ZvXYmKPKS9vM1k7J1gkLE1kkoApvWUDxH0HBMUCqov1Lc8QkspaBqdsjTOboXFo0sbRdZpcU0Loa5xiI0nvewMwsX4NR3aKTvKy0vffMhpt8NhY/IlX1iWv5TLTJmP50HMnxoddU28KPqhh8RCZTN9dD+tDWAd+3w1wp1+0FjwEZEmSBEregGnVK9juTNlaUUdDHwdRACMZeFGF7WNWZ9nd4bu7iDIznPD/bQly+01ysiPTGrq3EK9w0K55cWfTzBRe6H83LOT8b45RKzuYE9OBQeg7WojgQxqjQN7eMCU4F5eITeKTh+JmftvRL/mRfo35pirlyid3OCXlb4ew9JF6UY2YV7xo3H6KJAV5A+GlOtbXLpCzW7r2Scr15gcH2CeeIy/etj3N4BaSGKKz8e48K95cZjzM6O5JIpJfyabgfz1BUZstdvozuFBI7Gwjsaj0bFZrw35wtM6Zmez/iBX/xFfvcf/AN++Kd/nns/9RTnf/XrlN/3PPmDEfWb75KcO4vdP5BL3OnIRijL8KUUmMkjKSrs3h6615PMpzzHj8cwGEgB08mb+7NBk8OGxayvyeeZ1+jAiXT7h3INtCaZlGgr8yN2EcQEqYg2UiX3WRiTPswt9b0Hzbyh0kTI8Vbic/Rkhu8UUFaYpSWZVKSjEp+KGWGy9JiFJRkvyY40NjeYjTWJcgnGmToQlOM9mh0t0CczcqC6uI4a9DFzJ/ORMWA9ycE8FPozvHUkc4tyWvLmqg3ZcHqPOxmd3uQYI5ynGLjsg9N7kUtbTBu5vx57rJmPQdCjsm5yHZv5zpYtrSBLRGRQ1thUIpUip9F1UokvKtJTa8h39PgQ8fngFD4iQz69E/e2TdfFWVkEtW59crzDHp2s/L7sHnyQX7qxpDm3RUUw3ZsvmkVRGS0owXwhfhHRSyY838/mUsnXcjP5Cmln1CEU1Fl8Rfu5vZcJJP6blfbdY/bmyeFJ+3uB0L26IEvxFvhDVdl8BrSRseuscAZCTkfTtmlyqFbO78oC652YrHEiu3wdW3IIF0nVNT4aSrog+6/lZj9F2o5oDuC9k+ujdJgUXLuIOtfKn5uCbxJ4JYEDpZS8d0TfQlSJm07b4FFnseHa25NwLmbh3CsNWFwgl65+71WETHxVzPsnnYB2qKRVk/gL2zitRUquaBAc5YE6GK0ZhVrvi92Bl4DZJjw1LCKRcKsOA5nxfS7Rp687gHriUvPeeN9ygBxgVEME9vceBmRSvJaaQj4E7cZ/+7IU7kJt8deuoPdPOPz+S2x+4aa0l/o9moBeEL5VaOFiraCaSQqbz0lbsyiwDx/hl0v0YIDeHKKcLJRmZ0cW724Xe3jchs+GAj4/uUh1ZZvet3bJ99fY/2Sfc799wOjFs/S/dZ3FC+cwc0e+W1Cf38DMZrC1AfceYs6ewZ+MKI4dy0vr9L5+n8knL3Lxd2ckuyccv3KWtX/1LpMXX6T79QnVpSHJuEPyzhx1fhPu7ZKcPydFWL8nuWRJIi2hXg939SzJmW3ZYN3blcBRoxvFk68qCUBO02BeV9O9P8e/+i12f/kz/PBP/zy/9Wv/iB/9xJ/n9i+/yOX/4atCoP2+F7F/9E30U1fh4R6q25Hi9OAwFOW+LayTBL29SX3nPmZtiD0+FlWf0ai1YauEjMrFsGGoj09Izp9rVadKo3e2JGx0MmW5XeAyRZql2MMj8ROqysbwkiRBVU4Izj3ZUJmdrabFbu89QN97JONCa0HbnUfNFiTjDraIilWFuyrKKjOrsP2ssWZwT10UcnCeSyGwXAbFohTJdTdjudMlHVdSNFy7gCkd/uZdmX/WhjI/xJwzpag7RkQhWXDOzlJZC9aG0kIbjZp2uq8qmM1Fvh/mdT9ueaWR17P6mHetIMDPQuhokbek7+WyaZF7r9CzZfDTcugQMk1Zib3A4VTa3o+OoN+HFkD78PgOHh+Ywqch38bdLEifRieh+EHSo6OXSJIID2DYl511notfRZZCWeEmE8xgIFL24AzsI+cnIj5JQBGyFNUrxLXTWXzp2oV7xQVZBRa/ShN8lTaqp9YrItxc1kk7J0qmA3oTM6qAtoUEgmDFnUhEfNIEFRxEIRRPsX0TOCHeO9kxhkJLpVnjInpa/e7aXCr5ImHxSgVVSxNZsBdlI2tu3JVN1hC9iY7TtW3QgHYCNugNMSUTWWhb+DStqfhpjk/CNdANz8dXVSupzlKUDb4nZ89I0dXp4EdjWXzKEERa1+JTMp1ij08aObxSqglu9XXVaga9D+3Ab7PT8u3Cj1K4b7yNCRMtRqTcKrTrYthsJB7rLJVr4b0oVLQ+xRHwdYVeX2/fS7cFfjRLa6+Pxr75XqvWMwYXOEqx8I3FW3L1Emq+kJ3qcCDffT6XAnQwkJfrd2CuJfRxOES98R6+32Pzi/dxZzfh3BZOg17U+BhLEsdyHto7obVmbj2SMVnX6H4PG4ouG5CB5OyOcO02NkQBtrkui1FRNN8lmTvUF79B9dmPo5c1Z7/wiNEnzzL86gPctSv03tiD2Rw7maLfuImdziBscDSyITALR/L5r1J+/yfp/cE7VM9fZffPnePcv7tN/YlnGH7lHv5jH8H88S38dIqravz+gYwP7yUEtyoxW5vYvX3M9la4/zzVU+dIb+xSXz1DcmcftzFELbpBcWTb7xI4XdMzBfzIp7j4z65z76ee4kc/8ef5d6/9Dj/2/QMe/o2X6O1a+l+8iX3lY6jdE+h1paiP6E+3K+TnZ68JcrO9BdaRXAjFg9EiM48mo6vu5PFvwAyH1A93MYMeGI11FnvvodxnnQ7dV28JkjFfkFy6SH3nLnowoLh9jOsJcqPvPMR3u6giR3fWcYdHuIPDBglhfQiLQA7vCNroFwv0aI65K0Vkfe8+emuTbnEZczjBjKcoral399Cb63R7Vxv0Vvfls1LX+PmC7N0HpKFlnlQ1ZCn22kV4+jIsQ16iylCjKXZvH1/V9N4+ECRquUS9dUsKfGjGm9nYEMR4MpW5yRi5R7RB9/tyi47HgMx3OnA7m8di+zMgzFQ1fjSRzUSW4pau2VThHWo6lzl1vpCNtxflocoyQdCLXPIhp98Fjg8fcnzgA1T4iBLJhn7paQlyLIrqh7vvkyfbuIsej8ML6UCcTbGjUeNB0ZB6g5w3KsVUkkomV5D06rC4N8ZqZSm7XxNQlrrGBZVD64+z0k5RWpQAM9cQtCNitUqgVcbgHuw2RZg/fmwxjt8xtsZWFuTVSW8V3fB2xbDvcdfiCNnGBPIo0y/LBmomTRpek69rkbLXNSoPvex09VyqlQmhDO3FuNA/9l1WkZ5wzv1j7TnVvLeYv7myJWv7qpRJ1zuxkw8cKYyB8DrxHDWo4eMcsfg5Qi5Xy/lxbS9/paBQWqGefwZvfUB8Vvgq4bvocO11aAHiQoTD6qK0Ys3gvv52U7S21yVC6KdnI/PMk/KPJErzXYsK6taryF6/Le2mfq9ZCJQx6F5HNgbdLm46lUl6axOlNe6jT+ONYnGmQ93RDN45oe53BCkwSgzXQHxlqpYbhVLUl3dQX30Dc/ki7sEuyROXqa/flIDIQV8W3jM7uOMTVJZJsTUYSKERCnRz7Sy88jGSb1xHDQfMnztH7ze+xuhHP0nv332N2ec+gS4d+WuSzJ28fQd/8Qzqzi5sb6BGE5K5xX/fiyRffZv6k8+Q3dxj54/22P0bL7P1q19m/JdfpvcfXmP+uY+TzmrSb93FXTqDvvMQdjZRe4eycC+kPeenU9T6GubBPiZNZWH647dgYx3/1nVc4KZ5aFDIiJ72KiHuTj/3POd/9evc/uUX+bHvH/Abv/+v+Is/+XPgPIc/9BRbv3+P6cfO0XtrDzfsYvJMivk8x5zdxt99IC29usZcPI+9fRf99BOSol7XwhHJxfMmcg/Rqmnr2/GY5MolXCdrEFb9zBOowxPqR/vUP/hJXKooDo/xs5kQro9PsNt92fiUJeryefTJBHt2XVDGs+vyOrWEjrpb92QDOpuhihx7fIw5syOF1qUdKUwubMK0xBYGU+T4DUFE1dUz+JmEx2Zrw6alxlzCoHWvK+PLOjGinJS4zKBnJe6b76CDx5AeDvCzOfrqJXi0z/LSOl5D/tYSnnsK9o7lPt2Qz+4PjwDThFL7ULT7xUL+HwQPKNmI+cUyzAtJw8WL95Wfiw2CzjNUr0t99147LwR7DJyT9ndiWnVnaK+p4zH1yQjj/Gnl54fHd/RQDdfku3gM1ab/3uxHmsUHaBdPpUIfXNRT7SIWcqnSpGlZre7yJdl3pa5bXVh0LFIE8VEhTuJ9zwNBIbRuVEENgrNimid8CN+kgjf+Q+Hzy4dqF/5mMUyTBoWKkuLV9/Uhy8iNZXJsOCHh+dEXpPFhiXYA3+5YKUB0UYjDbPMjdfr9V4qbuGCtfvb2XOrmuT4UK3IeXfPzU4/F34/wfvze8WfxvcN18oulnNMkCcZfSfPa0RHXLZanr/Uq4TsUWlHRFs/V+4qzP+kc9Xry79XW1GO8F6yVRaj5POH7royjOCbeVzDHn4fCeBXVi+OuDenVzXeLJHGZjGXcxzZvbAX7SPBuWnjCKTBrQ5nUiwI/7FOdGWAWNbaXSg5YqkMeWvhsShHdxFGQ/N5rsmiUlbSAQ+GsOwWq06He3cNsrGGPToQQHdVoYaOB96LMerCL3liHIsfefYB6/hq8dwf30Scwb9/GVzV6e1PaK2tD7OGRFHEzUUKaa0/id/fRw4GgJR95GrvZQ3/tbWY//Am6v/UaPPcU/vV38VVJcu6sKLoGA+xk2swb8XqoPJe23foa7vgE95kXSO8eUN++i9nexu7tNdenKdij6vTqJdR8idvbp/y+58n+8HUe/Y2X2P76lP/j1/8xL/+9X2LrmzOWmzm9t/apdwYkB1N48Ai1NsTPZtJ62t5u+Gyo0ErSwV1btxuEOHc1AoLoDRZQGd0Rbpg9knMWqQGx8LWHR+g8bzaG5vw5UTHdfSCL+s4Wbr0v9+eiQi1LUceF7x1fL7bWVZoIGrrSGlVZhj53hvrmHfnMAYVVaYK6eA5343aLvIfvoJSCNBUeV68n16PfQ21u4I9O5PvEe1LJmPJ1TXLpIqSJWJNEdL7TQXWDPUlA2uv7D9u5vlF3islknN9VlrU8pzjnw6nHI4IrP5DCqLEQcRY9EJGNFFXu1O8kVy7hfOIKrQAAIABJREFUdvdQvS728Ijfdv/sVe/9K3/yZPT//tE9c9k/+1f/znfkvb729//Od/S7/T85PjCITzOQHncoDqiCPKde2alHLoJruDeATBArVXrzmquoDKvEzdAGipNgVLZEopoN837k9GBRq3a40Kpi4usFMmnL7XGn0Y2wOLpSfNjjIrXqt9P8OyI0oY+svGp7zsiiKoqF0MKJaEcTLmjef05BeE0xywbh6JzKsIpFjlJCwozPW/l8zfMjmha5V6fcoV37mhBafiuFaZCaNnwYFQzHQiHUFLOrRVX83s7jXZCph4VVd7uB/7RSmHqHX9YtavPtih554eb76+FADC2TlruA9237LiIvSRv42hC8V14rto78aKWh/xgKFomVsVDWw40gL09E5r5ScDcFdl0L4uklidotFrKAxwUqcr5cMLesg7qOYDkQ3r/uZ3itSKdLXJrxuJ97dJ/1imZx01ubQqoOZHJ7MiLp91n+yKfovrUv1gcdiUvAGLGTsFZaLbt7Mv5GY0EZMvHZcmWJGS+Et+Y9+uyOoKZFIEh3ClQt9hP+wSMpJK3F7OzA0QjdycAYunfEVqFeyzFagivpFCIQ6HXRAcX0gRDuS4ufTmVRDePMvPombG9hf+AlzBt3iaod3cma8x/HmJrO8eMJbrkkfzDCG0NvVziEL/+9X+LVv/crvPJ3fynktW2Iv9UsE9n+Wh/V70gSnw+oQDBQ9bUUtqrKmk1eVEQ2QgyQe6i22INDQWFWxpkKRZCfz3GHxzL3WAtZKoGedY0/GUGWyndaLvF51iCXah7yvDqFPE8paWlryUN001lzDVSeNShnffce7O4JRyjeE4mhvnMf/XDv/fedtTjnMWtDGX6heLInI4zSUvSE1q2fz6VAGwxE8n50LB5UK0UPQWzQbrR0yzUL94VfLJpYERB0eXXDooIRrHfiJSdZZzKvN5uMiHi79l52k0l8gWZD5utKNh/TYFRZVlJMLfjOH999rOO7fnxgCp9T5E6lCZa6pySxok7yp1AeV1aBZ9IuDg2aM52ebv3Q7o4IFbzudPBV3SAlqz5CrUw8nKZQQPlQ+LQtk1j0qNP/j+qq0N5qEK24wIebQXfzZgcdd0eNy6t1LYrjLJ6oTlpBAN537twK0tQWfasOo7rfh6oSBCScI+EISdK7W2kZRXly8xYrOzhf1S1npiEIhs+wMpGs8m4ahCSExcprCqrn41hQK+fY+ZWWV3KqABYUsB1Dfrk8TSJnpdX1Jx2hGH5fK9F73JkN1KKSKIJ41LGd55rHfR5IlXXIA/KemGKtwmt5rVF7eYusrRZm8bqtqA7ZWBM1XZae+i6tO7igZCqYQaqOSGd9WaI7HYH1y0oWrMh5WxvKLrtT4PMMOxAjTTOrcJ0EVdaYhUZPSnwgqqqYwA5Crn76Mty8L2q2skSf2YbjEcn6Gn40pvfVOyyfvUAGuAeP0IM+9uhYEJwixx6dYJ59CqMU/vptaSvE1/z4M9ivvgGf+Th6XuHeuoF66Tnsa++gn38Wbt9HP3VFzC67hbzGe7ck7mF3H3XrPvUnn0F/5Q3qzz5P9vUbzH/w46STGl57D178CP7Gfbh2BW7eFzl+VcmCDqh+T0QOWYbe2sQ+2iP3nvnHL1O8WuFms/a8GiN5U6lwWsz2lvBm3nwX/30v0v/iTWlvfXPGK3/3l/jKf/sr/xd7bxZrWZJdh60dEWe44xvz5VRzV3V1NbvZZIs0SYEwRIKQLU8CZEKwDdiWQQhgtwDJBv1h8MOf/OMHDahJ2OAPaQu2bBgWIRk0QVoQTckS22Kz2WRXddecVTm8zDfe+QwR2x97R5xzX2ZR0AezE2AdIPHeu3nffefEiROx99prrY0f/IWv4uz1AvtvVVg9P0aZW9jLNXiQg44OwHfuicx9PIY53AcuZ6DDfRgywnV5dAp24gGGQakqU9P5lQEw+7ug54Qb5N98O5UIGQC+9FkEQ8Dvf0vIvWq3gedvyhy7nIu566YCpsJz4WEhKq0iB5+eSeDb1Kn0Q9YKT2dnLKora8C5gzMEVm+0qIoMpYMjEofth6fdWhVR1boGpmOY4UCeLWPgNpUECxAVLxmSwMZ74OgAuHcMfvUFub5vfQfmpefls44fgScjeZ4X4r8VS/hUFB1yZUhQc028oq+SKYqE0FJGAJw8Z40GLJmTNf28c1+WZFWVpVUl5Grdd/zpGcz+rpTqQ0BYr+Fu3wI++uSl6dPjz+54ZkpdP2L/8vYmfVUR1Yelo7Q78lxixN1vtqiIydXWEY8hFtxxU7ZQjZ4UXJCfba5D/L90zr1jS8UVfwdIm2zk1IT1Znvz2wpg6LHPTX4TkTvkvWQRUe31SceTym36cyqvRN5Mb6wjLJzKFDoWV8cocZv6wePV0mEP2bqKqvU9bZJxJZlOcdebE0l11SP69hGc9P/9Umnk8PTHtP97TxprAO7F54FKfo8jmbvH9UHMuiPBu+3OA/336Xv8g4fys/fb46eluPj5zAwzGacxSJ5G6hXVv39BVX2UOQR19ibnFJoPqWFmUN6CPTyUZ2gsJYOwN5HWGM7ArhqwM+JdM8h7AY96GQGw3/iOfPagFKVTLllsXEdMUQC3r+P0hw6x9+Yc9kTQG47qQyAZbprhUE3f1BR0sQDt7sDffSBluem486Y5fgh347qUoTRT56YWt+JBKQjr7o6otPZ3wfeOQS/eBn94VwL9o0P4j+/B3r4pEu/hEDyfg3s8uf5zTi6DmY7hzy/hjg5RvXEb+R++D39+DjudyrjUNUJVJc8brqokWecf+jzc/XMsvngTqyOLdkj4xs9/DV/4pa9ieMyYflih+O4D+FsH0jz20Zk8I5FAG/kkQOKghPUG9mBfn7leKV1bvfjjh1IiiqhY28Du7yHMFlvlxnht4XLWuXZHR/C6lnLMzkhKrUvd/BcrKWNOhQzMTYuwXCZzWXvtICGg3Lbwp2cAme3XfRBUKpqXRn6jruHwXgKr+Lyrciy1s4n9s1RgQsOBCCXic6+JlRlLd/bYAyw+M/7RSZdEtbHFR54SaAAwebZd/gK2Ogo89qxGF3Ut96XHP8s7SoTeQ5Nn0hYkOtQz47eWv/bUS12f+w+fTqnrG7/yaanrX330A4h+th43S90k0mIJpMy/v9GR05pzXSdVTPKNsRZEnDZhilLD3oYqD1Vv04rS6v6GGc83Hn3CcUR5+tfRQxEi4kSx7GZ0k2qa9ODGh46cVe5Mrb8fhDzH3FVxHkN8rpRQPuE8KMtFthkYCHUidjMzTG4ThCslqBgkBADqXh3l6ZGIHOr0Nziw+Fr0/3avBNmZ42mZscdB6cjgtSBtZJQ0uB2UdXMlbF1z+v/+0SehA2mR3wpOro4VAC4EPmd1k4YxHUocS3z9Ul7rk/N0/LzYy40tgR5JiZXJpDkW3cATD4BZpb0DOZfMJTK1IEn5ljcQxRLSoJRO8psqIUBQVQzaFlDPGEBKATyQTN4PMpjGqwMtp3MXSbSX1iOZBTu9Ty8/D/74gZiHqiyYVarLtZDh8f5H2M8d5q9NMcwssnuyCcJJ+xXz8vOg+RL+7BxhtYJ94zXw8Qlw+wb4o/ugN14BAQhvvgf30gto79yFe/lFtO9/CPfKS6D5EtjfAS1W8CenoN0p/LsfiD/K8zdAH94Hv/Ey6IP74M+/IlYD3/gOzGdfgX/3Q5hXXgC//5GU6+aLZJFgJrsiHdeySVgsYccjtMcPkVc12s+/CPP7S/jFUruse+HKXM6k/cRwKGTuV14EHV8qkfkEbr2Hs9cLfOGXvoo//jtfw+f/7lfRDEscttfFi+hogrxuJOBrahg7kYBithDV6nIliF5Vyb3kAJSTbV6cKhrN7o54/RAhfPAxcLAH07Ryzq+/KiTkt96Va8ylhGaPxIizvXsP9uia9O/LpeeX4a49D46RlK9EBlad6u14BExGiVDNmYNzToJjq/476m/jnJXXT84ef06thZlOuv5gxkgg27ZdQhuVpYCYHi6WoOekBVF49wNBUYjE+0gVsVxpOXUgBpjS33DQof+qHAYZSRTaNSh6yOnfjX5DSQySZ7LWn5/L/YjJonoAoWnkGdZn1Z+cgkbKfcuzDhFaPj4Mnx5/9sezE/gAjyMpVw4zHku9P7ajUImgkGvFOyZ1+l2tQGS6oIdMKi8kaaYhcKX13hg8xfJMRIdio8u2xxcig6gOiq160+/zlaxfAw25gE7KzmTSQ0zWgJGBMnStHiIfyDn4Xiax9TkcktT/iahFH5268vsdShS6ck+PN7PFuUqBk8j7mRkUQqfkusInSgFdQn06MnIiHqdriPytpgvoYgsJDRAixBzJkVH9FcnNCEFKdtCMrW1TOXJbQWW7+xrHJ96nx0qEDFpXSZHFVrkCEXmqn6BcC6HjEam5H+n9pj5qpIs6iFLZNgW9cayisoSLbTI5M9DqZwWWDDlKZZsWZqSqO6fkXUXj0sYRPZa0kaYNAGdW+rQBwgNyVj5r7aWs1goqA0vAgxPhWKzWgrTO5sLzWMh9N8MhaG8HvGmQX7R4+EMj7L6bo3y0EadyQEo6m6rjes1Xwp2+mAOjIejhuah2bt9A++FHUna4fww7nSI8eCj3f7ORz/BezAXjBnVyCYxH0p5gbwfmvbvSZPWF2/BvvSty+7ff11LWSSo/m9EQ/uJCSt+RwxW5WzFg/Kd/CCYS1MUHmP09SQ4encqcjvPpwSNgNMToO4/Q3NgBW8L+WxXmL+T4/N/9Kr79t76GN37lq6A2YPPiLsqPZwiPTrtnDkCYL8BNLQhJUYgp5WAA2pmABwVC7raD6xCA44fCd1mqN1ZTAw+UTwXAf+ed9ByE84uEJPr7D9J6Fi4uYQ52wapkpNi2Zq479M6487NaruFnC3EQj2TvwDDLtSAxs3kKSuADzGwlCOXlTMZtS3mprW3qWswuZ2tB0XSO2Ndehqk0mapq+JMzQRp9QHjn/bSehLNzKauOR1KyI5LnLYhFSSI3R6sNr47zcZ3XObX1WiQ1M0tglFAks7VfRA8gapSD1zclJZJy13CYjCuTIvlpHqz//pwf5l/9lqd09AOEq0GPbr6kJF5E2XIIHaE2Zj+pVQF18m4AXddy/Ujvt8owqfxy5X0AtjkiSXXTlcWSOV4v00/XZHoIAIeENqXAIygJu2mSP0xChuJ5XhmjzoyQn4CAdFn7E4MeYJvcy1058Koj81Xybb8PmHRBVw7WVT6RZkDcCHQe6gahqjr+TTyHfjNRMt33+n/cNlufAUAJqU3iF4X1Ov3f1r3qBzy2CxS3vn7S+MRD5aicZ7LxO9uZllkjPX6c7f5lTt6XuTQ+iAttJDlujakqsnQe9I0MyVkJajJ1H7c2uVrDmK7Zrc4ZVpJ4InjGvw/IIh2UhLkSMqo0t2TAGWlDoh42FEt2zOD5Eji9AG0q+beqQNOxnFf0TMoymLKAGY/BXowO/YOHoE2F8oMz7H+nxuK2kNj9SMivZjqBmY6FixTHSOW9XNfAcADcPEJ4IL252GvJzhDMzlR+d2cKszOBKQugquVzmAXJ2lTg6Qg0X4JvHoFeuIXw/kewr7+C9sExzEvPwz86lc/pEWZNUYijcJxzqxX8QtqA+IsLaTfxw19IJnbh7Hxr04sbWlQThekQ7nSJ4uEK7chKeesceONXvoo3f/ZrOPnSEMERFq/twuzuiH8MkaAFmROFlqqyxLdsIa7bD09h5muY2QrUeJiqkY7q3osx4ngsffiIQHs7gi5nDu7F56VnVPCiqNNnwxzsJ+8bMyhByzXMpoVdN6nfG7JMSlTa7JkqadBpSuGtSffznohkMgGNRt2cVq4PjUbSId45ucY803+5eqvpXLcWZmcCO5nI+zaVBDKbKvnxxAbQ7rnbcDevS/A2HMBev5YECMLJ7PaWRH8IIZXo+8qyuHZEnmhc27fWyN7+1Hft5x4ydVUdDAB2d0cQWQ2W7P7en77+fHr8mR3PFuIDPI5a9A/TbZLkNGOOG0vkjAzFhZhmyqxHn0zcI8Vqh/QtuTrQkXZ7LH1yWfr7W5yh0EkVI5IEIJHnulYK+vs9DpIQm113XdGXI/7sxeAPWQ4sl+lcUlAUx+lP88y5+loPAYolQ77CGYE6xAJZl21Nx1t+QX1vGu7V0JPHSH8hUZRHzlV4B1QUnQ9JT/Yepc8AUnnPDEs5T8260TRd2ZIjT8BIPx6jxpZ9BRiHhKI9dmyVVh/nanFsQ6FzDW2QzNpZWeTjuedZUsGw1bYlXlRf0uJDA/fBQFtx0OP3KXQBIwCgLKTEFnszRbTIS7BFTSvnnGcgdgmViIoVyWqtBEDDAXBxIee3XMFHSX9//hBJIqh8ocgRMtevSU+3TS3EzDg2VSdp7vf1ipsKa1+94l6Bw/MM9/7SDobHAeVpidG3lrJ5ue68aailPSdmmmCWsk0R+/BNJZvfVLIJq3leDGrJaVNg7QvHsVVJEMK5+EN1z18c67BYpCbDoRbeUf8zYzNeaHmX3v4YflPBvPoCwh+9BZvnmsVvujYUkzHCyan49JycwexMUeYW7u4pDtvroDbgyw+/gj/4b38Zr/36V1CeEMa/u+4lO4LI9a0pwnrTrUNNC6zWwHAAttKni2OpRu9lOlrfccSqnhtxo2IKpuQ0z0F6FPqP7gEfSpNPqIIt8oN4LM1vqWokSKlrCUqjoqsVlBCNIjr9VjzM8rqVXnzyLHQWFgyIqkxLpgSXEtswGQmqtN6ouqoCaxuYOBfBQdoXkUmcIeR5ZwdiFNU1BNQxMAqgrEhcOioL4Zr1XpMTCF1JWlFWGJvEISkBhyQ33DaAHXdrH6CtNESYQiZ0LutP+/gU8XmGAp/+5tvjzCR/hFRiIsGpnANCr2GcZtms2UEKaKLHBaCfw2lx4/U6yXPFU8d3yiOVPkbyG7JsCxHh6KfSxs3aarNNJeGlbuAAqCPsbpWGlMQIYLucBsAY5UQ4CzxCt1FFJ1GCPLQ95+bHNtMnBkE9xMrKOSfEAeh8YfqeSroZpkUgjUFIEDW5rKtpRzm/VbWdtynzi/yr5AWiKrI+Lyr2EOK2AQ2HUpOHojl5ltQsW67PuvluoXMRcYvXEOWs/fkW3/ekMTNqTOgZFHzH5/FBymAmbjrdhkONl81WCZ0UgmTHhiRIUfLylm9SYCBothj5ZZsqucSi9Vv+PWRtappI6jKLTHkKXsjMcBbkbZKtR06HGesGkjnZJHbG3TXXjYxvo+0l6kZKMPFeVZX0kFouYQcihSZm8cWJZa7JWIKtPAMXOWAJfuiQXzDOvkAY3M8w/OerbvMKDGMMeDkD7e5I+W6tXJZBCTw6gz06lC7tUzG9o8lEgh6VBSPLpPXBfAHK92R8VxsJVi6FI0LXDuDf/wju+jW0734gjs2nZ13gNRqC/EJQiqYGslzGX5FTLjIJYgG40Q2Ed+7AvfQC/N0H4kCs6jnKc4RT4a/wbA5Sybq9XMPfOkD2cI7Ni7uY3mnx2q9/BW//p7+Ml//h30yEb3LaCiMGsBxkXDMN7AaloIvGgAuHUGZoJznaoUXJAeFy3sH4zFrSkjWnPX6YnolwORcUMAA+JYnCEbOvv4IwLmWzn4kRH82WaO8fw+8MBGXatKAQEGatKKFKp0uTgVmsJPmwFsi1XNh40KrR14OittsWHinwt0jtJWI5vT0cwq4y2EUOulwIlUGRTP+ok8eH9QZYreS5CJL0mIP9pH4la8UOwFqZ/3WdVL3JvBARWW7TumxGO7KGqIki67pvylLmniZy3LYwg7GsG86l9Yci/SKu88aJ6vjT43tyPDulrv7Ry8S3Sjka/FBZCnwbZcax5JA5aSDpA2g0FCWLbhiU5+rKrBCmekHEJorcSG8jKoukqkh1480mBT1ps+qb7UViW4RvM9eV51yW2hlQ3JyMlDFiqSA2EUw/Z5luHFmHKmiZrFOSaQYVejyefpnryjh2Yyu/S6OhZHM9ojUpYhMPypyoOGI2RKLGoCJP/XtARoid03FqxCcKpOjxowaHPWIxFUUaNzLC4TFFkTJacWBuBPpnKXNwE3ujcQc1a/DaR8FYF8NUegw+wdWP9efql1flZnY/EyGM9BqdkY1mkMs9ySTz4/EQYTxAGCoZVHtrhUEGLl3qYs7WSKbcmz9X1ZTcdmgXjAYsGsgjz8CjAXhYSo8gZ0HjITAdaxkryHm1Xtxo20gEV0RouZZFeVMhzOYyZuuNlGzqBrRcS6BwuQDNltKY83wGvpxLt+pGNgD72iswk7ESOLW5pHMyv+Ncci6R4klLZnZRY3jqMbhPWD6vz6Yu+sl4MiYgVlGC4aAjT88XcM8/Bz+fC2q4WILGIzUzDIoCZqkFDMVAZb2WMdudgi/nMC/ehn90AnfrJvzZRSojSZsRRVgqNZ1rW+nTt1xJAFApiqgKMrO/h3B6DvPScwCQFJrJLHA4FG7OagXyHjzIYS5XaK6NhdOTEcoTwsv/8G/i/X/vf5ASkxL8Y2CcEgIv7RLieZI2x6U2gJoAU3kEp0juoJTnK47nZJxK43Z/TzyPgocZDdJaYUZD8QcKXkpXF3OY8wXMTOYFXcxTF3k2pGVeCZ5NUQCZKABD6WTeDwopaakfUBhk8kwMCinFlWVS5qZ1MXMJIYprMI1H4l2Ud4g7G0lou5ZABLu3J20piKTVxmSSAp3o1C/NkhUh1oCEFFmkzPUSS33887x7zVhB3vMs+QNRnj9mOpsQfzWHpbKQtTJX4UaWbye3wyGe9kGA9Ep7Cv+e5ePZQHwInUzwqsNy4kJ4yfQuZ9pDRWH2PO/aOmyqxKgHkDKa2GAOVuTgYb3pvGjUBC1tptp7K/blknIPCRQvpyqTOk74XiaeVATzBeB2usvTh5XrRjJK5bowM7DZgNU7pC+hl4Z4K9no1B01ZRWR3Fs36jsBRLlzRHJSbV3HLzqVAgrFqgSZtZll6i+GHvrVtPDVpSwq3ktZq6pSYGhGg9QUNGwuEf7iFyVgyASRSo06gdQBni0w+pd3wOMhzKaWTa5ppdvyppaFpdJsyxi0Lx7BLGqEm3swm0aCCUVWuA0Itw9gag+jxmBUFLKxQxApsqZzOtayW+cW3cs0n8Bzooul+OZYI5wYGbwuiFttYJcswUn8P6JubsTPCQws9R7HOW62A9QUSOoRBrk0bjVGSmcxYIqbgDMdEdkYGbPdCYCJICZVLcHt2SVQFqh/8gcwez7D/ltr2EUFOp0BPiB8eDchDfHepxKstYKyROLq+SXu/I3XsfuuBxtg+KDC+noBtwpoRgYUgPJRhXacIb+o0A4zZLMKoXAoH1YYf/dCFGJVjQd/5y/ixi/9M7jnbiHsjEDnF2hfvgHzh9+Ff/kGQID7zgzN9R245QrhYAq7WiG8chvmYgl2Fqc/82M4/B//AP72IexwAD45Q/PqLdhvfBftqzeRL1aor09BDGSzBfzuCGZvD+3zh7CrNXi9xtnf+FFMPqpRPFxi/fLnMHp/hjAUQ0f3cIYwGcKezaTUcj6T53hnApxdgq4fghYrLH/8dYy+eRf9ViLt3Xuw1w/h790XM8ejA+DRGXJF0SaXC4x/d42wWOLf+a//Tfyfb/0uXvmtn0H2UY7hfYKtGeQB0wK2YZBnZMuAbNbAtAFmI2Rqajyy0xr5vQvwzjQp42AI9voRHv77n8Hg7GW4VcDiloNpgJ13buHN/7zAi7/BAAGrQ4fBmYdbesxfyHHwjQuEb74pU2A6BTOLm/JwCPfmHXlebh7J/H3uBmi2hHtwkUrD7d4Q2boCDwqR6ucZQu5Q35gg9wFcZlj/6MvgGFfUjPy8RnZ8KQGrD2hfvg62BtnpUvyeDKHeyUHTHHa3BIUDvPe3DF7+71/E+UslykuP/KLFyesFzn7Q441fPJFysA8ScLUefHYO88oL8O/dUVuRTALUPBP+ECRw5LbbK5K9BgBUFdpHp2lvIeeSMjChOV6QNbu7K7YJsevAl97A5eemGDxq4OY1zPkSH/70DeAXfg2fHk//eDYCH2CbUByRjcBAZhMR2R/twJQ5zErrqouF9GPRDIgXS1ns6wbt/Qew06kELIrwcCMBkJ108H774FhUHYNSjN0q7c1FJFlRsSsB0njY1ceLvNuMAsvmE4I0eGwD+OGJBAA9ToQZlFs9qBA8/A+/DvIMu27QDtQEz8tiFAqL7HyDereE/SffkExXM2n2HqiUJF2rF1EslwBJcRXHNZZV+hwaKiT7MjtTQRSclexOAzhBrVgW80dnkjlqkz2oFTuVJezuThqXxV4OtkBbaIdyA1AskTuIAI6AwcUlsFxJ80ldQMg5eM0qASQEp33jNqw1aEcO+Rmj3i3gVi24dLDrBs1ugWxWgyKHQPuGxXnUOW/3e5r1nLSjtUH8v96UDO+8L+62WioSc8AyBS6RbxLmc0SPpegnklprZFkKIunzn9kq4wJIKjDqK7cA0L0TKdHo3+m3WGBWN+OmRvXlV2ErD4QSnAsK6U4JmAhnhgYFwlACcl8Qqv0cZpJh0HhwvgOj5ZFom8Bt05E+4zVEMjuAW7/4/+Lj/+bH8OI/OMHitV0MP15h+fwQ4zsr+MIi5BZu0cAPRIbfjrWUxIwwKsCWcPFXXsWtf3KBk//ix3Dt945Bdx+BX7gJ+85deZ6/8R2EzQY8HMJ+4zvSN+vuIyGEns4B73Hxg0e4/o/ew6P/+MvYfXsN4yz45dtwb90B7e/Bfv1N8KCE+affFKVWUcB+/AjMAfZknrgX7YhQfvMOTv/Kq9h5e4X1cxOU91cIowzVC/ugwGj2jmB8AO2UMLXw0ozdE9TDGFy+nIH8LWSLFu7hTBqNvv4q+OP7yTeJ79wDZU4k61HBqCKHsAZe+a2fwXt/+Vfx+q9+BWwBX4qlADfyPZhQTwzsnoVtANMwKDBMy6CWYauA7PgR6KP7wHM3ZH6dnGP/zTXIB6xvlDj8n78Js7eLk5/jDl5UAAAgAElEQVR8EYfPnWL4jsfy9QPs/09fB33uVZz+hT0c/h/fRvXlV1HeuC7IazLxE+l7+30vgjOD9WGGfOYxeP9c0NgdaXHBzsD98fvAaIj1565j8N6ZND9tPdwfvw26fQObl/Zg6iDd2jNCyAn1Xg67GsAcnwFZBvvNB5L8HB5g9RNfxOq6g8/juOTYfafG3u9kyO/cw8H/dwJ68TbOv7SP6//Lt3H+Y6+KXcL5hajM9neFv/TcTbQHA+TVTXCZIwwymA/uCwK1WKbqAg1KUJbBr9eajFrwrUNQ42EP90FNK2VcADi7EP8s5ZDCWPCPfRHrSYbBe2fJD8u8exf2lQnc//0HaH/iy7DvP4Bpb+B7cjzjaMzTOJ6RwOcJQU+PCNy9jRCmA2kKOchhMidQdt3Iz8YgDEspd91HgrGJaKvMwat1p4CJ5ZC66VoRJAJgK2gENBOwSqiOCgZANrEWAodHEmoMPHrsf8kIsi0yslvUIgvdtDCGQI3ybEIAhQxUt/IeHRciBzbQ1gP5FjmwG6KI8IStoAdAJ6OGomXqAYOm2X7fpgJVNWK7hlDXoCcYEHLdaKlFXLTzWYNgDWwWZNF2ipQE+T6NPzOo2VZixcDkqjTfNAFm08Aa4dq4pciwTdWC2gC7akFVz8AwejcxA9Hduj9G0d2713Yk9uFJG30kb6t7q8kzhMVCJKhKok78quVKIGu950GDt7BayXVEmX1ZSlCsiFAKeAyEGxGl8vGcrAFs3qm5AOUCSZBGhaASRp2c7aZBWxSCNlmRIYdRAVrVYAJCRpjcbbE+sBget/DjQsokRQEzartgsceTSmZ+pk3j5m7dxOq1Gudf2sflKwZHdYnLly3cpgQCsD50GJy0qHcs8plHyEi6sXuG38lhm4B8HoC3P8Tu5LOoXthD6QOqayMUdx8iXN8HLVdyj68doP3wI7jDA+mgvrcLVrmyW99Ee/wQ+39yBHPnGNUXngcTUN5h+Gu7oMsZcPsGaLEUl9yDfYRHJ+LWfHohJUAAB3+ywf2//hrshuGHDvPnHfJz8bCp9hzK0wbN1CKbA35oYCsLW3n4QSay7mmJxfOMW//oofS3AhL5PJJ1kTlxZB4MEmE5KCoZy1vZRzle/9Wv4Ds/88t49e/9LLKZrDW5dp8wFWA8w0a7LNagx0OTDFFW0XQipU4n6Kxdikhg9E4N/vwraHKL8tzj4ncOgewUo7dOgM++gnZaIFsF4Po1mCZIi48Qkiu0OZBSdl0K2Z8toZ5a+M8fYPIvluKVUzWgtk2opK28uGzXQoynzIEvLkHtNWSrBu0oQ8gsyAO2CqDlRoKo1Ro0Hsk6XzfwpQF5TaRawLSM5c0MmaKt/NmX4IcZjAdwuI+j387gT067SsDlDMwMc7gLd7FJHlZpLexxbVJDalXudQ8pBH0ttAFsbDt0cZl4U2SlSkCrBhkg+5ByBJFnGL9zCTo8BBY1wsUlbv6zFb6NT4/vxfGMBD5yxA7osglTCkyE8c8w6yZ1wabGS4mBOXWw5jLfypyZGVivxY58ix8jE9XEdgC64SQ0pk+CBeQcYomh75gaEZH+YdQF9IpzMIAteT1ZCzNbS61+XYGavNt0mWG81PPNkuHJdOaKzIDLOsPFqKgJgg4gE75Fck/2PgUDcfNCYEHA2lbQEL9BdE8l5xBiAEQkpTZWn5l6LRt8XzIelW55BniGQZAFKACoeihG/N4glc1SWQ4QNUVcdKK6pWkRcgPTWLAj+FEmZFnrJPMmQshlg7AcJNCJpG0v5ZjIS4ru3ibvPHRkjuj5W3T8Ji1z0nAImzkgy2EHA5kXSk4UsnDWla2AXjksJM4YjFGOWdaV+1jHx+jfMgwwpaAIgPqF9Lx+IqIVxz5z6k8CsPI7iFl/NqBaPptV1u6WHpevFJh+UAMEbI4GGDxYKeF6DGw2iUy9FfhExaL3gAdWX7yNw//H4eGPMMKwwZ0ji8ED4OSLGcpTRjMksHHwJWAag5ARTM2SX+QGtgoY/1/fAn/fZ2B+7w/FdPH7Xkfx9bdB0wmCJaCuYXYmCHsT2MsdCWTOzsEHu8DdB+CqwvB3/hj40hsIX/8W+Ac+D/eP/xB2ZyqO1AZACAi5k75SwcMf7YAuLhEOdkF3j6XdQeuxup7DNAzbAO/9RwY73yLc//ERhseMZgQEJyimaRjBUWpT4gsDt/bYHGSYvgf4+8cwy3VqZmoPD1QcoZL/8RhkDYwV+Xw0LCXlwg3vSxn41b/3s3jnP/kV/Pgf/TXMNwVmpyOAATN3sBvC4IFBPmfYysC0UNRHvuZZBt7fgX/zHeFdDQZoJwWascPozWOEdx7CtC0GP/A5LG5N0BwOkT2YA4/OQd/+LgZ/6ctYvLGP4lTXQR8689TNBlSWgq42AdSWWF/LZEzqGmg92tPOlNAdHaL47gPwat1ZAegzXX77Y/jnrsG0AcVZAMXS3fkl4D38fA578wjtzgB2WWP83gzz16ZwFYF8QLVj4NaM2UsG03cHMO/fA5+do/zJL2P+xSO0A30e1B05NvPF3eNkZIjFUtpweI+wXOve0KQ1M6w3+po2L713Il/HI6BpU8DTV8Umc9pvvwOnfj1xL7BvvIb6cITi+Axm1cBcv4bFze3y9tM6rpbi/zwez0jgo6iAuj0lI70oXoqNKi0JoU+9T6iqwW6gElYrJS8iIf8Z5enkEgyJ7BAdPyMZWVnEJo7GZmr2Zbf5F5EzQ5TksokEG7Ni5YLEz05GfOpHk2Tw/UmnGxuYu88MXYBArZeFtu93szVsXZaeZJIhpOCx//+yyCIZakUlQrSDl87llSx2MViKGZH25QGROpuqLQAxyMQGnj1Ex2gvKUUzrpZ2kgW9r1MwmtC3qDTz4uIcnAQEvrDINh4+t+nBpSCbkak4nQ8iGbQ3h9L5MoPZyRj17l+8I/H1JMffbFI/phg4Rol/6kYdOPGt+sF1kvKTELxNk3VZZr+sFVVD0bgwyMJEbQs03P1f6AU9vjNETHyqzMrYGtagqpujbAim8lJ2JMCuW2SzGqFw0hwz+o+09XbJ+Wo/MR3zbMUoHxrYjcH8cw0Ag2bC8uEMVLuyiVMwCBbwuYNp5V6wyWCbFpujEqXLYG8cAecztIsl3MEe6Lt3xFMmy4DGg3am4jV07QDtpIC9fg22LOFPTlFdH6LIcpiLBcytG6L8urYP8/ZH0tF7uRESOAC2BvZwH82kgLtxiHZnADfboBnIHNvsAWZhcfmlGvmDDCEj2A2w2QfAACvR1TSCPIAAH6Skm60Y5oXb4go9GkmfLR9gb98En18CRDCH++DZXFRA84VyESXIJBJOjy8J2czgx//or+H3vv9/x0/8yV/F7Z1L3DnfQ9glrC9KABnqHYJbEYyX86GW4TbACFBbBZ3H3qMdOdhKEipz4whoPTwzQi4IMxcOuHkgjsqbFqax8AObuEqxPE/ewzgHP5QAvpk4GYNMkabhEPZgH7xapYbCPBqAvIedTODn865H33iIkOszZgkUSMwxY6kprreG4CcF7MkczXAXbQm4jczPdkCyPzQefPMIbjAAr1rQ2MIXGvgkc1DfiVGcU7Kz755N5SqCTDpHMxC1ViI4R2uBptVnXdfqvpN/X0WaZ2LWyPqewPCFAQ52ExLUlk9Y0z89nsrxjAQ+6Eo5mgVx3I56iErkKlgiqc8GRhhkoFaUA2YF4dk0Khm3ZVILGCjPI9NGkcmfoeOYUObkfT7AFK7bBPsblSoLyEF9QXTj6qmpogxSSKJZ6ucCSK08kmn9pBTX3FwWlIhiIAT4QQZnDPwwwxMfjyepg3qblLgrd1+T+iwqPCYTQQ2icZg1sGrDHq8TgUHOwlgrSjPlevBwsI0gQRaUUFip2ztK3J6IgnB0PiWCjUECgNh01s/nKbPs82D8wMC0Dr4gmKGDVx6LsSRxTmlA7GAijBLHWVFCuccdOVjkstR9/6Sh1cBCFCM7vaCnhSl3uu7ctXqZNHVHTo7BQlSuRa+ktkWIwUnfP9IaCXRghANlpQTPj046hLLn/QToxrBagdsW7b/xEthCylmFIEAAEBoHzgxQOvihg121YFKkYimbmp0rB805oNUu6k3bkfUBXLVgKB6usLo2hd1IAODOHDZHAdQSnBEuV8jirSWEDNLjl2WjagvC+NUXUY8thvu7QkSPXlEzES20xw/hrh+BZkuE0zOYspCS4mokyQ4zzGdeQjuyGOzvIjw8ARWFdFc/uwAA+AcPxb23LBBmc9g8Ay9WsKshaF3B5k7USm4f2UqQKlMR8js5/BsLNO+N4AtCMybkc2Ctm5RpAbfS7xsLXwA+JyDP4I4OEWZztB/dg7t1A/7Ox518WRuhhtlCm+3m202LPZTfR5hvCvzEn/xV/OPv+wf46Xd/Cq8enODeYooyb3COCdqVRRMRHw+YlmAq4MB7MTU8uiZl2MsZ8otKn8uOJE+eE0cIAYKONo26dLPwbqZDMawcj2DUOgDM2ByKZ1C1Q/AFIVswcLiP+uYu7LqBWTdCKq5q0HyJ5uUbsMsKbq5Kwo2oB3FteuWhkyCLX7oFe7kEn11ISwwn1gjLmzJ/bA2wBYpTRnHOYjWxqUTN6AxsxWBC8iRKtiKAtMNQOwCyFlwKys5qUhlNPmk8Ai/q7jVY0GQia7+ahppcFLfh+FEv4ZFkzR4egKcjOGNSiwtmaVuTEucQBN182gfrvz/nxzMiZ5fI+4lS337pqq/6ihlJLId5zXS9vJ6UKbo5cyQTRqPCqMTp83/iBhN5DvFvZZ2fh5Qm9ISuODz3N2yxOTfd50aJdY+4HXkvMWjiZNDYU/ykn598q5IKqdeWII1X5CtdPU8gGXxxn6StG7Q4J3dBEpoWyetHF6juvdFRO8gDFRhgCXgiv4e8fE/xdbUXkL/rFTUR+WiEp9M9BrREhIQiEctrkSzdl/RHtVw0J+tzVuQNoWvi6KXPWyxLRYVbRMhgjPa9GggRfDQUBGFQJufkaKlAWZZce2k0ElL9oJRO1KUYNrK6FLMTObD0wDIIzsAX3c+sXkjc1Ootpahhnos9wnCYIPbgBGVhJ0EPsSAAgnzquOg9kOtH14qAKHV/p36LC51z1EMwkw2EM8hWDLdiDI8Zbi3lFz/2aMZ6v5zcl2YI+AJoRoAvgZDLP1qsJdsNDFw/TL45YbGUctBQhAS8WIrDsDWyGWUWYTwEJiPQStCaNP9vHErw2cpcNeMR/OVM5Pb7e/oZw/QZnGl5liV4CDkAA4Sc0T4coNnzYMdoh1LyaoddUOdz+Rqi+K1ihGEuvBIi2B3Z1M1nXkJsSWOuX5PXtMlndGaOknXTCnqTz4DZ6QgD1+Cn3/0p/G+f+W3cGl7ic/vHmJYVslED7Dbw0xbNrkczDWgmAe1Q1x0n/jRoRP7u1V8HzAjToThaN8K9gj5PflKCphPYlSAR8n9pEUku+XAOPiMhGRdSwgzRBzM38KWDH+WiKrRWLBicQSgzhNFAgh7nQOOhopoMajUYa7WVUBuSCpWdlKVpXYk4wsnY2418H3KlKOwM9fxrQRUtEO0sKJpZ9nzCBLnXn7Ucmea8orvUL3sDcv1XfczCFYsRXX8QugQs/T7JGhaGhVgjXKVIfHo81eOZQXxSFn314G4DZkPiqWIp8TTYCEwaMgPbGPl/SMRvlHtCJK7CadpGjkc0mVO0JxIet6ZklLb3A4h+YBK/595EZ5YNOfJNjO8eENMt1iG3kmX5gJAb+ahYgSkMTOPgSwcHPN73KvJguGtv8birtNlGfvrk2TwXkzbtbcbOSnklLgzxs6wBWnVazsRVl4g6y4DURoHALvp8EIIGJeQ16Exjh8QXif3SKM8RFmKixi0n8jAABEcIVj43KJok6I6OoZXNOF175KXoHEgGaVd8OhKKoUFlv7lpVJZFwzhAkRmVxoKFf5U4aIA4LUfyOLNuqpwaN1IsGxJAT8DwOn6QfmlqGPUDifczuV0XRRq74CTjj5swAityFMdHnxd0c0vY0STZct0ARS7tKayRjYBiohDLb5wQHzNbI7gRbCUbv60U+ZlbhKIrT1NsbWcAygFbk2abhLA3llLYsARWm1RiBaC9krQFR61IWt1IgEby/IP0MwwJovPwBG5dablC+XmNoorRnmJTd7YDkWu1WMm5V4xsKRuqaWQtoaMl+HKEkLPwyxzDEoFbGUC5Pi21NpJsmb098HwOf3EBaw1Ym7BSk8NE5Gy5UtK8kGfNcCjloEZKXXEO3Dnfw6sHJ/jq3R/F127/c/ztez+MbHqCTeswXxdocovgLUJL8BsLJilPUVULLy/PgPkCbiElTRgjwW/rAaeqsLhkKYGZiWCagHbowJkFNUoFsFbmYd2gLQnsgHYAOCa4RoLlZmJhSgNTWdjlSBroLlZopg6msXCZRTafitfUag02u5q4UDcfAfhxIYj+x2vYxUbIy9agHcu8Nq3Md1sB2UJbrDRekEpjhPDdD9r6e0om6lU4u90Gpu9Kr8E/c+fELL+rpf/oHeds5yN3pRzMowHCsICt6o7/yDH509YdsWT66fE9OZ6ZwAe4Up6IG2UPdudMkZIiQ8gtaJAjFE64Hllk3hMotzDRKTduHJlTNda2iV1qn6BfGQr9KsIRERMuXApyUgsD1iaURLrCU6rzmjzrLM79FV4HABiDdiSBDxvAlxam5RRA+dLoVwsHLb/wk29XdLfmwE8ui229WTk1k7FseJmTawOAMBB+VC+oY0OgyUjelzmJCo0BNZ0CitWTJmQaoGRdOYcIEnjFYKLHsaJSbOHhHGijPk7RZ0dVaUyS2YkySTZx9pLxkdcsKqOOZBh5OIDei3htOodgta9T735EY8wYYAeW7umHu2gnZSpHIbDMtzbAND7dK2oGqQwb1VrsTOJ92Y0sfKGwWvJDGov4s/Fhi9zsDvaFhOlsh8jFbL7IRQUYxx7C2bCRQG4JbWlhqyDzKP495fiAIZl1vEHrjahVliv1gJJyV7RFICNiAzCLVLth+Vcx6h0riEdBqPaEJBwskK0IIY9/GPAFwzQEX0D8oBiywVgRA7hrh2g/+hjm8ED7hUkmHhZLUF2LdUJVwx9O5f+NKAY5GtyR9PFqjx/B7u1IH6nBQObRZiPk3MFAPmN/CrPYSJk7SBAgnkmCFgTHCBclys8s0JwM0NYEP9LWFw3gG0K2ROKSFDWEL+UsMJmA1EAVbQtslKyfZ6DaiWXGfJHaXFCmJXXPAEvJyswdwi7h3mKKab7G3773w/jvbn0dP3/8/fi42EXpWsw2BZgJmzpDmwW0VsdaA58Y5FHjgazHWQR63LdYF4WYvjYepg4IFuDCghsHU+TJwoFGQzRjXa9yWfKyJRDGBVYHFqYFsjXDVkNkJ5LIrA4dbMPICwO7nEgTWQB2Uck8cJp8NoI+t5NcLBGskbmu19EONVCrCfUOI7/U+cwMBEGc4/nHZz+ouak0ZRavMLDYKtiN8tmqSvoIxj0mCizquuPpsU/tY/ykkL/zSQRhZnBZgDMDvzeB2dQSRK4qWRvaIIq/uoZpn/wRf9bHs24u+DSOZyTw4U7h0DuIBB0Jsa1B3JgUAWASdCHxSlpBf9hzp2pSgzfykhVEd1lkGsioZJs0mieIuyY1rWTrGsDw9okJKc8//hqCwqXKm0ltNmzXvTkqxNrSqNeNQTsg2AaISEZbSvYSFQoJSu2TcjXQ6WfkiXTX+5o2Yx0H8aXJwGWeoGgYgm2lFh4zG1EEAWi8lGEKITaa2ADTh61eVoL2yMZnIMGK4G8SoLAFAhnZqFTpJC7WOUjlowxIQBQzLysLbXCUvpe/IciPBI56v2PQ01uUUg+pTAOTpk6beBovHfYUPDEDnuAnJfwo64K2wPC5ga0JnBvdLEnkzaVs5qyluJAZmCaoEkjHv7/56M9M6IJV6t5D00nX9JS54wZYI0aZ1ohbuZXxEOSQVPar6Fu7HYSaRpBI6l97I/OSNxsJNKOyMZb74vxSJDA8PAH4OoqLgJALx8MXBLsGXElorteglUNtYyYPDbQIbBkhB+pr6mI9EJdgu7cDrmvYwwMN7AqEi8uONB7EMyqW7HhUojocSMlzkItEfbUG2hZ2ZypGoaUQz8NMuDVkberlldaC5QpgwG4CyBu4pcxfW8v4VQ+GGNxcYtOOwHlAy4CpDDhjIeQCCfkKuQGPh+KFZY2QiC9niH5IXo3vqKpAg4HYI7hMzqkokC0D6okRyfpGiMxl3uDOfB/Z9AQ/f/z9+IXrf4SfCw5nzQjLYY7LaoDKO8yrHHMjLSZ4swH2pql3HK0qeV4BcefeVODxEG4NmLoVlKeqhGu1O4Fd1GCj6KXT+aaqR24atCN5vtsJI7tUVLFwqHeF19duALfOYFc58Pb7qHdeAnmCzwluOUCxruG/ew/m+r4E/pGyoEcztjC5Qaa92QwzeGcMHglHLdQG2YVFcITx/VY8gnwAL5fgoz24eQW76dRSqbs6UfJfC87AlDlCkQl/kQicyMkdKr+15ufizh6c8kUHWqp/QgDkJ4Xw6tYtODMIuUU+W0nJP5Kq21YS3U+P78nxbAQ+DNmwjBJ/Q0RvIFmTKpZCptlBa6U0NHCClDRihhX9JTgDnPIzEofBWuFdxECml1UizyRLKnMpYUB8WUgt/xOHpBdoEcsiKXJl6h6aGEhFxVSfHB3LSPp9MxLVC1tCMyAhK7J4c7QDiRTkK4uRXl9eHEsjjUrn1UCvK4WFjngc/6b3qfTCamwXMougmzZQgqL6SDk+1IoxY8gsQqFKDEOg0qX3MBFMq5u8kesJ0I0SgCEWIp+iP1QWWq7J0sJKk3EqsZAqx9L0sN1X1s+QC4tjCuHhECGsus068ieoKGCKQso3UZ1hOmdWAIgk9xj8sPeo9wrUU0FpIoTelrLAd2UChtsY1GOrpT3JTNuCQGzhc4Kt5LXypEmkcUA/w8gC63v8LGLA746lFYZTrk5gcG5ALaMZO/Ezipk7y2bk+iCWkXvCxgmZtQ3IVkFKHJ4TWgdowMecvKwQLQUSSqcqRX2ObMUojlfw0xx247DZt3BrRf1sjlAG4KhCqHReNUaSkko+r9qxsA2L3LxuhOfz6Bw42ANdzsHTMWi1gtndQXv3npTB1Q8J+xOACNWeE6Qms+D9HeDuA0kyDvdg5kvwZAScX0oZdSkd6XmlhnS74m7t6wb5kpHPGrgDi+IcaMYSQELJ5psHEvTs37rE2aMpQhSB1pq0eNKAl6QUPChEiabldWYWDzDXgoaCAtHOpLtRgxLUtMhmjZgT1sDggQGQ4RwTLEYlNq3Dx8Uufi44/OLNP8CvzQ5xv9nDw3qCWTvAo80Yx04SmnBxCXz2BSH6hgCcXcAQqcHrCrzZwAxKZCvtZzYsQQvpQm+8h1msQDyRwNkZcB81txbNiIXnNA5wcwvTMNpxhs01mYumAdzaojh1sEWB9TUGW8CtCW6TITsvxHZgJk7rnDlZA5RHWE9kTg5uHgKrtQTAuxOY0kueahk8F2Vnfl5LCXO9hr+cwTQeZrlGvpgI6q5lfFKenJ8UsKsa7cjBtIUEMYG3+vdxXUspMqk0Nbgb5vCjDG0p12w0sDRRFay/D2bU+7lQFYZWqxGE/AMvXkVVI+W+ukG2vlIFeFrHp/HWMxL4AOg6C5utzWGLMxOzztxIbT0iQFojDo46NdKg1B4+wl+RhqDCT+G61gagrnuoW60T59qMUJUJUbmVGlEGbJ+b8gX6kX/nCBzkeycutuxDxysxVoIEJ5tkyHQj9FJDZ7tNoEyHoSRJ3zo0OEznEUuFqmJK5oSQcZTeUro5BimZhMJKNkMEE4LwQzILoxYC5A3YkZQZmWEqDcT0tQhdxMCAe09Yv8wCRV+6EqbryM5N05Ujs0w3deoCjQAl6moZLiAhGszc+R0ZtTh4knIrSs5DTzXVK+9FL6FYigwO+pXQDnRx37D2R5JA2BdKsFdOUjsQPkLcHNkgle4iwsOkcxfYKlEyQTyLiBCcARlBtnxpYCqRsIfCpiCQWJVFgBg+1iEtbiEj2DoAQYOelqXE0fquIWoPRUSfv9Ufuzg+eQZbedjLZSLDtQMpp5mGxGDPEMJ5juzaGm0taCmzSYidiBF615tLuSpk0gcu9kJCnskmtNnAjobilO0ZXNpuTgEIpYMhNZfLnCBizkq5yQdRhUV1z6aSEt5Gyky2ZpjagzzgNkLCBkE4PBZaBiJczoeY7C8xfzCR8moe1x10JYukFOUUQBKz9CGLSBprC4XomeTEvsG0QRFfIJ8z6h1Cu7Jo84D5ukDpWpw1I/za7BD/2fQEf3/RwMQBKIF1KwkaOdch48zJNVn8z3yHBkdEOP4DZP1TvktSqfb5jMbIulQw2MmabBRhDBkjlIxQiUybjSDfIQNCKe9tS5I5Y62srUZKyJw5KbEHSZDYCv/RFrkorhCXTF0v1PeKPG9x+kjPnzySi3pMLAjoxCSJJ0rJPHWrSXTk/8WgRukNcp0C6ZLyDIVm0JvMxsIXEhT7QqT6wUkJ36QO9YJimvrTCOR7dTwbgQ8pFB05Pv0Ft282Z+TB4SAPY5JKO5lohnW9jyZ9bSuZTiGkUFp5cOsl2HHqzaKqhWimJ20nes7MMXACOsdd5WVwLBtENIhI4jcjcnlTmo4UF8mWQEKcUmATYrkCifAWN9v4s1yLbOSpW30avxh46ecTdYhPD/XZaqhnu6AxOAOfG7hNrIlIICOcKiQuQMjlfRQYtg5aUjHgrOtlRVpy7wiLelO2qzxJUYK4UTWt1L+J5Od4/hociNwXMmMJycU1fW6fu2UooYbdeHScnPS6Eb5Q9OBI6A8ZAD4hWL5QBZmBlo4YPqdOth268l5byrmFTPg6wRF84IRabZ0j0Hke9V4DIMEqkS6i+l4nJaOQETwbxNJaf95EF1/hRcXABor6MEyjpZ5YPovqRVWjJKfzpt1e/GNLjrIUh/Gqhk2tFOQAACAASURBVNlIScTWYmSXeF0NSfy0zrB3sMB8MUDLmZLcGcEaDdj0+Y0clEg6diaVg0mfqy0jzkaCzVQqIErPAztNbjIrwXqhjSHrWhCtKNkPLI1xPYPqFrZWxKKOZU2kYC4QEGqLRT0EldImJjhOyqIUxEXukfKyYpsTyqSBKlkDlBNBunamwGoNaX7rYDatEo7FnNCtCE1l4NcWTW4x2xRYDnPcb/bw9xcN/vr4Er+xbFBSi4/rPVwWJWaAIFwxWAkswWLTdj3xakEcspUGv4HBrbZU8UH8qQKn5y6JQPT62EKCHhdSIsNGghsuPZgMQpShOyfBUCkofshIS2hOvakCyESxhAQdcU3kTCw0Qitd4I31yDKPBrq+AKLiCl1jWIQArmq4TeS6qVVAYOETxcsw6ErKcW+JSG9/79Ggh6xFIEqotRDaYzDYe2aZQf3SvAaGwUFc8BsZ89gzMPGRnvLxKcfnWQl8AETJ+ZNaVSTFTpywIaQNr9d5IP3MGsmbciSlLqsoSZzUsVlnXXfZTCTvAl0G5Fxyh+6CnpgN9RbdeJ7MEsT47vdjUJKCjl7ZKQY3MT3nmGH2r6cX+FBPNrn9pm2+ShrHYLpxhV4/BYV/GawLkc/NlpSNHQFBS1jey5hmNpGL46WzKoZiqWsrwIkLS7xsHb9IXIVzqUcYW+pI4mpuKJtyZ7qXgoPe/ZZSj5bXdPHbUrYB3YbY9w4CujnWR+o0EOpIjcLp8T2DVUFuoCRdaHlSvvcWSWIbA9mQAUp2QuxGH5GfTzwCA57hx07QFADGx2sVBIqCqImCpc4qwHMXoMVh6KGlyVZAv6ZSLYfHAuRkwqnZLPUWeIpJRd2Acik5GS8OwqYiIGPx8NlYXM6GGI83mLcG3FJCCdJnRdWZcsq4yMHWwjgpG0k37R7XBwA1fitwAtApdJTLwX01DRFQFOLr4j0si3M55bmUMBsP44W3QywZTWeVQPJMM4DWYHy4xHJeglcWnDF8znI9HMeauq+9eZTWnn5rkuEArGT5qPoxrY6jl7nlAyF4C2bCZTXAw3oCQwG/sWzwH4xW+E16AAA4q0eYyQ1U7sz2/JegTBOhZD0R0R99TxvPF12C11cqkvC00loR0AVJWQC5AG4MYskXPiDkAXA9c1dGNy5xLe+dh8jWlRcXAy4fYAzDmO5+Gw+xLukdYmwbukBURReCkve5jt1cZiU/i90IQzIhbL9GKm7QtYbC4/uOPjxbP3L0gYwvxzFXnqW5cv6fHk/veGYCn4RIXC11AUnlEzdOQXhVEUM6EbsPUqMoL7wdY+QB0WCEokOy9wJ757lkhUUuZL64MMWHg1keqPj5xjyGXjBdESh737W4iCUmInDyCdJMm6F+N+guoIuDugdGs47tAbsSBOl7ro7jVaRnO3tT3pTyRCJZV64nGp0FhFw4VeLGKwt5cgmGXkMkwsYN48oznYi8jLTRctaT2QJq7KUbRdtKzyFWNYcGF9tjoJ9taZvEHNGffjmlx+2RFwKSQ/cTCIqygUhJIzhFFzSwSzJUVtSJu0Bn65pTaUffq2jYYxkXUbq2rqTHqpJDt7ECEnhridLUIW0yScbbCzgTGgmkjTVtxP1yB/BYSfBqe5Utfx/1Z4oJAbVBTPQahmllAgTDoIbArcF6k6EYNKgCgb08B0b9ttLf1qQCkVQbUdY8T+qnJO2Pz5Sa/qV5YY0Q+PUz2JqOw7eoAZbSMwUWybfeQ+ENYqtsSvF2s7zGrQE8YXk5wGCywWqhyZOJz3Av+YhzagvBM1voCQ+kYWsoM2kB0fiu91ZgcWT2gp6FVtRblXeYtUIML6nFb9ID/NvDCsADfLA5gOjU+xlMz0E89NqoEG2pnxBL8FsUg5jgPb6ZR1uCOB+YaJtgBiREGZa759T0Xo9HX4hBMZHq/nYk1jsXVJRASGh7nLt93x3mbSSwd5DOOe4nBUCnWtTXUuDP9FgSDnRJWGcPEYPduLbisfUPQXh2yfgVkLLz9+L4NN56dgIfANiSs/eOxE9hTs3q2Ha8kvgwRuQiZAQqil6W0dtYWwmKuBH1DxW5LIIxIIqLUyQq+6C1eNMZ0BnqpM+qfGLFXynWsF1vaIm6VgzRKwdIgRs7ToTgtMkbkQMH5WEId+UTBq7ne9MPcrqGpY+TgkIhxPCIkElTUUGAWEnN8fCFTfBwlGCzA5h75UairuxCXWzIvbUzLRRZLmWAXsdxWE2P0C3IpCWR4EgQD0tdUGgIPtOg16C34WyTm7fuwRVEka9u9km9JD+3hfJ7rN5fnWshllk0yPOFcHwi7C9wOLpgjeL3upijtzk+8X4SfOm01KaLvyUEC5DrlT/1PEzDXcks3Q8AnuX8eyWvOLbd3zIyHhH9gW4o0XG6H/xcCZLIB3AbYDceITNwa/HCoQygQIKWrS2aQNg5msG3Bt4bGG9VYdYF5ZxnMvdyh5BbmEJUN7YsYNqhqI4AkQfnmQYHXRYPQImyUuaKdhcgKc8BQFCDQVS1BFOK+KBpU/AS1VoUFN3giFIo8lMbrOcl7E4j/jnO6Ht69zSiI9r+JZnfFTrv4nOUZ2gnOUzlkZ3WYujHiiK2rMGk+PS0WcC8yvFoMwZK4ON6T69agp+3qjP8ibnem8y9e61BbzTD7N6jgYB2FY/0AAroODBWjSyjgjPK5r3w64w6PduyBZjgSb2cvDxrVEYERRPVIIEWV1XXpw/QJCeI03cMkOL67QOIGN4bhGAE7WyhARt3NABNaKMiFIk+ARBaRbK7dVeI902n/Ir8y2ipEV+zNiVubAneEEwVdGxst2NxAGyeUHGfUUKlUzk99sFrWrHE+PT4nhzPTOBz1WAPkI07OW9yUDt1yegkAOIkoRaDOwhZsWHQ3o48YAZgiMJGuoK38CenMOMRzP4eeDJMkt6EFkUuwXwhMGch6qfeiXUS535CYAkMK0TMuKDHzDVmYqu1kDZHIySSZHwQEbMdrXVn8QHtNuPIP0lHH8FRrtLVADIFQNQFM81uIRt4E+BzSiRFamWRtJVHO85QD13aVCUI00W7FRk31QF+4BB23FY2l9AqDQqJGRwJyZORBKXqw8KFhWnFY0n62AQpM44GqVzUkYnRyeYzEnWKF9UbgFRmJBPSWLHyLaQf2QZb9cQ+1B0XPi3v1BMhJoYcKYjxBZB5wC6lJ5UfCOrjC0ULNDjykf/jAdMwmlFE0wBC97WPBiWyMxGaXZHs+rx7j5S4BAFqSyX4t5oEWEgpLcaOJIlBMyIUlxqo9Lx7YlIgQbl+30cVI+FbuU9EJIiLU8RESyZUN7BL+b2Qi3+Q+FLJXGnYImwMTu0YxbDBwe4CwV5DNo+onDr0Ops8uZqxg6mH8IWF2d+B0RJYuLgEr9ZyH63MP/nDSK02QiHtS9qRg9mIBQOVGczMwjmHMJtLN+4ggbWtPKj1sJuAdmBSmYkaAFrK9NEziiGVkIVD8AQMPcJhA0Aa9HKeCcFWkx5yTpsBy9xOrWyi8tIQ2qFFmDrk9y5gq5CeNbcBTAVYS2CyaC1jbkocO491m+GyKHFWj/DB5gBvVWf4L/c+wG/iujbDjd5apkNAmRE2G+kv5z3spnM0D4sFzHgsqNBGOD5iDEoigsgciLwadCKNeSyvtqXBYFCjbS28s6kcDOdQDBt4T2gylxJH5BnChbQWMU0BDAZCMvYeCmjBl6r4Cj7N1RAIwRNs0OBwUwmxmIy0JwHAmwp2reVZRfVkCdXkwPuOYK8+VWY0kEq0gsLctNuvaQAIIjRDIfBHovRjqJK1YiraiLeWj4SktpU5st4k8YvZfA+MfGIg/+f8oCe6JT/lY0r7/CPmp56cAcfSRF8yGFtA9GD89H9P+j4iInGTi0e//v2Ev9uXO8fvt1CEePRaXaRzvZrR9x+QiGAVf3p33uSgW1WPf4Z+zpYa4V/n6KFE6ZwigTUaCAJIcHn/fXoepijkfT2UBcDWuD3xCFcynR4vIhJC+9eX1Fl9pRogC1L0eOq3HbliI2+KQpvP4pNRliccse1JVIql64zj3ZtLV+dFzBZlLGVx7r/nqlP01fFKjVLbBuSyjgzdtJ1KCd2cS/MznmcviOFG/W3Wa+kurb3XOCroIgeFw2PjnBo8Rvm79wibSoz3emMfTTQfu7dPONyN6+C2Rbicd7/r/Sd/Vp83o2Njrx2Cmwbhcp7mQRqH3mdurRX90h8ZmNFQHMM/ac34pGvpfxYzzGgkXj0Xl7C7O/J1Ou36z/XWsDSn4rnpnLI7064UFUt6/so6EpvrXn229H795vv/Av/Wc38BVoMAP5vBXrsGf3Ii5xmRr7qRcdJ53O+czm0DUxRdQhWDNOaO8H5lLLaer1TuCdKcdDbr1uz+61Gt1X925Q9tr9dEYva4Wl3JMgFTFgir1VbSE5sIJ1UXumRoq9wdr6P/t9IHX3mtdw+27l8f5esPiaJFiYyPbs0woxG4qlIy/9vhf/2XzPxDeErH6OB5/sK/+189lb/1+7/+c0/12v51jmcG8dnKvLcWli5LtUfXgPUGYb2BGY96Siep3YeqksW6qaVTsEbXHDdQAFxVsnBbCzOeIroFs1dFUezoq72sYrdyWAuT2+1gK3Jv4majm3S4uOw2Emu7RTj2g9LFIirWaFCC15utDSbZ9XtVLagRWr9GHM8rNtODsanvTEJ5tGzRL3cxs3TFVtUHFblkJFkmP6tvCtcNwmoF9/xzcj5RCZdpO4amAVVVeh/1GnMSgNj1XUiSNpUduKr/f/bePNqS5K7v/ERE5l3ffftW+7509d6tHWS0IwlhPAZL2MbAMDYcbDAMlheNPB4b44EZz5nxcsQijxl8BmSLzcZgNgGyBAhtva/VXdVVXfvbt7vmEjF//CIy870qYXGOabXnKM+pc+vlvTdvZmRkxC9+v+8iMgNZLq9e+6gI8Pw1uyTFzE5jt7bRs5O4nW6pw+QFD5mckP1JIvdorC1tGVSHjffbCgFauB9pVmAaVABwKlUy/IDRm+4qjVBzPK7AiUKykhJgKC+5SKOy0i1dWdCJFR2eXJyZ67/+hd193k8IVR2RMIjmb76PPNbYuvZlD9mvE0sWC0NGp47aZ59DtZrkq2uYmWm5hmAqGUpT2ks4nDwKN5dxW9vYEFD7Qb4INrhDEFWZoK//wmkO/IhiuNCisTKkv78pys2RZA9rGyPQCt2XSUZ3h0LZTrOC0n3+hw5z9FcTao9eIN/eJn3LA9TW+owW2tSX+wz2tdGpJeplpOMx9dUBeatGvN4nG2+ghhkvvn+cw781ovboBbJ7j6P+8HH0fWcZ7hujsdRnsL9NfX1EMiHlrvrqgGysRrzaJx+vE230eesvPMrvfNebMC8vwWgE+xdwV2+WC47BoGwHQLebuDST8afVEKHEOEK1WuSrq5iFeRgMifYtkt1aIjp8kPzGEqpRR09PYlfX0ZMT2I1NdEtSG3ZrR5SRDyyirt4U4crpCZGR2O5L240SGCW44VB0bbxOWBUzpGoxX3/wYX7r2iN87ZN/nuWNDie//xpv/eRLfPKbH4TlNdJ7joKG+LGL2FOHiNa7kKTYmXHUMEVZS7YwAU9elP5ixfNMJAYi8qUVwS4aUzyr+vgRyS7OjZE3hAChc0fz/BLDk/PSX1tGykwOWi+uke6fIF7p4WpCHNGZRQ1GZJevou8+hYsNeTsmbxjibop77HzRBwtTZWvZ/HP3Mf3pq2T7p9FJjtnuMzoyLWXQTz8u9yPPydc2pI3imni4bWyANqUB8dwM7sYSLsswi/O4re1yX5Ki203RCfIBnm420Z4qn29uCawikCui2N/jDfSRgzI3jVLy5RW49xT20ecwZ0+QP/sC+oFz8NiXMTf+196+8rmOr/j2qgl8QgoW7aNlo3YNOi7PUY06bqKDCaDXwbBcHRmNyXJhggDu6g2ZxMbaqHpDBrMQdDQb2F4P2/fg31AeaTZkJZxlBc5HxeC63UKMDCiBy+Dpod7fqD+QOvpotGt1KuUTV6hGF6v0IwckyFGB7VQGJwpkEmzE8OTzUkLxAVCRkwVcSplZyDJccjvWpzxoJePQ94JwWSYYp2aDgKshjv15DwT3PBxJYOVpuf4H5ByjqPicnpmW94LNglJyTaE9rZXJZDAU/F+ey2qzFssqaJTI7yvBW4V20nOi6Kv8ZOFysdxww6HQYaenyK5dl8ByUAkyffDpnCttLDJRq62u5lxeWUlar3miNGlHHg8bB2qqAIhtTRc4hMDysAZ0rou6vmA1lGddSZmqdfrE7qBe+4kr3PeAgXBOqlXhFvrvqIDXcAJ+BVBHDwpG5dAiDBP5/8wUdryJ7o2w7brIBIxS3KWrcHAfamoCtbmNWpzHdXsSKBoDw5Fv39xn+tidWQVGwxj1zHnq8WncF56i8ab7iZ6+hD1zBN0dkp9/CTM+BtaRb2+jFuYlMK3XJdvkHK97w3nW/vY29qG7MNsDNg7XmPnsc2y/9n7mn1il99AEcd8xcatH/0CD5uUR6YQI7elmjO4NOfemVUb/eIf8nhNsnmoyu3Ea+9xL7Lz+YZqPrtB9eILWi2sMj8+jM2i+PMJN1NHdPrYVo/pDfurJN3Pq6ReEWn36KFy4grvrGOryTXSjwejhU9SWuyQLY0TdlOFUnaiXYXaGUkJLBPu38uA4U+cPkkcKM8hQucN02thmDb2xJe1wcFGez2Yd1fOKzUqhkbHPXb0JBxdxWU7+3AWZ5OfnJFhs1OXf1LiIE2qFDWNGeJ6NJnrqJb72yT/PH9z3y4xcyn838xf53eUG+uayZNhija1pYoAnX8Q26theH3d4DjfRRP/hk5jGKdTCrGjOhPFVC1NOT3RI7zpclLvMdkL+xPOo+8/SO9AoVNWjgaNpDN39NaKhLUrT0UD6787BOtOPXZQSVBAX9FmodK4lz09qibspZr2H2r/I8PisF+SUAKp+eZXmcord2iY9u4gzisYLl4lmOqinXsSF4Kzy7JuTx2C7K6+ASjOyK9fkWvNcxvBen3xzq9gXsonR4YO4OMIoX6priDCoerpXEjKUkqzS/DR6ahzbbmAbfiF67Trm8k2h+l++JvfsmQu3j9Ff3V6R7VUT+PyJtoCfCZNvGAAqQD6bZT5d7j+be4BhNSCwDufyYqXrAsMhdPoKWLFwJ/ffK49hdzMp4PbyXADVerxEkbINAVf1WGFTyusJVUHSuqQZh8Aq/F3dlKagZe5N8Yf3Ux9E5SEwUT67ZVHKY54CMDOV1R+1/HbmVfVze39n7xayKkFMLoApvTlm4RavdWkiGiQBoqg0nAzXFfZXy0xVZ2QvUqhUpX/caSuyirsZMcHiITC5ArNL+QDIWRnoVQ54oHcBpXKgMtAekF/c5T+u1FYtf2UOjcWlqmDXhdWx3H5f+oq9ia53fA+ZNgGty6uKNIzwVioBxB9YRj4T50Gg0gxKxB3vsKVDr0qe5gJSTy12NJK/0wztbSZUqymZCS8UKtlQ+e3EStbNxgatJDB0SSIrUQ+uVVYmJmUpxd+yXKjsPlC0/b5oAOGvNd1zDC+HEMw5i1evp5Jv17DDkVioaC39MvQr5bFVSu0CUN9+zwTcbmvS1kFUtWSYVUrr9o95PgL1OhKfv4BLw0+04pVndmFLiq7kKDCHyxsdRi6lrmKwlhvb4xzINiTIyq03WfWLNx/g6sySe6CuCpo/Nt19rmFsDH8qBVoWdsoFA06v1J6VAXqQHbB49XN/T0KGpASA5zgqpWMrbEGVCcbHRvIQCsvREQxJRWEfgjCiSnPB8WlTjuNhwerZucqL0hYYtpCtUUrGIaXKcjsUmX/BDSrJUAf18+KEQznPFrIAKs3RQTRR6RKM7TGaRentFdwUfBXjA68ijI96+3/xc7rTKSdY2F1frT6kWktmYU8dvdgq11yg9/84fRyQMgKUJawQNATtnzz35RO9Gzdw20WU9WXdapXXcKcAyjMMbJDr/zK2kAZ3vvQDZaaoilMpMCDVNqq0VcBJFJ+9Q1sWoHP/OTM7U9wHFwxeC2C1KoKpbHk1HGDPyesiQAzXrz0OqhDWq4LgK6VB2+9/eQ0UyoF5Lu3ks0OAmIL68qHt9WVC/BJbEIisnlOREaxm1gImQ6uyfULwCGV2rPwCAPn1m7vbZO/ve7xZKOHu/S21p92t160pspGqMikHC5QvgWuo/l+320Ix7/d95nSAqsXijG5zdKOBHQ69CWflN6HISpq5OfK19eK8VSxlTt1qFZYBIIGN6XTId3bQY2PYnR10uy2Z2FqM3dqWflqrFfgT3WhIMF33+I9WC2XM7mN0OtidHZJ3v5bmxTXc9VuoVlNK47WaByRn6LE2tjdAt5tynY06WCulrlosi4SGlDkK/MteDOIenJ+KYpnw9uATzcK8/D0alWNLcU8rWMS9OJ9K0O5S73c2MwXW8uuf+mXefeR18pl7z6CeuygBw8Q4rteXZ+beM/DsBZRS6NkZ3PaOeKVtbNzWJ4pANmwhi1t5JsO5uSyV8W3Xdfj9TY9gDtcSDtcZKzFbSUIV/qAbjfL5CpiwKCruBVqj52fFSw4Z8/Zi8XS7PJ9i3BiOduGdimejuk8bKUdWy8f++u801odz3TU25BY90SFfWydamBcblTTltwc/+4riYMZmDrl73vPKYHw+93P/P8D4KKUM8EXgunPufUqpaeDjwFHgMvB+59yG/+yHgP8BoR/9Tefcb31ZP1LF+Oz6cT/4e2Clbjakw3twW/FwtLzHVhyhxtrkW9sCKFUxut2U2vRgKANiuy2pd49RCcGBHh+TqH6UQJpikxRdi8k3tvyxdIELCuemjMY5UYINgmsBFKyi2Jtx6uJ44UFyfpDTY21st7dLa8gOh+hOZ5freBUsFww5q4O+rEac4F2gGBxVrVYGbMikaWYmJGPT68vgnVvBxwwFo+F6/aKeXZ0UcFYCBK2lPOUxVyqOsL3+bpxUyC5oI2q2WkOriZme9JiepPBCU60Gzhs8uiyTcliSovcv4tY3UHMz4js01pbr7A3kPnTasLktK1UtQMgw0QYcj6rV5LrCJGHd7nYKFhYe10AqOJ/e19+HGTnP9gnKvqJaDZC1RAgyqCTr1BVMvMIeQgEO8qam9e8/f4cHqxJ0ys0BYPSe1wjrp6mEqeizTToTxo2ty++1PvcSKo7Jbt7CzM2hjCbf2IQ4xvb6mLG24LQOHiA7ME10fV0m9lHicVRJmanbG+gEkKfSRcLqhZ86zYmPWJKpGs3rXXrHx4kGVjBHiaW+PIBYo3aGGK1R2z0pC2W5YI+M4eL3neDgJxPqj72EGwwYft09NG71GBwco3l1h97xcXDQWBnRm6nTvNlnONukvtQnmW5ghjlX3tXi0O8NiJ94ifTe40SPnIeTh+kfGaf18jbdkxO0r/bpHhTgbut6n8Fsg8ZSn9FMk/qtLvytZUY/OkujP5Sx5fRR1KVrqLaUW6wH4LpEPNZUXWxVtHNSdvWu9npmCntrGb2wX3A8czPk12+hTx3FXb4mGL4D86jryxKU3FoR1mmWYzc2UZ0xlr/xBNPPDTC9hKxTJ2tH1DZH5I2IqJtIpqs/gvVNSNKiP1f1q8zcHG/95Ev87nKDG9vjvPvI6/jNlz/Pe9/5AdTNVYZvuhuA+jNX6b/5DO1nl3E7fey9p1C9kXjGHZwhurZWdE/T6ci1RpGYuoL8f2dHQPMLc+Ac2aFZslYsZeFI0XpxnXTfuLA+WxF5TWNrirELW2STTfQoE8kB6zMjO0PspauYQ/txcYTtNMjGakQ7I3jivIyrHvtoBwN0q8XSt9/Hvl+9QnJ0DjPKcdsD0tedZTBfY+wXPkd06CBkGXZ7pxhXXXhNM9xohJmehJkp3I0lSP14s70D05O4m8viou7B1QEErlrNwuTa9vroZl2c4MEbz9ax2130yaOS9Uoz7PIq6dlDmM/t4GYmsUvLpO98GL68mfG/7vYqSHZ8pbc/SanrB4DngHH/998Dftc592NKqb/n//67SqlzwLcCdwP7gd9RSp12LtRebt+U1uiW1P+dr7WK9HtUAJNdkqCaDUyrCc5hPNbEtJq7PZl8+tB2e8Vk4vJcJucAalVKwLi+vAJhBW2x3Z58LuBpnBWvoJDxCeDdKhgXn/LVWt4Lx/UlHULUT7lakRVzUybxwUCCmpD1UarIbgVAse50pFzgLK7bk4erB3p83DtQy63UrZZ8LpSvvB+Z297ZpS/ktrYleHFOHJu9QGQh3e4EX2X7fcH5BNxMLhTmkAUqmD1JIkFJVYwurExt5nFTkkp2o6QspQ3ysqyV57hMl8By7bEtY2PSluMdPyFrVEswEmQ5NJvoAHQP96MmXlfKGLELCG2XiG5HwUIJYpO+n9nRqMgydb54rczCOVeK0GWVkl9Qno2i8pqM8ZpRlSBeKay/3wH0XZQJQ7+qBB7t55aLjB9anNh3aTKFUmi9DrWYaN+iWH0ohYnncMMR0aQEt6bdIl+c4oXvaHDi4/PE6330RlcCkWDemiQFDq7A2FVZin5b+LU68c0b7BzdT+uFITYap77Up3+4XVgu5M0I3TcC0G01pOzjZRawlhMfW2Xr3hmijQ3M6RMS1F24Qjx5Gi5epWWO4mKNeXkJsz2N3timtRrhdro0NsawaxscX19k+9w0enOLdDwiPrQfd/Eq8fQZuHSddmwwN9ZoqTl0P0Vv7hCtRLjtHZprY7jNLZo/sADJOq7VIL9widFDh2lddLiD84KjWt1AtVvYlTXM9BSu24XYu8EPh+ipSVCK9MA06sp1cWZvNsATBNT6FtZnXtXVJWy3h04zKQ0urRRlHpUkNNePeQC+0PnNyGLrPrCuRxAbtNZopUT6wbPYQimePCdbWuaT3/wg+uYyB7INnLO8950f4Nc/8XG+/sCDdN91nGjoqOc5/bmIlz80z9m/+RTp4buJlcJ94Sle+MnXce4fibGvAvJuDzXwjvNQFiwUMwAAIABJREFUMe/0Y+soQY21MJduEbVb2E6TwQFZPA6na4z/0WXiVhM73qJ/cAynFKOpGmOP3MJUnpl8fQM9Poa9tYyKIrSbQzWkvKeMQU9OSIbISsBJLaa+5Xjh+w9z8PdSdJLjXr7Gxb97D3OfkmfOrqwWrFNnHfStLEr9whJtZAFw+WpJPFlakefsyvXCx8v6bHe+tS0LVp8RDMxDOxwVz67L8yIotS9fk8VkmpHff4poe4hemMPdWsGcOo7rpl9qSvzq9qe8fVmlLqXUQeDfAP8E+CGf8TkPvMU5d1MptQ/4z865Mz7bg3PuR/13fwv4h865P/pSx/9jS12VlLC+7yyqP5IBP9ScTZnOL6i4WU5242aRzg8PbbEZI2lrpcjXN0uaqWf8VAOQkFZXnbHiPIoSUgCn+gE9TJL5CxfLz1aUgkPQExhd6sCiTLhZvnuCVV7vxu/PXrr8X7xHYdONRomRoSy73LFUFATE4qjMOECBxVC1mqRz19bl/MLkpXd/nyhCaU12aE6yRUbwDphS76iUi4f4dx4p75kKRn97WES+jKPHO2WK2bkyqAuDprW4NC1KJyoI74W+s6cUqqK4pGI36pCmt5eoAt4Dir5TpcruLWOoKNqV+buN9uszdub44V3XXZS9qv03XNONpaJPFmn7CtVc+evXE+O72HFYh+v1RM8lAMI9myoQBFCqYMWFlWp5rrry391yDgB6aoru1xyj8/gt7OQYKsmw7Toq8QGzEn0UnDinV4Uw1cCLD66sY/fPYVsx8eVlYaTtX8QuraCnJosVOtaKo7kVfz3b66NnpsTvaDiEhVmyiQb6C89h5mcFdFo5hmo0BADfaBTHcP0BanrSZ2jmWHvzAaZ+8XH0vgV5z9P8VRQVZexCYTwR3IuLDMo7wKv+UBYVtbhkZqYpqtksM87Fc2XKfuWzt6GvJu9+LXlD0b6wje565/IiY6rLcbCqruwCxkX6TXbpZczUVFHOdKePYm6uki0t81vXH+Ndf+E7Mb0EZxTX3zbBgX/xCLOfbLL+7VOwui6Zs60B6saKlJxAynJe5sIcOiCK0x63otd3fGbcmz4r7Rc2IwkO+4MSu+TtQvT0lADqDy/KcbTGRhozSCGzuBcvSSm125Vsc2dMiA2T47iGF6TsDXD9IdnJ/ajPPY05cQTWN8lOHyJ68RrXvuMMB37yCSm/hrYG9Mmj2GaM3h7gGh7X9cwFyXgPR3J+3gy3uk8Zg7rrOGok2EeVZoW9kbtyXRZRlaypueuU2K5sbEu/MBrqNZ7/3knO/v3nyc4dpb+/waijefSnX9ly0NjMIXfPu3/wFfmtz33sg//Nl7r+GfB3gE5l34Jz7iaAD358kZoDwGcrn7vm9+3alFLfDXw3QIMWu/R1qpuV1YdLM3jhMtRquGZDBql6TR4o52SwCTXcuEZ0YL+ovUZSdlH1WmnUN0okBdrtEu1bKDIZgEwMQak0AHizTFbH1XJEyDD44+OsnEuSiBiYZyuoWk0yCtYV+9BaVgVNCSzympEVS8XpXY28sFsoFQUH8xAAGOMtN2LJXhkj5S/nUCFTVAksCOJpINdz9wlR/u0m5K0YPcrIOnXMKCevG6JuglUK3Rvi9p9C9xNhKIxyXDMW2rYD0/OYkUFCdHXFt89uXAMugMOdrJSPHsa1GmXmJMtx9ZoIisUCUFQDX67a3hE6e6dDvrEhgV0cY3d2QBvM9CR2a6cQKFTNppQ/Q/tXcAm7MixQlrb8ZOI00lcAtGL49vvAga1JWUmuh0I93NaUWB3kToCefn/4HAF06Y/R+eL13e1TDbDzfJfa9+gNdwlLJtLeWNSVXnBGhBWVheg/Py6Dtb/eULoyzWnssIupxaLnMjvD2vvuZuaXnpbTq9dR42OorW3pi3Esz4sqg+YgAFmUeIHzHzrBmf/tJba+9hgTf3iZpfcdZ+HXXuLaB06gc9j320usvnGeuU/fYOf+BTpPLjM4OYtOLfULO7hWncvffZI3f+NjXPvWBW59wxGGM0c58ktLXP47D3DsZ29y+a8eBQWHf/hzXP+++zn8U89w8/1nWPz589z6+gM0Vy1rdxve/o2PcOlb5rn2fa8h6jkWPrXCpb93P8f/3yUuffdRjv7jz3P5H7wWM1Ac+YlnuPGtZ9n38fPcfPcBFj++g53qMJjTzOxfxHaadB9cZPzz18hO7sdFitpLK9iJMXR/KMGjUridbgnYXl7FKY07uh/37AXSP3M/UTdhNNug9cjLZG95gPozV7Hrm3D/adwXn8acOUl+/gJmcT+MErKlZcz0FN39EbP/7gncuePYC8voxXmUtdjxVmHpovpDXLcvQbUv47pUhP/scIhuNEjvOeop5Zboc88xfNPddN91nHf9hfv57V/4Gfo24Z3/4/cT9WDj/Q+RfXjEB3/z57iczPJL33Oc539wjLN//XLBXDXzs7hWQwQkIy1MNv+MpodniV68wfbbz5LXFGlbkbUUo2mYPG+59a6Uxd+OSdvyXjIFky9Ybr015+TPZqjMYXoJ8coW2ctXMaeOkz90lrwZkUxEjMY1ta6Al9u/9phQ66cmSI7OEm0OWbu3RWf6If7FR/4lz4728TPfdoCLHzlAOhoKluzUMQlSNrZkPDAK/cIVOLgoz9NOD+fp+rlnNKp6TcaMeo08SYQRGdelzFgXVWbXrBVUfJxDN5s+62NBG/rHJqltJvSPHSRtaUziqG1ljL1keP6fneT0X30C9Y0Ps/r6HH76ztPen+b2VXDzlxH4KKXeByw75x5RSr3lyzjmnWgLtzW1c+6jwEdBMj63f6OCewgrHGMgrjBFjBFDROt1ij0DSEUVXyHlJf6rSrW68q+6kgqvwZQvyPBWs0kAVpe6NOH43hC0KGP491Th0QOeaiP7jLBw0PLqHIXhZ5jgCIFPaIOqr03Fm2bX5ifwgurqSkbaLnd25TNWxmdoIu3/r8pXpbxMvfL/NCpyWG/fIeacxrM7KhmjPUDzYC7pNCXguQp81k6MZL2/hdPSPirgbYJIo5ZsjgJUXJPVaJYVIn9y3bbE8FSvtwoIrbLzgmfXHTa5xtIItWB3+X3WKLTvJ86AxlsohM9lrghQbCWo3dU21XbYu+lSyVspRIE8SP/7MqCwqBLBvW2XIGIVxzJBxjVZVBhDNHCC+5maKPYVvkFKPLTQCnUnB0b/PCqLBJkWyfTlEkhrHwCqNCtsIHTqXxMrrLQ0RaU5ed0xyGNcs+5tOZDnQfm+c6cRxPcrYQlB3hCmkGvUReW85vtqcQy3O4tZPUx4NJTywaryx3ZFCVOlTlSqk1QyPP0BbqxVYNME1JyiOmPYVk3KQg2NziMJiBt1sc7x3mE2jDXhOakC/rVBp6CnJklrRsq2FWZQIXcwHEmmy9oCd1QE+EEMVSMMswwi36eioQQYfZvQ0jVM6miuS0ChRzk5iknTl1JbFmGTFDPujxf7zFdgJ9WigkknmW5RQs5rYu8SrFpM6lDaFfudn2l06lCxlfEtjGV5Oa7ZuiGv68IqRnnWnB5rC9awUSOPNZHvC3pksU6xGG2BteR5DFtxkZl2fqyVoET6d8GMC/t39XN3+z5/v2QM9Nl+I31nl9uAc37KULg4uNHjFdcdUd8Vnc9GoId37p9f3f70t/9iqUsp9aPAXwEyoIFgfH4ZeC1/GqWuKtthT6dyb7qfaMUD1QajQnRv12d9tia/tSwlqka9nOCqQn5xDQC7sUEADqvA1NgLrq7F5CcPCAbGqEKsjvC3Lj1ZdGoxf/RUyRgK+j0BmBz0JZRC33+XHD+zEhgpBX5l7yKNSiXrY598fndbFAHh7cyRICJYVVQGdpcslEZPTpR6RPVamX2oKPQ6D+BjuyvfDRknKCfqLCuwJdf+7IHC1gFksCt0bmJfA1dw9B98lgDIrKoEB5xTlb2hZ6aF+RQGSJ+1I2CirGTlspu3vlT32rWFslRQCg5tE9LhzgObcVbaMuwPGcF6raT1hu8HHRwoZBBU8CGrlCaWP3C3v1Yo/bv8eeV+oPe3cuZf+cel+jzsuhDZHx05hOv57KfPGrluT4x3R4m8ZhnMz8C1WyVmbjQS0K0HsRclvHDsLxE0RAtzrL7jGDO/8QLJPUeoPXeN/Ngi5vmX5QNzM7hbK6jFOVgX4K7b3JJnrN3CDYdkZw5huiOy8QbR9lBAv1MTqG4f/DkpraXk5EU1C4HQLMN2e7jXnBPqcj0ivrEhmZFBsusYJKk8/85JljfPBUyfpBBHgrkZHydfWcG++UGiLzyHOnGk0FlRBxZhbQMW52B5HWYnUcMEt7EJs9MCqm80cONtuHZLJtXcyjji+0TAq7ksk2B9L27KEzPcG+9n62SLxkZO81Zfno/cBz6hnwfvQOckGKo6vec52dJKodoMSHt7N3B7ZJGd42OY1PHpH/8ob/2uv0bzkcu4A3Nsn+qAUnzPD/8iH3/P1+DWNqRMVFFGxxjM4jx2qlN4odlYY/op0dUV3PhYKZWQ5aj+kNHpRWrXNouFpEozXLdPdmo/yWRN/PbqYsuS1xXbx+H4Pz9flCTzbk9IK50OenYa22liGzG2GaFS0fSJn77E9tvPonOH+RtLNL9Xo4YJdrqDfeq89NnDB8E6evftozcfMfuFDUaLbUxq0Z9+HD02VtwnMcUdeIah4JmcdSTvfJColxFvDCDNyOY6ZE1D86W1EorgS4L2tXfjIk28vIMdF0wqjz+PWVygd+9+bn5NxPEfeQw9O8NvXv3nr2ypa/qQu/frX5lS12f/3X/DpS7n3IeADwH4jM8HnXPfppT6p8B3AD/mX3/Ff+U/Ah9TSv2fCLj5FHAHOktlUxSTYAGW9XTd6oSiBpnU2ZO0GMxUHBMwNoVgVZJ6Y71KSng48sBdP+m3hZnE9nap4psKuNP6yU9UWZuodovo1qY/V4XzYNhiMgq0zmbNZ2okYAh6NQFr5AIYuF4XIG0jQo1ydJ5jfSCmXC7p81okuAmtiwcqgL0DtdxBiRW4zfJA45ynNYdSV2hLa8lXVoTqW6/LBOHVmgHRZ6nXIEY8lNbWhcmVpLIyH4VBohRic5Fh7gn5fl7Xkg3SZVAWAkQbK0ynI3iMnS5KKQEU+8FHKVVSro0hPTwrE1wzwvRSsrEaZpjhjEYnviy3M0KtrhcMLtvths5bWl5UFK+LzYPilbZFkKKM8StpUAf3oUYJLjJoD4p3vYGsfrWSvpfnMgmGScn/bsDVFIFkLWbhd27sDlT3BjWV/faBc7IrNqhBWuBmCl2qpmjppOMNzGAMl1mfQQQTSpyxADmVbpLMtLn1vnuYeTqltpkQ39wsnyv/XDgoJ2RnC3ZiwWQEBncfYOsUtFaOk9cVO+8ScHJ+5hwoaC1npA/OU19PSe6fo76ekTcXwEJjdUjWjolX+9x4xzQqh/3/9gpucU6aaryJubFGdnwfaEV0/irJ6X3ULi4zOrlA/cISvXv3Y0aW+s1tbn3dLC5SzH/mCczsDG7/HHaihbm5TnZyP/HlZZLjCzijqF9cZnhqgcbFZXqvW6T1yMuYfQvcfM8B5n5ihawdYd90N/HGEM4dJxuLqS11Sc8dIV7vk545QLy8I9nRI/vRS+vYA/OopXVuvGOWqRcmaD5yGfIh+foG0cEDuL5nOdZiUWTe2pb+ubGJnporLDf0+BjPfUed2YNrbP7uLN39naK8GhS6nYZoAHFfxp24b8FRuKybYY5ZWcWeOgRPviiLml6f/pvP0J+LGMwpoh401y1v/a6/xid/+l/xdd/z3fRnDe2ljPZTN/noh7+Z/A2K8UsTmPNXwVnyZBtnNbpZI7+xBNPj4Bx5w1C/1UWtbZLdWsIMp0rQ72vOMTw7S+sTT0Kt5g1hY9LXnKY/v0jnPz6OfvM95A1DUDlvbOTM/dS10ki1FsNrzpFM1amvj9g63CJrSpa1sZnTvrjN8399nBM/fwKdO8aeXqH7kQXWX6/5sR/+KP/7w2/GTE7K2NgVkcH2cyvUVzro3oDGywmu3RCRyMlxuHYTogg9NyPCuBMduH5LxhBjaF7dRnnRV9ftEW3tEGWZDxA9NtGKAK/pJ6RTTdjcxvQGskhbXODKXzzC4Z99icM7ixDHXPjew/A/3T4dfnX709/+RDo+lcDnfUqpGeDngcPAFeAvOOfW/ec+DHwXkiX6Qefcb/xxx52I5twbx78J8Ctrb0FBsyFMKedKnE0A5PoJyuV2t5aJV1EO3i5qb2q5oitRrGbg9s/utXqogJ3DpO9ySd/v/U7BCgv/d14ROUxa3pCvygrzDewvwu36v2610BPj2JlJdH+IXVlDt1vkaxvoowdx12+VeJZ4TywbJv7wE5FkSuz2TpmVKPR6PLYpAIgr7RnwSgXbKihS+5S7S9Jiki+YeewpMUEBWg5SAqrZlLbyGC9Vi0Xp1wfBenqqEC4s2jgysuItSpII40bpkmpbtagIEv9OTBjDdYX7W6qGi66HbnhZgkaDQhPHX8uddHsI7tZFJ7S7/cX8q11bL4OvXaKLrvyef19PT5aZR6XE6LL6HShYWKrRKDFnAVicBqmDtAhcrn/rSfZ/ahO9KYwu5+nawG3+TXcM0JRm+wOvZfzffpbh+17H2NO3GJyep3F5g9GhScwwJ9rok483MOs9XCMuLSsCE8k58n3T9A62GLu4heqPcO0G7tmLcM8p3GPPYO46Jf3oyg3UwiysbQq7amMTNdbG7XRxd59gsNik9fI22VST+Pom9uXr5THOnYYbSzgfvBIYWlvbUjLZ6aIX58FahifmiH7vUbK3PkT9mau4fbOC7VhZl6zJ+gaq0/Hjjy5tV0LGVClpZ599xGgBbM/OiCFyo1FoHxXyE1CyGZVi9J7X0LqwDnFEOttCpbawQ1EOyCw6yWTytbbM+PgxwmVivhwdO4JdXZcJP0kwhw7w7IfmOfP9T7Lx/oeIRo6JT16k94ZjfOqnPsp7zryZ7jvOEfdyap96iuN/oLj8rmZJ5Q+K5z5D6/K8kBMBiA7sK/qzazex9VjK7C++zOAt52g/s4RrNbBNaSt98RqDN5ym9fQNv3gd4bo97GiEmRiXNqzFQjGvR6hBAkurss8LEro8R7Va9F5/jNf98Bf4o3/yOmo7OfEnHqHz6Rlu/suTdH75i15Lalg8gyqOCqKAbrflWM7dNg4XZfTqvqpbOwjLNk1LscRKtjRaXJD+4JyAs3PLjT97mP2/fp18pgNPvUjvvQ/QWBnxe7//91/xjM9973xlMj5/9POv3ozPq0vA8E5p/UqnMmdOooajstRQZfdU2TJZJiJ5lWxLSFmGQEfV6wVdu2BAhfpt5XMoYXXpuZlyxV3FBgWMRihjaUV+8fLt51SZRIK/l5mbLdSKC/f28DnPTlJak91aunOpo1qe8G1lxtpFQLirfFVhoymlioFLvqdKPzH/fuFoHkUCJPZtscsoNLRlrSb6MacPyyUYLbVujyECSnaXVkS/9+iutt5VsquYp6ooFrZOCKiyTLIYe9rWpd4Lx9/DqvbRbQwsn20rPMeqrK4QAKqAnbC7SmDByiFkkgoBR28iWs3qVfWoCq+n40fKe+zxHgVGKndlFjG3uCvXC3dpMY+8A6srz1ET4/7W6CLgcUlauYcCrLfdHmjljWVz0a4KE2/FkHcXC6kqnhgCsuOHyWbaRJuS8rcTLZ+Rk9/RiZRnVZJJ1jIt218lGc4Y7DPnsX/mAWqXVwXUOjMt59xoCCOt7Z22d3bQM9OyrymTsZ6ZglFCvrKKfe3dxDfWsStrIrvQ6ZTH6IwJ7blel2C6PygCHjUzhV1eRTUb3PqW0yx+/HnURAfXaghjqFGX+zkUFhpWSqyqL6wtwfwM5fNJSnblemF4GgQKdacjYPHQlD64LjK2QQ7C99XRe0W3qf38qvxGPSrB8WGzePyfz1C6yj8gv3CJ6MB+sptL0i8fOIfe6eOu3WTm9xrc+vBx9CjH9FNWH5xg9hef5jfO/z7vfP93Eq/1sC0hW+hLN4TtGoYHH+DpuVmII5FWUErKikph1zfKZ9Q7m6N0EWQopQQ35LFlrt8nv/8kooIuAZ7eGaJGCfm1G8WiQY+PoWo1spu3iI4eLphUyusupSf2YR55nvyhM9IflcK+cIlb3/sa9v/M06X6chzOfwbbaqA3PQtPK+zlq7vuRRDRLLS9/P2Jjh0pA87AtNMKu7oui+zKYjVamBeywM6OHMdoslMHUT+yhvrgBLo/Yuktc/QXFS/8wx/6auDzFdhePZYVu3AFFXBZ8KGyDrXltWjqNegP5DVQdT2FNJhsBrYWsR+46rXSLDEEBMMRJtDU/Tm4Rm1Xpidgdxh5MGEAK4cHPSqzJSrLUaMM0+kUgGLlNWSKAS+3grtIU0YnF0CBjcWI0mmK1YlJLdYDfM3SCiryoodesKxgdXnfsVDSsRWV3ILuGpROA+Avzchffw5bN5hBRtaKMMOcdCLGDC15QxP1cvK6xoysaJqMcvJGJOWlRoStyUQb9XNsTaMTS+36RtGUATBaBB2h/JKkuBNHcWO+9u2xTLYRo3KLrUWo3KKHqfjtXLpW4G5CkBrkAOxQVolV52ZVr5dGo8bgUsqgzvlyaCgNBk0SkKDB94FAr3dvvNeX5zRmJO3ujOC7BJ8gcv3BjFTwWf5YFdwXgIs19ctruwNY5yp2JQKmLf686wS27ktxqaz2yfJC6dnVIgHnXrwqgYzWXkxNVuPR/Cz50jJmfk5eT59g+75Zxn71cfT4OGrMm+PudEWcsqptFDJQvuRXDXgvfvschz4xYrTYoXF5jZ3jY3R+5THW/spDoGDhE9dZf+N+pj9zne69+xh7Zonh8VnMMCd+eRs32eHKP3gjX/9nP88f/bPX0j14iNYtx9iNlM1TNeYe6bH0+jYo2P8Tj3Ljm46y8K8fYf2bzjHzi0+y/sb91Ddzbr3xGN/wDZ/jM//H68gaB+kvKuYfS9k4HTP/xR633tDm0McucvUvncCMYOH/foT1bzrLzC89zcYb9zH1G9uoep3hnGL7baeZ+MzLrH/tfiY+9gWG730YlTtan7+IPbYfc20FN9YS3M5gKFmgNBUtLKNJ3/YAjaeukr7xDDq1Uo65skk+O0Z8dU0+d2gf9sJluR83b4kuzWhEvt1Ft1v0ZyOmf+4LcPo4rGzAvhlUnpO3GlJCtaBHIwk2rJUMoBPcm/MMVd1qYWfGcYfn0JmFJ1/A3nuK9PDdrH/7Oh/8zZ8jR/G/fug7aC9ldN9xjne+/wSf+PmfYSPv8w1/+4e4+WcsZ3+oJ8J+SsNkpxTr85YZLtKY7aFkeC5dpf8NDzCYNsID0aAymPviJuf/6jjTj+tiv85g9pFtXvyODsd+JcH0UsxGD1bWJPCdmSZ5y/3YmiZviD1FcyUhfegQ+pPPoNptVKdNPj+FvrbM+tkm05zllz/+kyzlGd/+wb/FjR+4n9qyzwLffULEEdd3JFBanCC+ukZ6REqrepgWWMyCPJFmRVZOGLiyEMtnREMsb8by/Hucp1nf3MXqUsaw+q7j1Ldyko4mbSvMSErAm79ymB/8t7/Ixz/wdmysiB4og8tXdPvK5zq+4turJ/BxjiLgqU4OSpXS6WEFHBlZ+WvRRwC8YaYphOt2CclptXsiNkYmsFpcMYgsWVnhd+W3dFkCUqrQ7gkeMoVlhXPizbOX0RQ8kZxnmWhXZKmyptS4nVGouGQE4eR3nadCG5BJOwQQAdQY5OTDb1ZLSpUSXfieBF/+GJ4SrY2WwMvizQQFh2Nrfr8DlTmUcdiaFt+dOLCc5HN53XtDNWrFaqjwNzL+2sPqNTIiKaBU6blVZTQpnzHSwjLLt7uYmWnylRXM5IS4Y/f7mNlZTBSRb22XwUu4bs9YKrIiRpcp+119zt6eSXOu7G/WCQahWFnv/qgK+6wTTJAPeu44sDjpt7uA6LtKgF7pOmSJ0lzay1L4YFXtWgS7pVDjHfJr10XAME3RnTH5TKNeqMjqRgPXiKmvZ4Jv84a0rhYTvLoKjSbA3ekC/LmaoWI0FdO+2sOONahtS0Bd25G2cjtdajsishl3Bcwa7SQSyPb66Dgiazoud2cYTUp/F/C7JlD1VbidxghDLM8xiZRzoqHDjCxZE5ZG44wmZWIRUL33/TLSnzEGlSOq22kmx0gSoqEciyyjvib3zbWb1HYsZqxN3BMmmuqMiebLWAt2eqKJpETVXI13yNc3ieZnGc7GNCbHReE7lja07YbggeqxlGkC3iyMA9V7by3N9Rx19iTZeB317AtEkcGlKdGoUyyY3MADfqEol4WMXZDQUMMUN9EkN0qYT70RsVKwus7lZJZJI1ma9lM3Gdy1SLzWYyPvM2VaYrQ70tgkJaqXY63TumCJ5s0YFylUXhfj2zTxiwC8hpMjSpESlZJ7Ep4Vk4Duj3BmDDPIML0EtdMj29rGzM7KmNg2hfmvzhx6kJHO12jPzeDaTfJ2nbwVYRp1GpuyQFrJMya0l3gYGKaeLzOjux5BP17LuCY6U6RZUdZS2puMhkwPiJBn5oTliiyCtHO+DXx2vFKpcNaRx5A1xF9MWJ2ivN5asgxtjKtF2Ah61zq3neNXt1dme3WVuu60VUpd6TseprY2ROXerHCUysASSgBe0FANE7KXr6GbjaJcQKCq+nKKajVwcUT+0hUBDlcYPHvF/FSzSXJ8rlj9B4pycOi2kR/svDN3+5e/WIKOQ4YmXEfQ5DGG/IFTcompFY0MV9b0bayLsgGffdKfl9p9flV7j5BRqdXKcw+A3qBcWtnM3IwXKBTn5SJ9G7JhzoleRWww11YkiAygbiiDFedE5yPS3HjLVMHqcib8c+AULnKe2uk48UGReQoMtGIL2Tl/fFWvwfRkJbDzrC7PygnpfjVKyK5cE0B6wFDssQwJpT3dbEit32vXFL8fSlo++wEUJaGiXxhTli98FsSlmfj4hHvgAwiXJAUWKHznuLU+AAAgAElEQVR35S+KLpCqsLpCyiewukD61fyvXBBcWGgT3y4uy6VdlAD2mZtC7fSlbBb5e7S2WWC5Qvay99Ah6r/xKNH8bDF5B9E92+vtLjVCqd1TlZXwbXLt776eQ7+zw9bJNhMvdukebTP+3KYIh860iZa3yWc7mNUdXLuB3pLju1qMSlLy2XH0RpetB+dprGfUPvs8yRvOEn3ycezX3If+wyfB5pi7TpE/f4Ho6GGyl68RHTlIfu2m3L8zx9DDhJ2z07T+/efI3vYwILpG4RjmzHHy58UBOzp2hPzKNcyhA+TXbmIW5wV83BnDrW+WGZl9C2QvX5Uy66H9kq2ZnYb1LZgalwXP9o58ry9eZMPTC9QfvyQLmtFIXoMNDpQ4Ny39YleZ1z/H2dseZudQjbhvaa6kAuDXCtNPJaBIfQbaEzaUN20tMGTWki+voo8ckDHNGMzCHK7TIn/uReybH/Tft3zbT/8nPvrhb2bs1x6He06yfaqDNfDZf/qTvPfc1xGsfQDpx15c1OxfIJ+flEWOkfFKD1L00rpQ/T2Oy+105Xm75xRmsyv9cJRgN7dEb+ieswyOdMiamqxRjp9pS7Hv48+DNl6NXrK1qt2GqXFcq46tCbZTjXLy8Rr6048zfN9rwcE//Zcf4X+55y3k950kWt0hf/ElVBQJpMA5eg8fpjcfMf1Ml9FcAxw0f/959OSElOt86dh1eyKCubFZLKD7b72b2pbcFzVIySca2FhTv7hMdtWzAL3sRva2h7E1TfPKFtmE+JLpR5+HPGf1O19L5wM3aH7bALu5xSeGP/eKl7ruf/srU+r6zC++ektdr4rAZ8LMuje03kdQPS2wKB6QSlyDNJHVvcdtFFTowMaJooJ+CJT2CfV68T4gnwGZGPuDUv8CRJfEBwEBXxMyJTaYKgYqdCifVCnA/pz1+HhhnUFcE10h5zzuxmck0qTAZxQg3SoWKDhFG41dWRN22XgHRongFFpN8rUNoZiurZfg5sBKCngVbUon5grDy42PyUQ0SnCtOuQOVzfoYYZtROihz8qMkjJL06gXIoPF9Y5SOf9RQn7h0u5ruBMt2uYiLjnelsC1USsVuLNczikVy4+QEXFb2wKGDm7LzYZMPnFcgB6DJYdqNbGbW7JiCwKSwcHdutKSIzDZvKFlUT4cDAr8V372iNTxI13RfqEISIOWkU5y+Uxuvegk0ufSvPjbGYX+wyf8QaqZnj3K3gE39PDdxW+A/AYgGbuKIrZ+7jJ6elI8oiYnCkxFvrqGWZC+odotsI4XP3SWU//PKmpjGzcckm9ulerQo9FukGa4f6Ff+vv40o++jlM/9jw3//Jd7PvNmyy9fZG5R3ZYfk2HuA8TF/r0DjToXO6TTNSoL/fI23X0MEP3ZDK99bZ5tk869n1GsjejCcPUJy6y9p6TTH3sC2x/y2twCqY/fYXuQwcZe3qJ0ZEZ6heXyRen0Js9lt62wOYZx/4/cOwcMExczmh//jKr7z7B9MceYetbHmLqdy6y8c4TxD1L56llRkemqb+0QrYwSXRzg/SwTIgbZ1vMfvxJ1r/5Pmb+03lGDxxDj3KiR19AHT1I/uwLRIcOkl27jqrVMFOT2M2tXYKpTE+QT7XK0uTVW7Awi7t8TTyhDuwju3INMz+H3dySsnWSFmD6tfffz+x/eBYW5ujeNV3xehOJDJ1YTDfBbOx4EVavFuz7tLBWU9yb7sdsDeUZurlMfu4oL3xng7M/vs3zPzgGmeLcjy6z/oZ9PPhDj/PSXz/F+f++iR5pzvyj5/j1Zz/Fe+97e6GEbibGZcxIM8FNKSXYpp2eAMUPLDI6NEUyEYmAYV0R9x3Tn7zES999gtmnc5K2Jm9ANHDM/P51Lv/lQxz6jS0RWu2PYGOLfG0dMz2FPbafvBkzmBexwNaNodDCX5Z2DEBx5xzXvudeunclkCt0z3D6w0/y95/+A/7G//V97P83T6Nmp6WthiOZM8ba2NV11FhbFsRJit3eKWnrfiworI1C5kcbzMx0qeLuHHTaqDQjv7EkOk3hfgD5Wx4i6qXkdUMyWUOnlutviTn24c+z9H2vZ/GnHuH8j9/Lwf9k+Mwv/e2vBj5fge1VEfiM6xn3xs43yUQUgMs+ACrS8r0+6tghwciMElwciS5EvSYUd60lWPBZHbu6LloloYZbcfsNbr6CHdFlWtO7mofOHjIzKFVI/QezvBAQFYJ8vh2Da3cwAA0r9l0gWZ9FcHcdA5Bgo+aBe6EsFRv0IBXNjCeeE/n2dpugGq0aDRlA9y1gl1ZkJVlhjOzdqro1VU8q1agXpbcAig01/RBkBiPTAkieZiVwthJMMS/u4y42MkGH64EiHaysheU1CVSDpL0V00c3HAora5RImzXqZGcPSwARG/QwFSxQWP2mtgjS1IUrcj6Lc2KMORhIZigwRG4sSUAQmEzVCR4kkIZdEv0qivx9rwRvtUqG0QOz3XBU2n6EFLsPtEO5zTkn/Wavw7MxZbatWsp0IUjzWZcQ9AXQuw/m8lMHJfuZVcpg/ZH00yT15Szpo6PFDssP1VEWRjNSksvGHCoD23A0bhmGcxYzUmQTGfFahIugtqnIWlLKOvo/fx5z6hju6g3xHer2YVo0eFyrgR1vyv2qBVyInyyC4KVWmG4iDKVun+zKNaLDB8mu3pCMzo1bmLlZ3HAo/UOpIiOloliya7UYe2gR3RNALMaQXb4qQfWRQ+Q3ljCz08ICazZxo9FtJpLheeH4QfTatqgQbw5IZ9qYboKrG/HKylxRGgFQiWDeghWHSnPS6Sa1Jy9jtz0b0TvN6+kpEVWs14SUAXI/4gjVG5BdvYE5cxy1uYOdnyKZaYnQI5A3jZScYy8DYco2lOeoLKkqK3+3f+tJyWIuCAiZ1c1C38mlqbCnkhQz1iY/d1Qo60aX+6cmQCl+/cnf5cEvfCvWKQbPTmJGitYtx+J/vERyYtErlSvMzhC9tk1yfAEzSFHDDJXKfbVrEojbxRmR5UhS2OpiNzZEeqAydgatoXxtnejoYWGdrm8WrEU9Mc7qO44RDS3RwFHbSomXd1CjBLu2IebIWgluKrfYkwdxRrFzpEVeV7RvJOQNw9jj16UtxlqiAxdH2JtLXrunzAiHvhGwgy7PJVMax7hGDTVMPM7KA7d3vHyGN1HVRw+J3IQP9NEad2MJPTkh+K5WS/zaTh3jt5/6kVc28Jk65O5/+w+8Ir/1Sgd1f5LtVYPxEQPD6krY+2wFNoTWqM0dT8/WsqKBUlnVOnnYA8Yky4rVvooinHfodmmCHVaMHuOmDIBGPL2Cx5FLEllVxd6R3DvzArtW7EIXrpSbrCvEsGySoryZnXb12+nmWrAxebssT4WVPMh+Z3QFAFuxWwgBRQUXIgyn3TRMoMx2BeyK0kQH9ksmJ7finm29wFiSiHicFSFHpxV634JMxB58q6yTlHtSwc3UarDTL+9lcc5ensBfL3lOFrJnFXyS8rTTkC5WSuEGQ6KVHV8i6UMcoQepnHNDQIZ65Nu/FqPimLwZY/pelVhLgGCbtTJI21O6KftBtCtodNahjxyUiSs2u4KV4NlTgJG1xsYCdHYmlOVkUnSeseUijVreKHE6IVgOpdB8d6Ylu7V0W1YTKKm3gSl1dB96kIoH0aCUVrBjdXRfiY/WMENvdakDWauOcpDMZeBgat82SRbRaQ65VZtm4eAG3WGdM9PrvLQ6Q55r+nMx7YmhJMWmJ1HbXRzgNreFot0XEURnnYBik7QwfjXNplybJxcAYAz5CxeJjh3B+NJC6A8qinCdljwnPoOnNiIxU93almAwSdDDBPvSy5jDB3EbW5ipidKvLY5w42OoVJSVFaA2vW9St1fcS9vtop69SK4VZn0DpxTxSktW9lGEmxiDUSI4QlfxHkuz4t47rald3SBf35BrSVIB4Tbq5AuTcu9jA+NNyXDWIrEhqUXwco4da4hx6RPP0VhcgErZ1I63BPcUG1zdeIV1VaqDh1cj+jbFxJtbsCn5hpANVN2rTNdizHgd2xtgzl8VIcg8x0xPEtXr2I1N7GDAg1/4Vh577b/jP/TG+EjnrVxbn2RgO7gkoXZ9A9tportDYfVtbBJtjbN1bpL6Zi4if0ajdrq4NGXzrnHqmznxTkocR6jh0N/DlLxCNFCeFXnpLx1g6kVLY3We+hOXJGjd2sakol0UdzNMN4HNbfJNsaIwM9OFDEa+vY25AN2vO8XmaU3ecOS1GllTMfaIN0PttGXc7nZlAQgF+cGOfDmywPqJHESx2FAK16yjBiPpq60GbG6VshweUqF6Q7LZjniQOSf4rOFIgsGdrswTvgz71e2V3141gU+xAgglmTDRBAqoN6MkYBwCZRlQmSl0WApQs3W4PNmtKZPne3+UQim4UgpyaVbW3wNwNgQdtsxehPPb5eEFHiit0Xup5FpJOS0ce5SWAN9qeSicG8VPlu/tydAVdh3hXPZuxfEqWQYnbanyXDAjPjhx1go2wYO5C5PE4UgCoYpeUuFvFgIJJyvhXbgWKviG6ueCVYLf57wuEr6EWFyjEdowzskqK1BJC8uJ0ik+3K8CxA67AxzrKBzj9+IenbtD35BjuzyX/hUA5UoVzMAAGldaSxvmVrJqAf8UMpBZjrJGmDhfaqvitTwgflcQG94LpTH/ed1PUIMRWilZxfpnRw+MDM7GSLYhUHGD9FFswSmaNQmWGlEG2hFpSy3KGItHRFFOHOVkiUFri7UiXhnwQ240KjVpwj0OjuO5fybjTGQBdFb29WHFz244QrVb0m7DkWRLugN5vj1exuVWAm3/feccujuQcnZg5ARQ+yiRyb8/xHrT0WJcyHXxLCqlJHhLE3SrVWLb0gSXScldxREMRwWGJiysVF5RF9ca1RugIsGR6bG20O6bk6VBawUX56IS+K/iWtmvQCbXioWD6nuGZmpwqdhGuMj3DYVklwJTM6oQHAZDClIIt3d3sTupjAd7FgLWKf5Db4w/1+7yq+0NlnbGGNX889Woode2ffnbG4/2RzRWU0+ScFKy9gF9cyUVUoTfT1gwefKBnGNe9KG5JzN2Dhrq676vW4cjp7WUkDVMaYLrF5iFBEVlc5mU6W2EZMoM2BrFwlQFxlZ1oe3K+ea2fVDek/AMZ5mMl/i5K8hchOc9yz0T04rnWuU6w3i4F3f5Sm1f9ep6FQU+4AOTQBPfsxp2zkG350sFeQFCdXkutFwvKBbKDiqOCtwLIBkk53DJnhW3MaWvlacyE4eOSbEacb3+7SdccfHeq29TtY0oOrgxKG8kCj5zAEXZrtAHUqqkLocHLQQlvj2K4wyGJT37TmXLsHKp/p3npapvyFzkFS2fEHwEWn8UibpvVBHlU0pWQzmFSrTd3pEJsdo+eeVhD1mLPC+ePqUlECrKGRUXdOUHdgWC6Wm3JHiwuQzm1ok9Q6Puy5MK00ukTUajouyo+qMii1Rkfaqb2jM1+Ped1y9xvrzmKoBulSETYW7LrFBmPf5G2lWBZyn5VX8QVrztHu3ZZ4xMxlqXmkNBiypMGsqLSu70S4uHTaFXyyUpaZs4gq0uzuYwHNJYXZAshKlhI7jBNGSKDdMhWo+5bqYg0zzaa5Bu11CZRg8V3Y0aOCV6NQFDpXQB7NZjbaED+/to/W/nS8vF5KRqAsrWczNoj79A++yKx26pWq3QxyFNoS7ZuqAwHkRBiSMBHY9SEffc2pZgsNUsj7ETQ6MuAfxwWB7Dl3JVbqU8opVc03AE/X4xNhglLvbKZ3CJazL2pJnoAxntg26LSxPBAV2/iZmbwa5v4BYm0d2RuNK36qjeUDK/SVYExWp7gOoPMePjAijObWmfMNamKM/Xa1KWCplLj/9DeducmgSjeqxd6NbgLKbTKawfzLzX4dnukifbvu8LZd1FBre0jJkYZ/DsJB/pvJVfbW/wrw//AV+7+edZy5TgfDZ81q05jr21XGRBlJNFWDIeY7o16XeVhVIyVcP0G7LAqdclk5flEjx5JXg7GpF0xBPr8jdFHDFHaF5cw91YonZjmzgWnzCVZLjhEDM5KVmtyQ4ujrCra5jxcfKdHaKBxQwNyirinhVAduYZXAMxnQ3lfuK4lLbw/UtFUYHzUR6ULv6BQVMsF8hBksoCoFYTvFYggGQ5he5SGO/jSMawtXX02Bg6imD99uHgq9uf/vbqCXwqQQ9QRuNhNQfFYKuibFdGiDBImkrGx79XrHqqjC0XqN7laqFYAcR+dVfQ0C0uc7t8qorAxdrdtMnwW15BV8BwssrcO+kqowWfEAKZAGZW3gw0zSQg8oGPy22hpryLvu6zLDhbrGLvuFWCouDWTq4KhdFCDNJPzC7xGaHcineOz7bhbCkimMvD74KialWRFgpRvF0ieAUYnKJti4EcdmeEtLezGNVlNV2LZZAECPLxA8EJFRYl4X2lwVbay9pdZYS9baNqtZKx5Scb5ZWGcbJKJDJeU6Vk1ITVvwr7lFd6Dt+D4h7aaiC8t+RW+VuRC+Er4IOSpHguXJoVXmV2OEI1BoJlGwylDOZLtpI9kZKQlGyFBWcGjrypkB9wqIEBB65m0SkwMKhUk+oYlWhqGxqVK9Jxfw+NwQ5lorajkZSAg3q0UpKliSNfqtZozyyzgyGuL4sHPTWJnfz/2HvzGMuy+77vc86529uqXm1d1XvPTM9GDvfhAlOiJUqiLMtSYCeOE8iSzURwJCsMHNtKkARIAANBgEgg7DiWHSeRYjm2ICU2LMemJdGiKZlDjriK5HBmenqmu6f36trrbXc75+SP37n3vZohIwewyQE8F2hU1+vX99131t/5/b7LAK7fQi8NWpkKvBdtpkXD24VsSUNUwIlfm18d4O89QK+vopcGIrS5cI8Gs6ZsCMYX76GUsEPTBJ/nEsClfq6ubG2rKKwbPEcaxlNzIAtldz+T9mg3uCwNKt2qtTzxsZFgPWDfiEXbSwUfuhZrGe7tygo9nrQK47qTSd82Fj0NXoxw8Igj6dJ0wf/OC3ZOzXLJbnUzwRdphXeScdUBc+S1lnFpDKZQ3N4fsj3q812Hf4LPvP0f8vCVnwrZ8ErG5N1tePtj6Lt7YB3xYS54xEjjOjFGaVQckxzkuCTCJxrbjYkamQml2nKhUrIOqbqmf6cgPYiIRxE77zKcPRqgt3dRRyMa+w+fBaX1rjCmfJrIgaMooN/DLC8RTWo6uxE2UcQTj66Zr21Nxs55iAPEIbRJk61WJoh62nD4DWukVxqQdU/wlkK0UVEkh4LRiChABnRRtWrleCdBVrM2NYHtd+J6M+PzBgl8vJ9nThZKI34RQ9Lq0jRZAzc3mWzAo64JAkJa1okPk19UvDVGTr/eSwDUlDnazISbf86ioGJj0QBzvIpzcyVVrWkESBrvr0Y9t/UCW3Ah9hVtsKNUCN7CYtachJRSspGHiXOiHNO8Np0tvOTbrFVrPQCh/DLH+XjnF0Dk9fznCaxSYFq1Jca5xYOXm4a2c6hG8LgxDl3oJ6U8+LkqsPfq5Ia/WN5Z0M9o/zlN5ZQdNgRfhlJLeJ8rK0xSyyZsjGz0oWTirYWZF3xH2Mjaz3xN8ONem9HzAUxch+xSFUo1TSmiYZ05J/1YMacXNxmz5jNqK6fFxj8NCyqe43cWHeKDYe4Ju5Qmy7HQXiqO0IF2LMrOdq44G/6/zwt8WcrmncT4sqC7Z7GxQtXCGKv7BpODTQzdB558NUJXUA0SkiOPcmByT90NwZLWIulf1+249mUpDKdaNJZ0vydBZJLgmkyLn5d0QA4NnhDQJzG608F3s/bE7ENAoXoiHKi63RA0N6U+B1Zo1v7gCDoZuteTe4RAys1msqmVldyj35vfw7o2A9VQt1tsYCOz0LS5Ce8P5WofgrrFQ49aXxX2ZUNVr2t07VqFaJ0mIj4IqNFEgLJFIUD82uJGI1ScoNf6kp0KpXsVRYEg4duvPh+jTbDkUMriQjDWylOAZGuDC7lPE/GZMwbdSRYU2ZVkKAN7q3vfM3MDisSzVysevvJTXPuTf4s/+lc+HAKWSDzrvvYS5XufJLl7iB4XclCLDS6LqJ66RPzibcl4pRZfGlwWUz11kfjFOy0GrNFOU3EMUUVyY5c4iUn3evTup1z98Q6P/6WqzZ6rUFp2Tz6E+4pQ31t1ay1zRnU6xPtTevdjXKTo3M/xiX59ZnXRxLk5XDftsPCa0uHg9M3KakVg0zXrDYRsj5c1o6rn676RUqwKhxa9/LrbvXl9m643RuADkoJ8Lb5FGyhpsQ7mrY9jBylFL0aXjqIXoStJY5oi/F46bKrpXjsgOh5LGjoEBw0d0R4Gwao0RZ0/gy6rIGRVyYm1KbPkRaA6Ksr3PhbYHOEkv8iq8L5l1ajKou/tyQJb1bKJhZqyMgY7nrQWGvX5dbzRonxcWHws9X/lPap0+ESLZ8+9+xK81XNPmQYnYMMpF2QSNuwkFSev9ynTGh0wAfXlMwBEx3JS08dT0UQKHlj6eCwMpskU99AZ9LTEK4We5nOBQefQjYx/XjD90BOiNF2ErJYVPI1y0m7ee3RRY/ZGc9xFAwaHeXmwKueebZ0MNlYx1sL6aus+7bsZaE2UpfjhAP/iy6IleLc4CQKHgNOw81ImzIOvxsqkyQhaCczakh8IeN434O7gO9Vk5vxceLDZBn3T7k0gKl8OLl+SDJD3c5xYI1LY9GF4XR+NgwfYPL3egsSb+3ox6pVgsCknBbG8OJbUepLIdy4r3HRK75PfAO9ZWiiXtc+6mHmAhaCMNnNqjUE/fAF290Xn5tXbeO+p796Xz0sFPNuwYsQvaSYMwk44oc9m0OtIm2tR81YrQwGmr69RnupT9SLS9QGzlZR4tEY5TDClKGar2pF95TqqlPuRpojFwQCbRJiVIeVaj/ixR5g+vILyEJ0/eQ9dOuJnnoPwjP7sJnr3AB4537ZvvtklPq6YbKbEx5ZqIJY0uvLYVIkwolEMfvdl6uuvCmMsjrB37qHiBPe1K1JyPzrG7+3LerbdDD/JOtX3toWR1O1KX0QRKsukDNJklcqqVYtuPeuacj1IqdVI2d1u76CXBxIMRVFbojfnz+IiGZdm65TQsOMEvbGOi2XsmDObUFu2/vH1ud1DJQeeP/pXPswnvv4pPvTTfw5de5L9EjOriK/c4YX/9mEu//0cXTvUrCIqa9zLN1ArQ+qVrpAQpiV6WuJefrW1DGlwgr4qZb2KI1RRCj7mzn0y4NHfnKJPb8laBBJE1Baee3meHQ6Zr+jiORnne/v4nV16dxcEAr0jf/oy2ZeuMX3vJbLtqahGFyX2zBrq969IhnLrFFQ1dmsF9bWrUj5fGVJfOEWxluES0R2KxzJvul+9BUoHBpiSUtvpVczOEZPLaySHJbqymOlUANC9DuzuYS5fwu+8Wef6Tl1vmMCn1RBZYCjJ6/NT1eHbVnBNxcqBruWkamMVKJ2yybpI0XsuF72XfjZfKKYFajQhOttrGRBN1sX3OvhsCZ9E6HEuwNBOR1KrRlN3TbthuUS1AGWTe7xqISvoypFu7wMGtdKTgQ7oyQyswzQUcu+5+3Rf1FItwv4RvGn4gqBq8AY2P8vJE3M4lcw9qVRbnmnby9q2onciuxEyV3UvwmaGajmhHGiUG6CtJz4OVhXlMjYVKwoBLabUPQN+GRTo0mNKh7Iem2h05RifNUHcrHlO0NZLCQVa2fqNT48kiOikQuOPNHoyB8rSWIsoRX5xhWoQkZxZEmq0l88thjGmdJitPt4okqsLAU2TCXQL3lM6CpkuO2+rxQCpCm280FYH79vCxgqbIQhzJX/isYhM1pnc25SeOqgGuzj0pYdoKmNR1x6bKDoHtg1sxbl+3u8qqEQ3oobJYVdUsZNQznCSfYkm9ZwiHilsqkkOSsabKZ0Hp0UltrSMznTobOeMznbo7G4QHcwwtYwhdTQW6QDvQ8ZIDh06aJi0AWLYbFq9JMAN+xw+sczwU0fUqz3i8Sr12TXM/hi33OX4kQHRzDFdl/7I1xTaQjkAF3vQMLgGm//8Noc/8ATLX3lAvdpHffUlyidP09mGYiUmGlt0XpMeQPTqA5I0EeryeIxOUx782LvY/MR1jj7yJP1XxuhJjr32KtVbzmIeQDmMifdkXEaTmvj2HsndCL9/IIGZCcHt2x7HfuUbVO99hNQojp5YwhSefEUz3VSYIqFY9ZgiwmYeHOhKtSKUuoJi6TGWr+fE947xnQR95wEMl3Cv3pm3ZyOQGiew3BeGV7+DXe7gtCJ64Sb1Wy9SZob4uMR2Y/L1GBsr6kxR9RV1D6qePyEO2oqEanj0P70uLuhPXpBp9IUXpM/KCtVJW/80tzKA1SX8V18M3ltags7YYO7tUz6yRXLnQKjbB8ctc/VDP/3n+N2/+bd55FMfxR2nLL/YY/PzEVvPKO7+bM30Tp90zzB8ybF6OKK6dIprPwPc65LualZesiztHlJePo159jn0cFkyfVki5cj9AybvuoDNNIPnMtjeRaUp1aVNpv/diDu3VzFHEb1bms0vrKN/7zmZ04nBpRE6i4hu7aLOn8HfuD3HIgJYmJxOME9d4uihmHIwICp6dH79C5jJBOcdLi/x97ZF5Xs0xnmHL2rs3gHjDz1E2ZN+UA6iqWh7db5Un8wc1TW77+xjij75isKUsmFtvVTj1zJ8GmHOn5VA9bUm1d+GSw5e3/aPfcNd+g9+y7f5WjjJzI1Cw+8OkT2vwBQeXcmmGhVepOwrjyk9URFKNVUtmZha0uJNmpaAzVEN66qsRH+idvOyVZMlCRuhrpxIlNvmcwXgqmonAmPBTVnZUKqrSklrNmykBnzsXcv0UrU8f3NPZeX5de0lsAif07bLa68FLAkgG3ko2/mFP/MyXii7WSufUTlMYdG1bN7zDFbI1nj5uykcpnTocv6cyoefwZ9KudAvJW376FraSNfyb/JdkdNowKqoyqz56r0AACAASURBVEr/LOJ8FsDY0bSWAGdaY3Irf59UmNzJn2lNNK7aEt6J5tGqBbjPWXqNdUBgqWmz8Hvcyh+gJYhDCTMEJEixSbD0iMCmAjeRYA9YCFrb9yUEGxBCezbPMX8vhHZp5wBiH6JVe9/GSsSmGtsRmxBnlIyZwko/zSoxfZxV0r/TUgLPWS39lIeyaSLfk0bY8bXgbq1DgBzKmVUlJdda9HlsokRz5XAqAnBGQ5pQbHTJh4qqp3EJ1B35/jZtxocSVqQBP55gEwV7hxRrmZQprcftH5DulsTjClVU6DxgJBYZcXEsTJ3jkTzLUgIHx1ISdB53cEhyWMHOAfE43CNoxSx+R5WmKGvRWSa2K0lEnUlgGuWeeCKie7pSQXVc2EGNCnljKaMWmZ7Wy33zUgQlyxI1GMwzii6USL1vx79ki51kfCPJ8noz738fyWc5I4G17Xhs1+E6Hh+CyfYyofTTvBbGtg/YG5cJQBijRLMmavy3hCnmuxnKetygE8pwc4ylrj2PfOqjvPLhX6K3NaFcAtuJMKVn8qDH8oUj8lM1ZV8o3y7RuN0Uc25Kse4o+1qICHEAhY8n7XrvIwNxgkuVZIwbC6FwILhzY53LD23jNwvKZSiXZAzrJMYlZn4Y6HVkDixkXRvNKx/apTlktD56dqHEbm1bWj9Rdvche92sjSocUpU+UbpXUST9FMl7XSTg86b8raqGmernsIA3r2/79YbJ+Cit8BgWac8ilU6raNtkWXQDfSic1NurJpsg/+4cUt5KYijjOaukoVOGgeedE6YYYUPSStaLEBwIiFVKMFHQ/vFaYRM9F/EqZJESpowSVd/pdM6GCiBhasFhNKaCOE+Ug9cCvHMRbdYKL7+bUnyx5AFPlgFPZHtONmT46duSmjRKk5KS90dHBToTQ9DYzO9h8hpdiQFfBEE1diEzolRbvtKFbTdzVTlMGS/41oTHcNIvTVZMOaR9tEGliVgApLEoQDcA80AJRSmRqHeIYWf4fB/pNtBsWFNN9kYlMaDnjK7mwRezO009v6HANyDxoOXRtGM8c1irgdC/WuHqeVDnlUJb2SRlQQyBkFG4SIJY5RSm8G2GoMn0nOAYh8BJGGwScEbjEteJUE6YdMrLfcU0FjGhtJ5iLaHuxUEPKpayWUd+2l4qY6kTSclUKXwWocM4bMX2BgMpowWtKhWZFrjb4JOag4CeFLioj9KKetgl0mcYX+zQu63IVwz5upQCqiXZqMthAJa24yeMgyxr/beynZkEnM6jej10adHTCpWXqKLCHhyi07TN9qgklrnSkXuUSzFxLdYhqhZAry5qcXcfr4nQ3cEhKk2xR8et4a3u9aiXO8SdDscXIqJp0gYx01OiNqxLEW/0GlwaUrKqGXOgnKLOFrqykdWAFszdWJvINA6K30q1gZ2PDZw+xWw9lvFcZ1SDiGJZYVNF3QGbQD3w2L7DRx4iN29QKwEl0GYRmnnYOoRDK/zpshibGaJZjlEKc5yjbCrq46MJbAxEpycy0FnC393GT2Yk+yXuOOWpZ3+M5z7w97g8+yiH9zKWXi1JdhIOWaJ/ekz1ypB6YwmvFNkDQ+G6+LUKmyW4lT5eKbGRABGjHEgDmllB9qCg7kawuy9A6/VV6sSgagFc/4dPfZFf8U9ztNOh9+Im9fVXZa5kwbR3mmM3hnCzxh+PJQBKBJMWz2S+RzPC3PRSphqP23W0MSZtbVxkgRB/NxP2nzrsNR6BRrwGKxRPQ4b2WPYlr8AeHmLOnILtXRj04fAYvbkBN/j2XosH5X+LrzdM4IPSApINQNgGZ9P+m3Ykh5Lm19V88TdFMMiMdBsYuUi1QmeKkKoHCT7yXHA7StFYGvi6Fjp8WaG6mZxsw/saR3Oz0msDDd3oVQR5eqAtgylr59YZzYkmWFQ02RZmMzCG/u2yDZqEIeTbUpc3cwzBvA0WWFINa6ihAiMBolpkxGgFhI1zEe8DmKMJehQovXmnzR6pXOpSr2WV4T16Kp5cze9qVgabBmGmZCuCL3Kxak/CkgUL/6Up55UVuEIWjU6GKuMQGNZBnyngf7QiGg/RhVhpYFTLiolrGQONLUSz0Ls8p2XrWebA6NeAqOXNixmAhSAxbBTpXoU3kmVpTm8oMHko8aUSAOvaE0cSBNlkLjK3iCdxiQSTJwQJm8AtnCKbvlcezLhA5xUmDWDfxqIiuNarBcNSXTuSI4WZ1q2FSDwWcG08sphp3SolO90TplEVxNbCPGjmh3StO8maDHgglILRhKWbA1HTfarL+pdrevcKquWYzl5NvpZIlsSClDoV8Vj+bjNQNfTvVNR37zF8VmMfvyjfY2uDeHeK3dunescFslEOzuGGwXxzeQk1naIGA+zePv07Ne5oxPLv3WH07jO4R85i9sfE+1Ps/iH12y+RBvaP72WiN7PUR40nmLUV6ge7YiWR11RPXZJ+ndaUg5TpKUO27znegHRPEY8kY+dqjbJgcsnERBMJWDt7jvTVPVyvgx5Pxfak0xF212QilHhjRFwvqDb7vAiaXkHVXSmSY0u5ZJhtxDQGn7r0RF6yFfGRIhoZmpJrE+wod7J8YY7LkPWZy23o/ZFYdChR007vj7Egits9EVdUJhGxwNFQDn9Vhbv/AN7+GHztJcysYvnFHuXdZS7PPsrL3/tLPLz/n7D+1YLVF2LKW4ZidcjsPVMO97qsPD9m5aWY6raiXEo5eJulu7NM79Z0vvlWNWb7ELc6wA+6RLtjIqVwR8e49z9F9OAYVTuWXzBUtwb8yu0P8if+8O/xD3ffz9YzXRmTtUMVVgxFx2N0VWEb8UFvWoJJ50FJtDej24uIRyGT6CTjd2LdeM1rKorIdnLMLCbOTFt2BuaOAE323VqWrs2kFN4xBG6HKO9Pc+r9Q6JeF7v9QERk37y+I9cbxLJi1X8g+sETr7X4jLAJeWvRb3ts7lQdGVReiteT862fFMEXy1293qptnrCtgBMRb6tqvGBT0b6v2SS9J7p4Xl4zAnBUDStq0SgQwDns9oP5PWGOJ1mgz+OsOGr7uejfopmhCloRymjqRgtlMRMWgiAVR63PUmOzIJ+p2+c56X4eAoRZPgf8BlCmy08Cg1+bTWre15TP2qxTaCv9FjFdJVoAXzpH68weFgf//Mtzhlho9znN37T9DxCdPR3aXc/717r5QmO0qMDu7Lb9M9c1ct9U4KwRuGyYciqKX/8ereY+Xyaks5tAvEn/N9k1a+cGrlHUUmIbKrIw9hT+7KlvkqE7mclrfrrnrkog28owhHs2didBY0Q/cknaOGg+NXR7v6BiDogQZLgaEL+vatxk0vrVSUlgTumVx/Hh48PnXzqDKmqOn1ojHkuJ7fhiTO++pc4UxbImXsA21akinvmABVMkE0fnH31e1HaXl3B374uWThw0uCLxSxOAtDCfzMY69fYO0Zkt8csK6t5muIxaXcEfHePGk2A8mrf3IIpwR8JcMuurJ+4RXTwPtcVurbD3jiVWXpwyvtChzhS9+zV1V1MMNFHhsbEEvA0mK8o9LoJ46qm6ipWvH+JfuCbg3E7WrgX28HCebVk4lLiyEuaZCpYMaQrntqC2jN+yRtXRUgYMZdbFwEZX86BShcBV19K+nX/8BcyjD2NfvtF+nl5fm0tAADiLfeQs0c0HwhbzHru9I0KO73gSNS1Q0xx3cNiWifVwmfKhU8RX7mAfOY3tRBw+nLL/Tse1f/d/4QfPvgszHEoZa2WJ2fklbv+Zmkc++oLMoSxDDXpUW8u88u93ePS//Arq8YdCxiyU/UdT8se3iP7F76O0wpw7g91YZvRQj+EX7mHXBthOTDmMOXgs4of+9Gf5zP/wAYbP3MRuPxAF6sceke+4f4Q7OGhV/11RiOnsmc35WhjKa/bqtRMs2FYb7jXM2OjsGZnjzboTyA326rXXzWXd7UpbNFY2AbAudjdNxOTx/S6/+dx//221dRgMz/l3/eFvj2XFv/zH/8Ub1rLijRH4qFX/fv39r89qwDyrUddEly7gex3sIEVPSzE/rKycqosa20/ReUU9SMVFtwoMpclc0VYVFX40Ae+w+4f4DzwF0GZwdCmYE2WtKOGCLJCbw5ZZA6CKeYDQarg09++k85N0IkwpFaj5fjRudXF2/9jjUhqJwBQhLRrmpSmknq8rGP7dz6GzkE/XjdJx0k6sEyqkQfq9naCL6qJtOtex9+PvwaaQjGTxTo88LhZMg00U6aHFpYrksObwcko8lU0sGbvWTdlUnmgipb54XFMOZZPWAS/UliZrL6UZ5FTtIk09mHtemZmUH/WC/5EOUu9YR3FuSHZth/LcKtGoAOupNqQsk9w5ojyzTPS5b0j5IGTwFhlKja5SK/4YRbgFqQQVNG4WTQiVMZQfeBLlPXXHoGvZzIXVEzI+HSOlp9rjI9X+FPsAAp5F3u8jRe9r92hlDUD6aDFoDuMd76nPSymgYYh5rdox2mQJde0w9/Zxu3uoC2exV6+h0xRvHeaMuIybyw/hbtyaG5YGaf0WaNv4gOlg3NoEzovaWdCOsekPv5P+p6+gVldwd+/D5UvoyYx6U7i55uU7+K0N1PYeqpvhtndQva4YWgZq9uGPvJXV37mJXxKG3vShId1Xj9l97yprXzzg/vesUmfQu++YntJ0HziKoSY5kpJTMnbYVLH6zB18N6M4vUR6fwTWsfuBDda/uM+971lj+HLJ3lMJeOjseMplRXIs9zCFZ+VT17DbDzArK6jhkvg2PXyh7Z/xE6ukeyWjixnpkaNY1gJszWWONON7cGOK2TnC9buSNZ7mAh43BhdsFfRggD06xvR7shErJb5aRouRcZqIlk0gXRBYjNKoBtdPcWlE3Y8D/gsa2woXK2yiWP7130ddPIfrppKBfuEVzPqaEDQODjn+vifwGoafeZX63n2i8+dwe/tMPvIUXiuWPnuD/C3nBBB+NBPlaDU/5L3wn2+y9YzClJ74uCY5LPBf+ga/eecrPP6LP000kexelHs2//ldpo9tcPe745Ov//Y9ZpfXSfZmksUN+Eo/mWH39tn76PswJXR3aiGK3D7CxxHHTy4T5VJmNoUlee6WeMQdjTj64CUAlp+9Rf74adIvvywHg0cvQu3Qh8J8zR8/Tfwvv07+kXfQvXGM2j8CoHzsNNEXX5Ig9MJZ1HhK+cgW0VdfweeFsOBOLZNvdnGJZHPjkcyLznO3caOxHCAiYTXu/qm309m3HDwWkRx6TAkbn75DfeMm9YffQ/zMc7h3P0F8c4ffuP0/vRn4fAeuN06pC0I2Q8/ZXUqju5lQBYHi0jreKOqOIRkZnJENtOoboqnDZgozi7AdTfd2iY8N5XICq3KiTfcLTF7CcABKEcUxVUML7xjqjsElSsCVBzN8U392UA8a8SmE5RRKLmZat6dB1dDZx+LU67sp9VKGcp7ocCbg0igSk7zacvRYwHYwP9U1NWFd0+JAhmGRbIzxGvzRazEpTbbKM89kAe2GTxTRiB3WmaLuy8acr0KxotB12CD6wiSpO4pkyVANBGtQLkFuDc5ANIV44lEDjU0hmklw0OBYvJLv1AC0lZfTqylj0v0qAIQFpOtXI5IjSzyuQYPtx5hOLADMwpKvRcTHS1QDATKavGa6mQjAPe9jM0PS7YpWTpbBeCwn7SD8p4KuiXJeKP9pKliuOJ4LXjYgaO+D5k3FrY8kuNhjl2uodFteSPYEXFsvOVQdoQuF7TuoFT51oD1YRXxksKlHVwbbczyUb7YYF2/mpS5dh2dbYDDuvDOlzsB2pVSoaoUpIR5JyciFJNWpL6dk1xLGb1ljUNsWP3L4zg2GxnD4rlMsdVN8ZWFvH9aGUo6xDtXvitTCbCYZQzVnqJzI6jEPgI4uRmRvuUT86g6uKDDW4sdT9KCDmkna3z1/FfPwBbxSFB96Cl05pqcSqq6UiI4uw/D/GbH9oxfZ/JcHlANDt6woVhTlZo/paU80DuXCAnp3K+JJRP+VIwFpH4546WMXWflkzv0fOsfyjRqXxpjDMcWqotjsMz3jg4AdxGPoPqiIZ4b+9bHcY1rgT6+j9vYp3v0w6ZevSUDSEYuLfCPj6OGIZNUwOaOIp5qqB8pCMgrsvdCXNu2RbnXaTTkaddDHMxE33H6A2diA5T4miWHQQzcaTWnSgo2j+4ew3JfsTG1R3S7l6SEu0VQDw3TNUA4V+YbHxR6XeXzsIHKYrKbTKRn8WoHb6DM5K2vO0ouK+vw65vp9iAIoPVH4pT4mXwlBt2O2arApDPpdyuWI3q0JR28Zku1WKA/xYY4eF1z++zl3f7Zm8qBHspOw+kLMyitDHv/Fn+bKf/Q3+fj+w/yz7bdy89lznOpm5GsRz3/0b/Dxg0f5xL2nuPvsGU5lCbO1CBd1hVI+zfFHo+A27zjzE9d58d4pRt/os3LFkV2vqVd7jH/smOO9HnoU0b0Tc/ZYsqdmPGW2pnGRYmmpR90zREfHmOUlitUO2jrioMc124hJHzrP6GwEbolkOcN8+Qrx/b5k8gth/dqDQ+K+rCfOWvzRMfnbTpOvGoolWQeyA1njOs8xzwBZi04SRhcVxTBifLnCjAyqUmx8WtbkcjkiUQrbjYjTuUfjt/X6zuc6vuPXGyfwacpKC5R2pRfwBwjQlkoCDz2rIRGrBWeUMHtUTDSpQYmBpaosUdxosQRp98bVvaHqVlIeUFYikBphPIghoRUMiTEC5AWEZj7fqHS1oIMS7oe1rYOvMSZgU+aYCWWFcWZymTwu9phCtRurj0CX8hMn9/Yz0UY50WSNoFpVg6/wdSWp5cVyitYtS7r5Px7J7KBE1dSmCpM3AGuPqQhgPgEBRpOQkTJKnLyTBuAX2GBKzdl0Hrz2bdDWMNSUowWg68oSTQVroGsBcCuPZEmsR+s5O84cTInWM/ThhLgTiybGwZRkmKBLR7Q/CXo2QbU4aMXMcTyiNO2O5dSnkhjV7ci/x4mw74wBYgmaiqLFhLXSAhqUU/jEQexb3ROfSg3PVwpvPKpuvrQHI3gflzqU0/hEwNgEcHPDmiOAmVXt8QHILmNLgmJnQDsCe0fav+6GZ6ohGldwcISqN/D7B6gsEyDndA1/dEyUn0Lvj/BZgrcOHYJvpazoEwUQeVvGW8RANUwUNfd9cimo2lE+dIokicnPLJGNZ1A7/P0d1JlNDOC7Kd4Y6o7GaOlfbcE2pZvTp9AV+KvXmfzAe1h+IUFXkN4b0b23jqrFlNLFWsDOdSMg6vFlJRIQp9fQFUw2I7JnbuIvnJF73B/Rub9O/9aU2VovsD0dtZ3fA6WwvYSo38NFCjVcgqNjbCcmGhWkuzmdVUMydhQr0Rw8HPqkCXp0BcnISdYS6Q+bRZjbY+y5DWF4pYngsrQW2xOtwglHANJeKVmPvEcVFfXePmZtNRhcRuhMo2vaOeQyj88sagHgXNcyJm1mgpyC9GfdjYl6XfxoQtUTNqKoTc/g9IZkkBtgfW2pegqV15LxDVhGHxt8HKFrx/ROn+GFIw5ZorxlUFlKNFF8fP9h/uLqNVJd8fMbW9TDDi5S/Pz+4/zl1SsYPH99Y5N6pSvtbT3FeoessKjgbq7TlK+/co7LF7e5ttqlWFa4fobynsnLy6QXJpTGUx2l2H4iZqVJHBzsQRUVxbKmNxy21i2SdTXtnALmDEqPCG960RJrhHB1sArxTenfmHa+6nbeNgvqa+bNIsbShgNgeJ9KU6KZk1Jn6XDdBVT8m9e39XrjBD4wx4WEvzcYiYbVpUsrzJbcCosoAMdiQJeWKJdF0hRa/HCswySRgJ9dGLwNzT3QdHUhNHZfu3kZofZS7gpy48pYYWs0paLYtM/aOmI3z16IaWTjDaXjcu7u3TDKZuJQHB8DWkCzuqTNHDWbmo/CJG2E5hap6S2FfQHsDHJKD4ssi4JnC2wTEHyCthBPHTbRmFJOsVEuQUo8lU09nghzzpQi1KccuEBLj6eNlo8myh3RLLRhpNugQVeuxSA0ZR89q8JC68FplBW9INUwtaxvwcyqrIgnAto1swo9q1BFSXxchZN7js5iKf+BMMSqTMpVjcJz2MC9tVCpuav8Ip7JhfFmHd4L8NcU4GuFmxn0VMvblWzgulLYqcHMJFPmjUaXCme1BDBKGEGgMXkI8spqQaepwSg17eDRXjJjUnIFHYUAswoBUQCMNywpXSIHAKWIpsEyxAmbMT4W5qCZ2TbY1v3eHIvUjIdGiRraNjwxvl5zOQNmf8zkHadIbnvMrBaMzeYQbbRgjRogtAlUXu9CwBuCHqeo1/p09hy6k5Hue9S9PeruKvWwIwGyk03GlJ5oVFD3IgHeN/YkDqrVLt09y87bI9bTBO7vUPXW5B4GzKREuS66hGhUSskyjD2sxSVCq45HFfXmMurWHeK9CWo0pX7oVAAyh4ybo/2pKwJwPjxj4YkmNdMzGfFxwNNEkWTfmrZsDH/VQmmztiit0UaJCGGkxRMP8NOpPKtW6MIQzzx1Lp/tCoVXGl/JfLbKYyPBALpYAhk5L8mhwg06qIMj6m4IfMLa6tNYMn4NxbuqRY+qqokmdeu95SKNig1qVpHuGQ6NsLeK1SF+ZYl4DP9s+62kuuJnhrf4xdNH5BtD6gx+a/tJurrkYytX+bun30exuiQZ4qkVHapBSrRj2vJ9fD/mFX0KtVFQLnVwmXx+uqepqj7dx4+ZrkTkqwndQoL3hjpOWVF1FawN4eAIXVpZIwKpRCQ7PPHMSwDTTMXaip1MWD9xYkTrFuaAKR1REcgmPowFCI7sbn5YsI5oKgfL6Mi0awVVjUoSOag4K0Hbd+h6U8fnjRb4NCDXZoFoqdkasJidI3wnRecxapKLNH9Vo6eJYHKsE3qo0QJ8nkwxZSVaFWkiWj2TWTA0dJKqX1kOlHPxrVFVr2XA+ElgH1Q1em1FnqUBjDbPWFYnghFfhYW1riV12rA2gsKun0xlQjnPyksNa0gRTcPE0czVYTN1QsenNc0LZqKNmWd7hQBJgZxWYI7fqOoWU+Orms5OJUyRcUU8SoIarSY5lsU2GhWi6DzOiU4vYWY1yWE0ZytYT3IsgSNKoWZVi2tpvoeckqT9lA2qu3mJ72aYoANksqjdKPW0bDdiVYionj8akTzIcHv7mMjgD4/x3hEH0K/b20fHETZYaejxVMC7zs9LNXmwdWiwUH6Cr2oRkgyBcOM71gSLvq5J9ySoKccGU0KdyUIWj+W7mVxjAmbYJQpdgEsVNpbFJZqBM1KiisYGMy7mY2ihz5qTP63woyc57hJPoJopyYyETEk89kKfVhL4mHu7uFlOfJDjZrkA3H2H6GCGr2uSg1zGcVniL2zBnQcyJoJXnM/zOZ6nrCDTbRl1ERjeYO+SkZysy4GAzcthgn78omRGL55B3XmA3T8kCq7qXb2FGYk6eL3SwWtF1UsZXeqw8htXOP6+J5huKY4/9DDxyBNf3yb/wYcZvCpA3rIv8gUu1rhBRrma0clLBjdhfC5h9Z9e4e4Hn+Doey+jaykFxte3Kf7IQ9SDFF1D1Rdslksky1OsZXSvBufzQR/z1Zep3vs48VsfpVrK8JsD0hu7uEtn0aWjuyODWteSGY1yT50p0pFDOei+tEN94xb88aflkKMU9Z27cGa1DTB9IkG4jyMRM1UBLzae4m1KvdIleu763Bg3YF+iexPMpIcpukSzmGhmqDOFi6M2q7qIDdTWC6suBNM+UszO9ulcLShWkYNVbfFPvwWd16heRzKHFfjRmHjqUeMpcZAyMOOk1f+JyprhS47yrqF6Rdhbs68sEeWem8+e4+c3tvjF00d86T2/xls/++fJ9j23nz3Lxzc2+aXTx3z+6b/Huz73MbK9oHSvxZC0evQM8ddEcHb1G57yVoJNFKNHLZMbXTq7JWvP17hIMbu+RPV9E6anemQ7WlhyLkh/7B+g/AWO33GKpU/utXhANZmBtXTv5rC9S+/ukPhghj6eCqi+EyQSjJaMcSU4zRYuYDTJnSNUvUSaSFlNV9K2reXPgszI6pWa5LBG12mr0+Z291APnSe+f4QfDODKddzbL3+LjfDN69/09cYJfE5QiV37Wus/5B32zv3gkSO11xNMKKMllawUUZaKI7G1cGhaIKF3kmYUd/JI5PRv3plnTYxB76Z4a+V9daB2RzHcvjcHDjvX6sQsluJOsKyaDe3oWP5/40MVWFQAnc+8GJ4tmlPnm3uFZ/TNyUOpNkMxp33Law34u/2/i8JbzXOAeJSFK/3yy/JaVdNpmEPGtP5oPpeau7WW9N4S3jqisBCkjShaUcoiYR2uKgWAvZBV8t/EAsFXpTiPB1dr3WyucdQGaw2OqWVmjScS6N26M/9ux5IeV8bIphPEG+3B4fz/Nk1gbWt74kH6tWVRLfRLXbcsL19XnP6MgB9dInpHPhaT0kZ0zqWij4MmlEZFKM6H031jp6Iqh08N6u7uvKS0qKv0Go0lnGf9C0BQ1G0A/Moj6ruh1KYqSx0YhOb6bax3YBLRu3n1Dn42Q1+7i5tOBX9w+hRuNBbGTxLjR2Oo5j5n7Xxr+spJoO0bZpJWnP7tHdzaEiu//HlqoNvvSpCqtbh1b26gZ7kAd6kwRzPUZIZSiriSEvDm8zPsQ1scfuRxlv7BF3H/3tMsf+ke9QeFOXP6cxXJfo555Q6dW6fwL1yjNzqPe/U2nVMb4D2n/tHL1JfPcPiRx7n8X30BlMac3aLqyT22nq3Rz3yVtfptchh64RX6R+fxr96mt3WK+sZN0lxAxMUHnyT+5Jeg00G941H0Z76GTRKGV4dE9w6IxkNU5XCZjH8zq3BZhBkV2F6C29nDv/8p+r/+JfRwGXdxC722CpMSnyTCItOKem+fKIpwh0eowQCqUlSVez3iWQE9AexHp4LGTVHK4a62xLtjzDQh3ZNMko90m0UVOQwZy50r23RChrOuK7pXg1nqypDh6097ogAAIABJREFUFYepJEuaP7FO91PfgCRh44uHqFmJm+Ws/ovr8nyjcbsGGaWpnrqEe/kGq4cjfCel3ljicK/L7T8z47H/ZodT3Yx62CHfGPLWz/55vvGxX+DDf/Yn2fzMiHrYoVhd5l3PfIzPf+yv8qM//lNEL94U7F0cS+nt3Baul7L229chTUBr7NqAV394iYf/zh7x86K2vbQ8oLuzRvGTu+i//TIuitnsp5hxgZ3N2Pwn1xm9/wJ2NMLcvC9rWPBiM+MJdjQi/sIVAGzA+ynrWgkSd3gk5fHwmrcWNxrj9w+Jd5ZapjBGfNTq1/j/+dmM3m+/AFXF5pXhfC3MUiHAPNgTsPupdfStXb7tV8go/9t+vXECH5gLFYaMRhPwNKBdvTqUTX46Q2mFG0/E46YsxRtoPBGfmlDmUN2u1HAbai9IhB68pfx0Ku8zRkpqXbGoUCFL0bgH+7zAbj9oFYBVErdGpT48d5OpEMZM0gZJKoqkvND+mwQzPi/wj1/EBWq8lMOCqJYNJZBpieun8IXnWip5w05Sxsj90nROZ28os43qdHM1pa7Gn8l7YYwksaR0+6l8FyUlQ5dFgpEqa3Sj6+O96KEoNaemg5yoKosuSqFMay0SAyEzpmsp7zXsJFVU+PFEsi1at5YgKIWuasGdKCWMurrGHY9ElNB5cWgfDHCTKTpLxUm7k0EdeL+N59Fs1pZzGibRYpCs4rTNngmAvjun/QfjTZ2m2CyW0kFg0eja4zoG5eJWkwiFlHtijc+iAFZ2uMjg0gXAsgfjLPNaV7hcCBTreh74gARTkUaHYEoVNmQDF7AhWhOdOyvt2e0QZVkYW7m4lYMYgK6topRg4fSgL0J+D3Yx66si6Jemra+Wr+swH5pJ2dQs5Tlf+M9WePSXC/Y/+j42f/Mmt3/oFGf+169y7z9+B9n+FsNf/TLl976d5FO/j37sYdxL1zDra/iqwt65B85y6/9+is5v9dA13P5L72O26YgnW+y8BwY317n//phoEnPmi0cc/MjjrG8PqU4vEe/3sZtD9KvbXP+FLbLf6RFNPFd/7mmyB5rVFy07T0P/9gbb74t56HNDbn13n2zXc+r+kOL0Esn+ALuxTJRvcvzec/RuTUj2c6oPv5vZeszSSyOq7303ZlYTHedQW5kTX7tC9ORl2D3A7uxhVoctY2vvJz5Ad7cm/1NPC84N6GbnsZkhm52C7R3Z+JSGTgbHjTmoDmVYh++kzJ7YxBSW9KX7oq0zmuB7UWtuytXrYnkTKNItbtA7+X0wIL98ivGZBOU9Kw92qU4vka8mDD69x/2PVCjtyfa26H7ya8y+7210Pv08V35yCRQ89r9nXPuRZR7+269I1rSRZ4hj4hdvo1aGVJdO4RI5YK48P2b1V15i+j1vI1+LcJGIOWb7ng//2Z/kU//H/8Yf+os/hYvE3iU99PzwT/4Mv/F//gJ//K3f37KhdJahV4aMnrpELzktIrGppu4ZNj9fcf3nlzj38RV8rKkzgykda/91xP6f/gBLN3Ne/gkDVYcn/ufHufpjK1z8REjDhnXDHx7J2n35AmZaSJlzuStz6Lmr+OJAmtFaVFVJiXBvP5iTWrAK/ZZHZa0PB8N6vS/szr3wf+s5Lm7yfU+iLEQTS74upeXBy2NsP2H/w5ts/urzFA+tY1MDt7/ldvjm9W/weuMEPg0GQ+mFjIWTrMxUSk7Vo2fwkRZW13GFjxSVEdZDPLbUHUM0k5+d+1NcpIXVFa50L8fsHovGSSdFR4bq4S0AbGqwmcbFinRPWF1Udcvqco+eaTcBl+jWpNRMpTTUqOvqygYVYofPYqoFVpcO5Tc16KFry8v/ziBsZoLpEbaP/K5LJSBh4NIXaMsybYYrCoDTMBHbU3wD8m1MDheYYCpJcKHcs/0DW1R9RTSFfE3Ay7oSVlfVlzJN3YF4EvyWSiiXCHgWMLPA6rICdm7UUGm+wyKrqw7vi0TULz6uKZdjfIQI/mlOsrpSI2w5ozCTivGFHv1rI4rNLlFu0YXl+HyHKPd07s8olxOyr1yX4C84c7f194bVlcQnWF04B3E6Z3VBOMmFdiwrbvyxTmB1WVSpBcBsFcmuwRtPteRQVqGLBNt3qFrhMgmmTrK6FLbneNhdmuO42jKFBEqN1lEjxPjgPZko9na+NavLKzj9bEp6bYfJU1v0vnYPlSpUr8Pxu0+z9KW7HL/nDIMXD8S9/flX0OfP4CdT0c7JUszpLfxsRjTo4/O8bT+qWsZaFTKARYF3nqUrEcrO2PzNm9R37nL2k33U0oDTv3sYvKBi4k9+CXPuLExm1N/1dlzlmJ1KA6tLUV+FzV97nvv/wVu48E/2OHrrCr0re/Qvb4rNQeJxpeLwT7+PqqconjpPuRQRnT2FymtUmmBf7nPmH1zj/o8+xIXfqMm2p+ijCceXzkpZK/Yc/uDjuFhKXdN3XqDqa6ILpwSIvdSnf30EL16j+NBTpM+8QFwUqLdcJtmfUax3ePD0GunhKpMziui730/dA2XXSI4fEUBtADh3dmXT6+xZsVWZVpj9MSZLqW/cwmysgfeYjTUpw587HcZfBEmEiw36aErn2r7gA6czlLVUD23hI021FDFdjyiXLzHbENkJl3lc4sB4VGZJuxUX/uTXBfCfSwkOa1GlY+lzN/BasfVbsWgp3d6GJKH3jW1sXbP6+1oIDodj1p/r47bWOHxyic6O9H1yIKyueqXLtZ8BtxuTPTCsvBSz9ELC3e+Oef6jf4Of33+c39p+ktvPnmXzMyP+0F/8KT778b/Fz+0/0rK6Nj9zzPf+pY+RfNCSPciJ9kaCETse0f+/fo8Lz3b57O1L2G8ssfKCZ+X5B5z/H3tc+wuK+jAmGhu69xSd2zC8Mia6s8fq5y8KYLqs2HrWYj73dfRwSP6282jrSe4PwTqOLvdZ/sqUB9+zxeBWRXJUoo1GXbwA9x5I8D9cxh4cYh65CDt72OMxuttldrZPvhpRLkm/ZwdC4Fi5tSK2LbWI4upul513RCTHcPyEx4xA15rhF0bw/Dbd9XfiZjleKzqv7P1r2z7/f11vJnzeQIFPg+9pWF0hq3GC1RV8t1yk0HklxnTWE81Etdab8FPxzVldkW7ViH0o78xZXQ7lIurut2B1NbYNC3oqNEKGFa0HUyOwqIrqX4nVJfT4wJoKC6nYVRDYD7Qp1JbV5SU7MWd1eV7H6loANL+W1YVymJyA8REskckbHIls1CLSpv6/WV1VMOhUUvOOZrLg+gXNQPE0860Ojvh4WeJJsP5oQNwNq8vR6uTgQR9OMKc66MMxcS9BFzX6aEoyTNGlQx+MSejjZ3nI2mXzNgJJW6epsLqslWxds7lH0etZXXnetvOc1RWYHNrjI4dLtQR4mYNccAo+Cqwuj2RLjKg1+9QLbC1189KE93jU3LfLETBQ4vaOnXtBLbK6mvavu9LGuhIWkds/RNmtoNOTgbVE003c/iEm34K9Q1S3I9nAWS4BnpU5oJw7iaVrSqNaoVB4Z1pMmzLS96oSVlfcScnPDujMRL6BB3vojTXY0/huBpFIRERK5odyQmdXFjh9Ssb4S9cZ/8AaS1cSdAnp/THde2vC6po4XBSA7wvpeV9VMg43V9ElTDdjss+8invovLC6tsd0ttfo35oxW+1K8F0Ku26R1VX3E+KesIz0cJn6zl18FmPGBenujO5OTHJsKYbxXH3cCG5rzuryJCOLyUXPKhoVwjgaTfArfRE1jCIJeLTGN6XdxZJwpIO9ToUvS7E3GAwwkwKXxejKSInKBs+wzEuAHbk2gLZWcHJ1NwishrFluxFxtwPH9ZzVpbVkT7uZZEKb+eocZU+IIelhAH8TSr1p8BS71yU+N6VwXarbCpVlwuo6eJS/vHqFri75+MZmYHXBz+0/ws+uvkKsLH9t4XUc5OsZnbJGTaagZe361NXHeP9DN/jcgx75/Qjfy6Sdr3dQZ0tq46mOY2wvkedZZHWVgj3rD5fnC5BHyB7QZl9bVpfzqL5oSb2O1QWvZ3XBXEwyEPO+KaurWTecmv9dSRbZ5E5sYkqH73yH6OxvXm+gwAcWcBdzoNgJVldeC4bHSOpfh1OyCv9mjJKf0bdgddUBOF1W35rVpZWwiyp7gtVFIQuLV+qEMrGaLahBKyV4h9rK4gxzVlfLynLC6qoq0iMCnV0CnVbj5ZuxupyXTSrYeSwaj55ov0DbbIsmi0FQw0rz/gSryyUa/VpW10S4sydYXTqwukpa5pcpPdpqopkjHgsTxC1MfjFglec2WrzMVINZcR5rhQV2gtVVqzmrKxcGl5/lmHEhNhnTnOSwEMbGeIpOkznmKwQ23rk5qyuweFpWVxz0jxY8dhowNM4HpoYnypUYDqYGM9OyuQCqWmB15QpVISWzSqFqLRo7SgJIPIHVZdBFfrKchSzGqm6+tzyP+KDJWaBldTX7dcPqqgOra1LgnRM5h7B4qyQhPipDAGQlK5gkqOWluTFpM36stIOXSTKP9r4FDsBFYHYOGT16nuUH0m9MZ9jTQ+I4KNtWVWC6hPJm7dGFJ1IeV3uUNVTrfbo7VlhdBx69vU/dW5GN0QjYtmFQtayuMmCxtEZbRbHeobtr2XlnxFong+09qt6cGWYmJcp30BXEoxLb0ajW+sTiUiNtNalx68vowyP0zjF+PMVf2grBvBWHbY9ITvi51IOwuqSkYaYVkwtdkgNhnCmtcZHGLJYKQ0Apbe4FxF9ZVKRxSfBQm+Xobhc7GhGNZuAgig1JKmrO0SyMBafb8jHaU8WRZMujEBwhpV2baNxSF7W7T9VTIpERZB1cRzKbQn/3UJTYDCgr4lElrK6VBJ9ofGnQ05J0V1Mg3lvlUooa9IjH8Il7T2HwfGzlKr90+phidZk6U3zi3lPEyvIXVm7wy2eO5PVUvA+9VtSDlGQ3kvlqDPpOxhf0RVbOHpHfWaPuJ6JKva2IJinTRwuqgaccJsQjAYs3JsLkBWVfwcYqPNjDVCIuqoKOT+PPFU9DFroZ4tYKZnNh3L+O1VWIX1czDxv/wROsrtCn0RSiiSc+MmLSXCnB96RpyGobzLQ8Efx+O683WV1vpMDHu9ezumC+0fsKvb2P73XQZSJ+N0mMKit0J5Usi8uE8moC22o0EVaX0fgsFfbWODhKBwsLszqU12uLjiNU1UcXFWo0FZPBsCGq5SUg7OeLfktFOS8/NUDZUH/3sxxV14JRKSt8XkjZbizK0SsvlTijcA2rq6GCa9Clw3aMbCwAzuJrNberCKyu1oi0CRatRXk1Z3WBnPQbwG/Y9Do7FSih+SbHKbpy2NQQH5XtydXHBj3Kic4uY2Y1aVc2ANsRz6L4uBQ6tQm0/iYwa9oo2CeoRVPMvIDlAca5P5jVpTVu/4C4m2F39oiSBLe3LzpEwd/I7u5h0kS+H6BHwVE64LS8tdJHAdMjoOepYFmS5CSra9GGw1rSfSkxlVODKcCmKjCrCK7oJ1ldzXtcmFXRjGBcC9FE/QGsLn9CAyQ5FnfwKg+sLg14UdquMwmYTOnh7ja+KIgPZjikXOfzgmh/gqtq4v2ppPCtxT12Af3SzZbq37K6Qnv5vGizYS2rK5RLG4xUNAHfScmHiuXtHYq3rqEePYOyjurSJvrLAtj393eESaOUsITiSAwqjaJY7nF8KWPtt15h9P1PMj2tOPquS0RjiG88oPjIJeKbkk2p+gRWl2i6FKsp3bykf9MzPpew/s9e4c6HHuH4ey63fRPfeED+Ry5SL6coK6UuF2lsorGDlHI1oXs1gN0HPcwzX8e9+0l468N45/EbS5hXt+HiQ+jcCqvLQ15p4pknyh11pklGFhykL96RjOKFt2FTI+W87R3UxVOyoUYGl0Vo6/BJhD6etgB4Na3Q3lNuDYieu9palKgkkezcwSHxaAkzGRBNOkR5HFhd4RATWKCLWLJFVpdLFNNzfbpXLWUgpqqqpnr6Mcy4xKwsBz0ucIdHou91NBbWZG0x0wzbjSXzNC1ZeclS3tXYLOHgbZZTW6KofPfZM/z1jU3+7un3CXvrmY+RHsrrf21jk18+c8SXn/5VnnpG2F6qcvhEKPzl5U3i53JQirWve4pbXcp+l/LtU0bXM5Zu5Kw+X8jYuRZz70OW2VokHnmxME1N4bEBb3PwzjVW/uk20VEhY3c8A+fo3pni7j+gf3uIOcrRR2OIY1y2wOrqZrJWd9J5ht1o4nuHKLuEjyWgFRyf/uasrhdqksMKZTNMFYKo/QMIrC6Wl/Av3qB+16P/Slvjm9e//usNFPh48POsRKuGuUDZru/dl1O80u2m39pbNMrFILL9ZSmb2GHAbyTJ61ld/T7+5h2J7AO+SO+JBowry5bhoqJYAKSNd9iiX9ZCKa71vDo8mm9oo1HL4vKVULRVFIPSpJ95Xn5PktZVeQ4aDrYUZdmePFoVXcfcUDKwDPwCy6tNZARJgIadJuIj0raLrK4sWDY07DKQNK+3Fusd6YOhWIY09M4FVlcjr28btkNTNmkUgJtAqPHiimLUaDxXSTb69Z8d7tkA3d3LN1BxFHyahCFX37gJgO52qV+9JZ/hPO7w6CSrLbRlw+RSUSQ+ZX4epDVjTFnXlgt9VbP1TGB1pQL2/pasLhNYNousLieWEousLu7tvH7cN0F0YBU2z7T+ZYPXGteJhB0WlJ51aU+wumxgt/nrt1rNJl9XuBu38FWJun4HXxTYspQs54IaM0fH8wyXETNH8qLV92lS/y0wHDjzO4fYtT4bf+fLOGvpXf9/2XvzYMuO+77v093nnLu9+/ZlVsxggCEWAoQIggQp2ZYohZJtRYplqpSybFGR7YpsOS47cbmcOOXkLyfKUt5SJUVK2YnllGMpkpxYtmRalmhBAkVKJECQAAhgMDMA5s2b5e13P0t3549f9zn3DUDFSpUhVMSuevXuu+8u5/Tp0/3r3++7jNA3buPPbKDuHMDykthAdDoCZRqMZQOhFKayMMvZvC54vcNvvcTSzz5H+X1PsvT5m5Tfch605tTnS1FZv3qL7o11ePU6veE5/I0duhtrYB0b/+w1yofPc/htl3jwr38RtMKc2iT/lnOQGE593qJ/7XnWyifQ0wr12hv0j87gt2/TW1+leuMt2uV94D32mx7HPPsVuZeeeAT1+lvY6Yz+lTXUzbssjDdQecVCJyiAz0p8K0GPZriuzBfVhx6i9/NfwKws4S6dRa8u4yfCyqpu7JCoyOoyYt/R6zWsrm6HzDrU2VP4o+PaWNTPZnKvVRa9d0xrWpAetgQLZvQJBXARRXR0r+zLMVaWqipZeP0YrxR6dYXl15zQsEcTJpunWHrhGqQZ618coCc5djZj7ddvYg8PUUHmQGUpiTGUj13Avf4mi3tHYr66skB3V7y3Hv57t9hsZ1QrXfLVRT74m8Le+s4/+xfY+o1Bzep67Nkf4cW/9GN866f+DOmVHQksUikD+rOboDVrn3lLCA9ZSvG5Ra59r2ft13ZJAiC8u9ine2eLqz/geOQ/u4Kf5WwutkkGMxxw+l/e5PDpM8LqunEbnMdOJqKpdnSMm+XoL3xVWP15ju71UGFdwDv84bGMeefqOdCPxri9fZK786wuI2rYw+GJErGfTun+6kv4qmLrSsPqclrLZ+7ckczW+irZzcO3zwdfb+9Ke+8EPko1bK6Y+VFa6NqZsLqSU1syQQfXXD8consiu0+aCKtrcbGmNutO5+2srjzYRgRWF8YIpTptjOTuZXWRF1S374CWBV+1WhAECmvnaiQIcdOpUCTj/6InkrONF5K1AnB79JIsmKWtKdM1qyvRqHHesLqMqTMUvxOri2BZMG/G9zVZXWkipal7WV2ZKJ3qokLlwbzP+6DGe0/qfp7VNZL+JGqRaFGDrbWPQLIw44lgTpSSSU6HjE90hAdhdVmLGwzRqagxO+fRnTY2sPlcWFAFrBxwKe0WfhpKfiHAJQ3XNHqHZVp24iEY061WvcCLHCboLMW2EmFraYXrJpjSYdspyiV1qc4rJayuRENLbFS0dThjcNGGQkn5ysyXuWosTRDomdNSlGyZh0Suh9eqLvMCIq4ZxnNy31nxf+t0QrDoMEqhFvv4wRDV7cg9AvhZBQs9dJJg9/bR62vCVmyJi7ju9ZoSWGAG1jCngE155YcWefCfTDn6D59k/TM32PnGJU7/oxvc+cYV2ofL9H/m89iPPwmfeQ5z+RLVlWuYtVUoSglWleLNn36MhU93UB5u/qdPMd10ZKMz7D/hWXxrg7tPpiSTlNOf3+PojzzI2k6fcrNPut/Bri6ib9zm+o+fofOrHXQBr//ok7T2NCuvWQ4+4Fl8c4O7Tybc/5urbH+sR3vfs77To9xcIN3NsKsLmMkG40c36dwcYwYF1R/8ALPVlP7VIdVT7xOn+0khgbIxuFdfQX/gYfTuEXbvQECwgwFYy96nPkxn3zL7gY9IOcVDt3cB29J0pqfQt3fx3bZsnDptCTi1zA8Ymed8O2V2cQVVbdB+eRu/0IXjEWqhi59MAbCv7WCWFutF90S5Mkuh36c8s8TwXAvlYPnungQdKxm9Z+9w++MWlTp6N8/Q/2dfYvrxD9D+9Ze58oN9vFngoZ9IeOO7V7n4D8KmsSihJXo26Ss3UWsrFA+elntCKXo3Jlz+a68x/ebHgw2Fwragve/57h/4c/zL//3H+Phf+YvC6mopYXt96s/wqz/19/mjj36zsLoCm1Av9hl+9AKthQyMwqbC6rrwC5bbP95j7Uc3cKkWZWoDD/+dIbvf8ygrr0258oMpuBaP/N0LvP7961z4paC/liRNYJ+k8MgDmPEMvMctdgSP+PLr+P0DuT+srX3U7O6kZnX5SmHe/5CIrhYCYq7WelK2PzwMm8s5Vtcn3t+wutZkiV28MsS2E/a//wNs/vRL5Jc2xNPv2v/Luvjvon0NcdLfT+29YVKq1/zT+hMnMygh6JHHkrkwl+6D4Rh7dxezuoI9OMT0+3Lz9Pu44VDq44OBGPAdRKphJZRlL9oM0ftLpZk4OhdF7VatOu26TBIzA7VTPDSMqdhCZib+j7CIU5S4PEd3Atg2LMSyWIsZq17oyePFBfzxIARKaXCVHqDXVvDHQ+zRUfMdIROiszRkebTs7IPhZATmNWA7ySLUOxWQ58+KM7wajGXSnEzFQ2xWiK7GYBSCiCmc3pR0cXBI953AnJoVouWjlWSgVpYkMO1EcHAMkgQgiZKdarZ9IAFOUTZlnuAuXpuqFqW4bPd7+O1bqPvP46++id7aEDf2g0MJbi9dgNu7NYMLpYKOUpMVROnagFS1W3KM05lc68heghOCZVhH9egFMb/tpJhZhW0nAq4OFP9qsX0iAxOVxWMqXOU24Ek8tpeSvX6rCXiiBEIEu0Yl5TD+iwdPB7sAjSoExCqAfckw2Y5IEaQ3D/DdNv6tHdSFs7IIHg2wd3dJzp6hurlDcuE8bncfdfYU3N2ToD+MHd3rhAxevA5JPW6UUo3DPKCUorz/VE0GcK2Esp+SLwvJoGopWgMXWH8iWJlMBSRrpjZYMHh48XWm3/4EnV96TjYe58+Ib1U3Q49m5KelrJwezrALGcnhlHK9S3o4xXYz6duvXGH6rY/T/uUX0As9mQMeuIDrtdCDKfnZJbK7Y4qtHrpy8hmrXdKjGbabkhzP8G/tcPTvv5/erULICx6SwUxMRtsZ3LqLWlnGHx6hej0JQLxDtdu48QRlNG48xWxtyH2QSylbtVq46QyztIgbSqZCLy9J1jjL5DVB4NFXJSpJmf7hb0AXjuy4kGxiJhY6ykvwHMukejCR0q1zTdZ3OsNNpzJHPvwAbN+u7wf/6CXMzT3c5grVsjBUy36CLhydV25T3rceMGwV+VqL9s4EvbMLkSywvFiPWXd3r2aNmo11eW5tEZ8aZltdlPUkE8mGJq+8Bd4x+ab3CU4pqO2nV3Ygz/nFl3+Nj37pe9nd78Nei9aeZum6Y+W378omtiWbFX00wm7voO+/T8ZgZYX11utSnF8he+0W+cNn0LnFG42ZlkxPd1n4wlv41aW6lK2sw+7chscehBdfR3faoqXkHH6xh79+Q8x911Zkfuh18G+JbpjqyCbNDgaSIUoT7PEAlCY5cwq7u1dn7HW7jV5fo9q5jXryEfRwVuM+3ZqM63yrR/vaPpPL6/z6L/61d9ekdOmc/9DH/uK78l2/9un//Osmpb9j814iaxoriBPAU++BMBlrHUpFYQEJrAliuccY2UVXVS1K5aMdAQG7EBa4Wrk3vNaXVV1jF5zIvOhgq9kFZ1lzfCFbBAQ0qqotKSTYcfViXltWeClHubGIcpGlc48zMEYm1m6npvL7smqCLx8EFJWuA8ValC+WllIFpQeCWnG0zAjKzSovZBIZT6BMBU8QjPpQ4uXjqwo3npAsL0kApLRkukACjNlM2FRBF0mvr+LTpA4E6jQ8CEBSBQuDohSgdj4n2+69XIdYdixKfGVgMRgIhgwaWnSK6nRzzLYFwGitBaUjVkwLPT1cDxV0SUTPJ5VdXASmt9sCSk+k7OZVOC6NABmNkusbs10h++VV6A8lWS6MwjuFMiEINoJTqZtSzZiI4/0eBmPdLVrJhmAuW+SNKBlr74WdGLOloW90ZPzV4FctYz1NoNUS/FnImkqZrcGoNWy4xttovinvmW12MIVYnbhMlMf12NfgUVANC8b6+nE8dx9sEszZ0/jjgehDZUnwuXMkk1JsEgIDUjknxIS5seLCQmPObMkpWovrtSAQGJKJKB9HRtiJ4wj9r1qZ4NzGpVDxI2bDe2Fydjr4xEjGNgn9GcDfSqmgcZPglxZQgzE2llmVlg1PzOoAtWZPfBzZllbLPWlkfFW9VNirsUUQrTEyTsM1xrmmLD6nsO2zpCE2OAmgTJKEUqxca68Vth3mWg9mXGLGBdW5jvS1UiLulwgDliS81to6gKvHlakgAAAgAElEQVSbAz0TOYF8vSNqxkFCwg1HtO/OmK23BYeUSdbaDUd89Evfy+e+4Wf5vmvfxkvdU0zNAr1bGjUcSzC8tNDMI87jW1nAblb1hslFodCZDQFPDzMtqdphbQgbKRWxhkki78lzWFzEtzPZvMV5JWaJovWK1oFcoyXzNZkIG84H/E8kRMw3rfGjkUAppqUE0dNpfY30wRB7vo8aTU4wFd/N9nVw83sl8IltPtiJLQY43teDUZl7FpG5G7/+DO+bYECpRpE2ZGhE2C5pQK0BE+RnMrFELIRKkhMZnRioRExQnVWhyRi4GIzY4PEVsxjWnXgdIIZ1wxF4h8tLCQq0kgl1NK7r/bVzfQAy15mxe/osLggqHv9cGa6m0jqPzktRXZ5Oxc4gz9Fa1Tgbl+cwm4ka8yyXACd8Tux9n+ey0wzYGVkcxJdKwFaqFsKLTC+Xhkm7QnbJsVlXlyh9FHs0RhY/EzAn9WttUxaN2kbegdOQSXnxhAr2nBK0n85CUBUC23lwYlXJNTJSCtNBEkHnNmRztMj8l/K9elqJZUcISnQh3+E8oudU2nqRNTPdlB2jWGIcvypkzOb+p6wXCnglvkF4VWd8lAdf2EZioQgeVoG558uAi4v9W1YS5HkvHm5J0uDBIoj5HpaXLNS6zirgpaynJwWTzR4LOxLkmNxDT85FB/8qoa4j8gRhcY1lUYzCrC6TjC3luTWS0Rg9mFCeWsYUUrLWMzEgrhmBsQQ8z7JZXSGZWMqzq6Q3D2TzkGhMaWUzlIdrVDaB/4nPCIuOyb1oe3VaEjgGexnlXGDAadTcIihkC9UENUr8pkxe4KsS3W5LpnehJ1nLeM8Fq5m6hbGgoho8CIA7NbQOXFNSVuH7Eo0Pga6K19E1mypdtmpQv48spSi9EQImMxbygD3dluxrnqOswxyOUcMxVXsFNQmq85EMEXSc0EruiU6nhgQIoUQyKmYyo51bbD+Uw9MUNx6T7A/pFBVVvyWBZZrgJhN29/t837Vv42cu/Qo/nH2MZ9yDlFf6EpCDBG+9Dljxc8MowdQlGl0GPKOSOSQ5GKNmOfb+PnpS4M2CbGDygsi0wlpUp41PDabdRnXbuE4WRFdDV8fNgnX1fRmvjUrTurzuZjlmoSfXY57QEaenwYhkawMGY9zBYV3Ow64KOSM5gzs6xuRn+Xr7vWnvrcAntnvLbxE4ZgLmILJNtKl3TzUrLGYYYgYggqFj4OO9DMIslUyCdeFHsEX3ZoZUlgmO5h5Mj1c64GmCiio0O6PAhAFOKAT7SCkPE6judfBlJfiKfr/x2PJys9ujY3SvhxuP60xR00cNk+uESvO8XUNgOnknGbV6Vw91ec/NZnUp0QVriLqPVMDM5EUDCPa+tuPyeY5KM8mSxaxMrWsBJww5Q8bEK/CVBSTYjOcQA7VoxuqrIF2Ql41QY+hXHzND3qOKUvzRQpbHF4HBFcumygvLbY51F7M/8Tq/7bGRRUaPCvR4WmszJaUwxMT00GGcfD+2U9OBVcB1RWPEuPCoKi6kSgK0edNKAC3YoqjkbMa5BDqtVL5fS/aEshK5/EIyJCos6t6Js7dPTK0C7fOiHvsqSWrVcgJIXxlVKzXHQLoeSVpwR946lGqCITXJqdqKZFSiPJT9FG2D5k4qJrSA4JwQoU9tXTBYDVpFnQ7Z4YzJuR698UTwSIkWtlMm2VxdhRJFKUFZlJ2Qce1R3S7p3oTJxUXMCwcyPyQafTwWtmfoV1kIpYxaf4YX40pfVSSTuRKIUlJGmsyg224CixDgKK1lkdQ6lKvFbd0l4hmlW5IJUCF4Zlo2Aa73vBOswIesgS6EgSVilQ7l5kkeNPOKCVpkMWvovVyzTgd3dCSA+iDdoHTMollcokl3j8E6bLYs+JbRWMbP7j7V8QCXXILDY3wkjWDxeVFjBn1ZSAlQKVy/jblz1PTl8RA1HJHsGsrLZ8BodLuNPx6gxhOyvYTiwS3ZPHS7sNfipe4pfjj7GD9x7jf5IZfwhc7jdRlWWYd2TmjunTY+ZOtcO0VP0xCIhzlo/xA3meKSM6jDAcquSCAfLXBCRlN1JCOlOh18u4XPQpXA3TOH3mv5A7JetFpoEEBzp13ruc0TXADMyhK+35MSfFVh+n0BWwcMnsw1juT3wqjUh5/3WFNKfQj434AO8IvAX/L33DBKqU8APwpkQAH8Ve/9r/7bvn++vTcDn3dqqkmfy8444G7mMjyxFCQWEnNYofD/+Dney266HuCx7ABzmRQfcEYy6au4y4uL+z16LE2Jzp/c0cemlSzAlT8RgMhCZE68rrYxmAcp39u+xjWtjz/q1pz455xUQFU12Q6Qckpkhmkzl53wdXakfm9NjZ/DNBHwCN43Ao91eceL4rNT4NQJRtr8bqkxEm1ELKM2jZ7muLKSiTEv6vMT5oVcI28Ju3uL6NI0ZcW6JDYXiMY+abIeNCxBQB+PRDiyCIFvwDR5F0QqQxCl464vGJwqLZkSHwISvJMAqRUyh7oJeGpRtdgPUd9uMJHgahqwT3EnGsaqSpNGDyYEgiovUNbgrGvwOd412aTBqL5+co6hlBAXVRWCRa0luFBNoCnNoY5HtI4d2Zt7zC5v0dqbolxbdISCCnU0pzVK1d5iqqhEgykxkBj01W3S5QdR505jb+yQpomAtNttyVyFjIZQ7nO0MajJjKSSjA6Jges3SDceQq8s49sZ6d3hic/wlUVPMwkWZjk6MajRlKSsBNM2y8mOZPEpl9q0r94Vq4hWJsG5Uk0QEwIgX5ZyfY2WRaws64BU9cJmwVqxWynKcJ2EWBA3X74qGxJCaNlhQbGSYXJXa1jVAbNSEsBAGHe2LsnJ9WmYemqaY4syzH8JejgTLOTWqrAfvce2ztM+FCCvGc7wRYlZF38wu3+AWVttyuo2aJKlqWxyrJPgGnCrffTBUO6JkGn21pJ+eYY/dwq9siw0f13inSN9cYY/u4le7NPa00zNAs+4B/khl/C/3vfrPNp6vJmrylLMpAMjTU1CxrnlcJ0UczjGzCxulqOs6EEpL8zfzt4Zmbci/jA2E8p9RjfP57mMsTifVlayTnmzKfM2kAlClk8laSMCWpbNXB6D0Zj5jxjPiKE7OEYtLaJzmRPM7jFfb3X7ceA/Bj6HBC5/GPile16zB3yX935HKfUY8Gng7O/i/XV7bwU+77SYz++K9w5xw5HUriMG5Vg0edTM1No8aIU9lEHVgKXnSh/TqfzMU9LvzaiE9/pKyk9mZanJDMT0LyF4jhiJWFKxTsQLs7QpX4DU6UPmR2mFGwewZNS3mTteF+ro83o8dWAVf/9O/fZO/4uPvRdw8Nz/vPMn+yhYFIR/nnhvvRBq02RYvEN1s4BH0CKUphRRjdlrEX9UDgF8xjJh/L46I+caVp82uIMj8E5SxFUp8vahHIezQl+P10+efPt567lAeM4AlzoT5E/IIkTrFHt3V7Ih4Vq4aEyLBNfu8Eh+D0dNSXEeZzVXBmU4gkcfZN7BXoXyEZp6gYuYI/fCVxu5hvhZ8bzmxoHudGQ8KSWLTAhUVCjvKmNEP2owQi8uUB0eN/o8SsuCNU+nh+ZcwvnML9CuKFh7ZpvqxjbtqqK6s0vn7Gmqm7dQzmK2NoV8sL4uZpdLffxwJPdaR8pAZmUZkoTs2Zeg18VsbsBwDO12jYOrWUVR2mDnjixYxwMZK/0+ur9A8tmX8MtLEJXN5z4jBn1+WspnbN+uP8N5j15fQ712A7pd2lfvCu38zCmqndvgLGZjA7t9E7OxgTs8FJsP67D7B+ilRVHMbrdQn/syFiTbY4xkKKazwDgtcc7X5zEPZvfhuvqyIr1zjJl0UOMZHB7X+JFGwsK98/iK8hph3qjeuCHzCQbdX8Bdv4FeXMBXDnP5EjjH4BJs/MQ2fmlRguW1VfCesquENLJ/UI89l+eoSuzbVZrgDw4hzTDTHN/vMnvoFMlnvgTe1RkvOm1cr8XwsYss/J+fr/slbqaGH73A0nVH75amvNLnC53HebT1OC//+R/jO/7mh2TjUonQn9IKe+u24H46bWFw9nvMLq6RTEp0uyVq4VZU483WJnzmOdS5s9jbd+R9y0s1eUCVQk/XvS5mNKU6OkbPQuYbcEGtWU1njcQIAk5XSgk1PkIt2i3Jts3NjW42kyC9KGUOzTKwBbrfh/UVuLMnDgMb67KheZebgkYx/j3SlFKngUXv/W+Gv38K+GPcE7h475+f+/MloK2UagGr/zbvn2/vmcAnGoDWbuMhKFGdThOkdDsyqbQy9EiozKSJUEUnM0lxlxW+lUrav9MSaXOP4CwOx5J6bQvTyk+msLkmgNyWEeYRSM14MJIJuN+rwXFyoEoApbFEM82bgCHW0jfXITHyulYGlUUNRhIkFIIDwFn2vusheZtCMBFAlELXFQE0Cyv/8HONFlDYras0a9zjQ6kiatzUQLqglVNr4oTdp3ee2Xd+iGJBFJnzRfmd5J7WYUXVNahKUu9m5iiWhPZednWddUunHjOTg3apwuSe9q1R0IppAhqVW8EBQFB+dvDQA6Kumygx6nOedFBgxoXo4MyZcqppQbXRJ719jF/pQWkxeUV5qi/Ym8EM181QL74uu7F2K5QLm2yFagVRvghwDmBnpZRMmPHvrFNnf3xZcfAnnsS2oOyJiGBUbc0GAvy1baQ0YaHqhqAuDa9zwQ6kpcSuI1Oc+efv4Eg4r6o9F+SPvucjlF1F1VLo8B268qQTh23pMGbE/FDv7OLOb6LfuCV94DzVg2dIrmxjL53B3JIg1+7uYR68KABS7/FrywG3M6stXAiGseSFGJyOp3J/5TLWjj+4xdLzd4Q9ubtHsrmOHw5JLp4X0PUb25jlZezubn0uuttFLS/isxSdGG79wVU2//4XGX33B1l67jbV1hLmyjajP/AgC68fs/uRVbKxp7NbUCwl9K4Psd2MdDt4G00m3Pq+y5z6qa8w+q5voP/6EDXJ8Xf3GH78YfqvHbH79CrLV2eMT7Uwhaf3xgjXTQUPpBRqOhO8yZ0R7qlHMM+/WgezyeY6dDvk962SjLaYLbfQlZiO6kJKFFVqRCVZiU2EmTnxnDucUXUzstdvUZ3fQH/1DaGgLy7gd+6gF/uBXp0IyDZqWLVSEWgtyxpv5S+eQVUOu9Ci6meUC4air0X0NAWXICzCVHz1zv23n0W//zLlhsgXqN94EXP+DO72XfyV69gnH8a1DJf+7qt1Wddu71B8yxNUPcPpn34Fd/8ZksU+17//LBtfrsQC4mZO9sYeKi8Yf/A+XEvRvpuT7I1IPvMl9n/oI5z51HW+cvUc6e2U1Zc8a79ynV52mvs+1+VXr7wPfbPN2lc8a595i9ZCxsKdgZiwzmb15u47/uaH+PT2F/nEV7+Lqy+eZfO3YfWL+1BW3P24eComU0/70NJ77gb21BooxeSRU7hUsfjZN3Cn19ETwR3Ovv2DKAedG4NQZleYV96kfOph0rvDOouklhbRxuAmE8zigkAMFhfxsxluNBJdr3aGW1/CXj4DGkwoU+lrQ8ziInYwkIyY0Rx/1+MkM8fx/QnpSLz2Nv7pK9iXX8N/4xO0f/GLuA88BFdvvNNS+P+ntq6U+sLc3z/pvf/Jd3jdWU7atW7TZHK+Vvsk8Lz3PldK/a7f/54JfOqdbXwcU/HRS8gHZeDKQitr6Nnxuai7U5SNPco0R0d7CUJZIepfBONKQJSbg5KwT0P5JkslYKmsOIbPl4XmMy7z0fMceNXPQko6arnMlYkAWYBjVS0BbYNdhvXiol3JbxXKEPNCjs336RN9V9O3Yz/GYzMmlC18/Vg5YeEkUycGhcFgVN4IugyUWsAUDl34RrumBk2G445AzADIhUaIMh4/zje7I++FEq4l9RwXca+a9L7yXphRowlqpQeTKTq4vqvxFJ13BeMynqK9xwVgp6J1IstW90UUrgwWKI1eTSPOVzc3l9mpCDYRXjyBDGJX4CXg097XQauu5BrLgiTX1RugkkUqqlfXgnNAtMnAhfIOcazK98YfFLhEiVZKCK50qdCTXAQzz2xIhqXTEUXyafi7PCXBfn+hwVSF8qnrZvUGAQhaUsGbrqzwWQI29GfAFkWlYL25LlIAy30RKQzyBL4qQ9ZV+lm1WtL3gSkj1gxgTm3Kd97ZpXhok06SoAuPOhrSPloOJR+Lbhu5zgHfgpeyki49amsdPFRLLZKrN1DtNqZwqINj2kfLpHdHZAuBwWltuNEiI88Iq6fdEuuKPA8bBy+MyrIkGfbQwxmmLYF/9FlDB6yaEsB5OhYlYttJ0McT8o0u6UyAw244FFhQtyPjLEpWGCNEAiOZIm8dpCIrYYdDlDGY47FspJTCZQYdvLO8CUFPEpmEYdxqI2XFOJdq2aRFBqTtJNiWppWmEvhkKeRGPOWMlLhtJ8U4x8oVx/CcqFC3DhPSLEVVFtvWmNxRdRMSJYxDU8ArtzZ58MIdrupNihuZzNFa8dntizx9/xv8tr5AfiNiK2XDGjdodQbZWT7x1e/ilx/5BT5WfJLRjS2WF9roozHZUDJSRV9hciGYqFLuZ5cqbCYld9tN0dMprC7jMvEGdFlSl93rzFMYj7oXvbqCeGoZpE+g3kApI+VZErEEkb6VzQdGN2uRd5C2ZLNSiX+YCzwCjLCR52ca3evCgHe/vQOH6N9R2/u3pLOrd3jua6allFLvB/474Nv/v7wf3kOBT1OKaB43aV45h+rGDjiL7nYFD1KGqLvbxU4m6HY70DBTzNYG87gflJJJviib8lTUcol1/FLoqWpWBJuDUlhFSSLp79Dq4EIHtlgIQGLZzKyuBKZYKfTvJGlwKYWoN/uqYvGtGTjEKytqvhAWlkI8tFQZGQZatHsCwydihiINOjK+app3WNzmWV2RlebLiuywIGkZ9MyibIopHF4p0kGOmRp0XmFmKSa32LYoF5s8CB6GwMzMqlrBWBcWrt8g2iHEhd3PYRFIU2HabK6jlcJrXVN3VWmFhRGDnxAk2INDTGVlRzUc1QGMyQtwlurwGN1uNdcgy0JJQdfXWajelfSXbiYuQlkpauqoNBEvLyRgax9Z2SUWmiT3uESCvXTqUBaKXAcKN9gsBK2JqheiJPfYVILKaqKobt46OeZrbICwe+I4V1qRTE6jrK6DLpAAyMyC2SagS4997SpmfR3/+lvorc1GJPPaNnp9DX99G9IEe3cP88BFKaOkssBH7yuvqJkt3oQJvtuSTYAP0hFdoWeXPY19/Trlv/ch0kFB1c9Iehn5Wptkask6Aho1o6ngQY4GQm3eviVMQaVJH/4w+QObdG/nogw8rkQdt6XEKiDQz3VpMYWTzUyVNZuMLCUbeWYXV+nezpmcbrGYpfjhkKqt8b2OTHuVRfy0RG1ZtdMGf+cctt/GnNmi6hpaW5v41SXU8UgWtdEY9dJVXFWR7i9KVrKVCZNnNBbz4ah4nqWoXpfZBzZpAelQMDy2k5IEUUifNAuuHwi9ObIN8Y7q/i3MC7dRCz3M6U3ZPB0cCTB5e0piNOnSIp3T67hMApyYcfJGYdty/9te2njeFQWu30b7DdyVaxRLiQRMk6kEIGsrcDzEtiWgdYMB082M5EtHtPc2aR3AG/9BQjpMaO330Ddv03+xLf23d4A7HmDOnaG7WzF8aYFrq13URi5BiNbYlsa+tMhv3u2xcvaYYqGLz1JsqjGtFL20IKUXK1gpX1VcffEsHys+yW8+8XNcuvunGV3vsrSzz8qz2zLftltUqz3c3gH55U06x4tUHRm89uCQ6ccusHjfOfE8K8ScVs+CxlchLNZs+yBYCM3knp/HXEITxMwZHbN3hJl10Ye63vwBUgbXutmsz3K6exXJ2OISRfT1Uu22qJnbwO5zDre+AvdMCb9P2zZwbu7vc8DOO71QKXUO+KfAp7z3V3+374/tvRP4zKs1Qz3o6t2AUmGBU0IPXFiQWmua4qdTETAcT9CtlkywVdX4EBEWxJBG9lUF0ykuz0l6XamfB1yH6nUk6MkDvb2QTFMdQM0fW+lrgbya9ZKFQCT6P1WVqBMXDSCXXJgL2Y0gsNgOtMoAnPZGC5C220YVJRU0368VYIIAWlMWBHuSLhupzcztcuq+1phBjjEKNckxk1ZjyTCeiWfZNIBBZwVqZQE1KzFDERVzmbh6q1nQStESVFbj8cmyX2whcCPuqkN2TodsWsxC1Fk162q9IN1fqAGX7vBQdmNpIqUUwKyvScYjsO1qUHptkZEIA6Moajp/zXqJIoLxGCP1NwSTycShS4cuk9pdXjkp8Qll26BLOU+TNMFqdMfWZQgSS4cpTIP5urfNZ8cCPd/kTiZMp4Mhogpq2nMTtPWYpUVUlmJ3d9FrK1K2m0yxdw5Jlhaxt++QnNpCGU15eplk5w52so9qtTBx8Y14irKAkK73eWCC5blo/+Qi38/T65hH38fRmYzVvSnj0yntlqZcMNiOxszauNTU5pzaCPNJtzJ0uK9ax5bpRkr//3qe6sOPMDrfYuXOKcmA7h1QdrekjOpDNjH0mW+3ZIMymdE6tEw3U5Z+7kXyP/kk5aMXSO8M0NbLZ/S26n51RtWaRr7bluNxDtdJgA6d7SEkCZMLS/S+PMK3UuhvwBvbmPU17N6+4KGOB2FzkeK9YOB0uyVZsjwHv0l5dhmbapKyIhkJ6FdlGbX+TnRGX+qjSKS0FdzbfVWhlaJa6oBWmFT0d8xIJBjcwSFMpphWJlmjELxHppf1Hts2pKNS7mfvxeSznZBsd8gXNd6AHY3hqUfRs1LwP7oJrr0R0HXrheugDRfMBXY/aOjdbtEGuLNXg3zd049BYdGlY+VVR76kKBY7DC9b7FqfqmdY+apndjthdnON4gMTis8tUvUMrb2QXe915FocD0AbNn8bRje2uHT3T3PtE/+AR679CEufV1TbN+txbwKtvFhKaHdauESgAcoYyq5icnmd9q+9SGd7WUDhuwcyJ2iFm81Q+4fyeDRGh/un1nYL0iUqTYPNUeiX8ZhabiNsLlWSYGczyRoFQoavStq3JyJcaBdlQ2HFENufXkePCtTiAmr3iOKBU2+fC96F9l7D+HjvbymlhkqpjwKfBz4F/E/3vk4ptQz8C+C/8N4/+7t9/3x77wQ+8PZSDtQAN28tqiu6DibaQBjRJFFt2Y2aULrSadp4No3GRKXjegINmj0qSXCHR/JcYAap4bChy7uG/hzTn/NMK+Ua0G90xVZGY6NXV1js7wUkx++urr8ZtCNMYzsRd/4R6xSYVhGEW9f/I42yqmoPMBC/JVWXcXT9fQC16JlzqFt35bkgjHhCtVqJno/3XrxtJpOgSRL0baLIl/cCNA5eN7rbfVuJCTgBkFVZhjs4lBKInRNUbLckWEyFdh2p7XqhV6tfq05HdqreY1ZWAtYpbXBgSuPGE9k9RhCoFjxHlCxQadLstCPzKQZK4ZhUYDe13zgE58gigyoyq8J1zMKx1uMiZhPmg7/4fJbWQmnz3lf10I/PhSxU68ZRjSeL+jz1Z2oRg1RlJcdcVQKejHT1qsIsL0FZovt96f8sEypvrwfTqZRgJ0GNuy63+cCIC7tdJxlKNZcl6+xZXCelfyNH5SXJzNPZGVO+b1ECxWkZSrZz0g2x5BKEJ7tvHDM9v4h66BLpjX3SzTNwdw/32DokCb3bBcmwwNzcoz1bRg1GmDKAnZ3D5zndqwfwwCrqkQfYeOa2YPsGI1yyDmlG71aJv3mb1nIXPSlRR0OSqJMVwNM1TuPuIbQycc62Fru6IPNJr4dfXEBXQQdpljfSFfG6JaLy65Z79H75RVR/AfXgGdEVygxmoYc9HpDMRPPKD0c1YUIYiw4mU9L9MWp9TRhW40L0cBIJlHwqmmPaBy+60VhKu8xBBMLCm45KzMFYvLq0qc2GVX+BbCQAYJylWGnRuSZK0p1dMRtWxtDdEfHVCHrvXN3n7HGfKz/Q4fKnJ7U9jFlfJbk74PiDmyy9sEf7eoVbaOPaKeM3urz5nYts/VbJyst38b021ULG8Hqba9/rufALFn0kHnNYoawTymarX9xneaHN6HqXR679CF/94R/jj/7tPyQ4sehAH4gQ7YMSVZR07pYkUwGO93ZKqp6RTe3uEb4SAkScS1Wa4fJcAtJWS3S9AnO1JsfEebooIIrFRjuiiKOEEEw1EiiEbLe+thOMgwf1nOknE3yyibm9L8nI23cwZ9ffNlf+Pm5/noaO/kvhB6XUdwNPee//K+A/AR4E/oZS6m+E93279/7u13r/12rvDcsKteqfVt/29n/E4CGUvpKL9wneJi9lwp7lgtUJ2isRkEllsXf3pGwV6YQQxApd/dh7SQfX+jztlkxwUUwvNmtFWTmq5Mb0aGxB3Kum/sYFNwolQnMDxeNwDh68SNRn8YmuMTKiUqzEDLGd4l746knwa7jBIvMBYJ4C/rY+fIfnzPq6UIsBOu3GLTpimuYB3bEE1crkf/PnHoM/52VHrJUEpXFyqDN2c/TxWS7+WTFwTdO3C4GVUkJUrazGZXnnRDulKGQhr6wsPGUpu/J4vm8bR3MMMu9PsrziGJtnrsU+WludMyQU/JiIVzYBJFCrXccMJFXVUFjj8VTiUXaCXhv7JGYh5zN2kbZuTBjTc9oirtGEUVvrUpqNQZhS+MlEVKhns3oH6zaWZexWTogA+4eoXpfq9h3xKoul0HgvmGBaGgUV4zg+vcHkwhKdZ17GPvEg5ktX8A/dj756QzIZl+6T8tvlS3B7F7W2IkrmIfjCaG79kbOc/oW3OP7oueCobkmGJcVyRnt3SrnUQueW5Pkr+PddxD//EsmpLao7d4V1dHjM3R95mjP/fJvjp05LVs16OrdzysWU1t6Mqp/Rfmmb4sHTmGmJ/+I9nxFZjQGLVP6hx0l/7QX4hofxX3xJrs1Tj2Ku7VBdPke6c0C1tYw5ngr9Oaq+JGEAACAASURBVFquVJZrf/YiW79V4loKM3WYwmGmFXpSoEcz/OGxZGVGY1S7hR2MGoX4spJNGTD9+OPYtmbh2kDYXVmKmuZyb4KMgzienKuDcGWdZIx27khAd+YU3khJMo5f3e0y/Jb3YVuKpX/xEv7hi+hX38QOBuTf+WHKrmbp31yDlUXUcIw7HjRZUWMkiF5Zpry4JXizzKAqR3bzENfrYPstyQYnGowie3Of6//jIuf/e4XyyPNakb65y+0f77HxPddkQ9ppozptVKeDvXUbffG8jNOQAfeDIb/4yjN8+yd/ENcSPJJLFO07E/jyFXSnzfDbHsFmipVnb+DWl9C7R8ICnfPjQ2nM+TP4wRBW5V4gMfirb0p3BlYX2tTXo34OSC5dlOvVau5/VVbYm7dOaMSpJMF9+P2gkAC2m4FWJK/ewE+m+EfuR710FXX+DPbqm/xr+9Pvqq3DYv+c//BTf+Fd+a5f/Td//euWFb9jU4jYVQhEIuYBqMUDsZbR44LeN1OHT5Qot/aNmEgaQfy7VN7X//Uc1V/A9Tr41Ijh5mQmPi9pUF6uJKMg/lItfCfDpQY9ylGzXDQdOi2ZWB6+gFOquemjVsmsOrnYVg599Yaox3a7IvgFUjKqS2oSjNz8+Co+ATP12PZJ5pDLIBl7qo7i1JcV84JzTaYiKDznDbMsenbN40XmXb/jwls+dBbblctfLgQQ88yRTEJtOl6aGC9oqBZMXXIxuZRdIp5FORidPV8DLyO0TFdgSmFBeSUL1Mq/uiLXoNPGt1KcMcLSi4amWQozOaY733m/lECUqOyKSJ7HZqrG0OjKs/SPD8KB+roMWAfNfj7IUSeDHu/l//F/4TNQmsG3PEjZ0biUmnnntTDa8AIy9VoYbVU7lFWy5tyTma8XZa8VvdvlSaC7b4DiupyziNCKbH+K7UjWIJYilPeYSSV2FaXDJZq9J7okU2GYmRxMIcyv2bIhnXjyRYXJYfnVEflGm2RsSQ+UQHoqi1leru1IfFHglUalYezETFtQ6vVaWHCupaQEqRR6a4N8qUXywHnK1TaDCxn6IxsUiwqXbFEsARrKBRf6CxbeVBz+gfOkY8fCF97CnlnDP/cy6Tc9gb5xFxbPY8Yl6uwp1HiG7/dxg2EAmSYk58/gUhh88DS69PSvDNAHQ6qbt8iefgxzbQf72AVoZSSjAjUtYGVFpDAAnJdgzzpmn3iC3nNvMWtpzEfez9H7uiQPPs10TZOvgK4eoux5lOvhUo+uFlCV3KvehD7PpUS08OqhZGje2IYHzuNevIJaWsQeSklbREE15vL9qFmO6/eo1rtYZBxNthKUheHlRcruMuPTApSvFjxV1+N7FbptJelsLFp7ksQJcQE488fFB3B2aV2Cg+1bDZ07S+n98+fRCz3U+irH93VZvJ6SXLwP/ZmX6G2s4VcWcW9uc/h9T2JKT/dOQbYzQB0PJYjIUib/9ZCbb6yjKsXSVw1bs4rh/T1Gf3LA+PUlWvuatZcr0pennPtbK1z7ywp9vUPnjmL15ZxkMGTtRzfQ999X21B46yXQMYa7Hz9FNvSsPLtNtX0T3e3y7Z/8Qf7Vz/1D/vKtp3jm5gOMXlzlzLNdejur+OmU/jNXUIt93HIf/9WrDP/IE3T+71s1HCLiDPP7VkkP2gweWqK3PZP7aWkRt3/QbIa8k2u2u9/MD9qQ37dK1TUUfdn4tQ5lI9La3W9o71qCxNGFjsyX7S7ZyOMMLH9xDA9eRL3yhmDv7uzhn34MPvvTfL29++29Efh4TlCgQVK4KmAQotCech4zDTL2JehCrAC88hgIWIoA1oz+LM6BpS7zqCjXn6USY1TCGFE2FZ+ferBrotCcZEA8KC/4G+tPZj1ipiACib2X7EBSSBZAqUa0z7o606JEWFgArAXhOJDgRykJGgpfL86euYxA+N4TlgvScSdE+IQZN/d3rIJVDl8KoFnOJ7xcIdkq63GpgKt1IRL6upA+qC0IIFC4w+JtvRyqUnWQoJxcX7EwaN7rw7VReQltVWMVakuAkP3Ihh6XgCklM2adgItLJ8Bik8v3nszWaJSR397dUyaK18n7t/9dv1+CI2UJ7LVAKfdgo92SB6cDeNGKOjRerqNYczT9qRw4w0k2F83/5/u9KTnFsSFu3yqw56JOUh3HVpBOHC7VpJOAN5pJIJWOLVU7IZ24cE0JnkmJYKuMhmEo57oGr1Yz32KfxSDbSIltumroQzD29FQdg7IZs7WUYlGRjr0Ei5EBpzy6UoHd5kFBNrSMNxN6sxzXTlFKixHs7j7Z/hp6OA33kBEhyCiaGUu9CrLjisGFjN51j5/lgZhQYfcPSA82cHd20YHFFRXBo75PzHDpwmEPj/DmAj7VOEMw2/RhXMv4domMZ5eGYRzGN8i1dakEhT5kjskrdK+LPTys8YfxXtW5kCe0MZhJClpRLGXYTD4zyRVVO3y+DkG3D79D0JOmEvh4r7BW41yTudSVHFxtUeIcvp1J0NPt4Podqk443jQRA9ZeR8ZFnpPMHOnEUbUNaVSJDvPHze1VHrx8i+2DZcobfQFwzzyD/R6t+8aU5YJg4YzGp5rqKEWdLUjGrZr96dLQccGGIrZY0i67DQlBpQmuZfjLt57i75z+An9VWX5258MUfUN3oQvjCWqhI9itthy/TU/eYypN8GWFbWmSiPMLFiAmKrlDkz2Pwp/xOe/CnBw+z1Gfy7zGFSC4n8j+1OJK73WAN2gk65lIFlfds+a9O+2eufL3aXsHUM3vQZsfO3PZHoK/jTKCfVFWghtdBfBnLiaEJp/7mQYmSMjoSBkGImi4XgRjCjeKZcUy2Hx5AgK7SISvdGElcxTcqZUN5onWN1L4Qc01Aqmp5McHhVVceGzlPHQpqsbyWBYyXSKMhPBYDkQ1v99p4M5nLKCpU88FPTVQzwXKeOXr/oz0dDxCPZ8L7FQlIF9lw4I8vyiHhRmoAxFTeEw597tszkVbiP5oWNeYb95bogqBUDp2pFNZxJOJTMjJyMrviSMdy991q9WkdR10Rpry/Bir1annS4j3YHN0FY47aOjMB4hCM5egK2rsmLL5W1nqgE9FZpFrxq8KCsfK+uazK9+8dj4w88idGoKeWj4AyXLGn3RspZ+mFenEY6aOZCr9FJmCPhE/qHlae40TMXNK3POmqLHkFVSTvUGwVM7hWxm2o9GlFYCspzl/wjixCjNTmInCTGUhaN+dicilFufxZGtDQNGLYk5Zl3e8F4KBtVKCsHIc3kDrzghvIN8USrLZ3MC3DHohfEYoAeFFiM9b0b+KNgO608bkIiCYL4q0QvvYkQ0sLgvXbt69IF7PeG3j/aJkkfOdkN1dWqz7L9Kla6HU+XE+nWFGuQBePdi2qiUtkhmYQr5fV6ALBYXGlRpnDWVpyPOEIk8o8pRiFqQ5MqGRx6DMF0WDoVlZwi8t4NqpAL6jTUm/h+u1hDLfbstYGlUkUysA5Aj+tQ5znHDt1jqfvPwlpqccxXIqc9gwoZhkZA8NmK5p/FKfqm1IRgafayaXc/KVBLXYx7YNqrKi5m2FVOFbBlotkqnHthAge7hXXaZ55uYD/NXbH+R/OPU8Zy7uMdkQSrv3Ht/vYvtCfFGtVg10jubVciFkLvCprgMXl4m4p7BQTeORWJSizhzWnfo+CBnrKOHh30kKw8tGzUXJiyRID4Q5t76vlG689r7e3vX23sj4fK0WLSNCS8ZBqyVQXVUV/E6iKnD4n22FqD7PUdOkdk9XZdUYURaF7ChBsimzvNl8FxF8WKKqCpXrRtitUuiAlZDPtI0+TSWO0i7WloOxJybgQyKWIwCk20cxa+I5IWIIjYhhTPJ4zzsKMMyblM7T6v3cDRvLPtAIQ84qTAwK58JfM6lwSVjIZqFEOJcJ80bXTAUTjCAlC+awLQGAm6zJ+MiiTkOZjocbKKwqXLs6SAz4Jx+MN7OjAts2JJOqXsR05UIg4dG5bQJa70/0R7RiOGHdMbd7rfv1nYJJL6W8zHmqKk6Wck2SWQherJaJMJeMj6rAZQpnPL4QGrvXEgDalsLktt69N9dZ1WO6nhTDcevi5EKp8OgiZA1CoN3ZtySjEsjIDgsJRCtH2jIko4Is06SDQgKufEbVb8m94zx+7kDmtY18PIZoqjs/bvtdursWypLR/QssPTemuy3Ype72hGJhQYKtqex6Z4UmmYZS5/xY/vJrLPUfo3rfeclG3SzRpcWNxkxPdelNxEbAL3RQu/vo1RXcwSG+qrA3d8iOL2Bffo3lzQ8y3chILp8hefE6amsZP8uZbXXpdqRE5xY6qIMjUVsOZIZYNksPJqizp0VN93hG+UCHYkHTOvIcPaho73uSicJmSNbKS0ACYVPiIJlB99aMarlNsj8N5ewMvdjHHR6J7UmnI5hELVhEN56IF+DxCKU1ZrmNshm68uRLjV5POpbvLZY86ZHBDw1ee6KVlwTXChMDcmOaLKQxYiI8naHGU4qL60IlL51INViLnsywmyvYboLOhaCRHZeYkZTmVVHh261gw2Lp3dAUgw7/h3+KP/7Nn+fT2x9j87kZ3Zsp5XGLyUpC+W1jurtrmMLRvaUoByll33PrD1m6d7YkGzKZoooSXVboaYrrpNDv0T60mFxTrfYw3a5Q8hPF6MVVfnbnw3z24v08+4Gf59LVH+bUbwjwv1ruYjsJ6SBHd7v0boxP3PO+KPFlRTKu0LOSdCTGwwBuOpPgxgVrm1BhqC18AJVm4R4DXQm2SVvBYp5Q1vdSZegcigxGzIT7EFCpQeOF6GczsaX5PWhfd2d/rwQ+npML1pwku6+abEW6NxKl5LBA+qIgCSrMdTnJCJW2GgwEYV9VNdjWF6VIsMdSirU1gE0lCaoTfHrC63BesgbGSACkgltvZPlA44MU2UDB2wulxVx0Ogu7iDBbzoG1l146bEou9Tn7Zsddiaidjec3D9J9JxBv/PyQKatxPrFsMf/+a28JO0srTKcjO6OqwhcFOqR3TZLUjASVJqTtdq0BU/vUQI0h6uRrcgotUwdUkiVyNRMJENZbSCvrTGijbs6gdB6TlG23T4KtjRE36JYIqsUsXTXXJyf6Ghrgdz3A7gl25v+eq+t3X74tpZYAdiRQs2vX51BGUUUpJQPnBfwYs0dB9K9mW92TSamv4xwDrR4Hd8Quw0QqdDy3vMAkRrKH3tGZrEFRkgzbqPFM+qSytMdd1GSGGbZFGiERGX2V9+rAXqVJnRGcd2tRBKXvQK2fZzK6V16nlz4ED1+ie3OGTwyjiz36V4YiJDh1ZEOHDZgnXUKSOwkKU4XJHe1bMuGnz7wgZaBLZ2BtBVVU6K1Neq/sokYTYb4sL0GSCBOw08buC5Zr8/NHOO9JfuNFlkKAw9kt1KxCb67TfW1PzuXgWOQp4MRnmPU17P4ByUKP6SOnWHl5iF2U4+9fG1Eut1EuIZmJYrnXodykI3YrYAozRXZcYZ57VbAb7UzGwmAsrLm5uSYCmu3egcgO5LlIc3TaKLfG8usF49MpyVSwfa19LxjAHLJjpITkQ80LyUR6FTJCtZ2ao/XGnswb1taGzH4yIzmakSgR+etdHaC6Xcmkbd/FtFvY9SW896R3h3A0kMzYbCbz5CP3w4uvs/Xb6xSLKce7HX5+72m+9099lq/81AZnB5vYhYzZasZks0f+Z/dY++sJnW2wvYxiOWO6lnD1BxwP/52h+JrN3W/mcMzs4hq9525IsLp3gJvIOGnfmXDm2S5F3zDeOMWlqz/Mte/5Cb7xmT/H8o0O6Rt3SLMU3xW7EnPnCGuMWOPQbPyym4d4o+m+ejeUeg3WO1BpfRwqzU7aHHmPLwuS24fodiabZ+9rM113zybKzWYsfPUA38lQI9FL8okWAdEIlo7q8el7Y/n9/djeG6wuveo/mnxHPUFEvyQVU+8gA3prMwDRBLAWgxIi0ydJ6ptFLywIaDPiFQJjxeW5MCnaLaFmzrO7jEFlKbWHETR1+dXlOhCa7zNVU8at1PaNxu0fyufEGyg4xJPnon8xmeDzHN1uBzp4BN6YOmiJrfasiccWvcBCMKVardpXKzqDzy9UUZhPhLN0zQjSva6cR95QdFWa1gKLVFXt1p6c2pKdTZZKHySxz8vmdWWBeeRy6JSwSEc36xAIeKXwLUPyxh3otBtWnnUSTE5nNSvPz2YSMGyuyWRT1+ZNfV6i/GwhL7B7+xKYLvSCn1soZ2SpBGtzFHfpj2alj+7T92Z+7DdcDoq9IZNmGwNOr5sg5kRZRjdmulEvQ0oPivSVG00wBiczT+H9se+q952T96U6lCTtCYB6zH4lV3bkOKYzaLVQRuOGo4auGwP2C+c4eGqd1ef2RZG8rPDjab2w1Qaa875n8/0Rjuv1v/005z9tObqcsvHClJ1v6rD+lYr99yckE1h+vSRfNvRuFZQLCdlRsFWpHGYiAePxI8vky4rNf/QC/pH7OXq4z9I//jxHP/BRVn/2BQ6/5wMkM8/il3cZP7xOZ2csWJJhTtVvkQxmHD6+TNVVbP70Sxz/4UdZeGMMv/UVDv+jj7H2My9w8MknWPutXQaPr6FLT3dniu0mmEGBXcxIDqdMz/eZriX0b+RkN4+5+82bbP6bO0wur6EcdL/0Fvb0OnpnF9aW4c6eAL0Tgx8Lcw5rRb16NMWuL6GHYqXj3rqJvnAOd+1NkRrYXIPApPPjidxrVdD50orX/t4FVn6lTTr2DC5KoNU6lMAqHUkJtLNvJatnvfSlDaV16wQsvbvP0R/7AJ27pdib/Par3PnUB2gde/rXp+w/3kU5WHllyuvfn3HfL0LrsODg4Q7tI0dnr+D2hzvc97Pb2Ft3RAF8eRmyVMC+EXqQJOjTW7jFLoOHllh6YQ/XFykMnxrJGD/7Akd/6qMsvyqActdKsB1D+7eusPs9j7J8bYYzWsqECszMisFtblGlJT/VE52eg5LkN17ErK/iF7pBJiBh8L4+n/3b/zOf+BM/xP6jbdqHnsXXR9z81kUmpxwP/TdXmutTiWyGOzrGbG5gb99FGY3qdETLZ3kpzDclemNd2GUrK2KnEdYVUS8vmyxQ2BTWc0D0xbMWvbCAG09ItjbqDaU9u85ss4OZObKDKT417D2xwPP/y195l1ldZ/1Hnnx3WF2/8sx/+XVW1+/UlJZBqJTC33cGXn9DUoOtVm0rQVFKmjoEOjFbEQMg1e2Cd7XejhuNgkCdx7tKtGHmAXOzHEKQNK+f48uq3nmrNCgQWyu7N5BdfwgivHVSFgiZDz+bybEYjRuNZYLoL4h5JMjiEbAFXqnGbDOC6uawOCrgVOKx6eUl1EK37gfVaQsOZXVFgsGyovoDj9F67XZDMVeqpnxTFNJHgILagFOyKFXdx1F52VsXRB8rSdd7jyqEou3hhAq0SkXp1L+1E7IXrgm8gCjKB6CTBOc9ajZrtIOinUSWNUGPk+9Xo0kNfFdBR0fNXwMvGkF6cVEo8DVQUZStVaeD6nZE60Zr/EIXNZpgd/fq89SnROUbo6Uk2ZJde/LyG0Ths/lMUAMUn5MnmKvdx+9vrnm4rkVR98sJLZ957aOg85O8eL3B3ETGiTZC7w+4F5WleGdRJhWfuhCA6f6ClCcC5R/vYP8QU64LDqIo8YfHuOns7Rmo3yHoATj3rx3tX36eteIJstducbbYIr1zTGtvCTMtUeMZnW4LPZiQBQHMOpMVgs8lwPbb6K0NuHvM6mCKVZq1L+xjJxPWPnsLnxj8zh0WZgX+eIBOE/x4QtrpYI8HrHBZLDfWVujdmJLcOqTShvXfks9Yf/YWfjBk8cviWu+PB+JdNxqT9rq44wG9w1P0yhJ7dh137U3WVntwcET3tXjvVJjb+7jJFB3vV6VQrsl6AnB3H58k6OvbMi6VzEvc3Ws0cXbuSMlrNK7Hs/hlSTby/p+8QPbWDj5NWLzaEeG9+QA6ECbUrKilHZr7y+OdxU0mrD5zQ8QAncNNZ5z+hbd47S/ex+I/eZH+6pPo3JG+eJ0HfuYBPvi3nufFb2z9P+y9eZQl2V3f+bk3lre/ly/3yqzKWruq91XdLSEEEkhIWNgGY+PDPtgYgcDgsX1sj/eZOcx4G9uYARvsY4+3ERghY5tViEU0WnpTt7q6q2vr2rIyK/fMt794EXHv/PG7Ee9lSWLmj6HV51hxTp2sfJn5logb9/7u9/ddmOZe9DDGfu4C3e95ArO7LwiV5+WKtGzzZV30THL9JijF1M4R2ZR2+w7d8PACH+MH1G8N8dd25fHAJwh87DCieXlAcG1DxrFLdjfDKDeoVZ5HqVWnWCrIWC0VZRPb65P5lE2tlnjft38fv/mRf8P7vv378Loj7EsXWf4Hiwz/4RLp3gE6DDCj+BBPJ7m9Nm77O0Qo3dnJx765vSafe+KxybDS/P735KuNnKXIREtdeRpdKmJabfHNsobeSoXaa7uoaCQb45PLzL3wZUpnfwuAHV/u4y1R+NjUYLpdGZAXrrgHjSACJs3hR29mWlAP506rwhCVFR1JgiqWJUnY89DNKVkEs9aMuymF5+P6rIOBFAOTAaTFUBb1SbWUtblHivyaICJ5hkv2e0nmCu38U5yvj66LiVzu5ByEkmP55H1CNs0kz0rlSigdmzwbSD/zCqbdRmfuuSCFnHNzNX3hC/iffi0TbTnbdZtD7TZNXctFJuX0yfvEYG2Q5P39uBbgD1NRc3RFNu0NE2yg0YOEpBygRymm4JGGGmWFd2V9hY5SvM2JG1mN0RA1YfrHSLKhbLUkk7PnCS+qKFb7tiAKOt0fyfm4uZZfH+OyoFQYopQiHcV41QpJt5cXirpSGjtkA+nBAbTajvtgsJt27KHi1EzpnY1xsQl5qy36+kdEReWLhD5DdDJ5elpQObE5V7BlY1qR5zth5Tmqr24eaq/l03FWHPljpG90dDpXv+jYjPPLsvPqsoeC89dIuz10uUyys5nHuXjzsyTrd5x3zR7+iWNyDq/cQE9Pocol2UW3O3IvlYriw5PtZCEv+ieLubX3aE5v3UdS8qAQcnC2zMwrV9n+wBLKWo78eo+9BxvM/F6H/v3zVF7dYHh6Hm+YEFzfhOkGV7+ryfve8xKv/L1HOLjHQ49g4cUGt7+qxLFSwPVvbICFYz9+jbUffITlnz3P9p84x/xHL7L7R++luJey9m7NH3n3i7z8vz5G64RP8u4KRz4zz+o7i6yUQ65/Y50TP/kaN75tAW8IR3/mPFt/+iwL/+kiO990jtlfuYwtFbj1nSvMvTSidOIY+6fKNC+mDE7PoBNLcRBhpmuyIMcJeqYpKFksY9C02qhyicGTpym9cI3eV5/DH6QkJY/K5V2io1MUL2/IxuHMCpy/hDp6BHP1Ov7RZWw0It3expuaYv9EkZkXdrBnT6Cvr2OPzAuK0yhDnIJR6NRIAeDiKGSAZ/wrjS4WSZamie9dRBkIP/0aoxNzHP3tGO/0cf7ZT/0kxip+5C//KDq1fObHn6L8+JCP/fy/YDtN+B9+5C9CKlll3sy0PP9UTWTnGkF5Q48kFP4YiSG9eJXuH3+CwYzO1W/KwEK1wNXv8Zh+7rg87kmrcL5e5Mr3Bpz+yBJ6mEog9O4+Kk3RczN54GhS0hgfSlsxce2ISNarJaiVSabKBDc22b2/mBc/O2mPP/mhv8Ct2ynee3zO/H4Ze2YFb5Sg9lpYY0hOHyG4tUN8bFZQpn4Ml28IF6rXB+tag9YpigeD3PSQh++R9qGbn9KCcH38l664FleUUxz2vuk+Ci1DVNfEFckyK28l3HnvPI9/9yts/Okmd97ZpPXOIXzn3avhV44343hLFD4AmWT7sPRYSLV5JR0GAjP7WdCfBpyaAWThsFa+Tk7ehrF6KHsMNTaZgzEvI2/T5FRnUThpfXgXj0OD9LjNgY/wIvLX+SKiOac2ssaTlG1PsnZs6naZGnKliCc7ZQ156yZDVLKU9kPV+6TEfpLc576Xr4wLIjXxOu57qxRoecz60lKxuSJu3LZBKSzWFW4afDtOrZ9USGnJ5Mrep5pY+MfnRI0Jd5nyzL2PbBJOd3bwajVMpKRNODON9iJBLfIPanKH5hydyXx8Mkdsa9wOeYJH5nLOrMvAUq58VMbKZ7au/28ZX1trUWYcIotVX/CZvvDaTyBHkz+fKBLzh1KTDx/JrpL8JaWybC1XhJdKEkI6O4MeSAGDJ0aLulCAYgFdLGB9j+KuRBSoorjvZjwHMhn7xDX7UofXV6SVgKCXYEsFwq7B9CREEsB2+4RdWaD9Xort9fG7I0EUBgPJ7fItN7rTIqnGkfi1WAbIZxf+CkqJPUCaim9Okoh9QSzy/Y1hnbisySpI66n871SKbIASR0ZO0/y5/EiI2ypJCTpIa7IQEvQMFAoEXac2KhXEgLAYwv4BzM9K8OjuHmpOYhP85hSjmqZcq0ohbLSE05ZCuZcDX5A3GJtAOoRg8ii2UtTxZdJygN3bxy+VsMMhnnGbLmOwvR5p63CqZdbG19UKttdHj1IX8wFojReJGpW9Ay5ER1j0W+jUUn11m+GpGfyDAZtpQiOzZug5dZND2m3g5xmCIC0rE2hM0UdF4w1GllGnrFN3diOIS4ey67zI4reHYMSg0hvEUtz1ByJlT804cNSNC3+QMpwJUPUatlwkrRWEyBwGFPctXnfETtpj1nNho12f+lV3btxGIeeBayWIvSfzjXXKNgWuaFE59UEZZwuSiSG0m6t9p9DIntTxO+UFZL4wnnKBxk7KrkGPDKVdQ+RSS61W2L3wS95nf2iHPbxB++/1eGtwfL6UczMw6bKbfN0TYkgWGwkPjZ3c0iBOx4lDSaIE88YNaXNkgZmZu3O2ABeLkvm0tkHuspwtPJN5YZ6HCkOie5fEKDHQeWaT1UomObdQZMZ/1V94dkwunnSAdocqFAROffQemaTjVG6orAaz4oCqR/K4+vTnGYaG7wAAIABJREFU3Q/uWjQzMl4Sjz9XwclAs0VeZYv6xPcg/edCKDdh6MIbs4LRtZRsMcAGHt6mxCcQjAvFSd6LLYm9/uY7mw4JkZvd+mQ8zNyTxASW43/3OZlcM1fk7L27hUGiLLRMvvMzh/hK1qFxQiZ2d/AoJn3jhuNBhU7CK59XZKk6byvqYkEQsGGUT+5jwrpT94UujNLt+LJWZG4Wedf4VBNFlfLFlyW3vnekdKUVO9/7JCjGXk0Tt55ORfaanav5j16QazXJFYMcMUQryc86viQuv1qUh7YQoPc7OfE6I4a3Hl+k9vEL6HpNXqPXgyDE9vtSPGZFdIZqTrpIw7g9kMTc/mvvYPmTPTonSjSu9OicKNO4cACjmHihTrDZJpmr4W93sJUiut2Xe6QQCh9rtoa/cUDrbUco7CUEz5wn+eoH8X73JexXPYJ+7oKckxNHMbfW8OZmSW6v4S8vkW5uyXt59Bx6v0v3wTlK/+V50q99DBTyHO94GP3ca+hTxzHXborgYX6OZPU2/tFl0o1NvNkZaUtVSpjtXTh5DHVrHRbnsLfWZFyePIbePcDMTaF325hmHRUnqHZXWqaDCFsM6T4wR/X3r4phabfnUs8j7DDKW7EZKmOTeHw+J855+rWP0TsSolMo7sZ4/URyuvrSHlVx6mJKhJ+FMWMfGHf/pLfv4B1bwmxsSTE008QWQuzN26SPnRMloDFEf69L+lMLlP7L83j3n6V1/xTGV/zE//aT/J0Hvlaigdz9ksU7oD3840dJFhrykkqJ8rMzlHZ0vSKeXBkKPRigHzgnhPpRDMOIdNcZOZ45TjxbJa76pEVBdjKrgPqnb8j52NsfF3WNupgTFv18DtS9CFMpYD/3OtEHHgfgd//Vv+T9R5/AvOthwje2pK2lPbxmQxDcx04RNX0qawPiqtz7hWcvo6uV3KlaVyvYUYyulDHtTs41Hb7rfoK2xJ3oYUJakvvcv7Sau8Znbvrpux/H+IrCRg9TleJGv3wZmxp2vvcJ9LfsMPehPsntNT5hP/rmcnyqy/bpRz/8przWJz71N9+yHJ+3ROHT8Gft2yt/DCC32idNZRHXyuXkDDG9gdvVp7kVf668ygisTkquqxXHUxH2fWZcmHMekgTTG0hrJDtcfAIwjkcwJifwguNmZOTiOMmLiqzVosIAVa0I2VQrKbBgbJ9urSBNg6EoG9zrHlIUWZuTUvE80p1ddL2OKhelndbpihFZp4tuTmF2drHW4i3OCwn5LqO8PKA1EMSMJBX1kee5HnpBXjP0UaMEUwwl0dg4fkQYjH/PtWQy4rIaOvLqICJZu3OoCJAPfnh8qSDEm5+VANY4ERg9yxCD/LVULC1DyiVs26lAspZZIcwJovnnGQzyz2q6vZyIqEql/Brg0uttaqS/70jyekomc+Vp4WkVi+B5xMfnZIiF3iGisoqNOM4612U1ciRHa3PSsRTizgQyFWTM+53P5YVQfkwWHJPo45MPislaoMGAdgtfZm6ZFZTBK9dQzQZmZ0/auw7tSvcP8ObnciUTqeGNv3Qvp35uH72zj+n1Bd5Hihwbjw5tMvL3kSFn7rj6j5/kzF98ntt/9WlO/Nwat795mYVne2w+WSFsW6auDOgdLVJ/o8eoWaCw0SWtiIRet4T4u/7+BTqnDcd/OSau+wxmNHM/9ypb3/Egs//yOVrf8SRWK2Z/Z5X2k8vUX94kOj5N4eoW8bEZgo0Wax9con3GcOK/xWy8vcD0xZTab1xg8zsfZO5nn+Pgu55i9rdusv2+44QdQ/3zW0Qr0xTf2CI+OkNwY4vonkWMrxjOBDQ/eZ3NP3qKuZ97ldGTZ9GpwX/hMurEUdLXLuEfP0ZycxVdLKJnZzA7u0KKTY2MmYVZkvm6mKtai7p0E04fg4vX5FQePYK5uYa34K6JKy7MYIgqFtj6jgdZ+PkLMDtN56H53B09s4TQI4PfifD2utLmjkbjseMKdhNFpO9+DL8bC0fo8g3ip+7lje/R3PdXrvPGTy2Tppqzf7vF3tMLHP3Bq3S/rs2ln3oENfA499fP8zfPP8OPP/H1ObfHq9fzTYFynkS2UhIX/G4XFuaIlhskFY+ooYnLgqYs/PJ1rvzoSRY/mzKqaUZVGbBHfn2Nq392mZP/Rfg1uj9C7bdJ7mzgLcxjj8ySlgMGi0XisqKyHgsZ+PU3csK+dmq01R98kOUP3OTy7QVs1+fsj7zIb9x+kQd+8sOs/LPPo+dm5Fz1Zd1QtRpmewdVKUuROhrJz9xcId5OpTHy4x5TrviavA9oVFFJSnp7XUQ1WSYjYL76UfzuiLQUMJoK8UaG7UcKLD3TYfPJGkc+8jqr338fhT3LS//qTSY3V5ft04/80JvyWp/49N96yxY+b4lWlzXivIpWuX0+1uRE46zY0GdPSr92MJBE424PPTNF5lBquj10UdKPMbJjJ46leOj3cxRGV8rCcajVJPRvNMpJujaKxpJGR5ZW5bKQZwG0QudF14TEGgQSVwq7ui6IQRSBao+RiDTNPSJUGEK9Kgt8fwDlEhlPCE9DtQztrizycYLZ30f1HG8oNZI2niTibeLaO+nanbECYRId8oaHs6AyeDpzu1UKgiCXf6I9qFZk51oqYa6v5oWMCsOcU2STBF2pSOskDNEPn3PnwSE3rjAAQYgEDdIUX7ou3jCOMG6iKCcnK08UM8Y5qpp3PYbXqJA0CgQHYx8aTA2VGpJagWB/gL24I58jG0uuQGY0GvsCuUO5JOwMYTJtaR9khGPlyNZ6aQYVxejAQ0WpFDODsZTdFgNUYjBlIRxnJpYZipfzw7TGlAL03NwYfXTjGsjVZpOIXBJ40j3TCi9KxOBwEiEoBeg4Jb3/hHCiKiXSihSw3uYB3nQTPI1uTmFLBcxUhaCjiJaqFHyN3vaE9N3pCj8hg/TlRMgXPzh0zgBmP6e48z8+TWXdEh2fwSronChhAhhNKaLZkKiuGM4VGcz6WF1jVBeb/9KGT1INWPzZF2n95MP0lkJmfu0q+umT6OkpKhspulKWVpmWzDEsECeMGj4F36O7UiJshiz+8+do/5Mn6B0JOfGxHdjaRc00qW6keNWKPMcoJuxmflsJoymfQuDTOV5k+qYi3O7xxrdPc+p/fwVzZoWgZ1FH5jGBIq4HBEePMDhWpxSfZnhsiqIn8TjpVAU9HJIemcXb2GX3Wx6kshFT+NTrOelcTzVg+0C8U0ulvB2FIz7rYhGrNLh7ae+xlP13nGH+EwFJSfhj4tI9bk14wwJht4ZKxUsq45eJo32K/tQrUoifv4IZDtHlMoP5kLlPKm5/7zniaAitADUc8ff+l5/lb/xPP0DvhzThlqV50ZI+fIYf/iePsHimg3dVWotpp4PXqIsCancPdWxJFvy5KXQcw16LwuY2fqtNZWoKZqZoPzJP5+kVjv/qEO8z56lONWBumv1HZ9h/eonjv9ZncKRMUlRYr4pKm5R2luB3PofuD9CDAfWVo/TvmSWpeBQvHdD5xkdcPA1UVnt4mwf0Fw3Df7iE9x5pb5l3PcwDP/k0r/35n+Ybf+KrYBjJvJeJRlpt1MljsLEjFh2NusxjjSrcuC3m6QtzwkOsV+DWunQWwlA23/0BWaq73d0Dk8p1nHBgVoUCwaU1mGuiPv86BWtRhQJHN05w8YemOPYbCek9R1n6P56l/Ssn4F/9f1khv3L8/328JRCfupq27yh9EGCsdMl4PaUSKgww7e64ZZH51ExyOQBMitdsYjqdMerwxXgXk62suz//5M7btTFQOpez53+X/74+/DxKCfSpvbyoOHRjeHrsHeSSjjOVUr4YTsjzbWqw8QgVSCtOhZIurHwp0nS1ksvOvyDdfmIhHS9q+vDPsvbMhKJMO0fUQ+89UzJMoEljVZjYENgHTkvRZUzefpwsfjKVin3ptfya6VJxHEuSvZeJ96erldzrxDjSeGZLAOQBm1nGm55qQDzK83lsmqILhdzm4JCZYX6e7hojWfHiClxRDnoTqg0vf65xtMNdbUWYcOuVc+5NT33ha38xebvS0oqaLF5d+w/IVXLK83JLAzMY4lUrY4O00QhdFh6KyHZF5ajPnZbWYLOCsjBqjHkGXmyIK36OUCnnLA7kPI3Cp1/PC/hDqF6GZDn12eT5+IKQWMBbmJcFxil6snM1eZ4PIWF33ZdYIwTc1EgsRKUitg53P8ddLaXJa527KhcLpPutfNzLObZCpPcDQcPu+ttDR4aUTbzXTF2qwjBvfR06H5mFgMsNVMuLqE5vHLYLXxw5zeakyWNiQ5N/fodCZ+dBl8tjFPnsCdStO7JRdO8TrWBuBjZ3SO8/wWBRlKf+wOD3EoK9PubSG+QcxSzmRItbsgr8MXIdS8EEiBw+Q0Gzx63FP7Io4zRzuDcWVa+RczSdetVEkdy/7n7Prq1yGWTp3gHaIee5QaW1/NrVT/OuH/mQxIn4iqSoqGwlVC5ska6u4S3My7nOfKzyMGWH3GcoqDvnWx9+miO/cFXCT93n1lMNCfq9uSpIVK2K7fYwoxivXhURi+OdpvsHuT2AKoQSWJqmfLz7b998xOfhNwnx+cxXEJ8/8FBay05iIDtPWwig00MpRbIyT1INKV64LV4tnoeuVEnbXbxGXXb3nicT/+wM5qCFCkMhy2kvb1+MDfriXCVkUyMKl3Ci3ZIhNdbl/zhFh3AL1KGCKwvDPFSEQe6to6sNMf9qtfOJx1orpmyeR3z/cSEQK6fYcBNaGmoJYK37BO0E/alX8BbmQClGJ+YIr29hG1XU5g7xfSuEV9ZJd/dl19/uHi7EnDNdHtwJgmQ9dA5TDNBRgin4eL2RhLkORtiCjx5I0r0axaQzVeEYeFpIqqEvRUycCglQa5QxmBdf+8IF0DhS9UTbRNdq0opMUszxBbztFmZzO78mKvDlerhFwZubxewf4M3NuhZlX1KcPY154ybe4rx4c/i+SLznmujeAFsIUdt7qHIJNWmQmB1fbCGbeMxbPiIPuSTuzHBMRSPhQJUKeZp9bmqZTdwZegfOlt8nvXT1S7e6Dt0QShAbVxzaft9J05O8IJNz5OwXMouE0SjfGHhTU5hOB91sku7uuTFu6Z+oE7QTuscKpIEirko0hwkUfs8yqmf5VOANkbDcvs2duBdWlzCXrkrRYay0bDI1pNaoTsZxGTku1VB2y3E8jp6YbpLOTeHtSGq559q2/lHhp+jTJ+T+6g2krdLuYmsVVLcv93Ecg++TLkwJupWR7Ucx/nH3HPechO09mGnKKc14Of1hvrEgilBTDWy5iOfa4flCDKTtw/eOdi1TM4rFH0qLj5jpdlFBiK5X5V5v1KWYaU6N88ZqFVRvIDwnx/3JXMpBEKnU2XUo38+jE7L7xrhWri4Wxty4zGbB5YOZzW1pF0VRXhD6x45itndkfrznJGhFev4S3tSUzEmjkWxYQBLsT52gc7zMwVnh3nhDj9KOT2UjoLJeyzc9tt0FG6MKZbjnONG0UAb0KJWW3K0NCAOGD4ma0IsNfivCW90QtH66IX5S0UjORzQi3dhk+A2PYULJBSzdnsLfPiDd2UNXq/m1ADCdDqpYlGL1zArKWpKXL+CfWIFhxLt+5EM883/+DKd/+/uof6bEqA7zv3aLZGMT/8QKdjB094x0BHB8Pl0q5fdgVhAprTjyH16DwOWdVavO4TkWAvncHMQjZ4w5S/LQCnRHDI64cxJbSr/dQk83sUcXMBfewJtpQq0Cl79wCvrK8Yd/vCUKH7RieHKacD+S5OlBAo0y3l5XQuwU413NhBePEJblpldJ4nZbWiaqUQwmkgVJ6fxngCyoRnrzJAk2M85LDaoQOjRl7HtDQL7LzFokWf835+O4x0BQDDU/R7q1LRO9IzMDrv2lUUGQp2ynZY2OQRnhhHiRLIZB15lleR54mnSuQVzzCZ2JlwYG8yF+q4kXBMIdyFQkg0He9jKuOMy8iZRSqGGMNrKIi2rMgJncVQtyo+JEsoSMZOoAYpxmLfgaHCJANknDmCeSFT/uM2TETjsYkHS7KD/AcwuITc1Yqu6KVtvrCceqUoKdXeEY7Q1kh+e4TLpchmjknLeLYnK2ueOMIc2YuJwtbBk5WakxMgFfHAV0O1EJTzVjQmkqRXIm01epweKUQFpBqvLfnTQ3zI+7Ce+TPk6Tv+fM7XIDTgRlsnYshVdhIGTMUklalRMon83sE0wK+Nh4JDYEFZ80FMVJUgKdSLyESiAtgUrJQ1ZNACpV45DMzObBTCzc1qISD7QLn02cyab7PZuacRSJe08qaxNnSIyxjljvisbs51lhkOfuObQrTV1OXnaN3Blx2XqHPJZc8ZC7fytBVo3L2yOLslFaOCHudXIUKvDls7j3ll2PzHNJ7md/LC3PDDcdepu3nnMHdac0CsNcRSShytlmxeZFbW6Y6jZaY2+nsXLyUFBmtgHLCvwsoge5dvl4TFNBUD0hTgOuqExIC4q0KO7UyojKKhNu5OfS09KHS1NIDDoVlFelVjZFTj0pAcKgkuyaurbu5PUH+Tye56w8hNOk4jTnZObCkwnlI2kq6MoocSpQcXW3SYLx4PRvfx9vfN2/4eHPfVjEFm6sma0dafNm/mHZtXHn7Is9ll0b1aiTbmzlGxPri+ePv3QEDloQRWinwIwaHsW9VBDUJMkFOWSGstm99CYf6u6N1n+Hx1uj8EkNpSvb2G4fb4J/YfsDwgzRcRk7gJgDOghZjZAFPeNLxCPsJPE4g7/9YCwBR/gLyhdTNHkPMmmp0Sh3RwbHbdBadniTCqRsZ5DfGCZ3h07bXThoyWLs3KHTbi9v5WTEwaIz7AoCX26CTDYOOfFXRSOSNBUDtv0W5eu++K3sBdhhROO5NeH5ZO2mTIXBBFRuLTaSBcBGERbw9tvo7Fy3PVmMtPsaBmKWVggFFYsk6DBbyLQ/Pg82SUQ2nab4K0cPS/jzQsjkKiMQ9YkuiV9STjx01gTK97GD4VjhlSSwui6F0a21/LPpcjlXZ9lWG69akcK11ZFrnzk1Wwud7niRmnxfk8ddqiasFbUPyPgbjXJZcuahotzClZs5OsuBzCfIuKgK69yzda126CXvTnaWl3XnaHdvXJhl6OLdKkH397pQkB2wM5wE8u+F91bMVW2V1Z5rOZZRxhJ23XlWEPQMUUfjxZAGIkvOJOZ56OXOnrTWHNkft3jmkRaON5YvIpkqLmsFKU2yuYWfLTzDSKJdEFNNG0V4G9vCkYtj6PYwoxG6XxjnhaUpJknwigVsHMtnLRSksJt4DtPvo93nTqMI7UwzMwmyTYUUr6wl7Q1QYTJ+z5OWB6mL8MjajY7IjkM7cRlN6UFLWt3tNl6zid3bl3nCGOj2RXUXjfJixnQ66JlpQSNLBfT0FLbVxsZJPleZLMhSe/l7sOAsNtycB64oNqS7+2OVp/bEPNU6Mca+IGz+ylFRn0XC7dN7jts3N4sdRlTWR6Rh6LLCDEHPUtoY20aoIACnfDRRhH/QIUjTXHGpegPSwRB70CLcmJLH01Tcrft9afk0qvkmIjc3nWpQWm3Lpm44gu09zIF4g+VGqQ61t6kURUor1F5LOP/NRj6fGF9R/0yJhz/3YV75yz/NQ//0w9hWm/jrH6f06m3SI7Nw/pLMIc4fDJDW8ERrDSX3tYkiiS0qFvCaU4zOHsH77AX2PniGmbUNEaDUaph+n2CrC1u7TOllVGzQowTr+5jeAK/TF9d6k8qG+yvHl+V4SxQ+FrDtjrgEu8ktkzRjBIUBWWjMYOAgWgkQzaBIa60UD9rLSdE2QyPsRFClFQl4jt5kRoOuRWDdhGJTuanwgjG/ItuJZsfkwuXaPfIaEyhCVlBplfvF5H16R2TOTRW1EmTFKZWUTsY7IqVBm0PKApvtYN3OJ0sjH/MaJt6r++zj/7scNIdSCSkTZ72u3flzwaqE44VrFGNtMH4NN3FgUilWJhVlE0XEofOGKx4yFGw0yjkVIGhempkSwiFujYXxOYjdhJW5K2uZyPHkuVXG1QnukoTnfI+7zs/dR0YknyzgIC92MhWhUir3SiJT/WW8nOwlswU3ex6tx2N84rH8mFSQZHJoGBdA7jxlkSp5oG+G+GR8LBi713ohcb2A3x2RlEVtNqoKYVRUYpqkrARE8XEhi4w5WkBuauiuXX5uXNGvPOGR2AzdyLgmTHoqucJ5kkydccrca0gorJc/lmeGWTvm4UyO50lHbKXGYzBzYc/4ahkHLb9e7r7OPLmMu3aeEgQya2Mrx8PLkCQ18RyT7y/7PFoBmU+SzseDctYRCvJNEcYKSubiZLJCUgqaiQLSzYsK3EbHjQMS/iCupsTZuPdqJ1GXw3xKuU9T0qJHUlKYkDwLzIbufk/B2jjn5Qk/UNq6KkMBs/vVJborkPktO7d+MEbfMsTOvQ/rKUGStR6j9w5Zze4hGyfjex7IXawnOFFJUTGqS8H+0D/9MOf/wk/z/n/0BKVLm4L0n7+Efdv9qBcvknNGkwRdq+XBo9lj8lmKsumKY2wcoz/5EvHXPcHs83syTo14V+l7Trq53EOPJIEepb74mDVf+pr9oR5fQXzeGoUP1opvgyPZ5jtbpVwonEDkvT/xFEHP0FvwCbsGZcnJa2FXnDL9oQUF1Te6eKsbqFpVdmPTdUlv7w5EAdIUCXM6P4UaJXg7LTHIcnwWbxDLAG51oFGje98MKhUo1xTEyTcNtZA/lcCzmfS09PqGKMpcwriaPSL8BIdwZEjK2rccRyc2N3JTFryhJS2KcVtmfrX4E6tC2J4k4DlX6+TO5vg0xi5XRmnXl5hcSA+riXpvP01aVJTXh8S1QFKhmz7hQUJa9CjuDMXrQouLanErIi1LEOeoLu1Hb2gJ94YktRCrYPeBQr4eZDwRrEycYpwlJoALzxSxWqO7ffGZ8TzhFSWysKhhhFZKpO7A4MQUhb0IoyCtBITrbfqnmgT9BD1I8Hoj0teda9nefj6msnOVEZvziXRiwsnbGRkiCKDkcXX6OHoQYapFdGKwoU9aCvA6Ebo/xFSLY6Qx8NDtAQQ+JvQxBQ89TMRUrzMUT6TQ+ZBMyvf1hHnjxITk7zpH5axVEmR5QS74NBIOli0XsddXsY+dQ1/fQBdCzM4u6tQK9uYa9uwJ/Ds7wonZ3qF46Q6kKbXLku1VcaquyTTqfIxNjJ88QuX4Msljp/E++Xm8UyuY1XX0sSXY2UMVi6iTy+h2n3SqKn5U5QAVJaK6DKQwT0oe+vdfI37H/QS7ffxdiVjA91GdDmq6KcjnxjaqUYeNLWlNtNqu0B6RfN3j6OevED92mvDGDqZRwd8+EBS41YbZafn9uRnUcITZ2sarlAVBcNYXKC3KMcp4szMka+v4iwtiE1GrwnwTFSXEizVUbEhKfp4rZX0thXVq8YYJ3p29Q0R/QaUDkvWNXMVpR6MxAgTjzVQopoX26BH07BSsyT2deS4RBBJ+WghJa+KZhUZ8fRwR3WqF/1svil3EmZNitLi9K0VU36DPnHDGhpr+coXK69uoKELPzRAvNrCeJq77VF7doPryGtUXx218nBXH8G1n6B0RY8ZgYCltjShc32Z4ep7BXIDVghKW14d43R72zAqtM1VRJo4s5bU++qAF950mvXA1b0+L6s0Ve1nx6OZOmyR4K0eJVqZJCzJ+/F5CuLZPunYHgOT0EfFYCz2KVzaxrTaVrYT5X7slyGGrzfv/0RP8xu0X+doP/QDtYz5ebAl6Fv/IY1Q/cUGKlqLw5KKvf4Ti756XDYOjKfTf8wCbT3kUd6QtbBWkRTjxkR3SXj/fcKh2jwt/Z5nq1UVA1ieA4/98Q9abI9OQGLxWb4wof+V404+3RuEDMgllLHqlxru7icd6ix6Na4b6zUhIdDtd4oW65LQUPKqvtkgWGnitAardw/QHeaigXt0YkyxXlshUBvrGhuSylMtorfGub4y5IDNN7JxYt1evtrCBh/W1mFcBgRUpaZrJt50SJuP25LyfwVBs0QcDvNlZl98zorqe4o0s4f6IuBGAAZ2KNDWu+RS3hwxni4d2/PJClkMu15PtDy/LJ3O7PBijIgCJQMvFX35OIkDqNfyDAjb0KWzIrsxUi5jQw+8lKGspPr+KqlfxKyWs1oS3R+B7YiDma/xejEoMlc2ANFSM6orMqE9ZKQbjypiTwPqm5AmVy85p2EO5AFdVLpMlmqtohFmYpnx5m2Sujr95gJ6qgrVUXt/E9gYwPy0J3JOHg/m/UFFkwAvHu1/cbtifMDKcQIHS16/mYbC6VBK00Q+w1mCrFezqQBSH/b60xpyxYGb4ZkDIl4G0JdW5U/I61kVZmEO1xaHD7OyNgw+dcitvLzoOgk0S9Knj6LlZ1PUNaNalkBwOUftyfrl6Cxp1yFqSCDphBkO0sXnRA4zNLyFXF37BcdDGnJohdHYH3tws8XwdX2tMMSAth1gt/kO5sWfoi/HbKJUF2lrxwNFiNprc2UQ/dBbzykX8k8dJV9eFV1OpYDsdvNlpQYQcwV/589ATUqrxtMiUy0XMfBPz+dfxT50gvbmGf3QZsyYkW68pijrtnoM4IVm/g7e8iN1zBVPG3YsibLGA3tqXVrQrVH03tpRDL1AKohFmvomtlGB7TzY1sctRmygos5af7fUPG15mJn2nVkhmSvgHQ/EC831piVjnsG3FTdjrj75wrBtQaUoKIplvdw+5tSs/EDuFy7dAK3qP3U9hu4a6dRtTLhKs7kLgc3DmCKWdPXS9Rrq373hG49crvngN78ET4IaFvzsArQmeOU/h5LHx+9ncERl8P6LxkvOKMhazsYUZRni9IebBM3LtAi+fN1Wc4l28mcdFmOFQrEXaHYK9Ir7nSXzOMMZ6Wkwpb68R3NoBT9N62xLh9g7q5DEqF7ZINjZBKWlvXdrkaz/0A3zyZ36Wd/7Yh+gd8egvKk7+m5vs/vEHaH7sFTmQC6dEAAAgAElEQVTv87OUz6/R/sZHqP7GebkOgU9vwePkR/cZHK0R9BLuvL3E1FXDhb8xx9nvvynkdheXs/B7HjuPGY7/akx3OSQpulZdtYK326F37xzl21tf/Mb/wz4s8P8CdP/3cLwlCh+lJdTNRlHud5NJpVVRpLrK9zl4NEYZn+Kex3Basf9IgepVH2VKjBpQ2qpSu53QerrK8q+mbH/gEeY/u4dq91ClEvvvPMrUi1uYakh3pUztYy+gZ6bx7j/L1ldNM/fsPmoYs/fEHM1X9mFzh/ih4/QWQ4K+IWp49OcVxT1LoWWIKzID6MQSlxRJWVHZSPFHI7z5OSFQ9vois5yp47d64mC6PI996SJr35Tgb4aE7TJpAdKiJWwJxBw1DX6vSthSLP860p6DQ8GGykUN2KzNpNx5HEZ5+rCQGMldis1giNeogu+z9/57aJ/S1K8bZn53lRvffZzm5ZTCQULvSEDnmGbh+Yjue8+yf85j6qqh+anbdB5fYu9en8XnhnSXQ7rLmvkXI4wHUUPQMH8ASRniiqIwgMKBKIbKWwY7jNAPnGP76SYzr/Xgs68w+OanKG5GBLd3iU7MkpQ9ylf3SBoFhqdqFHdH3Pq2YzQvJxR3RnSOF1Ep1K73SBaWCfb2XVvR5t4aNjEOqQjGEthSUTgUDvXR4QT5NE2l/efIqrpQoPu191DcilCXb6PuP8VgsUz5RpvhYoWk6lG9fIDf6jK47whx3af+/Brx0RlG0yHFjT4WGM6XMaGitDnEuIwtZew4+T0raNz/VWrRgwHJVz9MuHaAvbWGnpvBTFXROy1BSJdm8Fa32H98jqnfvCzI5iAiXZiCTpf07ffj9Z2k//ItSbkHKEhOnK6JSkYXC3m7LCd+a2kpqoxIm92nnouKMRZKRUEe4hh/uwMHHSnyCjPoKCYpl1FxSloO0LEhKbj2qVb43RjT6+cp9t7MNPbSdbzTJ0hvrKLuPyPE5c0dmJvBbu6gGnVREjnk0iw28KyRdkKlItfzyk0pelbXUedOYa7eQJ1aEcLr9q48R7cnRbHL2rMHLWlDlApihTA9hZ6qQyFksFzD78YM5wvoyJK4eAydWHFvT8F6UNocEW7ti/eVMeLLlbVJPPdaE9YVeB46O7cFUWml124RRkdEKVgqCZfFdwRpt8kwviap+GJsqQUttJ77qqFySUJFM8THdrru9TSqPYCji1hfM/v8Pro3IEkSvIMO8fE5TKCZfq2Lqlaw1TK6VslNRDO+Y//JE7ROBigj93e54lN5fcDwGx6hs+yjUkGCKutTBM9fgjRl692L8njfUr09hX7hdRnvr16FKMIrjhEf2+0Rv+1eUIrw9h5qd1+4NtNTtM85k1EDQTelfGmLdENcvONjs1hPUVkbiNHphhRe/okVzNYOpVdvY4dD2sd83vljH+JTP/EznPvXP0TYUqQbmzT+wxpqqsEbf+l+Tvytz6CLRcq/dAc1O8vN77+HE//uBnFNsfa+aYazltmXPcK2pbeoue9v3EIdXab/wBFKL14n2dyideo0hV3Y/OEhg1sBKlbMu1buaLlJ+UYLpmqw8RWOz5freEsUPtZxbKyxMBrJ4p55UTi1D2lK9UqAji3F/QRlPEq/pQj6MVHDY/qi9IdHNc3s+Qi7tsHs50qOvzPCHJtn6vw+7B3g+R6Nl3tw7rTs6vcOmC36YkbXKDN1/gC1e4CdnyHY7dPc6hFPlwm6KWHHF0g3sqAMft+QFjRB38COQznCkHR7F29uZqxKcSnPyvfxNg+wjTrVCwX0CMlwaWj8PphAWma16xL4Z0IrxeDEoiRPqA+hQNn/zcC1UEaj3NJelDQq97pJ2138hTmar7YotGt4kSE5OsPc52OK20P6SyUqd2LKW4qk4lF/vYU/qEsA47IgYHMvj0jKHtW1EeUtTVqUXKTiviGuyHvHQti26EQ4I/7AimlZkqDvbDH9egGvPUSdPE71SktIkQtThFtdwiTF1Et47RHVgyGmFLD4mT5+JxJ0KdT4nRGklsJrq6QTURKTLqpCEnULu0kxPZwiRQoc65C/MV/AokPt2l8+1Qu7Tg3j4e20qbQHsLVDqd/MA1dJU0oXNyhWZMEKNg7wtzW0uqhKiXKrj4piCbwEh0g55ZVSh1UW2f/DkMLFNSHDKoVtdVCtDmmnI95WBy1sqcjU+X3xP3HkeG+njS0VUa0I5Vq9dn4GFTsbgKJDdZJEZMVpOvapuVtqD2PehOO62EoJU9CujTQNUYSpzuE5GbtVkCnelLF5wKrvFG/W16RlHz+OScoefrWA3kPsLDo98ffZPsAaQ7q3j5emcj03tvKiR1dKpEUPPzUk1YAw8DG1Inp5ETo9vPlZ2D3ABAHsSpSG6Q2gN8gmnHFh4iT5Kk5IdnbxfV8sMRp1itbCKKZo6+jECLLrkKucOxQbTDkQdCZOJJurXpPWiYtCyJLNzWiACkpjftdownPH86SdFXjQ7ZGlo5Om4Pt4wxG6GKKTgmRATfIL3TmfVFFmLVUbJ2JmWAzyQjNarFC8ORIfoyy2xVqiuSKVzQIMIkHG09Rx+uTvipt9RrWatLlHlqAjY658ow1GDF51agn2nTFpo0xt1UXFJBavNRTAoV4SuxHnRm+L4tCvK2WCrY4gvlmrKxKLk8rtoRR8ngQiS4s8u4cEWY6rAX65jO33RdY/GKLKpZzI7MWW3hGPc//6h7j0Z/45Zz7yg2I90Gxgbqxy+t9twpmTsLWLvzhPcmuNEz+/ztb7jzOagsqaY10VoH4robvkk27vogKf4jP7rP3Aoxz96E1QkJQs4acb6Mf7qFslUZwmCSoxpPUi3p64y7/Zh8J+RdXFW6TwAQT2zUmxd/mcuEU+aloqa7LbMoGiemvIaCqkuhqRFoRDUFkfoaMUvTiPfWNVuBGz0+j2ANUbYJbnhYMw1wBr8RfmMPsHqGvrEuxoG6j+ELMwLbyNgx7pdBW/E0l2zlDIf9ZTqFTlO0AvMi6xXMzjVCgmVbnCZRQLB6IoLQtVLkmhsGfxh5akZPFiubGKB4akpPAjoMuYwApM+uN8sSM3FXS+LTmc7iZXkGIg2djE930qcYrVmni2THF7yKhZQMeWoD1iOC+oij7oULki+VhJs0RxZ4SOEqLZkuyI54qoVApS4yl07GE1eaaZe2eokeyQdbWCHQzxr6zL5DYzhTroYGYbIpXvDTC1iiSSO1+hpBxQWN0nbVagpAg3uwLfd/p3nQC3eB8STN0lm83G2ATvSf5UjSXHIMGo8YjURZuYbk+uXaGAWd+AIEDFJZKtbfGOahdkce/2BK0MQ2yrI14pWqNKhbyFm8lyVfb9XURHawzJxqZA/fEIhsO8fSdxGxI3opbnc6m3ma6hBiPUdBO1sUsWspj5x6hiMc/ukrGREUbleXPzyGxRz6XDY9WWihOSojPSDMSTKWkU0L0qtlwgrchzpCXhg6WBRoU6HwfGmVpaa0lKWi5Nvw/Lc9i1DdTyIubWmiTMTzfFF2dmWlATp9yzxRDra0yvL8+RkV8rRez6JmppAbu6jm5OkW7vYI11vkOptFKdlDrd25fCcBSLgjIIhf+jtcTVOB8mnRiRbMcioc/l30qcvEczRbxyEd3qkkvJtfMw8n3scJhnt2VeUsrzpKAYxShPSM+mJK+tswy9ojOXdOiQKQSCGE4aGFrr+HOyyfGajVwhitZ52zX3WPI0XlzCVoqCcGolraPAg4ovBUexAN2uIGtRlM8j3n4PP6qMTUldG07ttQgbRbLsOd3uy0bEQNhy0TcWdKtLEkVCmK/VsMUQUwqF+wZ43YH4LPly7ky3J0iZL0IFa62o6Nw5UaWStEL7sbSOS64t3KiTrt0Z+/Q4InPQs/QXFWFLceYjP8jVb/8XfPAffYDhyjTFKMbut1j9vnMc+3c94qUmQZxg91vMfzwm+tPH8fuWuCx8pe6Sz9SVCG9OvONQiqO/eIv1P3YcfwD9RUvtBoyulRgty8ZClUroOMWEbh7+SgHyZTveMs7NT6uvPxQVkfM0cMTKTOFxn5htKWvR+x0huD1yDt2NMOUC3ta++L/EIj1UtSq20839HfTivEDI23uoRk36+25npWpVccx1XJN0Ywvv2BJ2Z08WaOcNk0UMqDAQPkBGxnYLiK4Kodr0+3i1GtZa9ExTjNWaUyR3NsREq9vLDdbQCnPtlvToXTCnGkQwGJLu7LkcmSKm10NXKiIBduowVSrJ4up2R4DsTJ2MOTM9y2TYBAGm28VfXHCLsJCu04MDvDMnSa9exztzEru+KVyMXk8mv1Bs2/PCLk7wFuZIt3fEPHJ3bxzG6FpyulwWi/56VVpwmdTbuU3n3JlqdUwUthbT7eLNTBM9coKgPSIt+rlRozp3irRWwOuPUIMR6eU33Dn0xkGik2Nnkj/mfi8/JtqGdzsue7WaqMseuxdevSqmicaQvnFTOCj3nYbLN4SnND0lC7f7v0pSzOY2amkBc3MNfWoFc2N1XOBkTthw+DFX9Ofna2kBdvZRU3UZU9u7Moa1gq1d8DxGj5xEJYa4FlC5sAFakyw0iOshXj+RReeF18VZNhpBHI/luvKBv+h9mXFRDm1IrJGAz6GQo5VSYgw4HN3lsWLGRUBmtZCT87VkHQ0ieR7tyfeZYWGSSnBuZh2RmUROqutaXVStkodiqlIRmo3xc6Rm/DeOlzP5HCpO5PqUinkgZq7gcfNQ5hWWqedyTx2Q1rK7d3SjDtaSrK3nocG6Ws3VQdn9nbsE52qyjHsmflSq5DLlsp+HQY7MEY29uDIH5nzudupCm6Z49aokuLv505uewkYjaS9XK2ANaastOW4HLac0C/P5MleJTjijZ0Wvbk6RrN8ZX0N37/iLC7J5dA7KKggwna4oRT0tBWv2eFtEGt7sTK6is0kCUSR2ACAxOIF4FtnBUDYRjqdmh1EeqpuJYXJ6hHNa1/Ua6daOXLcJH57eNz1G/fnbpBub6EYdFYb8you/zh9597fC1k6OhP/C8/+VP/U134bd25fHji3RfmKJ2ideFz6f0nKu3JqRuTlnxqE2itCNOune/mF+oHNS96ampCW5MM9vbPz0m+pu3Kgs2bff/6E35bU+/sLf/Ypz8x94KJXvbIWrEozl5BOyxeRt9+J/7rIM7P0DkkfO4g0jeOM2BCFmZgm7fofR+9/GYNZj5vfXMbsSyOgfPwq7+0KErNegUSOZb9B+xxLNl3dFSn9nCz0/i7mziQoCvIU5ISM2G0J2dD1v0+3JJOhY/9aphnRFwvPs2RW8jX3hJtVr0O2S3FqTRHTfF7v02+tuB5DIzufKDbCG5OwxgvU9iRU4Ood9cVW4FRkq4Tsfn0pl7DcyGBxCKjIJrsl2nGmKGUa526zyfQ6+6+1MXeri73SwvnAdlB/Ijktp2DvA9HqopQXS5Rm8/Z5T2FnUiaOiGIpHmMxiP01Rx5bQo1gKxkpV2gsg8vR9N6nZAqN33Ee42cPbb2N7PbxySRZkrTC9gSwcpRK22yN87jJ6egpdLhKfPoI/3cBq8C/eIrlvhaAzYPhHn6L826/JghEEUphldv2em9QdcXcy7iKTtWcTf7YQie2AJXryHsLNHibw8JcW6Z9sUn51HfuOh/CvbZAUfbwwILl3BX+/D6dWwBhG81XCO23SR+7Bbw3wjh4hrRYE3odxoZEthvKihwqQ5N4VtNvJat8jnq7gb7WxD5zG9iJs6KPjBulcg8LFNZKtHSonjhGdmiPYH+Jd30D3B1I4pS7gdBSPHbwnF/C7Y02+xJFHOEw3sKt9MQ0tl7HVkvCVCkHujJwfaSpO1qkzU1Qa0hg1DEkXm+hr66hygbRZxXPFtamWhD9kraCuw4R4qoiOTe50Hm7tQhiQLjZhcxtVAjP5HKGPGowwtSIm8PAGMXGzmAfMer0YbyAZdt78nPjnOHWfbtQErXURBKpcRpl0HD+RGkGSkxRbLorzcOBL4V0sYDtSZE96OulCQTYe2nccPA8VFHJ/GhUGgsj1enl4su325O/jRHxk1ARRGsYbH9+X9p9TselU2vukqQg0bqzKJtCpJHVqYKqO3dyS+cu1OzMHdF0qkl/BIMiRv3RpBq/Xw6YG0+0Kly5JGJ09QrBRHReYpYIUntE+6vhKPg5MsSCy7909bL0iknyNkLOjEXoYSYED+cYym9+yTZXy/Zy3p6capDs7ci4RJNnsH0j21ubWeLPsrEqqn7jA7h9/gMZ/WINmg+HKNH/k3d/Kr/7uL/LBpz6Id2Se7pkmf/J938lHf+8/8qee/ma8hTmSZpnKf32R3W9/kplfvog9toBa3xbhjCt+SWTTqSpl2dTVKuhmHXP5mrRSXQGmq1VUs4EeDL6oj9ebcrwFwI4v9/HWKHxyHw1vPFiTWAqgeIQ3M43p9vA++yrp0w/CK2/A/WfghQskb3+QUTOk+PHPk5RXCJTA6s3/fB6mmwy/6hylZ6+w9Z4l5p7xuPpnF1AxnP7HF1n9rqMc/8cvs/Xtj7Dwq9eJ3n4v3aWQmWd9rn7PPCf+9nPc+ltPc/InXiO92RL797akeqftrnB4GjW4egP/+DLJjVtCrnz1KqOn7icshNhOj/TsCv7mAa0nl6j84nN4tRqDDzxO5dnrMjmtb6JPSgSDeuUq6X0n0ZdvoeJUyN1ZKGgkoXsqCAWej0fjhcxMRGg4dYpyxEkplMp5CKlWiuZ/+hz73/Y4s9ttkrka3q01dLXCze86wfI/uMOtP3cvK//iNe68f5HCvmH62S7xUhP9/Abt951l6s42DIbc/tHHOfavL3HnW04x9zPP4S/MOXg/QterssNuNuDKNfzlJfA9gt9/lc43PUrjpSHJyhzqM59HFQpsft/jLPxfL3Hnh9/B8n+8wt77T9M838Jcuw2NZfzXrhM/dIrg/DXiB0+Cp0iu3cA/OZMT47PPaI0d72Q9z5n5idpFl0riZm1lZ608L09+hnFrMfyM7PC8mWlssyGk3FYbEyxw8K4T1P/ry9hzJ/FevoK57yS8fBG9chRvmGBv30E1T6N6A9qPL1H9+Kt5wTWJLGT2DXkb0iFT3osDTBTh1WoyUVYK2PVNbPMUqtOHbg87N42+ukp65hi608WWCniDBN5Ypffu+yj9+stEx6cofOp1WTgzvhzkyMchtWB2ZO23TFlpOPQ3rG/KwupiKFSrjXHkTXO3JN55OGUxDyoMSTsd9GiEarVJe310kghnyaEYKgxcK2VcDIarE75ISpO22/IcBy0JDt1voS/Gh56DNEVv6XwRP/QcxmJGo5y4O3Zhj8U8EiQI2FhUhupO5tpNoJqZRYLSCtPtglJiquiPfZZMZm6phYtjTSqbp9hxGocRKjOFVBNBy86AURy7M/NVpxY1KdYKKpdxx+z65iHzyOx7O4xIMwRKK7jtkJsJJM7s7YM1mMFwjLw7DyibpqiXL2GyXCul8sxB/4XLuc2ASU3uJg7AnS1Bo93jmZGmvb46LpDdNTPDITrzBbNmrLLLTDDdfZ0hTda9vsnk5Nl4vnHbqWkzknmcK8WaH3sFNSWcnmIUYzsdPvjUB/mV536FD5x8GnVyCntrnT/19Dfz889+jG89+nZ0sYiq1Zj+pVe58WMPsfL3XxAuVxCQ7uzBo+fwN/ZJ1u4I+hgGmOurMgY9D9Pq5DxVQNRtoxi78xU5+5fr+BJi2jf3kKp8JMFuxjozPm88+EcxSimG738M/7XrdN97P/r2Fsm7H8U7f43ixz+Pd2yJwrOXid/7GMFvvsi1v/4wr/+VZcqv3eH6jz7A3DObbH3NAqf+zuc4/e+32Py2ezn5f69z/a89wvwvXeLiXz1B8eIdZj91h923z3Py7z5P+jWPcPIXdtj61vvxzp4mWbuDXpjDdDr4K8vYVpv0yjW8Rh2zsYV/dJnkxiq9Dz6K/7nLmO1dOl99Cu/aOmaqSuWjz+KdOUnywEkqV/YwK/Ok65uk9x6HLUmY5swK+uoqql5D3ViDUyv5zgrI1V24nV5mwpiTJH3HEyiX5Vz2+3j1quQJFQr4RxYxgyFrf/4JZv7bBa7+mSWCaxtsfP/j7H/jOY799HnsOx7m+H+8xe4fu5/Ff3ue5i+d59p3HyG4vsnmD7yN5jO3aL3vHPbtD7Ly76+x/w33sPiRC3inj5Nu70g7bnZGUB5rMTdu5yGSZmeP3e94nMp/foFr371EcGub3T/3DobvfZjFn7uAefQsR3/uDfpPnaD5sVfgyk1GT51F3bpD8sBJvM++xvCpewT5e+YV0vc8TvHiHZfXNsCbmc4zlfLgU0+7hSgYB5Y6jpTSSoogLcVPJiFHe3Tf/xDxe58g3d2jd69kpKnFOQpXNmh88hrqmNgi9N/zAJy/QvqOh+jfM4t/cwtdr+Hf3MKGAbVnrqKnm7K7ztpphUIuW1aBL63UeATaQ1cqDL7uIdJ3P0ba6TC4Zx5vbQddq+Jd3xBkpSKy/8HT9+BtHtD9hgdRBx28K7cZfM29FH/5ebz5WYov3SR529l8Uc93exM+R1/ipjy8M8yKoMxwzmQeLy5yIR6b2lknULBRhOn3ZdHTYiCYhVea4VAMDwNf2iG+P27dOCM86/xj8hatXLC8pWuGw7xgVIF/+DnSw0Gq+XMYm3MG5V+cKx4z9E+XSoJ+huG4ze6KZxWMETJdKuaICZC3eeWfyttZKjPXdO9fUDZndOkQjKytaJ2Rp40TKYoSZ9I5EWeSO1hnh0nHBUU2T2Q/z65Lmub/DhlruqJCzAYn2pETFhD5mPUOCyryYiRJMP0+JorGC7xr6X2px7PW3N2H6fflM7v3Mm5VpTnCJS8qYy4zXQTGn2/is2XXPUeLwoA3/tL96JMr2MGAtN3F1sp84OTT/Pr1Zym/eBPT62EbVb7t0Q/yi7c/S/+9D8tY7nZZ+fsvcO1/fgJdrwm6lKboXoSZqY8NV5ME3RAXZ12ryphxnki5ZcRkMOqbfVj75vx7Cx9vHY6Pfu+hVOGclzEB56aPn0N9+vN4Uw0phk4ew964LcXCTguzu4c+soCpldh/aIqpj/4/7L1prCVJep73RERmnv3cfatbe1f1vk33THN6KJIzQw455FAEqYW0JcOyPBQFUaAl/RBgg4AlUJZlQIB+WDZljkyIEmjKpkiJIsQhh+uQQ80+3T29VHV1V1XXdre62zn37CczI/zji8hzbnU1OQSsZgueBC7OvXnPyZMZGRnxxfu93/u+KA66lbJovtgce34d3RuJjsdig+7pCvXbA8wLV2Qy8aWu7vQqqjeUyH4gULZKMyl/HY5ktaOU8Hn8A6eUktzv2rKgQl5UzywtYA9agoB4Kw4dnLpH40LXhzQVaPnkKtzdF9Rkbha7ty9ogUcnwlYoHUdxodWjk7gYMIpydz/hBRsIlSS0fvBJZl9uwU0plQ4Kqna+gb57iF2eQ7e62LkGZBa1sYOaaUBuJZW1uixckdUF9F4b1/AGkNaR3dmQ7/Ept4Lz1Oth5uboP3+B2uW72L0DKSH2Zdy2UUPvt7Ar8+idAyFZppms7JYXpKrjkufaGCOikHFEvtDAvXBpglLczyU8lPwXbZcdn9zV1MTkV4n2258mfvUmrC6h2l3pF806HB6RPbguqaeNbbJnHyJqD0T3JfjA1SqFYef41ALxbhd2didq21OIyr0K4ADu4bPoG9swP4Pq9qW/N2q4Tk8qYeJIhDibDeFYLS9JwOFF/vTsjJxHr1+kEAMvobBECGrc/rqP/R32TfuHKSUI1OI8zuu8qLkZOecsFw+iXn9CDNbKW6CIeF/gfORHwt9ipo69vYlZW5kiXUvbAVIllcSS6mlWpMTdb/brlzGLi9Imewfi4n3qxLFjBL5P0O0Jx3BKiSXCQbuoHrLtIxl74qjQTgoWBLpU8guMGOLkWIGBSpKCyxNERoOn1gSZkUo0NxxJKjYoA5dLxe8hDRoUzQvBw2BGOx5TmKsyhXyEvuvvX3TmlNzzLCNvHxGdOyMGwFpLqss5MehcXiS7cavg4Ll0jFlZxrbaEzd0z88KfCKztkK+tVOMdyiN0gp97jSq0yMYr6pKRfhDaSocwcCJrJZxh21BMudmhbsUeGGZiLGaZr1AyUIbBE5PkJlwo5EINa4uk93ZkEVenqNqVbm2lSW5Nm8rJAFIQ+7pmZPkb1zDXDjH7R9a4/TPX6f7/tOo3FH92k0+/eJv8olnP07vmVNgofrCTdzKPO7y9QLBVlFEdneP3b/+HCv/4kXhTHrUKXC79PnTsC+WJdnGlrRTtSpopBfjVOUSnzn82Xef4/PwX3tXvus3X/ipb3J8/iRbKEEuJmr/al56E55+FOvF33S7Jw9opCVnfGIBtg5Qt3eYu3ZbcvOVMq7bE4LfeIy525LyyYMW8Thl9rW2rLZjn2PviFaI3muT391Dn1nHtdoCP4dBx1f2hJROmEScNjAcChfIe/iYRgPX7WHWV4XcvDAvUP/8LK4/hLmmVC0A9tpNtF8NsroknJreQAYOr9FzjNzsSbmqXIKBTArT/BUVRZJiqFSmBmEh1Tb/76+g11Zw1YqUrA4G5PsHRPFZsp1dGYAO22j/P5dbOZe+POBBpNHEMXZvH51l2KOOCOL5QMxlmaBVg4E4sjtJF1T/8AqZ9y4LJHBdr8NBC2c06vod8n4fPTvD8OmzRL2MvBJRfnNHBPxLCdlMGd2soPtj3AuXCuXlt5GbffBHmEB8gFgoOAf3+ilycxjU4xevCTp0dg2u7IhreJ6LC/OLPdyDZ3F5TnzpJszPShl0uQSL80KebR+hV5fRn38FLp7zfWWKRxNWr/cjN795SwKF2Qau1xOn7zyX3+vis2WzTPhjH3qMPHOivPuaiLZlS03GcyWioVyf+eIlEdcbecPZ7D6ltNNmqX5Sc1ajzCQYsv0+pl+Rcy6VJHCvV1HeeV35cnkVfO18dZGKJ6hKCHrUcCyTQW8AM3UYDKFaQdJdVIcAACAASURBVPWHstDIrZxvlqPbUwGqc6KTVatKYDweC3EXjh1DbEWygnui257ThSc3d7pCbj5sT1JQoxziBGedr+ITxKlAH7y/UiA3u7FM7gDu8HBCbq5UjpGbQ+qKbDCxwOh2J2Ne5lWMp4wxpYotLxAntJrYXITP+WDDpZlYe7SPCs8wlBYrIK2FVxRFPpU1QA28OKAvVMBZ4RT5oK/wozNTz1EqiN504OecQnX75IctuQfWIzG+CKTYD0VpfFE9aXxFXuYXNzYnb7WF6B0WKc5JijSQm8dpEbjnW9tFPwsVcnguW3iOXJ4LKjccMfrOp6i+siGI8N19Tv2rHv/ma/+Bv/Cxv4y7tUne6/GJZz8uhOfv+HO47V3ybpeoXGLwkScpf/nN4j7qSpmVf/l11EwTe9DyQpXeGsVZaB3huj3x8CqXBfXyCJiJIuxwiAl8pndzc/BNAcP3SuCjlKwyPBk3kJvlf7rQ3LDvexDz0ptCYmu1yZ56kKi/gL38FtRq2NkTuI1Nxt/9LIPFiIU/3MDu7mP7fami2j8sVqQ0G2RLTTrPrzP74h46zSQwWV7Ebt9FVSqY5UVZYc/O4ErJhNx81PGKvl6hte+1KgK5+ZFzmK0DMUBsNnDtowm52VdB5BtbPh1lIQN7/aagWg+dIrp5F5wjX1+E6zcLJAck1fU2crMf1ELQoyLhRtlQMeODi+DWrqKI9l/6ALOXO5iDLs5oWcFrI4OGs7B/SN7tYVaXsOuLmAOpjMPmqNMncDc3sKMRdv9AgjxjUCdWiNJMEKGZppCbjUFpTd5qyXVYy/hbHyPZ7aF3W7heHzM/V6ABticTgy6XcN0e5a9dR9WqRLUK6elFzFxdyKpfv0r+5AXMYET/B5+j8XuvT/gagdwc0hp5ji5LWyujscMhzk3QlnvJzWH1PHzuIqXtHtZoolPr9M/OUn35DvZDTxBd2yZLDKZUIn3kNPF+Dy6chTxnvNIg2WyTP3UR1RJifV4tSQA63e+ny5JD9ZPf0kdOY3qp2KDoJdKFKXJzd4gtJ5h8gWxlltKbO2Qbm9TOnGJ4fom4Mya6vYt5YwArEkBbpSSIiCLxYAuPXggMj6U0JkEgMPndc1zc/Iw8RzaHcglXKx8nNwdNIKMLcnNIiwkCOUZ7YrK+MUBVy+Rzdcm7J2LtcYzcPEhJ5ypCbtYKNMQ7e4KqnliAu7uycJitYayTcvf7kZunCNKmO8YMJbUZLS+SH7aEE1QqSal1r/d2cnMcQymZkJvTTMjNgxGuFL+N3DxduRdQFGWS4+TmEHh4cUjXH8jzXSnjul6520kgopSSlFZAer4RcvP8LNzaOE5uTjOYaQi5OZa+77IMs7pCvrMrKbwp8nsIfvLVOUynKxN4rzchNz+wSlyvSoCZ24LcbPcPMA+ckeOE/daS7/ZRtYqQ3gPCOBqjBkN0sznpaz5YdoMB+e5+0f9CSknPzU3IzdYKj7HVxjVrqLty7OlihvJnX+Hoe5+i+itbRKvLpCfm+Ivf/sMFkVmdWad3bobv+44/x6d//9/yiQ98H+rkKtlMheR3X6LzA8/S+N3XcSfXUNu7qFJJqseMxo580JXE0AcaNanEfPMtaXvfnqbRQM020dNVld/c3vXtvRH4hIj9HcjNui6TvP7qZez7HsJcuoF6+Dy8eIX86YcYzZ+i9LsvY0uniIxBp475T1/BLcwy/uDDJP/xNfa+7QSLn4OrnzyBsnD+n17l9l9e5+z/9hp3/8KjrPz2BuMPPkLvRMz8Fw1X/8oqZ//el7n5976F8//0CvmNWyKBfyQchbx9JCvX2SZcv0V0co3s9h1RC710ndFzD1MqJbj2Efaxc0QbBxx+6CSNX/wSZqZJ788+S/MLN2A4xvX6kr5RCv3KNezFM6gbG6hRDoGT4nwK7h3IzS7XE06B0biU4+RmjxaBJzf/u1c4/KEnmP/ykGyhjr5xG1OvcftHzrD2Tza59cmHOP1/vs7Wx1YoH1rmXhyRLzfhSxt0P3qRmY0d0IbbP/E0p3/uKls/cIal/+OLRCvLk++s12Ryn5uBq28RnViByJB84TKd732C5igjP7UEX72EMoa7f/VZlv/Vi2z9zfez/q+vcvCx88y90oabm7jZhlRyPXxaXp++iNOK7K2bJGcXyI+66CQuCJchbRHIzSHVhhLI+Z3IzcXkAiSfe7Uoa2e2SdxJpRw3OiHk5l97BXfhtPC5Hj0Pr7yJXlsh6pWF3Dx/AdUdcPT+dRq/c7kwXv1jyc1KYb4kaIAql1CzM+i6JzfP11GdPvruPm5xHnNtg/z8Omp3D1cpEXfGqFfepPtdT1L5jRcYv/+CXIcXtLTZBGV4mxVK8Th6Pk8IDqfej1awuSNpzvEYnWbHyc1TFWP3IzcHKQXSFNVqkw+G6HGKOmiJeq8nwRbkZl/Cndy5h9wcCNJHHVCK/OBQ0MmpYxTkZl89947k5qmgz45T2D+QAN8jC8qv1otU8/3Izb4i7H7kZqXVhDAc0OHwnGZZkd7PB4Pi+oJ+jmOK3Cwde6Lj9Y2Qm7fuFn5b+TTPaWPb3+wJ18YetgQR6vcLMnc4f5fnqJffvD+5+evX5N4NR9IPAi9TK9jdn+z3aUGlFe7WBoViejj3kcgbuOGIokzdo22T902+P5Cb3WAg5+tL5bm1Kc/RVOApApKp2FAsLpLd2hCdnl6vIDL/8NOfgDMzuO1dPvGB7+PXvvJpvvfit6KdQ9Vr1D/zKhs/9hQnfuYlnLUFgtb6oWeY/4Nb4ps4TqWQ4sZtERoN994Hog5QWSao2zR37V3cvilg+B4mN4eBpSDwKsX4O57AXLpB/9seQm3ukX/oMfSVm5Q++wpmfZX4y6+TfduTRJ99iet/+xFe/4kVym/scPPvPsPCl3bZ+egJzv+jl3ng57a4+4MXOPfzd7j+dx5j+Zdf5/LfOUH5yhbzX7rL3reucv4fvkj+7U9x/hfusvsDDwopeXNbrAN6PQmCOl3yazeEPLy7R7R+guzmbY4+8QTxl1/H7R1w9JGLmGtb5MszEvRcPE/22Dkar+5iVxeEDHxeTB5pdeDcKdTNLVS9jtq6izp9otCpkBx34ge/KXJzFE8g6aBlUS4fJzf3+0JuXl3BDoZs/thTzP/qJa7/5RXiW7vs/PXnOPz+Rzn5s6/hPvgkZ/7VdQ6+90FW/8VLzP7Ky7z1I0tEt/e4++PPM/vFDdoffxT3LY9z+ueu0vrIeVZ+/lXxWdrbFy7P4oKsQK3D3rgtKY3hELu7z/4PP0Xt336Zt35kmWhjn/1PPsfwu59i5ZevYJ+8yPq/vkr/2TPM/dJLuNevM3rmAmpjR0q8v3qZ4bPnMS9fw3zxNfLveB/lN7Yl6Bmn70xu7vXET+ePITfLqlxWi/2PP8X4w0+RHx7Se3SZ+OYuan2V5PIdZn7vGurECirNGXzYk5ufe5TBg8uYO7vouVnMtS1cKabxB2+iZpqCYt1DbpaV/j3k5kqF4Xc9RfptT2A7HQYPrWA299EzTcy1DVw5EZl/5xi8/zxm64De9z0tAdFbmww++oR4sa2uUH7pBvlzj/InIjff+57wPueKCh1xKs8nRGafHgkEcZdm9yU3205H+FyemKziSLhxUxVQQXPL5VZ+DyJ6gVQ9GBTHQGtfxZX4gH/qGGNJt4Z0GNYdQwUn5GZfMOADG10uoWI5XuAbqiiWc72X3By0xwhB69vJzccHO12kcabJzc5XfYXS8reRm32gA9yXm1WQm6eUlo9d59Q9ejtRWh8nN9/jb1eg7/ca2QZy83BEftQVJNVXngZy8rH9oa8EYvl0kOw32+36686wgUYQ+uIxYVs3EYXMJkbW0+TtgtzsyeyBAH/zRy8SnT0l2mVHXVy9yp8/+UF+8aVfo/rCTTmHZo3vvfit/Pqb/5H+Rx/HjVNsv8+Jn3mJW3/7aRFJPGwBMPfCHu3nT8kY5INkPdPEdjqiFxTScdPk5nuU97+5vbvbe4fcbL5bJgZvyFggGt4d143HmPU13GGb/OEzqBcuC4nz7ClRaV2Yx/X75IdtzMMPkM1UyKsRyRcuw4NnUd0BbmcPzq2jNu4KT+PiefK5GuagS7o+S/TVNySw2T+E8yfhzZvCAdg/IFo/IQN5q10Qdm23KxN6WBF61CpaXhSysvfLcp2OkPtmmmR3NopUgvEide6Ji7ivvIJ59EHcjTvY4YjotJTHq1IJXa8JD8HzeYJujxuPi7RWweFRSqqXKmXREfKux7bfF4l6n1LJn7xAtN8lXWuiP/cy+tGLuNevoh88D1u7wm/QSkh6WU660kR//hXMIxdQvQHZrQ0RS2u15RxPrwvBsT+Q1Xi9LpOcNuhaVc4ZPxg9/xTx5gGj80vi8n3xnIg3nllHdftkdwW+NidWcP0h6cMnib9+TfRZzq6hLl2XktHBEF0qMX7mAuazLwASUISqn2lRugJ9CKvlIGznORnHBmD/nujkunAkAHvxFPraHalMevw8+oXX0afXcdu7BcfD7h/AxTOoOzsS8F04idncxx51pF9tbh+blIrKm2BhEPZpLaT2ltxzd/YE6taWTOoXz6C398GjiYUY3YkluHRVPLiULsQ1w7OU7x8UZPN7Cct/kgoMFScirhi4LqWSkFTTsbxOlV+Hiq9CbK9IdaWSUvLCm6pemwTxWk9Ir0EE0blC7A6vi5PdvD05hueu6dmZ48fIMklNZfnbj5HlUpUzTlFxJMEviKVH8AlMkgmpOUzAHoEqSLlKY48kwJ/oQPngNmhJeVJu4HKFexCe3WPVSlNBx3S68RiRmakUZdFn/eJxpin9JJdgyPgJuDgHEE2vIG8xLXhaqwmHZfp+T4lYmsUF8v1D/34J2uxwSHTqZEGqlzbS2E5XELdq9dh+1+1Jm1YqU8rgFEFxGO+D1Y/LbdFGoV1CuwWuY1gMBoRIV6sFulq0oxdTVZUyqlzm7vecYfk3b4HRZGtz6JfeoP9dT1K9dYRu92Tfy1fpf/Rxfv9Tn+LjZ54r+GucP8nu+2dZ+fRboq6eJOhKmfzhM5grt+WZnJ+dCC76QhiQlKdKEjm/OOK3hv/Xu0turp5wz1/85LvyXZ95+X96z5Kb31OBTzEhTVWTFOmALGPwg8+RlTRJN2c4Z4iGjqhvifo5g6UYnUOeKJKjnOqNNmog5dOqWoFGjXR1Rgz2romGhVtblIqlkfcq2j2A5QXGa01U7khu73uo3jF4aEUGF4V43gTn6ViBk30qd7hIU33pljywnU5BymNhTh7mPdEIYWmBvQ+tMJpVxD1HVlXEXUdegrgLw3mRRlcWFj/1xckkHYKcMNAGaDkEPWGQ8RPMZLJzx8ir4+95v5BER1b8lHJL54yQZkvtnPhoTFaNyWqGqJ+jxxY9EhXg8UzCaC6ivJ8RdcfYUsR4Nqa3asgThRk5b6IIWVVhRkgbWYfTihO/vjGp4hkICTVfEwdu3eqJCjCQL82KD5JzmL4I0MW7ffJmCT3KyBolks02tlnBffVVueygaxS26aqp0J+0mqTApiaZ0FbhNTp7StCCfl8C11Ii5pyVklRURZFMrMZMJvxeXwbIcgmXxKh2R1b2RmOXvUq3pRBuQ3Pf4ENt7YsP1pRSrIoiCf4OJCWh6zVRT65WRETPqx4zHAkP7cSKHGswkuCq25P3WluIcNreYMqry9tS3CMcChQomF6cp/fYKtUvXJXKx8093PqSmKfGEdnKDKYzIq8lKAd5yWBGOU4hTtxaYWNN9HsvkH7sWZKDIerVq6gzJ2UBs7yIO2gdD5y8hlWhsJ4kpN/yMOazL5J99BlKX7uKvXAK3RkeO4aqVqTaJk39QiGd3HtPgjdzc8LLsE4WQ3Mz2KOutO3iHKo/JF+eQ+U5thwL0prmx/qUTSLi23uFCCehzD8gVyEAHY2EF+PcMRNmggHxiUVp6809SMeoRqMI1Fxk5N5Xxa5j2uPNKSVCl3/4knAIT5+E3EpgF/zIHjmP6ks/GJybo3L7CPvGdczpk1IVaRTDxTK1L701KVsPXKGQrnzyIt2zNXBis1PeHRLd3iNfnWO4UkXlDjO2JBtt8qs30I9eZLhel/0jS7zVElX4xx6C21tQKQuPJ6h0Z7nYdEQG9lqiwD8eY06fZHR6nkCQi7qpCMS22hIsPfsYaM1ovkTlq9dRcczmX3iAtZ9/jWC7oaKI/kceo7diSBuK8SzEHZh5K6f2q1+Tqq/RCJdmjD/yJMnvviQUC0+m/o2bX+aZn/ob5BVF0hb/wbwECz/75SKlHq2vYfcPeP1/fZT6GwlmCHkCKDj1M6+K4Ob5E6AV0U6b/M4WvzX+hW8GPn8K23uD4xO2YgII1S12QhwD8eiKYDhrKB/kjBuGrKLprUQkXVsEPUenI6rXLC6JsY+dQ6U5zmiSq1uSm16ax5UM+sYWbm0ZNRxj5xvYh05hI03prV0ZZJUiW57BGU1WE+6QM0o8qPygo0d+8DFC6DQjQVRcry9BT1NcsNk/RNVr2NyiF+dhMGKwpEDBKFGYIYxmxQBvNAdRH/KSwgzv0UTQpuATOO8ZFDyZcG4ygfvqpULbJ+S78xyVVLyrs8ZpxeBUiXhgSY5yokHOaC4mq5RJq5rqToqNFXkSMV4vFW1QamXkZc14pkqeKCq7KTaSNspL4hotTsoySIAMAnF/4khu62XsYgNAyNMgk+d8HT3K0P0RKs3pn21S2++Rr9bQM2VUmtM7XScaWOF3VGL0tM7MHxHMuzxHOTVZjUNRpRKQHxc4HKVYyuXX5tDjnDwxmJ6H19eXyeolUWwGqIgHm12ZxRmN7qeoQFAHbBJhBp5UrGWyIvZ9PhfjQDdVPaVLCZRL6OWF4tlQfVmNm5NrEjgORjJRDEYSVF29JfILszMiPXDQxq0s4O5soReDZIGd8BPMBAUACvHEIjszbe1RpDs0ccdP5sMU1+8LmjocovJYgoI0Q+X+uMqndcLq3jmZwJwj6qaoYYaem8UdtNEzTQlYFueFrLyzi5mbJdvYJFpZJj9sTexZPLIZ9VIJ/oYZHLTlWK02LC+Q39zAnDoh0hUbW4Uvn0xo4yLgYDAUk1GPGuh6DVWrktcraK3JZkuozBV+gNFADJFxwpcwvXQS9IBIVngtMufVsovy9CQp+mehmq0VjKSvOz2VZtIKnCCAxBEuichrsQSPZqINFIxhE7xCdByhtC30vPL2EXok6JcziqiXSeWcdRNpBRRJWwoMiOMpSw4tgZwxjBbKjGsyzjnjMIOYKIkZrlQZzhtwEI0cKmsS7zZxwHBe7n80dKi8SXS3iVMKe3SE6vcFESqJSalSSvz6Io0ZViWF55HirGpAUZiz6nIyMfnUYl4aH6XyHPcHrP2bq8X9VT743HnOcO6XDtn42Dy1DUfUdzR++zL7/+UHmP+VV0UHbH6O8pffpPMDz1L/zKuFnc4zP/U3eOF//Gc89Y9/nNGcLIBtDLd/8ls49Q8+D9qQ3dkgWl2htJHQO51T3jGoDJRDgl1AD1PUKPML0T8N5eb3vsbOu7G9Jzg+KKmI0qUSulYTWW9jJK9eLoleRxTRWzbsPa3ontSMZg2dM5qNj8nE2jll2P6+MYcXY5KOE50T5+ivVTA7LdSLV8hPLbP3XedQeY6+s0vnOy7iYiOKpUB/rUL0whukJxfY/fY1yHLM9U3i7RaDBcNoxjBYMLTPGQZzhnFNs/94TH85wiaKwYJh/7GyVE4lsWiwdDyCsTDH6JxXNW4dka/Nkzag+0DGYNUyXITO42OGS5a87BgsO3ofGNA5D8HSI4ihBX2KQNQFfHtFmHoN3ayjq1XM3AxmaaFAC3S9hm40QCnSmqF0MMYmiv6KoDT95Yit58s4DfXfe524b9l9X0lIvYmit6LRmaNxvSvXHCsan3+LpJtz9xkx6FQOsqq415uBI60rhosySZSOHOOGEoPEdhe0ZrhcQTmwM1UOn1vBxQb14hV0u0fn0QX2nptjsGgYn2gymjVsf7BKf71KVlZsPxczWp8hL3kORqlU8BWKclhtfOpPSvp1uVTA70oLQmaaTXQSo6tVUWn1QnXZXJXhqRkGa9Lepj2gf6ZJ5+E51M1N8pKh89Ac6VINW00YnJYgWY8yBmcaHD0yC1pjdlrk1YisnshPo0ReT7CliLwckTcT8kosf1di8nqCa1TJV+fIlpuoLEd1etilWcbnlqW6DkjPLJHP1xmfW8ZWYlSlTP/5B6U/pBluRdpPn1gVXlCzIavsKJJUkO9DbxuAlSI4ihc/iecVDcUQWDXquHLsK56mOEFaS6qjLEKaNtFyjdWI0VzCaDFBZxbTbOJiLZINgD08xDXr5J0O+UwN26yiG3XsfEOUsxs19OyM9OF6DZ0L4mUjMUxVaSZp6FpFeCWNqqRDGxWxspifLY6hGnUpFXd2wmGZnxEtpLkmLC9gF5oM16qkyw2GCzHj2ZjBcsxo1jBciBkuxAyWYnqrCbYSoSLfRj7dp7yeVsGLSb3dRygT9+2ualUJso668jlPpFW1Gq5cwtUquEqJfKYifadsSGsReUUWfVlFFmWDRTOp7AxVdT5dpCtireCMwhlTuKdjc8hy8kpMVo0xQ7kXrpxItVopEUQmTkAbbKJI64qsqkirirwsi0ObKEZNTVpXpFW55y7LUOOUcdN/pqJw8WS/rtVEMqDfFx+ycUp+2CKvJ2T1WALlsMArxYwbhnHdkJcVeclI//bii3nJkJejCWlXK0k7p2NUtYxemMcsLlDeUwxONhguOsZNxWBRKAAL/+F1bv6tJ2SBqISM3Pjd19n8saeKsTavKJ76xz/O1//uTzNccDgDpZbj3D+/xugTHxC+VxQXxS/164Zx0zFcsoybPtCNY7KmvxelZMIt++b2rm/vjcDHUQhfufFE4RMkx4snws28lVK5qxg91efojKZ+xzJzKWKwpCjvO6qXynQezOmvaHafn8NVSzT+8Dr7Hz4FTz2I+9olFr66h7u1CdbReGWX3Q800fNz6HaP5hdvkj91EfPiGyy81Kb3+JpUkNzeYLCkyMqK0pGl1HIMF2UAKO/LQ5SVNUnXUtmzZOvzkiK5s834wppMOv0hpVsHsLYEgD4aEPUh2Te4lRFZzVK+kWDrOTYGM1QklypkzbzQ2QgrRJd7cTgPQQcui8sn5oKFONo4Fa+YoK/SrKMqZQ4f0gwXE6qffomFyykHj0TMv3zE/Os53ROG8TMXqF/aY/Zqxnguofbbr7FweczhxYjWQ3Vmr/TorEeMHj9F9a02c1czRvNgDUQ9GM0p8pLAwlEXspoSj62Bo3OxCUtzqNvb1F/boX2hhr65zczlDoOTDTH03L5L/Vqb6t2czhlFVjVEQ8vcGxmdU+L+vnAp5/DBhNG85PzdeIzxFYCBGF8oyA5HBdkxkOUJnmaD4UQPZUrosX2hSuXyFslRRuvRJv3zc5S3+piRxV44RXw0wkbQOl8mq8VUru7RfrBG/1SD5HCMzhzdM1XSM0uYYY4tGTAemYoUeTnCJgZrNHklkokh0thI03tgDvX6DUx3RP/hFfJTy+ijPjqzjM8tS4VWrIm2DjHDjINHathzJ6jeOqL7xCrZchPdH1LfzOg9vCTBiUd8QmWRPGBuoiN07xYCIj01kRojjtsB8en1cEcdXLeH7fVRoxQ1SiUtOs5QuRP0bmxR1glC6lPFUWuICjpApRLWl/znzYS8GkO1gq1KwGWbkq52sw2vbzM5BpFBjUTsz9bK6LIElqpeI68l5LWSeCg1K7hGDTdTF7E7K+70ttcTHhBIGimOBA01UjrvpgJDG0k/tpH8oEClthBsLDhlaVbwgQLig1aT4EgrQTqgCFBUKkTsQMwmEHWzHJXm6MyiU4fOnE8dU/xufIGQrlREEqDk5S+qFRlbg2O7PzcX7DGcQ2UWPc5RA6+zM5w29J1METZS4qyeyWKzcGhXyqN48mMjNSFwH9s/Ua1WcVSQ/fNOR1KvShUzkrJOgnNnIfd9J5MflU1x1JwVmkFm0T5ws92eIN31Ovn2XVGvTlOcgbiXsfiSo7LrqO14ZPfUSqHIrCKv93VyrSAyc/4kSVvS9w/+3N/gjf/mn2EjGDelPaufu8Lgw48K72h2hrgHScdRvdgiaWvMUMk5WIsZpKjBCOXlO971zTHhzf2n/nkPb99QqkspdQPoADmQOefer5SaB/4f4CxwA/hh59yhf///AHzSv/+/c8595o/7DpfnhdkndlIuqkIZJ5DVNM0bOagq9duWeGAZjRWN25bBvA+ErkF/CZb/YJf8zbeIzpxk9koPs32Ie+AMtlZCxxGqWsZu77LyOSMrnM0d9MoS0e4RnFknL0fidG005vRJZq96IbiRpXQEcU84OE5D+RB0KhB+qZVjrtwuUi7JtW0KRr9ScNSRweygTflgiaQN406FuCtIyezLMWboGM9A3HFUdr0js5VyT2UMLnXFxFXoegTBPqWEeBrKo7MMgqZHHEsqwWhWvzDCxhp99iQ6dcy9kTFarqCcY+nlAaafMTo9R+1mV/L3J9dQuWPuakZpb8x4rsTiKwN0mjNaa1C93aO61MTX3KIPQeWAEvRHWZlAzAiarx34FI+4cDduDMRMsWSovb4rD83JNdRBh1pmWYznKG/2QcNwtcrq549wWuFiQ/NSn+HJZkF+DJYIoU9JI/n2CdL8MCHbHuuDggBYzwGZe+UIN1PH9FJqW2B6KbYSoUcWleZkzTL1m9JnXaRxtTK1zVS8urTCDCylfo4eZeQVn5YBX10UyMX+JRBf/SRSunmAmp/FDVPK2z1UfyTprVFO3B7gIkOy0RJEZGOP2XKEPhrg4oj6qzv+nAxxe0x8e09Wsu0j9PKi9I3RWLgUvp1UCG6AIF5YBETBngKwizPYxOCOupjFedHIWl4U/lAU+dvvJ0StUZlFOVCZlRSZUYwWEmLryGbLxEGNWWuUc5Ju6PvgYTRGd8e4VdxYWAAAIABJREFUwQBzGInWVKmE7Q8YPb1GDGRzlWIQUweC8trBAD2SyV2nFjVKcf0huhXBfksWBSFIHo8xTUHVsru7mEZNlLLrVUoHMXqYEtcjVOaIfaxghrZIS6pc0syq4R3IA7/rqIsuJWTdrjicx95hPTiuw0SeIhE1aFdKBC1ridVL0O4iMmjncJUEHRuUc+hU0i0AemSl/+U5Ooqw5UjOCyRFlmUSzCURziiyaoOo3RH0V0uw7SJFPlMmGtZgMBJeWJZJQOfPN+7mRH0tCH0mzzRKEXcyyoehPfxYaDTZYp3yoSverzMJnLOFGuqNa6gkwdRrExQSMF2vUO2tQvygRukw84iVQudO+HNeITsvSRosr8REM3Xc/oH03yzDzM8xfnAN/fsv4hRsfbBCcuRo3sronogEDd/chTji4v96nezunqA327s4aznzs1e5+/0PYFIJ4pK24tH//ce59Dd/mkc+9eNQrZDv3KX06a+y/6PPs/LrN3FKaAvuC3MMH0ip3PYWM4EH6NPi77jg+Ob2n3z7k4ScH3HOPT1FVvrvgd9xzl0Efsf/jVLqUeC/AB4DPg78tFLK3O+A992cKH5OJi1bQJ5xJ8fGivKuIxo5BnOGpOPoL2nMGOKeY9zQ6NyRLdZlQI4jzO27BHEpdeUmnFgRWfc0JV2o4aol9PycTCxWRNPMtS1cf4hdmYdxSlrV5CVFVtHYyD98xk/qzpHWppoyiWVVar3qa38gRMFuT6odjMENh+gU8rIi6slxwmvaUOgx6BSyiiog+cDZubfCo6hUgoklQlhFFtVMetKe1glKYhTZYgMbKyrbQ/KypnajC7ljuFwWw0skYMkWauSJprI5wMWaPNGo3DJcnLxv3FSMZwTWzhNBfPKSTOQ2hnFDYWPIGwL3qvk5XDkmvrOPrZYwb20LH2OpKQMvkM1ViXs5ujdktFghORijO0NGC2UhOM9W0GPfPgXUPSF4F+TmIq1hJ35TU31u8qsnjVtHOlfGliQFpYeyorclQ9TLSOcruEjSFWkzwZYMLokm6YJYE/V8u8yXsbHGxgYbGyH5+kHcGY2LNbZk5BiR/3umiktiGeC9OJpLYnR/VPyO1kJYLZckuOgPZWU/HJHP1yGOML2RpC3CMxUIt1MlwNM6Nu+0KS8GRyYkd2wu5HTt1ZEDNyX0SSv8l+mUC8g+PZZzMd3xJAUzHIFfyTvFpP86J89OHEGcoLwApxlJ4Gq6Y1Saoaz12jfTaMDUytNZeS4DGR0EddFeMyeUwd973blD5f7VIoFqqKzyE78eptAfFM8WXp6jSCdqLUF3IJCHH23kPXpS4l6ct3+Gj5U832clrRwTZM7zRlTuP+91ctxUKlLljqwimmCkQvZWmUWPcqxPPYYqOWcFbS/Gn/B94QcK7pbzdCQA5xEfnVrh5Wj5n42k2k6PpdIN6/XbAhoZT6FETDhQavreuLA4UIWkgsosKvUSH5mgmXp2RlCeLMd88RLZR58lL8PMWxYbK7onImbfHHm18bKUn7fa7P7156SdSiX07Ay21Wbl02+Rl2QMS44E7XrkUz/O5R/7adzegU+RaRZ/7ivc+eGzKAfRQNqqfjVmcFLMfN14LKiU0b7g4E+D44MUVbwbP+/h7Ruq6vKIz/udc3tT+64AH3bObSml1oDPOuce8mgPzrl/5N/3GeDvO+e+8E7Hb6p59y3qOyeDphyAoKqrjBErBF+JESojdKUsXI1mA7u1I+Thji8xHwyK1VRIe9h+36+unPADQmWLL2lVSk0E1vw5hBJIe9Q9XlY5VU01XWVV+Gb58lC0FtKe/247HEnJaZbJw3bYkqCr3xfeRLsDywuwsyt5/tFI3KJDe/jjF69Tflz3Ku4Wm51CNvz5m5mmSPP3+6hqtXhPvn+A8eXZUiqcT1amQbU2ktVrSAuFFbQbjlCVMseq8pJEyLTlkqx4okjsLoIvkvdBElsMqagKvKXga0OeYztdXJph5vy51WvYgxa208E0m+TeXqAoEQ7XOu3ZFfrVtIcXTIKmqcqmYp8WXReXZkWqIpTmq4o/t8FAHN+9VlIoSbf9/qSKJ5kiY8KktDr8Xtwr2RfE4Y4RYKGQMCjEGctS1eX6A/HBarUxiwsyYXkORbAuAeHSKaWkr2WZcDgC5J5bQYFymUTwqYyi6EApstt3jgkvFu04rS0z9Zmi4jDcD7+ZmabwO0AmwPBs+S0IPRbPmLdqCAFCcK4vyq+1OmZVEvr9dFWoKpWk3wWRw3Dd3mup8AjMJpYH9woUFp8NpHBjvBKzLtoYmIhpaq/TNI0uepFWOxxOxrLZGelLrXbBXSn6Ydh8fwz2FUVb+UIMETqdpGpDKT02n/RDpdAnxD6nkLjwY5SaaYrq+sIcLiBY41SqrXxlVKHz43V57HBItLriT8QHfGkm5drGYBbmju/vdGT/6oogviFY9MrYQQbEdXvH2k8lSSGLEAQO8cKjxTWUEpGAiCL0ypJHswx737rC4lcOUP0hl35yiUd+8hb57j5maaF4xvK7e4KYeXuMUDk53Y63f/JbOPfPr8m1Viu4vQM+/fof8PEzz+GyVNqhUoZxSra5TXTmJK51JDY3Hokuxl0vpvqb3X/57lZ1Vdbc8+f/23fluz5z6X/+z76qywG/qZRywM845z4FrDjntgB88LPs37sOfHHqs3f8vmObUurHgB8DKFOdeNAE+fyg+ZFmAhXbPrpSx/mJJwQwqhzjjjoyEM40CzFEVa+hG3WyG7ck0PCKmrpRFxuJw7ZUx7SOiNbkwc03t6WapqcLHR0unIbbO972oOwH41JRkqpKpUJLwmV+wlAa9f5HUbd2yHf3RSPn1dfhqYfga6/JIHDxDO72Nm6citGe11ux3S60jySo63TlgQlBjzFCmnZh0I6FwBkmEPD/M5NBTxp7MhmFt6WZkMgbNfJbd0QTyZPLbbeHObUuvmVIkKHiiOzGbcnN12syAA0GqPNncActX8nSlZJQKzB9ga5MBx1BZ+jMuvhNbW57pd1EJovBEE6twcY2ulbH9XqiR6SU1zASBVztBdmUrwiZaPPYySSZJDLxayWWXOH7w99Tej6Flkph3yCQfpigXTqW+z8WOQE9OyOCjMFwMokxpTnyVkuCuTTzzt1WJpLhkLw7OtYOk4dBHw9OPbm4+O7xWAKrwUD6iXNCnk2999poBGlK3vH+S92eaIUcHQmJeDwuJnDb68tE7DWecq+we8zZHApBu2CMGWwVdLk8sZbxgaZUQ3nRyCkl5MLjazoYCXorvnS4OIYPMI8Fi+E8piUaPEIgz8u4mKzsOH37MXLvb6WiYyhPuM4QkLlpZ/O3VZZSpK2DuCBKTbzOpgLl4OQuQphTAoBBoTcsCKwTwERN7BRcpysVTNN9IwSV08GPzXH39JXirnmkYuL9lqErJexQhDkDUTe7fqNI/dp+X3zFlCK/fUfub6cLrbY8494QtAgGp8/Jt6PtdCdIlD2+1A9k32K/R7vyXb+Gtm4yRjgn/TUTBDHY8gRhzHs3CQC9J1yeF75YLrdkN29jlpbI9/ZY2NjGGUPe6/Pgj95EnVwXPlirPbGKefohQUdvb4n3ltG0fugZ5l7Yw964DcCpf/B5ep/4ANXPXSHfuYuKYj5+5jl+4+aX+Z7195FtbWMunMP6a3P7h9LXArE9z0XX56h7zGz6m9u7v32jgc+3Ouc2fXDzW0qp1/+I994Pv3sbDOGDp0+BID4uzQoBw2lNlclRFapSId/ZFbfz/QNUEpPvH8pkXK2KO/vsDPlBC+O9dHSlgqrVQA0kaMgy7Oa2rPI2tzFL4lJsHnzAGwRaovU1XFuQBHv5ulgGVMp+9RwXg0hYTQcTukJA64mHsF95hRxwH3oKXnoT/fjDuK9fITp/Ftus4l67WpRNCxI0lNQByEPpv0sGmUnZuspzeY1j3LBTiCm64WiqHHkK3g+rbh8IBfd2QFYly1IxJ1Uu3uYhy8g3twuUIt8/IDqxVqyGXH+AKpfFtuDmHe9DJOaubpxPyNbTKFieoyLv1t6si57HhXPiEbS2KhNLtysT9mtXiE6dLIxQdbUqwY93ttbNukDHo5Gf2I8bboZBslDUnS5xdxO+SvgbIMj/4yb/C5M7UAyootyryLZ3CoVoZYwgLc1mIXpXrOqzsYiclUqT75pW3fXffe+mtILIqxqXZPIKLveu18OF1Eiekw+GmGYdFVCMOC7MGfNORxYO4bgeqQhVRwF9BCAEOGlaoFBhYgzInPVGkIVtgEcabfB4C9cVgsd7kSAEtSq4QEoV/TaULheCbyE9N4XSBVSzmIhtPhVkuMkxRqPJ8cN3TR8joCohhWMMjjAZ2cl9mdZYmiaETwdIzslhtIF8/PbjBkHDIGIY0IrQ3r6dQ8Ar33GfoOd+2z2IfaG749u8CKagCNKL499nvx2NPMpdQTmL82TsoMItn51KtTtXWMEcC4iUwmX2eMA0tf+dyK/50dEEQb83pX/vpftrvff8AXne0jHRiTXyvX2UlYBcxQn9x9Yof+5QAs80g2xEtH2IXWgWyJ8dpcz/wS3az5+iubMrVXfaUPnsJfoffpTSp79aBGzfs/4+PrPxIp947hPQ7RfIY97tTRBn35dCvwxj/5/G9k3Lim8w1XXsA0r9faAL/DX+P0x1fbD8fXL8MPAaU8DYIQgy87NC3NW6UC8O8Heo5NGVikTWYaWSjotXfwHH3hMGqRDIFPl7P2DpJC5WPgF1KSZ0P4BOV1spnw4J7sRF9VAQEvNKyqFCJpCej7l2T6cRpDG9Au+4+DsgJwHGv1fZdBo1extcDgXCEVRZMaaQ+y+QpTyfGJ2G+x9HhQx8gKBJ08lkVbh6u2PKqQWq4FGgwptqWmTRb0IGnaQfVKUiSJhzEmROT7Khz0Cx0p3I3E8m4jDhFyvH+6RlJgecoEC6XJr0p4A+BGn8qX4Srq+wvDATl+233YfpdNr0PbnnvILStgiwxZO07HT1UCC1B1f6cIyAIoX7HPzB/DWEdJzL8yLFe4wfM6WeW6yKtRZBwOlzf6c2nG7He9v6HsTgvu+73zb9HVMp57e95xs9xvT3/lHn/k7vmXrvMZR1ut2nVZyn7sG9vx97/aO0qN6pLaf3yRceD9ymPzfFCZzeH85BB+FEH1ToWvWYY3uxTSHRbxMNvd/5/lFbSI2G1GSeH//cPajhsQXdPecPeJVpoQjoRqPw8zLNOkQRG//VQ5z85VtkdzaK9iq0vabaVicx9ukHiTYORHXfp9L3f/R5Fn/uK7Jw3tomOrnOr3351/jEn/lB3N5B4Y+IT0vm+wfHAzh/Xb/tfuldT3V96NxffVe+6zcu/6P/fFNdSqkaoJ1zHf/7dwM/Bfwq8FeA/8W//nv/kV8FfkEp9U+AE8BF4Mt/3PeEhyoEGPJHWBH6SaZSEQ7KwrxwO+q1wu+GLEMb7fVZ5MHO9w8m1+EfEl2tosol7MGh+PF4lCmsFI/Jnh8doWoz2P0DotUVeahCjjtMah5mFWO+sfztI/sQYClPphXriUPRivEO8ypJhMfS94hUkerzbsO9vkjLh4nWpwmmRQqLa5wKygqpfK2AyaBR8Gjm5iAdy0rG67QA3sx04FclE56S7fUnei5hoMtzKdPMrWjgzDSFExQ8i0LZ/VRVkGISPDnPIQnmhaZeI+/2JND01TB2OBQIMQxszhXBiJ6dId/dL4LcyQRwz2rKpxcKf7NpFAH79snAb8an9HQSS+lxqLIBbLsjvAxni6oXl1tMkkze5xWdbb+PbtSF5F4cYIrfc++K1gfGKpYgRReCchZTq/pydCeLg35f0mpK4cJk6wNwZ8HMz5IftI49B3Y8UTLWlbI8c7k95lulYCoQFpJ48HkK4plhZa6r5QL9vBdtfFuwwgT5KHgxNp/YD4RUzT3O9QVi5ttqeiERgulgxHss3ROOc+8xcu9vFbJxpbgIMI9xxDxKEFCawmbE+y+F5544FtFSrTxyaI+lV531qtghbRR8roq+45GBEDBP3Ut5wwSxFJ7PVPsYz4P0KLGc/2QRFMxU0VL9pLQCHb0teJ+k/sZF2+oklvEHijRU8QyFoLxUQidJYTMSOHsEvt599ofAe/p5EP82DXFJlMizdEL69jplOFe8t2gbJWnpYowplXDdHmZxsVA/1xfPoY56kOdkO3c5+Us32fyBM6z9655IHXgtNxXOLYnl2R2NMFduY0cj8Tk86mCWF1n59Zvc+YnnOPnvNzEXzkG3zyf+zA/ya3/4KxN7C2PIW5Nnb3pRiJM+z5Rn8Lu2fRPx+YZSXSvAv/MPfAT8gnPuN5RSXwF+USn1SeAW8BcBnHOvKaV+EbgEZMDfdM7l9z/0PZvSxQMdOrWkUWQl2336BOrxNfKKBi4AUlqqcrFCSOuauGeLUs7S3TX0OMMpxehEncFCRDyw1C8foM6dYDxbIq+I2nDcSTG9Mb0zdYazYodR2U1RnTH28TP0y37QdhS2FTaRssugMRG2ZH+AHuXo/RauLvohthxjnSPaF0JdPlPh6l+6iC1bcEBiUX0/MGWq2K+s4sG/9TUhzcLERdwTjAOfpUCXplCmiX3FZNUXhsvbf+UieQkquw6biEL00QWIOqLVUd12jGcVWRl0DuU9qWLTYxisKMZNR9JSVO86RjOKrAa1TSnvD22Rx1LFpTOkMsZXxdTvjEmbhrgj2iS5UnTXE8zYEQ0cSScFC921Es0rbfqnGlTvdBktV4k6KWaQMlqp4oyiemMWl0Twxg2KFMz0gAgT4rrW2PF4gjYVKYgwsU2CJ2ed+HMNUinLHo2xddGYwUJ8t4Otl46RlPUglaqpaom8LuklPc7R3SEuidCtrp90p9CSMDFPT9TW4eoVVKePG40FTapVRZtFKakISTNcpYTplsh2dlEn19CbO5L+PeoKMb3bhflZOGhhHrogjvHrqxhrUb2B2G90ekUbuXE06SvWTgjVzoEPVPs/9BzWwMxnr6Mig+320AtzuDsjUBpz4RTsH8r3KiW6OsMxzhiINDYxbD3fYP3nX2fjv36YmesZjRc2ydbmiHZauHJJgr7ckr11k2h1hXx3T9K/3Z4gvzNNtj75FOu/fIONP3+WE7+zT/fCDJWdIdF2S8qFs1xMf2fqqMGIbGsHnSTeOFeQEDPTxHZ7DL/7fZR/6+uYhy9gr94kWlslPzjELC4IR+WBU6hxRl4XkU7dHYNRvl+kdB6Zo3a7j+mO5D73R9K+3hrEdruToKxcQqW6aFddqaPKZbKdu7jnn0D1U9SlqzK2LS4Iclyr4Mol8kaJ8XxCXtK4EDM4vJo8zPziVyUYX54XQvLNO4Welzp3nv65WVFd3xth+mPM3UNwjr3vPk8ew8xbY5R1JFtHXrFZFghRmonQ4do8e0/XsQbiPjSvD4hefJO9H3mSzhnpK1Ef5q9k1H7nMr3vfITdpyJQfv/ljOrvvkbvY4/R+OoGrtslP+pKwUIUoY2h/WefICspqnsZ5e0++vom2cOn6Z6pyHgSQeUwp375ALe5gzKag+9/BGsUzZsjkU24skG+f0D2xGl0bonvdiHLufT31ln5A0P7/ANyTgMZT223NxGcTDNJQ/UnSHLePuKNT72P0ob8Hff8HOCQ4Gh3r0i7F5yfy9/PndYMczWxqWn+BNgbd2j98DPMv3TIcK1O+ZXbfzqBzze3Pz7wcc5dB566z/594Dvf4TP/EPiHf5ITCUhLsTLyVUsun1SNHJ2OqO56a4Wu6KWM58vYSBH1cypbPZFDr0Soz38d/dhD9M80sbEi6uXMXmqjxhmtpxfJyor6xpjqZy/LKviBdfqn6qgc5i53UalltFLl4NE6NoHFF2XVk5cjrywqwU/Uz0XK3oudmaEVM8vhCHf+NLYUy0R5Z18mgnqVdKlKfDDA1nLUSBO3pNTZRRI4qExhUkPpQJFVJ0TMIoViXZGmCNU7OIvzvIGA4EwbXxYVWJ6DsvqlAYPlhKyi6M6JGGP9hiPuOXonFL2TiqziKLUU85cyxg1Nd12jLJgBNPdgNAvdk3KOpQNF0pHy1eGsH5gVREMJhPJEkVUkACq9eJ3S0jzpSpPhogwmzRvCcRoulemcKhU+bE5ron6OTQzx0Zi0HhdCZeUtSbuo3lBy9VCQy4+nQXyaKxWp+OPcMV2siFWcTCFFOfraHeE6VMq4yGAOO5iWksFuoSlltOMxbN31Lusxrl5FH3TQBx1Bwxo1KaNO80LHA+cKSxQp/bRF6hMftNurN1FJLPe8UsYdtotqMioVqbBrjXHL85jxWMp4owhVqaCHo8Id2m3d9at9JdV7nvtWnIeVlbsL7TOFtBSIz5TZphlaslkj1YDLi9itbdyDp9EHVVSzQT5TRTsngoOItoor+UVDLlIRKHC9PtZI33DDEVkjwbxxhJ0/iX7rDja3mNlZSSOsrcpKe21VzqtaxinINjax0VmxyLCQ1mNMq41dOIm+vgkLs7idPfJul2hlGdvpEp2QY5Bl5IctUTgfStWhGghPzgUZipCG9pwUPRTukxqnHu0xqO6AvDRPVk8wneHEQyuOcL1BUTlWoJKpd0/3PCXn09xmdpZBIyYGompVRAibNanMq5ZEQqIaFUGPjQIqLhOwTkXryx4eoueaBWJrj7rgLNoYkta4EMlM5yokG3dRlQqldk5WFsXl0v4QV0lQvaH0qSwvECCz28aM6qgIlHUioVAuUTnIGc16a4qBI2l5peockiP/BPYcSSuVNs2FX6jiiGhl6VgFWTS06EzGa90Z+gwAUhJv/KtSuEqC7fXRlTKltpSo20hRao1haQ6TjqErgRx390Eb6ldX2XufpbQPWcXRX3WCUjdq2Lduo2ca4qnYOoJGDXvjNnqmCUpRf0NsKOrXRUJlNKuIBnIdMu4INUOVS3zP5e/nM4/8B859+kepllKa5SEq1+hahaRnsZUYk1rynbv3mwr/026OySLr/8fbe8OrS3nrhYonkCoP1xuNajRwwyGkKTpzjGuK9vmYyk5E2lBEPYeLwAwj8odKqAxcBAvqaewoo7Q3xFYirNEM1+rER2MaN/s4o4k3D+l/6CGSQxl4SwdjRnMJvVNVkk6OM1DbTnFG0Xqojs7ARjLQWC+kpXLZZ1JksNGK5OQaer8F7S7u1CJ6kIrbr0cPoqMReq/N+qkR7UGZU4+1uHkwR55rGtURR70ycZwzXI8pl9NJWmmKKOmCUN8U34TAnfHVcMWK3SMMbjTyHkKanQ9UyKpQaonZXjSA3roIM6Z1R3KkULki6sPBoxF6JO2KhVEDhkuAk5WcGSh0Cr1VXfhy2UgQnqwCOpXz0Jl49oyfPkeeiO+RGVvykqZ3ooTOZUA3I0fcFfPUbKbE5reVWP99x877y8xez+mdaJKXoL8SEw0sOoPqm9ffuX9Zh83Gk5TWMW5NSDmZSYrD98nORx9Gj0UbyqQSvDmFF64UjSKdOdSTC4WmU56oYlJS1hVqt87AwkvR5HtDyiZMlPds6YOroikVEFCjUJlDNJEk9aScGDZGGzmDC0uUXxlCKUGvLAmCkmWk51eJb+/DKCU/OkLP1EUXCCTY8sHSRKVZF/yOY9wzFVIt0LzupRm2dojWT2Avv4VaWhCF4UvXyft9zPycENMX5yWgqFVEgM85yvsOde4UMzdyytt97Mll4t//OqNvf4rkK2/Q+dij6NRR2eozWr6AvtNh/Og6yV4fF2l0d0T5wKGffJiZGzm2VqayPcB99VVGH3mG5Euv0/mex2m+uE3vw48IInuny+jxkyT7Q4gEqTFKiTji0FcOtdrCB+kPMMtLpA+vE+0PGJxpYIaWcTPCGYj6NfKSJqgV17bGJBttQbfGGSq3uMFQELGOIGHao0uBNAyAEb6JKpewewdUrh+gxil2MMC2j4h8KsiMxuRzDcwgQ1eNeOEp6VPgkdVE0Ygj9JmT2Jr42Sml0BfOSgHC4RH9cyfFZua1fZncncN1Oowbok02+0qbdL5K3OqRLTbQ4wws6JEgmb0LCwznxJZGHUFWMZjhiMMHI7oXUsgVUdugsxIrV2aJejlHDzuwirhtUHmZlTdlv3rmEUFIj/7f9s48yLL7qu+f87v3vqX3bZaenkWt0ViLtVnCSMjgEEcONgFMKKDssFWRFBXjpKCKJGWyVEj+oMhCQqgCpyhDIAXB5SJQNljINpCwOpYl2bKWGUmzr90zvS9vvff+8sf53fteSyMjIc30jPt8qrq63+337rvv9+793fM7y/dswtwV8nYb326zOhuXhp1kIyTLa0SbHdLagC6mPOSJIBtN7b22ukZ7RFW2h17aJBuuIs8cJZqaojldpz0aMeZmVDsIOPRYl/mPtKj81SjDpyFbUkNRC2WWiECrIsdGeqkVY6NELajNRzSmPbx7Bf+FcdIBtGR9cZlsY7PM6Tm/MsrsY/+IU9/+cd579DtZb1epNTfIVlbJEsGdmSe7fUZDZC+/9rRlXDtuDMMHeiGKXFf55JrnIkGUzGe5ehs6nsGLUNlQBeW0JrhMt2dtIdnMSWtCcvoy6YEpsrqqrhJD1M50pdLNVExuZID6iUWohh5KdZ1Jkg3tRh41Q1PSiqO+oMqh2rBTiFshrNP1ZbgLdFUrV5Y04XW4RrS0ST6ovwFcmmmn5STm4vwYvus4ujwAmYDztJdrkAkdQLzQyKulx6vMnwjeCd/tvCoRUh+HZOfu1uoLzRvIyVsdhs9lNHapYGPUVsHEZENINkEybTXRGVWPRHXZk8d683UpWunrBbw2Ie0O6829tqQ35rSm+/NOw2RF6CuP9HmVi2t0pkfIag7y4CJvhvELbQ0k16aQ9fPrTBytEDW6TD0X4SMYP7tJY/+A3hzPrJON9FUtFUngrzQmyhyJPk/Qlrye/FUJlLXLbdKhhMpGjqSeuAlZ1RFvBs2jukMySDZSPXcEoraocRILUSdXscvU62Td7G8FEIyjMrQPcH1eAAAgAElEQVS0NSelspBruKw/T9SrAF0pFBc59X7lnupCM4jNefIri7ixIfWSbE5oe4KpcV09VxI8aOPGJIZGK3gTe3lrRairLHxwot830JqIEF9lYGxE95fEaiilGX5zU71KjYZW/WVBjTj3GjoJ+2tNadhxc09EdblGvN7RkFaW41ttvTF6cCubJLUYt7RORQSZW8QlCfnSMq3378ZHEZt7HLXFClk1on5wP1nu8Z2uegtX1ojau4iaGW5pnaoIbn6pzN8geFA7oxXqcYxMjJOfu6hhv9U14uUJ3GaTqDVI1MqIEzVE4o0ucaId0qN2Rnu8gpsc0qa0icPFDtfp6lgvhFwtF/XGoTjliryeIOfg6xX1CofkfS0i0ORh11JvjeQeyXXOK3O0c0+WSzl/5rUYFxfGseYWUknoDjh8BPlInagIda6u0x1UYz0drdMZq5DMow1101yN8m6KdFMqKx2iTly27RCvIdLKiidaj7SfagYu2NWtqYRonRC+D4tDoDUZU72wijRa5EvLmlBdr+ErFZINnWvwgNP8snSgQmXDk1YlLKi8foftLjI4SDe0w8mHKnTGKlSDNw6gtpQh3RzppOQRbMxUaJ5NcA806JysM9npkL90EqKIaHJCjZ2FRXj5FOJE+8RtNsgq+hl85Ol+WRWZh44n+JW14MHLypye8cFxBqpd3nv0O/n8nb/P9xx/L60h7ZGYVVXlOx2M6WUMXk+85fhwwxg+vsyTUB2Q3k3K9/9dXGypJ4/076hLeTFEbb3ZSg5UK0Tr/eWbukJ2zS6dyQHthh07qFUhEu27VNXhcJnHtTN8xdEdinWyCcqtruPLlR4+rOZDPx/tXRNiw2mqk2sS64opzzUHxanqrqQZPtMbv7QcPvbQLVbdanxIV/CJp1+jBtC/+5M/r5KYu+Vx/02fIHYW1KejVvD4tNTIixuetCakg/rZdF8hru3UwJRcysmpOyQhF6l3MRWtKsgpx6TnpkZd6ZknWc/Iao64k+NjbfGQ1R3poKOyliE55AMVokKSPwrtAkJ36qiZ4+vJlvcuDYj+pNrXKgl+5fZXVCr5WNWXs6orFWsl07YlWdXhOr7ML3Opx3VzNe68emVcN4eKg2Agl8eTh5Om/ziLpNnSAHJEG20NaRZeofAjxbZuronzTvAiWl4vooKGRSVg5lVwMpTFUySVOr2Jel+E2VQjR/qT9vtbVhSGfU6prCyxhs1kcEA1jTabRDOjuNYQVLULeV6LNfRVTSASbXfhQDYaQBCQyzU0JJ0cV68RdVSJV1odomZXk4ZrFU0Oj9rkzaYa1RtNYKQMDxJFmlNVr+E6OXmjQdRI1aPTbCKNqiq2t7Sa0o0M45st/Z6KhPJC1LAv8XbL+RXmEVKPOK890yqqwi2dvHSM0Wc0/rWExHGfhFBnURVWVCtWEm2mXInKkE4e0zOA+8UMC28ealRLN8V3U3zkiDqFUaHjTZppS5527zOWY+F9KAEP512W44oik5Dn6AWIY6IOSFfzB11Xeu0yvMelLuxXSrkOPU5tRZI3GkTDw3qOZh3NBZSwWMq83g+ckBfzR5hrfeyQoCoddXqXU9TJyyR219Xr03V6fcrSWjjWs3U6M6qPJQN18tV1fKNJtrSixSe1qvbwa7ZCxWq437R0vqufS9g43C0LPFQXqfc9jNRarLerfM/x9/K7t32eb/d/PxxfOC1SX6rTG9efN1zOfi0YTXb7h6vv15Pz8AH8i6fKfBapVvDtDm5ijPTMufJG8coS8l7ui5Q5LYU6cCle1ldJU1RnlJVY/c8t5PL7RM/yzebW3k+vrFbpMzSiXbvKvmNu1yR+ZbX3YYNMuxsZLnvy9H+m/rBVeaz1mk7Qoxq7z9fWSyXqaP8+skvzkHvSb76b5MmXKZR5y7L/AnGqpVNI0TuVrpdqmGCLz5QkejGHKgrf1r49JH3dhIsKqTRFwkSZLS73xMhelWdDOflIpYIbGUErhHq2d6Fw7Ftt6HZUSHFqEt9qIUFHhzTV4+pqLlOhdZOvrIZKuHopg1BoQxXS//0esy3HE77nUvAwhH+KEtiyLD+EEvu39csA9L7jcH6UVXVhyMbHe2Pjwgq9CL+lac8rIkK2tNJT/A3ndq9aKxghTnDD2rTTN5uaY9TpBL2jln6GVhtiFWvz77id6My8vleWlTlPZVJ4OD/1w241Cov3zB+5h8qFoIEydxm3dzf5/BVkOuiXrm5oQvFmM6zKQ+uGNO2JG+7dRT5UoTuUULuwBpcua0i70Si9IhLHpHPzWsG5uqZK65vNMglVjsySDySkwxVqL1zQ5qUbTd1HpvlO+foG0fgYvtvduo/CSwW4sVEa9x2g/sWXyWf3E80t4idGddGysIyMDJEvLG2tyuvPk0K1Z+LZQ/hlFfKk0+21fcj6tGz6z43ikggVku6+O5Ezl3TMJkZ5lWp2npc5N6XicfF9hcrCbGW15/EUpxVKSUx23xHitRbtPUNI7on/4qtEe/dw8QOH2PX0Jp3xCi71VP70WU7+zAMc/tnnynO/PBe8J5qcKJuvZisruHodNzFe9nxDBLop+cKiGg6z+4mW13V7mmnllHNw+ABuYVVbSmxslorTbng4yC04vd7D/6Vew29sltewJDFueIj8lmk2Dw5qXmUnp/oXz3Phxx9g/2cXyY+fDvlZaa8atF4rz3lVmNcy8yK/tH8O7t+GCNHwcG8R3u2qsR8EZ7dUAgLRkVvVyGu28EMD4D2P/dnv8egP/Ch4iP7sGe7+kufoh2b57Iv/4fqWs9f2+kcO/PB1ea/Hj/+nm7ec/Xrg0xQvoZz9uZdVQKqb6iQfxKnSM+eI7jyieQStDr5eRRotnSi8xyexJh06V0qG43PV8bmKRkaR6Ju32+VN+lWtDgISx7jJifKmULhRAXxe5CTloRxdSC9cLC+Y/GyrZwD0TXi+09GbP6jybrWqhoAPAnOFfHsl0SQ4F+G7vfJ839VJILswV2rhRH/6DAxqu4d8bT1UMvXyfEqdC59ryTpsSfQtJuEtmiPB2NmijRMm1VJDSFS7KNobbn79EyHo91O2B4jxp86VhqEPZcWuXuslcBeGSpbhR4bU+K3p9+3ravwVq0dfq0Crg19Y7I1LNy3HvJQpKIybJEaias+ICcngKpuvq8Vie7Rrqiw3920t5aaj/Y2I41KXqPQSiGg5f1+Je2HkSJJohVC/h6fs0RTK/kOius8yVRMv2iK0O739FpVqtao+v1rR/VBXr4lzISHU6c2xkiBJghusk7mgfr2qlSylBhX0yqj71XmLthVOkEg9CM2pCkQTdEYSBkYGWLx7hKELE6zvr+JST21pks5IRG0xpTMaU1lNSQc0pJqsdcmrEbXjl5l79wT7PnVaK+1umSF75ijuvjvJnzmKu+d2rZhaWCS/ZRp5qUs+ux956TTZ/UeI1lu4tQZXvmmGPY+d0V5l6w3SCxd7+7j3Dji2QTY9BZEgL3bJD+9HXjpLdu9hoq+ewO2a5Mz37+Pgpxdgejcbh4cYzjIah7TZbn10gPZUnerCKM2xKtXLKtSXDldJ5lZJd40Qr7WIFmrajmF1jUL7RSoVSGKVzYgT3MQYflXlMYq8ER+kDiSpsHrHCNGtwwwdX6UzpTlEPtKwqeTaAV0yT9TOcVnoTeXRxp9evSN8eRXuOUJ0+pJWDkaO7h0HiNdaHPvwGEMnI+KGZ/r4Hs5+6BAHf+cC6cczVj51kIH5nEqWMfuvnsDNTJO12kCmRkZVS7OlXsdPat+3aN9unX9FSE+e1vm0WlW5i9kDWgU2VIEX5vX11SrMHkDynKwWw2SY+7IJoiyDpVWYGid74SUkTojqdfz0FD7eDS+chNtu0VMyzZG1TXyrRWt3neHnF7n06G7qizmVLGffn69z7MNjHPmnHdzEOJJl5VwHqAp9YRDV62V7HLJMvYADA1sWn+WCoJIEKY5Er6tOty9K0WfMiiM/fV6vt5XVcvujP/Cj/NFv/RoPffTDjDvhsU8/xOQvzsG3YWwDN4ThA/Tk4gEfckJ8Tt8JJUiro7kE1URXlMWKWARZ31SX8LqqZUYTY9qHKKw2ixtEKcM/UIM8J1pa7Qm4gd6YXc8t65MYX0uQjZa6lJ3Tm3juIQ7NJkX0pge6z7Vh3ZcTbawYR3rjAs3PGR6CNKN513R5YwHNgYEQzuvLGYqv6E1datWyKqQwPMqeQYWgYql87ciL0vYkKSt3ANXfeOedZPUY18lJByLiVkZ3KCZq5WQ1h2vndIc1zFdd6SKpJ6tGRO2MrKoud1DXcncwRrxn4ORK+V15pyGerZ4x9Wi4vbvJR7WSwzuH62b4Wqy5V9VYb7TtDKoR+ZMv4EZHyM6cUx2RpYy82Qqrz6BD1GcQ+M1N3OCg5po40ZL/oSGyudCxvJv2lJ0hGLlqcHnve/93Efnqmq4MQVtlhN5YdLTslUoleAM3S2FA32z2vp/i3HVONXMmxsvVexFa6V+5S6VSeiPTi3NqDHa6ZbsMkqRs15Ivq3ctmppSJecgsqgy/YtEY6o/5YYGVc/qnts1LLfZ0JDQ2KgaR43GFuXr0vDNsr5cFMrxymOhNVlh+C9Pwegw419ZQc5eZCQ9rFVBT58kvvsWkmPniQ9PE5+5TL5nQpupLq8hAzWWH55h9eEWWe0WJIOZx+bY+L6HGD6xTvfvPEDU0mu6sncP3VqiN8ZYxzBabyGtLkuP7GP53S3SupazX3h0kqFLBxg+uUH3vQ8SNVKSw4fojlSQ1BOFMfettlZfNZv45VWqS9NcfmSSqV//Eu72cdzlZTg0QtTJ8U89T/Ub7sY/+Ry1O4+QHX0ZXERl317S8xeIF0bJVlZJ3/Mg1bNLuHvvIK8nyNKmei1W1okP7tcxb7YgSciWV4NG2Ebp8fTdDvUrXeI/eRqZmqI6vwSTY5Dl5ANVDXOmGtaUtlaUkWo+T3Fz9s0WMjhI/vRR8qCT5NMu0RfXcXt2cce/vsSxX7gNxDNyZh8Hf/Mk2cwU8s88P/nbv0MrT/j48HeRDgh7f/kJPT9Au4qDGt+DdXxVr1PmF0iXVrS1z3sepDMaEzdz4o0uydwqXF5k6T17GJi6n6iVk2ykJHOr+IvzLP6De9n1xApuaZ18cUkXj6MjML+Af+Q+zSLIctxGh2hukezOWeTY6XB99LSNolaOtDs88ENfpZ3HHBt6kKwiHPhsSjQ2ht+/B+lmROvqUcqmJ4gW1+nMjGtj1m6GP39BFdFBW2R4X4bffNhGlpHdug/X6tIdqWn+E+BaKdGFOW1DUShGO2Hl+x+gspmTJZrTE3WgfrnDQx/9MF/8uY/xrtY/prYAK40628INEOXZbm6IUNeITPiH3KNX/0L6vSSP3Ee02kLawS3Z7qoRlHvtrN7u6A2l1SZbUO+IBFHDsoQ4CJlJraoNMy/N9ZSE+4W1wkQplQSp1chmdPWfVSN84ij0M0DzOfJYE5/FewY+85WtTQtfIT+vvYkEd/jQls9ReB2AXpggicsJd0uI5jW+N+lrT1AaVX1enf42ElKrqpcqhItUaE09WMRxyC2IVQ8krGC3KMMW41ut4JOY9Xt24yNIq5rzUMTlJQcfa/WJj2Hvx56kEFncIunfFz6S4EWSyXE1ECqJVgfVKtqtudDDSWItjV5aoWgiWjYzDC0B3Nho2T9HBgd0LNttFY6sVvANrcDBOfWUhcaokiT4blcN6HBcpecnPCY0wtUy+bzcj1bb9bRwxDnWHzpIkScEYSXvJCQthxLlULo7/NX50pNZGIzldx5CLZLlet43QwFAvar/W9LQqiRJENwUVr7lFkY/d7QMf5XK5z5I/vedmz7LSu2j4jMUoWE3NsrKu2cZOr1JZ7xKZbVDe7JKba4BOfhqRLTeJq8nWo5cjZF22rueOl38yhr5+jrpN99L1OgSX1mjNTtF7cRlOgenqJxd0Eq8yRFcCD3J2iZ+sK65QXmuhkurTfrOO0leukB+cA/pUEL15BXdx7lF8pEB3PKGhtnGR7bsww/UdF+VpOzNVITB1GvY6Qn2VatqcIa2Lr5omNxRgb38bQdxZ+Y1vBjH+txalWx1Tb0dhZEbFiKFuveWtgzfeA/pUIV4o4NrdNV7HWn1mY9c75xPs15JfL+HrhDKfNut+NPn1SgeH8NPjsHcFdLbD+CeeB6AUz/zTg4+3iT60lHcLQfwtQRfiWn/7BrV75jraaf1tQYpwq7RgZmexzLkLWaX5vVzFWKUw8OhV5723isWEtHoSDkXtR5+G1nF4YsG9m3NMaw99lSYVyLciBokfrOBm5rseZJDakI+OQInzuGCZtSVX6oy9YMLZEf2E5+9XLYzKhYv+cFpWtMDDJxeJRup4Z0QHz2LjI+Sz2lpuQwPQaeLjI2Qz18J10RMdtctRMuhCWyzrdda5GBhRRcWfeHt6M7b9Pw/M4+EUv309DnECevf8w385S/8d943+xAiwueav3n9Q137f+i6vNfjJ/7zDRvquiEMn1E36R9K3qfGwMCAKoWKK9s7+CzTCST02irj6GGCLpSBt7SuKJpXJpUtE3cZmggS/b7RpFBlLcIXpXR/EAIkjvTCCAmPUglGSl8OUK9iI+95mQg32mKSgl54IUnIR7USxBfGRCRloqaESQXQiSxNtToj1xWJq1bJNjaJd0+VuTXxnl3a/K9PibnMEQmUYb/p3erJaqe6qsw1gVi6waPWVe0c8eA22+ppq6kmUeHJ8c5p77BKDJlHjp8t36Mcl35DqV9Fd0S9Yj4KysXFRJrEWuUSGnDmi8tBAK5eaqsUzWJ737Mrb96uWu21tCjyZ+DVyd9hknqVMdmXbyVh371zJwtetz7NoEi7c79Shbbsy9R3fpSrwmJ//edFkTdUhMaKc6/4/oIhVdyYCc0+82aTaHJCkzKDSF40Nkq2ukY0NlbmYiBC/vZb4UvPqXEYx6W0QX/rlOIaKSnObT1Iun/rPvJYqD9xQsULxzR0Ex/aj68kMH8FpiZgZU2NrEajl7cVFMnb33Q7eSIs35aw+6kGydGz+P17VPsoTVXXJXLkL58iOjCjOTZjo/jVtfJcbr3zMOmAY+1AzMxnLtI5ME682sYtrpX78GcvILMHkGZbK93Gx/Br66Gay4WQ0xiL33EH4594CnfbIZhbgKlxpNUhuzSnDXlDWKO/AWup+wREu6foHtpFvLiJryXqNapV8YvLapiHXBA3MKBGQBFa7cujcrMHYWWdfGWVaM+u3vUQzivf6ejnKkIsQbQU6IV2X9Hs1g0Pk29sEB25lbV7p0rpjZHffwaShI1H76Kx24WEaZj57eMc/dmD3P7jz5bHJ/V6aF3TJrrtFp3jcg8ra2Tzl4kPHaC7b4JsQL3H0UYHefEUbvcU7dkpTfzv5ESNDnLsNG5qgvatu6icW0Y2GmVuHj4n2jVFvmeivIbclRXN87ptFuYXdP4XpwZmJSG/dQZpd5l/1zjeCfs+dYazHzrEvp//ItHQoCb5Z3k5JjI6ohGBseFyXspeOrGlDU6hFq/9AZvlAi8+tF+N3mpFjfew4MiXltVQTrvlwqT76INE3RwyTzoY41LP/f/xyzz26YepLcCejz/F46e+yPtv/xY+t/Y/rq/hU93rH5n5wevyXo+f+vkb1vC5IUJd3ofETSKNkwP4rlY9odZ/trGp4Y3cky0ulY0rna+WIYhsbU0nl24KAwNB6XVDVyEhU993U7JGo1wpRWNjaji1GuXqrmw02Q1JiuLKrsyA3pT7+2mFi8MVrQqCsea7KbKx2evPBeRhtUiW4c/pDdQND5Ovr2/pRJ2Hthl5caxQdibvv4nmK6tljk92ZUH30acmXHhPfAjxFSWv0mzryqXRwMWxapeMjYakZ4ff3CRKKjrJjI3qKlZcz1MSvAm+2QxNDDu9nKLQ56s/b6TMiyo8Wd7rygpU3G1oUA0K58o2GDjBv+0g8fwK2d5xorllFXUDXIjbp3vGiFabyInTICG3IuS4aIgxeN2Kdgluq0Hhu/R6i0Xhd0W/Hzm4r/QqyYa27KA/IXiorp6X0I+H3OukGDlNRO3L6/L1Kv7Fk5q/1u/hKnKPIkKyc47vetydt2nVoQiy2dIQYZbrvkFznrKMKM3IR+rEQ4PkY0PEaw3odIkAGRsh8jnsnkLWN1k/OMDI8iyyvkm2vKK5Xq1Or1DAZ+W5pnk9UamnVeQ6tcdiho+vsfHuIwwdXWTx4d0MXeiwOFsIUY6yOV1h+Pw4zV0V6pc7dMZiXMeXmlq1Z85y9OcOcMdHvoK/61ayI/uRp47Reegu4ieP0b19H3ksVI47WrdOUV1Zo3nnXmrPdGg8cIhkI6X+/EVe+Df7ueOfP0t+aIZoo4N/7iU633QP0RMv0L1zhvjlk3QOjiKZp7a6TuPt0ww8k7L5joMMPH2GeGYfx37qALf+bovowD4WvmGKiWciNg6PgsDw8zUat40z8PIS7f1j1E6p1zCbHMadmVeF5IVl/NAA8XKD/MRpvc6GhpBN9SYVybPxzD7ypWUN2y4tE02Ma4hkcxM3MMCZ792LS/cy/VcNNqarpDUpQ9+qhq6VQEkzx3U8rpOrjljqcd0M10o1t+n+u7QBcrcD3S7d9z6I3+jSHnYsPJThWo6xL0xy/MMHOfiHTRbuHSC+f4XN81pssf8zEXJkFn/suLYjCQ2M3Sj4K0tquOU5bs8u4pl9+KEBkrNXSKoV8oHgWbn3Nty5BZUYOLGoZfrOkb7jCJULy+SR0DgyFSpxZ4g3OkRXVtWbdeKctuqZGqdzeC/RzBTZ00fxD92NZLlW7a018EnMwn1D7HpyldV3tfBLFXafv0B16SBrn7mFse+dg+FBrWprtnTODCkDzLVKr1m0Z7fOjwuL+NQjtap6pgApRCyrVbLzl0qPcmH8+Vcu7EIbitqz58jmLxPdNksCSLPN0Q/NMvmLc6w06sivCu+//Vv4wxf/nGj6ddwgjbecG8LjIyJXgE1gYbuP5euQKWxcrwU2rtcGG9drg43rtePNjO0h7/2ut/Jgvhaj1T3+kX0/cF3e6/HT/9U8Pl8L7/0uEXnyRh2kmxkb12uDjeu1wcb12mDjeu2wsb35cH/9UwzDMAzDML4+uCE8PoZhGIZhXAdugPSW7eZG8vj8ynYfwNcpNq7XBhvXa4ON67XBxvXaYWN7k3FDJDcbhmEYhnFtGa3s8Y/s/dB1ea/Hz/23Gza5+Uby+BiGYRiGYVxTLMfHMAzDMHYKFuXZfo+PiLxPRF4UkeMi8tHtPp6bCRH5NRG5LCLP9W2bEJHPi8jL4fd43/9+OozziyJi7fFeAxE5ICL/R0SOisjzIvITYbuN7ZtARGoi8oSIPBPG9d+F7TaubwEiEonIl0XkD8JjG9e3ABE5LSLPishXROTJsM3G9iZmWw0fEYmAXwLeD9wFfEhE7trOY7rJ+HXgfa/Y9lHgj733R4A/Do8J4/pB4O3hNb8cxt94NSnwU977O4GHgY+E8bOxfXO0gfd47+8D7gfeJyIPY+P6VvETwNG+xzaubx1/23t/f1/Oys07tkXfv2v9cwOz3R6fbwSOe+9Peu87wCeAD2zzMd00eO//DFh6xeYPAL8R/v4N4Lv7tn/Ce9/23p8CjqPjb7wC7/0l7/3T4e919GYyg43tm8IrG+FhEn48Nq5vGhHZD/w94ON9m21crx02tjcx2234zADn+h6fD9uMvzl7vPeXQG/gwO6w3cb6b4CI3AK8A/giNrZvmhCO+QpwGfi8997G9a3hF4B/gbYRLrBxfWvwwOdE5CkR+bGw7SYd2+vk7bnBPT7bndwsV9l2Y4/YzYuN9RtERIaA/w38pPd+rehefrWnXmWbje1V8N5nwP0iMgb8nojc/TWebuP6OhCR7wAue++fEpFvfT0vuco2G9fX5l3e+4sishv4vIgc+xrPtbG9Cdhuw+c8cKDv8X7g4jYdy9cL8yIy7b2/JCLT6MoabKzfECKSoEbPb3nvfzdstrF9i/Der4jI/0XzIGxc3xzvAr5LRL4dqAEjIvKb2Li+JXjvL4bfl0Xk99DQ1c05th7I87/2aV/vbHeo60vAERGZFZEKmhT26W0+ppudTwM/Ev7+EeBTfds/KCJVEZkFjgBPbMPx3fCIunZ+FTjqvf8vff+ysX0TiMiu4OlBROrAo8AxbFzfFN77n/be7/fe34LOoX/ivf9BbFzfNCIyKCLDxd/A3wWew8b2pmZbPT7e+1RE/gnwWSACfs17//x2HtPNhIj8NvCtwJSInAf+LfBzwCdF5B8CZ4HvA/DePy8inwReQKuWPhLCDsareRfwQ8CzIR8F4F9iY/tmmQZ+I1S5OOCT3vs/EJEvYON6LbDz9c2zBw3Jgt4v/5f3/nER+RI369je4Pk31wNrWWEYhmEYO4DRZLd/ZPJ7r8t7PT7/sRu2ZcV25/gYhmEYhnG9MGfHtuf4GIZhGIZhXDfM8DEMwzAMY8dgoS7DMAzD2BF4yC3UZR4fwzAMwzB2DObxMQzDMIydgAfvTcDQPD6GYRiGYewYzONjGIZhGDsFy/Exj49hGIZhGDsH8/gYhmEYxk7BBAzN42MYhmEYxs7BPD6GYRiGsRPwHnKr6jKPj2EYhmEYOwbz+BiGYRjGTsFyfMzjYxiGYRjGzsE8PoZhGIaxQ/CW42MeH8MwDMMwdg7m8TEMwzCMHYG3HB/M42MYhmEYxg7CDB/DMAzDMHYMFuoyDMMwjJ2Ax5qUYh4fwzAMwzB2EObxMQzDMIydgrdydvP4GIZhGIaxYzCPj2EYhmHsADzgLcfHPD6GYRiGYewczONjGIZhGDsB7y3HB/P4GIZhGIaxgzCPj2EYhmHsECzHxzw+hmEYhmFsIyLyoIg8KyLHReQXRURe43k/HZ7zooh82xt9fYEZPoZhGIaxU/D59fl5Y3wM+DHgSPh53yufICJ3AR8E3h7+/8siEr3e1/djho9hGHvTRlkAAAFCSURBVIZhGNuCiEwDI977L3jvPfA/ge++ylM/AHzCe9/23p8CjgPf+AZeX2I5PoZhGIaxA1hn+bN/5H9n6jq9XU1Enux7/Cve+1+5yvNmgPN9j8+HbVd73v+7yvO6r/P1JWb4GIZhGMYOwHv/NUNA28TV8nGuloH9Ws97va8vsVCXYRiGYRjbxXlgf9/j/cDF13jegas87/W+vsQMH8MwDMMwtgXv/SVgXUQeDtVYPwx86ipP/TTwQRGpisgsmsT8xBt4fYkZPoZhGIZhbCcfBj6OJiyfAP4QQES+S0T+PYD3/nngk8ALwOPAR7z32dd6/WshmgRtGIZhGIbx9Y95fAzDMAzD2DGY4WMYhmEYxo7BDB/DMAzDMHYMZvgYhmEYhrFjMMPHMAzDMIwdgxk+hmEYhmHsGMzwMQzDMAxjx/D/ASZLLJhJej3tAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(10,10))\n", "im = ax.imshow(corr_matrix.abs())\n", "im.set_clim(0, 1)\n", "ax.grid(False)\n", "cbar = ax.figure.colorbar(im, ax=ax, format='% .2f')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That shows that some features are redundant, as not only the diagional has a green color.\n", "\n", "Now, to select a meaningful set of features, that describes the data well enough, we are taking the following approach, greatly inspired by [this](https://towardsdatascience.com/escape-the-correlation-matrix-into-feature-space-4d71c51f25e5). They summarize the approach this way : \n", "1. Take the absolute value of our correlation matrix, and subtract each value from 1. It is handily transformed into a distance matrix!\n", "2. We can then use PCA to reduce our NxN matrix to Nx2.\n", "3. Plot each feature’s location using the two principal components.\n", "4. Use Feature Agglomeration to generate feature clusters.\n", "5. Color each feature by its cluster.\n", "6. Draw lines to represent relationships " ] }, { "cell_type": "markdown", "metadata": { "id": "EE89sgyX9cM3" }, "source": [ "We re-use the code from [here](https://gist.github.com/MattJBritton/b6944218903312f6220bfb48706b593c#file-minimal_example-py) for the nice visualisations. The code is in a separate notebook (milestone3_feature_clustering.ipynb) to avoid overload this one. We directly use here the appropriate features." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "q012UZED9cM6" }, "outputs": [], "source": [ "selected_features = ['chroma_stft_mean_01', 'chroma_stft_std_01', 'chroma_cqt_kurtosis_03', 'chroma_stft_max_01', 'chroma_stft_kurtosis_01', 'chroma_stft_kurtosis_03', 'chroma_cqt_mean_01', 'chroma_cqt_mean_07','chroma_cqt_kurtosis_01', 'chroma_cqt_kurtosis_08']\n", "selected_features = selected_features + ['mfcc_max_01', 'mfcc_max_05', 'mfcc_kurtosis_03', 'mfcc_min_04', 'mfcc_skew_09', 'mfcc_max_02', 'mfcc_max_03', 'mfcc_skew_04', 'mfcc_skew_03', 'mfcc_kurtosis_01']\n", "selected_features = selected_features + ['rmse_max_01', 'rmse_kurtosis_01', 'rmse_min_01']\n", "selected_features = selected_features + ['spectral_contrast_max_01', 'spectral_contrast_max_07', 'spectral_contrast_kurtosis_01', 'spectral_contrast_min_01', 'spectral_rolloff_kurtosis_01', 'spectral_contrast_max_06', 'spectral_rolloff_max_01', 'spectral_contrast_kurtosis_06', 'spectral_contrast_kurtosis_07', 'spectral_contrast_skew_07']\n", "selected_features = selected_features + ['tonnetz_max_01', 'tonnetz_kurtosis_01', 'tonnetz_mean_02', 'tonnetz_min_01', 'tonnetz_mean_01', 'tonnetz_mean_03', 'tonnetz_skew_03', 'tonnetz_skew_04', 'tonnetz_skew_05', 'tonnetz_skew_06']" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "features_flatten = features.copy()\n", "features_flatten.columns = ['_'.join(col) for col in features.columns.values]" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "chroma = features[['chroma_stft', 'chroma_cqt', 'chroma_cens']]\n", "chroma.columns = ['_'.join(col) for col in chroma.columns.values]\n", "\n", "mfcc = features['mfcc']\n", "mfcc.columns = ['_'.join(col) for col in mfcc.columns.values]\n", "\n", "rmse = features['rmse']\n", "rmse.columns = ['_'.join(col) for col in rmse.columns.values]\n", "\n", "spectral = features[['spectral_contrast', 'spectral_rolloff', 'spectral_centroid', 'spectral_bandwidth']]\n", "spectral.columns = ['_'.join(col) for col in spectral.columns.values]\n", "\n", "tonnetz = features['tonnetz']\n", "tonnetz.columns = ['_'.join(col) for col in tonnetz.columns.values]\n", "\n", "zcr = features['zcr']\n", "zcr.columns = ['_'.join(col) for col in zcr.columns.values]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "id": "mMJXkSQE9cM7" }, "outputs": [], "source": [ "# Normalizing selected features for regression\n", "df_selected_features = features_flatten[selected_features]\n", "x = df_selected_features.values \n", "min_max_scaler = preprocessing.MinMaxScaler()\n", "x_scaled = min_max_scaler.fit_transform(x)\n", "df_selected_features_normalized = pd.DataFrame(x_scaled)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "id": "VMfctIis9cM7" }, "outputs": [], "source": [ "df_selected_features_normalized.index = tracks[\"track\"]['genre_top'].index\n", "df_selected_features_normalized = df_selected_features_normalized[df_selected_features_normalized.index.isin(pop_df[\"pop_score\"].index)]\n", "X = df_selected_features_normalized\n", "y = pop_df[\"pop_score\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regressions " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We decide to use regression analysis to explore as a statistical method that allows us to examine the relationship between the variables of interest : popularity and musical features. Our dependent variable is the popularity score as computed previously, whereas the independent variables are all the features selected by the previous clustering." ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "id": "QfdxRMCT9cM8", "outputId": "f176dabc-9bde-4daa-c64e-5474de698190", "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: pop_score R-squared: 0.053
Model: OLS Adj. R-squared: 0.053
Method: Least Squares F-statistic: 135.1
Date: Mon, 24 May 2021 Prob (F-statistic): 0.00
Time: 21:56:03 Log-Likelihood: -1.4339e+05
No. Observations: 103045 AIC: 2.869e+05
Df Residuals: 103001 BIC: 2.873e+05
Df Model: 43
Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
const 3.9925 0.530 7.528 0.000 2.953 5.032
0 -0.1023 0.031 -3.353 0.001 -0.162 -0.042
1 0.3910 0.038 10.241 0.000 0.316 0.466
2 -1.7740 0.490 -3.617 0.000 -2.735 -0.813
3 -1.0914 0.485 -2.253 0.024 -2.041 -0.142
4 -0.9342 0.962 -0.971 0.331 -2.819 0.951
5 0.6150 0.587 1.048 0.294 -0.535 1.765
6 -0.5904 0.029 -20.430 0.000 -0.647 -0.534
7 -0.6721 0.028 -24.160 0.000 -0.727 -0.618
8 0.2975 0.946 0.314 0.753 -1.556 2.151
9 -2.4952 0.757 -3.298 0.001 -3.978 -1.012
10 0.4276 0.076 5.594 0.000 0.278 0.577
11 -1.3332 0.041 -32.821 0.000 -1.413 -1.254
12 -1.6097 0.306 -5.257 0.000 -2.210 -1.010
13 0.1920 0.035 5.445 0.000 0.123 0.261
14 -0.4031 0.125 -3.226 0.001 -0.648 -0.158
15 0.2963 0.048 6.227 0.000 0.203 0.390
16 1.1787 0.036 32.509 0.000 1.108 1.250
17 -1.7490 0.127 -13.763 0.000 -1.998 -1.500
18 -2.2799 0.092 -24.818 0.000 -2.460 -2.100
19 -0.4638 0.527 -0.881 0.379 -1.496 0.568
20 -0.1146 0.031 -3.700 0.000 -0.175 -0.054
21 -2.2557 0.770 -2.928 0.003 -3.766 -0.746
22 0.5682 0.270 2.101 0.036 0.038 1.098
23 -0.2043 0.032 -6.365 0.000 -0.267 -0.141
24 -0.1783 0.035 -5.144 0.000 -0.246 -0.110
25 -2.0996 0.605 -3.468 0.001 -3.286 -0.913
26 0.4884 0.037 13.036 0.000 0.415 0.562
27 1.4398 0.335 4.304 0.000 0.784 2.096
28 -0.0729 0.024 -3.074 0.002 -0.119 -0.026
29 -0.0052 0.034 -0.152 0.879 -0.072 0.061
30 0.2488 0.417 0.597 0.550 -0.568 1.066
31 -1.3787 0.107 -12.888 0.000 -1.588 -1.169
32 -0.5108 0.061 -8.429 0.000 -0.630 -0.392
33 -0.1981 0.044 -4.461 0.000 -0.285 -0.111
34 -0.3390 0.255 -1.332 0.183 -0.838 0.160
35 0.0248 0.087 0.285 0.775 -0.146 0.195
36 0.1677 0.037 4.539 0.000 0.095 0.240
37 0.5722 0.082 6.982 0.000 0.412 0.733
38 -0.1214 0.042 -2.873 0.004 -0.204 -0.039
39 -0.4156 0.136 -3.045 0.002 -0.683 -0.148
40 -0.1595 0.153 -1.042 0.297 -0.460 0.140
41 0.6291 0.141 4.453 0.000 0.352 0.906
42 -0.4963 0.160 -3.108 0.002 -0.809 -0.183
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Omnibus: 4399.539 Durbin-Watson: 0.396
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5375.951
Skew: 0.472 Prob(JB): 0.00
Kurtosis: 3.600 Cond. No. 1.09e+03


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.09e+03. This might indicate that there are
strong multicollinearity or other numerical problems." ], "text/plain": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: pop_score R-squared: 0.053\n", "Model: OLS Adj. R-squared: 0.053\n", "Method: Least Squares F-statistic: 135.1\n", "Date: Mon, 24 May 2021 Prob (F-statistic): 0.00\n", "Time: 21:56:03 Log-Likelihood: -1.4339e+05\n", "No. Observations: 103045 AIC: 2.869e+05\n", "Df Residuals: 103001 BIC: 2.873e+05\n", "Df Model: 43 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "const 3.9925 0.530 7.528 0.000 2.953 5.032\n", "0 -0.1023 0.031 -3.353 0.001 -0.162 -0.042\n", "1 0.3910 0.038 10.241 0.000 0.316 0.466\n", "2 -1.7740 0.490 -3.617 0.000 -2.735 -0.813\n", "3 -1.0914 0.485 -2.253 0.024 -2.041 -0.142\n", "4 -0.9342 0.962 -0.971 0.331 -2.819 0.951\n", "5 0.6150 0.587 1.048 0.294 -0.535 1.765\n", "6 -0.5904 0.029 -20.430 0.000 -0.647 -0.534\n", "7 -0.6721 0.028 -24.160 0.000 -0.727 -0.618\n", "8 0.2975 0.946 0.314 0.753 -1.556 2.151\n", "9 -2.4952 0.757 -3.298 0.001 -3.978 -1.012\n", "10 0.4276 0.076 5.594 0.000 0.278 0.577\n", "11 -1.3332 0.041 -32.821 0.000 -1.413 -1.254\n", "12 -1.6097 0.306 -5.257 0.000 -2.210 -1.010\n", "13 0.1920 0.035 5.445 0.000 0.123 0.261\n", "14 -0.4031 0.125 -3.226 0.001 -0.648 -0.158\n", "15 0.2963 0.048 6.227 0.000 0.203 0.390\n", "16 1.1787 0.036 32.509 0.000 1.108 1.250\n", "17 -1.7490 0.127 -13.763 0.000 -1.998 -1.500\n", "18 -2.2799 0.092 -24.818 0.000 -2.460 -2.100\n", "19 -0.4638 0.527 -0.881 0.379 -1.496 0.568\n", "20 -0.1146 0.031 -3.700 0.000 -0.175 -0.054\n", "21 -2.2557 0.770 -2.928 0.003 -3.766 -0.746\n", "22 0.5682 0.270 2.101 0.036 0.038 1.098\n", "23 -0.2043 0.032 -6.365 0.000 -0.267 -0.141\n", "24 -0.1783 0.035 -5.144 0.000 -0.246 -0.110\n", "25 -2.0996 0.605 -3.468 0.001 -3.286 -0.913\n", "26 0.4884 0.037 13.036 0.000 0.415 0.562\n", "27 1.4398 0.335 4.304 0.000 0.784 2.096\n", "28 -0.0729 0.024 -3.074 0.002 -0.119 -0.026\n", "29 -0.0052 0.034 -0.152 0.879 -0.072 0.061\n", "30 0.2488 0.417 0.597 0.550 -0.568 1.066\n", "31 -1.3787 0.107 -12.888 0.000 -1.588 -1.169\n", "32 -0.5108 0.061 -8.429 0.000 -0.630 -0.392\n", "33 -0.1981 0.044 -4.461 0.000 -0.285 -0.111\n", "34 -0.3390 0.255 -1.332 0.183 -0.838 0.160\n", "35 0.0248 0.087 0.285 0.775 -0.146 0.195\n", "36 0.1677 0.037 4.539 0.000 0.095 0.240\n", "37 0.5722 0.082 6.982 0.000 0.412 0.733\n", "38 -0.1214 0.042 -2.873 0.004 -0.204 -0.039\n", "39 -0.4156 0.136 -3.045 0.002 -0.683 -0.148\n", "40 -0.1595 0.153 -1.042 0.297 -0.460 0.140\n", "41 0.6291 0.141 4.453 0.000 0.352 0.906\n", "42 -0.4963 0.160 -3.108 0.002 -0.809 -0.183\n", "==============================================================================\n", "Omnibus: 4399.539 Durbin-Watson: 0.396\n", "Prob(Omnibus): 0.000 Jarque-Bera (JB): 5375.951\n", "Skew: 0.472 Prob(JB): 0.00\n", "Kurtosis: 3.600 Cond. No. 1.09e+03\n", "==============================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", "[2] The condition number is large, 1.09e+03. This might indicate that there are\n", "strong multicollinearity or other numerical problems.\n", "\"\"\"" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "X = sm.add_constant(X)\n", "model = sm.OLS(y,X) # Least Square Regression\n", "results = model.fit()\n", "results.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (< 0.05) indicates that you can reject the null hypothesis. In other words, a predictor that has a low p-value is likely to be a meaningful addition to your model because changes in the predictor's value are related to changes in the response variable.\n", "\n", "Let's look at which features are good predictors of popularity, features for which we reject the null hypothesis at a level of 0.05. " ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "id": "dnWOVYTt9cM8", "outputId": "43d8b2f2-162d-4de4-d84b-440ee37fe4f8", "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "chroma_cqt_kurtosis_08 -2.495228\n", "mfcc_skew_03 -2.279891\n", "rmse_kurtosis_01 -2.255653\n", "spectral_contrast_kurtosis_01 -2.099599\n", "chroma_cqt_kurtosis_03 -1.773952\n", "mfcc_skew_04 -1.749003\n", "mfcc_kurtosis_03 -1.609724\n", "spectral_contrast_kurtosis_07 -1.378706\n", "mfcc_max_05 -1.333245\n", "chroma_stft_max_01 -1.091432\n", "chroma_cqt_mean_07 -0.672139\n", "chroma_cqt_mean_01 -0.590365\n", "spectral_contrast_skew_07 -0.510810\n", "tonnetz_skew_06 -0.496266\n", "tonnetz_skew_03 -0.415611\n", "mfcc_skew_09 -0.403052\n", "spectral_contrast_max_01 -0.204281\n", "tonnetz_max_01 -0.198128\n", "spectral_contrast_max_07 -0.178251\n", "tonnetz_mean_03 -0.121386\n", "rmse_max_01 -0.114562\n", "chroma_stft_mean_01 -0.102282\n", "spectral_contrast_max_06 -0.072909\n", "tonnetz_min_01 0.167704\n", "mfcc_min_04 0.191966\n", "mfcc_max_02 0.296299\n", "chroma_stft_std_01 0.391017\n", "mfcc_max_01 0.427563\n", "spectral_contrast_min_01 0.488448\n", "rmse_min_01 0.568158\n", "tonnetz_mean_01 0.572225\n", "tonnetz_skew_05 0.629137\n", "mfcc_max_03 1.178739\n", "spectral_rolloff_kurtosis_01 1.439841\n", "intercept 3.992458\n", "dtype: float64" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "coeffs_results = results.params\n", "pvalues_results = results.pvalues\n", "coeffs_results.index = ['intercept'] + selected_features\n", "pvalues_results.index = ['intercept'] + selected_features\n", "coeffs_results[pvalues_results < 0.05].sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have a total of 37 good predictors ! A first quick look at it tells us that the higher the chroma_cqt_kurtosis_08 is, the less popular a music is likely to be, whereas a high spectral_rolloff_kurtosis_01 would be in favor of popular songs. For the conclusions of the study, we will need to make sense of such features." ] }, { "cell_type": "markdown", "metadata": { "id": "wplv74nr9cM8" }, "source": [ "### By genre" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, be more precise. There is a wide variety of different genre, and analysing them all at once may not be the smartest thing to do. Hence we decide to analysze what makes music popular, by genre. We apply the same method of regression analysis as before, on the same set of features." ] }, { "cell_type": "code", "execution_count": 138, "metadata": { "id": "OML_fp7C9cM9" }, "outputs": [], "source": [ "X = df_selected_features_normalized\n", "genres = tracks[\"track\"].groupby('genre_top').count()['number'].index.tolist()" ] }, { "cell_type": "code", "execution_count": 130, "metadata": { "id": "MaEo1_m-9cM9" }, "outputs": [], "source": [ "def find_predictors(genre, p_val):\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", " y = pop_df[\"pop_score\"][tracks['track']['genre_top'] == genre]\n", "\n", " X = sm.add_constant(X)\n", " model = sm.OLS(y,X)\n", " results = model.fit()\n", " coeffs_results = results.params\n", " pvalues_results = results.pvalues\n", " if len(coeffs_results.index) > len(selected_features) :\n", " coeffs_results.index = ['const'] + selected_features\n", " pvalues_results.index = ['const'] + selected_features\n", " else :\n", " coeffs_results.index = selected_features\n", " pvalues_results.index = selected_features\n", " return coeffs_results[pvalues_results < p_val].sort_values()" ] }, { "cell_type": "code", "execution_count": 131, "metadata": { "id": "pqWGvoC39cNM", "outputId": "b0a5716f-ee4f-4457-b4a4-abc64a991aa9" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n", ":2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == genre]\n" ] } ], "source": [ "preds = [{g : find_predictors(g, 0.05).to_dict()} for g in genres]" ] }, { "cell_type": "code", "execution_count": 132, "metadata": { "id": "AX0HK3xD9cNM" }, "outputs": [], "source": [ "df_merged = pd.DataFrame()\n", "for p in preds:\n", " df_merged = df_merged.merge(pd.DataFrame(p), left_index=True, right_index=True, how='outer')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To visualize the results in a compact and readable way, we display a heatmap. The darker the spot is, the more impactful in popularity the feature is. White spots mean that the feature is not statistically significant in determining popularity. We plot first the features that have a positive effect on popularity (the higher their value is, the higher the popularity is predicted), and then the ones that have a negative effect on popularity (the higher their value is, the lowest the popularity is predicted)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZjpkyMqn9cNN", "outputId": "8be2ff4a-96db-4c5f-f74c-dfc47f3a3eb8" }, "outputs": [], "source": [ "import seaborn as sns;\n", "\n", "# Effect of positive coeffs\n", "df_merged_pos = df_merged[df_merged>0]\n", "\n", "fig, ax = plt.subplots(figsize=(10,10)) \n", "sns.heatmap(np.log(df_merged_pos), cmap=sns.cm.rocket_r, ax=ax)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Xsgw8nF19cNO", "outputId": "9a68330d-e657-42a1-f105-0781005c4648", "scrolled": true }, "outputs": [], "source": [ "# Effect of negative coeffs\n", "df_merged_neg = df_merged[df_merged<0]\n", "\n", "fig, ax = plt.subplots(figsize=(10,10)) \n", "sns.heatmap(np.log(abs(df_merged_neg)), cmap=sns.cm.rocket_r, ax=ax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# MSE score for all and rock" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Split the data into train-test" ] }, { "cell_type": "code", "execution_count": 140, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":4: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " rock_X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == 'Rock']\n" ] } ], "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X.values, y.values, test_size=0.05, random_state=42)\n", "\n", "rock_X = df_selected_features_normalized[tracks[\"track\"]['genre_top'] == 'Rock']\n", "rock_y = pop_df[\"pop_score\"][tracks['track']['genre_top'] == 'Rock']\n", "rock_X_train, rock_X_test, rock_y_train, rock_y_test = train_test_split(rock_X.values, rock_y.values, test_size=0.05, random_state=42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MSE on naive always-return-zero model for reference" ] }, { "cell_type": "code", "execution_count": 159, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All: 5005.8761226866345\n", "Rock: 527.7648600853961\n" ] } ], "source": [ "print(\"All:\", y_test@y_test)\n", "print(\"Rock:\", rock_y_test@rock_y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linear regression - all" ] }, { "cell_type": "code", "execution_count": 143, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4814.083453926919" ] }, "execution_count": 143, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_lr = sm.OLS(y_train,X_train) # Least Square Regression\n", "results = model_lr.fit()\n", "y_hat = results.predict(X_test)\n", "dot = (y_hat - y_test)\n", "dot@dot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linear regression - rock" ] }, { "cell_type": "code", "execution_count": 161, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "343.3193589983109" ] }, "execution_count": 161, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_lr = sm.OLS(rock_y_train, rock_X_train) # Least Square Regression\n", "results = model_lr.fit()\n", "y_hat = results.predict(rock_X_test)\n", "dot = (y_hat - rock_y_test)\n", "dot@dot" ] }, { "cell_type": "code", "execution_count": 164, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(-0.4643162501709588, -1.5041084651833043),\n", " (-0.6034595223125281, -0.5955115530162234),\n", " (-0.4492528735597498, -0.24542866811475567),\n", " (-0.6878907340822157, -0.8963904181358582),\n", " (-0.3016233202664896, 1.0499587242700754),\n", " (-0.7804491816803061, -0.4385646372772147),\n", " (-0.41714173213889477, 0.1852191138921789),\n", " (-0.18675136358534195, -0.21625910866509027),\n", " (-0.7746833990596517, -1.4287716292047918),\n", " (-0.636527509901808, -0.7070515508004204),\n", " (-0.5479993217482375, -0.8596813648718226),\n", " (-0.5632875750334145, 0.3780966471310925),\n", " (-0.20676168463363304, -0.6924939455633519),\n", " (-0.5615461175469549, -1.4107769182983223),\n", " (-0.6752485534594495, -0.29220471046698215),\n", " (-0.4652215586850874, 0.4865922905808367),\n", " (-0.4160500794008979, -0.7204191764088058),\n", " (-0.4237791409033971, -0.4580615391277741),\n", " (-0.41374327010618783, -0.4258864844384222),\n", " (-0.3451870790456249, -0.42510934198612627),\n", " (-0.3738174816833705, -1.4020529655158018),\n", " (-0.4743935808521462, -1.24085344313225),\n", " (-0.5119624296780665, -1.429830959881009),\n", " (-0.5460889984270026, 1.353014539072024),\n", " (-0.15394967682820657, -0.49761447355986566),\n", " (-0.5647188448498348, -0.4775260332884997),\n", " (-0.49245826701760076, -1.471062631020395),\n", " (-0.5410122363293378, -0.9994775613659991),\n", " (-0.38187230085707435, -0.4281002757706902),\n", " (-0.35130680534581704, -0.5565818961651384),\n", " (-0.5348372915857174, -0.8169663627044441),\n", " (-0.20820766884883196, -0.030890403696188024),\n", " (-0.6475403471866912, 0.7529824908493825),\n", " (-0.33573320620047226, -0.45502485168428136),\n", " (-0.5139674880519869, -0.14074929304667488),\n", " (-0.492765591798407, -0.281442797994692),\n", " (-0.1165454228746832, 0.08051825454220674),\n", " (-0.3621078458915292, 0.06457777266269701),\n", " (-0.25283629714373546, -0.5308077811967117),\n", " (-0.5959479687091943, -1.3193641944137255),\n", " (-0.44323072603654157, -0.38762511173382763),\n", " (-0.34109126363114384, -1.5104142634726807),\n", " (-0.40425508922104647, -0.7697391962564902),\n", " (-0.6798825473850318, -0.8514239818474721),\n", " (-0.522802610067353, 0.7256384045077665),\n", " (-0.5554875184483747, 0.02160242236937828),\n", " (-0.1797794660473691, -0.4125613496182672),\n", " (-0.7147521731797886, -0.7883209067920491),\n", " (-0.36554477709119804, -0.3456830160848703),\n", " (-0.5124950755698623, -1.4524950938958772),\n", " (-0.513306800612223, -1.2783970265494713),\n", " (-0.6112801959525969, -0.1322092010543786),\n", " (-0.4059801777558, -0.6174013505480358),\n", " (-0.46577972567773257, -0.7463253821506076),\n", " (-0.41210066810656787, -0.5515964659311247),\n", " (-0.5228818822726957, -0.5441470236277278),\n", " (-0.8027231018624171, -0.7695976609941334),\n", " (-0.8785138236265212, -1.2258895470863926),\n", " (-0.710586531456829, -0.5631867487404117),\n", " (-0.4687664191830537, -2.459487320171356),\n", " (-0.3937472184839811, 0.028072543652525726),\n", " (-0.5447019082469176, -0.7582561074511491),\n", " (-0.1844231035803198, 0.33181377108242094),\n", " (-0.559133576342886, -0.9235237886118309),\n", " (-0.7036927387928464, 0.27536611983089676),\n", " (-0.3424995508080486, -0.24140583567824297),\n", " (-0.4414635704314681, -0.20005210072438034),\n", " (-0.6208098659873114, -1.1017998002924487),\n", " (-0.4637203847102845, -0.9735835679981412),\n", " (-0.2967208741478717, -0.8468782170910597),\n", " (-0.6062887848498686, -0.606253946362644),\n", " (-0.7437468107270389, -0.7326567772713889),\n", " (-0.3119626948560821, -1.2465412710683212),\n", " (-0.15654733951169775, -1.5389557712245567),\n", " (-0.3434627810832796, -0.5672116876363945),\n", " (-0.77969326673888, -0.55598972174127),\n", " (-0.4109500014182042, -0.23903684646905515),\n", " (-0.7149001815699539, 0.47648703685023314),\n", " (-0.3889188587872387, 0.1407839377559586),\n", " (-0.3388406494724613, -0.36429604159876394),\n", " (-0.22274964102023553, 0.45131066338086395),\n", " (-0.5887642931788187, 0.7323243474645669),\n", " (-0.688689688488009, 0.07727285544502722),\n", " (-0.431379460979643, -1.1548970819141764),\n", " (-0.37452259623506934, -0.7614449214429573),\n", " (-0.24049028275604228, 0.15733779287057276),\n", " (-0.2728865659327071, 0.27431848356196514),\n", " (-0.3312610890671651, -1.1990766534658155),\n", " (-0.42189581177069024, -0.16804736075470392),\n", " (-0.4641056815247692, -0.6300424708158584),\n", " (-1.0952207661579112, -0.5843520601373644),\n", " (-0.4688714150554495, -1.3882547653266102),\n", " (-0.7947554153006824, -0.9835191749769016),\n", " (-0.5597450926935736, -0.35939867828435845),\n", " (-0.624114321423195, -0.9813817050489098),\n", " (-0.47459094846056055, -1.4316779929300543),\n", " (-0.47978221342330674, -1.0000569379794195),\n", " (-0.5572017069298238, -1.4709744741306252),\n", " (-0.5840538169696936, -0.40918995475791275),\n", " (-0.6175192224679994, -1.7718921745894292),\n", " (-0.5946516944107412, -0.4000338790601163),\n", " (-0.703922681051839, -0.7501191241079388),\n", " (-0.22049031130617863, -0.21512803145426843),\n", " (-0.49748364563335457, -0.03908183926006559),\n", " (-0.3306543827530118, -0.19855799377433553),\n", " (-0.498814297816683, 0.023693175987205498),\n", " (-0.44654982631860013, -1.2324503265935132),\n", " (-0.45418015956778324, 0.14535908740049647),\n", " (-0.2609498621193328, 0.08991020939693284),\n", " (-0.16629889879859172, 0.7031682613618742),\n", " (-0.5331808653242769, -1.2372645328421457),\n", " (-0.6033023003007366, -0.9583866103609264),\n", " (-0.3586121425528245, 0.688457691850941),\n", " (-0.5334130398291734, -1.3234209095797358),\n", " (-0.6578444639141859, -1.6521733567891432),\n", " (-0.36398382092354636, 1.168176816119514),\n", " (-0.8135487017515124, -0.5992040947410382),\n", " (-0.5574417212941649, 0.14386263513981715),\n", " (-0.798455023733216, -1.0851661699115223),\n", " (-0.5115961241705267, -0.6113019020913713),\n", " (-0.45593533934482117, -1.7819905962127771),\n", " (-0.5832776135014129, -0.007935302756743815),\n", " (-0.08526575168557918, -0.29883580249647657),\n", " (-0.5748805902302195, 0.10964468819196738),\n", " (-0.6940238241145001, -1.3790825682125485),\n", " (-0.9611454364544164, -0.052248603283409835),\n", " (-0.6887687128573499, -0.1437257596104923),\n", " (-0.3519382438520429, -0.0020386349899706785),\n", " (-0.6750160601778685, 0.002894806226424274),\n", " (-0.7538623386931232, -1.267143539007827),\n", " (-0.05860537514322771, -0.6919626617772481),\n", " (-0.45064187998481586, 0.4118601870725456),\n", " (-0.28197563597655995, -0.05181856104617781),\n", " (-0.6352727630056392, -1.9420799206256611),\n", " (-0.5477965637917627, 0.0009518984872912492),\n", " (-0.5374672368160196, 0.48532443522114377),\n", " (-0.6073980651544634, -0.9930185899967439),\n", " (-0.291603834662849, -2.0203060617927693),\n", " (-0.6639527491211928, 0.24087174002593026),\n", " (-0.5218570483033012, 0.005782696067047482),\n", " (-0.38901820426029565, -0.21876515013515027),\n", " (-0.45434481590297926, 0.3223049039402026),\n", " (-0.44459796931919826, 0.40918831533968997),\n", " (-0.653474496112993, 0.6896711606251347),\n", " (-0.293067730218593, 0.16224124628924377),\n", " (-0.30605747001191996, -1.6362349970974293),\n", " (-0.36169428618636207, 0.015876581574156553),\n", " (-0.36427761400620684, -0.3112029282081994),\n", " (-0.49466429986910637, -0.27381413446878705),\n", " (-0.7216897320628184, -1.4949587007685516),\n", " (-0.8724817374287753, -0.6505405846764557),\n", " (-0.5258546380897903, -0.7165337625821278),\n", " (-0.8754601403325246, -0.7409174167165354),\n", " (-0.4609687986732583, 0.4908050431889926),\n", " (-0.3855917410175268, -0.8182320552394994),\n", " (-0.4249491770320368, -0.5416336528691459),\n", " (-0.639746503054826, -1.005390849215502),\n", " (-0.5162887799648265, 0.16954174169772523),\n", " (-0.478097204271437, -0.6934269017465563),\n", " (-0.40019778466159234, -0.2309762541429329),\n", " (-0.702568848123114, -0.47162978690326557),\n", " (-0.6102186202990438, -1.1131867967854085),\n", " (-0.541153183937041, -0.8098157972713056),\n", " (-0.6111075784878469, 0.10808993842411072),\n", " (-0.6384274016576839, 0.2789043175245217),\n", " (-0.5814427997534687, -0.8442416850688833),\n", " (-0.8375911336987772, -1.0953419651504053),\n", " (-0.2634125315138866, -1.3743972362069368),\n", " (-0.421856590614913, -0.5195399544102877),\n", " (-0.5993110263392876, 0.7711188547213601),\n", " (-0.47308617719382223, -0.033991790234329806),\n", " (-0.7486762199741922, -1.1745287934393152),\n", " (-0.5378378371375482, -1.0649188639284568),\n", " (-0.4259508450701703, -0.8553952473398243),\n", " (-0.9272455559854657, -1.7336401436530067),\n", " (-0.16956097046286317, -0.6078512821204217),\n", " (-0.2526342299428072, -0.2030328338974258),\n", " (-0.456384142121844, -0.7193168699343232),\n", " (-0.47427040382311514, 0.9917927698797322),\n", " (-0.6108898909194023, -0.6687191611189979),\n", " (-0.6982020458897136, -0.8763938268391511),\n", " (-0.3092578308755615, -0.2519541667586441),\n", " (-0.3499375291117751, -0.6195666253719473),\n", " (-0.2535709879335183, -1.0692107224806284),\n", " (-0.4887165287970724, -1.1632650719567652),\n", " (-0.2685908819582838, 0.35678229877540196),\n", " (-0.5526631499308791, 0.22617160025909974),\n", " (-0.3459499599810152, -1.2950939236744896),\n", " (-0.5523312034671027, -0.8181890723074268),\n", " (-0.4678081920444153, -0.9234392366954471),\n", " (-0.349493097288069, -0.47614331359970496),\n", " (-0.8721183168274367, -0.577084696882933),\n", " (-0.6765878322991634, -0.34640072040580716),\n", " (-0.6534684884961107, -1.4432987737137808),\n", " (-0.28135122786638234, -0.8142287947583506),\n", " (-0.4861087558845215, -0.8364116376829109),\n", " (-0.48112779260026306, -0.4577369017754091),\n", " (-0.6868652889841219, -1.1625005755012408),\n", " (-0.40022374926653603, -0.4674284211451523),\n", " (-0.4056271681786808, -1.2372149786322035),\n", " (-0.5298318688684691, -0.36611466314230556),\n", " (-0.6184901473073519, -0.9974823705410627),\n", " (-0.2684863501186374, -0.12623859276567423),\n", " (-0.5664083054063024, -0.30043965785450555),\n", " (-0.4094148828920177, -1.8708181682686522),\n", " (-0.4050734320174164, -0.44822995500885054),\n", " (-0.5422758450485606, -0.0892231776241386),\n", " (-0.361326257052623, -0.7970032807788628),\n", " (-0.509935912775715, -0.6651624051309827),\n", " (-0.41223702581677923, -0.6247249197400079),\n", " (-0.6236803640614207, -1.48964026212942),\n", " (-0.7452307236963558, -0.48519428475232185),\n", " (-0.8605566943090907, 0.6075791793846784),\n", " (-0.42774772292036445, -0.9886050497146024),\n", " (-0.7373668660654799, -0.8398880662107565),\n", " (-0.6118160689121466, -0.6979715647370598),\n", " (-0.2714184874682758, -0.0883165090729413),\n", " (-0.6355907632351265, -0.6123675229783002),\n", " (-0.21864728938714734, -1.2740083986087205),\n", " (-0.8235073253646759, 0.2138950431765595),\n", " (-0.22162501073131652, -0.8847603793379137),\n", " (-0.8191493406874679, -1.414027325941435),\n", " (-0.26212084220136794, -1.4940902140992756),\n", " (-0.49577608219379143, -0.40008885355336543),\n", " (-0.4192865068327664, -0.9552824150864229),\n", " (-0.45640507161030613, -0.3338590558985008),\n", " (-0.4245702820004429, -0.2898107010165678),\n", " (-0.2775233258447296, 0.5258306847862289),\n", " (-0.3835468533009762, -0.6913167363812527),\n", " (-0.5645928034094881, -0.3255346485323865),\n", " (-0.6647379851789004, -1.5299262793645108),\n", " (-0.6207822062476409, -0.8740977715967517),\n", " (-0.30192809804451737, -0.7063562927302551),\n", " (-0.4469739632968954, -1.3670861722905303),\n", " (-0.8641404788315636, -1.3377389581657972),\n", " (-0.5718214935366535, -0.3192206438613823),\n", " (-0.8358763735141269, -1.287290488154998),\n", " (-0.4078940759608751, 0.2922854973048527),\n", " (-0.6751365003818124, 0.0002410831877397686),\n", " (-0.8515162412629098, -0.6998406433822193),\n", " (-0.5182628181642336, 0.4498564276532233),\n", " (-0.6420380911065193, -0.6397460276518041),\n", " (-0.40254265804384437, -0.5101838985172331),\n", " (-0.22989144009761558, -1.3042796207203693),\n", " (-0.3547840129408048, -1.081839352115231),\n", " (-0.5648548970159325, -1.354249228172302),\n", " (-0.4985082535740029, -1.616568993005075),\n", " (-0.4911210827413786, -1.5886373047557523),\n", " (-0.8583682967631092, -0.7643699616526896),\n", " (-0.6207523385985942, -1.1594596010953664),\n", " (-0.5596989183833916, -0.5940917965179738),\n", " (-0.5046551901901338, -1.009886904048091),\n", " (-0.6203972417178586, -0.4995942519218757),\n", " (-0.42936958997402047, -0.8978190525442465),\n", " (-0.3417201855999099, -1.045708190225805),\n", " (-0.646146021558751, 0.26470557405780964),\n", " (-0.4174643035714669, -0.10796030615419984),\n", " (-0.6809238488841922, -1.674163101243132),\n", " (-0.496809928358687, -1.0362129762606935),\n", " (-0.7089782980369446, -0.6956213595347811),\n", " (-0.6686905062061169, 0.5535003687262096),\n", " (-0.20805980259557894, -1.4192116295082806),\n", " (-0.9627331482118169, 0.6096459697117022),\n", " (-0.6132137303674016, -0.7008836355661099),\n", " (-0.5831988767825013, -0.7200275269102813),\n", " (-0.37024548569738575, -0.3880444190413367),\n", " (-0.2434257589485352, 0.8551488493205953),\n", " (-0.6849666631088737, -0.2433697996682045),\n", " (-0.18624791540718463, -0.42164311481207484),\n", " (-0.6902644949148957, -0.15522169198711808),\n", " (-0.6496533013343957, -1.2251363702844487),\n", " (-0.5865331447360236, -0.6510750652654692),\n", " (-0.33258495031806856, -0.7487248749822931),\n", " (-0.46910910527997973, -0.8475541655922356),\n", " (-0.5642213579223081, 0.0452584242955763),\n", " (-0.5606647126757452, -0.9266085654929649),\n", " (-0.42818100881718185, 1.0002187889832903),\n", " (-0.5924016359430054, 0.44897075130663244),\n", " (-0.9670664981003628, -0.6363244618787335),\n", " (-0.2197605880582938, -0.5857642295592449),\n", " (-0.6585386039664984, -1.2842829634655402),\n", " (-0.8090177558910254, -0.10503083079127877),\n", " (-0.4411045721895196, -0.4015078247187351),\n", " (-0.6387192776573483, -1.4470872846240819),\n", " (-0.3543308421428041, -0.03905616429217354),\n", " (-0.7102403381691552, -1.2091164386349622),\n", " (-0.1602071347048811, -0.6565948227621369),\n", " (-0.4348810260525497, -0.44065569100270535),\n", " (-0.32085529129091206, -0.15250253034513672),\n", " (-0.5163543469047557, 0.5556850531564654),\n", " (-0.6307754752564654, -1.3043111587066172),\n", " (-0.47801781454665476, -1.3821243563582062),\n", " (-0.10491695078673458, 0.3514756298615772),\n", " (-0.6272017552510994, 0.06163219488430122),\n", " (-0.48766002168146094, -0.9361653888632547),\n", " (-0.5571821504366402, -1.254547316513251),\n", " (-0.560206434540484, 0.45698343753205134),\n", " (-0.4412579938870098, -0.8256829246222109),\n", " (-0.5987181830400906, -0.9987443718285398),\n", " (-0.5974492638825121, 0.24980194841193423),\n", " (-0.5346764987419097, -1.3376181448482403),\n", " (-0.5403681481386647, -1.4678180077869922),\n", " (-0.6222239057474317, -1.1204496882788106),\n", " (-0.6427988045774633, -0.9352376214423623),\n", " (-0.5339232478886147, -0.5899627096409591),\n", " (-0.738108081581089, -1.24054031769177),\n", " (-0.45533215313076836, -0.3392293390131546),\n", " (-0.6328120016355414, 0.3398427863407579),\n", " (-0.4122306299227314, -0.6644352995357333),\n", " (-0.7372228052108697, -1.3454269487085186),\n", " (-0.5037648365893509, -0.1617923308426425),\n", " (-0.46914367704153925, 0.41240338838057333),\n", " (-0.6368521754599048, -1.4702320241228293),\n", " (-0.7576573226574285, -0.6341068258293349),\n", " (-0.3243670999082948, -0.6110403297195546),\n", " (-0.42372680421174946, -0.48143758027009553),\n", " (-0.6537181844770756, -2.0216945966500566),\n", " (-0.751675474576952, -1.1719124020249705),\n", " (-0.8228706640620707, 0.2541567230799794),\n", " (-0.33747856690993694, -0.7180341482194529),\n", " (-0.33651732187329414, 0.30418940505540304),\n", " (-0.7445357789073823, -0.6377466647984205),\n", " (-0.45986288497372496, 0.27707703404552375),\n", " (-0.6841626140338541, -0.2362019519077632),\n", " (-0.6937649666448107, -0.7186840040213792),\n", " (-0.5984186702609307, -0.5834585930761005),\n", " (-0.7993781203070868, -0.9678176385959761),\n", " (-0.6391140346417795, -0.29073164475172514),\n", " (-0.6113912146530991, 0.7363448790687293),\n", " (-0.44169652767902395, 0.010375649312152029),\n", " (-0.2032180365866737, -1.3749000260611337),\n", " (-0.4776759776771193, 0.05922538092389424),\n", " (-0.35181287272758865, -0.2835765796155314),\n", " (-0.6676729041179033, 0.01869595605321269),\n", " (-0.3304707323705244, -1.1258502023483732),\n", " (-0.16964535437221823, -1.010383212893113),\n", " (-0.4333537541050523, -1.0617198886709975),\n", " (-0.4215935361302526, 0.060196488042837025),\n", " (-0.657156518713127, -0.2780097902445762),\n", " (-0.41157299453395263, -1.0002211200712026),\n", " (-0.4912870749995826, -0.6949972030610901),\n", " (-0.4924171489801943, -1.5819119385678733),\n", " (-0.8995723498548686, 0.18796378480620282),\n", " (-0.391580013696861, -0.15611195801390737),\n", " (-0.26538403564690743, 0.383499877157425),\n", " (-0.5001577329871822, -0.9957500267553905),\n", " (-0.2973028085278587, -0.22011813008288925),\n", " (-0.3736937476099017, 0.5946133130598302),\n", " (-0.09865307773431317, -0.21382745196848404),\n", " (-0.7359127934850082, -1.0055127923054556),\n", " (-0.5346638504447204, -0.7737299477203853),\n", " (-0.3827431613336723, -1.1968099333086757),\n", " (-0.6934216263028997, -1.0161445263395839),\n", " (-0.6489604729386299, -1.280498362357694),\n", " (-0.47472662702336504, -1.0030321522280277),\n", " (-0.44377670598469976, 1.123098999991527),\n", " (-0.5394739914468739, -0.552161475856468),\n", " (-1.1040352485546632, -1.0297387159559928),\n", " (-0.5831594747954143, -0.7938327267575971),\n", " (-0.4942234876800147, -0.08502608875855819),\n", " (-0.6777868990212882, -0.48338661340196837),\n", " (-0.8337419208693985, 0.45922173662020943),\n", " (-0.6249613179548728, -0.29872374211621744),\n", " (-0.1763406101690359, -0.8379399483711767),\n", " (-0.5032724952993555, -0.25688660288218446),\n", " (-0.772868748222834, -1.8836490511983424),\n", " (-0.4325679500576786, -1.0000254622864913),\n", " (-0.50196949176839, -1.4983200947897992),\n", " (-0.3208794163756789, -0.22537566191510444),\n", " (-0.5925518129440601, 0.3509847961771804),\n", " (-0.3568588032452354, -0.8595246256873358),\n", " (-0.5336015640115404, 0.9627675176020755),\n", " (-0.40692042415615254, -1.1862046158923234),\n", " (-0.5535808876667728, -0.33800598142684446),\n", " (-0.3527308811144411, -1.5390343142451974),\n", " (-0.6018889620504639, -0.1424920929383735),\n", " (-0.5920821991148875, 0.10699058713510408),\n", " (-0.3354129652692677, 0.7183155907654869),\n", " (-0.34995146877989936, 0.186930256765167),\n", " (-0.4347836660134682, -0.7042548934823604),\n", " (-0.7140677714627663, -0.12344148944408394),\n", " (-0.6538991438226157, 1.8538390674939615),\n", " (-0.2712252329782204, -0.3541563662427166),\n", " (-0.5699345201241864, -0.9591684741817422),\n", " (-0.8383435505814466, -1.0013354904922824),\n", " (-0.7664632388644653, -0.718709378107676),\n", " (-0.4917811198406994, 0.481491048645968),\n", " (-0.4028265313133898, -0.19914452003864036),\n", " (-0.6758892759778143, -1.5105840892512623),\n", " (-0.7102505888684335, -1.5411349696377925),\n", " (-0.5518221423102447, -0.47944388935623566),\n", " (-0.7213967903160619, -2.1598919851755496),\n", " (-0.29926580248790996, 0.42090621422957797),\n", " (-0.3234293741325721, 0.26533441838447064),\n", " (-0.7374707324629309, -1.024282070243864),\n", " (-0.5063534760705111, 0.8916570484343573),\n", " (-0.42109119536945994, -0.326284688859818),\n", " (-0.4409584804904385, -0.5416817725749062),\n", " (-0.4764739603902373, -1.5099350670986655),\n", " (-0.7280616523040145, -0.8538227112103847),\n", " (-0.9051311329672076, -1.1409122732741133),\n", " (-0.2640507858522307, 0.05150714701746631),\n", " (-0.6327134438467403, -0.5204812946503705),\n", " (-0.4355995656777733, 0.9401525160531032),\n", " (-0.4371270822280175, -0.9116014020223384),\n", " (-0.20919940410508386, -0.5191398599486202),\n", " (-0.6272775192648515, -0.6528497708467423),\n", " (-0.4434729095107942, -0.4143731110205963),\n", " (-0.36989139063896836, 0.3562729302680033),\n", " (-0.3035817126122128, 0.1583719511879076),\n", " (-0.45806854023913474, -0.7193553550622473),\n", " (-0.48204328444976996, -0.5169487286003468),\n", " (-0.3970607730830368, 0.07581469742676826),\n", " (-0.01711795234715363, -1.3094237440846783),\n", " (-0.5837106437828782, -1.059158776915018),\n", " (-0.38520346566094815, -0.28461895053364683),\n", " (-0.37936233849447776, -0.6015535703373586),\n", " (-0.6106495973554983, -1.361017865067468),\n", " (-0.4693512502178626, -0.7423378465382783),\n", " (-0.5355387392708887, -0.8130745074729919),\n", " (-0.767109375630038, -0.8019679760398979),\n", " (-0.5813846257800809, -0.5762659196946017),\n", " (-0.6555841861947622, -0.5566287930350912),\n", " (-0.5821109281515101, -1.4255093825377338),\n", " (-0.9321059374411025, -1.0233835558375457),\n", " (-0.2810178161432486, -0.08399006314818577),\n", " (-0.5807923846721076, -0.6247701802039975),\n", " (-0.5885429020487215, -1.2706855656227454),\n", " (-0.6454743247184105, -1.1628750101683543),\n", " (-0.6264871893232207, -0.1990439457854275),\n", " (-0.5826802871282455, -0.9801984932406754),\n", " (-0.4661499051091683, -0.437361892171221),\n", " (-0.42908746140228265, -0.46088684892901954),\n", " (-0.405178579785476, -0.8527744843460983),\n", " (-0.8508093639654589, -0.705975500579977),\n", " (-0.3638027103839344, 2.1579886649585323),\n", " (-0.5438117028416788, -1.0940525976323405),\n", " (-0.31053460099915514, -0.01604730591525542),\n", " (-0.37660590294795, -0.04539875926148721),\n", " (-0.47537979054525126, -1.0781024245222446),\n", " (-0.29381918573058696, -0.8294053150383222),\n", " (-0.04073715848911558, 0.38943139295148993),\n", " (-0.5440556810575488, -1.2202153343518003),\n", " (-0.2692637947476326, -0.4458450866970947),\n", " (-0.5775641027175081, -1.3126651557851632),\n", " (-0.6072805344073785, -0.8642790522152002),\n", " (-0.48850368209618744, -0.748887674942426),\n", " (-0.3219298634976054, 0.6945667379721313),\n", " (-0.560970274672925, -1.116299917121023),\n", " (-0.22718488660311487, -0.45749273505742294),\n", " (-0.3520276837348765, -1.1615499563068445),\n", " (-0.6300548789121764, 0.8096123644891409),\n", " (-0.24138724686715868, 0.44132024234992545),\n", " (-0.3859999654752, -0.4258887013080374),\n", " (-0.30327281581602117, 0.40992827403457555),\n", " (-0.47571710892774843, -0.4749291890003076),\n", " (-0.5001719229263133, 0.5027801888154703),\n", " (-0.34253281964007476, -0.5683094679034384),\n", " (-0.4481188213737644, -0.27194803741491974),\n", " (-0.46569857875460585, 0.24970564361567116),\n", " (-0.7021537968074547, 0.6118098559481917),\n", " (-0.039238468999040904, 0.10783660132804186),\n", " (-0.3801207456646841, -0.11456795898944568),\n", " (-0.6795314662713173, -0.7417011168378287),\n", " (-0.5076221097995096, -1.2325529331782437),\n", " (-0.41637676812656416, -0.4559684112092697),\n", " (-0.7383496805139865, -1.1018850934053699),\n", " (-0.4092231634539566, -0.5627780872617342),\n", " (-0.8068488184428554, -0.7843070808160786),\n", " (-0.7848844727487363, -0.5007427193656301),\n", " (-0.7088919839270571, 0.13870215749961082),\n", " (-0.4470178827733224, -0.39471117264685623),\n", " (-0.653844741805574, -0.9101725427547612),\n", " (-0.5557729391225326, 0.9501772100201813),\n", " (-0.5105002232045035, 1.233389429493417),\n", " (-0.6230870172960865, -0.562885905188684),\n", " (-0.31354082326876953, 0.20582047729909816),\n", " (-0.4072184407540713, -0.8287203209235551),\n", " (-0.585260755261033, -1.252224313770796),\n", " (-0.6315354423415265, -0.48706356889673497),\n", " (-0.3657059743277732, 1.3932951666148592),\n", " (-0.5990271055422426, -0.1308827569511999),\n", " (-0.7377919319454855, -2.4224286314968193),\n", " (-0.5756478178556494, -0.771964359155239),\n", " (-0.3149386791508106, -0.17306732039705938),\n", " (-0.6407229213023521, -0.26448549279840067),\n", " (-0.301676941680049, -0.08058132164173491),\n", " (-0.4432700462358979, -0.06843393249254427),\n", " (-0.5149337834685348, -0.15587277185742987),\n", " (-0.47027053155279985, -1.430719742756561),\n", " (-0.30086751560104624, -0.7059079350158342),\n", " (-0.6704857611703446, -0.28962563488082177),\n", " (-0.3675280012995097, -0.16702714221010043),\n", " (-0.5470090475060844, -0.3369765278994551),\n", " (-0.4632662424552992, -1.3443057169729937),\n", " (-0.6790092963132537, -0.7871422635639713),\n", " (-0.7885978210556159, -0.8429217392453192),\n", " (-0.6316881714193455, -1.183656733703535),\n", " (-0.642144486022765, 0.09267926556337235),\n", " (-0.5717196145640012, 0.8949622666601245),\n", " (-0.4523509792178371, -0.4868272064204376),\n", " (-0.5662529479830705, 0.08607696094126538),\n", " (-0.5779152344583003, -0.5781851821832311),\n", " (-1.0047492083348668, -0.5390127951405871),\n", " (-0.7556861009680941, -2.1147013249373274),\n", " (-0.2477218474364437, 0.08550152632645394),\n", " (-0.5181606326058159, -1.0778186948131852),\n", " (-0.3804088524072674, 0.7143972060222727),\n", " (-0.5749584659187948, 0.0473545890947735),\n", " (-0.6916334421210475, -0.0536472470157316),\n", " (-0.5960849747962396, -0.8247975356186527),\n", " (-0.3933067159138024, 1.923265931674249),\n", " (-0.7615396149073876, -1.602737503099561),\n", " (-0.3396835841318189, -1.1154630399396055),\n", " (-0.5481348684798251, -1.0052249660599506),\n", " (-0.5113643115559916, -1.1341561667816005),\n", " (-0.32525102772145975, -0.13981217166455592),\n", " (-0.543741923801726, -0.9305687263972368),\n", " (-0.7905662580622768, -1.0473521775239287),\n", " (-0.8669668393381038, -0.1461367884789579),\n", " (-0.23124946769948146, -0.0999232483683243),\n", " (-0.4839561363883447, -0.05235467090685728),\n", " (-0.22254255166928616, 0.4638759453335276),\n", " (-0.32369920761554616, 0.6067847409000244),\n", " (-1.0634980811455312, -1.3383776772678684),\n", " (-0.8982855519778339, -0.7304108329190628),\n", " (-0.47259688139402567, -1.534181613729038),\n", " (-0.4037050793461072, 0.2301363016146064),\n", " (-0.6273959943495758, -0.7614551179146878),\n", " (-0.37707091318603164, -0.571136282484124),\n", " (-0.5173742174356577, -0.7172085327349962),\n", " (-0.23015564445388767, -0.5950501255967087),\n", " (-0.3524070917336627, 0.30147826112013043),\n", " (-0.15975337247958699, -0.39842403063529336),\n", " (-0.41207750086762496, -0.25215014816886583),\n", " (-0.418351550475553, -0.8482564086858421),\n", " (-0.35389588764106983, 0.14431250355682265),\n", " (-0.36088800125995935, 0.6593191003733541),\n", " (-0.40179000922959096, 0.19225344751518672),\n", " (-0.4123110260720924, 0.13608412740278625),\n", " (-0.5560761058084487, -1.5772558546328155),\n", " (-0.8622407384360379, -0.6580895510443058),\n", " (-0.6977155681504783, 0.8082188179383278),\n", " (-0.2698308188145349, -1.3584151110450164),\n", " (-0.3404505223408403, -1.925362016535322),\n", " (-0.7291417641886865, -1.4444742101599974),\n", " (-0.5821413562517097, -0.13556428349136854),\n", " (-0.33160699188825915, 0.4267373887354223),\n", " (-0.42858637046179027, -1.9230616858570837),\n", " (-0.3688576235025005, -0.08708583613790777),\n", " (-0.5606791976601945, -0.009280777541386469),\n", " (-0.23801432314778598, -0.8802539246934322),\n", " (-0.5221676613911066, -0.6443577408987069),\n", " (-0.6244241770846828, -1.1524678767812737),\n", " (-0.40168126893691797, 0.5312079778314439),\n", " (-0.5194026188148357, -0.5656968612751684),\n", " (-0.40514941032299245, 0.368437922921168),\n", " (-0.44064198277601735, -0.6748296795028135),\n", " (-0.5497129372880977, 0.2994861434005172),\n", " (-0.26847634778895046, -0.9341614640703494),\n", " (-0.712806509585354, -0.9753069898570949),\n", " (-0.473328904704401, -0.4936789692078634),\n", " (-0.3707059389663432, 0.13755796157303965),\n", " (-0.328853788659089, -1.022760825430568),\n", " (-0.4101383209513758, -1.330224212654487),\n", " (-0.4835382404606793, -0.2290670456615032),\n", " (-0.43178503554656217, -1.0603308878634161),\n", " (-0.133046635591951, -1.0827547105953657),\n", " (-0.3683399368294313, -0.9345676313728531),\n", " (-0.21365414124402476, -0.06171582332443965),\n", " (-0.3789708740776193, -0.6607960094878539),\n", " (-0.22203213871972544, -0.7210924173237738),\n", " (-0.613824340946743, -1.1156052529879326),\n", " (-0.5492240096386263, -0.14375333535168633),\n", " (-0.654631555902618, 0.8322899815290051),\n", " (-0.47412734541295687, -0.07459998170250547),\n", " (-0.5442014658756369, -0.7947818700791046),\n", " (-0.6484415925481972, 0.6844871146188133),\n", " (-0.6612441880721011, 0.05497251948367186),\n", " (-0.3897531562872424, -0.09294620973082596),\n", " (-0.5161581206879168, -1.0237857277461853),\n", " (-0.2833804110206528, -0.7797121978985782),\n", " (-0.33444833675205926, 0.15327747881684822),\n", " (-0.5652888057514566, -2.07827506138968),\n", " (-0.6583764971549815, -0.9323205903946091),\n", " (-0.7116323807030527, -1.2473831990808826),\n", " (-0.4473581052828197, -1.1662821173315068),\n", " (-0.7458461834545131, -0.820724881736056),\n", " (-0.481267003711263, -1.054278226528838),\n", " (-0.4777278284918218, -1.8120168795227254),\n", " (-0.4349324391508066, 0.7164090031510116),\n", " (-0.5469280377222899, 0.3506904900545583),\n", " (-0.4586629820216015, -0.3269450910691189),\n", " (-0.47467411059193293, -1.275055352208516),\n", " (-0.222369548892145, -0.06911622062497837),\n", " (-0.5578381049718866, -0.38594624813773615),\n", " (-2.210084285001793, 1.1771322662596462),\n", " (-0.6594244596830621, -0.280990926347995),\n", " (-0.6662171640976952, 0.0008417356726644375),\n", " (-0.22854622107234873, -0.041100318882224075),\n", " (-0.26704121256063856, -0.841051003928782),\n", " (-0.7900975523705576, -0.7657592282899018),\n", " (-0.5477881777157942, -1.3341181539078222),\n", " (-0.29378357385411213, 0.26526324058228445),\n", " (-0.24590759102453263, -0.6296037663417733),\n", " (-0.4084944414293984, 1.082416336600589),\n", " (-0.4589234545145083, -0.05093652020089089),\n", " (-0.3634287426137923, -1.6956429994392295),\n", " (-0.6797413780914587, -1.0479253863698657),\n", " (-0.7714501660733879, -1.2230169971331746),\n", " (-0.4225698461937685, 0.25900109774788815),\n", " (-0.4644245776918982, -1.624606302820365),\n", " (-0.3553407832437772, -1.1338483475836953),\n", " (-0.43161942611562504, -0.8505393573869285),\n", " (-0.5057679520411354, -0.6651592390662479),\n", " (-0.5526393862229408, 0.05422836418159943),\n", " (-0.29376520629557235, -0.19713355091653553),\n", " (-0.5405359894330669, 0.1617504415829674),\n", " (-0.605838662306445, -1.3171761308441636),\n", " (-0.38624060410610683, -1.0419243135505405),\n", " (-0.2944752622027284, 1.0925930732801523),\n", " (-0.26416417143814963, -0.7451324488942241),\n", " (-0.6618548931756008, -1.3777984076497143),\n", " (-0.7144669670728173, -0.371055637830131),\n", " (-0.716052367407266, -0.6657692245651866),\n", " (-0.28559587707859785, -0.019355077917080247),\n", " (-0.5667151994875455, -1.9005823040848484),\n", " (-0.8867921614991718, -0.8124193278485139),\n", " (-0.3798447228664967, 0.4786889389793039),\n", " (-0.43968638804689847, -1.3382541068756357),\n", " (-0.23601012960371867, 0.06310410153329948),\n", " (-0.33879320194316787, -1.466148538353603),\n", " (-0.26715420905125514, -0.006254863362405468),\n", " (-0.3665678312802967, 0.21735114691985216),\n", " (-0.6117848028541717, -2.411268232324529),\n", " (-0.3977133094473192, -0.24326354676920017),\n", " (-0.7555769592490197, 0.3923787418309608),\n", " (-0.24976125013567915, 0.25037182464587826),\n", " (-0.7339691657250283, -0.9817331638286944),\n", " (-0.7919594898579105, 1.026318668500735),\n", " (-0.7311134062423568, -0.5250701480474274),\n", " (-0.36944057114987183, -0.3984919882636991),\n", " (-0.4271397432440469, 0.07912604564880386),\n", " (-0.7508670333793391, -1.2367545742328823),\n", " (-0.3831330999496309, -0.35666535780552083),\n", " (-0.33042172711673334, -0.6648205693630284),\n", " (-0.28277205310955866, -0.3184368731606217),\n", " (-0.5683931196544068, -1.0480732578409475),\n", " (-0.6771941093313858, -0.639392031859682),\n", " (-0.41706266659544844, -0.5629520258312263),\n", " (-0.8656205098733483, -0.9079117202779706),\n", " (-0.1943941159350552, -0.524252747596398),\n", " (-0.5494747222451543, -1.350940320588258),\n", " (-0.38527677598785737, -0.021824261090534418),\n", " (-0.34756971851056406, -1.8671632495126051),\n", " (-0.44846550511866273, 1.1187327608679887),\n", " (-0.3659026215665945, 0.8298087185676951),\n", " (-0.5654464777001178, -0.6639697364772794),\n", " (-0.5469436410391081, 0.5830646818605729),\n", " (-0.5767103785171435, 0.42818515637263416),\n", " (-0.30770485515220647, -0.6751539104332287),\n", " (-0.6983807976094197, -0.8834624672529744),\n", " (-0.401553110048984, -0.35712140456408814),\n", " (-0.6032128647996691, 0.24867065102343489),\n", " (-0.25677514116489114, -0.7350462772064773),\n", " (-0.5442231524756105, -1.4907773585830049),\n", " (-0.4746288617203954, -0.6918616191393563),\n", " (-0.623053653337812, -1.3905490783731107),\n", " (-0.6334383666281931, -0.8211248427049752),\n", " (-0.3312994026449375, -1.0086123163511242),\n", " (-0.6359588653879116, -1.3280963775022012),\n", " (-0.3133267532739442, 0.1764076969385511),\n", " (-0.47690005947746483, -0.11210408975685991),\n", " (-0.5280155930952738, -0.24831806453397343),\n", " (-0.6619647909971405, -0.28472345457223774),\n", " (-0.6119028341636205, -0.7372727435814065),\n", " (-0.396179440728441, -0.7452868086695974),\n", " (-0.628468375212225, -0.09378928125667085),\n", " (-0.5264526830275734, -0.5922206688176517),\n", " (-0.39826493238274197, -0.5127938125526006),\n", " (-0.1614304828233657, 0.48360979569756174),\n", " (-0.6617411614931147, -1.2689534176200647),\n", " (-0.5080197192750963, 0.01761406121557677),\n", " (-0.293960924252779, -1.460859714005335),\n", " (-0.6072940566132522, -0.2982626324184023),\n", " (-0.35973001307007724, 0.27130398378988224),\n", " (-0.5290774640099303, -0.8295534449078077),\n", " (-0.5068414814763287, 0.5022053281032337),\n", " (-0.4870318591358082, -0.12264332864272406),\n", " (-0.6139549798808726, -0.5549830975050085),\n", " (-1.0508080612346704, -1.741309343379221),\n", " (-0.4879421190631934, 0.4427093313593366),\n", " (-0.6486946973431097, -0.3855574560218377),\n", " (-0.832299229991349, -1.5159798251959193),\n", " (-0.6914472251672243, -1.1987681609705902),\n", " (-0.332019606662929, -0.12240126477506717),\n", " (-0.29435849694482175, -0.717504458039472),\n", " (-0.5402377884708984, 0.1489542621167094),\n", " (-0.3586018373314229, 0.32633895701877647),\n", " (-0.37455317795385235, -1.577415989934447),\n", " (-0.7117027573971065, -0.7277737394494735)]" ] }, "execution_count": 164, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[x for x in zip(y_hat, rock_y_test)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Decision tree - all" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4853.028343114377" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.tree import DecisionTreeRegressor\n", "model_tree = DecisionTreeRegressor(random_state=42, max_depth=6)\n", "model_tree.fit(X_train, y_train)\n", "y_hat = model_tree.predict(X_test)\n", "dot = (y_hat - y_test)\n", "dot@dot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Decision tree - rock" ] }, { "cell_type": "code", "execution_count": 153, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "334.60454642782105" ] }, "execution_count": 153, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_tree = DecisionTreeRegressor(random_state=42, max_depth=2)\n", "model_tree.fit(rock_X_train, rock_y_train)\n", "y_hat = model_tree.predict(rock_X_test)\n", "dot = (y_hat - rock_y_test)\n", "dot@dot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Random Forest - all" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[Parallel(n_jobs=4)]: Using backend ThreadingBackend with 4 concurrent workers.\n", "[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.1min\n", "[Parallel(n_jobs=4)]: Done 50 out of 50 | elapsed: 2.4min finished\n", "[Parallel(n_jobs=4)]: Using backend ThreadingBackend with 4 concurrent workers.\n", "[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 0.1s\n", "[Parallel(n_jobs=4)]: Done 50 out of 50 | elapsed: 0.1s finished\n" ] }, { "data": { "text/plain": [ "4542.99075474934" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.ensemble import RandomForestRegressor\n", "model_rf = RandomForestRegressor(random_state=42, verbose=1, n_jobs=4, n_estimators=50)\n", "model_rf.fit(X_train, y_train)\n", "y_hat = model_rf.predict(X_test)\n", "dot = (y_hat - y_test)\n", "dot@dot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Random Forest - rock" ] }, { "cell_type": "code", "execution_count": 156, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[Parallel(n_jobs=4)]: Using backend ThreadingBackend with 4 concurrent workers.\n", "[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 11.0s\n", "[Parallel(n_jobs=4)]: Done 50 out of 50 | elapsed: 13.0s finished\n", "[Parallel(n_jobs=4)]: Using backend ThreadingBackend with 4 concurrent workers.\n", "[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 0.0s\n", "[Parallel(n_jobs=4)]: Done 50 out of 50 | elapsed: 0.0s finished\n" ] }, { "data": { "text/plain": [ "308.1962896787388" ] }, "execution_count": 156, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_rf = RandomForestRegressor(random_state=42, verbose=1, n_jobs=4, n_estimators=50)\n", "model_rf.fit(rock_X_train, rock_y_train)\n", "y_hat = model_rf.predict(rock_X_test)\n", "dot = (y_hat - rock_y_test)\n", "dot@dot" ] }, { "cell_type": "markdown", "metadata": { "id": "gd8p77759cNP" }, "source": [ "# Survey \n", "\n", "The survey is going to be run through CitizenScience Zurich platform: https://lab.citizenscience.ch/en/project/339/\n", "\n", "## Samples selection\n", "\n", "To perform the survey, we selected, for each genre, the most significant (in our opinion) music pieces:\n", "* one popular based on both regression model and listens data\n", "* one popular for regression model but unpopular based on listens data\n", "* one unpopular for regression model but popular based on listens data\n", "* one unpopular for both regression model adn the listens data\n", "\n", "We hope that such a composition of samples might help us answer both the question about our regression model performance, and the relevance of views numbers for the music popularity. \n", "To limit the number of samples which we present to the users to the minimum, we selected only 8 genres, which the dataset authors claim to be the most complete and balanced. This resulted in creation of 32 survey samples in total." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "id": "kXGQ9GtK9cNP", "outputId": "397a14cd-c276-4692-90e7-2d8245998aeb", "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
chroma_cens_kurtosis_01chroma_cens_kurtosis_02chroma_cens_kurtosis_03chroma_cens_kurtosis_04chroma_cens_kurtosis_05chroma_cens_kurtosis_06chroma_cens_kurtosis_07chroma_cens_kurtosis_08chroma_cens_kurtosis_09chroma_cens_kurtosis_10...tonnetz_std_04tonnetz_std_05tonnetz_std_06zcr_kurtosis_01zcr_max_01zcr_mean_01zcr_median_01zcr_min_01zcr_skew_01zcr_std_01
track_id
20.0010330.0025010.0012460.0010210.0010670.0008730.0007980.0014700.0031690.002444...0.1482430.1308290.1014430.0009150.4540970.0974680.0795640.0000000.1899290.143937
30.0004350.0009410.0013000.0012430.0011210.0007080.0007710.0010470.0025470.002038...0.1779440.1522350.1500730.0005680.4610070.0962710.0713900.0000000.1859520.162532
50.0002810.0006490.0009480.0008650.0012100.0009970.0002360.0005350.0030050.002274...0.1072530.1358410.1243220.0010400.3687070.0604330.0463220.0000000.1910320.104805
100.0006400.0005740.0023400.0006490.0010310.0010390.0008650.0011890.0028860.002806...0.2101570.1925450.1170850.0027730.4466930.0882250.0801090.0000000.2054120.095226
200.0001990.0006060.0012190.0007650.0008450.0007140.0003840.0005640.0024950.001236...0.2733320.2414820.1813040.0022080.4644620.0537260.0446870.0037240.2016540.072089
\n", "

5 rows × 518 columns

\n", "
" ], "text/plain": [ " chroma_cens_kurtosis_01 chroma_cens_kurtosis_02 \\\n", "track_id \n", "2 0.001033 0.002501 \n", "3 0.000435 0.000941 \n", "5 0.000281 0.000649 \n", "10 0.000640 0.000574 \n", "20 0.000199 0.000606 \n", "\n", " chroma_cens_kurtosis_03 chroma_cens_kurtosis_04 \\\n", "track_id \n", "2 0.001246 0.001021 \n", "3 0.001300 0.001243 \n", "5 0.000948 0.000865 \n", "10 0.002340 0.000649 \n", "20 0.001219 0.000765 \n", "\n", " chroma_cens_kurtosis_05 chroma_cens_kurtosis_06 \\\n", "track_id \n", "2 0.001067 0.000873 \n", "3 0.001121 0.000708 \n", "5 0.001210 0.000997 \n", "10 0.001031 0.001039 \n", "20 0.000845 0.000714 \n", "\n", " chroma_cens_kurtosis_07 chroma_cens_kurtosis_08 \\\n", "track_id \n", "2 0.000798 0.001470 \n", "3 0.000771 0.001047 \n", "5 0.000236 0.000535 \n", "10 0.000865 0.001189 \n", "20 0.000384 0.000564 \n", "\n", " chroma_cens_kurtosis_09 chroma_cens_kurtosis_10 ... \\\n", "track_id ... \n", "2 0.003169 0.002444 ... \n", "3 0.002547 0.002038 ... \n", "5 0.003005 0.002274 ... \n", "10 0.002886 0.002806 ... \n", "20 0.002495 0.001236 ... \n", "\n", " tonnetz_std_04 tonnetz_std_05 tonnetz_std_06 zcr_kurtosis_01 \\\n", "track_id \n", "2 0.148243 0.130829 0.101443 0.000915 \n", "3 0.177944 0.152235 0.150073 0.000568 \n", "5 0.107253 0.135841 0.124322 0.001040 \n", "10 0.210157 0.192545 0.117085 0.002773 \n", "20 0.273332 0.241482 0.181304 0.002208 \n", "\n", " zcr_max_01 zcr_mean_01 zcr_median_01 zcr_min_01 zcr_skew_01 \\\n", "track_id \n", "2 0.454097 0.097468 0.079564 0.000000 0.189929 \n", "3 0.461007 0.096271 0.071390 0.000000 0.185952 \n", "5 0.368707 0.060433 0.046322 0.000000 0.191032 \n", "10 0.446693 0.088225 0.080109 0.000000 0.205412 \n", "20 0.464462 0.053726 0.044687 0.003724 0.201654 \n", "\n", " zcr_std_01 \n", "track_id \n", "2 0.143937 \n", "3 0.162532 \n", "5 0.104805 \n", "10 0.095226 \n", "20 0.072089 \n", "\n", "[5 rows x 518 columns]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min_max_scaler_q = preprocessing.MinMaxScaler()\n", "feature_flatten_normalized = min_max_scaler_q.fit_transform(features_flatten)\n", "feature_flatten_normalized = pd.DataFrame(feature_flatten_normalized)\n", "feature_flatten_normalized.columns = features_flatten.columns\n", "feature_flatten_normalized.index = features_flatten.index\n", "feature_flatten_normalized.head()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "features_genre_relevant = feature_flatten_normalized[tracks[\"track\"]['genre_top'] == 'Pop'][df_merged.index[df_merged.index != 'const']]\n", "mult = features_genre_relevant * df_merged['Pop'] \n", "pop_score_pred = mult.sum(axis=1) " ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "track_id\n", "10 -5.404185\n", "213 -5.742983\n", "821 -5.629483\n", "822 -5.652588\n", "823 -5.532414\n", " ... \n", "154410 -5.358343\n", "154411 -5.563459\n", "154412 -5.206557\n", "154413 -5.894569\n", "154414 -6.035722\n", "Length: 2321, dtype: float64" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pop_score_pred[~no_album][tracks[\"track\"]['genre_top'] == 'Pop']" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "id": "nqp66gkA9cNP" }, "outputs": [], "source": [ "def n_samples_genre(n, genre, high_score_threshold, low_score_threshold):\n", " print('Genre : ', genre)\n", " features_genre_relevant = feature_flatten_normalized[tracks[\"track\"]['genre_top'] == genre][df_merged.index[df_merged.index != 'const']]\n", " mult = features_genre_relevant * df_merged[genre] \n", " pop_score_pred = mult.sum(axis=1) \n", " \n", " # The ones that are popular/unpopular based on the dataset\n", " pop_df_dataset = pop_df[\"pop_score\"][tracks[\"track\"]['genre_top'] == genre][pop_df[\"pop_score\"][tracks[\"track\"]['genre_top'] == genre] > 0]\n", " unpop_df_dataset = pop_df[\"pop_score\"][tracks[\"track\"]['genre_top'] == genre][pop_df[\"pop_score\"][tracks[\"track\"]['genre_top'] == genre] < 0]\n", " \n", " # The ones that are popular/unpopular based on the regression\n", " genre_df_pred = pop_score_pred[~no_album][tracks[\"track\"]['genre_top'] == genre]\n", " low, high = genre_df_pred.quantile([0.25,0.75])\n", " pop_df_pred = genre_df_pred.loc[(genre_df_pred > high)]\n", " unpop_df_pred = genre_df_pred.loc[(genre_df_pred < low)]\n", " \n", " # True Positive\n", " tp = pop_df_dataset.index.intersection(pop_df_pred.index)\n", " tp = pop_df[\"pop_score\"][tp].nlargest(1)\n", " print('TP')\n", " print(tp)\n", " \n", " # False Positive\n", " fp = unpop_df_dataset.index.intersection(pop_df_pred.index)\n", " fp = pop_df[\"pop_score\"][fp].nsmallest(1)\n", " print('FP')\n", " print(fp)\n", " \n", " # True Negative\n", " tn = unpop_df_dataset.index.intersection(unpop_df_pred.index)\n", " tn = pop_df[\"pop_score\"][tn].nsmallest(1)\n", " print('TN')\n", " print(tn)\n", " \n", " # False Negative\n", " fn = pop_df_dataset.index.intersection(unpop_df_pred.index)\n", " fn = pop_df[\"pop_score\"][fn].nlargest(1)\n", " print('FN')\n", " print(fn)\n", " print(\"===============\")\n", " \n", " return [tp, fp, tn, fn]" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "id": "5Q-eFq3n9cNR", "outputId": "e8b136da-c589-414b-8b13-b386dfaf2671" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Genre : Electronic\n", "TP\n", "track_id\n", "69170 4.443784\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "82185 -2.565108\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "1432 -2.92627\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "28553 3.518097\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : Experimental\n", "TP\n", "track_id\n", "7391 2.683178\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "155010 -2.841336\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "42956 -3.034765\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "92296 2.858244\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : Folk\n", "TP\n", "track_id\n", "50952 3.00961\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "154623 -2.002789\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "38439 -2.500617\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "88863 1.738048\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : Hip-Hop\n", "TP\n", "track_id\n", "24425 4.373379\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "53996 -1.684636\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "53298 -2.298028\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "10699 2.444624\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : Instrumental\n", "TP\n", "track_id\n", "61053 3.348277\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "28819 -2.115002\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "24360 -2.736748\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "37111 3.091666\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : International\n", "TP\n", "track_id\n", "51006 3.49511\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "149993 -2.126809\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "153476 -2.344313\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "73760 3.088421\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : Pop\n", "TP\n", "track_id\n", "62436 2.997317\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "89489 -2.112164\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "31720 -2.192325\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "62450 3.002358\n", "Name: pop_score, dtype: float64\n", "===============\n", "Genre : Rock\n", "TP\n", "track_id\n", "85789 3.288215\n", "Name: pop_score, dtype: float64\n", "FP\n", "track_id\n", "9520 -2.686833\n", "Name: pop_score, dtype: float64\n", "TN\n", "track_id\n", "62979 -3.056946\n", "Name: pop_score, dtype: float64\n", "FN\n", "track_id\n", "114396 2.514736\n", "Name: pop_score, dtype: float64\n", "===============\n" ] } ], "source": [ "samples = []\n", "#genres_survey = tracks[\"track\"]['genre_top'].value_counts().index\n", "genres_survey = ['Electronic', 'Experimental', 'Folk', 'Hip-Hop', 'Instrumental', 'International', 'Pop', 'Rock']\n", "\n", "for genre in genres_survey:\n", " samples.extend(n_samples_genre(1, genre, 0, 0))" ] }, { "cell_type": "markdown", "metadata": { "id": "U5W-FfDn9cNS" }, "source": [ "## Samples creation helper" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "id": "w0rucxFu9cNT" }, "outputs": [], "source": [ "import shutil\n", "samples = [str(sample.index.values[0]).zfill(6) for sample in samples]\n", "\n", "for sample in samples:\n", " shutil.copyfile(f\"{datasource}/fma_large/{sample[0:3]}/{sample}.mp3\", f\"{datasource}/survey_samples/{sample}.mp3\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Survey analysis \n", "\n", "For all of the 32 samples selected previously, participants are invited to answer to 3 questions after having listened to the corresponding 30s sample:\n", "1. Would you like to listen to the rest of this music piece ?\n", "1. Would you recommend this music piece to your friend ?\n", "1. Would you be surprised to hear this piece in the radio ? \n", "\n", "These questions are thought to reflect different dimensions of popularity: the first one is directed toward personal taste and could tell if one would listen casually to the song, the second one add another layer to characterize the piece's capacity to reach broad audiences, and the last one tries to consider one's perception of popularity beside their personal taste. This helps in answering our research question because we defined popularity as how much a song is listened to. With these questions, we will verify - or not - whether this assumptions matches ones's perception of popularity.\n", "\n", "\n", "For each of these questions, answers are collected on a five-level Likert scale proposing the following options:\n", "- Definitely yes\n", "- Yes\n", "- I don't know\n", "- No\n", "- Definitely no\n", "\n", "Note that in our understanding of popularity, a popular song should receive high scores for the two first question (\"Definitely yes\") but a low score for the last question (\"Definitely no\").\n", "\n", "The survey is far from perfect and has some bias : the first two questions are focusing more on the 'why' a music becomes popular, and we only make suppositions. However, if we observe a correlation between actual popularity and positive answers, this would not necessarly mean that one is the cause of the other, and we should keep that in mind. \n", "\n", "Only a couple of participants have taken part in this survey so far, hence no results can be drawn. However we already expose the main steps of the analysis pipeline that we intend to use to investigate the results obtained through the survey. \n", "\n", "### Loading survey's data" ] }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [], "source": [ "# path to the folders hosting informations about the survey\n", "PATH_SURVEY_FOLDER = \"./Musicology/\"\n", "# general informations\n", "TASK_FOLDER_ZIP = \"339_music_popularity_task_csv.zip\"\n", "# participant's answers\n", "TASK_RUN_FOLDER_ZIP = \"339_music_popularity_task_run_csv.zip\"" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "# zip with general informations\n", "zf_task = ZipFile(PATH_SURVEY_FOLDER+TASK_FOLDER_ZIP)\n", "# zip with answers\n", "zf_task_run = ZipFile(PATH_SURVEY_FOLDER+TASK_RUN_FOLDER_ZIP)" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [], "source": [ "# in the code, we'll refer to the above mentionned questions with the following labels\n", "QUESTIONS = [\"like\", \"recommend\", \"radio\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Create mapping from survey's identifiers to fma's one\n", "\n", "Surveys answers are identified by a task id corresponding to one of the selected samples. This id refers to the question on CSZ plateform, which is different from the track identifier. Thus, we recreate the mapping from the task id to the track id thanks to mp3 file associated with the different questions (hence, task id)." ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [], "source": [ "# relink tasks id (samples in the survey) to track ids from fma dataset\n", "df_task = pd.read_csv(zf_task.open('music_popularity_task.csv'))\n", "df_task = df_task[[\"id\", \"info_filename\", \"n_answers\"]]\n", "df_task[\"info_filename\"] = df_task[\"info_filename\"].apply(lambda filemp3: int(filemp3[:-4]))\n", "df_task.rename({\"info_filename\":\"track_id\"}, axis=1, inplace=True)\n", "# create a dict -> {task id: track id}\n", "dict_task_to_track = pd.Series(df_task.track_id.values,index=df_task.id).to_dict()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Load participant's answers\n", "\n", "The answers provided by the participant are then loaded and manipulated to make them more convenient to handle.\n", "Notably, the Likert scale is converted to a linear, equidistant, scale ranging from -2 for \"Definitely no\" to 2 for \"Definitely yes\"." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df_survey = pd.read_csv(zf_task_run.open('music_popularity_task_run.csv'))\n", "df_survey = df_survey[[\"id\", \"task_id\", \"user_id\", \"user_ip\", \"info_0\", \"info_1\", \"info_2\"]]\n", "\n", "# convert Likert scale to numerical values\n", "convert_likert_scale = {\"Definitely no\":-2,\n", " \"No\":-1,\n", " \"I don't know\":0,\n", " \"Yes\":1,\n", " \"Definitely yes\":2\n", " }\n", "for col in df_survey.columns:\n", " if 'info' in col:\n", " df_survey[col] = df_survey[col].map(convert_likert_scale)\n", "\n", "# rename column based on the questions asked\n", "rename_columns = {\"info_0\":QUESTIONS[0], \"info_1\":QUESTIONS[1], \"info_2\":QUESTIONS[2]}\n", "df_survey.rename(mapper=rename_columns, inplace=True, axis=1)\n", "\n", "# retrieve track id (fma) from task id (CSZ)\n", "df_survey[\"track_id\"] = df_survey[\"task_id\"].map(dict_task_to_track)\n", "\n", "# create unique identifier for the user either based on IP or user id given by the platform and anonymize\n", "user_identifiers = np.array(list(set(df_survey.user_id.dropna()))+list(set(df_survey.user_ip.dropna())), dtype=str)\n", "user_anon = np.arange(1,len(user_identifiers)+1, dtype=str)\n", "dict_anon = dict(zip(user_identifiers, user_anon))\n", "df_survey[\"user\"] = [str(uid) if str(uid) != \"nan\" \n", " else str(uip) \n", " for uid, uip in zip(df_survey.user_id, df_survey.user_ip)\n", " ]\n", "df_survey[\"user\"] = df_survey[\"user\"].map(dict_anon)\n", "df_survey.drop([\"user_id\", \"user_ip\"], axis=1, inplace=True)\n", "\n", "df_survey.sample(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute multi-level modeling variables\n", "\n", "As survey bear intrinsic bias and answers are highly influenced by the respondent personality, we compute multi-level variable that rescale one participant answers around their mean value for each of the 3 questions. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "users_means = df_survey.groupby(\"user\").mean()\n", "users_means" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for q in QUESTIONS:\n", " df_survey[\"rel_\"+q] = [score-users_means.loc[user_id][q]\n", " for (score, user_id) in zip(df_survey[q], df_survey[\"user\"])\n", " ]\n", " \n", "df_survey.sample(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Enrich with fma and previously computed features\n", "\n", "The DF containing the surveys answers are then enriched with fma's informations as well as previously computed popularity features so that all following analysis can be solely based on this DataFrame. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "samples_id = [sample.index[0] for sample in samples]\n", "additional_info = pop_df.loc[samples_id].drop(\"date_created\", axis=1)\n", "\n", "# retrieve type of classification (TP,FP,TN,FN) from the way samples were generated\n", "additional_info[\"type\"] = [\"tp\" if (i%4)==0\n", " else \"fp\" if (i%4)==1\n", " else \"tn\" if (i%4)==2\n", " else \"fn\"\n", " for i in np.arange(len(additional_info))\n", " ]\n", "\n", "# add these informations in the survey DF\n", "df_survey = df_survey.merge(additional_info, on=\"track_id\")\n", "df_survey.sample(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Results analysis\n", "\n", "#### Inter-rater agreement\n", "\n", "\n", "First thing, we can assess the inter-rater agreement thanks to several methods developped along the second half of the XXth century that are pre-implemented in `nltk`'s metrics package. These first measures can bring informations regarding the shared (or not) behaviors or perception of the participants pool (eg. a value high agreement measure, close to 1, regarding the radio question could indicate that the perception of what kind of music pieces are played on the radio is shared amongst participants).\n", "\n", "Metrics computed below are Cohen's $\\kappa$ [(Cohen, 1960)](https://journals.sagepub.com/doi/10.1177/001316446002000104), Fleiss' $\\kappa$ [(Fleiss, 1971)](http://www.wpic.pitt.edu/research/biometrics/Publications/Biometrics%20Archives%20PDF/395-1971%20Fleiss0001.pdf) and Krippendorff's $\\alpha$ [(Krippendorff, 1989)](https://repository.upenn.edu/cgi/viewcontent.cgi?article=1232&context=asc_papers).\n", "\n", "- Cohen's $\\kappa$ measures agreement between raters while taking into account the probability that they could agree \"by chance\". It is computed as $$ \\kappa = \\frac{p_o-p_e}{1-p_e} $$ where $p_o$ is the relative observed agreement between raters and $p_e$ is the probability of agreement by chance. For $N>2$ raters, $\\kappa_{ij}$ is computed for each pair $(i,j)$ of raters and the output value is a naive average over the set of $\\{\\kappa_{ij}\\}_{i,j=1}^{N}$.\n", "- Fleiss' $\\kappa$ is computed similarly to Cohen's $\\kappa$ but taking into account averages for both the expected and observed agreement for each pair of raters.\n", "\n", "Both of these measures range from -1 to 1 and it is commonly accepted (see [MiniTab online documentation](https://support.minitab.com/en-us/minitab/18/help-and-how-to/quality-and-process-improvement/measurement-system-analysis/how-to/attribute-agreement-analysis/attribute-agreement-analysis/interpret-the-results/all-statistics-and-graphs/kappa-statistics/)) that $\\alpha<0$ indicates more disagreement than what could be expected by chance, $\\alpha=0$ agreement is the same that what could be expected by chance, and substantial agreement can be underlined above $\\alpha=0.6$.\n", "\n", "- Krippendorff's $\\alpha$ was developped to be more suitable to diverse types of ratings and data aquired. It is expressed as $$ \\alpha = 1- \\frac{D_o}{D_e} $$ where $D_o$ is the observed disagreement and $D_e$ is the one expected by chance. Those are computed as the weighted average dispersion of the ratings." ] }, { "cell_type": "code", "execution_count": 189, "metadata": {}, "outputs": [], "source": [ "participants_list = list(set(df_survey.user))\n", "\n", "# should be unique so sum is just the score given by the rater\n", "survey_grouped_user_track = df_survey.groupby([\"user\", \"track_id\"]).sum()" ] }, { "cell_type": "code", "execution_count": 210, "metadata": {}, "outputs": [], "source": [ "def dist_labels(l1, l2):\n", " \"\"\" define distance between labels (equidistant and symmetric) \"\"\"\n", " return np.abs(l1-l2)" ] }, { "cell_type": "code", "execution_count": 208, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "===============\n", "Feature : like\n", "Agreement measures:\n", "kappa : -0.277\n", "fleiss : -0.277\n", "alpha : 0.30859\n", "scotts : -0.34988\n", "===============\n", "Feature : recommend\n", "Agreement measures:\n", "kappa : -0.04474\n", "fleiss : -0.04474\n", "alpha : 0.41244\n", "scotts : -0.076636\n", "===============\n", "Feature : radio\n", "Agreement measures:\n", "kappa : -0.44934\n", "fleiss : -0.44934\n", "alpha : 0.18294\n", "scotts : -0.53342\n", "===============\n", "Feature : rel_like\n", "Agreement measures:\n", "kappa : 0.078125\n", "fleiss : 0.078125\n", "alpha : 0.39393\n", "scotts : -0.058296\n", "===============\n", "Feature : rel_recommend\n", "Agreement measures:\n", "kappa : 0.080078\n", "fleiss : 0.080078\n", "alpha : 0.36065\n", "scotts : -0.045505\n", "===============\n", "Feature : rel_radio\n", "Agreement measures:\n", "kappa : -0.1875\n", "fleiss : -0.1875\n", "alpha : 0.19036\n", "scotts : -0.37324\n" ] } ], "source": [ "for q in QUESTIONS+[\"rel_\"+q for q in QUESTIONS]:\n", " print(\"===============\")\n", " print(\"Feature : \", q)\n", "\n", " taskdata = []\n", " for i, participant in enumerate(participants_list):\n", " # convert data to nltk required format\n", " taskdata = taskdata+[[i\n", " ,str(samples_id[j])\n", " ,survey_grouped_user_track.loc[participant][q].loc[samples_id[j]]\n", " ]\n", " for j in range(0,len(samples_id))\n", " ]\n", "\n", " ratingtask = agreement.AnnotationTask(data=taskdata, distance=dist_labels)\n", " print(\"Agreement measures:\")\n", " print(\"kappa : {0:.5g}\".format(ratingtask.kappa()))\n", " print(\"fleiss : {0:.5g}\".format(ratingtask.multi_kappa()))\n", " print(\"alpha : {0:.5g}\".format(ratingtask.alpha()))\n", " #print(\"scotts : {0:.5g}\".format(ratingtask.pi()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Correlation analysis\n", "\n", "Then, correlations are studied. We will look for possible significant (based on $p$ values) correlations between the average scores given by the participant for the different questions but also between these human features and the features used to define popularity (number of streams, likes, comments for song and album) and the popularity score itself." ] }, { "cell_type": "code", "execution_count": 211, "metadata": {}, "outputs": [], "source": [ "def corr_sig(df):\n", " \"\"\" return matrix of p values of df based on its correlation matrix \"\"\"\n", " p_matrix = np.zeros(shape=(df.shape[1],df.shape[1]))\n", " for col in df.columns:\n", " for col2 in df.drop(col,axis=1).columns:\n", " _ , p = stats.pearsonr(df[col],df[col2])\n", " p_matrix[df.columns.to_list().index(col),df.columns.to_list().index(col2)] = p\n", " return p_matrix" ] }, { "cell_type": "code", "execution_count": 216, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAL+CAYAAADcq+fqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gUVRfA4d/dTUgICSQhjYRepDep0ov0joqAKIiKBVQsWOkgKNLBAirSpfeO9IB06b0HQhopJIGQZHe+P3ZJsilINLsb+M77PDxkZ87snrtzNzt3zp2J0jQNIYQQQgghhBC5h87eCQghhBBCCCGEsCQDNSGEEEIIIYTIZWSgJoQQQgghhBC5jAzUhBBCCCGEECKXkYGaEEIIIYQQQuQyMlATQgghhBBCiFxGBmpCCCGEEEKI/3tKqVlKqTCl1Kks1iul1FSl1CWl1Aml1LNp1rVWSp03r/siJ/KRgZoQQgghhBBCwGyg9SPWtwHKmP/1A34CUErpgR/M6ysAPZRSFf5rMjJQE0IIIYQQQvzf0zRtNxD5iJBOwFzNZD/grpQqBNQGLmmadkXTtERgkTn2P5GBmhBCCCGEEEL8swAgKM3jm+ZlWS3/Txz+6xMI68lTva9m7xxygm+lRvZOIUecqHfO3inkiEKzou2dQo7wq9rU3inkiBP1T9s7hRyR77kW9k4hx8QE1LB3CjnCxUHZO4UcEZ1otHcKOeJM+D17p5Aj3PI8HYeO+Z319k4hx5T1yf9EfNhzw3Ft0rHf38Y0ZfGhmZqmzczGU2T2XmuPWP6fPB2fNiGEEEIIIYR4BPOgLDsDs/RuAkXSPC4MBAN5slj+n8jURyGEEEIIIYT4Z2uA18x3f6wLxGiadhs4BJRRSpVQSuUBuptj/xOpqAkhhBBCCCGsSuly/3RTpdQfQBPASyl1ExgGOAJomvYzsAFoC1wC7gGvm9clK6UGAJsBPTBL07T/fG2DDNSEEEIIIYQQ//c0TevxD+s1oH8W6zZgGsjlGBmoCSGEEEIIIazqSaio5TZyjZoQQgghhBBC5DIyUBNCCCGEEEKIXEamPgohhBBCCCGsSqY+Zp9U1IQQQgghhBAil5GBmhBCCCGEEELkMjL1UQghhBBCCGFVMvUx+6SiJoQQQgghhBC5jFTUhBBCCCGEEFal9FJRyy6pqAkhhBBCCCFELiMDNSGEEEIIIYTIZWTqoxBCCCGEEMKqdHIzkWyTipoQQgghhBBC5DJSURNCCCGEEEJYldyeP/ukoiaEEEIIIYQQuYxU1J5SM4e9TttGVQmPvEv1l4ZmGjPxs560rl+Z+wmJvDHsN46duwFAy3qVmDioJzqd4vdVe/j+9w22TD2DJpUDGP5qbfQ6xR87L/LjupMW693yOjLl3UYEFMyHXqeYueE0S/ZcwslRz7KvW5PHUY9ep9hw6DoTVxyzTyMATdOYuOsEf10NxclRz5CWNSjn455l/Pgdx1l/5jo7+ne0WH4mJIo3F+9kdNvaNCsTYOWsM2rxXAUmfNINvU7H76v3Mn7OZov17m4uzBjyGiULe5GQmMzbo+Zy5nIwAO/3aM7rneujaRqnLwXz1sg5PEhMtnkbABpX9GNoj+rodYrFe67w08ZzFuvd8joy6c06BHia+tUvW86zdO9VAMb1qUWzKv7ciX1Aq2Gb7JF+Ck3TmPDn3+y9fBtnRz3D2tWmnJ9nlvHfbznC2pPX2P3JCwBsPH2NuftNbc+bx4EvWtbgGV8Pm+SelqZpjPnlD3YfOUlepzyM+bAvFUoVyxA3aMIvnL50DQcHPZXLlGD4e6/i6ODA2p37+W3FRgBcnJ0Z+m4vypUoYutmAPDXvr1MHv89BqORjp0781qfvhbrNU1j0vhx7Nu7F2dnZ4YMH0HZcuUB6NKhLS4u+dDrdej1en6ft9AeTUjJ87tx4wgMDMTZ2ZlRI0dSvnz5DHE3b93i888/525MDOXKl2fMN9/g6Oj42Ntb24G/9jJtwniMRgPtOnXhld6vW6zXNI2pE77nwL5AnJyd+XLoCJ4x748lC+ezfvUqlFKUKF2aL4YMx8nJyeZtADh9eD9LZk5BMxqp37I9rbq9arH+4I4tbFm2AAAn57z06P8JhUuWIeTmDX77NvU4ICIkmPa93qR55242zf+h44f+Yt6PkzAajTRp05GO3V+zWL932ybWLZ4HgHNeF/p88BnFSpUhMfEBoz9+l+SkRAwGA7UbNuOF3m/ZowkAHDmwj1+nTMBgNNKyfSde7NXHYv3N69eYMnYkly+c49W33qVLj9T9FRcby/TvRnP96mWUUnzwxRDKVapi4xaIJ4FU1P4jpVSc+X9/pdQy8899lFLT7ZnX3LV7ad9/YpbrWzeoTOmivlTo9CXvjp7D9K9Mvyh1OsWUL3rRYcAkqr4wmJdb16F8SX9bpZ2BTilG967Da99vpdnnq+j0XAnK+BewiOn9fDku3oqm1ddr6DZmE0N61sJRr+NBkoGXx26m1ddraD14DU2qBFC9lLedWgJ/XQslKCqepX1a8GXz6ozbdizL2LOhUcQ9SMqw3GDU+CHwFHWK+Vox06zpdIopn/Wg04fTqdZtBN1a1qJciUIWMZ+93poTF4Ko1XM0bwz7nQmfmA4G/L3d6f9yU+q9NpYa3Ueh0+no1rKWPZqBTilGvlKDPpN302LIJjrWLkbpQvktYl5tWppLwXdpM2Iz3b/fwdfdquKoN/3KXLb3Gr0n77ZH6hnsu3KbG1GxrHi7LV+1rsm3m49kGXvmdiSx6fqVfwFXZrzSjD/eaM0b9SoyZtNha6ecqd1HTnL9dhibfh7DiP6vMeKn+ZnGtW9ch/U/jmb11BE8SExi+dY9ABT29WLOmM9YNXUE77zcnmE/zLVl+ikMBgMTvvuWiVOn88fS5WzdvImrVy5bxPy1N5CgoBssXbmaL74ezLixYyzW/zBjJnMXLrbrIA0gMDCQGzdusHbNGoYOGcLob77JNG7K5Mn06tWLtWvXkj9/flauXJmt7a3JYDAwedx3jJsyjTmLl7Nt8yauXbliEXNg315uBt1gwfLVfPrlYCZ+NxaA8LAwli9exMw585m9aClGg5HtWzdn9jJWZzQYWPTTRAaMGM/Qn+ZzaPef3L5x1SKmoG8hPvp2GoN/mEObHr1ZMG0cAH6Fi/L19Nl8PX02X075jTxOzlSr18gezcBoMDBn2ng+GzOJcb/+wf4dW7h13bId3n7+DJ7wE2NnLqDzK68za7Jpfzg65uGr76czZsZ8vvl5HicO/8WlM6fs0QwMBgMzJo5j2Pgp/DBvCbv/3MKNq5b9yjV/fvp9+AlduvfKsP0vUyfwbJ3n+GnBMqb8vpDCxUrYKnW7Ujq93f89aWSglkM0TQvWNO1Fe+fxUODRC0TFxGe5vkPj6ixYtw+Agyev4O7mgp9XAWpVKsnloDCu3gonKdnAks0H6NCkmo2yzqhaKS+uhcZyIzyOJIORNfuv0rJGUYsYDXB1dgQgn7Mj0fEPSDYaAbj3wFStcdDrcNDr0NBsmn9auy/fpm35IiilqFTIk7jEJCLiEzLEGYwa0/acYkDDShnWLT12maZlAvDIa58zurUqFjf3jwiSkg0s3XqIDo0tzwKWL1GIHYdMFZoL10MpVqggPp5uADg46Mjr5Iher8PF2ZHb4dG2bgIA1Up4cj0slqCIeJIMRtYevEHLaumqk5qpPwG4ODsQHZ+Y0q8OXgwnJv6BrdPO1K6Lt2hXqThKKSoHeBH7IImIuPsZ4gxGI1N3HOeDplUtllct7EV+5zwAVA4oSFhsxm1tYfvBY3Rq+hxKKaqWLUVs/D3CI6MzxDWuWQWllKm9ZYoTEhEFQPXypSngmg+AqmVLEnonypbppzhz+hSFixQhoHBhHB0deb5lK3bv2mkRs3vXLtq0bW/6XVC5CnGxsUREhNsl30fZsXMnHdqb8qxSpQqxsbGEh1vmqWkaBw8dosXzzwPQsUMHtu/Y8djbW9vZ06cIKFwY/wDT/mjWshWBu3daxATu3kkr8/6oaN4fd8z7w2Aw8ODBA5KTk3mQcB8vL/uc7Lt24Sze/oXxLhSAg6MjNRs9z/H9gRYxpSpUJp+b6YRTibIVibqT8b0+d/wIXoUCKOjjZ5O807t8/gy+/oXxMbejbpMWHNlnedLrmYpVUtpRunwlIs19RimFc14XAAzJySQnJ4Oybf4PXTx7mkIBRfDzN/Wrhs1bcCBwl0WMu4cnZcpXRO9gOXntXnwcp4//TYv2nQBwdHTE1c3NZrmLJ4sM1HKIUqq4UirDqR2lVDul1F9KKS+lVEvzz0eVUkuVUq72yBXA38eDoJDIlMc3QyPx9/EgwMedm6Gpy2+FRuHvbftpUA/5ebgQHJk64LwdGY+fh4tFzOytZyntX4DD07qxdUwnhs07iGYej+mUYtPojhz7oTt7TgVz7HKELdO3EB5/Hx+3vCmPfVzzEp7JAfWy45dpWLIQXvmcLZaHxd1n1+VgulS235k3f28PboamHgDfCo3O0D9OXrxJp6bVAahZoThF/TwJ8PEgODyaSfP/5OLaMVzb+B134xP488BZm+b/kK9HXoKjUt/721H38PXIaxEzZ/tFShdy4+D4jmwe3ooRf/yd0q9yk/DY+/i6pX4mfNzyZjrYWnLkEo1K++PlmjfDuodWH79CvZL2OYALuxONn1fqlE1fLw9C70RnGZ+UnMyanftp8GzGExrLtwbSMJPlthAeFoaPb2rF28fHl/AwywPm8PAwfP1S32dvX1/Cw8IA08Hoh/3fo0+vnqxasdw2SWchLMwyT19fX8LMeT4UHR2Nm5sbDuaD0bQxj7O9tUWEh+Pjm+a99vEhItwyh4h0+8zbx4fwsHC8fXzo3utVunVsS9e2Lcnn6katus/ZLPe0ou+E4+Hlk/LYw8ub6EwGYg/t27KOijXqZlh+ePef1Gr8vFVyfBxREeF4eqe2w9PLh6hHnKTYuWktVWqltsNoMPDV26/y3kttqPxsbUqXt8/n/E54OF4+qX3Gy9s3ZXD/T0KCb1HA3Z0pY0bwYd9XmPbtaBLu2+cEma0pnc7u/540T17GTxClVBfgC6CtedFg4HlN054FDgMf2y+3jMs0TUNlcnrKnlWozPO0fNy4cgBnbkRS8/0ltP56DaN610mpsBk1jdaD11D7w6VUK+lF2cLu1k86C5kd5KdvXnjcfbZdvMVL1UpmiJ286wT9G1RCr7PTKUSy7jdpfT9nMx75XTiw4Gvee7kJxy4EkWww4O7mQodGVSjXaTAl2nyOi3MeerSpbaPMLWX2DqbfP40q+XEmKJran66h7cgtjOz5LK7Oue+y3sw+nen3U3jsfbadD6JbzTJZPs/h66GsOXGFAekqbraSvh9B5v3toVE/L6BmxWeoWfEZi+UHTpxjxZ97+KS3fSY4PM7+yOyXgTIHzfjtd+Ys+IOJU6ezfOli/j6a9VRWq3tEnqkhj4h5jO2tLbP80v8GyGqfxd69S+CunSxatY4VGzaTcP8+Wzaut0qe/yTT9zmLctL540fZt2U9XV5/12J5clISJw7s5dkGTa2S4+PIdH9k0SXOHDvCro1r6P7WgJRlOr2eMTPmMfWPNVw+f4agq5cz39jKMjsuymp/pGcwGLh84TxtOr/IlFkLcM7rzLIFs3M4Q/G0yH1HHU+PpkBNoKWmaXeVUu2BCsBe8xdVHuCv9BsppfoB/QD0heuh8yprleRuhUZRJM0NBwr7enI7PJo8jg4U9k1dHuDrYbfpaQC3I+/h75kv5XEhz3yERt+ziOnWqDQ/rjXdYORaWCxB4XGU9i/AsSup1bO79xL561wITaoEcP5mtE1yB1h2/AqrT14DoLyfu0WlIyzufobqxoXwGG5Gx/Pi71sBSEgy8OLvW1j2ekvOhkYzeMMhAGISHvDXtRD0StG4tO2uIbwVFkXhNDeaCPB153ZEtEVMbHwC/UamXh90fvU3XAu+Q4u6FbgWfIeI6DgAVu/4m7pVSvHHxoM2yT2tkKj7+KepoBXycCEs2vKM5kv1S/DTRlPF73pYHEER8ZQqlJ/jVyOxtyVHLrLquOl6iAqFPAmNTf1MhMXexztdvzofGkVQVBxdfzYdZCYkJdPl5/WsfKcdABfDohm98RBTujXG3YbTaheu385S8zVmlUsXJyQi9b0NjYjCx9M90+1+WLSGyLuxTH3P8mYK568FMfSHOcwY+iHu+e0zYcHHx4ew0NCUx2FhoXh5W06X8/bxJTQkJOVxeGhqjLe52uDp6UnjJs04c/o01Z+tYYPMTRYtWsSKFSsAqFixokWeoaGheKdri4eHB7GxsSQnJ+Pg4GAR4+Pr+4/bW5u3jw9hoWne67CwTPaH5T57GHP44AEK+Qfg7mH6ndewaTNOnThByzbtbJN8Gh5ePkRFpFYCoyLCKVDQK0PczauXmD/1WwaMHI9rfsvruU8f3k/RUs+Q3yPrmw1Zm6e3D5FpKpqREWF4FMzYJ25cucivE8cwaMwk3NK1AyCfqxvlqz7LicP7KVKilFVzzoyXtw8RYal9JiI8FE+vjPsjq229vH0oW9FUDazXpDnL58+xSp7iyScVNeu5ArgBD0/3KmCrpmnVzP8qaJr2RvqNNE2bqWlaTU3TalprkAawbtcxXmlfD4DalUsSE3ePkIgYDp++SumivhT398LRQU+3VnVYt/OY1fL4J8evRFDcLz9FvF1x1OvoWLcEW48GWcQE34mnfkXTYMUrvzOl/PJzPSwWTzcn8ruYrr1xdtTTsKI/l4JjbJr/i1VLMq9XM+b1akbjUv5sOBuEpmmcuh2Jax7HDNMb65fwY0O/tqx6oxWr3miFs6OeZa+3BGBl31Ypy5uWDmBQs2o2HaQBHD5zndJFfSjuXxBHBz0vtajFut0nLGIKuObF0cF0wW7fzg0I/PsisfEJBIVEUrtyCfI6maqdTWuV49zV2zbN/6Hj1yIp7utGYa98OOp1dKhdlK3Hb1nEBEfeo35509QWr/xOlPRz40Z4nD3SzaBbjTIs7NuKhX1b0aRMAOtPXUPTNE7eisDVyTHDCYAGpf3Z/H4n1rzXgTXvdcDZ0SFlkBYSE89nK/Yyon1dinna9jqJnu2asXLyMFZOHkbzutVZveMvNE3j+PnLuOXLi3cmA7VlW3az9+hpxn/SD12aaSzB4Xf4YOyPfDvwDYoH2Gf6JkD5ChUJCrpB8K1bJCUl8eeWzTRs1MQipmHjxmzcsM70u+DkCfK5uuLl5c39+/eJjzdN9b5//z4HDvxFyVK2PQjt3r07S5YsYcmSJTRt2pS160x5njhxAldX1wwDLaUUtWrWZOuffwKwZu1amjZpAkCTxo3/cXtrK1ehIjeDgrht3h/bt2ymfsPGFjH1GzZms3l/nDbvj4Je3vj6+XHm1EkSEu6jaRpHDx2kWHH7TD0v9kw5wm4FERESTHJSEod3/0mVOvUtYiLDQpj5zdf0+WQIvgFFMzzHod1/UtOO0x4BSpYtT8itIMJum9qxf+dWnn2uoUVMRFgIk0d8yTufD6NQ4dR23I2OIj4uFoDEBwmcOnoI/yIZ7wxrC2XKVSD45g1Cgk39as+2rdRp8Hg3aPEo6IWXjy83b1wD4PiRQxSxU7+yNXvfSORJvJmIVNSs5zrwKbBSKfUSsB/4QSlVWtO0S0opF6CwpmkXrPHi88a+TaMaZfFyd+XKpvGM/Hl1ysHzL8t2sjHwBK0bVOHsmm+5n5DIm8NnAWAwGBn43XzW//gxOp2OOasDOXMl2BopPhaDUWPI3P3MH9TCdBv13Ze4cCuaXs1Mg9j5288zZdVxJvZrwNYxnVAKxiw+QlTcA8oV8WBSvwbodQqdTrH2wDW2Hbtpt7bUK+7LvqshvDh7K84Oega3fDZl3Uer9vHV89UzVEJyG4PByMBxi1k79QP0eh1z1uzj7JXbvNnV9EX764o9lCvhx2/DX8dgNHL26m3eGWW6zfKh09dYue0o++d/TbLBwPHzQfy2MvBRL2e9dhg1hi48ytyBjdHrFEv2XuFi8F1eaWw6KF6w6zJT155mfN86bBreCqUU3y4/QVRcIgBT36pL3bI+eLg68de4Dkxac4olgVcf9ZJWU79UIfZeuU2XGetxdnRgaNvU6aQfLtnN4Da18HbLul/9uvc0Mfcf8N0W0xQ7B51ibp+WVs87vUY1KrP78Elav/MVzk55+Ob91Fuovz1yMqP698GnoDsjfpqPv09BenxuuhNci7rP8l73Dvy0aC0xsfGMnLHA3A4dSycOsXk7HBwc+GTQ5wx8/z2MBiPtO3aiZKlSrFi2FICuL75EvfoN2Lc3kJc6d8TJ2ZnBw4YDEHnnDl8MMs2INxgMtGzVhufq1c/qpayuYcOGBAYG0r5DB5ydnRk5YkTKuv79+zNs2DB8fHwYOHAgn33+OT/88APlypalS5cu/7i9rTg4ODBw0Od8+kF/jEYjbTt0pESpUqxevgyATi+8SN36Ddi/L5CeXTvh5OzMF0OGA1ChUmUaN2/OW6++gl6vp3TZsnTo0tXmbQDQ6x3o/u7HTBvyMUajkXot2uFfrCS7N6wCoFHbzqz/YzZxd2NY9OMEwDRN8MspvwGQmJDAub8P8cqAQXbJ/yG93oHeAz5l3JcfYjQaadyqPYWLl2TbWlMVt3mHrqyc9xtxd2OYPfV78zZ6Rv04m+jICGaMG4XRaEDTNOo0ak71ug3s0w4HB97+6DOGf/IBRqOB59t1pGiJUmxcZbqutE3nF4i6E8HHb/XmXnw8Op1izdJF/DBvMS75XOk38FMmjhxKUlISfv4BfPhV5n9GSQiV+fxt8biUUnGaprkqpYoD6zRNq6SU6gPU1DRtgFKqOrAA6AAUA74DHs4tGqxp2pqsnjtP9b5Pxc7xrWSf2wDntBP1zv1z0BOg0Kxoe6eQI/yq2u86i5x0ov5pe6eQI/I918LeKeSYmADbTTW0JhcH+13PmpOiE432TiFHnAm/989BTwC3PE/HOf78zk9edSUrZX3yPxEfds/WI+1+XBu5aegT8V499HR82uxI0zRX8//XgErmn2cDs80//43p2jSAy4B9/nCUEEIIIYQQ4okh16gJIYQQQgghRC4jFTUhhBBCCCGEVT2JN/OwN6moCSGEEEIIIUQuIxU1IYQQQgghhFUpvVTUsksqakIIIYQQQgiRy8hATQghhBBCCCFyGZn6KIQQQgghhLAquZlI9klFTQghhBBCCCFyGRmoCSGEEEIIIUQuI1MfhRBCCCGEEFYlUx+zTypqQgghhBBCCJHLSEVNCCGEEEIIYVU6qahlm1TUhBBCCCGEECKXkYGaEEIIIYQQQuQyMvVRCCGEEEIIYVVyM5Hsk4qaEEIIIYQQQuQyUlETQgghhBBCWJVU1LJPKmpCCCGEEEIIkcvIQE0IIYQQQgghchmZ+iiEEEIIIYSwKpn6mH0yUMvFfCs1sncKOSL01G57p5AjDLU87J1CjvCt/HT0q9t//2nvFHKEoUZBe6eQI5Tu6ZmgkU9LsHcKOUI9SLZ3CjniXnJee6eQI/zdnOydQo4wavbOIGfoUPZOQYh/JAM1IYQQQgghhFVJRS37np5ToEIIIYQQQgjxlJCBmhBCCCGEEELkMjL1UQghhBBCCGFVMvUx+6SiJoQQQgghhBC5jFTUhBBCCCGEEFal9FJRyy6pqAkhhBBCCCFELiMDNSGEEEIIIYTIZWTqoxBCCCGEEMKq5GYi2ScVNSGEEEIIIYTIZWSgJoQQQgghhBC5jEx9FEIIIYQQQliVTH3MPqmoCSGEEEIIIUQuIxU1IYQQQgghhFVJRS37pKImhBBCCCGEELmMDNSEEEIIIYQQIpeRqY9CCCGEEEIIq9LplL1TeOJIRU0IIYQQQgghchmpqAkhhBBCCCGsSklFLdtkoPaUalI5gOGv1kavU/yx8yI/rjtpsd4tryNT3m1EQMF86HWKmRtOs2TPJZwc9Sz7ujV5HPXodYoNh64zccUx+zQCmDnsddo2qkp45F2qvzQ005iJn/Wkdf3K3E9I5I1hv3Hs3A0AWtarxMRBPdHpFL+v2sP3v2+wZeqZyteoM3mKl0dLTiR26yIM4beyjm3cBefytbjz81cpyxwDSpGvUSfQ6dES4olZ/qMt0rbQuFIhhvWsgV4pFu25zE8bzlisd8vryOS36uFf0AUHnWLm5nMsDbwCwPev16FZ1QDu3E2g5VD77o+Wz1Vkwqfd0et1zFq1h/GzN1msd3dzYeawPpQs7E3CgyT6jZzNmcvBAAzo0Zy+nRuilGLWyt1M+2ObPZoAgKZpTNx1gr+uhuLkqGdIyxqU83HPMn78juOsP3OdHf07Wiw/ExLFm4t3MrptbZqVCbBy1hlpmsaYmQvZfeQkzk55GPPhG1QsXSxD3KDxMzl16SoOegeqPFOC4f1fw9HBgStBt/lqyizOXL7OwFe70rdra5u34SFN0/huwiT27N2Hs7Mzo4YNoUK5shnibt4K5rOvh3D37l3Kly3LmJHDcHR0TFl/6vQZevV9i3FjRtGyeTNbNgEwtePbiVPYs28/zs5OjB7yVebtCA7ms8HDiYmJpXy5Zxg7fHBKOw4d+ZvvJk0lOTkZd/cCzP55uq2bweH9+/h58niMRiOtO3Sm26t9LNYHXb/GxG9GcOnCOXr3e48Xe74KQOKDBwzq/xZJSUkYkg00aNqcV9982+b5P3T0wD5+mToBo9FIi3adeLFXH4v1N69fY+q3I7l84Ry93nyXLj1M7bh54xrjh6d+j4QEB9Ozbz86dutpy/RTHD2wj9+mmdrxfLtOvPBKH4v1N69fY9q3I7ly8RyvvPkunbu/mrJuzZKF/Ll+FShFsRKlef+LoeRxcrJtA8yOHNjHzCmmftWyfWdeSrc/gq5fY/LYEVy+cI7X3nqPrj1S29H3pQ7kdXFBp9Oj1+uZ/Os8G2cvnhQy9dEOlFJNlFLrrPX8OqUY3bsOr32/lWafr6LTcyUo41/AIqb38+W4eCuaVl+voduYTQzpWQtHvY4HSQZeHruZVl+vofXgNTSpEkD1Ut7WSvUfzV27l/b9J2a5vnWDypQu6kuFTl/y7ug5TP/qNcA0D3rKF73oMGASVV8YzMut61C+pL+t0s6UY7Fy6N29iJo7lrjtS3Ft+kKWsQ4+hVFOzhbLVB5n8jXtyt21s4he8D13N8y1dsoZ6JRiVK+a9J60g+cHr6djnWKU8c9vEfNaszJcDI6hzbCNvDxuG4O7VcdRb/pVs3TvFXpP3GHzvNMz9Y+edPxgClVfHMrLrWpTrkQhi5jP+7bl+PkganYfwRvDZjHx0+4AVCjlT9/ODanfeww1e4ygbcMqlC7iY49mAPDXtVCCouJZ2qcFXzavzrhtx7KMPRsaRdyDpAzLDUaNHwJPUaeYrxUzfbTdR05yPTiUTTPGMqJ/b0b+lHn/bt+kLht+GsOa6SNJSExk2ZY9ABRwy8fX/XrSt0srW6adqcB9f3H9RhDrVixl6FdfMPrbcZnGTZ7+A6/27M66FUvJn9+NFavXpqwzGAxMmv4j9erWsVXaGezZt5/rQTdZv+wPhn3xGaPHTcg0btL0n3m1ezfWL/+D/G5urFhj+nq7GxvL6HETmDb+W1YtmseEMaNsmT5geh9/mPAdoyZMZcaCpez8czPXr16xiHHLn593PvqUF3r0sljumCcP3079mR/n/MEPcxZy5MA+zp6yPOlpKwaDgRmTxjHs+ylMn7uEPdu2cOOaZTtc8+fnrQ8+oXN3y3YULlqcybMWMnnWQib8Mg8nZyfqNmpqy/RTGAwGZk4ex5BxU5g6ZwmB27YQlEk73vzgEzq9bNmOO+FhrF++mO9nzmXq7MUYjUYCt2+xZfopDAYDP038jhHjp/LjvKXs+nMzNzLpV29/+Cld0+2Ph8ZMmcG03xfKIE08Uq4fqCmTXJ9nblKtlBfXQmO5ER5HksHImv1XaVmjqEWMBrg6m8545nN2JDr+AclGIwD3HiQD4KDX4aDXoaHZNP+0Ao9eIComPsv1HRpXZ8G6fQAcPHkFdzcX/LwKUKtSSS4HhXH1VjhJyQaWbD5AhybVbJR15vKUrETCuSMAJIfcQDnlRbm4ZQxUCpcGHYgPtBzLO5V9lsRLJzHGRQOg3Y+zdsoZVCtZkGthcQSFx5NkMLL2wHVaVCtsEaNp4OpsKtbnc3IgOj4xpW8dvBBOdHyizfNOr1bFElwOCufqrQhT/9hyKEP/KF+yEDsOnQXg/LUQivkXxMfTjXIlCnHg1BXuJyRiMBjZffQCnZpWt0MrTHZfvk3b8kVQSlGpkCdxiUlExCdkiDMYNabtOcWAhpUyrFt67DJNywTgkdc+Z6YBtu//m07N6qGUolq5UtyNv0dYZHSGuMY1q6CUQilF5TIlCY2IBKCge34qP1MCBwf7/52eHbt206FdG5RSVK1cidjYOMIjIixiNE3j4KEjtGhmOmDu2K4tO3btTlm/cPFSWjRtgqeHhy1Tt7BjdyAd27Q2t6Ni1u04fJQWzZoA0LFda7bvMg2eN2z+k+ZNG1PIz3QCoKCn7dty4exp/AsXoVBAYRwdHWncvCX79+yyiHH38KRs+Yo4OFhOMlJKkdfFBYDk5GSSk5NRyj5Tty6ePY1fQBH8/E3taNi8BQcDM7ajTPmKOOiznix14sgh/PwL4+NXKMsYa7p49jSF0rSjQbNHtMMhYzsMhmQSHzzAkJzMgwcJeHrZ50TyhXTtaNS8Jfszaccz5Suiz6Qd/68e/u62578nTa4cACmliiulziqlfgSOAkOUUoeUUieUUiPSxL1mXnZcKTXPvKyYUmqbefk2pVRR8/LZSqmflFI7lFJXlFKNlVKzzK8zO81zximlvlNKHVFK/amUqq2U2mnepqM5Rq+U+j5NTm+blzcxxy5TSp1TSi1Q5l6hlGptXhYIdLXm++fn4UJwZOrg5nZkPH4eLhYxs7eepbR/AQ5P68bWMZ0YNu8gmnk8plOKTaM7cuyH7uw5Fcyxy5ZfzLmJv48HQSGRKY9vhkbi7+NBgI87N0NTl98KjcLf234HPAB61wIYY6NTHhvjYtC7FsgQ51ylAYlXTqPdi7Xc3t0b5exCga7v4t59IE7lalg75Qz83PNyO23firqXoW/N2X6B0oUKcGhiFzaPbMuIP46k9K3cwt/HnaB0/SPA290i5sSFm3Ru+iwANSsWp6hfQQJ8PDhz6RYNqz+DZ4F85HXOQ+v6lSns62nL9C2Ex9/Hxy1vymMf17yEx93PELfs+GUaliyEVz7LSm1Y3H12XQ6mS+USVs/1UULvROHnlfo++hX0JOxOVJbxScnJrNmxjwY1KtsivWwJCw/Hzze1Ounr401YWLhFTHRMDG5urikHo74+PoSaY0LDwti+cxcvvdDFdklnwtSO1Gqxr483YeGW3wfp2+GXJub6jSDu3o3l9Xffp9trb7Bmg+X0YluICA/D2yd1X3j5+HAnPOyxtzcYDPTv3ZMe7VtQvVYdylXMeKLDFu5EhOOVph0FvX25Ex7+iC0yt2f7Fho1t1/VOTKzdkQ8XjsKevvQqXsv+nXrQN+ubciXLx/VatW1VqqPdCd9v/L24U7E4/crpRRDP+7Ph2/0YtOaFdZIUTwlcuVAzawsMBf4HAgAagPVgBpKqUZKqYrA10AzTdOqAh+at5sOzNU0rQqwAJia5jk9gGbAR8BaYBJQEaislKpmjskH7NQ0rQYQC4wGWgBdgJHmmDeAGE3TagG1gLeUUg+PcqoDA4EKQEmgvlLKGfgF6AA0BPz+43vzSJmdMEh/oNy4cgBnbkRS8/0ltP56DaN610mpsBk1jdaD11D7w6VUK+lF2cLu1kz3P8m8rRqKjCvsWRnMSvr9osuXH6cyVUk4HpgxWKfDwacwMWt+I2bVL7jUboHO3cs2iT6UxfudVuOKhTgdFEWtj1fSZvhGRr5SM6XClltkdlYt/b74fvZG3PO7cHDhUN57uRnHzgeRbDBy7loI4+dsYsOPH7F22oecvHCTZIPBRplnlNkgOH3rwuPus+3iLV6qVjJD7ORdJ+jfoBJ6O1/kndmn81FnP0f+NJ+alZ6hZsVnrJfUv5TpPknXlvSfG1OM6f9xEycz8P3+6PX2rQ5mlmP63pVpjLkhyQYDZ8+d54eJ45gxdQIzfpvDtRs3rJDpI2TesR57c71ezw9zFjJv5QYunDnNtSuXci637Mi0v2TvM5uUlMTBvbup37R5TmWVbZn2+8y+WDIRF3uXg4G7+XnRan5bsZGEhAR2brH/tecPPW47AMb9+BtTZi1gxPiprFuxlFPHjloxs9xDp1N2//ekyV1HT5aua5q2Xyk1HmgJ/G1e7gqUAaoCyzRNiwDQNO3h6fHnSK1YzQPSXhywVtM0TSl1EgjVNO0kgFLqNFAcOAYkAg9P+50EHmialmTeprh5eUugilLqRfPjAuacEoGDmqbdND/vMfM2ccBVTdMumpfPB/pl1milVL+H69zr9Ma1TJN/fqfSuR15D3/PfCmPC3nmIzT6nkVMt0al+XGtaa79tbBYgsLjKO1fgGNXUs+W3r2XyF/nQmhSJYDzN6OznYct3AqNoohf6ln4wr6e3A6PJo+jg0WVI8DXg9vh0TbPz7lKfZwrmq4xSQ4NQufmDrdN63SuBTDGx1jE670D0BcoiEfvL00LHB3xeO1LouaOxRgXQ1JCPCQnoiUnknTrCg5e/iRG267iGRJ1n0Jp+5aHC6HRltWblxqU5EfzDUauh8URFBFHqUIFOH71js3y/Ce3QqMokq5/BEdEW8TExifQb8TslMfn147lWrDpvZ69OpDZq02D6ZH9u3ArLOvKjzUsO36F1SevAVDez52w2NR9EBZ3Hy/XvBbxF8JjuBkdz4u/bwUgIcnAi79vYdnrLTkbGs3gDYcAiEl4wF/XQtArRePS1r+mc8H6bSzbbJruV6lMCUIiUqucIXci8fZ0z3S7H/5YTVRMLCP697d6jo9r0ZJlLF+1BoCKFcoTEhqasi40LBxvb8uTKh7u7sTGxpGcnIyDgwOhYWH4eJumcZ0+e47Pvx4CQFR0DHv2/YWDXk+zJo2t3o4/lq5guflauUoVyhESmlolCA0Lx8e74CPbERIWjo+XKcbXxxsP9wK45M2LS9681KhelfMXL1O8qOVUfGvy8vEhPCx1X0SEhVHwX0yXc3Vzo8qzNTi8/y+Klyydkyk+loLePkSkaced8FA8vbJ3ou7o/n2UKlMOd8+C/xxsJf+lHccPH8S3kD8F3E2zY+o2bMr5Uydo0rKtVXJ9lILe6fpVeFi2pmE+7IPuHp4816gJF86eplK1Z3M8T/Hky80VtYfzqxQwVtO0auZ/pTVN+828/HFKJGljHpj/N6b5+eHjh4PWJC31lE9KnKZpaWMU8H6anEpomvbwita0z2tIs81jlXM0TZupaVpNTdNq/ptBGsDxKxEU98tPEW9XHPU6OtYtwdajQRYxwXfiqV/RdCDmld+ZUn75uR4Wi6ebE/ld8gDg7KinYUV/LgXHZHiN3GLdrmO80r4eALUrlyQm7h4hETEcPn2V0kV9Ke7vhaODnm6t6rBu5zGb55dwYi/Rf0wk+o+JPLhyCmfzdEUHv6JoDxIyTG9MunaWyN9GEDX7G6JmfwNJSUTNHQtA4pVTOPiXBKUDB0cc/IpiiHz8qRY54fjVO5TwdaOIVz4c9To61CnG1mOWd668FXmP+hVMRWOv/M6U9MvPjXDbX0/3KIfPXKN0EZ/U/tGyFut2HbeIKeCaF0fz9U59uzQk8OhFYs3Xfnl7mK4tLOLnSedm1Vm86aBN83+xaknm9WrGvF7NaFzKnw1ng9A0jVO3I3HN45hhemP9En5s6NeWVW+0YtUbrXB21LPs9ZYArOzbKmV509IBDGpWzSaDNIBX2jVn5dQRrJw6guZ1q7N6+z40TePYucu4ubjgk8lAbenm3QQePcX4QW+j0+Wer7Du3V5k6cK5LF04l2ZNGrF2/UY0TeP4yVO4uebDO93BqFKKWjWfZet208111qzfQJNGDQHYtHoFm9asZNOalbRo1pSvP//UJoM0gB4vdWXZ/N9ZNv93mjVqyJqNm8ztOI2rq2vm7ahRna3bd5rbsYmm5nY0a9SAo8eOk5yczP2EBE6ePkPJ4hnv5GlNz5SrQPDNIEKCb5GUlMSubVuo26DRY20bHRVFXKzpd/SDBwn8feggRYoVt2K2WStTrgK3b94g1NyOPdu2Urv+47Xjod3bNtPw+ZZWyvDxpLTjtqkdgdu3Uusx2+Ht68eFMyd5kJCApmmcOHqIwsXsM2U7fb/avW0LdR6zXyXcv8+9e/EpP/996ADFSpayZrriCZabK2oPbQZGKaUWaJoWp5QKAJKAbcBKpdQkTdPuKKU8zVW1fUB3TNW0V4BM5pDlSE7vKqW2m6ttzwBZ32cdzgEllFKlNE27DPSwQk4pDEaNIXP3M39QC/Q6xeLdl7hwK5pezUy3VZ6//TxTVh1nYr8GbB3TCaVgzOIjRMU9oFwRDyb1a4DeXCJee+Aa247dtGa6jzRv7Ns0qlEWL3dXrmwaz8ifV6ccPP+ybCcbA0/QukEVzq75lvsJibw5fJbpPTAYGfjdfNb/+DE6nY45qwM5cyXYbu0A0yAsT/HyePT+Ei0pibg/F6Wsy9/xTeK2LcEYfzfL7Q1RYSRdP4f7K5+AppFw+gCGyBBbpJ6ag1Fj6PzDzP24KXqdYkngFS4Gx/BKE9MZ5gU7LzF17Skm9K3L5pFtUcC3S48RFWc6fzH17Xo8V9YXD1cn9o/vzKTVJ1i858ojXtFK7TAYGThuIeumD0SvV8xevZezV4J56wXTwfAvy3dRrkQhZo3si8Fo5OyV27w9ck7K9ou+f5eCBfKRlGzgw28XEh17L6uXsrp6xX3ZdzWEF2dvxdlBz+CWqWdlP1q1j6+er453ugpbbtS4ZhV2Hz5Bq35fmG/P3zdlXb/hkxj9fh98Cnow4se5+PsUpMegbwB4/rka9O/RkfCoGF76aCRx9+6j0ynmrtnKuh9H4+pi+7Y3rF+PPXv30a7LSzg7OzFq6OCUde99+DHDB3+Jj7c3Hw3oz2dfD2H6TzMoV/YZunbqYPNcH6Vh/efYvW8/bV/ojrOzM6OHfJmy7t2Bgxjx9ef4eHvx0YB3+WzwcKbN+JVyz5Sha8d2AJQsUZz6devwwit90Ol0dO3YnjKlMk6/tSa9gwPvfjSIwR+/j8FgoGX7jhQrWYr1K5cB0K7Li0TeieCDN17jXnw8Op1i1ZI/mLFgCVF3Ihg/ehhGoxHNaKRhsxbUqd/QpvmnbUe/gZ8x/NMPMBoNNG/bkaIlSrFx9XIA2nR6gag7EXzSr3dKO9YuW8T0uYtxyefKg4QEjh8+yHuffvUPr2T9drw18DNGpGvHJnM7WpvbMehtUzuUTrFu2SKmzlnMMxUq8Vzj5nzyVi90ej0lS5elZQf7XMepd3DgnY8GMfST9zEaDbRo15FiJUqxYZWpX7Xt/CJRdyIY+FZqv1q99A9+mreEuzHRjP5qEABGg4HGLVpRo049u7TD1uTvqGWfynwOun0ppYoD6zRNq2R+/CHwpnl1HNBL07TLSqnewCBMlau/NU3rY952FuAFhAOva5p2w3zDkHWapi3L5PnTrovTNM3VvHw4EKdp2njz4zhN01zNd6EcjemaM2V+nc6Yrk/7VNO09ub46cBhTdNmK6VaA5OBCEyDx0oP47JS5NXZuW/n/Auhp3b/c9ATIPh1+96MJKfUOGb7m5BYQ8hx+9/mPyeEvGm/aUg5qUDz3DXI+C+S/MrbO4UcoYzJ9k4hR9xMzv0nGh5HouGp+ErH+HQ0A8enaNBQxsftiWhMuQ9X2733nJvS6ZHvlfl4fQqgB37VNO3bdOsHYSoEgangVR7w1jQtUil1DdP9LQxAsqZpNf9rvrlyoCZMZKCWu8hALXeRgVruIgO13EcGarmLDNRyFxmo2V75j9bYvfecndQxy/dKKaUHLmC6ieBN4BDQQ9O0M1nEdwA+0jStmfnxNaDmw/tn5ITcM8FfCCGEEEIIIeyjNnBJ07QrmqYlAouATo+I7wH8Yc2EZKAmhBBCCCGEeOoppfoppQ6n+Zf2LuwBQNq77900L8vseVyA1sDyNIs1YIv5bzFnenf37HoSbiYihBBCCCGEeILpsvm3/6xB07SZwMwsVmeWYFbTNTsAe9P8eTCA+pqmBSulfICtSqlzmqb9p+t/pKImhBBCCCGE+H93EyiS5nFhIKtbhncn3bRHTdOCzf+HASsxTaX8T6SiJoQQQgghhLCqJ+D2/IeAMkqpEpj+7FZ3oGf6IKVUAaAx0CvNsnyATtO0WPPPLYGR/zUhGagJIYQQQggh/q9pmpaslBqA6e8l64FZmqadVkq9Y17/szm0C7BF07T4NJv7Yvr7zmAaXy3UNG3Tf81JBmpCCCGEEEKI/3uapm0ANqRb9nO6x7OB2emWXQGq5nQ+MlATQgghhBBCWNUTMPUx15GbiQghhBBCCCFELiMDNSGEEEIIIYTIZWTqoxBCCCGEEMKqdDL1MdukoiaEEEIIIYQQuYxU1IQQQgghhBBWpaQ8lG3ylgkhhBBCCCFELiMDNSGEEEIIIYTIZWTqoxBCCCGEEMKqlJKbiWSXVNSEEEIIIYQQIpeRipoQQgghhBDCquT2/NknFTUhhBBCCCGEyGVkoCaEEEIIIYQQuYxMfczFTtQ7Z+8UcoShloe9U8gR/r9H2TuFHBE+4Iy9U8gRyc+62zuFHOE7M8zeKeSI+K7+9k4hx+jv3rZ3CjlD93R8xQdc2GrvFHJGrY72ziBH6KNv2juFnHH7ur0zyDk+re2dwWNRMvUx26SiJoQQQgghhBC5zNNxuk0IIYQQQgiRa0lFLfukoiaEEEIIIYQQuYwM1IQQQgghhBAil5Gpj0IIIYQQQgir0imZ+phdUlETQgghhBBCiFxGKmpCCCGEEEIIq5KbiWSfVNSEEEIIIYQQIpeRgZoQQgghhBBC5DIy9VEIIYQQQghhVTL1MfukoiaEEEIIIYQQuYxU1IQQQgghhBBWpZOKWrZJRU0IIYQQQgghchkZqAkhhBBCCCFELiNTH4UQQgghhBBWpZRMfcwuqagJIYQQQgghRC4jAzUhhBBCCCGEyGVk6qMQQgghhBDCqpSUh7JN3jIhhBBCCCGEyGWkoiaEEEIIIYSwKvk7atknA7WnlKZpTNx1gr+uhuLkqGdIyxqU83HPMn78juOsP3OdHf07Wiw/ExLFm4t3MrptbZqVCbBy1lnL16gzeYqXR0tOJHbrIgzht7KObdwF5/K1uPPzVynLHANKka9RJ9Dp0RLiiVn+oy3STjFz2Ou0bVSV8Mi7VH9paKYxEz/rSev6lbmfkMgbw37j2LkbALSsV4mJg3qi0yl+X7WH73/fYMvUM9A0jQnbjrHvym2cHR0Y2qYW5fw8soz//s+/WXfyKrs+6grAptPXmXvwPAB5HR34vOWzPPOIvmlNLg07kadYObTkJOK2LX5kv3Jp1AnncrWInDkYAIeAkri17YPxbhQAiVdOcv/QnzbJO61/6h/ubi78MrwvJQt7k5CYRL/hv3P6sqmdA3o8zxtdG6GU4rcVu5m2cKvN839I0zTGTv2JPfsP4ezkxDdffkKFsmUyxC1cvoZ5y1YSdOs2e9YsxsO9AABXrgcx5NsJnLlwmQ/e7M3rPV60dRNSaJrG2B9+Y/eBo+R1cuKbzwZQ4ZlSGeIWrNrAvOXrCAoOIXDFbDwK5LdYf/LcRXq+/yXjB39Mq8b1bJV+Ck3TGDvtF3YfOExeZye++Xxg5u1YuY55y9aY2rFqfko7tgfuZ9rvC1BKh4Nez+cD3qRG5Qq2bgaapvHd4s3sOXUR5zyOjOrTiQpFC2WIGzZ3Daev30bTNIr5FmR07064OOd57O1t0o7vx7MncC/Ozs6MGjGcCuXLZYi7eesWn335FXdj7lK+XDnGjB6Jo6Mj6zdsZNbsOQC4uLgw+KsvKPvMM7ZuhqlfTf+V3QeOmPrVZx9k0a/WM2/5WlO/Wjk3tV/tPcC03xeilDL1q/5v2KVfgbktc1aw++8z5HVy5Jt3X6FCiSIZ4j6bNpfTV4Jw0OuoXLoYw958GUcHPQdPX+T98b8S4FMQgOdrV+G9F1rbuhkiF5OpjzlMKdVEKbXO/HNHpdQX9sjjr2uhBEXFs7RPC75sXp1x245lGXs2NIq4B0kZlhuMGj8EnqJOMV8rZvrPHIuVQ+/uRdTcscRtX4pr0xeyjHXwKYxycrZYpvI4k69pV+6unUX0gu+5u2GutVPOYO7avbTvPzHL9a0bVKZ0UV8qdPqSd0fPYfpXrwGms09TvuhFhwGTqPrCYF5uXYfyJf1tlXam9l0JISgqjuVvteHLVjX4buvRLGPP3I4kLiHRYpm/ez5+7tGEha+35I165Rm7+Yi1U87Uw34VPf874ncsI1/jrlnG6n0Ko8uTN8Py5NtXiVk8iZjFk+wySHuc/vH5G+04fv4GNV4eRt8hvzJhUA8AKpYK4I2ujaj36mhqvDyMto2qUrqoj83b8NCe/Ye4cTOYDQtnMXzQh4yaOD3TuOqVK/DrxLH4+1nmWiC/G1988C59umf9+8FW9hw8yvWbt9k49weGf/wOI6fMzDTu2Yrl+O374fj7emdYZzAYmPjLPOrXrGblbLO258ARrt8KZuP8GQz/pD8jJ/2Uadyzlcrz24RR+Pta7pM6Naqy4teprPh1CqM+e59h30+zRdoZBJ66xPWwO6wbNYChvdozesH6TOMGvdSKZUPeZvnQdyjkkZ8/dh7M1vbWFrh3L9dvBLFu9UqGDv6a0WPHZho3eeo0Xn2lJ+tWryR/fjdWrFoNQECAP7//OpPlSxbR7603GDH6G1umn8LUr26zcd5PDP/4PUZO/jnTuGcrlee38SMyfD7qPFuFFb9MZsUvkxk16H2Gjf/BFmlnas+xM1y/Hc7GyYMZ/lZ3Rv66NNO49g1qsG7iV6z6/gsSEpNYvv2vlHU1ypVkxXefseK7z2SQJjKQgdpjUibZer80TVujadq31srpUXZfvk3b8kVQSlGpkCdxiUlExCdkiDMYNabtOcWAhpUyrFt67DJNywTgkdfJFilnKU/JSiScMx3MJ4fcQDnlRbm4ZQxUCpcGHYgPXGex2KnssyReOokxLhoA7X6ctVPOIPDoBaJi4rNc36FxdRas2wfAwZNXcHdzwc+rALUqleRyUBhXb4WTlGxgyeYDdGhSzUZZZ273pWDaViyGUorK/gWJTUgkIu5+hjiDUWPazhO836SKxfIqAV7kd84DQCX/goTF3rNJ3unlKVGRBw/7VegNdE7OWfarfPXaEb/PPgdnj/I4/aN8SX+2HzwLwPlrIRTz98LHMz/lShTiwMkr3E9IxGAwsufIeTo1fdYOrTDZEfgXHVs1RylF1YrliY2LIzziToa48s+UJqCQX4blBT3cqVy+LA56vS3SfaTtew/SsWUTU1sqlCU2Lp7wO5EZ4sqXKUmAX+aD4wWrNtCi4XN4miuG9rB97wE6tmxqbkc5YuOzakcpAvwyntDLlzdvyt9Nup/wwG5/Q2nH8fN0qFvV1I6ShYm9/4DwmNgMca7m7zpN00hISkahsrW9te3YuYsO7dua8qhSmdjYWMLDIyxiNE3j4KFDtGjeHICO7duzY8dOAKpVrUr+/KaqVNXKlQkLDbNp/g9t33eQji0e9/PxT/0qwa5/m2v74VN0bFTL1JYyxYm9d5/wqJgMcY2qV0QpZfreLFWU0Mho2yebCyidsvu/J40M1B5BKVVcKXVWKfUjcBT4TSl1WCl1Wik1Ik1ca6XUOaVUINA1zfI+Sqnp5p+LKaW2KaVOmP8vas3cw+Pv4+OWWgHwcc1LeCYH08uOX6ZhyUJ45bOsQoXF3WfX5WC6VC5hzTQfi961AMbY6JTHxrgY9K4ZD16cqzQg8cpptHuWX6B6d2+UswsFur6Le/eBOJWrYe2Us83fx4OgkNQvqpuhkfj7eBDg487N0NTlt0Kj8PfOepqhLYTF3sc3v0vKYx83F8JiM/atpUcv0bC0P16uGStRD605cZXnSth+ChGAzjV/yuAdTP1Kl1m/qlyfxKtnMvQrAAe/YhTo/hFuHd5A72n7yvPj9I+TF4Lo3Nw0AKtZsQTFChUkwNeD05dv0fDZZ/AskI+8znlo3aAyhf08bZp/WqERd/DzST1z7uvtTWgmA7UnQVhEJH7eXimPfb0LEhqR8UA0K6Hhd9gWeICXO7S0RnqPLSz9PvEqmO198ueev2j/2ru8++VIRn32QU6n+FjComPx80ydVurr7kZYVOYDrSGzV9N00ESuhUTQo1ntbG9vTWFh4fj5pp6k8PXxJSzccrAVHR2Dm6sbDg6mK1t8fX0IDc84IFuxajX169t+Oi2YPx8+//7zAfDnnv20792fd78azahBA3I6xccWFhmNX0H3lMe+ngUIjcw4UHsoKdnA2j2HaVC1fMqyYxev0eWz73h77M9cCrptzXTFE0gGav+sLDBX07TqwCeaptUEqgCNlVJVlFLOwC9AB6AhkPFUr8l08/NUARYAUzMLUkr1Mw8GD88OPPavk9a0TJ473ePwuPtsu3iLl6qVzBA7edcJ+jeohD6Xnn1I3z5dvvw4lalKwvHAjME6HQ4+hYlZ8xsxq37BpXYLdO5eGePsKLMTgpqmpZzRtVhOJjvXpjK+fvozmuGx99l2PohuNUpn+SyHr4ex5sRVBjSpnOMZPp5M33TLiHz5yVO6Cgkn9mYINYTdImrOGGIWTSLhxF7c2va2VqJZepz+Me73DXi45ePQouH0796cY+dvYDAYOXf1Nt/P3sjGnz5l3Q8fceJCEMnJRlulnoGWyS8te54p/y8y+4xmpy3f/jiLj996Fb2dq4OZf49kb5883/A51s39iWmjvmLarAU5lFn2ZN63Mo8d1acT28Z9RIlC3mw+dDrb21tTpv0q3f54nL538NBhVq5azUcfvJ+zCT6mnHg/n29Yl3VzfmDayC+Z9vvCHMos+zL7Nn7UZ33UrKXUKF+KGuVN1+RVKFGErdOHs3Lc57zSuiHvT/jVSpnmDg+rivb896SRm4n8s+uapu03/9xNKdUP0/tWCKiAabB7VdO0iwBKqflAv0ye5zlSq23zgHGZvZimaTOBmQBRP32RrSPyZcevsPrkNQDK+7lbVDnC4u5nqGxcCI/hZnQ8L/5uuoFAQpKBF3/fwrLXW3I2NJrBGw4BEJPwgL+uhaBXisalbXN9lHOV+jhXrANAcmgQOjd3MJ9o0rkWwBhvecZK7x2AvkBBPHp/aVrg6IjHa18SNXcsxrgYkhLiITkRLTmRpFtXcPDyJzHacsqIPd0KjaJImmpGYV9PbodHk8fRgcK+qcsDfD24HR5t8/yWHr3EqhNXAKjg50no3dTpimGx9/B2tazIng+LJig6jhdmbgRMfavrzA2s6NcWgIth0Xyz+TCTX2yIuw2n1jpVrodzBXO/CgtC5+qess7Ur+5axDt4+aMv4IX7q5+bFjg64t7rc6Lnf4eW9CAlLun6OWjcBeXsgpZgu6mcN8Oi/rF/xMYn8NbwWSmPL6wfx9Vb4QDMXrWH2av2ADBqQFduhkZZP+k0/lixhmXrNgFQqdwzhISFp6wLDQ/Hp6D9KnzZtXDVRpZtMP0urVS2NCFppqSFht/Bp+DjV8JPX7jMp6NN17RGxcSy5+ARHPR6mjeok7NJZ2LhyvUsW78FgErlyljuk4g7+Hj9u31Ss2olgoInExVzN8NNU6xh0Y5DLA80XT9bsbg/IZGpn+3Q6Fi83TOZ5mym1+loXbMCs7f8Ref61fD1yJ+t7XPSosVLWL5yFQAVK1YgJDQkNY+wULy9La/f8nB3JzYuluTkZBwcHAgNDcPHKzXmwoWLDB81ih+nTcXd3d0WTQBg4aoNqf2qbBlCwtJ/Pv5tv6pI0HchNutXAAs372GZ+RqzSqWKEnInOmVdaGQMPh6Z5/Hjso1E3Y1j+Md9U5a5uqR+dzaqXpFRvy0j6m4cHvldrZO8eOLIQO2fxQMopUoAnwK1NE2LUkrNBh5+wv5NiSPHyyIvVi3Ji1VN1bG9V0NYeuwKLcoW5nRIFK55HDNMb6xfwo8N5gNngKY/rGHZ66apNiv7tkpZPnLzERqU9LPZIA0g4cTelCqGY/Hy5K1Sn8QLf+PgVxTtQUKGaWhJ184S+VvKbFQKvjOGqLmmC60Tr5wiX5Oupr+0qNfj4FeU+3/vtllbHse6Xcd4t3tzFm86QO3KJYmJu0dIRAzhUbGULupLcX8vboVF0a1VHV77cobN83vp2dK89KypOhZ4+TZLj16iZfkinLodiauTY4aTAA1KFWJTmjuINp60ImWQFnL3Hp+v2seIdrUp5mmbg52HHpzcx4OTpmsBHYuVw7lKfRIvHsPBtyhaYib96vo5on4fmfLYs99ooud/B4BycUuJd/ApAkrZdJAGcPj01X/sHwVc83IvIZGkZAN9uzQi8OgFYs3Xq3p7uBEeFUsRP086N6tBw962vblAj64d6dHV1E92/XWAP1aspU3zJpw4cw7XfPnw9ipo03z+i56d29CzcxsAdu0/zMJVG2nbtAEnzl7ANZ8L3tk4EN2yIPXmCl99N43GdWvYZJAG0LNLO3p2aQfArr8OsXDVeto2a8SJs+ez3Y7rt4Ip6l8IpRRnLlwmKTkZ9/y2+cx3b1qL7k1rAbD75AX+2HGINrUqcuLqLdzyOuFdwDIPTdMICo+iqI8nmqax88QFivuZ+l+Tqs/84/ZWa8fL3ej+cjdTO/YE8sfiJbRp1YoTJ0/h5uqKt7fl7BClFLVq1mTrtm20adWKNevW0aRJYwBu3w7ho08HMWbUSIoXK2aT/B/q2bktPTubvgNMn48NtG3W0Pz5yJfNfnWbov5+qf0qyXb9CqBnq4b0bNUQgF1HT7Nw8x7a1nuWE5eu4+rijLdHxin0y7b/xd7j5/htSH90utTJbOHRd/Eq4IZSihOXrmPUjLi75bNZW0TuJwO1x5cf06AtRinlC7QBdgLngBJKqVKapl0GemSx/T6gO6Zq2itAJnP0ck694r7suxrCi7O34uygZ3DL1JsEfLRqH189Xx3vR1w7lJskXTtLnuLl8ej9JVpSEnF/LkpZl7/jm8RtW5KhEpKWISqMpOvncH/lE9A0Ek4fwBAZkmW8Ncwb+zaNapTFy92VK5vGM/Ln1Tg6mKY1/bJsJxsDT9C6QRXOrvmW+wmJvGmugBgMRgZ+N5/1P36MTqdjzupAzlwJtmnu6dUv6ce+K7fp+stGnB30DGlTK2XdwGV7+LpVTbzdsu5bv+49Q8z9xJS7ReqVjrm9n7d63uklXT9HnmLlcX/1C7TkROK2LUlZ59a+L3E7lqE9ol85laqMU6XnQDOabu+/2fbTurLqH2+92AQw9a1yJf2ZNepNjAYjZ68E02/E7ynbLx7fn4LuriQlG/jg2/lE2+nGLgCN6tZmz1+HaNOjL3mdnBj15ccp694dNIQRnw/Ex6sg85et4vc/lhERGUnX19+lYd1ajPz8IyLuRPJyvw+Ii7+HTqeYv2wVq+fOwDWf7Q96GtWpwe4DR2nz6ns4OzsxOs01NO98OZqRn7yHj5cn81esZ9bilURERtPlrY9oVPtZRn7a3+b5ZqVR3ZrsPnCENr3extnJidGfp15j9s4XIxj56QDTPlm+llmLVhARGUWXNz6gUZ0ajBz0Plt3/8WazdtxcHDA2SkP44d+ZpepRw0rlWHPyUu0GzzddHv93qknkd6btpDhr3bAK78rg2evIu5+IhoaZQv7Mrhnu3/c3qbtaFCfPYF7adeps+n2/MOHpbbj/Q8YPnQIPt7efPTB+3z25VdM/+EnypUrS9fOnQD4+ZdfiI6J4ZuxppNNer2eRQvm2bwdps/HEdr0esf0+fgsbb8aae5XnsxfsY5Zi1aa+tWbH5r61acDTP1qyw4cHPQ4OzkxfuindpvS1qh6BXYfO0ObD0fh7JSH0e/0TG3Ltz8zsl8PfDwLMPLXJfh7edBzyGQg9Tb8W/YfY/Gfe9HrdDjncWT8B32eyOl5j0v+jlr2qczmCgsTpVRxYJ2maZXMj2cDdYArwANgjaZps5VSrYHJQASmAVglTdPaK6X6ADU1TRtgfq5ZgBcQDryuadqNR71+dqc+5laGpIy3/n8S+f9u22lh1hI+wL63988pyfcf/HPQE6DQb0/mDTPSi980xN4p5BiVZL8Ba47SPR3nYg0XDts7hZxRyz4DvJymj75p7xRyRth1e2eQYxyqt34iRkDNp+6x+3Httg8aPhHv1UNPx29xK9E07RpQKc3jPlnEbQIy/NVJTdNmA7PTPFezHE9SCCGEEEKIXO5JvD2+vcldH4UQQgghhBAil5GBmhBCCCGEEELkMjL1UQghhBBCCGFVufVv8+ZmUlETQgghhBBCiFxGKmpCCCGEEEIIq5KKWvZJRU0IIYQQQgghchkZqAkhhBBCCCFELiNTH4UQQgghhBBWJVMfs08qakIIIYQQQgiRy0hFTQghhBBCCGFVUlHLPqmoCSGEEEIIIUQuIwM1IYQQQgghhMhlZOqjEEIIIYQQwqpk6mP2SUVNCCGEEEIIIXIZGagJIYQQQgghRC4jUx+FEEIIIYQQVuUgUx+zTSpqQgghhBBCCJHLSEVNCCGEEEIIYVVyM5Hsk4qaEEIIIYQQQuQyUlHLxQrNirZ3CjnCt3Ije6eQI8IHnLF3CjnCe3qwvVPIEX5Vm9o7hRwRPuC8vVPIEbo71+2dQo6JKVLb3inkCBeHp+PsdXT1wvZOIUecCr5n7xRyhGseX3unkCPc/QPsnUKOKWfvBITVyEBNCCGEEEIIYVUy9TH7ZOqjEEIIIYQQQuQyUlETQgghhBBCWJVeJ/Wh7JJ3TAghhBBCCCFyGRmoCSGEEEIIIUQuI1MfhRBCCCGEEFYlNxPJPqmoCSGEEEIIIUQuIxU1IYQQQgghhFVJRS37pKImhBBCCCGE+L+nlGqtlDqvlLqklPoik/VNlFIxSqlj5n9DH3fbf0MqakIIIYQQQoj/a0opPfAD0AK4CRxSSq3RNO1MutA9mqa1/5fbZosM1IQQQgghhBBW9QRMfawNXNI07QqAUmoR0Al4nMHWf9k2SzL1UQghhBBCCPH/LgAISvP4pnlZes8ppY4rpTYqpSpmc9tskYqaEEIIIYQQwqr0yv4VNaVUP6BfmkUzNU2b+XB1Jpto6R4fBYppmhanlGoLrALKPOa22SYDNSGEEEIIIcRTzzwom5nF6ptAkTSPCwPB6ba/m+bnDUqpH5VSXo+z7b8hUx+FEEIIIYQQ/+8OAWWUUiWUUnmA7sCatAFKKT+lTKVBpVRtTGOpO4+z7b8hFTUhhBBCCCGEVeX2m4lompaslBoAbAb0wCxN004rpd4xr/8ZeBF4VymVDNwHumuapgGZbvtfc5KBmhBCCCGEEOL/nqZpG4AN6Zb9nObn6cD0x932v5Kpj0IIIYQQQgiRy0hFTQghhBBCCGFVuX3qY24kFTUhhBBCCCGEyGWkovaUavFcBSZ80g29Tsfvq/cyfs5mi/Xubi7MGPIaJQt7kZCYzNuj5nLmsukuou/3aM7rneujaRqnLwXz1sg5PEhMtkczAGhcqRDDetZArxSL9lzmpw2Wf+TdLa8jk9+qh39BFxx0ipmbz7E08AoA379eh2ZVA7hzN4GWQ3N02nC2aZrGhG3H2HflNs6ODgxtU4tyfh5Zxn//59+sO3mVXR91BWDT6evMPXgegLyODnze8lme8XG3ReopZg57nbaNqhIeeZfqLw3NNGbiZz1pXb8y9xMSeWPYbxw7dwOAlvUqMXFQT3Q6xe+r9vD97/bdH40r+zO8Z030OsWi3Zf4cb3lNb9ueR2Z8nYD/D1dcNDrmLHxDEsDL1PI04VJb9XHu0BeNE1j4c6LzNp6zk6t+O/9atfFW8wIPI1SoFc6Pm5ejWqFvWyVfgpN0xjz22J2HzlFXqc8jHm/DxVKFc0QN2jSb5y+dB0HvZ7KZYoz/N1eODroWbvrAL+tNP2ec3F2YujbPSlXokiG7W3hr317mTz+ewxGIx07d+a1Pn0t1muaxqTx49i3dy/Ozs4MGT6CsuXKA9ClQ1tcXPKh1+vQ6/X8Pm+hPZqQkud348YRGBiIs7Mzo0aOpHz58hnibt66xeeff87dmBjKlS/PmG++wdHR8bG3t7YDf+1l2oTxGI0G2nXqwiu9X7dYr2kaUyd8z4F9gTg5O/Pl0BE8Y94fSxbOZ/3qVSilKFG6NF8MGY6Tk5PN2wBw+sh+ls2cgtFopH7L9rR86VWL9Qd3bGHr8gUAODnnpft7n1C4ZBlCb97gt+9Sf1/fCQmmXa83adapm03zf+jEob9Y8NNkjEYDjVt3pH331yzW79u2mfVL5gHgnDcvvd//jKKlypCY+IAxn7xLclISBoOBWg2b0vW1t+zRBACOHtjHL1MnYDQaadGuEy/26mOx/ub1a0z9diSXL5yj15vv0qWHaX/dvHGN8cO/SokLCQ6mZ99+dOzW05bp24WDVNSyTSpqTyGdTjHlsx50+nA61bqNoFvLWpQrUcgi5rPXW3PiQhC1eo7mjWG/M+ET0y9sf293+r/clHqvjaVG91HodDq6taxlj2YAoFOKUb1q0nvSDp4fvJ6OdYpRxj+/RcxrzcpwMTiGNsM28vK4bQzuVh1HvalrL917hd4Td9gj9Qz2XQkhKCqO5W+14ctWNfhu69EsY8/cjiQuIdFimb97Pn7u0YSFr7fkjXrlGbv5iLVTzmDu2r207z8xy/WtG1SmdFFfKnT6kndHz2H6V6YvYJ1OMeWLXnQYMImqLwzm5dZ1KF/S31ZpZ6BTitGv1qb3xO00/2otHesUp4x/AYuY15qX5eKtaFoPXU+3b7cwpHsNHPU6DAaN0YuO0PyrNXQatZHXmpfNsK0t/dd+VauYLwv6tGBBn5YMaVOTbzYdtnbKmdp99BTXg8PY9OMoRrzbixEzFmQa175RbdZPH8HqKUN5kJjE8j8DASjs68Wc0Z+wavJQ3nmpHcN+mm/L9FMYDAYmfPctE6dO54+ly9m6eRNXr1y2iPlrbyBBQTdYunI1X3w9mHFjx1is/2HGTOYuXGzXQRpAYGAgN27cYO2aNQwdMoTR33yTadyUyZPp1asXa9euJX/+/KxcuTJb21uTwWBg8rjvGDdlGnMWL2fb5k1cu3LFIubAvr3cDLrBguWr+fTLwUz8biwA4WFhLF+8iJlz5jN70VKMBiPbt27O7GWszmgwsOSnifQfMZ4hP87n8K4/uX3jqkWMl18hPvp2Gl9Pn0Ob7r1ZOH0cAL6Fi/LVtNl8NW02X0z+DUcnZ6o+18gezcBoMDB3+gQ++WYiY3/5g/07t3LrumU7vP0K8dX4H/lmxnw69uzL75O/BcDRMQ9fjJvO6J/nMeqnuZw8tJ9LZ0/ZoxkYDAZmTBrHsO+nMH3uEvZs28KNa5b9yjV/ft764BM6d+9lsbxw0eJMnrWQybMWMuGXeTg5O1G3UVNbpi+eIDJQ+wdKqbhHrCuulDpl/rmmUmqq+efhSqlPbZVjerUqFudyUBhXb0WQlGxg6dZDdGhcxSKmfIlC7DhkqgJcuB5KsUIF8fF0A8DBQUdeJ0f0eh0uzo7cDo+2dRNSVCtZkGthcQSFx5NkMLL2wHVaVCtsEaNp4OpsKg7nc3IgOj6RZKMRgIMXwomOT8zwvPaw+1IwbSsWQylFZf+CxCYkEhF3P0OcwagxbecJ3m9iuc+qBHiR3zkPAJX8CxIWe88meacVePQCUTHxWa7v0Lg6C9btA+DgySu4u7ng51WAWpVKmvtkOEnJBpZsPkCHJtVslHVG1UoW5FpoLDfC41L6Vcvq6aovGuRzdgQgn5Mj0fEPSDYaCYu5z6nrkQDEJyRzKTgGPw8XWzchxX/tVy55HDD/SRjuJxmw1/nO7QeP06lpXZRSVC1bktj4+4RHxmSIa1yjMkopU3vLFCckIgqA6uVKUcA1HwBVy5Yg9E60LdNPceb0KQoXKUJA4cI4OjryfMtW7N610yJm965dtGnbHqUUlSpXIS42loiIcLvk+yg7du6kQ3tTnlWqVCE2NpbwcMs8NU3j4KFDtHj+eQA6dujA9h07Hnt7azt7+hQBhQvjH2DaH81atiJw906LmMDdO2ll3h8Vzfvjjnl/GAwGHjx4QHJyMg8S7uPl5W3T/B+6duEs3oUK4+UXgIOjIzUaPc+J/YEWMSXLV8bF1XQis0S5ikRn0qfOHz+Cd6EACvr42STv9K6cP4Ovf2F8CpnaUafx8xzdt9sipkzFKuRzM7WjdPmKREaEAaCUwjmv6XetITkZgyEZZaffWBfPnsYvoAh+/qZ+1bB5Cw4G7rKIcffwpEz5ijjos568duLIIfz8C+PjVyjLGPH/TQZqgDL5T++FpmmHNU37IKdy+i/8vT24GRqV8vhWaDT+3pZToU5evEmnptUBqFmhOEX9PAnw8SA4PJpJ8//k4toxXNv4HXfjE/jzwFmb5p+Wn3tebkemDgxuR93LcFA8Z/sFShcqwKGJXdg8si0j/jiCptk6038WFnsf3/ypufu4uRAWm/GAeunRSzQs7Y+Xa94sn2vNias8VyL3/WL39/EgKCQy5fHN0Ej8fTwI8HHnZmjq8luhURn6pC35ebgQbNGv4vH1sHy/Z287R2n/Ahye/AJbRrdn+MLDGfpVYa98VCzmyd+XI2yRdqZyol/tuHCLl37dxMfL9zC4jX0q6GF3ovEr6Jny2LegO6GRUVnGJyUbWLNrPw2erZhh3fI/99Iwk+W2EB4Who+vb8pjHx9fwsMsD5jDw8Pw9Us9UPb29SU8LPVg9MP+79GnV09WrVhum6SzEBZmmaevry9h5jwfio6Oxs3NDQcHhwwxj7O9tUWEh+Pjm+a99vEhItwyh4h0+8zbx4fwsHC8fXzo3utVunVsS9e2Lcnn6katus/ZLPe0ou+E4+Htk/LY3cub6DtZD3r3bVlHxZp1Myw/vPtPajR63io5Po6oiHA807TD09uHqEe0Y9emtVSplfqeGw0GhrzzGu93a0vFZ2tTqrx9Pud3IsLx8kntMwW9fbnzL05C7Nm+hUbNW+VkarmaXqfs/u9J8387UDNXw84qpX4EjgJDlFKHlFInlFIj/sXzNVFKrctk+VtKqY1KqbxKqV5KqYNKqWNKqRlKKX0m8f2UUoeVUocN4WfSr37MXDIu09IdYX4/ZzMe+V04sOBr3nu5CccuBJFsMODu5kKHRlUo12kwJdp8jotzHnq0qf2v8sgRj9GWxhULcTooilofr6TN8I2MfKVmSoUtd8k4elTpdlZ47H22nQ+iW43SWT7L4ethrDlxlQFNKud4hv9VVn0vs7OeWibvh61kmme6x40r+XPmRhQ1By6n9dD1jOxVG1dzhQ3AxcmBGQMaM2LhIeISkqyb8CP9937V9JkAlr7ZmnFd6jMj0D5TiTLrD+nbkdaoGQupWaEMNSuUsVh+4OR5Vvy5l09e7ZrjOT6OzHp1hmZkcibpYVtn/PY7cxb8wcSp01m+dDF/H7X9FOcUj8gzNeQRMY+xvbVlll/6L5as9lns3bsE7trJolXrWLFhMwn377Nl43qr5PnPHv+9vHDiKPu2rKdTn3ctlicnJXHy4F6ebWC/aXbZ+ZyfPXaE3ZvW8vKb/VOW6fR6Rv08l0kLV3Pl/BluXr2c6bZWlwN9OykpiYN7d1O/afOcyko8hXLj0awtlQVeB1Zh+kvjtTH9Bl+jlGqkadruR2z7j8x/obwl0BkoCbwM1Nc0Lck8QHwFmJt2G03TZgIzAZxrvfOvjmRvhUVR2De1WhHg687tiGiLmNj4BPqNTH3p86u/4VrwHVrUrcC14DtERJtmfK7e8Td1q5Tij40H/00q/1lI1H0KeeZLeVzIw4XQaMtqwUsNSvKj+QYj18PiCIqIo1ShAhy/esemuWZm6dFLrDphmrdewc+T0Lup0xXDYu/h7epsEX8+LJqg6DhemLkRgIQkA11nbmBFv7YAXAyL5pvNh5n8YkPc89rngvZHuRUaRRG/1KpIYV9PbodHk8fRgcK+qcsDfD3sOqX2duQ9/C36VT7CotL1q4al+Ml8g5HrYbEEhcdRqlB+jl+9g4NeMWNAY1b+dZVNR4JsmjvkfL966Nki3oyIjiP63gPcXazfvxZu2MHSrabpW5VLFyfkTmrVNfROND4e7plu98PitUTejWXqu+9YLD9/7SZDf5jLjCEf4J7f1Wp5P4qPjw9hoaEpj8PCQvHytpwu5+3jS2hISMrj8NDUGG9ztcHT05PGTZpx5vRpqj9bwwaZmyxatIgVK1YAULFiRYs8Q0ND8U7XFg8PD2JjY0lOTsbBwcEixsfX9x+3tzZvHx/CQtO812FhmewPy332MObwwQMU8g/A3cP0fdqwaTNOnThByzbtbJN8Gu4FfYhKUwmMjgingGfGm/7cunqJBVO/5b0R43HNb3nt7Okj+ylS6hnye3hm2M5WPL18iEzTjsjwMNwzaceNK5f4bdJYPv1mYoZ2AORzdaNclWc5cXg/hUuUsmrOmSno7UNEWGqfuRMeiqdX9m7CdHT/PkqVKYe7Z8GcTi/XehIrWvb2f1tRM7uuadp+TIOplsDfmKpr5YAyj9rwMbwKtAFe0DTtAdAcqAEcUkodMz8u+R9fI1OHz1yndFEfivsXxNFBz0starFu9wmLmAKueXF0MBX0+nZuQODfF4mNTyAoJJLalUuQ18lUOWhaqxznrt62RpqP5fjVO5TwdaOIVz4c9To61CnG1mO3LGJuRd6jfgXT1Bav/M6U9MvPjfAsLy20qZeeLc2CPi1Z0KcljcsEsOH0dTRN42TwHVydHDNMQ2tQqhCb+ndk9TvtWP1OO5wd9SkH0yF37/H5qn2MaFebYubrCXObdbuO8Ur7egDUrlySmLh7hETEcPj0VUoX9aW4vxeODnq6tarDup3H7JZnar9yTe1Xf1sOuILvxFv0q1KFUvvV932f49LtGH7dbJ9pwTnZr4Ki4lKqDudCokg2GCmQN49N2tGzbVNWThrCyklDaF6nGqt37EfTNI6fv4KbS168PTMeoC3bGsjev88w/uM30elSv8KCwyP54Luf+XZgX4oH+GbYzlbKV6hIUNANgm/dIikpiT+3bKZhoyYWMQ0bN2bjhnVomsapkyfI5+qKl5c39+/fJz7eNCX3/v37HDjwFyVL2fYgtHv37ixZsoQlS5bQtGlT1q4z5XnixAlcXV0zDLSUUtSqWZOtf/4JwJq1a2napAkATRo3/sftra1chYrcDAritnl/bN+ymfoNG1vE1G/YmM3m/XHavD8Kennj6+fHmVMnSUi4j6ZpHD10kGLFS9g0/4eKPVOOsOAgIkKCSU5K4sjuP6lcp75FTGRYCDPHfE3vT4bgG5DxjqlHdv1JTTtOewQoUbY8obeCCL9taseBXX9S/bmGFjF3wkKYNvIL3v5sKH6FU9txNzqK+LhYABIfJHDm70P4Fylm0/wfKlOuArdv3iA02NSv9mzbSu362btBy+5tm2n4fEsrZSieFv/vFbWHF6koYKymaTNy8LlPAdWAwsBV82vM0TTtyxx8jUwZDEYGjlvM2qkfoNfrmLNmH2ev3ObNrqZfhr+u2EO5En78Nvx1DEYjZ6/e5p1RplvhHjp9jZXbjrJ//tckGwwcPx/EbysDH/Vy1m2LUWPo/MPM/bgpep1iSeAVLgbH8EoT0xSuBTsvMXXtKSb0rcvmkW1RwLdLjxEV9wCAqW/X47myvni4OrF/fGcmrT7B4j1XHvGK1lO/pB/7rtym6y8bcXbQMyTNtUADl+3h61Y18XbL+rq0X/eeIeZ+Yspd/fRKx9zetv3SnTf2bRrVKIuXuytXNo1n5M+rUwb8vyzbycbAE7RuUIWza77lfkIibw6fBZj75HfzWf/jx+h0OuasDuTMlWCb5p6WwagxZP5B5n3aHL1OsXjPJS4Ex9Crqen8zPwdF5m65iQT3qzHllGmmwyMXXKUqLgH1CrjzQv1S3E2KIqNI01n1sct+5sdJ+zTnv/ar7ZfuMmGU9dx0CucHPR80/E5m09PA2hUoxK7j5yk9buDcXbKwzfv905Z9/aoaYzq/yo+nu6M+HkB/t6e9PjiOwBa1K3Oey+356cl64iJjWfkDNOdEh30OpaO/9rm7XBwcOCTQZ8z8P33MBqMtO/YiZKlSrFi2VIAur74EvXqN2Df3kBe6twRJ2dnBg8bDkDknTt8MehjwHQTi5at2vBcvfpZvZTVNWzYkMDAQNp36ICzszMjR6ReFdC/f3+GDRuGj48PAwcO5LPPP+eHH36gXNmydOnS5R+3txUHBwcGDvqcTz/oj9FopG2HjpQoVYrVy5cB0OmFF6lbvwH79wXSs2snnJyd+WLIcAAqVKpM4+bNeevVV9Dr9ZQuW5YOXewzpVavd6DbOx/zw9CPMRqNPNeiHf7FSrJnwyoAGrbtzMZFs4m/G8OiHyeYt9Hz+eTfAEhMSODcsUP0GDDILvk/pNc78OqAT/j+q4EYjUYatWpP4eIl2b7OVMVt1r4rq+bPIu7uXeZOGw+YpjuO+OF3oiPv8Mv3IzEajWhGjdqNm1GtbgP7tMPBgX4DP2P4px9gNBpo3rYjRUuUYuNq03WlbTq9QNSdCD7p15t78fHodIq1yxYxfe5iXPK58iAhgeOHD/Lep1/9wyuJ/3cq8/nbTz+lVHFgnaZplZRSLYFRQHNN0+KUUgFAkqZpYUqpOE3TMp1Dk+45mgCfaprWXik1HIgD9gM/Aa0Ad2A1pqmPYUopT8BN07TrWeX4b6c+5ja+le1zG+CcdqL+v7tmMLfxnm6/AVJO8qv6dNzO+GTD8/ZOIUe4PmffM/U5KaaIHa/LzUEuDk/HNKPoRKO9U8gRp8Jsf6dea3DNk+Hy+ieSe668lv3fKeeb/4n4sA/bfM7ux7UjWpV7It6rh56eXvofaJq2RSlVHvjLfCY5DugF/KfbU2maFmi+Tf96oAUwGNhivsNkEtAfyHKgJoQQQgghhPj/9H87UNM07RpQKc3jKcCUTOKyvCI97XNomrYT2Gn+eXiamM3Aw7+Qudj8TwghhBBCiP8bcjOR7Pt/v5mIEEIIIYQQQuQ6/7cVtexQSlUG5qVb/EDTtDr2yEcIIYQQQgjxdJOB2mPQNO0kpjs4CiGEEEIIIbJJpj5mn0x9FEIIIYQQQohcRipqQgghhBBCCKuSilr2SUVNCCGEEEIIIXIZGagJIYQQQgghRC4jUx+FEEIIIYQQViVTH7NPKmpCCCGEEEIIkctIRU0IIYQQQghhVVJRyz6pqAkhhBBCCCFELiMDNSGEEEIIIYTIZWTqoxBCCCGEEMKqZOpj9klFTQghhBBCCCFyGRmoCSGEEEIIIUQuI1MfhRBCCCGEEFYlUx+zTypqQgghhBBCCJHLSEVNCCGEEEIIYVV6JRW17JKBWi7mV7WpvVPIEbf//tPeKeSI5Gfd7Z1Cjnha+lXI8R32TiFHJNcsaO8UcoRycLR3Cjkmn5Zg7xRyhHqQbO8UcsS95Lz2TiFHFM7vZO8UcoTBaO8McoYMGsSTQKY+CiGEEEIIIUQuIxU1IYQQQgghhFXppIqZbVJRE0IIIYQQQohcRipqQgghhBBCCKvSS0Et26SiJoQQQgghhBC5jAzUhBBCCCGEECKXkamPQgghhBBCCKvS6WTuY3ZJRU0IIYQQQgghchmpqAkhhBBCCCGsSv7IePZJRU0IIYQQQgghchkZqAkhhBBCCCFELiNTH4UQQgghhBBWpZOpj9kmFTUhhBBCCCGEyGWkoiaEEEIIIYSwKr0U1LJNKmpCCCGEEEIIkcvIQE0IIYQQQgghchmZ+iiEEEIIIYSwKp1O5j5ml1TUhBBCCCGEECKXkYqaEEIIIYQQwqrk9vzZJxU1IYQQQgghhMhlpKL2lGpc0Y+hPaqj1ykW77nCTxvPWax3y+vIpDfrEOCZD71O8cuW8yzdexWAcX1q0ayKP3diH9Bq2CZ7pG+h5XMVmfBpd/R6HbNW7WH8bMuc3N1cmDmsDyULe5PwIIl+I2dz5nIwAAN6NKdv54YopZi1cjfT/thmjyakcGnYiTzFyqElJxG3bTGG8FtZxzbqhHO5WkTOHAyAQ0BJ3Nr2wXg3CoDEKye5f+hPm+SdVuPK/gzvWRO9TrFo9yV+XH/aYr1bXkemvN0Af08XHPQ6Zmw8w9LAyxTydGHSW/XxLpAXTdNYuPMis7aey+JVrG/msNdp26gq4ZF3qf7S0ExjJn7Wk9b1K3M/IZE3hv3GsXM3AGhZrxITB/VEp1P8vmoP3/++wZapZ/A09CtN0xgzcyG7j5zE2SkPYz58g4qli2WIGzR+JqcuXcVB70CVZ0owvP9rODo4cCXoNl9NmcWZy9cZ+GpX+nZtbfM2PKRpGt9NmMSevftwdnZm1LAhVChXNkPczVvBfPb1EO7evUv5smUZM3IYjo6OKetPnT5Dr75vMW7MKFo2b2bLJgCmdnw7cQp79u3H2dmJ0UO+yrwdwcF8Nng4MTGxlC/3DGOHD05px6Ejf/PdpKkkJyfj7l6A2T9Pt3UzOLx/Hz9PHo/RaKR1h850e7WPxfqg69eY+M0ILl04R+9+7/Fiz1ct1hsMBj5441W8vH0Y8f1k2yWeztED+/hl6gSMRiMt2nXixV59LNbfvH6Nqd+O5PKFc/R681269DC14+aNa4wf/lVKXEhwMD379qNjt562TD/F0QP7mDV9AkaDkefbdaLrK30s1t+8fo3p343kysVz9HzjXTp3T90fa5cu5M/1qwBFsZKlGfD5UPI4Odk0/4eOHNjHzCmmftWyfWdeSrc/gq5fY/LYEVy+cI7X3nqPrj1S29H3pQ7kdXFBp9Oj1+uZ/Os8G2cvnhRSUXsK6ZRi5Cs16DN5Ny2GbKJj7WKULpTfIubVpqW5FHyXNiM20/37HXzdrSqOelN3WLb3Gr0n77ZH6hnodIopX/Sk4wdTqPriUF5uVZtyJQpZxHzety3HzwdRs/sI3hg2i4mfdgegQil/+nZuSP3eY6jZYwRtG1ahdBEfezQDAMdi5dC7exE9/zvidywjX+OuWcbqfQqjy5M3w/Lk21eJWTyJmMWT7HIwrVOK0a/WpvfE7TT/ai0d6xSnjH8Bi5jXmpfl4q1oWg9dT7dvtzCkew0c9ToMBo3Ri47Q/Ks1dBq1kdeal82wrS3NXbuX9v0nZrm+dYPKlC7qS4VOX/Lu6DlM/+o14GGf7EWHAZOo+sJgXm5dh/Il/W2VdgZPQ78C2H3kJNeDQ9k0Yywj+vdm5E9zM41r36QuG34aw5rpI0lITGTZlj0AFHDLx9f9etK3Sytbpp2pwH1/cf1GEOtWLGXoV18w+ttxmcZNnv4Dr/bszroVS8mf340Vq9emrDMYDEya/iP16taxVdoZ7Nm3n+tBN1m/7A+GffEZo8dNyDRu0vSfebV7N9Yv/4P8bm6sWLMOgLuxsYweN4Fp479l1aJ5TBgzypbpA6b38YcJ3zFqwlRmLFjKzj83c/3qFYsYt/z5eeejT3mhR69Mn2P10j8oWryELdLNksFgYMakcQz7fgrT5y5hz7Yt3Lhm2Q7X/Pl564NP6Nzdsh2FixZn8qyFTJ61kAm/zMPJ2Ym6jZraMv0UBoOBX6aMY/B3U5gyZwl7tm8hKJN2vPHBJ3R62bIdd8LDWL98MeNmzGXK7MUYjUYCt2+xZfopDAYDP038jhHjp/LjvKXs+nMzNzLpV29/+Cldu2fer8ZMmcG03xf+Xw3S9Mr+/540dhmoKaXi7PG6uYVSqo9SymqnFauV8OR6WCxBEfEkGYysPXiDltUCLIM0yOdsOuPp4uxAdHwiyUYjAAcvhhMT/8Ba6WVLrYoluBwUztVbESQlG1iy5RAdmlSziClfshA7Dp0F4Py1EIr5F8TH041yJQpx4NQV7ickYjAY2X30Ap2aVrdDK0zylKjIg3NHAEgOvYHOyRnl4pYxUCny1WtH/L71Ns7wn1UrWZBrobHcCI8z9a0D12lZvYhlUJq+lc/Jkej4ByQbjYTF3OfU9UgA4hOSuRQcg5+Hi62bkCLw6AWiYuKzXN+hcXUWrNsHwMGTV3B3c8HPqwC1KpXkclAYV2+Fm/rk5gMZ+qQtPQ39CmD7/r/p1KweSimqlSvF3fh7hEVGZ4hrXLMKSimUUlQuU5LQCFOfKuien8rPlMDBQW/jzDPasWs3Hdq1QSlF1cqViI2NIzwiwiJG0zQOHjpCi2amA+aO7dqyY1fqCbKFi5fSomkTPD08bJm6hR27A+nYprW5HRWzbsfho7Ro1gSAju1as32XafC8YfOfNG/amEJ+vgAU9LR9Wy6cPY1/4SIUCiiMo6MjjZu3ZP+eXRYx7h6elC1fEQeHjJOMwsNCObhvL606dLZRxpm7ePY0fgFF8PM3taNh8xYcDMzYjjLlK+Kgz3qy1Ikjh/DzL4yPX6EsY6zp0rnTFErTjgbNWnBwbybtKFcRfSbtMBiSSXzwAENyMg8SEvD08rZV6hYunLVsR6PmLdmfyf54pnxF9Jn0KyEel9UGasrkPz2/Usr+37hPIF+PvARH3U95fDvqHr4elmfR52y/SOlCbhwc35HNw1sx4o+/0TRbZ/rP/H3cCQqNTHl8KzSKAG93i5gTF27SuemzANSsWJyifgUJ8PHgzKVbNKz+DJ4F8pHXOQ+t61emsK+nLdO3oHPNjzEuOuWxMS4GnWvGipJz5fokXj2Ddi82wzoHv2IU6P4Rbh3eQO/pa810M+Xn4UJwZOrg5nZUfIa+NXvbOUr7F+Dw5BfYMro9wxceztC3Cnvlo2IxT/6+bHnQl5v4+3gQFJLa926GRuLv40GAjzs30/VJf2/7HUw/Df0KIPROFH5eqZ9Pv4KehN2JyjI+KTmZNTv20aBGZVukly1h4eH4+aa+j74+3oSFhVvERMfE4ObmmjI48PXxIdQcExoWxvadu3jphS62SzoTpnakzkLw9fEmLNzyM5u+HX5pYq7fCOLu3Vhef/d9ur32Bms22H4qfUR4GN4+qfvCy8eHO+Fhj739jCkTeOO9D+x+E4Q7EeF4pWlHQW9f7oSHP2KLzO3ZvoVGze1Xdb4THk5Bb8t2RD5mOwp6+9Dp5V683a0Db7zQBhfXfFSrVddaqT7SnfT9ytuHOxGP36+UUgz9uD8fvtGLTWtWWCNF8ZTI0YGaUqq4UuqsUupH4CgwRCl1SCl1Qik14jGfo4lSaodSaiFwUimlV0p9n+Z53k4T+5lS6qRS6rhS6lvzsmpKqf3m2JVKKQ/z8p1KqUlKqd3mHGsppVYopS4qpUanyf+cUupXpdQppdQCpdTzSqm95rja5rh8SqlZ5pz+Vkp1Mi/vY37OTeb4cWlyfV0pdUEptQuonzPveBbvYSbL0h8oN6rkx5mgaGp/uoa2I7cwsuezuDrnvrM+KpMvx/Rt+X72Rtzzu3Bw4VDee7kZx84HkWwwcu5aCOPnbGLDjx+xdtqHnLxwk2SDwUaZZyaTPZOuMSpffvKUrkLCib0ZQg1ht4iaM4aYRZNIOLEXt7a9rZVoljI7Vkk/vm9cyZ8zN6KoOXA5rYeuZ2Sv2rg6p1534+LkwIwBjRmx8BBxCUnWTfg/yLStmobKZD9qGd4FW3ry+xVk7EeQ+ef/oZE/zadmpWeoWfEZ6yX1L2V20it9W7RMgh6GjJs4mYHv90evt++5ysxyTN/fMo0xNyTZYODsufP8MHEcM6ZOYMZvc7h244YVMn2EzDvWY216YO8ec3WnfM7m9G9k2l+yN3hMSkri4N7d1G/aPKey+hey7i//JC72Lgf37uanRav5dflGHtxPYNcW+14fnFZm3w1ZGffjb0yZtYAR46eybsVSTh07asXMcg+dUnb/96SxxpF5WeB1YBXwIlAb02/2NUqpRpqmPc7FT7WBSpqmXVVK9QNiNE2rpZRyAvYqpbYA5YDOQB1N0+4ppR6eip0LvK9p2i6l1EhgGDDQvC5R07RGSqkPgdVADSASuKyUmmSOKQ28BPQDDgE9gQZAR+Ar82t+DWzXNK2vUsodOKiUenhhRzWgOvAAOK+UmgYkAyPMrxcD7AD+zqzh5vb2A/Cs/yZu5Z5/jLfLUkjUffzTVDkKebgQFn3fIual+iX4aaNpuuD1sDiCIuIpVSg/x69GkpvcCo2iSJoqWICvB8ER0RYxsfEJ9BsxO+Xx+bVjuRZsOqM7e3Ugs1cHAjCyfxduhWV9ht4anCrXw7mC6RqT5LAgdK7uKet0rgUwxt+1iHfw8kdfwAv3Vz83LXB0xL3X50TP/w4tKXU6atL1c9C4C8rZBS3hntXb8dDtyHv4e+ZLeVzIIx9hUen6VsNS/GS+wcj1sFiCwuPMfesODnrFjAGNWfnXVTYdCbJZ3v/GrdAoivil9r3Cvp7cDo8mj6ODRWU2wNeD2+HRNs3taelXC9ZvY9lm01dCpTIlCIlI/f0TcicSb0/3TLf74Y/VRMXEMqJ/f6vn+LgWLVnG8lVrAKhYoTwhoaEp60LDwvH29rKI93B3JzY2juTkZBwcHAgNC8PH2zSN6/TZc3z+9RAAoqJj2LPvLxz0epo1aWz1dvyxdAXLzdfKVapQjpDQ1CpBaFg4Pt4FH9mOkLBwfLxMMb4+3ni4F8Alb15c8ualRvWqnL94meJFi1q9HQ95+fgQHpa6LyLCwij4mNPlzpw4zv7A3Rz6ay9JiYnci49j3IghfDbM9tfaFfT2ISJNO+6Eh+Lp5fWILTI6un8fpcqUw92z4D8HW0lBbx/uhP+7dpw4chDfQv4UcDfNYKjTqCnnTp+gccu2Vsn1UQp6p+tX4WHZmob5sA+6e3jyXKMmXDh7mkrVns3xPMWTzxpTH69rmrYfaGn+9zem6lo5oMxjPsdBTdOumn9uCbymlDoGHAAKmp/neeB3TdPuAWiaFqmUKgC4a5r2cKLwHKBRmuddY/7/JHBa07TbmqY9AK4ADy+0uapp2klN04zAaWCbZjpleBIonianL8w57QScgYffPNs0TYvRNC0BOAMUA+oAOzVNC9c0LRFYnFXDNU2bqWlaTU3Tav6bQRrA8WuRFPd1o7BXPhz1OjrULsrW45Z3gQuOvEf98qayvVd+J0r6uXEjPPddOnj4zDVKF/GhuL8Xjg56urWsxbpdxy1iCrjmxdF8XUrfLg0JPHqR2PgEALw9TNfqFPHzpHOz6izedNCm+T84uS/lJg2JV07hVK4GAA6+RdESEzJMQ0u6fo6o30cSPXcs0XPHQlIS0fO/A7C47sjBpwgoZdNBGsDxq3co4etGES9XU9+qU4ytf1sOuILvxFO/gh8AXvmdKVUof0rf+r7vc1y6HcOvm8/aNO9/Y92uY7zSvh4AtSuXJCbuHiERMRw+fZXSRX1T+2SrOqzbecymuT0t/eqVds1ZOXUEK6eOoHnd6qzevg9N0zh27jJuLi74ZDJQW7p5N4FHTzF+0NvodLnnfljdu73I0oVzWbpwLs2aNGLt+o1omsbxk6dwc82Hd7qDUaUUtWo+y9btOwBYs34DTRo1BGDT6hVsWrOSTWtW0qJZU77+/FObDNIAerzUlWXzf2fZ/N9p1qghazZuMrfjNK6urpm3o0Z1tm7faW7HJpqa29GsUQOOHjtOcnIy9xMSOHn6DCWLZ7yTpzU9U64CwTeDCAm+RVJSEru2baFug0b/vCHw+rsDmL9qA3OWr+WLEd9QtUYtuwzSAMqUq8DtmzcINbdjz7at1K7/eO14aPe2zTR8vqWVMnw8pcua23Hb1I7A7VupVe/x2uHl48eFMyd5kJCApmmcPHqIwsXsc5OX9P1q97Yt1HnMfpVw/z737sWn/Pz3oQMUK1nKmunmGnqdsvu/J401KmoPL2BRwFhN02b8h+d4+Dzva5q2OW2AUqo1mU9qeJSHp46NaX5++NghXUz6uLQxCnhB07Tz6XKqk257Q5ptbDY3ymDUGLrwKHMHNkavUyzZe4WLwXd5pbHpF8GCXZeZuvY04/vWYdPwViil+Hb5CaLiEgGY+lZd6pb1wcPVib/GdWDSmlMsCbz6qJe0XlsMRgaOW8i66QPR6xWzV+/l7JVg3nrBdNDyy/JdlCtRiFkj+2IwGjl75TZvj5yTsv2i79+lYIF8JCUb+PDbhUTH2nZgk1bS9XPkKVYe91e/QEtOJG7bkpR1bu37ErdjGVq6SkhaTqUq41TpOdCMptuwb15gi7QtGIwaQ+YfZN6nzc1/+uESF4Jj6NXUdA5m/o6LTF1zkglv1mPLqPYopRi75ChRcQ+oVcabF+qX4mxQFBtHtgNg3LK/2XEi2ObtAJg39m0a1SiLl7srVzaNZ+TPq1MG/L8s28nGwBO0blCFs2u+5X5CIm8On2V6DwxGBn43n/U/foxOp2PO6kDOXLFPG+Dp6FdguknI7sMnaNXvC/Pt+fumrOs3fBKj3++DT0EPRvw4F3+fgvQY9A0Azz9Xg/49OhIeFcNLH40k7t59dDrF3DVbWffjaFxdMt7l0toa1q/Hnr37aNflJZydnRg1dHDKuvc+/Jjhg7/Ex9ubjwb057OvhzD9pxmUK/sMXTt1sHmuj9Kw/nPs3refti90x9nZmdFDvkxZ9+7AQYz4+nN8vL34aMC7fDZ4ONNm/Eq5Z8rQtaPp812yRHHq163DC6/0QafT0bVje8qUKmnTNugdHHj3o0EM/vh9DAYDLdt3pFjJUqxfuQyAdl1eJPJOBB+88Rr34uPR6RSrlvzBjAVLyJfP1aa5PorewYF+Az9j+KcfYDQaaN62I0VLlGLj6uUAtOn0AlF3IvikX++Udqxdtojpcxfjks+VBwkJHD98kPc+/eofXsn67Xjzw88YOcjcjjamdmw2t6OVuR2D3u7N/XvxKKVYt2wRU+cs5pkKlXiucXM+fasXOr2ekmXK0rK9fa7j1Ds48M5Hgxj6yfsYjQZatOtIsRKl2LDK1K/adn6RqDsRDHwrtV+tXvoHP81bwt2YaEZ/NQgAo8FA4xatqFGnnl3aIXI/lfkc9H/5ZEoVB9ZpmlZJKdUSGAU01zQtTikVACRpmhamlIrTNC3T34BKqSbAp5qmtTc/7ge0BV7SNC1JKfUMcAtoCAwFnn849dFcVTsODNA0bY9SajhQQNO0j5RSO83PeziT19gJfApEPMzfvHy2+fGydG0bA+THNIDUlFLVNU37WynVB6ipadoA8/brgPHAeWA/8CxwF9gOHH8Yl5Xiby7Ohbf3yL7bf9vndt85Lfh1d3unkCOqH65i7xRyRMjxHfZOIUfcfsN+05BykkfLzvZOIcck+eWCa5JygDIm2zuFHHEz2faDbWtINDwVX+kYjPbOIGfkeRLv1Z6FMj5uT0Rj1pwJsfuHoGMFvyfivXrIaneP0DRti1KqPPCX+YLXOKAX8Pi3xTH5FdOUw6PK9EThQGdN0zYppaoBh5VSicAGTNeQ9QZ+Vkq5YJrS+HoONCe9UcBk4IQ5p2tA+6yCNU27bR40/gXcxjQVVO5oKYQQQggh/i88iTfzsLccraiJnCUVtdxFKmq5i1TUchepqOU+UlHLXaSilrtIRc321p0NtfuHoH153yfivXoo992PXQghhBBCCPFUeYrGxjZjt4GaUqoyMC/d4geaptWxRz5CCCGEEEIIkVvYbaCmadpJTH9zTAghhBBCCCFEGjL1UQghhBBCCGFVcjOR7Ms9fy1UCCGEEEIIIQQgFTUhhBBCCCGElel1UlHLLqmoCSGEEEIIIUQuIwM1IYQQQgghhMhlZOqjEEIIIYQQwqpk5mP2SUVNCCGEEEII8X9PKdVaKXVeKXVJKfVFJutfUUqdMP/bp5SqmmbdNaXUSaXUMaXU4ZzIRypqQgghhBBCCKvS5/Lb8yul9MAPQAvgJnBIKbVG07QzacKuAo01TYtS/2PvvuObqt4Hjn9OktJCW7oHZZc9ykb2EmUP0S8OFCcORHEiLmQqqIgoThRRVBxsZAgos+whUED2Ht2DFlpom/P7I6FtaIqtNknp73m/Xn01ufc56XOS0ybnPufeKtUTmA60yrO/i9Y6vrhykoqaEEIIIYQQ4v+7W4CjWuvjWuurwM9A/7wBWutNWusk690tQCVHJiQTNSGEEEIIIUSpp5R6Qim1I8/XE3l2VwTO5Ll/1rqtII8By/Pc18BKpdTO6x73X5Olj0IIIYQQQgiHMpSApY9a6+lYlivaYy9BbTdQqS5YJmrt82xup7U+r5QKBlYppQ5qrdf/l3yloiaEEEIIIYT4/+4sUDnP/UrA+euDlFKNgK+B/lrrhGvbtdbnrd9jgQVYllL+JzJRE0IIIYQQQvx/tx2opZSqrpQqA9wLLM4boJSqAswHBmutD+fZ7qmU8r52G+gG7PuvCcnSRyGEEEIIIYRDGUt4eUhrnaWUegZYARiBb7TW+5VST1n3fwG8BQQAnynLUs4srXULIARYYN1mAmZrrX//rznJRE0IIYQQQgjx/57Wehmw7LptX+S5PQQYYqfdcaDx9dv/K5molWB72+13dQrFIrt5gKtTKBYh02NdnUKxiHvmkKtTKBZZLUrHuKowI+Gfg24ClwaGuTqFYmO8eMHVKRQPVcIPXxdSxSO7XJ1C8WjZz9UZFAtj8llXp1A8ok+5OoPiE9zD1RkUSkm4mMjNpnT8FRdCCCGEEEKIUkQmakIIIYQQQghRwsjSRyGEEEIIIYRDGWXpY5FJRU0IIYQQQgghShipqAkhhBBCCCEcSi4mUnRSURNCCCGEEEKIEkYmakIIIYQQQghRwsjSRyGEEEIIIYRDGaU8VGTylAkhhBBCCCFECSMVNSGEEEIIIYRDycVEik4qakIIIYQQQghRwshETQghhBBCCCFKGFn6KIQQQgghhHAoWflYdFJRE0IIIYQQQogSRipqQgghhBBCCIcyICW1opKKmhBCCCGEEEKUMDJRE0IIIYQQQogSRpY+CiGEEEIIIRxKLiZSdFJRE0IIIYQQQogSRipqQgghhBBCCIcySEWtyGSiVkpprfngj7/YeOwCHm5GRve+hbqh/gXGv79yJ79FnWT9S3cBsHz/SWZtOQhA2TImXu3WnNohfk7J/Xpaa6as28vmEzG4uxkZ1a05dYN9C4yfvGYPSw+cYs2wfjbbD0QnMeSXtUzodQu31qro4Kzz69a2IVNGDMJgUMxcuIH3Zy6z2e/rXY6vxjxKeKUgMq5m8sSYmew/dg6AZ+67jcfu7IhSihnz1zNt9iqn53+N1poP/tzNpuMX8HAz8VbPltQNLXhsvP/HXyyJOsG6F+4EYN2Rc3wZuR+lwKgMvNi1CU0qBTorfRvlOvSnTNW66KxM0v78hey4cwXHduyPR92WJE5/EwBTxXC8ez2M+WISAFePR5G+/Q+n5J3X9NGP0KtjY+ISL9J04Ft2Y6a8Moge7SJIz7jKY6NnsPvgaeCfx6Qzaa2Z+PHnbNiyHQ93d95+7SXq16mVL272vMV8P3cBZ85dYMPiX/Dz9QHg+KkzjJr0AQcOH2P4kId45L7/ObsLObTWTPx0Buu37qKsuztvv/IM9WvXyBf348JlfD9vCWfORxM5/1v8fMrb7I86eIRBz77G5DdfpHunts5KP4fWmomffM36rTsp6+HO268Mt9+PBUv5ft5vln4smJXTj9UbtzJt5myUUpiMRkYOe4zmEfWd3Q201rz7ywo27DuCRxk3xj/cn/pVKuSLGz1rMftPXUBrTdWQACY81J9yHmUK3d4p/Xh/MhsiN+Lh4cH4sWOoX69uvriz587xymuvczHlIvXq1uWdCeNwc3Nj6bLlfPPtdwCUK1eON19/lTq1azu7G/95XF0TdfAIg54ZyeRRL7vk9wOsffluPuv/OkBZdzfeHno/9atXzhf3yrRZ7D9+BpPRQETNqowecg9uJiPb9h/h2clfUzE4AIDbbmnE03f1cHY3RAkmSx9LqU3HL3A6KZX5T/bi9R4tmLRiZ4GxBy4kknol02ZbmI8XX95/Kz891oPH2jbgnd93ODrlAm0+GcOZpEvMefh2XuvalPf+3F1g7N8xSaRd1xeAbLPm08h9tKoa4sBMC2YwKD569QH6PvMhje96k3t6tKJeeJhNzMjHerPn0Gma3zOaR0d9zQcj7gOgQY2KPHZnR9oOnkDze0bTq2NjalYJdkU3ANh0PJozSWnMe7wnr3VvzrurdhUYe+BCImkZV222tawawo8P386PD3djVM8WvO2iseVWtS5G30CSf3iXS2vm4tnpzgJjjcGVMJQpm2971oUTpPzyISm/fOiSSRrArN820mfYlAL392gfQc0qIdTv/xpDJ3zHJ68/CBRuTDrThi3bOX32PMtmf8OYEc8xfsonduOaRtTn6ykTCQu1/R3wKe/Nq8OH8vC9dzkj3RvasG0Xp85eYPmsTxnz4lOM+2i63bhmDeoy4/0xhIUE5duXnZ3NlK++p12LJg7OtmAbtu7k1LkLLP/+c8a8+DTjpn5hN65Zw3rMmDw2Xz9aNWvE/K+mMv+rqYwf8SyjJ3/qjLTzidx3lFOxCSwZ/wxvPdCHCT8utRs3YmB35o56knlvPUUFv/L8tHZbkdo7WuTGjZw6fYYlixbw1ptvMGHiRLtxUz+exuD7B7Fk0QLKl/dm/sJFAFSsGMbMr6cz79efeeLxxxg74W1npp/jv44rsP5+TJ/l0t8PgA27D3DqQhzLp77JmMfvZdzXc+zG9WnfnCVTXmfh+6+ScTWTeas35+xrXjec+e++wvx3X5FJmsjn//VETSmV5oDHfFgp9Yn19lNKqQeL+2cUxroj5+jdsBpKKSIqBpJ6JZP4tPR8cdlmMx+v2cPwLo1ttjeuFEh5jzIARFQMIDY1f1tnWX/sAr3qVUYpRcMK/qRdzST+Uka+uGyzZtqGfTzToWG+fXN2H6NLrYr4lXV3Rsr5tGwYzrEzsZw4F0dmVja/rthK385NbGLqhYexetvfABw6GU3VsECC/ctTt3oFtkYdJz3jKtnZZjbsPET/Ls1c0AuL9UfP06tBVcvYCgsgNeNqAWNLM23tXp7t3Mhme7kyJpT1jOL0zGyX/VeVMtUbcOWg5QBGVsxpDO4eqHLe+QOVwrNtby5tcs2Hs38SueswSSmXCtzft1NTflyyCYBtUcfx9S5HaKBPocakM62J3Ey/7l1RStG4QT1S09KIi0/IF1evdk0qVgjNtz3Az5eIenUwGY3OSPeGVm/cRr9unS19qV+H1LRLxCUk5ourVyuciqH2D7r8uHAZt3dog7+1YugKqzdto9/the1H/oNgnmXL5v6uZ2Tk3Ha2NXsO0bd1Y0s/wiuRmn6FuJTUfHFe1vcHrTUZmVko61+nwrZ3tDVr19G3Ty9LHo0iSE1NJS4u3iZGa8227du5vWtXAPr16cOaNWsBaNK4MeXLW6pSjSMiiI2JdWr+1/zXcQWWatvtHdvg7+e63w+A1Tv20a9jS0tfalUj9XI6cUkp+eI6Nm2AUsryvlmjCjGJyc5PtgRQyvVfN5tSP1FTFv+pn0qpf/XOr7X+Qms967/87H8rLjWdEO9yOfeDvcvanWz9uvMoHWuGEeiVv1pwzaI9x2kbnv+DkbPEXUon2Ds3v2CvssTZmRjM3XOMDuEVCPT0sNkem5bOumPnGRBR3eG5FqRisC9nY3LfiM7FJBEWZLtcMOrwGe7oapmAtWhQnaoVAqgY4sf+Y+fo0Kw2/j6elPUoQ4/2EVS6wTJWR4tNTSekfN6xVc7u2Jqz6ygdChhbaw6fY+DXv/PivA282bOlQ/MtiMGrPOa05Jz75rQUDF753/Q9Itpx9cQB9OX8H8xMoVXxufcFvPs+htHfNdXafxIW7MeZ6NyxdzYmkbBgv0KNSWeKiU8gNDj3yHlIUBAxdiZqN4PY+ERCg3KX84YEBRATn/+DaEFi4hL4M3Ir9/Tt5oj0Ci02PpHQ4H/fD4A/Nmyhz0PDGPr6BMaPeKa4UyyU2ORUQv1zl82F+HoTm2R/ojXq20V0GTGFk9Hx3HfrLUVu70ixsXGEhuS+F4cEhxAbZzvZSk5OwdvLG5PJcmZLSEgwMXH5J2TzFy6iXTvXLBf8r+Mq9/ejuyPSK5LYxGRCA3xz7of4+xCTmH+idk1mVja/bdhB+8b1crbtPnKSAa+8y5MTv+DomQuOTFfchErlRE0pVU0p9bdS6jNgFzBKKbVdKbVXKTW2kI/RWSm1Rik1G4iybluolNqplNqvlHoiT+wjSqnDSql1QLs828copV623m6ilNpizWGBUsqhn4i03T7Z3o9LTefPQ2e4u0X+80Cu2XEqhsV7j/PMdRU3Z9J2OnP9QZG4tHT+PHKOgU3C88VOXbeXYe0bYnThWazKTt1IX/cqvTdzGX7enmz/eQzD7u3K7kOnyc42c/DEBd7/djnLP3+ZJZ++wN7DZ8jKMjsrdTvyvyDXHynPGVvNa9p9hC61KzJnSA/eG9COLyP3OSTLf2ZnPFw32JRnecrUbETG3o35QrNjz5H03Tuk/PwhGXs34t3rIUcl+p/YO4KotS7UmHQmbecX3VUVmP/K3vNYlL5M+uwbXnx8MEYXVwftvyZFe4zbOrRmyXefMm3ca0ybObuYMiuaovRj/MP9+fO9F6heIYgV2/cXub0j2R1X1/0eF2bsbdu+gwULF/HC8GeLN8FC+q/P56RPZ/DiEw+6/PcDCvqsVXBnxn8zh+b1atC8nuWcvPrVK7PqkzEseG8k9/fowLMffO2gTMXNqjRfTKQO8AiwEPgfcAuWT2aLlVIdtdbrC/EYtwANtdYnrPcf1VonKqXKAtuVUvOAMsBYoDmQAqwB/rLzWLOAZ7XW65RS44DRwPPXB1kngE8ATH2wN490LvwSt193HmHhnuMA1K/gT0zq5Zx9sanpBF1X2TgUk8SZpDTu/MKypCsjM4sBXyxlwVO9ATgSm8yE5dv56O5O+Dp5yeDcPcdZFHUSgHqhvjYVm9i09HxVmsNxKZxNvsT/ZlouspGRmc3/Zq5k7iPd+DsmmTeXbQcgJeMKm09GY1SKTjWddz7O2dgkKoXkVsEqhvhxIS7ZJib1UgaPj/km5/7hpe9x4lwcAN8u3MC3CzcAMP6ZOzkbk+T4pPOYs+soC/dax1aoPzEX846tywR52VYxD8UmcyY5jbumLwcsr8ed05cx/4leNnHNKgcxNjmN5MtX8C3n+DHmHtEWj/qtAMiKPYPByzdnn8HLB/OlizbxpsAwjD6B+A4eadng5obvAyNJ/uFddOaVnLjMUweh0wCURzl0xmVKknMxSVTOU4GtFOLPhbhkyriZ/nFMOtpP8xczd8nvADSsW5vo2LicfTFxcQQHuK5yXFSzFy5n7jLL35+GdWoSnWdJWkxcAsEBhT82t//wMV6eYDnvMCkllQ3bdmIyGunavlXxJm3H7IXLmLt0JQAN69QiOvb6fvy716RF4waceTeapJSL+S4K4Qg/r9nOvEjL+bMNqoURnZj7ux2TnEqQr51lzlZGg4EeLerz7crN3NGuCSF+5YvUvjj9/MuvzFuwEIAGDeoTHROdm0dsDEFBtudv+fn6kpqWSlZWFiaTiZiYWIIDc2MOHz7CmPHj+Wzax/j6+jqjC0Dxjqv9h4/y8vjJgPX3Y+suTEYDXdu3Lt6kCzB7xQbmWs8xa1ijCtEJyTn7YhJTCPazP74/m7ucpItpjHnx0ZxtXuVy3zs7Nm3A+BlzSbqYhl95L8ck72IGl53scPMqzRO1U1rrLUqpyUA3cidPXkAtoDATtW15JmkAw5VSA6y3K1sfJxRYq7WOA1BK/QLYXEZJKeUD+Gqt11k3fQfYPeNUaz0dmA5wceZbRTq8fXfzWtzd3FIdizx6nl93HaFbvSrsO5+Al7tbvslN+5phrHi2f879jh/My5mkRadc4pX5GxnbpzVV/Z3zhpTX/xqH87/GlurYxhPRzNl9nNvrVGJ/dBJeZdzyLW9sVz2UZXkmAV0+XczcRyzLhhY8mrs8YtyKnbQPD3XqJA1gx/4T1KwSQrWwQM7FJnF391Y8+NqXNjE+XmW5nHGVzKxsHh3Qkchdh0m1nosX5OdNXFIqlUP9uePW5nR4yLkngQ9sVpOBzSzVschjF5iz6yjd6lVm34VE+2OrRgV+z3PVzU4fzs+ZpJ1JSqOSrydKKQ5GJ5GVbcanbBmn9ONK1CauRFnO13KrWhePRu24emQ3ppAq6KsZ+ZY3Zp46SNLMcTn3/Z+YQPIP7wKgynnnxJuCK4NSJW6SBrBk3W6G3tuVX37fyi0R4aSkXSY6PoW4pNR/HJOOdt+d/bjvTss4Wbd5Kz/N/42eXTuz98BBvDw9CQoMcGo+/8WgO3oy6I6eAKzbsoPZC5fTq0t79v59GC/PcgQV4YPoyh9zL67w+rvT6NS6uVMmaQCD7ujFoDssv6uWfiyj160drP3wLFI/Tp27QJWwUJRSHDh8jMzMLHzLO+f95N4uLbm3i2VZ9fqow/y0Zjs9WzZg74lzeJd1J8jHNg+tNWfikqgS7I/WmrV7D1Mt1DL+Ojeu/Y/tHdaPe+7m3nvutvRjQyQ//fIrPbt3Z2/UPry9vAgKsr1irlKKli1asOrPP+nZvTuLlyyhc+dOAFy4EM0LL4/gnfHjqFa1qlPyv6Y4x9XK2bkX53n93Y/o1Lql0yZpAIO6d2BQ9w4ArNu1n9krNtCrbTP2Hj2FVzkPguycNzd39WY27jnIjFHDMBhyF7PFJV8k0McbpRR7j57CrM34ens6rS+i5CvNE7VrZ9crYKLW+t98Ask5Q18p1Rm4DWijtb6slFoLXJstuG69UAHa1ajAxuMXGPDlUssl1HvdkrPvuV/X82bPlgR5F3xe2tcb95OSfoV3V1outmAyKGY97JrzJdpWC2HTiWj+9+0qPExG3uyWW2V8YeEmXr+tab5qYUmTnW3m+Xd/YOlnL2IwGPhuUSQHjp/n8f91BuCruWupGx7GN+OHYM428/fx8zwxdmZO+18mDyPA14vMrGyGT/qB5FTXTQjahYey6fgF7vxqOR4mI6PynGP2/NwNvNG9xQ3H1urDZ1m27xQmo8LdZOTtfm1cssQt89RBylSth+/gV9FZV0n789ecfd59HiVtzVz0dRW2vNxrRODesA1os+Xy/it+dEba+Xw/8Uk6Nq9DoK8Xx3+fzLgvFuFmsiwJ+mruWpZH7qVH+0b8vXgS6RlXGWKt2hY0Jl2lY+tb2LB5Oz3ve5Sy7u6Mf+3FnH1DR4xi7MjnCQ4M4Ie5C5n501ziExO585GhdGjdknEjXyA+IZF7nhhO2qXLGAyKH+YuZNGsL/HydP6Hno6tmrN+6y56Dn4aDw93JuQ5N+up1yYw7qWnCQ7054f5S/nmlwXEJyYz4PEX6HhLM8a9PMzp+RbE0o+d9HzgKUs/Xhmes++pV8cx7uVnrP1Ywjc/LyA+MYkBQ56jY6vmjHv5GVat38zilWswmYx4uLsz+a2XXfK73qFhLTZEHaX3m59YLq//UO5BpKenzWbM4L4ElvfizW8XkpZ+FY2mTqUQ3hzU+x/bO7Uf7duxIXIjvfvfYbk8/5jRuf14djhj3hpFcFAQLwx/lldee51PPv2cunXrcOcdlgOyX3z1FckpKbw90XKwyWg08vOP3zu9H/91XJUkHZvWZ/3uA/R8bjwe7mWY8NSgnH1PTfqCcU/cR7C/D+O+/pWwQD8GjZoK5F6Gf+WW3fzyx0aMBgMeZdyYPPzhm3bJd2GU4q45jLK3Vvhmp5SqBizRWjdUSnUDxgNdtdZpSqmKQKbWOlYplaa1tltftk7MXtZa97He7w8M0Vr3VUrVBXYDPYBDwBagGXARWA3s0Vo/o5QaA6RprScrpfYAz2itN1i3+2itX7hRP4paUSupsq+7PPvNKmS6a66QVdzinnHdJdiLU1b6lX8OuglUmHFzXjDjepd+H+XqFIqNyix5ldF/5b9dR6vEyD5S8L8Auam0dM0Er7gZk8+6OoXiEXvK1RkUG1PTHjfFFOhoXKrLP9fWDPK+KZ6ra0pzRQ0ArfVKpVQ9YLP1KEUa8ABQ1E/dvwNPKaX2kjs5Q2t9wTrx2gxcwHLxEntnuD4EfKGUKgccx3L+nBBCCCGEEELkUyonalrrk0DDPPc/Aj6yE1fg2Zpa67XA2jz3rwA9C4idCcy0s31Mntu7AectohZCCCGEEKKEcOHFt29apWNdhBBCCCGEEEKUIqWyolYUSqkI4Pqzaa9orZ1ziS0hhBBCCCFKOSmoFd3/+4ma1joKaOLqPIQQQgghhBDiGln6KIQQQgghhBAlzP/7ipoQQgghhBDCsQzyj9SKTCpqQgghhBBCCFHCSEVNCCGEEEII4VBSUCs6qagJIYQQQgghRAkjEzUhhBBCCCGEKGFk6aMQQgghhBDCoaQ6VHTynAkhhBBCCCFECSMVNSGEEEIIIYRDKbmaSJFJRU0IIYQQQgghShiZqAkhhBBCCCFECSNLH4UQQgghhBAOZZCVj0UmFTUhhBBCCCGEKGGkoiaEEEIIIYRwKLmWSNFJRU0IIYQQQgghShipqJVgnm1ud3UKxUIZSsfxgEt3hrk6hWJhSDjl6hSKhTK5uTqFYnFpYOkYV549xrs6hWJT5/a7XJ1Csci8kuXqFIqFm7uvq1MoFkPc4lydQrG4u0EVV6dQPKpXYfAPf7k6i2LxR1NXZyAcRSZqQgghhBDi/5XSMkm7mZSOw/bOJc+ZEEIIIYQQQpQwMlETQgghhBBCiBJGlj4KIYQQQgghHErJZR+LTCpqQgghhBBCCFHCSEVNCCGEEEII4VAGKagVmVTUhBBCCCGEEKKEkYmaEEIIIYQQQpQwsvRRCCGEEEII4VCy8rHopKImhBBCCCGEECWMVNSEEEIIIYQQDiUXEyk6qagJIYQQQgghRAkjEzUhhBBCCCGEKGFk6aMQQgghhBDCoZSStY9FJRU1IYQQQgghhChhpKImhBBCCCGEcCi5mEjRSUVNCCGEEEIIIUoYmagJIYQQQgghRAkjSx+FEEIIIYQQDiUrH4tOKmpCCCGEEEIIUcJIRa2U0lrzzlc/sX5nFGXdy/DOc49Sv0bVfHEjPviK/UdPYjIZiahVnTFPD8bNZOK3tVuYMX85AOU8PHhr6APUrV7Z2d0ArH2ZPpv1O6PwcC/DO889RoOadvoyeTr7jp7AZDTRqHZ1xgx7EDeTieNnLvD6R99w4Ngpnh98J4/e2cMFvbD0Y+LHn7Nhy3Y83N15+7WXqF+nVr642fMW8/3cBZw5d4ENi3/Bz9cHgOOnzjBq0gccOHyM4UMe4pH7/ufsLgDW12PGL6zfuc8ytp59mPo1quSLG/HhDPYfPYXJaCSiVjXGDH0AN5OR39ZtZcaCFQCU83DnrScHuWRsybgqWeNq+uhH6NWxMXGJF2k68C27MVNeGUSPdhGkZ1zlsdEz2H3wNADd2jZkyohBGAyKmQs38P7MZc5MPZ92tYMY2b8+RqWYv+0MM9Yes9n/cKdwejcNA8BoMBAe7EXHsavIyMzm26faUMZkwGhQrIq6wGerjriiCwC0rxvMG3dGYDDA3C2n+eoP21wevbUmfZtXAsBoVNQI8abtG8tJuZyJd1kTE+5tSq0K3mgNb/z0F7tPJrmiG6Xm9TgdtYPI2V9g1mbqd+hBs953242LOXGI+RNepNvQV6nRokOR2jrD1s0b+WTKZLLN2fTuN4D7H3rEZr/WmmlT3mfLpkg8PDx4ddRYatetB8Dcn2ezZNEC0Jre/Qcw8L77XdEFAFpW8eXpDuEYlGL5gRh+3nU2X0zjij4MbV8dk0GRkpHFSwuiCt22NDLI5fmL7P99RU0plWb9HqaUmnuDOF+l1NPOy+y/Wb8zilMXYvn9i3cYO+xBxn7+g924Pp1asfSzCSz6eCxXrmYyb9UGACqFBPLdO6+w8OOxPHVPH0Z/OsuZ6dtYvzOKU+dj+P3LiYwd9hDjPrefS5/OrVn2+Tss/mQcGVevMnelpS8+3p688cQgHh3Q3Zlp57Nhy3ZOnz3PstnfMGbEc4yf8onduKYR9fl6ykTCQoNttvuU9+bV4UN5+N67nJFugdbv2sep87H8/tl4xg59gLFf/mg3rk/HW1j6yVgWffSWZWz9EQlYx9aEl1g49S2eGtib0QWMTUeTcWVRUsbVrN820mfYlAL392gfQc0qIdTv/xpDJ3zHJ68/CIDBoPjo1Qfo+8yHNL7rTe7p0Yp64WHOSjsfg4I3BjTg6Rnb6P/BOno2CSM82Msm5tt1xxk4NZKBUyP5aPlBdhxP4GJ6JlezzDw2fQv/m7qBgVM30K5OEI2q+LqsH28NbMTjX26mz8TV9G5WkRoh3jYx36w+yoD31zLg/bV8+NsBth+NJ+VyJgBv3BnBhr9j6PXOau54bw3HYlJd0Y1S83qYzdms/+FTer8wnvsmfMmRrWtJPHfKbtyWOTOp3LBZkds6Q3Z2Nh+9/y7vTp3Gdz/PY/XK3zl5/LhNzNZNGzl75jQ/zl3ES6++yYfvTQTg+LGjLFm0gC9mzuLrH35m88YNnD192hXdwKDg2U41eP23/Tw2exddagdRxa+sTYxnGSPDO9XgraV/M+Snvxj/+8FCtxWuo5TqoZQ6pJQ6qpR61c5+pZT62Lp/r1KqWWHb/hv/7ydq12itz2utb3Qo2Re4aSZqq7ftpn+XNiilaFynBqmXLhOXmJwvrlOLRiilUEoRUasa0fGWI55N69XEx8sTgMZ1wolJcM2RUIDVW/6i/61tUUrRpG4NLl66TOw/9iWcmPhEAAJ8yxNRuzomk9HJmdtaE7mZft27Wl6TBvVITUsjLj4hX1y92jWpWCE03/YAP18i6tXBZHRtP1Zv20P/Lq2tYyuc1EvpxCWm5Ivr1DzC/tiqWyPP2KpOTEKyM9PPIePKoqSMq8hdh0lKuVTg/r6dmvLjkk0AbIs6jq93OUIDfWjZMJxjZ2I5cS6OzKxsfl2xlb6dmzgp6/wiKvtyOv4yZxPTycrWLN9zni4NQgqM79UkjOW7z+fcT7+aDYDJqDAZDWjt8JTtalTVj9NxlzibcJnMbM2yXefoGpF//FzTu3kllu46B4Cnu4kWNQKYu8XyITozW5OanuWUvK9XWl6P2OOH8QkOwye4AkaTGzVbdeLE7i354qL+WEx483aULe9b5LbOcPDAPipWqkRYxUq4ublx6+3d2bh+rU3MxvVr6d6zD0opGkQ0Ii01lYT4OE6fPEH9hhF4eJTFZDLRpGlzNqxb7ZJ+1Anx5nxKBhcuXiHLrFl7JI524QE2MV1rBxF5LJ7YtCsAJKdnFrqtcA2llBH4FOgJ1AfuU0rVvy6sJ1DL+vUE8HkR2haZTNSslFLVlFL7rLcbKKW2KaV2W2fLtYBJQA3rtvetcSOUUtutMWPzPM7fSqmvlFL7lVIrlVJlrfuGK6UOWON/dmR/YhOSCQ30z7kfEuh3ww/EmVlZLF67hfbNGubbN29VJB3sbHeWmIQkm76EBvgTe4OJY2ZWFovXbKJ98whnpFdoMfEJhAYH5dwPCQoixs4H6pIuNiGZ0IA8YyvAl5jEG70e2Sxet4X2zRrk2zfvj410sLPdGWRc3VzCgv04E52Yc/9sTCJhwX5UDPblbEzu9nMxSYQF+bkiRQCCfTyITknPuR+TkkFIeQ+7sR5uBtrVCWJVVHTONoOCOc+3Z91bt7PlcDxRZ5IdnbJdIT4eXEjO7Ud0cjohPgX1w0j7usGs3GOZ4FQOLEdi2lUmDmrK/BGdGH9vE8qWcc2BgNLyelxKjsfLP/f33MsvkEtJtr/naUnxnNi1iQZdehW5rbPExcYRFJI74Q8KDiYuLtY2Ji6WoJCQ62LiqB5eg71/7SIlJZmMjHS2bIokNibGabnnFehZhtjUKzn349KuEOBZxiamom9ZvNxNfDAggs/ubsLtdYIL3ba0Usr1X//gFuCo1vq41voq8DPQ/7qY/sAsbbEF8FVKVShk2yKTiZp9TwEfaa2bAC2As8CrwDGtdROt9QilVDcss+lbgCZAc6VUR2v7WsCnWusGQDJwbU3Rq0BTrXUj689wGG3nsN+NBuj4L36kRYPatGhQ22b71r0Hmf/HBl56yDXnrQDYO4CpbtCZcZ//QIuG+fviavZfk5tvvba284rcqB/jv5xNi/q1aFHf9ryprVGHmP/HRl4afGex51gYMq5uLva6pLVG2bmOmL0x6iz2nvmCsulUP4S/TiZx0XqkHcCsYeDUSG57+08aVvGlZohXAa0dzM4TXlA/ujQM4a8TiTnLHk0GA/Ur+fDTxpPc+f460q9m8fht+c+bdIbS8nrYq+Rd/xJt/OlLWg98FIPBdlJcmLbOU4i/V/byBapWD+e+Bx/m5Wef5pXnnqFGrdoYXbQSoDBPn9GgqB3sxRu/7efVxfu4v2VlKvp6yJUPS7aKwJk8989atxUmpjBti0wuJmLfZuANpVQlYL7W+oidDz7drF9/We97YZmgnQZOaK13W7fvBKpZb+8FflRKLQQW2vvBSqknsJRS+Xzsyzx+d79CJz176WrmWM8xi6hZjej43KPMMfFJBPv72m336c+LSbyYysdPD7bZfujkGd769Du+fOs5fMs7983px6V/MnfFegAa1qpu05fohESCCurLT4tISkll7LBhzkjzH/00fzFzl/wOQMO6tYmOjcvZFxMXR3CeylRJNnvZGuasspxjFlGzGtEJecZWQjLBfr522336y2+WsTXU9rjEoZNneevTWXw5arhTx5aMq5vXuZgkKofm9qtSiD8X4pIp42aiUkju9oohflyIS3ZBhhYxKRmE+uSebxLi40HsxQy7sT0b2y6zyys1I4vtxxJoVyeYozFpDsn1RmKS06ngm9uPUN+yxKbY70evZpVYmudiCNHJ6cQkZ7D3lKVCvWL3eZdN1ErL6+HlF0haYu7veVpSPOV8bZfLxZ48wqovJgGQnnaR03u3owzGQrV1lqDgYOJiciuWcbGxBAYG2YmJsY0JssT07ncHvfvdAcBXn00jKLjgZayOFHfpKsHe7jn3g7zcSbh01SYmPu0qFzOSycgyk5FlJup8CjUCPAvVVjhO3s/ZVtO11tOv7bbT5PpDBwXFFOW4UKFJRc0OrfVsoB+QDqxQSt1qJ0wBE60VtiZa65pa6xnWfVfyxGWTOyHujWX9anNgp1Iq30RZaz1da91Ca92iKJM0gEG9b2XB1NEsmDqarq2bsmjNZrTW7Dl0DG/PsnY/hM5duZ6Nu/Yz+aUnMBhyh8P5uASGT/yMSc8/RrWKBZ+X4Cj39+7Kgo/HsuDjsZa+rN6E1prdB4/hXa6c3UnnnBXridy1j8kjnrTpiyvdd2c/5n3zGfO++YxbO7Rh8Yo/La/J/r/x8vQkKPDmWJc+qFcXFnw4igUfjqJrqyYsWrPFOraO412uLEH+PvnazF0Vyca/DjD5xSHXja1Ehr/7BZOef5RqFZ37Jivj6ua1ZN1u7u/TFoBbIsJJSbtMdHwKO/afoGaVEKqFBeJmMnJ391YsWbvbZXnuO5tC1UBPKvqVxWRU9GwcxtoD+ZdneXmYaBHuz5r9ufv8PMvg7WF5W3A3GWhdK5ATcc6fFABEnU6mapAnFf3L4WZU9GpWkdX7ovPFeXmYaFkjgD/zLBeMT73CheR0qlsv2tGmdhDHol1zMZHS8noEV69NSsx5LsZFk52VydGt66jepLVNzOD3vmXw+98x+P3vqNGiPR0HDyO8WdtCtXWWOvUacPbMGS6cP0dmZiarV62gbcdONjFtO3RixfIlaK3ZH7UXTy8vAqyTuaREy8G1mOgLrF+7hq7dXHO13UMxqVT0KUuotzsmg6JzrSA2nUi0idl0IoGGFcpjUJbxUzfEm9NJ6YVqW1oprV3+lfdztvVrep4UzwJ5L0NdCbj+6E1BMYVpW2RSUbNDKRUOHNdaf2y93QjYA+S95NUKYLxS6ketdZpSqiKQaefhrj2mAaistV6jlIoEBmGpwiU7og8dm0ewfkcUPZ56HQ/3Mrz9bO7lb58cN5Xxwx4mOMCXsZ//QFhwAPeNtFxV6fbWzXj63r58/vNvpKReYpz1in4mg4E5U0Y5ItV/1KlFI9bv2Ev3J161Xkb90Zx9T4z5kAnPPkxwgB9jP5tl6cuItwG4rU1zht3Xj7ikFAa+MI60y+kYDIpZi1ex5LMJeJVz7lWWOra+hQ2bt9Pzvkcp6+7O+NdezNk3dMQoxo58nuDAAH6Yu5CZP80lPjGROx8ZSofWLRk38gXiExK554nhpF26jMGg+GHuQhbN+hIvT0/n9qN5Q9bvjKLH0DetY+uhnH1Pjp/G+GGDCfb3ZewXPxIW5M99r74LwO2tm/L0PX34/Ncl1rE1GwCT0cCcyW84tQ8g46qkjavvJz5Jx+Z1CPT14vjvkxn3xSLcrBdq+WruWpZH7qVH+0b8vXgS6RlXGTLmGwCys808/+4PLP3sRQwGA98tiuTA8f/83vivZZs17yzaxxdDbsFoUCzYfpZjMWkMbG35FxZzrBfY6NoglE2H40nPzM5pG+TtzoR7GmM0WC5es3Lvedb/HWv35zijH+Pn7WXG0DYYDIp5W05zNDqVe9pVA+CXjScBuL1RBTYeis256MY1E+bt5f3BzXEzKc7EX+b12X/hCqXl9TAYjXR4YCi/TXkTbc6mbvtu+Fesyr41SwFo2KV3kdu6gslk4rmXRzJi+DDMZjM9+/ajengNFs23XHS7/53/o3W79mzdFMn9d/XH3cODkaPG5LR/69WXuZiSgslk4vkRI/EuX94l/TBrmLb+GJP6N8Sg4PcDMZxKvEyfBpYD20v2R3M6KZ0dp5P46r5mmLVm+YEYTiZeBuy3FSXCdqCWUqo6cA64F8vn9bwWA89YrzXRCkjRWl9QSsUVom2RKXvnN/x/opRK01p7KaWqAUu01g2VUq8BD2CZeEUDg7TWiUqp2Vgmbcut56k9BwyxPlSatU32tcexPv7LWCZkbwNrAB8s1bgftNaTbpRb9sENpeLFUSWkCvFfZfu47pLfxcmQ4JrLMhc3ZXJzdQrForSMK88e412dQrGpc7tr/1VBccm84porLRY3N/fScUx5SP96rk6hWNx9g6tm3kwG/+CagweO8Mcz7W+KU98yLl9y+edaj3KeN3yulFK9gKmAEfhGa/22UuopAK31F8pyLtQnQA/gMvCI1npHQW3/a76l46/ff6C19rJ+Pwk0tN6eCEy0EzvouvsfAR/ZediGeWIm59ne/r9nLIQQQgghhChuWutlwLLrtn2R57YG7J6wbq/tf1U6Sh1CCCGEEEIIUYr8v6+oCSGEEEIIIRxLabOrU7jpSEVNCCGEEEIIIUoYqagJIYQQQgghHEsqakUmFTUhhBBCCCGEKGFkoiaEEEIIIYQQJYwsfRRCCCGEEEI41v/z/938b0hFTQghhBBCCCFKGKmoCSGEEEIIIRxLLiZSZFJRE0IIIYQQQogSRiZqQgghhBBCCFHCyNJHIYQQQgghhEMpWfpYZFJRE0IIIYQQQogSRipqQgghhBBCCMeSilqRSUVNCCGEEEIIIUoYmagJIYQQQgghRAkjSx+FEEIIIYQQjiVLH4tMKmpCCCGEEEIIUcJIRU0IIYQQQgjhWFJRKzKpqAkhhBBCCCFECSMVtRIspWJzV6dQLDx1hqtTKBbGixdcnUKxSKl8i6tTKBYyrkqWOrff5eoUis2hVfNcnUKx8K5Qw9UpFIsHHu/n6hSKxfpDca5OoVh0qubv6hSKRXB5d1enIMQ/komaEEIIIYQQwrHMsvSxqGTpoxBCCCGEEEKUMDJRE0IIIYQQQogSRpY+CiGEEEIIIRxKyVUfi0wqakIIIYQQQghRwkhFTQghhBBCCOFYUlErMqmoCSGEEEIIIUQJIxM1IYQQQgghhChhZOmjEEIIIYQQwrG0dnUGNx2pqAkhhBBCCCFECSMVNSGEEEIIIYRjycVEikwqakIIIYQQQghRwshETQghhBBCCCFKGFn6KIQQQgghhHAoJUsfi0wqakIIIYQQQghRwkhFTQghhBBCCOFYUlErMqmoCSGEEEIIIUQJIxM1IYQQQgghhChhZOmjEEIIIYQQwrFk6WORSUVNCCGEEEIIIUoYqaiVUps3bWTq5PfJNpvpd8cdPPjwozb7tdZ8OPk9Nm3ciIeHB6PGjKVO3XoADOjbi3LlPDEaDRiNRmZ+P9sVXbDJ9d0PPmTDxk14eHgwfvQo6tetky/u7LnzvPLGKC5evEi9OnV4Z9xo3Nzccvbv23+ABx59nPfeGU+3rrc6swuApR8TP53B+q27KOvuztuvPEP92jXyxf24cBnfz1vCmfPRRM7/Fj+f8jb7ow4eYdCzrzH5zRfp3qmts9LPUVrGloyrkjWu2tUOYmT/+hiVYv62M8xYe8xm/8OdwundNAwAo8FAeLAXHceuIiMzm2+fakMZkwGjQbEq6gKfrTri9PyvmT76EXp1bExc4kWaDnzLbsyUVwbRo10E6RlXeWz0DHYfPA1At7YNmTJiEAaDYubCDbw/c5kzU8/n1ubhTHyyGwaD4ocVu/lozmab/T5eHkx7vg/VKvhy5Wo2z05dwsFTcYVq60x1g724s1EYBgVbTiXxx+E4u3FVfMvyQucafLvtNHvOXwSgU40A2lTzB2DzyUTWHUtwWt7Xa1LRh0dbV8WgFH8ejmXB3gs2+xuEejPyttrEpl4BYOupJObsPgdAuTJGnm4XThW/smjg0w3HORyX5uwuALB722a+/WQKZrOZW3v1445BD9ns3/DH7yz++XsAPDzK8tgLr1CtRu1CtXWmRmHlebBlFQxKseZoHL/ti7bZXy/Em5e61CQ27SoA208nsWDv+Zz9SsHbveuTeDmTyatd9zfLqaSiVmSlsqKmlBqulPpbKfWjgx6/hVLqY+vtzkop53+quYHs7Gw+eHcSUz7+hJ/mzGPVit85cdz2Q8/mjZGcOXOaOQsW8eobb/LexHds9n/65XRmzf7F5ZM0gMhNmzl1+gxL5s/hrddfZcKk9+zGTf3kUwYPupcl8+dQvrw38xf9lrMvOzubDz/5jLatWzkr7Xw2bNvFqbMXWD7rU8a8+BTjPppuN65Zg7rMeH8MYSFB+fZlZ2cz5avvadeiiYOzta80jS0ZV7lcPa4MCt4Y0ICnZ2yj/wfr6NkkjPBgL5uYb9cdZ+DUSAZOjeSj5QfZcTyBi+mZXM0y89j0Lfxv6gYGTt1AuzpBNKri65J+AMz6bSN9hk0pcH+P9hHUrBJC/f6vMXTCd3zy+oMAGAyKj159gL7PfEjju97knh6tqBce5qy08zEYFO893YO73/qZtk99yZ2dGlCncqBNzAt3tyXqeAwdh33N0x8sZuKTtxe6rbMoYGDjML7cdIKJfxyhWSUfQrzd7cb1bRjKwZjcyUsFb3faVPPng7VHeW/1ERqElifIs4zzks/DoODxNtV4e+Uhnp+/l/bhAVTyLZsv7u/oVF5etI+XF+3LmaQBPNqqKn+dS2b4/L28tDCKsynpzkw/hzk7m28+ep/XJk1lysyf2bh6JWdPHreJCQ4NY/SHn/P+1z9y5+BH+eqDSYVu6yxKwSOtqvLen0cYsXgfbasFUNHHI1/cwdg0Xl+yn9eX7LeZpAH0rBvCuZQMZ6UsblKlcqIGPA300lrfX9wPrJQyaa13aK2HWzd1BkrURO3A/n1UqlyZipUq4ebmxm3durN+3VqbmPXr1tGzVx+UUjSMaERaairx8faPMrramnXr6du7J0opGkc0JDU1jbj4eJsYrTXbtu/k9lu7ANCvdy/WrFufs3/2L3O4vUtn/P38nJm6jdUbt9GvW2dLP+rXITXtEnEJifni6tUKp2JosN3H+HHhMm7v0AZ/Xx9Hp2tXaRpbMq5yuXpcRVT25XT8Zc4mppOVrVm+5zxdGoQUGN+rSRjLd+d+6Em/mg2AyagwGQ1o7fCUCxS56zBJKZcK3N+3U1N+XLIJgG1Rx/H1LkdooA8tG4Zz7EwsJ87FkZmVza8rttK3cxMnZZ1fs9phnDifyKnoZDKzzCxYf4CebWrbxNSpEsT63ScAOHI2gcohvgT5ehaqrbNU9S9H3KWrJFzOJFtrdp1NIaJC+XxxHWsEsOdcCqlXsnK2hXi7czLxMpnZGrOGo/GXiAjL39YZagZ6EX0xg5jUK2SZNZHHE2lZpXB/d8q6Gakf6s2f1kpilllz2fo742xHDx4gpGIlQsIqYnJzo+2tt7N903qbmDoNG+HlbXmea9VvSEJcbKHbOkvNAE9iUq8Qm3aFbLNm88lEmlcu/PuAfzk3mlTyZc2RkvfeKEqWUjdRU0p9AYQDi5VSI5VSm5RSf1m/17HGbFVKNcjTZq1SqrlSyl8ptVAptVcptUUp1ci6f4xSarpSaiUwy1pFW6KUqgY8BbyglNqtlOqglApSSs1TSm23frWzPkYna8xuaz7ejnoO4mJjCQ7J/ZATHBxCXKztH4O4uFhCQkNz7geFhBAXG3vt+eC5YU/z8AODWDh/nqPSLLTYuDhC8/QnJDiI2Ov6k5ySgre3FyaTyRoTTIw1JiY2ltVr1zHwrgHOS9qO2PhEQoNyjyqHBAUQE5//A3VBYuIS+DNyK/f07eaI9AqlNI0tGVcWJWFcBft4EJ3nCH9MSgYh5fMfnQbwcDPQrk4Qq6JylxkZFMx5vj3r3rqdLYfjiTqT7OiU/7WwYD/OROe+PmdjEgkL9qNisC9nY3K3n4tJIizIdQcAKgR4cy4+Nef++fiLVAiwfdvafyKGPu3qApaJXeVgH8ICvQvV1ll8PEwkp2fm3E9Oz8THwy1fTKOw8mw8Yft7cyH1CjUCPSlXxoibUVE/1Bu/srZtncXfswzxl67m3E+8dJWAcvlzqRPsxQd3NOSNbnWobK24hXi7czEji2c6hPN+/4YMbVcdd5NrPv4lxscSEJz7dzcgMJikuIInK2uWLaZJqzb/qq0j+ZUrQ0Le1+PyVfztvB61gryY2KcBr3StZVNxG9yyCj/tPOPSg0quoLTZ5V83m1J3jprW+imlVA+gC3AV+EBrnaWUug14B7gL+Bm4GxitlKoAhGmtdyqlpgF/aa3vUErdCswCmlgfujnQXmudrpTqbP1ZJ60TwzSt9WQApdRs4EOtdaRSqgqwAqgHvAwM01pvVEp5AXbr3UqpJ4AnAKZ8NI2HHnnUXtiNnwO7j3t9UP4oZQ36csZMgoKCSUxM5LlhT1G1WjWaNmte5DyKi70/ZOq6Dmm7/bF8f2/KVJ5/dhhGo9ER6RWatvPKXN+PG5n02Te8+Phgl/ajNI0tGVcWJWFc2cu2oM8vneqH8NfJJC7m+fBt1jBwaiTeHiamPtSCmiFeHI1xzfk3/8TeS6O1Rtl5Fuy9ts5SUJ55ffTrJt55qhtrpw3h71OxRB2LJivbXKi2zmL/N8E2lwGNwli8Lzrfsx2TeoU/D8fxdLvqXMkycz4lHbOLXpLC/I4cT7jMU7/uJiPLTLNKPozsWptn5u3BqBThAZ7M2HKSI3GXeLRVVQY0CuPnXWedkbptzoV6E7HY99cOVi//LWc5d1HaOprdMX7d/ZOJlxg+bw9Xssw0qejDS11q8eLCKJpW9OFiRhYnEi9TL8Q1BzDEzaPUTdSu4wN8p5SqheV36Nrhjl+BVcBoLBO2Odbt7bFM5NBar1ZKBSilrq0FWqy1Lsyi7tuA+nk+KJW3Vs82AlOs583N11rb/QuptZ4OTAdITL38r94SgoODiY2JybkfGxtDYJDteSlBwSHEROcekY6LyY0JCrIsj/L396dT51s5sH+/0z9M//zrXOYtXAxAg/r1iM7Tn5jYOIKCbM938PP1JTU1jaysLEwmEzGxsQRb+7P/74OMfGMUAEnJKWzYtBmT0citnTs5vB+zFy5n7rJVADSsU5PouNyldTFxCQQHFP6I+f7Dx3h5guXcl6SUVDZs24nJaKRre+edH3Wzjy0ZV/mVhHEVk5JBqE/u+TYhPh7EXrR/7kbPxrbLHvNKzchi+7EE2tUJLrETtXMxSVQO9c+5XynEnwtxyZRxM1EpJHd7xRA/LsQluyBDi/PxqVQMzP0QGRZYnuhE2+c0Nf0qz364JOf+XzOHcTo6mbLubv/Y1lmSM7LwzVMF8y3rRkpGlk1MFd+yPNSyCgBe7pZlgmYNURcusuVUEltOJQHQp36ITXXOmRIuXSUwz/lx/p5lSLxsm0t6Zu5yxl1nU3i8jcLb3UTC5askXLrKkTjLktzNJxMZ0KiCcxK/TkBQMAmxuX93E+Jj8QvMf/7iqWNHmD75HV6dNBVvH58itXWGxEtXCcj7epQrQ1K+1yO3erP7XAqPtLK8HrWDvWlWyZcmFX1wMxoo62bg6fbhfBbpmvPtnMp881W0XK3ULX28znhgjda6IdAX8ADQWp8DEqxLG+/BUmGDGx+0KvikA1sGoI3Wuon1q6LWOlVrPQkYApQFtiil6v67Lv2zevUbcObMac6fO0dmZiZ/rFxBh46dbWI6dOrE8mVL0FqzL2ovnl5eBAYGkZ6ezqVLlq6mp6ezdetmwmvkv4Kco9179/+YM3sWc2bP4tbOHflt6XK01uyJ2oe3lydB1/1xVkrRskUzVq1eA8Dipcvo3LEDAL8vms/vixfw++IF3H5rF94Y+bJTPkwDDLqjJ/OnT2H+9Cl0bXcLi1eutfTjwCG8PMsRFOD/zw9itfLHL1g1+0tWzf6Sbh3b8ObwJ5z6YRpu/rEl4yq/kjCu9p1NoWqgJxX9ymIyKno2DmPtgZh8cV4eJlqE+7Nmf+4+P88yeHtYjjm6mwy0rhXICRddza4wlqzbzf19LKc13xIRTkraZaLjU9ix/wQ1q4RQLSwQN5ORu7u3Ysna3S7L86/D5wkP86dKiA9uJgMDOtZn+ZbDNjHlPd1xsy6hG9y9CZv3nSY1/Wqh2jrL6aTLBHm541/ODaNSNKvkw74LF21ixq08lPO1+9xF5uw+R5Q1xquMpdLsV9aNRmHl2Xk22dldAOBofBoVfDwI9nLHZFC0D/dnx+kkm5i8E9KagZ4oBalXskhOzyT+0hXCrMuJI8LKczbZNRcTqVG3HtHnzhB74TxZmZlsWr2KFm062sTEx0TzwehXGfbaGMIqVylSW2c5lnCJUG93grzKYDQo2lTzZ+cZ29fDxyO3FlIjIPf1+OWvszw7bw/Pzd/LtPXH2B+d+v9jkib+lf8PFbVrlz16+Lp9PwOvAD5a6yjrtvXA/cB46/LGeK31xX9YRpQK5D27eCXwDPA+gFKqidZ6t1KqhvXnRCml2gB1gYP/sl83ZDKZeGnESJ5/9mnM2Wb69OtPeI0azJ9rKRze+b+BtG3Xnk0bIxl4Rz/cPTx4c/QYABITEnh1xIuA5Upw3br3pE3bdo5Is9A6tGvLho2b6D1gIB4e7ox/682cfU8/9yJj3nyN4KAgXnhmGK+8MYpPPv+SunVqc2f/vi7MOr+OrZqzfusueg5+Gg8PdyaMeCZn31OvTWDcS08THOjPD/OX8s0vC4hPTGbA4y/Q8ZZmjHt5mAszz1WaxpaMq5IzrrLNmncW7eOLIbdgNCgWbD/LsZg0Bra2fEibs8Vy+fquDULZdDjepnIQ5O3OhHsaYzQolFKs3Hue9X/HuqQfAN9PfJKOzesQ6OvF8d8nM+6LRbiZLB/2v5q7luWRe+nRvhF/L55EesZVhoz5BoDsbDPPv/sDSz97EYPBwHeLIjlw3H7l0BmyzZqRn69gzoT7MBoMzF65h0On43m4VzMAvl22i9qVA/nspX6YzWYOnY5n+EdLb9jWFcwa5u05z9B21TFguTx/dOoV2lkvub/x5I3P53y0VVU8yxjJ1pq5e87bVEmcyazh680nGdW9DgalWH0kjjPJ6XSrY1mlsPJQLG2q+dO9bjDZWnM1S/Ph2qM57WdsOcVznWvgZjAQk5rBJxtcMzEwGk08+uzLvDNyOOZsM5179qVy9XBWLZ4PwO397mTu9zNIu5jCjI/es7YxMvGL7wps6wpmDd9uO82rt9XBoGDt0XjOpWTQtbZlxcWfh+NoVdWf2+oEk23WXM02M229TMZE0SlXrRt3JKXUSaAFUAv4DogDVgODtdbVrDEhWCZx47XWY63b/IGZQHXgMvCE1nqvUmoMtuehdQZe1lr3UUrVBuYCZuBZ4G/gUyznpZmA9dbz5qZhOW8uGzgAPKy1vnKjfvzbpY8ljacuHZefNV688M9BN4GLPtVdnUKxkHFVsjT9+KSrUyg2h1a5/iJKxcG7gvNXQzjCA4/3c3UKxeJs0mVXp1AsRnXP//8mb0bv/Vl6/nfZ7AdbuuZkvSLKPrnb5Z9rjdWa3BTP1TWlsqJ2bTIGxAN5rwk8Kk9MDNf1X2udCPS383hjrru/FlhrvX0YaHRdk3vsPMazhcteCCGEEEII8f9daT9HTQghhBBCCCFuOqWyoiaEEEIIIYQoQW7C/2PmalJRE0IIIYQQQogSRipqQgghhBBCCIdSUlErMqmoCSGEEEIIIUQJIxM1IYQQQgghhChhZOmjEEIIIYQQwrFk6WORSUVNCCGEEEIIIUoYqagJIYQQQgghHEsqakUmFTUhhBBCCCGEKGFkoiaEEEIIIYQQJYwsfRRCCCGEEEI4ljnb1RncdKSiJoQQQgghhBAljFTUhBBCCCGEEA6lzXIxkaKSipoQQgghhBBClDAyURNCCCGEEEKIEkaWPgohhBBCCCEcSy4mUmRSURNCCCGEEEKIEkYqakIIIYQQQgjHkopakclErQQrZ1KuTqFYqCtZrk6heBhKx6+LjKsSRpWOhQ2ZpeX1ALwr1HB1CsUi9cIxV6dQLOpW8HZ1CsWiflh5V6dQLGr4ubs6hWJRt0LpeD1E6VY6PiEIIYQQQgghRClSOkoEQgghhBBCiBJLZ8vSx6KSipoQQgghhBBC3IBSyl8ptUopdcT63c9OTGWl1Bql1N9Kqf1Kqefy7BujlDqnlNpt/er1Tz9TJmpCCCGEEEIIcWOvAn9qrWsBf1rvXy8LeElrXQ9oDQxTStXPs/9DrXUT69eyf/qBsvRRCCGEEEII4Vhms6sz+K/6A52tt78D1gIj8wZorS8AF6y3U5VSfwMVgQP/5gdKRU0IIYQQQgghbizEOhG7NiELvlGwUqoa0BTYmmfzM0qpvUqpb+wtnbyeVNSEEEIIIYQQjlUC/o+aUuoJ4Ik8m6Zrrafn2f8HEGqn6RtF/DlewDzgea31Revmz4HxgLZ+/wB49EaPIxM1IYQQQgghRKlnnZRNv8H+2wrap5SKUUpV0FpfUEpVAGILiHPDMkn7UWs9P89jx+SJ+QpY8k/5ytJHIYQQQgghhLixxcBD1tsPAYuuD1BKKWAG8LfWesp1+yrkuTsA2PdPP1AqakIIIYQQQgiH0iVg6eN/NAn4VSn1GHAaGAiglAoDvtZa9wLaAYOBKKXUbmu7161XeHxPKdUEy9LHk8CT//QDZaImhBBCCCGEEDegtU4AutrZfh7oZb0dCagC2g8u6s+UiZoQQgghhBDCsW7+y/M7nZyjJoQQQgghhBAljEzUhBBCCCGEEKKEkaWPQgghhBBCCIcqBRcTcTqpqAkhhBBCCCFECSMVNSGEEEIIIYRjSUWtyKSiJoQQQgghhBAljEzUhBBCCCGEEKKEkaWPQgghhBBCCMeS/6NWZDJRK6W01rz73ntERkbi4eHB+HHjqFevXr64s+fOMXLkSC6mpFC3Xj3eeftt3NzcCt3eGbTWTJryERs2bcHDw50Jo16nft06+eLOnj/PK2+OISUllXp1azNxzJu4ubkBsH3nX7z74cdkZWXh6+vDt1984uxuoLVm4rSvWL91B2U93Hl75PPUr10jX9yPC5bw/dzFnDkfTeTCH/DzKQ/A6sgtTJv5I0oZMBmNjHxmCM0j6ju7G6VmbJWqcfXJ16zfutMyrl4ZXsC4Wsr3836zjKsFs3LH1catTJs5G6WUZVwNe8wl46p93WDeuDMCgwHmbjnNV38csdn/6K016du8EgBGo6JGiDdt31hOyuVMvMuamHBvU2pV8EZreOOnv9h9Msnpfbjm1ubhTHyyGwaD4ocVu/lozmab/T5eHkx7vg/VKvhy5Wo2z05dwsFTcYVq6yzTRz9Cr46NiUu8SNOBb9mNmfLKIHq0iyA94yqPjZ7B7oOnAejWtiFTRgzCYFDMXLiB92cuc2bq+Zzcu511P36B2ZxNw049adnnHpv9x3ZtYvO8WWBQGAxGOt3/FBVrNwTgr5UL2Ld2OVprGnbuSbPud7qiCwCc2LudtT98jtlsJqJTD27pe6/N/qM7N7Fp/ncoZelH5/uHUrGOpR87f5/HvnW/AxBYuTrdh7yMqUwZp/cBYNPGjUx+/z3MZjN33DGAhx991Ga/1prJ773Hxo2W94gxY8dRt149oqOjGT3qTRISEjAoxYC77uK+Qfe7pA8A5w/sZMfcr9HmbGq27UaDbv+zG5dw6ggrJo+g/aMjqNK0Xc52szmb3997kbI+AXQZav93TAhZ+uhASqnnlVLlXPGzIyMjOX36NL8tXsxbo0Yx4e237cZ9NHUqDzzwAL/99hvly5dnwYIFRWrvDBs2beHUmbMsnfsTo199hQnvfWA37sNPvmDwvXezdN5PlPf2Zv7iJQBcTE1lwnsfMG3yJBb+/D0fvDPemenn2LB1J6fOnWf5D18y5qVhjPvwc7txzRrWY8YH4wkLCbbZ3qp5Y+Z//THzv/6I8a88y+j3pzkj7XxKy9gqXePqAsu//5wxLz7NuKlf2I1r1rAeMyaPJSwkyGZ7q2aNmP/VVOZ/NZXxI55l9ORPnZG2DYOCtwY24vEvN9Nn4mp6N6tIjRBvm5hvVh9lwPtrGfD+Wj787QDbj8aTcjkTgDfujGDD3zH0emc1d7y3hmMxqU7vwzUGg+K9p3tw91s/0/apL7mzUwPqVA60iXnh7rZEHY+h47CvefqDxUx88vZCt3WWWb9tpM+wKQXu79E+gppVQqjf/zWGTviOT15/ELD04aNXH6DvMx/S+K43uadHK+qFhzkr7XzM5mzWzPqUO16awIMTv+LQljUknDtlE1O5flPun/A5D4z/nNsfe5E/vvkQgPizJ9m3djn3jv6YByZ8wYndW0mKPueKbmA2Z7N61icMePltHp70FQe3rM3XjyoNmjJ4whcMnvAF3Ya8xMpvLK9famI8f61cyKCxn/DQxK/QZjOHtq51QS8gOzubdydN5ONPPmXOvPms+P13jh87ZhOzMTKSM6dPs2DRYt54cxQT37G8R5iMRl548SXmzl/AzFnfM+eXX/K1dRazOZvtv35Jl6dH0+fNTzm5cz0pF07bjftr0bdUqNc0375Da36jfEhlZ6RbYujsbJd/3WxkouZYzwMumaitWbuWvn36oJSiUaNGpKamEhcXZxOjtWbb9u3cftttAPTr25fVa9YUur2zrFkfSb+ePVBK0TiiAampacTFx9vEaK3ZtmMXt9/aGYB+vXuwet0GAJat+IOuXTpRITQEgAB/P6fmf83qjVvp162LpR/165J66RJxCYn54urVqkFFa655eZYti1IKgPSMKzm3na20jK1SM642baPf7Z2t46oOqWkFjavwQoyrDJeMq0ZV/Tgdd4mzCZfJzNYs23WOrhGhBcb3bl6JpbssH5g93U20qBHA3C2WD0mZ2ZrU9Cyn5G1Ps9phnDifyKnoZDKzzCxYf4CebWrbxNSpEsT63ScAOHI2gcohvgT5ehaqrbNE7jpMUsqlAvf37dSUH5dsAmBb1HF8vcsRGuhDy4bhHDsTy4lzcWRmZfPriq307dzESVnnF338ED4hYfgEV8BocqN2q84c22VbpSzjkfs7kHk1A7DcTjx/mtAa9XBz98BgNFKpbiOO7dzo7C4AEH3sEL7BYfha+1G3dSeO7dpkE2PTjysZKHJ/l83mbLKuXsGcnU3mlSt4+vo7Nf9r9u/bR+XKlalUqRJubm50696ddWvX2sSsW7eWXtb3iAjre0R8XByBQUHUta6+8PT0pFr1cGLjYl3QC0g4eQTvwAp4B4ZiNLlRtVkHzuzdmi/u8LolVG7cFg9vH5vtl5PiObd/BzXb3u6slMVN6qacqCmlHlRK7VVK7VFKfa+UqqqU+tO67U+lVBVr3LdKqc+VUmuUUseVUp2UUt8opf5WSn2b5/HSlFLvKqV2KqX+UErdopRaa23TzxpjVEq9r5Tabv05T1q3d7bGzlVKHVRK/agshgNhwBrrzzda89mnlIpSSr3gyOcoNjaWkNDcDzohISHExtr+QUtOTsbb2xuTyZQvpjDtnSU2Lo7QPNWlkOAgYuNsP1Anp6Tg7e2V05fQPDGnTp/h4sVUHhn6LHc/+BiLl/3uvOTziI1PIDQ4t5oREhhATHxCkR7jjw2b6fPgUIa+No7xrwwv7hQLpbSMrdIzrhIJDc6tuoQEBRATn3+idiN/bNhCn4eGMfT1CYwf8Uxxp/iPQnw8uJCcnnM/OjmdEB8Pu7Eebkba1w1m5Z7zAFQOLEdi2lUmDmrK/BGdGH9vE8qWMTolb3sqBHhzLj63onc+/iIVAmyrg/tPxNCnXV3AMrGrHOxDWKB3odqWFGHBfpyJzh1nZ2MSCQv2o2KwL2djcrefi0kiLMg1BzEALiUl4O2f+3fX2z+QS0nx+eKO7tjId68+xqIpo7h9yIsABFaqxrlDUaSnXSTzSgYn9mwnNdE1ByzTkuLxDsjth5d/EKlJ+d8/juyIZObIR1kwZRTdhrwEWPrcoudAvn7hAb4cfi/u5cpRLaKF03LPKzY2lpCQ3L//wSEh+SZbcbGxhP7De8T58+c4dOggDRtGODbhAqSnJFDOL/fvbjm/QNJTbF+Py8kJnNmzhVodeuRrv2Pe1zS942GUuik/hgsnuulGiFKqAfAGcKvWujHwHPAJMEtr3Qj4Efg4TxM/4FbgBeA34EOgARChlGpijfEE1mqtmwOpwATgdmAAMM4a8xiQorVuCbQEHldKVbfua4qlelYfCAfaaa0/Bs4DXbTWXYAmQEWtdUOtdQQws4D+PaGU2qGU2jFjxox/9yQBaG3vsa8LuUFMIdo7i7084Z/7gjXfrOxs/j54iE+nvMeXH3/AlzO+4+Tp/EsUHM1uihTtOb2tQxuWzPqcaeNfZ9o3PxZTZkVUSsZW6RlX9p7Poj3GbR1as+S7T5k27jWmzZxdTJkVgZ2E7b06AF0ahvDXicScZY8mg4H6lXz4aeNJ7nx/HelXs3j8tloOTPbG7D33179GH/26CV8vD9ZOG8Lj/VoQdSyarGxzodqWFAXlau9vmi7w1XS8G/0O51WzRTsemjSDvsPHsHnedwD4h1WhRe+7mf/eayyc/AZBVapjMLjuIMD17D3XtVq055F3v6H/c6PZZO1HxqVUju3axGMfzOKJj34i80oGBzb+4ex0rez8vSrE39287xGXL1/mlZdf5qWXR+Dl5VX8KRZCYd4/ds77iqb9H8o3Zs5GbcfD24eAKjUdmGEJZc52/ddN5ma8mMitwFytdTyA1jpRKdUGuHaG7/fAe3nif9Naa6VUFBCjtY4CUErtB6oBu4GrwLXD4VHAFa11prVNNev2bkAjpdS1s0V9gFrWttu01metj7vb2ibyuryPA+FKqWnAUmClvc5pracD0wEy0tOL9O72888/M3/+fAAaNGhATHR0zr6YmBiCgmzPTfHz8yM1NZWsrCxMJpNNTHBIyD+2d6Sf5sxn3qLfAGhYvy7RMblH02Ji4wgOCrCJ9/P1JTU1Lacv0bFxBAdaYkKCg/Dz9aFc2bKUK1uW5k0bc+jIMapVqeLwfsxesJS5Sy0vdcO6tYiOzT0aGxOfQHDgv1t+0qJxQ86cn0pSysWci0I4UmkZW6VmXC1cljuu6tQiOja3QhATl0BwwL8dVw04826008bVNTHJ6VTwLZtzP9S3LLEpGXZjezWrxNJdZ3PuRyenE5Ocwd5TlouHrNh93qUTtfPxqVQMzK2ChQWWJzoxzSYmNf0qz364JOf+XzOHcTo6mbLubv/YtqQ4F5NE5dDccVYpxJ8LccmUcTNRKSR3e8UQPy7EJbsgQwsv/0CbKlhqYjyevgEFxleqG8HKry6QnppCWW8fGnbqQcNOlorIxjnf4OXvvPfBvLz8AklNyO1HWmIcXn4F/55XqtuI5Nj3SU9N4czfeygfFEq58r6AZTJ34cgB6re7zdFp5xMcHEJMTO7f/1g7f/+DQ0KILuA9Iiszk1defokePXtxa9euzknajnK+gVzOU5m9nBRPWR/b1yPh9FEiZ04G4EraRc7t34kyGIk/eYizUds4v38n2ZlXycy4zMbvPqDdQy85tQ/i5nDTVdSwHLL4pwlM3v1XrN/NeW5fu39topqpcw+P5MRprfPGKOBZrXUT61d1rfW1yVbex83GzgRYa50ENAbWAsOAr/+hD0V277338uuvv/Lrr7/SpUsXfluyBK01e/fuxcvLK98fQ6UULVu0YNUfliNri3/7jS6dOwPQuVOnf2zvSPcNvJO5P8xk7g8zubVjBxYv/x2tNXui9ltyCbQ9wV4pRcvmTVm1eq2lL0t/p0vHDgDc2rE9u3bvISsri/SMDKL2HyC8WlWn9GPQgN7M//oj5n/9EV3btWLxyjWWfhw4iJdnOYKK8IH61LnzOUfxDhw+RmZWFr7lnbMsqrSMrVIzru7olXMBkK7tW7F41VrruDqEl6dnEcfVBdtxlem8cXVN1OlkqgZ5UtG/HG5GRa9mFVm9LzpfnJeHiZY1AvgzKndffOoVLiSnUz3YcmS9Te0gjkW77mIifx0+T3iYP1VCfHAzGRjQsT7Ltxy2iSnv6Y6byfL2O7h7EzbvO01q+tVCtS0plqzbzf192gJwS0Q4KWmXiY5PYcf+E9SsEkK1sEDcTEbu7t6KJWt3uyzP0Op1SI45R0pcNNlZmRzeupYaTVvbxCTHnMv5HYg9eYTsrCw8vCwHKi5fTAbgYkIsR3dupE7rzs5MP0do+LV+XCA7K5ODW9YR3rSNTUxSnn7EnDxCdralH94BQUQfO0jmlQy01pze/xf+YY4/oGRP/QYNOHP6NOfOnSMzM5OVK1bQsXMnm5hOnTqxzPoeEWV9jwgMCkJrzbixY6levToPDB7skvyvCahai9S486TFW8bVqV0bqNSolU3MHWO/5o5xlq8qTdtyyz1PUblxa5r2f4g7J8zkjnFf0/6REYTUbvT/Z5Lm6mqaVNSc4k9ggVLqQ611glLKH9gE3IulmnY/+atZxWEFMFQptdpabasN/NPln1IBbyBeKRUIXNVaz1NKHQO+dUCOOTp06EBkZCR9+vbFw8ODcWPH5uwbNmwYo0ePJjg4mOeff55XRo7k008/pW6dOgwYMOAf2ztbh3ZtWL9pC73uuhcPDw8mjHotZ9/Q50cw9o2RBAcF8sIzQ3nlzTFM+/Jr6tauxZ39egMQXr0a7Vq34q77H8ZgMHBnvz7UqhHu9H50bN2C9Vt30vOBJ/Fwd2fCyNxzzJ56dSzjXn6G4MAAfpj3G9/8PJ/4xCQGPDacjq2aM27Es6xav5nFK1ZjMpnwcC/D5LdeccmSwdIytkrNuGrV3DqunrL8m4FX8o6rcdZx5c8P85fwzc8LLONqyHOWcfXyM5ZxtXINJpMRD3d3Jr/1stPHVbZZM37eXmYMbYPBoJi35TRHo1O5p101AH7ZeBKA2xtVYOOhWNKv2r7ZTpi3l/cHN8fNpDgTf5nXZ//l1PzzyjZrRn6+gjkT7sNoMDB75R4OnY7n4V7NAPh22S5qVw7ks5f6YTabOXQ6nuEfLb1hW1f4fuKTdGxeh0BfL47/PplxXyzCzWRZwvXV3LUsj9xLj/aN+HvxJNIzrjJkzDeWPmSbef7dH1j62YsYDAa+WxTJgePnXdIHAIPRSJfBw1jw/utos5kGHbsRUKkae1dbKpqNbu3DkR2R/B35BwaTCZObO72GvZ7zO7Bk2jgy0lKtj/MMHp6uOWfQYDTS5cFnmPfe62htpmHH7gRWqsYeaz8a39qHI9sj+XvjHxiMRkxu7vR5+g2UUlSoUY9aLTvww1tPYzAYCa5ak4guvVzSD5PJxIiRr/Ls00PJNpvp178/NWrUZO6cOQD8b+BA2rXvwMbISO7oZ3mPGD3G8h6xZ/duli1dQs1atRh0z90APP3Ms7Tv0MHp/TAYjbS4+0lWfzoGrc3UaH0bvhWqcHjDcgBqd+jp9JxE6aRK6vr3G1FKPQSMwFK9+gsYA3wDBAJxwCNa69PWC4Ys0VrPVUpVs95uaH2MvPvStNZe1u1jgDSt9WTr/TSttZeynPE5AeiLpboWB9yB5fy0l7XWfazxnwA7tNbfKqWexVI9u4DlHLaZ5FYxX9NaL79RP4u69LGkMlxx3dHt4mS47Lr/y1ScsvxccyS1uJWacXWpaBeUKakavlcyKz//RtyRfa5OoVikXnDNpcuL20efl47/MWVw0XnexW1QRPA/B90EPtzo/HOKHeWt2+vcFIPryh8zXf651v22R26K5+qam7Gihtb6O+C76zbfaifu4Ty3TwINC9jnlef2mOsew8v63Qy8bv3Ka63161r8M3luTwPy/rOrZnY7JIQQQgghRCmmzWZXp3DTuRnPURNCCCGEEEKIUk0makIIIYQQQghRwtyUSx+FEEIIIYQQN5Gb8KqLriYVNSGEEEIIIYQoYaSiJoQQQgghhHAsqagVmVTUhBBCCCGEEKKEkYmaEEIIIYQQQpQwsvRRCCGEEEII4VDyf9SKTipqQgghhBBCCFHCSEVNCCGEEEII4VhyMZEik4qaEEIIIYQQQpQwMlETQgghhBBCiBJGlj4KIYQQQgghHEuWPhaZVNSEEEIIIYQQooSRipoQQgghhBDCoXS2VNSKSipqQgghhBBCCFHCyERNCCGEEEIIIUoYWfoohBBCCCGEcCyz2dUZ3HSkoiaEEEIIIYQQJYxU1Eqw5Kul48jD5ayyrk6hWFQ8vMrVKRSL5KaVXJ1CsSg14+rILlenUCzc3H1dnUKxeeDxfq5OoVjUreDt6hSKxXNDx7k6hWLR99knXZ1CsTBr7eoUisXXP25zdQrF5q3b67g6hcKRy/MXmVTUhBBCCCGEEKKEkYmaEEIIIYQQQpQwsvRRCCGEEEII4VBalj4WmVTUhBBCCCGEEKKEkYqaEEIIIYQQwqG0XJ6/yKSiJoQQQgghhBAljEzUhBBCCCGEEKKEkaWPQgghhBBCCIfS2bL0saikoiaEEEIIIYQQJYxM1IQQQgghhBCihJGlj0IIIYQQQgiHkqWPRScVNSGEEEIIIYQoYaSiJoQQQgghhHAo+T9qRScVNSGEEEIIIYQoYWSiJoQQQgghhBAljCx9FEIIIYQQQjiUXEyk6KSiJoQQQgghhBAljFTUhBBCCCGEEA4lFbWik4qaEEIIIYQQQpQwMlETQgghhBBCiBJGlj6WUls3b2TaB5Mxm7Pp3X8A9z/0iM1+rTUff/A+WzdF4u7hwWtvjaV23XoA/Dr7B5YuWohSiuo1a/LqqDG4u7u7ohsA7NiyiS+mTsZsNtOj7x3cPfhhm/1nTp1kyttjOXr4IA898TT/GzQYgKtXrjBi2ONkZmaSnZVN+y5dGTzkSRf0wEJrzbu/rGDDviN4lHFj/MP9qV+lQr640bMWs//UBbTWVA0JYMJD/SnnUabQ7R2ttIytfzuursnOzmb4Y4MJDApm7PtTnZf4dUrLuGpXO4iR/etjVIr5284wY+0xm/0Pdwqnd9MwAIwGA+HBXnQcu4qMzGy+faoNZUwGjAbFqqgLfLbqiNPzz6tusBd3NgrDoGDLqST+OBxnN66Kb1le6FyDb7edZs/5iwB0qhFAm2r+AGw+mci6YwlOy/t6J/duZ92PX2A2Z9OwU09a9rnHZv+xXZvYPG8WGBQGg5FO9z9FxdoNAfhr5QL2rV2O1pqGnXvSrPudrugC00c/Qq+OjYlLvEjTgW/ZjZnyyiB6tIsgPeMqj42ewe6DpwHo1rYhU0YMwmBQzFy4gfdnLnNm6vk0qejDo62rYlCKPw/HsmDvBZv9DUK9GXlbbWJTrwCw9VQSc3afA6BcGSNPtwunil9ZNPDphuMcjktzdheA0jGuADpFhDFmUAuMBsXP64/y2dL9Nvu9y7rx0ZPtCfMvh8lo4MvlB5gTeQx3NwNzXutOGZMBk9HAsu2nmLJwr4t64Vzm7GxXp3DTkYlaKZSdnc3U997lg08+Iyg4hCcfeoB2HTpRLTw8J2brpo2cPXOaH+ct4sC+KKa8O5EvZs4iLjaWeb/8zKxf5uLu4cHo10ayetUKevbp57K+fPrBu7wz9VMCg0N4bsiDtGrfkarVc/viXb48T73wMpvXr7Vp61amDJM+/oKy5cqRlZXFy0Mfo0XrttRrGOHkXlhE7jvKqdgElox/hr0nzjHhx6XMfm1IvrgRA7vjVdYyeXn/1xX8tHYbj/VoX+j2jlRaxtZ/GVfXLJrzE1WqVefypUtOytq+0jCuDAreGNCAJ77aSnRKBj8/2541B2I4Hpv7QfLbdcf5dt1xADrVC2Zwh+pcTM8E4LHpW0i/mo3JoPju6TZEHopj7+lkp/bhGgUMbBzGZxtPkJyexUtdahB14SIx1g/PeeP6NgzlYExuHyt4u9Ommj8frD1KtlnzVNvqHIhOJe7SVed2AjCbs1kz61PufGUiXv6B/DTmWcKbtiagYtWcmMr1mxLetA1KKeJOH2fZZ2/z0KQZxJ89yb61y7l39McYTW4smPw61Ru3wi+0otP7Meu3jXz2y5/MHG9/TPdoH0HNKiHU7/8at0SE88nrD9L+wQkYDIqPXn2AXkM/4GxMIpt/fIsl63bz9/HzTu6BhUHB422qMW7FQRIuXeXdfg3YfjqZs8npNnF/R6cy8Y/D+do/2qoqf51LZvKaI5gMijIm1yyoKi3jyqAUEwbfwv3v/8GFxMv8Nronq/46y5HzKTkxD3atw5FzyTw6dQ3+3u6sndifhZtPcCXTzL3vruLylSxMRsW813uwJuo8fx2Ld3o/RMlXYpY+KqVOKqUClVLVlFL7nPhz1yqlWlhvL1NK+d4g9nmlVDln5fZv/b1/HxUrVSKsYiXc3Ny4tVt3Iq/7sBm5fi3de/VBKUWDiEakpaaSEG856pudnc2VK1fIysriSkY6gYFBLuiFxeG/9xNWqTIVrH3p1LUbWzass4nx9fOnTr0GmEy2xx2UUpQtZ3m5srKyyMrKQinltNyvt2bPIfq2boxSisbhlUhNv0JcSmq+uGsfprXWZGRmoVBFau9IpWVs/ZdxBRAXG8O2TRvp3vcOJ2VcsNIwriIq+3I6/jJnE9PJytYs33OeLg1CCozv1SSM5btzPzCnX7UcpTUZFSajAa0dnnKBqvqXI+7SVRIuZ5KtNbvOphBRoXy+uI41AthzLoXUK1k520K83TmZeJnMbI1Zw9H4S0SE5W/rDNHHD+ETEoZPcAWMJjdqt+rMsV2bbWLKeJTN+ZuaeTUDrGMq8fxpQmvUw83dA4PRSKW6jTi2c6OzuwBA5K7DJKUUfDClb6em/LhkEwDboo7j612O0EAfWjYM59iZWE6ciyMzK5tfV2ylb+cmTso6v5qBXkRfzCAm9QpZZk3k8URaVvErVNuybkbqh3rzp7Wym2XWXL7qmspGaRlXTcIDOBmTyum4NDKzzfy29RTdmla2DdLg6eEGgKe7G8mXrpBltlxM47L1995kNGAyKpf+zXImbTa7/OtmU2ImaiWB1rqX1jr5BiHPAyV+ohYfF0dwSGjO/aDgYOLjYm1jYmMJDgmxiYmLjSMoOJh7HxjM3f16cWevbnh6edOydRun5X69+LhYgoJz8wwMDibhur7cSHZ2NsMeGsR9fW6nactW1G3Q0BFpFkpsciqh/rkfukJ8vYlNsv+BeNS3i+gyYgono+O579ZbitzeUUrL2Pqv4+rLjz7gsaeHY3DhxP+a0jCugn08iE7JrQzEpGQQUt7DbqyHm4F2dYJYFRWds82gYM7z7Vn31u1sORxP1JlkR6dcIB8PE8nWSh9AcnomPtYPa3ljGoWVZ+OJRJvtF1KvUCPQk3JljLgZFfVDvfEra9vWWS4lJeDtn3sgxds/kEtJ+Y/4H92xke9efYxFU0Zx+5AXAQisVI1zh6JIT7tI5pUMTuzZTmqi/eWfrhYW7MeZ6NzX4WxMImHBflQM9uVsTO72czFJhAUVbmLkCP6eZYjPU1lNvHSVgHL5x0adYC8+uKMhb3SrQ2XfsoDlAMDFjCye6RDO+/0bMrRdddxdVFErLeMq1K8c5xNzDwBcSLpEiF9Zm5hv/zxIzTAfdky9i5UT+jBm9o6cCZlBKZaP681fHw8kcv8Fdh+XapqwzyW/qUqphUqpnUqp/UqpJ+yEmJRS3yml9iql5l6rYl2rullvt1BKrbXeHmONX2mNuVMp9Z5SKkop9btSqlDvdHmqep5KqaVKqT1KqX1KqXuUUsOBMGCNUmqNNb6bUmqzUmqXUmqOUsorz+OMtW6PUkrVtW7vpJTabf36Synl/V+fS3u03UMzth8o7UYoSL14kch1a/l54RLmL1tBRno6K5cvdUSahVNQooVkNBr59LvZfL9gGYcP7Ofk8aPFl1sR2XtdCurK+If78+d7L1C9QhArtu8vcntHKTVj6z+Mq60bN+Dr508t63l3rlYaxpW9H1fQAeZO9UP462RSzrJHALOGgVMjue3tP2lYxZeaIV4OybMw7D91tr0Z0CiMxfui8/UxJvUKfx6O4+l21XmqbXXOp6RjdtGRdru/63YGRs0W7Xho0gz6Dh/D5nnfAeAfVoUWve9m/nuvsXDyGwRVqY7BYHR0yv+KvbGutc6pONtsL3BUOl5hfkeOJ1zmqV9389LCfSw/EM3IrrUBMCpFeIAnKw7GMGLRPq5kmRnQKMzhOdtTWsaV3XFz3f1ODcM4cDqJFs/Po8dbSxn3wC14WQ/amLWm51tLafXiPBqHB1K7oq/DcxY3J1dV1B7VWjcHWgDDlVIB1+2vA0zXWjcCLgJPF+IxawC9gf7AD8AarXUEkG7dXhQ9gPNa68Za64bA71rrj4HzQBetdRfrhPFN4DatdTNgB/BinseIt27/HHjZuu1lYJjWugnQwZqbDaXUE0qpHUqpHd9/+00R07YICg4mNib3aHNcbCyBQUF2YmLyxezYtpUKYRXx9fPDZHKjQ5db2bfXdSe5BgYHExebm2d8bCwB/2K5nJe3N42aNWfHls3/HFyMfl6znYHjv2Tg+C8J8vUmOvFizr6Y5FSCfAueqxsNBnq0qM8ff/0NQIhf+SK1d4TSMrb+y7g6sHcPWyLX89BdfZk0+g327NzOe2NHOSpVu0rbuIpJySDUJ/dodIiPB7EXM+zG9mxsu+wxr9SMLLYfS6BdnWCH5FkYyRlZ+OapgvmWdSMlI8smpopvWR5qWYW3utWhScXyDGxSMWd55JZTSUxec5RpG45z+Wo2cWm257Y5i5d/oE21IjUxHk/f69+qc1WqG0FK7AXSUy3n6DTs1IP7x33KwDc+wMPTG18XnEdUGOdikqgc6p9zv1KIPxfikjkbm0SlkNztFUP8uBCX7IIMLRIuXSXQs0zOfX/PMiRezrSJSc/MJiPLsrRr19kUjAaFt7uJhMtXSbh0lSNxlgrQ5pOJhAe4ZnFQaRlXFxIvE+bvmXO/gp8nsUm2H+kGdqjB7zstF6Y5FZvKmbg0aly3DPri5Uy2HIyhc4RrJs7OprPNLv+62bhqojZcKbUH2AJUBmpdt/+M1vrawuMfgPaFeMzlWutMIAowAr9bt0cB1YqYXxRwm1LqXaVUB611ip2Y1kB9YKNSajfwEFA1z/751u878/z8jcAUa3XOV2tt++4NaK2na61baK1bDH740SKmbVG3fgPOnjnDhXPnyMzMZPXKFbTr0Mkmpl2HTqxYtgStNfuj9uLp5UVAYBAhoaEc2BdFRkY6Wmt2bd9G1WrV/1UexaF23fqcP3uG6POWvqz7cyWt23csVNvkpCTSUi1LuK5cyeCv7duoXLWaA7PN794uLZkz6knmjHqSW5vU4bcte9Bas+f4WbzLuhPkY/uBWGvN6djEnNtr9x6mWqjlTaxz49r/2N7RSsvY+i/j6pGhz/DDwmV8N+83Xh37No2bt+SV0eMdnLGt0jau9p1NoWqgJxX9ymIyKno2DmPtgZh8cV4eJlqE+7Nmf+4+P88yeHtYziN0NxloXSuQEy66mh3A6aTLBHm541/ODaNSNKvkw74LF21ixq08lPO1+9xF5uw+R5Q1xquMpULgV9aNRmHl2Xk22dldACC0eh2SY86REhdNdlYmh7eupUbT1jYxyTHncioksSePkJ2VhYeX5YPo5YvJAFxMiOXozo3Uad3ZmekX2pJ1u7m/T1sAbokIJyXtMtHxKezYf4KaVUKoFhaIm8nI3d1bsWTtbpfleTQ+jQo+HgR7uWMyKNqH+7PjdJJNTN4DBDUDPS0rGa5kkZyeSfylK4RZlxNHhJXPdxESZykt42rPiQSqh3hTOdALN6OBvq2qsuqvMzYx5xMu0a6+5VSBwPIe1KhQntNxafh7u1PeumzV3c1I+/qhHLtg72OmEC646qNSqjNwG9BGa33Zunzx+pMRrq8gX7ufRe7k8vo2VwC01malVKbOra+bKWI/tdaHlVLNgV7ARKXUSq31uOu7AqzSWt9XwMNcOwyafe3na60nKaWWWh93i1LqNq31waLkVhgmk4nnR4zk5eHDMJvN9Orbj+o1arBo3lwA+t/1P1q3a8+WTZEMurM/7h4evDpqDAD1G0bQqWtXHh98P0ajkZp16tB3gOsuf2s0mRj6wgjefPFZsrOz6danH1XDa7B0gaUvvQf8j8SEeIY/9iCXL13CYFAs/PUnvvzxV5IS4pk8YTRm6wmkHW69nVbtOrisLx0a1mJD1FF6v/mJ5TLoD+Ve7fDpabMZM7gvgeW9ePPbhaSlX0WjqVMphDcH9f7H9s5SWsbWfxlXnp6uW1ZnT2kYV9lmzTuL9vHFkFswGhQLtp/lWEwaA1tXAWDOFstR6a4NQtl0OJ70zNwLIQR5uzPhnsYYDQqlFCv3nmf934U/37C4mTXM23Oeoe2qY8BSIYtOvUI76yX3N55MvGH7R1tVxbOMkWytmbvnPOmZrjkCbDAa6TJ4GAvefx1tNtOgYzcCKlVj7+olADS6tQ9HdkTyd+QfGEwmTG7u9Br2es5FIJZMG0dGWqr1cZ7Bw9O5k/9rvp/4JB2b1yHQ14vjv09m3BeLcDNZJsNfzV3L8si99GjfiL8XTyI94ypDxlhWsmRnm3n+3R9Y+tmLGAwGvlsUyQEXXfERLOPq680nGdW9DgalWH0kjjPJ6XSzVo9XHoqlTTV/utcNJltrrmZpPlybu9R/xpZTPNe5Bm4GAzGpGXyy4bhL+lFaxlW2WTPqh218/3JXjAbFLxuOcvh8Cg90sdQdflhzhI8XR/HBkLasHG+5uNbEX3eRlHaFupV8mfJ4O4wGhUEplmw7yZ97zrmkH852M1a0XE3ZP+fEgT9Qqf7AEK11X+u5W7uxLDX8FstSSC/gBNBWa71ZKfUVcFBr/YFS6g/gA631cqXUh0BTrXVnpdQYIE1rPdn6M9K01tfOF7PZZyeftcDLWusdSqmT1hzKAIla6wyl1B3Aw1rrO5RSUUA/rfUJpVQQlmrZrVrro9bz6CpZJ3kngRZa63jrFSUnW/OsobU+Zv25C4FvtdYLC3quolMulYrrAF120QeN4lZx32JXp1Askpre4eoUioWMq5KlxTJfV6dQbG5tU8XVKRSLuhVc8yG2uD039PrjpDenvs+67v94Fqfb6hd8RdabycQvNrg6hWJz+tvBrr+yVSHETn7O5Z9rg1/+6KZ4rq5xxdLH37FcLGQvMB7L8sfr/Q08ZI3xx3KeF8BY4COl1AYslSpHiQC2WZc0vgFMsG6fDixXSq3RWscBDwM/WfPcAtT9h8d93npxkj1Yzk9b7ojkhRBCCCGEEDc3py991FpfAXra2VXN+j0ey7lf9tpuAGrb2T7muvteBe2z07ZzntvXclhh/bo+dhowLc/91UBLO3HV8tzeAXS23n72RrkIIYQQQghRGt2M/8fM1eT/qAkhhBBCCCFECeP0ipqrKKUWANdfYm6k1jpf5UwIIYQQQghRfMxyMZEi+38zUdNaD3B1DkIIIYQQQoibj1LKH/gFy+laJ4G7tdZJduJOAqlYrqeRpbVuUZT2ecnSRyGEEEIIIYS4sVeBP7XWtYA/rfcL0kVr3eTaJO1ftAf+H1XUhBBCCCGEEK5RCv6PWn+sFwgEvgPWAiMd2V4qakIIIYQQQghxYyFa6wsA1u/BBcRpYKVSaqdS6ol/0T6HVNSEEEIIIYQQpZ514pR38jRdaz09z/4/gFA7Td8owo9pp7U+r5QKBlYppQ5qrdf/m3xloiaEEEIIIYRwqJKw9NE6KZt+g/23FbRPKRWjlKqgtb6glKoAxBbwGOet32OtV52/BVgPFKp9XrL0UQghhBBCCCFubDHwkPX2Q8Ci6wOUUp5KKe9rt4FuwL7Ctr+eVNSEEEIIIYQQDqXNrq+o/UeTgF+VUo8Bp4GBAEqpMOBrrXUvIARYoJQCyzxrttb69xu1vxGZqAkhhBBCCCHEDWitE4CudrafB3pZbx8HGhel/Y3I0kchhBBCCCGEKGGkoiaEEEIIIYRwqJJwMZGbjVTUhBBCCCGEEKKEkYqaEEIIIYQQwqGkolZ0UlETQgghhBBCiBJGJmpCCCGEEEIIUcLI0kchhBBCCCGEQ5lv/v+j5nQyUSvBDsRddnUKxSLM293VKRSPlv1cnUGx2He+dIyrSuVlXJUkQ9ziXJ1CsVl/qHT0pX5YeVenUCz6Pvukq1MoFr9N+9LVKRSLlMcedXUKxSKgYqCrUxDiH8lETQghhBBCCOFQcjGRopNz1IQQQgghhBCihJGJmhBCCCGEEEKUMLL0UQghhBBCCOFQOjvb1SncdKSiJoQQQgghhBAljFTUhBBCCCGEEA6l5fL8RSYVNSGEEEIIIYQoYWSiJoQQQgghhBAljCx9FEIIIYQQQjiU/B+1opOKmhBCCCGEEEKUMDJRE0IIIYQQQogSRpY+CiGEEEIIIRxKlj4WnVTUhBBCCCGEEKKEkYqaEEIIIYQQwqHMUlErMqmoCSGEEEIIIUQJIxM1IYQQQgghhChhZOmjEEIIIYQQwqG0WZY+FpVU1IQQQgghhBCihJGKmhBCCCGEEMKh5PL8RScVNSGEEEIIIYQoYaSiVkrt37GFX6d/hDabadetD93vHmyzf9ualayc+yMA7h5luW/YS1QKr0X02dPMmPRWTlx89Hn6PDCErnfc7dT889q1dRNfffwBZrOZ23v3538PPGyz/+ypk3w8aRzHDh/kgSFDGXCfpa9nT59k8pjXc+Kiz59n0KNP0O/uQc5MP4fWmnffn8yGyI14eHgwfuwY6termy/u7LlzvPLa61xMuUi9unV5Z8I43NzcWLpsOd98+x0A5cqV483XX6VO7drO7gb7d25h7vSPMFvHVreB+cfWqnm5Y+vepy1jK+bsaWa8mzu2EqLP0/uBIdza3zVjS8ZVyRpXp6N2EDn7C8zaTP0OPWjW2/64iDlxiPkTXqTb0Fep0aJDkdo6S5OKPjzauioGpfjzcCwL9l6w2d8g1JuRt9UmNvUKAFtPJTFn9zkAypUx8nS7cKr4lUUDn244zuG4NGd3AYATe7ez9ofPMZvNRHTqwS1977XZf3TnJjbN/w6lFAaDkc73D6VinYYA7Px9HvvW/Q5AYOXqdB/yMqYyZZzeByg9r8f00Y/Qq2Nj4hIv0nTgW3ZjprwyiB7tIkjPuMpjo2ew++BpALq1bciUEYMwGBQzF27g/ZnLnJm6jZZVfHm6QzgGpVh+IIafd53NF9O4og9D21fHZFCkZGTx0oKoQrd1lra1AhnRux4Gg2LhjrPMXH/cZv+D7avTq0kYAEaDonqQF7e+8ycX0zMZfWcEHesEkXjpKgM/jnRF+uImIRO1Usicnc3Pn09h+IQP8QsMZtILQ2jUuj0VqlTPiQkIqcALk6bh6V2efTs28+O09xj54VeEVqrCG598m/M4rz04gCZtO7qoJ5Cdnc2XH77H2CmfEBAUwstPPMQt7TtSpVp4ToxX+fI8PvwltkSus2lbqUo1pn4zO+dxHr2rF607dnFq/nlFbtzIqdNnWLJoAXuj9jFh4kRmz/ouX9zUj6cx+P5B9OzenfFvv8P8hYu4Z+D/qFgxjJlfT6d8+fJs2LiRsRPettvekczZ2fz6+RSenfAhvgHBvPfCECJa2Y6twFDL2CrnVZ79OzYz+5P3eGXKV4RUqsLr077NeZzXHxpA4zauGVsyrkrYuDJns/6HT+n70jt4+Qcyd9xzVGvSCv+KVfPFbZkzk8oNmxW5rbMYFDzephrjVhwk4dJV3u3XgO2nkzmbnG4T93d0KhP/OJyv/aOtqvLXuWQmrzmCyaAoY3LNwhezOZvVsz7hrlcm4e0fyI+jn6VGszYE5HleqzRoSo1mbVBKEXf6OEs+ncAj735DamI8f61cyEOTvsatjDtLPpnAoa1radChm9P7UVpeD4BZv23ks1/+ZOb4IXb392gfQc0qIdTv/xq3RITzyesP0v7BCRgMio9efYBeQz/gbEwim398iyXrdvP38fNO7oHl9Xi2Uw1GLtpHXNpVPr27CZtOJHA6Kff18CxjZHinGry2eD+xaVfwLetW6LbO7MerfRswdOY2Yi5m8OPQtqz7O5bjeSbxsyJPMCvyBAAd6wZzf9tqXEzPBOC3XWf5Zcspxv+vkdNzdyWdrV2dwk3HYX9xlFInlVKBSqlqSql9jvo5dn5uB6XUfqXUbqVUWQf+nE3W79WUUq45lF6Ak4f/JiisEkEVKmJyc6NFx9vYs8X2iE2N+hF4epcHoHqdBiQlxOV7nIN7dhJYoSIBwaFOydueI3/vJ7RiZULDKuHm5kaHrrez7boPzr5+/tSq1wCTseDjDnt3bic0rBLBoRUcnXKB1qxdR98+vVBK0bhRBKmpqcTFxdvEaK3Ztn07t3ftCkC/Pn1Ys2YtAE0aN6Z8ectr1jgigtiYWKfmD9axVaESgaGWsdW8423svW5shdeLoJyXdWzVbUByfP6xdWjPToJcOLZkXJWscRV7/DA+wWH4BFfAaHKjZqtOnNi9JV9c1B+LCW/ejrLlfYvc1llqBnoRfTGDmNQrZJk1kccTaVnFr1Bty7oZqR/qzZ+HLb8zWWbN5avZjky3QNHHDuEbHIav9Xmt27oTx3Ztsokp41EWpRQAmVcyUKicfWZzNllXr2DOzibzyhU8ff2dmv81peX1AIjcdZiklEsF7u/bqSk/LrG8RtuijuPrXY7QQB9aNgzn2JlYTpyLIzMrm19XbKVv5yZOytpWnRBvzqdkcOGi5fVYeySOduEBNjFdawcReSye2DRLhTPZOrkpTFtnaVjJlzOJlziXlE5WtmbF3gt0rhdcYHyPRhX4fW/uxHjXySRSLmc6I1VxkyuN56jdD0zWWjfRWhf7YRallBFAa93WuqkaUKImaskJcfgF5v7B8AsMItnOROyaTSuX0KB563zbd6z/g5adbnNIjoWVEB9HYHBIzv2AoBAS4gruS0E2rF5Jx67dizO1IouNjSM0JHdiEhIcQmyc7Yfi5OQUvL28MZksk4OQkGBi4vJ/cJ6/cBHt2rXNt93RkhPi8AvKHVu+hRlbLeyPreYdXTe2ZFyVrHF1KTkeL/+gnPtefoFcSkqwiUlLiufErk006NKryG2dyd+zDPGXrubcT7x0lYBybvni6gR78cEdDXmjWx0q+1qOKYZ4u3MxI4tnOoTzfv+GDG1XHXcXVXDSkuLxDsjzvPoHkWrneT2yI5KZIx9lwZRRdBvyEgDe/oG06DmQr194gC+H34t7uXJUi2jhtNzzKi2vR2GEBftxJjox5/7ZmETCgv2oGOzL2Zjc7edikggLKtxktbgFepbJWWIKEJd2hQBP2yWxFX3L4uVu4oMBEXx2dxNurxNc6LbOElzeg5iUjJz7MRczCPLxsBvr4Wagba1A/twf46z0SixzttnlXzebYvmLo5RaqJTaaa1kPWEnxKSU+k4ptVcpNVcpVc7a7qRSKtB6u4VSaq319hhr/EprzJ1KqfeUUlFKqd+VUvn/ylraDQHuBt5SSv2olPJSSv2plNplbdvfGveuUurpPO3GKKVeUhbvK6X2WePvse7vrJRao5SaDURZt12rb08COlgreC8opYzWx9hu7e+T1vgKSqn11rh9SqkO//mJL4DW+UvLeY905nVozy42rVzKgEeG2mzPysxk79aNNGvvuiVdANjri7Lfl4JkZmaybeN62nXpWlxZ/Suaf35d7MZc199t23ewYOEiXhj+bPEmWCiFfz0O77WMrf4P5x9bUdtcPLZkXJWocWXn5eD6l2PjT1/SeuCjGAzGIrd1Jns/+voUjydc5qlfd/PSwn0sPxDNyK6WcwKNShEe4MmKgzGMWLSPK1lmBjQKc3jOhWXvfaRWi/Y88u439H9uNJvmWZbMZlxK5diuTTz2wSye+OgnMq9kcGDjH85OFyjdr8f17I17rbXd183e3wRnKMyvptGgqB3sxRu/7efVxfu4v2VlKvp6FKqt09gdWPaf0451g9l9Ojln2aMQRVFc56g9qrVOtC413K6Umnfd/jrAY1rrjUqpb4Cngcn/8Jg1gC5AfWAzcJfW+hWl1AKgN7Dw+gZa66+VUu2BJVrruUopEzBAa33ROiHcopRaDPwMTAU+sza9G+gB3Ak0ARoDgda+rLfG3AI01FqfuO7Hvgq8rLXuA2CdqKZorVsqpdyBjUqpldbHXqG1fttalStnr9PW9k8AvDB+Mn3uffAfnqb8/AKDSYrPPVqeFB+HT0BgvrizJ47yw8eTeGbcZLzK+9js279jC1Vq1Ka8n2uWq1wTEBRMfGzuUaiEuBj8A/P35UZ2bdlEjVp18fV3/hKJn3/5lXkLFgLQoEF9omOic/bFxMYQFBRkE+/n60tqWipZWVmYTCZiYmIJDsyNOXz4CGPGj+ezaR/j6+vrjC7Y8A0IJilPJSY5Pg4f//yvx7kTR/nx40k8PdbO2Nq5hcouHlsyrkrWuPLyCyQtMbeimZYUTzlf2+c19uQRVn0xCYD0tIuc3rsdZTAWqq0zJVy6SmCeo/z+nmVIvG6JU3pm7vK5XWdTeLyNwtvdRMLlqyRcusqROMvyts0nExnQyDXLar38AknNUy1PS4zD6wa/s5XqNiI59n3SU1M48/ceygeFUs66RLVWi/ZcOHKA+u2cX0UvLa9HYZyLSaJyaO5rVCnEnwtxyZRxM1EpJHd7xRA/LsQluyBDiLt0lWBv95z7QV7uJOSpeALEp13lYkYyGVlmMrLMRJ1PoUaAZ6HaOktsSgYheSpoIeU9iLt4xW5s90YV+H2P888HFKVDcdXwhyul9gBbgMpArev2n9Fab7Te/gFoX4jHXK61zsRSGJrZuAAAXHpJREFUwTICv1u3R2FZblgYCnhHKbUX+AOoCIRorf8CgpVSYUqpxkCS1vq0Na+ftNbZWusYYB3Q0vpY2+xM0uzpBjyolNoNbAUCsDwf24FHlFJjgAitdaq9xlrr6VrrFlrrFv9mkgZQtXZdYs/9X3v3HR5VtTVw+LcmAUKHkELvXYooiBQBRVHs3c/utVdsiO1eRdRrw4q9Yb/2BgqKKCBVegeRXpPQayDJrO+Pc9ITyIQkZ86w3ueZJ5lTZtaZ2TNz9tlr772WzZs2kJ6WxowJv9Gha49c22xN3sTbTz7MNff+h8R6DfM9xvQJv9HZ47RHgBat27Jx3RqSNqwnLS2NP8eO4bgeoQ1AMWHsL5xwctl3Ygf4v0su5qvPP+Orzz/jpD59GDHyZ1SVufPmU7VKFeLjc1cORIQunTszZuxYAH4cOZI+fXoDsHHjJu4eeB//fXwIjRt5M1BCo5atSd6QXbZmTviN9gWVrf8+zNWFlK2Z43+js4dpj2DlKtzKVUKTluxI2sDOlE1kpKfxz7TxNDk6d8rslc9+wJXPfciVz31Is8496XXlbTQ9pnuR9i1L/2zeTZ3qMSRUqUB0QOjZNJYZa7bl2iZzcASA5nGVEYFd+9PZvi+NzXv2U7eacwLYvm61fINelJXaTVuxPWk9O1I2kpGexpKp42naqVuubbYlrc/K4EhatYyMjHRiqlSjaq14Ni1fQtr+VFSVNQtnE1s3/3dBWYiU96MoRo6fw+VnOqnLx7Vvyo7de9m0eQczFq6kecNEGteNo1x0FBef2pWR4+Z4EuPSpF3Uq16R2lWd96NPi3gmr9yaa5vJK7fQrk41AgIVogO0TqzKmm37irRvWVm4fgcNa1Wmbs2KREcJp3aow7gl+dPJq1SI5tjGsYxbXPZ9f8ORBtXzm98cdouaiPQBTga6qepeN30xb6Ju3lcm83462ZXFvPvsB1DVoIikaXY+XzCEuC8H4oFjVTVNRFbleJ6vgQuB2jgtbHDwVvnCe/DmJsAdqvpLvhUivXBaAz8WkedU9aMiPmZIoqKi+b9b7mHYf+4hGAzS/ZQzqNuoKRN+/h6AXqefy0//+4DdO3fw+evPAxCIiuLBl98D4EBqKktmT+fy2+8rjfBCEhUdzY13DWLwwAEEgxn0Pf1sGjZpxqgfnEbb/udcwLYtm7n3xqvZu2cPgYAw4uvPefWjL6hUuQr7U1OZO+Mvbh340CGeqfSd0LMHf06cxBnnnOsMoz740ax1t94xgMGP/IeE+HjuHnAHgx58iFdfe4PWrVtx/rnnAPDmO++wfccOnnzqGQCioqL4/NOPy/QYoqKiufjme3jtEadsdXPL1p9u2Trh9HMZ9fkH7MlRtqKiorj/pRxla850LvW4bFm5Cq9yFYiK4oQrbmHEC/9Ggxm07tmP2HqNWPDHTwC0O/GMkPf1SlDh3Smr+M+prQiI8PuyFNZu30c/t5/Nr0uT6dY4llNbJ5ChyoF05cVx/2Tt/97U1dzZpxnlAgGSdqXy6p8rCnuqUhWIiuLEq27nm2cfQjVIu16nEle/MXN/HwlAx5POZNn0iSye9BuBqCiiy1XgzFsfRkSo06wNLbqcwCeP3EogEEVCo+a0z9O3sKxEyvsB8PFTN9Hr2FbE1ajCitFDGfLmD5SLdlKB3/l6HKMmzuO0nh1Y/OPT7Es9wPWD3wcgIyPIXc98wk+v30MgEODDHyayyIMRH8F5P4ZNWM7T57QjIDB6URKrt+7lzKOcfrYjF25izbZ9zFizjXcuPYagKqMWJbFq616g4H29kBFUnhmxiNev6UJAhB9mrWNF8m4uPK4BAF//tRaAE9smMvWfzaSm5R6E5qmLO3Js01hqVCrP6EEn8ubYZXw/07upBkz4koL6M4X0AE6/r+tV9SwRaQ3MwUkj/ADoDFQBVgLdVXWKiLwDLFHV50XkN+B5VR0lIi8CnVS1j9vqtFtVh7rPsVtVq7j/51pXQDwfkJ36eCfQXFXvEJETgd+BJqq6SkSOAt7BSXHsraobReR84CbgdCAWmAF0BVqTI70xZ0wicizwgqr2dpff6O5/kVs5bAmsd59nvaqmi8hdQGNVvetgr+3v/6T4r+pfgLo5UhX8rEmVsMqQL7Y/N6QeeiMfqF/NylU4eXNO6IOxhKsJSyPjWPod5d2IvSXp14WbDr2RD4wY9pbXIZSIXtdd63UIJWLLxgITm3xp9pP9ffFDMvfi/p6f13b8cpQvXqtMJZH6OBpnsJB5wOM46Y95LQaudreJBd5wlz8GvCwifwKlMebtp0BnEZmB07q2JHOFqi4EquJUnjJnv/wOmAfMxanUDVLVQ/1CzAPSRWSuiNwNvAssAmaJMy3BWzgtgH2AOSIyG7gAeLlkDtEYY4wxxhgTaQ479VFV9wP9C1jV2P27GWdAkIL2/RNoWcDywXnuVylsXQH7XpPj/81At4Ns2z7PfQXuc285l48DxhUUk9uPLu+wbw+5t5w+dG/GGGOMMcYYc1AlNeqjMcYYY4wxxhRIfTiPmdd8W1Fzh+lvkmfx/QUN4mGMMcYYY4wxfuLbipqqnud1DMYYY4wxxphD0wzPxxLxnZKaR80YY4wxxhhjTAmxipoxxhhjjDHGhBnfpj4aY4wxxhhj/CFoqY8hsxY1Y4wxxhhjjAkzVlEzxhhjjDHGmDBjqY/GGGOMMcaYUmXzqIXOWtSMMcYYY4wxJsxYi5oxxhhjjDGmVAWDNphIqKxFzRhjjDHGGGPCjFXUjDHGGGOMMSbMWOqjMcYYY4wxplSpzaMWMmtRM8YYY4wxxpgwYy1qxhhjjDHGmFIVtOH5Q2YtasYYY4wxxhgTZqyiZowxxhhjjDFhxlIfw1jV8pHx9kTKtBlR29d5HUKJqFI+0esQSkSkZFBESrm6+KiGXodQYno3jvU6hBLRrGYFr0MoEUGNjB+RHddd63UIJWLCe+97HUKJOPWWG7wO4Yhjg4mEzlrUjDHGGGOMMSbMREaTjTHGGGOMMSZsWYta6KxFzRhjjDHGGGPCjFXUjDHGGGOMMSbMWOqjMcYYY4wxplTZPGqhsxY1Y4wxxhhjjAkz1qJmjDHGGGOMKVUaKfM1lSFrUTPGGGOMMcaYMGMVNWOMMcYYY4wJM5b6aIwxxhhjjClVQZtHLWTWomaMMcYYY4wxYcZa1IwxxhhjjDGlSm14/pBZi5oxxhhjjDHGhBmrqBljjDHGGGNMmLHUR2OMMcYYY0ypUhtMJGTWomaMMcYYY4wxByEisSIyRkSWuX9rFrBNKxGZk+O2U0TuctcNFpH1OdadfqjntIqaMcYYY4wxxhzcA8BYVW0BjHXv56KqS1X1aFU9GjgW2At8l2OTFzPXq+rPh3pCS300xhhjjDHGlKoImEftHKCP+/+HwDjg/oNs3xdYrqqri/uE1qJmjDHGGGOMMQeXqKobAdy/CYfY/v+A/+VZdruIzBOR9wtKnczLWtSMMcYYY4wxpUqD3s+jJiI3AjfmWPS2qr6dY/1vQO0Cdn04xOcpD5wNPJhj8RvA44C6f58Hrj3Y41hFLULNnT6Fj19/kWAwSJ/+Z3P2/12Va/2ksaMZ+cXHAMRUrMQ1AwbRqFkLDhzYzxP33EJ62gEyMjI47oSTuODqG7w4hCyzpk3mvWHPEwwGOfmMc7jg8mtyrV+3ehXDnh7CimVLuPz6Wzj3/67MWvfjl5/x20/fgwiNmjTnjgceoXyFCmV7AC5V5alX32XCtJlUjKnAk4MG0LZls3zbffrdT3z8zQjWbtjExO8+omb1agD8Pmkaw4Z/hogQHRXF/bddx7Ht25b1YTBv+hQ+feMlgsEMep92NmfmKVuTx/7CT19mlq2KXH3HIBq6Zeu/995CeloaGRkZdDnhRM6/yruyNWvaZN5/9XmCGU65Or+AcvXqM065uuy63OVqxFduuUJo1LQ5t9/v33KVaf6SZVx2+/0M/c9ATu3dvazCzzJtyiRefWEoGcEMzjj7PC6/+l+51qsqw154jqmTJxITE8MD/3mMlq3bAPD1558x8ofvQJUzzjmPiy69vMzjz2nOX1P44NUXCAaDnHT62Zx72dW51v/522h+/Nz9jMRU5Lq7B9G4Wcsi7VuWJk+axNDnniUYDHLuuedxzbW5zydUlaHPPsukSc57MvixIbRu04ZNmzbx6H/+zZYtWwiIcN4FF3DpZd69J6vmTWf8p28SDGbQrnd/upx5Sa71y2dNZso3H0FACASi6H35zdRr2Q6A2b9+x4Jxo1BV2vXpzzGnnu/FIQDQpWENbj2hKQERRi1K4vNZ6/Jt07FedW7p2YTogLAjNZ17v5tf5H3LytuP/ovTe3UkZetOOl30SIHbvDDoMk7r0Z59qQe47tH3mLNkDQD9urfjhfsuIxAQhn//J88NP2QXn1JzTP0a3NC9MQERxixJ4uu5G3Ktb1enGv8+tRVJO/cDMGXV1qzX/Zz2dejXKgEFVm3dy8vj/yHN/2mBvuBWyt4+yPqTC1snIkkiUkdVN4pIHSD5IE/VH5ilqkk5HjvrfxF5Bxh5qHitohaBghkZfDhsKA888wqxcQk8cvu/OLbbCdRr1CRrm/jadfn3829QuWo15v41mfdfeorHhr1PuXLleei5V4mpWIn09HQev/tGOnbpRvO27Tw5loyMDN5+6VkGP/8qteITGXTT1RzXoxcNGjfN2qZKtWpcP+Bepk0cn2vfLSnJ/PTNF7zy0RdUqBDDc48+yMTff+Wk/meV9WEA8Oe0maxev5FRH7/BvMV/M+SlN/n89efybXdMuzb06daZa+7+d67lXY/pwIndj0NEWLp8FfcOeY6RH75WVuEDTtn66NXnGfT0y8TGJTD4jmvplK9s1eGhoa+7ZWsKw196mkeHvUe5cuV54NnssvXk3TfRoUs3mrcp+7KVkZHBOy8/y6ND3XJ189V0KaBcXTfgXv4qpFy9/KFTroYO9ne5Auf1eOHtj+jR+egyiDi/jIwMXn7uGYYOe534hERuvuYKepzQm8ZNs9+PaZMnsW7tGj79+gcWLZjPi88+xRvvf8SK5f8w8ofveHP4R0RHl2PQXbfTrccJ1G/Y0JNjCWZk8P7Lz/Hwc8OoFZ/Ag7dcQ+fuJ1A/R9lKqF2XR198gypVqzF72mTeef5pnnz9/SLtW1YyMjJ45umneO2NN0lMTOSqyy+nV+/eNG2WfRFg0sSJrF2zhu9++JEF8+fz1H+f5MOPPyE6Koq777mX1m3asGfPHq687FK6dj0+175lJRjM4I+PXuP8QU9RJTaO/w2+g6adjqdWvUZZ2zRo24mmnbohIqSsWcHPrz/J1U+/x+Z1q1gwbhT/9+grREWX47uhD9GkY1dq1q5X5scRELijdzPu/2EBKbsP8NrFRzN55RbWbNuXtU3l8lEM6N2MB39cSPLu/dSoWK7I+5alj0ZM4vUvxjL88esLXH9az/Y0b5hI23Me5Lj2TXn1oavoedUTBALCyw9cwem3PM+6pK1M+fQRRo6fw+IVGwp8nNIUELi5ZxP+89Mituw5wAvntWfa6m2s3Z77NV20cRdDflmSa1lspfKcdVRtbv1qLgcygtzftwW9msUx9u+UsjwEUzw/AlcDT7t/fzjItpeSJ+0xs5Ln3j0PWHCoJyx2HzURWSUicSLSWEQO+URHIhE5V0TKvMlj+dJFJNatT0KdekSXK8fxfU5h5uQJubZpeVQHKld1rqg3b9OOrSkpmTETU7ESABnp6aSnp4OUbfw5LVu8kDr1GlC7bn3KlStHz5NOyXfiXKNmLC3aHEV0dP7rDhkZ6RzYv5+M9HT2708lNi6+rELP5/fJf3H2KX0QETq2bcWu3XtI2bI133ZtWjSlXu3EfMsrV6yIiPNm7EtNzfq/LK3IU7a69j6ZWXnKVotcZesotm52LjjlLVsZGemIR4XrnyUFlKtJBZSr1kcRFXWIcpXq73IFTmvbKb26EVuzemmHW6AlixZQr3596tZz3o+TTjmVSRPG5dpm0oRxnNr/TESEo9p3YPeuXWzZnMKaVStp2649MTEViY6O5uhOx/Ln+N89OQ6Af5YsIrFefRLrOp+R7iedwvQ8n5FW7TpQxf2MtGjbji0pyUXet6wsXLCABg0aUL++8570O/VUxo8bl2ub8ePHcfqZznvSvkMHdu3axeaUFOLi42ndxmntrFy5Mo2bNCU55WAXnkvPphVLqZ5Yl+oJdYiKLkfLrn1YPmtKrm3Kx2R/t6YdSCXzR2/rhjXUbtaGchViCERFUb91B5bPnFTWhwBAq8SqbNiRysad+0kPKuOWpdCjaa1c2/RtGc/E5ZtJ3u204Gzfl1bkfcvSxFl/s23HnkLXn9W7E5+OnAzAX/NXUKNqJWrHVadLu6YsX5vMyvUppKVn8OUv0zirz9FlFHVuLeKrsHFHKkm7nNd0wvLNdG18yO5GWQIBoXx0gIBAhegotu45UIrRho9ghnp+O0xPA6eIyDLgFPc+IlJXRLKad0Wkkrv+2zz7Pysi80VkHnAicPehntBa1ErXuTjNmovK8km3bU4hNj67f2NsXALLlywsdPtxo0fQocvxWfeDGRn8+9ZrSNqwjlPOvsCTFo9MWzenEJeQfXJZKz6RvxcX7bpArfgEzvm/K7jx4rMoX74CR3fpytE5jrOsJW/eSu2EuKz7ifG1SNq8lfhasUV+jN/+nMpL737Mlu07eOO/+VtGSlu+shV/8LI1fvQIOnTplnU/mJHBo7f9i6QN6+h79gU0a3NUqcZbmC0pKdSKz12uli0KoVxdcgU3XXwW5StUoKPPy1VSyhbGTpzG+88PYcHSZaUV5kGlJKcQn5jdJSA+IYFFC3O/HykpycQnJubaJiUlhSZNm/HuG6+xY8d2KlSowNTJE2nVpuxTgjNt3ZxMrZzfWXEJ/LO48M/IHz//yNFduxVr39KUnJxMYo73JCExkQUL5ufaJiU5mdq1s7dJTEwkOTmZuPjsCxcbNqxn6dIltGvXvvSDLsCebVuoGpsdT9XYODYtX5Jvu39mTGLS1++zd+d2zrnncQDi6jdm8tcfsG/3TqLLlWfl3OkkNmlRZrHnFFe5PMm79mfdT9m9n9aJVXNtU69GRaIDwvPntadiuSi+m7uBMUuTi7RvOKmbUJO1m7IvNq1L2krdhJrUS6jBuqTs5euTttGlXdm3NgPUqlyezXuyX9Mtew7QMiH/a9oqsQqvXNCBrXsO8P601azZto+tew/w3bwNvH/ZMRxIDzJ73XZmr99RluGbYlLVLTgjOeZdvgE4Pcf9vUC+qyGqemXeZYdSpBY1EfleRGaKyEK3E15e0SLyoTuKydduTTKr1c39v7OIjHP/H+xu/6u7zfkiklnLHC0i5Q4SSxcRmSwic0XkLxGpKiIxIjLc3X+2iJzobnuNG/sIEVkpIreLyD3uNlNFJNbdbpyIvCgiE0Rksfsc37oT2j2R47mvcJ9zjoi8JSJR7vLdIvKkG9NUEUkUke44nQifc7dvJiIDRGSR+zp9XpTXvjhUC7hiUEjDxaI5Mxk/6kf+74bbs5YFoqL471sf88r/fmT50kWsXbm8lCI9tIKOpaitMLt37eSviRN48/MfeO/bUaSmpjLuV+/y2Qs8lhAblE4+4XhGfvgaw4Y8yLDhn5VQZEWnFHQMBR/E4jkzmTB6BJdcf1vWskBUFI+/+REvfvYDK5YuYp1nZaugz0gI5WrSBN74/Afe/WYU+/elMt7H5erp197jnhuvIioqqgSjClURylUhX2uNmjTl0quuYeAdtzLozttp1qKlp8dS0NdvYW/Igtkz+H3UCC53v39D2bf0Hfq7t+Cyl73N3r17GTRwIPcOvI8qVaqUfIhFUPDvYf7XtHnnHlz99HucNWAwU775EIDYug3pfMbFfPvsg3w/9GHiGzYhEPCmbBWlFEQFhJYJVXh4xEIe+HEBl3dpQL0aMV4mxRRLQUVeVQv87S/oN6ksFPSa5i1ryzfv4brPZjHgm3mMWLiJh/u1ApwU1a6NYrn+f7O4+pOZxJSLok/zuAIeMfJohnp+85uipj5eq6rHAp2BASKSt5bYCmfUlA7ATuDWIjxmM+AMnDkJPgH+UNX2wD53eT7uCCpfAHeqakfgZHf72wDc/S8FPhSRGHe3dsBlwHHAk8BeVe0ETAFyjoJwQFV7AW/i5Jze5u57jYjUEpE2wCVAD3cSuwwgs3d0ZWCqG9ME4AZVnYyTy3qfO6ndcpyJ8Tq5r9PNhRzjjSIyQ0RmfPfZB0V4GfOLjU9ga440k62bk6lZK39q1poVy3j3hf9y95DnqFotf8pT5SpVadPxGObNmFqsOEpCrfgENidn9b1kS0oSsXFF+0KbO+MvEuvUpXqNmkRHR3P8CSeydMG80gq1QJ99/zPn33AX599wF/G1YtmUvDlrXVLKFhJCaE3LqXPHo1i7YRPbduwsqVCLJDYuT9lKSaZGbP73Y82Kf3jvxae467FnqVJI2WrdwbuyVSs+gS0pxStX82bmLldde53IkoX+LVcL//6HgY8P5ZRLb+DX8VN44uW3GDuxbN+X+IQEUpI2Zd1PSU4mLk86qbNNUu5t3JabM84+l3c++oxX3nqPatWqUb+BN/3TwC1bOb+zNidTs4CytXr5Mt4e+l/ue/w5qlavHtK+ZSEhIZGkHO9JclIS8fG535OExEQ2bcreJinHNulpaQwaeC+n9T+dk/rmuwBdZqrExrFra3bfn11bN1O5RuFpf/Vbt2dH8kb27XJaONr1Po3Lh7zGRQ8/T0zlqtTwoH8aQMqeAyRUzR6wKL5KBbbkSZfbvPsA09dsJzU9yM7UdOZv2EGzWpWLtG84WZ+0jQa1s7/D6ifGsjFlO+uSt1E/MXt5vcSabEzZ7kGEsHnPAeIqZ7+mtSqXZ+ve3K/pvrQMUtOdUQ5nrt1OVECoViGao+tVJ2nXfnamppOhyuSVW2gTxi2cxltFragNEJG5wFSgAZC37X+tqmYmbn8C9CzCY45S1TRgPhAFjHaXzwcaF7JPK2Cjqk4HUNWdqpruPt/H7rIlwGqgpbvPH6q6S1VTgB3AiEKe58ccyxeq6kZV3Q+scI+5L84M49NFZI57P7PN/QDZI7fMPEj884BPReQKIL2gDVT1bVXtrKqdz7vsmkIe5uCatmrDpvVrSd64gfS0NKaOG8Mx3U7Itc3m5E289NiD3Hz/o9Spn31Ss3P7Nvbs3uUc1P5UFsyaTt0GjfBKi9Zt2bhuDUkb15OWlsbE38fQpUevIu0bn1ibvxfNZ39qKqrKvFnTqZ9j0IuycNm5p/PtOy/x7Tsv0bdnV34cMw5VZe6ipVSpXDmktMfV6zdmXbFb9Pdy0tLSqVGtbL/cm7RqQ9L6taS4ZWva+N/olKdsbUnexLAhD3DToEeofZCytWi2d2WreasCylX3opWruITc5Wq+z8vVr5+9zZj/vcOY/71Dv97d+PedN9G3Z9mmcrZqcxTr1q5l4wbn/fh9zC9079U71zbdT+jNL6NGoqosnD+PylWqUMutzG3b6qRDJW3ayIRxf9C332llGn9OzVrn/v6d/PsYOnfLXbY2J23i+Ucf4LYHB1M3R6WyKPuWlbZHHcXaNWtYv955T3795Rd69cn9nvTu3ZufRzrvyfx586hSpQpx8fGoKkMee4wmTZpwxZUhZ/qUqNpNWrE9aT07UjaRkZ7G39PG0axT7vK9PWl91ndr8qplZKSnE1PF6UO4d+d2AHZuSeafmZNodXyfsgw/y9KkXdSrXpHaVSsQHRD6tIhn8srcfVEnr9xCuzrV3H5PAVonVmXNtn1F2jecjBw/h8vPdEaePa59U3bs3sumzTuYsXAlzRsm0rhuHOWio7j41K6MHDfHkxiXpeymbvUYEt3XtFezOP5avS3XNpmDuYDTpy0gws796aTsPkDrhCpUiHJOwTvWq55vEBJjMh2yj5qI9MFpueqmqnvd9MWYPJvlbUvMvJ9OdmUw7z77AVQ1KCJpmt1mHDxIXFLAc2UuL8z+HP8Hc9zP+zz7C9gm53YCfKiqOedDyJQz/gwKj/8MoBdOSuR/ROQot6JZoqKiorn69oE8++CdBINBep96JvUbN2XsCKdPY9+zzue7j99j984dfPDKc+4+UTz++gds37qZt559nGAwA1Wla6++dDq+KPXu0hEVHc0Ndw3isYEDCAYz6Hv62TRs0ozRP3wDwGnnXMC2LZu576ar2btnDxIQRn79Oa98+AUt27ajW+++3HvDFQSiomjavBX9zjrPs2Pp1fVYJkybSf8rbiYmpgJPDBqQte7mB4YwZODtJMTF8sm3I3n/8+/YvHUb511/J726HsuQgbczZsIUfvz1D6Kjo4ipUIGhjwws8wFFoqKiufL2e3nuobsIBoP0csvW7yOdsnXSmefz/Sfvs3vnTj4aNhRw0h0fe20427du4Z3nhhAMBtGgclzvkzjao7IVFR3N9XcOYsh9brnq75SrX9xydWqOcrVv7x5E8pergZnlqkUr+p3p33IVDqKjo7lz4P3cN+A2gsEg/c86myZNm/HDt18DcM75F3J8j55MmzyRyy84hwoxMdz/n8FZ+z/ywEB27thBdHQ0d913P1WrVSvkmUpfVFQ0194xkP/eP4BgRpA+/c+iQZOmjPnR+Yyccvb5fO1+/7738rPuPlE89eaHhe7rhejoaO67/wHuuPUWMoJBzj7nHJo1a87XX30FwIUXXUSPnicwaeJEzj37LGJiYnh08GMAzJ0zh59/GknzFi247JKLAbj19jvoecIJhT5faQlERXHilbfx3XMPocEgR/XqR636jZn3u3NttcNJZ7JsxkQWT/yNQHQ00eUqcPptD2V9t44cNoTU3bvcx7mdmMretHwEFYZNWM7T57QjIDB6URKrt+7lzKOcPoIjF25izbZ9zFizjXcuPYagKqMWJbFq616g4H298vFTN9Hr2FbE1ajCitFDGfLmD5SLdlJK3/l6HKMmzuO0nh1Y/OPT7Es9wPWD3wcgIyPIXc98wk+v30MgEODDHyayyIMRH8F5P96ctJLH+rchEBB+W5rMmm37OK2N08d09OIkejStxeltEslQZX96kGfH/g3A3ym7mbRyCy9d0IGMoLJiyx5GL0462NNFDM3wfh41v5EC87dzbiByDnC9qp4lIq2BOcBpwAc4qZBVgJVAd1Wd4s4LsERVn3cnjXteVUeJyIs4aX99RGQwsFtVh7rPsVtVq7j/51qXJ5bywBLgElWdLiJVcVIfBwBHqep1ItISGIPTonYp0FlVb3f3X+Xe3ywi12SucyufA1V1hlsxHaiqZ7r7jAMGAntxUiJ7qGqy27+tqqquzhP/hcCZqnqNiAzDmUNhuIgEgIaqusrtg7cOaKWq2wt77aev2ea/ZNoCVC7vZd+XktMyY73XIZSIGekFj/znN1XLR8ZYSK2CkVGuUip7l25Y0pL2pHkdQoloVtObuf1K2ifzIuMk9psZ3s1dVpImvPe+1yGUiFNv8XaO2JI04sZuvuiKOKpxR8/Pa/uvmuuL1ypTUVIfR+MMFjIPZxbtgjovLAaudreJxZl5G+Ax4GUR+ROnpemwqOoBnH5iw9xUzDE4LXWvA1EiMh+nD9s1btpiiVHVRcC/gV/d4xwD1DnEbp8D94nIbJx00U/cGGcDLx6skmaMMcYYY0yk8Hpo/hIYnr/MHbJFzXjHWtTCi7WohRdrUQsv1qIWfqxFLbxYi1p4sRa1svdTgw6en9eesXaeL16rTMWe8NoYY4wxxhhjTOkI20vSIvIdkHcotftV9Rcv4jHGGGOMMcYUjx/nMfNa2FbUVNW7YdSMMcYYY4wxxkNhW1EzxhhjjDHGRIagjYsRMuujZowxxhhjjDFhxipqxhhjjDHGGBNmLPXRGGOMMcYYU6oyLPUxZNaiZowxxhhjjDFhxipqxhhjjDHGGBNmLPXRGGOMMcYYU6psGrXQWYuaMcYYY4wxxoQZa1EzxhhjjDHGlCobTCR01qJmjDHGGGOMMWHGKmrGGGOMMcYYE2Ys9dEYY4wxxhhTqmwwkdBZi5oxxhhjjDHGhBlrUTPGGGOMMcaUKhtMJHTWomaMMcYYY4wxYcZa1MJYtZgor0MoERlBKBcQr8M4fBlA8mqvozh8sYnUiPH/Rz8jCOWjIqBcBYmMctWkIVd+MtvrKErE0PPa8ezYZV6HcdjeurAdL05a43UYhy2+agWeevNPr8M4bC07N2HLxl1eh1EiTr3lBq9DKBG/vPGO1yGUjBu7eR2BKSX+P1szYS8iKmkQGSfTEBGVNIiQShpETLmKlEoaEBGVNCAiKmlARFTSAKukhZmIqaT5iA0mEjpLfTTGGGOMMcaYMBMZl9aNMcYYY4wxYcsGEwmdtagZY4wxxhhjTJixipoxxhhjjDHGhBlLfTTGGGOMMcaUKhtMJHTWomaMMcYYY4wxYcZa1IwxxhhjjDGlylrUQmctasYYY4wxxhgTZqyiZowxxhhjjDFhxlIfjTHGGGOMMaXK5lELnbWoGWOMMcYYY0yYsRY1Y4wxxhhjTKmywURCZy1qxhhjjDHGGBNmrKJmjDHGGGOMMWHGUh+NMcYYY4wxpcoGEwmdtagZY4wxxhhjTJixipoxxhhjjDHGhBlLfTTGGGOMMcaUKhv1MXTWomaMMcYYY4wxYcZa1CLUzGmTeffl58kIBul35jlceMU1udavW72Kl58awvK/l3DlDbdw3qVXZq3bvWsXrz7zBKtXLkdEGPDAf2jdrkMZH0G2mdMm8/bLQwkGg/Q781wuynMsa1ev4qWnHmP530u46oZbOT/HsVx70VlUrFSJQCCKqKgoXnr34zKOPpuq8tSH3zJh9iIqVijHk7dcTtsmDfJtN2jYRyxcsZboqADtmzfi0esvoVx0FH8tXMYdQ9+lXkItAE4+rgO3XnBaWR8Gs6ZN5p1XnicYDHLKGQWXrVeedsrWFddnl611a1YxdPBDWdtt2rCBy669kbMvvqwsw89i5Sq8ylWXhjW49YSmBEQYtSiJz2ety7dNx3rVuaVnE6IDwo7UdO79bn6R9y1LHepW46ouDQmI8Mc/KYxYsCnX+jaJVbn3xOYk7z4AwPQ12/hu3oas9SLw5Blt2bo3jaG/LyvT2HPasGgmM75+Fw1m0Lx7P47qd2GB221ZvYxfht5Hz2vvo2GnHlnLg8EMRj97DxWr1+LEWx4pq7Dz6d2+LoMv60xUQPh8wj+8/tPCXOurVizHyzf1pG5sJaKjArw1ahFfTVxOhXIBvnrwVMpHB4iOCvDz9NW88P08j44CureI474z2hAICN/PWMfwCStyrb+qZxNOP7ouAFEBoUl8FU7671h27kvj0fPb06tVPFv3HOCiVyZ6EX6WY+rX4IbujQmIMGZJEl/P3ZBrfbs61fj3qa1I2rkfgCmrtmZ9ps9pX4d+rRJQYNXWvbw8/h/SPGqmefvRf3F6r46kbN1Jp4sKLt8vDLqM03q0Z1/qAa579D3mLFkDQL/u7XjhvssIBITh3//Jc8N/LsvQPWODiYTOKmoRKCMjg7deeJYhL75KrfhE7r3hao7r0YuGTZpmbVOlWjVuvPNepv45Pt/+77zyPMd07cYDTzxDWloa+1NTyzL8XDIyMnjjhWd44sXXqBWfyN03XEXXPMdStVo1brpzIFP/HFfgY/z35beoXqNGmcR7MH/OWcTqjSmMeunfzPtnNUPe/YrPn7wn33Zn9jyWZ253KgX3DfuIb36fwv/16wnAsa2b8vr9N5Vp3DllZGTw1ovP8tgLTtkaeOPVHNezFw0b5y5bNwy4l6kTc5et+g0b89L7n2U9zrUXnM7xvU4s0/gzWbkKr3IVELijdzPu/2EBKbsP8NrFRzN55RbWbNuXtU3l8lEM6N2MB39cSPLu/dSoWK7I+5YlEfhX10Y8NeZvtuw9wBOnt2XW2u2s35H7e3RJ8u5CK2H9WyeyfkcqFctFlUXIBQoGM5j+5VucdPsQKtWoxejn7qV+++OoXqdhvu1m//ABddp0yvcYS/8YQbXEBqSl7i2rsPMJiPDElcdx+XO/sXHrXkY82p8xs9exbMOOrG2u6tuKZeu3c+1LfxBbtQLjnjqH76esZH9akP97Zgx796cTHSV889Bp/DF/A7OXb/bgOOCBs47iluF/kbQzlU9v6c74xcmsSNmdtc1HE1fy0cSVAPRqncDl3Ruzc18aACNmreOLqat5/ELvLrqCcxw392zCf35axJY9B3jhvPZMW72Ntdtzf14XbdzFkF+W5FoWW6k8Zx1Vm1u/msuBjCD3921Br2ZxjP07pSwPIctHIybx+hdjGf749QWuP61ne5o3TKTtOQ9yXPumvPrQVfS86gkCAeHlB67g9FueZ13SVqZ8+ggjx89h8YoNBT6OObJZ6mMZEJEy/bVdtnghdeo1oHbd+pQrV44T+p7CtDwnzTVqxtKizVFEReeuq+/ds5uFc2dzypnnAFCuXDmqVK1aZrHn9XeeY+nVt1++CkCNmrG0LOBYws3vMxZwdq8uiAgdWzRm1959pGzbkW+7Xp2OQkQQEdo3a0jS1u1lH2whli1eSO08ZeuvQspWdFTh78e8mdOpXbc+CbXrlHbIBbJyFV7lqlViVTbsSGXjzv2kB5Vxy1Lo0bRWrm36toxn4vLNJO92rrJvd09Ai7JvWWpeqzJJu/aTvHs/GUFlyqqtHNugZpH3j61UjqPr1+CPZd6cfGbasmoZVePqUDWuNlHR5Wh0zAmsnTct33Z/jx9Jg47dialaPdfyvds2s37hDJp3P6WsQi7Q0U1rsSppF2tSdpOWEWTEtNX065SnxVmhcoxT8a9coRzb9+wnPRgEYO/+dACiowJERwleNQi0q1+DtVv3sH7bPtIzlF/mbaRPm4RCtz+tQx1G52ilnbVqGzv2ppVFqAfVIr4KG3ekkrTL+bxOWL6Zro2L/vkIBITy0QECAhWio9i650ApRntwE2f9zbYdewpdf1bvTnw6cjIAf81fQY2qlagdV50u7ZqyfG0yK9enkJaewZe/TOOsPkeXUdTGb3xbURORxiKyREQ+FJF5IvK1iFQSkb4iMltE5ovI+yJSwd1+lYg8IyJ/ubfmB3nsi0RkgYjMFZEJ7rIoERnqPu48EbnDXX6w53tERCYCF4lIPxGZIiKzROQrEalSWq/NlpQU4hISs+7HxSeyZXPRfvQ3bVhP9Ro1ePm/j3HntZcz7OknSN3nzZVpgC0pycTnOpYEtmxOLvL+IsIj99zGndddwegfvy2NEIsseet2ateqkXU/MbY6SVvzn1BnSkvPYMSfM+jZsU3WsjnLVnHeoGe46ak3+WftxtIMt0BbNucuW7XiE9mSEvoJ5Z+//0qvvqeWZGghsXIVXuUqrnJ5knftz7qfsns/tSqXz7VNvRoVqVIhmufPa8/rFx/NKa0SirxvWapZqTxbcpw8bt17gNhK5fJt1yK+Ck+deRSD+ragXvWYrOVXdmnI/2au9axCkGnfji1UqhmXdb9SzTj27diSa5u927ewdu5UWpyQP1V2xjfv0uncaxDx9jSjds1KbNiafTK9cdseEmtWzLXNB2OX0LxudWa8dAG/PnEmgz+bkfX6B0QYNeQMZr9yERMXbmTOirJvTQNIqBZDUo5W2aSdqcTnKDc5xZQL0L1FHGMXJpVVeEVWq3J5Nu/J/rxu2XOAWpUr5NuuVWIVXrmgA4NPa01D9/3auvcA383bwPuXHcNHV3Rmz4F0Zq8v/LvOa3UTarJ209as++uStlI3oSb1EmqwLil7+fqkbdSNL3pl1c8y1Pub3/i2ouZqBbytqh2AncA9wAfAJaraHie185Yc2+9U1eOAV4GXDvK4jwCnqmpH4Gx32Y1AE6CT+3yfikjMIZ4vVVV7Ar8B/wZOVtVjgBlurKVCyV8SBSnSvhkZGSz/eyn9z72Ql9//lJiKMXz96QclHOHhKeqxADz7+nu8/P6nPDb0FUZ++xUL5swqxcgOrqDvB5HCj+Xx97/i2DbNOLZNMwDaNmnAmFcH892z93P5aSdwx/PvllKkB1HA2ePBjqEgaWlp/DVpAj1O7FtSUZUIK1felauivPJRAaFlQhUeHrGQB35cwOVdGlCvRkwI71rZKOilz/serdq6hwHfzOXBkQv5dUky957YAoBO9aqzMzWdlVu9SxXMpAXWFHMf3Mxv3qHTOVcTCOROGlk3fzoxVatTq2Gh10PLTFHej97t6rJozTY63/UNpz3yE0OuOI4qbgtbUJX+j/xE13u+oWPTOFrWq1HqMReooIJeSG2+V+sE5qzZnpX2GE4KPozcx7F88x6u+2wWA76Zx4iFm3i4XyvASX/u2iiW6/83i6s/mUlMuSj6NI8r4BHDQ4FlT7XA35qCztuMAf9X1Naq6iT3/0+AvsBKVf3bXfYh0CvH9v/L8bfbQR53EvCBiNwAZP4CnQy8qarpAKq6FaeieLDn+8L9ezzQFpgkInOAq4FGBT2xiNwoIjNEZMYXHw0/SIiFi4tPYHNy9pW0zSlJxMYV7cssLj6BuPgEWh3VDoDuffqyYunSYsVREmrFJ5CS61iSiY2LL/r+7rY1asbSrVcf/l688BB7lKzPfvmT8+9/lvPvf5b4mtXZtGV71rqkrTtIqFmtwP1e/3oU23bu5v4rz81aVqVSDJVjnCuPvTodRXp6kG07dxe4f2mpladsbQmhbGWaNXUyzVq0pkasd+lpVq7OzVoWDuUqZc8BEqpmX1WPr1IhV6sUwObdB5i+Zjup6UF2pqYzf8MOmtWqXKR9y9LWPQdytejFVirPtjwpZ/vSguxPd1Lr5qzfQVRAqFohmpYJVTmmfg1ePr8Dd/RqxlG1q3Jrz6Z4oVKNOPZuy2492rttMxWrx+baZsuaf5g4fCjfP3I9a2ZP5q8v3mTt3KmkrFjEuvl/8f0j1zNx+HMk/T2PSR8+X9aHAMDGrXupG1s5636dmpVJztN/8aITmjF6pjPIw+rkXaxN2U2zOrk/Qzv3pjF1SRJ92tct/aALkLwjlcQcLWiJ1WJI2bm/wG1P7VCH0XPDs7/T5j0HiMvRglarcnm27s39ed2XlkGq+/mYuXY7UQGhWoVojq5XnaRd+9mZmk6GKpNXbqFNonddMw5lfdI2GtTO/szUT4xlY8p21iVvo35i9vJ6iTXZmLLdgwjLXoaq5ze/8XtFLdRXXAv5P/dGqjfjtIA1AOaISC2cC0F59znUxdzMfAsBxqjq0e6trapeV8hzv62qnVW18yVX/esQD1+wFq3bsmHdGjZtWE9aWhp/jh1D1569Dr0jULNWHHEJiaxbswqAuTOn06Bxk2LFURJatm7LhnVrs45lwthfi3wsqfv2sXfvnqz/Z0+fRqOmzUoz3HwuO/UEvn1mEN8+M4i+ndvz44TpqCpzl62iSqUY4mtWz7fP179PYdLcJTw34CoCgeyPaMr2nVlXHuf9s5qgBqlRtXK+/UtTi9Zt2bhuDUk5ytZxPYr2fmSaMPYXTji5XylFWDRWrsKrXC1N2kW96hWpXbUC0QGhT4t4Jq/cmmubySu30K5ONbdvSoDWiVVZs21fkfYtS8u37KF21QrEVylPVEDo1jiWmWu35dqmekx2v8dmtSojArv2p/PF7HXc8c1c7vx2HsMmLGfhpl28PnFF3qcoE7UatWBXygZ2b95ERnoaq2f9Sf0OXXNtc+5j73LuEOfWsFN3jrvkZhp0PJ5O51zN+U8M59wh79LzX/eR2LIDPa6+15PjmLtyC00Sq9IgrgrlogKc1bURY2avzbXNhi176NG2NgBx1WJoVqcaa1J2E1u1AtXctNUK5aLo2bY2yzd6k2q3cP0OGtaqTN2aFYmOEk7tUIdxS/Kna1epEM2xjWMZt7joqdxlaVnKbupWjyHR/bz2ahbHX6tzfz4yBwoCJ0U4IMLO/emk7D5A64QqVIhyvr861quebxCScDJy/BwuP7M7AMe1b8qO3XvZtHkHMxaupHnDRBrXjaNcdBQXn9qVkePmeBusCVvh3Uv+0BqKSDdVnQJcipNieJOINFfVf4ArgZwjBFwCPO3+nVLYg4pIM1WdBkwTkbNwKmy/AjeLyDhVTReRWGAJ0Pggz5dpKvBa5nYiUgmon6MlrkRFRUdz092DGHzvAILBDE4+42waNmnGqO+/AaD/uRewbctm7rnhavbu2UMgIPz41ee89vEXVKpchRvvGsgLQx4hLS2N2nXrcedD3g2rHBUdzc1338cj995BMJjBKWecTaMmzfj5+68BOP3cC9m2ZTN33XBV1rH88NX/eOPjL9m5YztPPHQfAMGMDHqfcirHdu3u2bH06tSWCXMW0f/Ox4mpUJ4nbs4elv7mp99kyI2XkhBbnSHvfknduJpc9p+XgOzh0n+dOocvfptEVCBATPlyDB1wTchph4crKjqaG+8axOCBTtnqe7pbtn5wy9Y5Ttm698bssjXi68959SOnbO1PTWXujL+4deBDh3im0j8OK1fhU66CCsMmLOfpc9oREBi9KInVW/dy5lHOyfPIhZtYs20fM9Zs451LjyGoyqhFSaxyUwQL2tcrQYUP/lrDAye3IiAw7p/NrN+RSt+WTivs2L9T6NoolpNbJZARVA5kBBk2wZvK2MEEoqLofPFN/P7aYFSDNDv+ZGrUacjff44CoOUJ/T2OsGgygsp/PvmLjwf2JSogfPHnP/y9YQdXuOmmn/yxjFd+nM/z13fn18fPRER46stZbNu9n9b1a/DCDT2ICggBEUb+tYqxc9d7dhzPjFjE69d0ISDCD7PWsSJ5Nxce5wyM8vVfTuXzxLaJTP1nM6lpGbn2f+rijhzbNJYalcozetCJvDl2Gd/PLPtpLIIKb05ayWP9nWkGfluazJpt+zitjdNnePTiJHo0rcXpbRLJUGV/epBnxzqnSn+n7GbSyi28dEEHMoLKii17GL3Yu354Hz91E72ObUVcjSqsGD2UIW/+QLloJwnrna/HMWriPE7r2YHFPz7NvtQDXD/4fQAyMoLc9cwn/PT6PQQCAT78YSKLbMRHUwgpOA89/IlIY+BnYALQHViGU1HqBgzFqYROB25R1f0isgoYDpyO05J4qVu5KuixvwVa4LSEjQXuwkmBfBY4DUgD3lHVV0Wk70Ger7OqbnYf8yTgGSCzzf/fqvrjwY5xafJOf745eQTCrhdJ8TRZP+nQG/nAP3W9q1SUpKgyrkyUlkgpV6dNKrXxkcpcQrX8gxv4Ues6BafA+s27n/7ldQglola98O1PFYr6jWp4HUKJ+OWNd7wOocQcmP2+L34QB1ds7vl57eB9//jitcrk9xa1oJummNNYIP+ELo7XVPWxQz2oqp5fwOJ0nAFA7smzbYHPp6qN89z/HehyqOc2xhhjjDHGGL9X1IwxxhhjjDFhzo+DeXjNtxU1VV0FtAth+8Z5l4nIw8BFeRZ/papPHlZwxhhjjDHGGHMYfFtRKwluhcwqZcYYY4wxxpiwckRX1IwxxhhjjDGlL8MyH0Pm93nUjDHGGGOMMSbiWIuaMcYYY4wxplTZYCKhsxY1Y4wxxhhjjAkzVlEzxhhjjDHGmDBjqY/GGGOMMcaYUmWDiYTOWtSMMcYYY4wxJsxYi5oxxhhjjDGmVNlgIqGzFjVjjDHGGGOMCTNWUTPGGGOMMcaYMGOpj8YYY4wxxphSZYOJhM5a1IwxxhhjjDEmzFhFzRhjjDHGGGPCjKU+GmOMMcYYY0qVjfoYOmtRM8YYY4wxxpiDEJGLRGShiARFpPNBtjtNRJaKyD8i8kCO5bEiMkZElrl/ax7qOa2iZowxxhhjjClVGer97TAtAM4HJhS2gYhEAa8B/YG2wKUi0tZd/QAwVlVbAGPd+wdlFTVjjDHGGGOMOQhVXayqSw+x2XHAP6q6QlUPAJ8D57jrzgE+dP//EDj3UM8pavmiRzQRuVFV3/Y6jsNlxxFeIuU4IHKOxY4jvNhxhJ9IORY7jvASKccRKUTkRuDGHIveDvX9EZFxwEBVnVHAuguB01T1evf+lUBXVb1dRLarao0c225T1YOmP1qLmrnx0Jv4gh1HeImU44DIORY7jvBixxF+IuVY7DjCS6QcR0RQ1bdVtXOOW65Kmoj8JiILCridU9hj5iEFPW1x47VRH40xxhhjjDFHPFU9+TAfYh3QIMf9+sAG9/8kEamjqhtFpA6QfKgHsxY1Y4wxxhhjjDl804EWItJERMoD/wf86K77Ebja/f9q4IdDPZhV1Eyk5E3bcYSXSDkOiJxjseMIL3Yc4SdSjsWOI7xEynEc8UTkPBFZB3QDfhKRX9zldUXkZwBVTQduB34BFgNfqupC9yGeBk4RkWXAKe79gz+nDSZijDHGGGOMMeHFWtSMMcYYY4wxJsxYRc0YY4wxxhhjwoxV1IwxxhhjjDEmzFhFzRhjjG+ISEBEqnkdR6hEpLKIBNz/W4rI2SJSzuu4jnT2voQvv37WjSlJNpjIEUhEKgH3Ag1V9QYRaQG0UtWRHodWJCIygoNMHqiqZ5dhOIdNROoDw4CeQBCYCNypqus8DawYRESAy4GmqjpERBoCtVX1L49DKxIRGcbBy9aAMgznsIlIdWAwcIK7aDwwRFV3eBZUMYjIZ8DNQAYwE6gOvKCqz3kaWAhEZCbO+1ATmArMAPaq6uWeBlYMInInMBzYBbwLdAIeUNVfPQ2sGCLlfRGRHsAcVd0jIlcAxwAvq+pqj0MLSYR81n19jmXCi7WoHZmGA/txhhcFZ3K+J7wLJ2RDgeeBlcA+4B33thtY4GFcxTUcZ26NOkA9YIS7zI9exylXl7r3dwGveRdOyGbgnBzE4JzoLHNvR+OcOPjN+8BO4GL3thN/lq22qroTOBf4GWgIXOlpRKETVd0LnA8MU9XzgLYex1Rc17rvRz8gHvgXRRhmOkxFyvvyBrBXRDoCg4DVwEfehlQskfBZ9/s5lgkj0V4HYDzRTFUvEZFLAVR1n9sS4guqOh5ARB5X1V45Vo0QkQkehXU44lU158nzByJyl1fBHKauqnqMiMwGUNVt7oSPvqCqHwKIyDXAiaqa5t5/E/BdawHOZ/2CHPcfE5E5XgVzGMq56WjnAq+qapqI+C0dRESkG06L83XuMr/+Bmf+XpwODFfVuX76DckjUt6XdFVVETkHpyXtPRG5+pB7hZ+CPusehxQyX59jmfBiLWpHpgMiUhE3xUtEmuFc/fGbeBFpmnlHRJrgXN31m80icoWIRLm3K4AtXgdVTGkiEkV22YrHSef0m7pA1Rz3q7jL/GafiPTMvOOmR+3zMJ7iegtYBVQGJohII5zWQT+5C3gQ+E5VF7rfXX94G1KxzRSRX3Eqar+ISFX8+TkHuJPIeF92iciDOK1PP7nfw37sa1fQZ91XqdpEzjmWCQPWR+0IJCKnAP/GSe/4FegBXKOq47yMK1QichrwNrDCXdQYuElVf/EsqGJw+3G9ipMmocBknD5qvupbACAilwOX4KQNfghcCPxbVb/yNLAQici/cPp2ZZ6w9QYGZ7a4+YWIHI3zPlTHaQXZivNZn+tlXCVBRKJVNd3rOEIlIpVVdY/XcRwOd/CNo4EVqrpdRGoB9VR1nreRHblEpDZwGTBdVf90f1f6qKqv0h9FpImqrsxxX4DmqrrMw7BCEinnWCY8WEXtCCQisTgnbce7f6cCVXN+OfqFiFQAWrt3l6iqXbXykPt+NAH64pStsUCSqm71NLBicE98urp3p6nqJi/jORyZI6e5fT98xy1XF+BcjMlKS1PVIV7FFCo3ve49oIqqNnT7Et2kqrd6HFrIRGSsqvY91DI/EJGWwEDyl62TvIqpuNzWpxaq+ps7oEWUqu7yOq5QiMgsVT0mz7KZqnqsVzGFwr2IcSHOb1/WOZaqbvY0MONbfszDNodvBNBfVX8CEJE2wFdAO0+jKp5jyf6B7Sgi+OUKoogMUtVnCxtp0G8jDLq+Bc5V1SUAIlIHGIPzPvlNFJCCU7ZaikhLVfVFH0gRuUJVPxGRe/IsB0BVX/AksOL7ASf9aSb+TSF6CTgVZ+Ag3H5dvQ66R5gRkRigEhAnIjXJ7qtWDX+mBoPz2/cmzuiVfhwwCAARuQG4EYgFmuEMTPUmzkWzsCcirYGjgOoicn6OVdVwBnfyBVUNisjtqvol8JPX8Rj/s4rakem/OANvnI7TGvURTkdqXxGRj3F+kOaQ/QOr+Gekq8Xu3xmeRlGyvge+EpELgAY4J6UDPY2oGETkGZwUzoVk971RwBcVNZz+HZC7n52f1VfV07wO4nCp6to8Ywr4rWJwE05fu7o4lebMg9mJv0Z3zSldVd/wOogScBtwHDANQFWXiUiCtyGFpBVwJlADOCvH8l3ADV4EdBjGiMhA4AsgK83Zj5klxnuW+niEEpFzcYbwrQqc76f870wishhnKF8rxGFERG4DTiO7z+BkbyMKnYgsBTpYKm14EJG3cYZOn+91LMUlIl8DL+D0Rz0eGAB0VtX/8zSwYhCRO1R1mNdxlAQRGQwkA9+Ro7XWbyfVIjJNVbuKyGxV7SQi0cAsVe3gdWyhEJFuqjrF6zgOh4gU1I1EVbVpAcuNOSirqB1BCkixOwlnII5V4L9UOxH5Chigqhu9jqU4JIIm7s6TYic4I4/NBzKH6fdVqp2IjAIuUtXdXsdSHCLyysHW+/CzvghojjN34n6cMqZ+OgkVkTjgZeBknPh/xfn+8lWFIJOIdCd/vy6/ZDNkiZSTahF5FtgOXAXcAdwKLFLVh72MK1TuSME3kL9sXetVTMZ4yVIfjyx5U+xmehJFyYkDFonIX+S+EuqXCs5Q9+/5QG3gE/f+pbiVZx/Jm2L3XSHL/WIvMEdExpK7bPmlgpP52e6BM/LYF+79i/Dn576/1wGUgFaqmivF3J0uYZJH8RRbBKSdZ1HVJl7HUEIewJkHbj5OiurPqvqOtyEVyw/An8Bv+C81GAB3HrhbgMw+qOOAtzLn5TQmFNaiZnxLRHoXtDxzQmy/EJEJeSbuLnCZKTuFTRTrw+H5/wD65Zi4uxzwq6qe6G1koXPng2uhqsPdq+5V/DRSbSGj2eVb5geRlHbujo54D9BQVW8UkRY4leqRHocWEhG5U1VfPtSycCcic1T1aK/jOBwi8i7OHHaZvxdXAhmqer13URm/sha1I4iIfKmqF4vIfAoeZdA3aUTgVMgKGo7Y67iKIV5EmqrqCvDnxN0i8pKq3lVYOqePWjkBp0LmTljaUFWXeh3PYcicuDszvc6XE3eLyKNAZ5wBB4bjnAR9gtNiGNbcYfm743zOc6YIV8Of31cAC3CyAHyZdp7HcJxW5u7u/XU4I0H6qqIGXI2TWpvTNQUsC3cjReR0Vf3Z60AOQxdV7Zjj/u8i4vu5K403rKJ2ZLnT/Xump1GUEL8PR5zD3cA4Eck1cbd34RTLx+7foQfdyidE5CycYykPNHEnjh7itwon8DQw221ZA3fibu/CKbbzgE7ALABV3SAifkmrLY9TQY4mdyrwTpz5lvzI72nnOTVT1UtE5FIAVd0neYbmDGdu3JfhfE/9mGNVVWCLN1EdljuBh0TkAHCA7P6o1bwNKyQZItJMVZcDiEhTfJrGabxnFbUjSOagG6q62utYSojfhyMGQFVHu+k2vp24W1Vnun99lXZ6EINxytY4AFWd47Z0+oqbJjiK7Im7H/DpxN0HVFVFRAFEpPKhdggX7mdivIh8EEHfvYO9DqAEHXBbzzPLVjP8NVffZJyWzTjg+RzLdwHzPInoMKiqXy7AHMx9wB/uxVcBGgH/8jYk41dWUTuCiMguCh5l0I9XrAD2q+qBzIuf7nDEfu0z0QInrSsGn03cDVBYOm0mv6XV4syttCPPhXW/lq39OCdyMfhs4u4cvhSRt4Aabkv6tTgTFIe9zLRg4NXMimZOfmyFiqC0c3AqnaOBBiLyKU46rW9Oqt3K/2qgm9exlAS3NfNyoImqPi4iDYA6qvqXx6EVmaqOzezriHN+5buLryZ82GAixrciaDjiR4E+OKPz/Ywzwt1EVfVNWpR70lYov7UkiMh7wFickdQuwJnzqpyq3uxpYCESketxUonq44zQdzwwRVVP8jKu4hCRU4B+OCc+v6jqGI9DKhIROVZVZ0bK4EeQO+1cVZu5J6Vvqqrf0s4BEJFaOJ8NAaaq6maPQyoyEZmoqj0LuBDrywuwIvIGEAROUtU2IlITZwCkLh6HVmTuXKKfqup2935N4FJVfd3TwIwvWUXN+JaIBHCGI846eQPe9dtIZG5rVEdgtqp2FJFEnOM4y+PQSpyITFHVsL/y67YQPEzusvW4qqZ6GliI3LLVBefk82gRaQ08pqqXeBxaSETkGVW9/1DLwpWIRAEfquoVXsdSEkRkDm7auap2cpfNV9X2ngZWDCIyNm8Fs6BlpmxkjoQq7sTd7rK5eQbnCGsFjVyZ83iMCYWlPhrfUtUg8I5787NUVQ2KSLqIVAOSAV9NthqCGK8DKApV3YtTUfNV62wBUlU1VUQQkQqqukREWnkdVDGcAuStlPUvYFlYUtUMEYkXkfKqesDreEqA79PORSQGqATEuS0emXnO1fDZyKjuRct5qtrO61hKQJp7YSOzz2A8TgubnwRERDIvGrvHU97jmIxPWUXN+JaInAk8jtNRNxofpnq4+fjzRKQGToVzJrAb8E0+foh8cTInIp2Bh3BG4Mz6nvRhX7t1btn6HhgjItuADZ5GFAIRuQUnpbmpiOQcGKEq/psoehUwyR2Zb0/mQlV9wbOIim+8iDwEVHRTUm8FRngcU6huAu7CqZTNJLuithN4zaOYisW90DdXRBqq6hqv4zlMrwDfAQki8iTOyKj/9jakkP2C06/2TZzfvJtx+kEaEzJLfTS+JSL/AOcD8/2W7piTiMxU1WPd/xsD1VTVd6N1FYX4ZIJfEVmKM3LXfHJczfVbX7uc3D5S1YHRfmnVEZHqQE3gKZz+gpl2qerWgvcKT25f1HxU9bGyjuVwRUraOYCI3KGqw7yO43CJyO84ac5/kftCgO8Gq3FTtPvilK2xqrrY45BC4n4+bgROxjmGX3E+HzZEvwmZVdSMb7lzQ/V1UyB9S0ReAz5Q1elex1La/JKnn9lB3+s4DkckpUO5Q6avU9X9ItIH6AB8lNlZ30/Emf9NVXW317EYEJGLcC5e7BKRfwPHAE+o6iyPQwtJhA1WUxNoQO5sBl+9H5lEJBaoH6kXX03ps4qa8S0R6YKT+jie3JOu+iqVSEQWAS1xhljeQ3YKp9/S7A5JRNqp6gKv4zgUEekLXIoz8mPOsvWtZ0EVgzvc+IN+T4dyB6/ojJOK+gvwI9BKVU/3MKyQiEg7nInhY91Fm4GrVHWhd1EVTySknWcSkXmq2kFEeuK03A4FHlLVrofYNey4A1Fljo74l6omexlPcYjI48A1wHKyU+XVTyPVisg44Gycz8YcIAUYr6r3eBiW8Snro2b87Emc/lwx+Lujbn+vAzhceYaGzuzroeQ5gfNDJc31L5wJyMuRnfqogK8qakAdYKGI+D0dKqiq6SJyPvCSqg4TkdleBxWit4F7VPUPALdl8B2gu4cxFddLREDauSszHe0M4A1V/UFEBnsYT7GIyMXAc8A4nO/dYSJyn6p+7WlgobsYaOaX9OxCVFfVne70KMNV9dE8fWyNKTKrqBk/i1XVfl4Hcbj83O8pk6pW9TqGEtbRj0ONF8B3/Z8KkSYil+LMmZg5bUU5D+MpjsqZlTQAVR0nIpW9DOgwrAUWREAlDWC9OJOpnww8IyIVgIDHMRXHw0CXzFY0d7TE3wC/VdQWADVwRj/2q2gRqYNT6fT7yMHGY1ZRM372m4j0U9VfvQ7EZHNTiFqo6nARiQOqqupKr+MK0VQRaauqi7wO5HAcqn+KX+a1w2nhvBl4UlVXikgT4BOPYwrVChH5D076I8AVgN8+F5kGAT+LiK/Tzl0XA6cBQ1V1u3uCfZ/HMRVHIE+q4xb8WeF8CpgtIgvIXbb8lAUwBCdFe6KqTheRpsAyj2MyPmV91Ixvuel2lXG+zNPwcT+JSOGObNcZp/9QSxGpC3ylqj08Di0kIrIYaIZzIr2fCO036JfBXSKBO0DCY0BPnPI0Hmfy8W2eBlYMIvIrTtp53lFRfdOCKyLV3PS02ILW+3BU0edwBtn5n7voEpzBhHwx12AmEVkIvEX+suW7QVEKIyIPqupTXsdh/MEqasaYEuMO+tAJmJVZAcjsrO9pYCESkUYFLY+ENNWcwn26BBH5UlUvFpH5FDAHn5/KlYh0UlW/9asrkIjMUNXOXsdxOERkpKqeKSIrye5Pm0lVtalHoRWb24cz80LABFX9zuOQQiYi41W1wBEsI0W4f++a8GKpj8bXRKQD+Scl9tuAD5HkgKqqiCiAX/vgqOrqgoaIxhmZ05SdO92/Z3oaRcl4wU2r+wr43I+jPebg+7RzVT3T/dvE61hKgojcjZO94Pffv5ki8hTOyK45Ux99OTx/IeTQmxjjsIqa8S0ReR8n1WMh/h6ZLyKIiAAj3Y75NUTkBuBanJHtfKWwIaIB3wwRXURhfcKgqhvdv76vIKvqiSJSG6dP1NsiUg34QlWf8Di04rgNGCQivk07F5GDtmj4sGJQDfhFRLYCnwNfq2qSxzEVR2Yq9vE5lkXad6+lspkis9RH41siskhV23odh8kmIrOA+4F+OCdvv6jqGG+jCp2ILAXa+3yI6EMK93nt8kz7kGsVPqsY5CQi7XEG5LhEVf08tYhvicgfB1ntq3m7cnKzTC4BLsCZJP5kj0MyeVjfYBMKa1EzfjYlEkbmizBTgO2q6sdR03Ly9RDRkTKvXSRN+yAibXBOoC/EGZHvc+BeT4M6DH5PO1fVE4uynYic4rOLTcnAJpwyluBxLCETkRo403A0JnfZGuBRSKXhK68DMP5hLWrGt0SkFzAC50cpYkfm8xMRWQS0xOnLlXOCZV+9JyLSGfgBp8Lm1yGiTRgRkak4I/J9paobvI7ncBSWdq6q13oXVenwy8APInILzoWAeJy5077w40VMEZkMTCX/qI8fehZUiNzh+F8GuuEcwxTgblVd4WlgxpesRc342fvAleT5Qjee6u91ACXkQ+AZIqBsRci8dr6nqscfeivfOP4ISjsP636cOTQC7lLVOV4HcphiVPUer4M4TJ8BrwHnuff/D+ciTVfPIjK+ZS1qxrdE5He/9iMw4S1ShoiOlHntIoGItMCZzLctEJO53KfDwL8HPO/HFptQ+aVFLZOIJJC7fK3xMJyQuaNX7gZGkjubwTfz2onINFXtmmfZ1Ai7WGPKiLWoGT9bIiKf4aQ/5vxC900/CRO2ImWI6PNw57UDUNUNIhIx/b58ZjjwKPAicCLwL/zTWpPXhzh9hC3tPEyIyFnAC0BdnH5qjYDFwFFexlUMB4DngIfJPeKuny5o/CEiD+D0Q1WclNSfMidX91Ol03jPKmrGzyrinCT0y7HMhuc3JSFShoiOiHntIkRFVR0rIuJONzBYRP7Eqbz5zZGUdr7K6wCK6Amc76vfVLWTiJwIXOpxTMVxD9BcVTd7HchhuMT9e1Oe5dfiv0qn8ZhV1Ixvqeq/vI7BRKaijggXziJpXrsIkSoiAWCZiNwOrMeHo/K51qjqj14HURJEJAo4g/yjDL7g/j3fm8hClqaqW0QkICIBVf1DRJ7xOqhiWAjs9TqIwxEpk6ib8GAVNeNbIlIfGAb0wLlKNRG4U1XXeRqY8T0RqY7T0tHLXTQeGKKqO7yLKjRuS9q5OPPa7QRaAY/4bKhx3xORj1X1SpxRRCsBA4DHcVpnr/YytsMQSWnnI4BU/N86uF1EqgATgE9FJBlI9zim4sgA5rjz3OUsW74Znl9EygG3kP37MQ54S1XTPAvK+JYNJmJ8S0TG4Iyu9LG76ArgclU9xbuoTCQQkW9whubPHBL6SqCjj66uAyAirwEfqOp0r2M5UrlTVvTH6e/Yhzz90vzYX0VEhhew2JfD84vIPD/3rRORCqq6301rTsUpX5cD1YFPVXWLpwGGSEQKvHjhs+H53wXKkfv3I0NVr/cuKuNXVlEzviUic1T16EMtMyZUkVK2ImVeOz8TkQE4V9eb4qQ7CrknH7f+Kh5y0wPHquqvXsdSHJmjUuZoufU9ESmP870FsNRvLVEiMldVOx5qmTFFYamPxs82i8gVOPOTgNNx2ldXD03Y2iciPVV1IoCI9AD2eRxTcUTKvHa+paqvAK+IyBuqeovX8ZSECEs7nwp85/YfTCO7Al3N27CKrLzbCtVdRPK1+PstHVVE+uC0RK3CeS8aiMjVqjrBw7BClSEizVR1OWRNgJ3hcUzGp6xFzfiWiDQEXgW64ZwsTMY5WVjtaWDG90TkaJyTheruom3ANao617OgjAkTkZR2LiIrgHOB+erDEyJ3QvvLgYtx0mtz8l06qojMBC5T1aXu/ZbA/1T1WG8jKzoR6YszHccKd1Fj4F+q+odnQRnfsoqaMcYUQkSqAajqTq9jMSZcREpqMICI/AL0V1U/DySCiFynqu8dZP0pfhhIqKA+g37rRygiMcC9QF930RjgRVVN9S4q41cBrwMwprhE5EMRqZHjfk0Red/DkEyEEJH/ikgNVd2pqjvdsvWE13EZEyY2i8gVIhLl3q7Av2nnG4FxIvKgiNyTefM6qFAdrJLm8stQ/TNE5D0R6ePe3gFmeh1UiD4CmuCM7vq4+//HB93DmEJYi5rxLRGZraqdDrXMmFAVUrZmqeoxXsVkTLgoJO18gKqu8TSwYhCRAiccV9XHyjqW0uSX30YRqQDcBvTE6aM2AXhdVfcfdMcwYoOJmJJkg4kYPwuISE1V3QYgIrFYmTYlIypz2GsAEakIVPA4JmPCxePA1Xm+e4fiTKjuK5FWITsIv1yVjwZezpxw3J2Q3G/fvbNF5HhVnQogIl2BSR7HZHzKTmqNnz0PTBaRr3F+hC4GnvQ2JBMhPgHGuvNFKc4JqG/m8TGmlHXIrKSBMxeciIR9a01B3ImV81ViVPUkD8IxMBY4Gdjt3q8I/Ap09yyi0HUFrhKRzBbmhsBiEZmPM8CLb/rbGe9ZRc34lqp+JCIzgJNwUiTOV9VFHodlIoCqPisi83BOGAR4XFV/8TgsY8JFJGUzDMzxfwxwAZDuUSylaZXXARRRjKpmVtJQ1d0iUsnLgIrhNK8DMJHDr1+sxmSKBfao6nARiReRJqq60uugTERYDKSr6m8iUklEqqrqLq+DMiYMREw2g6rmHahikoiM9ySYw+CmCJ6BMxR81rldZgqhquabYy1M7RGRY1R1FoCIHIvP5rC0KYJMSbKKmvEttxN4Z6AVzpwl5XBS1np4GZfxPxG5AbgR50JAM6Ae8CbZwy0bc8SKpGwGtzUwUwA4FqjtUTiHYwSQCswH/DzVwF3AVyKywb1fB7jEu3CM8ZZV1IyfnQd0AmYBqOoGEanqbUgmQtwGHAdMA1DVZSKS4G1IxoQPt2Lmy8pZHjNxWgUFJ+VxJXCdpxEVT/1I6PukqtNFpDXOBVgBlqhqWuZ6v8wHZ0xJsYqa8bMDqqoiogAiUtnrgEzE2K+qB0QEABGJxj+jphljikhVm3gdQwkZJSL9VPVXrwM5XG7FbEEhq5/BmUDamCOCVdSML4lzBj1SRN4CaripatcC73gbmYkQ40XkIaCiiJwC3IqTWmSMiSAiEoPz+e6JczFmIvCGqqZ6GljopgLfiUgASMNpjVJVreZtWCVOvA7AmLJkE14b3xKRWcD9QD+cL+9fLCXClAT3QsD15ChbwLtqX5jGRBQR+RLYhdO/GeBSoKaqXuRdVKETkRXAucD8SP6eEpFZqnqM13EYU1asRc342RRgu6re53UgJnK4V6TnqWo7rIXWmEjXSlU75rj/h4jM9Sya4lsGLIjkSpoxRyKrqBk/OxG4SURWA3syF0ZCh2rjHVUNishcEWmoqmsOvYcxxsdmi8jxqjoVQES6ApM8jqk4NgLjRGQUsD9zYebw/BFkldcBGFOWrKJm/Ky/1wGYiFUHWCgif5H7IsDZ3oVkjCkpIjIfp09aOeAqEVnj3m+EP0ezXOneyrs3X4qg+eCMKRHWR80YY/IQkd4FLVdV302Ea4zJT0QaHWy9TVrsDRH5mQLmg1PVxzwLyhgPWUXNGGNCJCJTVLWb13EYY4onz0TX+ajq1rKKpSSIyB8UMIWIqp7kQTjFJiLzrPuCMdks9dEYY0IX43UAxpjDknOia8iu5Ij7f1MvgjoMA3P8HwNcgDOBt99EzHxwxpQEq6gZY0zoLBXBGB/LOdG127rWAh9fgFHVmXkWTRIRP6ZqHynzwRlTJFZRM8YYY8wRSUSuB+4E6gNzgOOByUBfD8MKWZ5UzgBwLFDbo3AOx/NANyJ8PjhjisoqasYYEzo59CbGGB+4E+gCTFXVE0WkNeDHgStypnKm44wAeZ2nERWPzQdnTA5WUTPGmNBd6XUAxpgSkaqqqSKCiFRQ1SUi0srroEKVM5XT546U+eCMKRKrqBljjEtEdpF7UAHIvkqd1U9CVRd4EJ4xpuStE5EawPfAGBHZBmzwNKJiEJEY4FagJ8531kTgDVVN9TSw0EXEfHDGlBQbnt8YY4wxRzx3/sTqwGhVPeB1PKEQkS+BXcAn7qJLgZqqepF3URljDpdV1IwxpgAi0hNooarDRSQOqKqqK72Oyxhj8hKRuara8VDLwl2kzAdnTEmx1EdjjMlDRB4FOgOtgOE4KTifAD28jMsYYwoxW0SOV9WpACLSFZjkcUzFESnzwRlTIqyiZowx+Z0HdAJmAajqBhGp6m1IxhiTm4jMx2mBKgdcJSJr3PuNgEVexlYcETQfnDElwipqxhiT3wFVVRFRABGp7HVAxhhTgDO9DqAkRdB8cMaUCKuoGWNMDiIiwEgReQuoISI3ANcC73gbmTHG5LPL6wBKWKTMB2dMibDBRIwxJg8RmQXcD/TDOWH4RVXHeBuVMcbkJiIrya7YQO7pRVRVm3oSmDGmRFiLmjHG5DcF2K6q93kdiDHGFCbnRNdu2mALnEE4fCmC5oMzpkRYi5oxxuQhIouAlsBqYE/mclXt4FlQxhhTCBG5HrgTqA/MAY4HJqtqXy/jCpXNB2dMbtaiZowx+fX3OgBjjAnBnUAXYKqqnigirYHHPI6pOFrlmfvtDxGZ61k0xnjMKmrGGJOHqq72OgZjjAlBqqqmiggiUkFVl4hIK6+DKoZImQ/OmBJhFTVjjDHGGH9bJyI1gO+BMSKyDdjgaUQhiLT54IwpKdZHzRhjjDEmQohIb6A6MFpVD3gdT1GISKODrbcsB3OksoqaMcYYY4zxTJ6JrvNR1a1lFYsx4cQqasYYY4wxxjM2H5wxBbM+asYYY4wxxjORNh+cMSXFKmrGGGOMMcZzhc0HB/hqPjhjSkrA6wCMMcYYY4whez641ap6ItAJ2OxtSMZ4xypqxhhjjDEmHKSqaiqQNR8c4Mf54IwpEZb6aIwxxhhjwoGv54MzpqTZqI/GGGOMMSas+HE+OGNKmlXUjDHGGGOMMSbMWB81Y4wxxhhjjAkzVlEzxhhjjDHGmDBjFTVjjDHGGGOMCTNWUTPGGGOMMcaYMGMVNWOMMcYYY4wJM/8PUdc5/nGRzHwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df_survey_pop = df_survey[QUESTIONS\n", " +[\"rel_\"+q for q in QUESTIONS]\n", " +POP_FEATURES\n", " +[\"album_\"+f for f in POP_FEATURES]\n", " +[\"pop_score\"]\n", " ]\n", "\n", "corr_survey = df_survey_pop.corr()\n", "\n", "p_values = corr_sig(df_survey_pop) # compute p-values\n", "mask_sig = np.invert(np.tril(p_values<0.05)) # mask non significant correlations\n", "\n", "fig, ax = plt.subplots(figsize=(15,12))\n", "ax = sns.heatmap(corr_survey\n", " #, mask=mask_sig # mask non significant values\n", " , square=True\n", " , annot=True\n", " , fmt=\".2f\"\n", " , vmin=-1\n", " , vmax=1\n", " , cmap=\"RdBu\"\n", " )\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The differences between the four selected groups (true positive, false postivie, flase negative and true negative) can also be explored. This could highlight interesting insights on how human perceive the samples classified as popular and possibly on what kind of samples are misclassified.\n", "For example are True Positive cases given high liking and recommending scores and low surprises on their potentiality to be played on the radio by raters ? Also, are False Negative (Positive) cases rated by participants more similarly as True Positive or True Negative ?" ] }, { "cell_type": "code", "execution_count": 217, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAE9CAYAAACLPV+MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWx0lEQVR4nO3dfYxld3kf8O/DGqtAnYDx2mtsD6bUikKT4IaRIXVUcIORsZIsRGlrFDBJGq1oMAHUYLlKS6KkqqyhaSqIg7M0LqbiRU3A8QY2BmNFuDhN8Tp1/AK4dhyId9eLX0jAvChg+vSPuUbDeHZ31uzMmd/s5yNdnXN+L/c+R7ra+e753XtPdXcAABjHk6YuAACAIyPAAQAMRoADABiMAAcAMBgBDgBgMAIcAMBgjpu6gPV00kkn9Zlnnjl1GQAAh3XLLbc81N1bV+o7pgLcmWeemT179kxdBgDAYVXV5w/WZwkVAGAwAhwAwGAEOACAwQhwAACDEeAAAAYjwAEADEaAAwAYjAAHADAYAQ4AYDDH1J0YAFgfl156aQ4cOJBt27ZlYWFh6nJg0xHgADjqDhw4kH379k1dBmxallABAAYjwAEADEaAAwAYjAAHADCYSQNcVV1VVQ9U1R0H6a+qentV3VNVt1XVDy/pu6Cq7pr1XbZ+VQMATGvqK3DvTnLBIfpfnuSs2WNHkncmSVVtSXLFrP95SV5VVc9b00oBADaISQNcd9+Y5IuHGLI9yXt60Z8leXpVnZrknCT3dPe93f2NJB+YjQUA2PSmvgJ3OKcluW/J8d5Z28HaH6eqdlTVnqra8+CDD65ZoQAA62WjB7haoa0P0f74xu6d3T3f3fNbt249qsUBAExho9+JYW+SM5Ycn55kf5LjD9IOALDpbfQrcLuSXDz7NuqLknypu+9PcnOSs6rqOVV1fJKLZmMBADa9Sa/AVdX7k7wkyUlVtTfJryZ5cpJ095VJdie5MMk9Sb6W5OdmfY9W1SVJPppkS5KruvvOdT8BAIAJTBrguvtVh+nvJK8/SN/uLAY8AIBjykZfQgUAYBkBDgBgMAIcAMBgBDgAgMEIcAAAgxHgAAAGI8ABAAxGgAMAGIwABwAwGAEOAGAwAhwAwGAEOACAwQhwAACDEeAAAAYjwAEADEaAAwAYjAAHADCY46YuAAA4dl166aU5cOBAtm3bloWFhanLGYYABwBM5sCBA9m3b9/UZQzHEioAwGAEOACAwQhwAACDmTTAVdUFVXVXVd1TVZet0P+Wqrp19rijqr5VVSfO+j5XVbfP+vasf/UAANOY7EsMVbUlyRVJzk+yN8nNVbWruz/92JjufluSt83G/0SSN3f3F5c8zXnd/dA6lg0AMLkpr8Cdk+Se7r63u7+R5ANJth9i/KuSvH9dKgMA2MCmDHCnJblvyfHeWdvjVNVTk1yQ5INLmjvJx6rqlqrasWZVAgBsMFP+Dlyt0NYHGfsTSW5atnx6bnfvr6qTk1xfVZ/t7hsf9yKL4W5HkszNzX23NQMATG7KK3B7k5yx5Pj0JPsPMvaiLFs+7e79s+0DSa7J4pLs43T3zu6e7+75rVu3ftdFAwBMbcoAd3OSs6rqOVV1fBZD2q7lg6rqe5O8OMm1S9qeVlUnPLaf5GVJ7liXqgEAJjbZEmp3P1pVlyT5aJItSa7q7jur6nWz/itnQ1+Z5GPd/dUl009Jck1VJYvn8L7uvm79qgcAmM6k90Lt7t1Jdi9ru3LZ8buTvHtZ271Jnr/G5QEAbEjuxAAAMBgBDgBgMAIcAMBgBDgAgMEIcAAAgxHgAAAGI8ABAAxGgAMAGIwABwAwGAEOAGAwAhwAwGAEOACAwQhwAACDEeAAAAYjwAEADEaAAwAYjAAHADAYAQ4AYDACHADAYAQ4AIDBCHAAAIMR4AAABiPAAQAMZtIAV1UXVNVdVXVPVV22Qv9LqupLVXXr7PHW1c4FANisjpvqhatqS5IrkpyfZG+Sm6tqV3d/etnQ/9ndP/4E5wIAbDpTXoE7J8k93X1vd38jyQeSbF+HuQAAQ5vsClyS05Lct+R4b5IXrjDuR6rqL5LsT/LL3X3nEczlMC699NIcOHAg27Zty8LCwtTlAACrMGWAqxXaetnxnyd5dnd/paouTPKHSc5a5dzFF6nakWRHkszNzT3hYjerAwcOZN++fVOXAQAcgSmXUPcmOWPJ8elZvMr2bd395e7+ymx/d5InV9VJq5m75Dl2dvd8d89v3br1aNYPADCJKQPczUnOqqrnVNXxSS5KsmvpgKraVlU12z8ni/U+vJq5AACb1WRLqN39aFVdkuSjSbYkuaq776yq1836r0zy00n+dVU9muTrSS7q7k6y4txJTgQAYJ1N+Rm4x5ZFdy9ru3LJ/m8n+e3VzgUAOBa4EwMAwGAEOACAwUy6hAqMw28GAmwcAhywKn4z8Og79x3nTl3Cmjn+b4/Pk/Kk3Pe3923a87zpDTdNXQLHMEuoAACDEeAAAAYjwAEADEaAAwAYjAAHADAYAQ4AYDACHADAYAQ4AIDBCHAAAIMR4AAABiPAAQAMRoADABiMAAcAMBgBDgBgMAIcAMBgBDgAgMEIcAAAgxHgAAAGI8ABAAxm0gBXVRdU1V1VdU9VXbZC/89U1W2zx59W1fOX9H2uqm6vqluras/6Vg4AMJ3jpnrhqtqS5Iok5yfZm+TmqtrV3Z9eMuyvkry4u/+mql6eZGeSFy7pP6+7H1q3ogEANoApr8Cdk+Se7r63u7+R5ANJti8d0N1/2t1/Mzv8sySnr3ONAAAbzpQB7rQk9y053jtrO5h/leSPlxx3ko9V1S1VtWMN6gMA2JAmW0JNUiu09YoDq87LYoD70SXN53b3/qo6Ocn1VfXZ7r5xhbk7kuxIkrm5ue++agCAiU15BW5vkjOWHJ+eZP/yQVX1Q0n+a5Lt3f3wY+3dvX+2fSDJNVlckn2c7t7Z3fPdPb9169ajWD4AwDSmDHA3Jzmrqp5TVccnuSjJrqUDqmouyYeSvKa7/++S9qdV1QmP7Sd5WZI71q1yAIAJTbaE2t2PVtUlST6aZEuSq7r7zqp63az/yiRvTfLMJL9TVUnyaHfPJzklyTWztuOSvK+7r5vgNAAA1t2Un4FLd+9OsntZ25VL9n8hyS+sMO/eJM9f3g4AcCxwJwYAgMEIcAAAgxHgAAAGM+ln4ACAw/vEP33x1CWsma8ftyWpytf37t205/niGz9x1J/TFTgAgMEIcAAAgxHgAAAGI8ABAAxGgAMAGMyqAlxVPbWq/n1VvWt2fFZV/fjalgYAwEpWewXuvyX5uyQ/Mjvem+Q/rElFAAAc0moD3HO7eyHJN5Oku7+epNasKgAADmq1Ae4bVfWUJJ0kVfXcLF6RAwBgna32Tgy/muS6JGdU1XuTnJvkZ9eqKAAADm61Ae6WJD+V5EVZXDp9Y5IT1qooAAAObrVLqH+U5Jvd/ZHu/nCSrbM2AADW2WoD3H9M8kdV9bSqekGSP0jy6rUrCwCAg1nVEmp3f6Sqnpzk+iwunb6iu+9e08oAAFjRIQNcVb0js2+eznxPknuTvKGq0t2/tJbFAQDweIe7Ardn2fEta1UIAACrc8gA191Xr1chAACszuGWUP9Hd/+Lqro937mUmiTp7h9as8oAAFjR4ZZQ3zjbunE9AMAGccifEenu+2fbz6/0+G5fvKouqKq7quqeqrpshf6qqrfP+m+rqh9e7VwAgM3qcEuoj2SFpdMs3o2hu/t7nugLV9WWJFckOT/J3iQ3V9Wu7v70kmEvT3LW7PHCJO9M8sJVzgUA2JQO9yWGtbxd1jlJ7unue5Okqj6QZHuSpSFse5L3dHcn+bOqenpVnZrkzFXMBQDYlFZ7J4a1cFqS+5Yc7521rWbMauYCAGxKq72Z/VqoFdqWL9cebMxq5i4+QdWOJDuSZG5u7kjq+7YXvOU9T2jeCE546JFsSfLXDz2yac/zlrddvG6v9de//oPr9lrr7dEvnpjkuDz6xc9v2vOce+vt6/p6N73hpnV9vfV08c0XZ99X9+WMp5+R97xhc/7bsp5efOMnpi5hzfzexRcn+/blKaefnhe/x3tltaa8Arc3yRlLjk9Psn+VY1YzN0nS3Tu7e76757du3fpdFw0AMLUpA9zNSc6qqudU1fFJLkqya9mYXUkunn0b9UVJvjT7Zuxq5gIAbEqTLaF296NVdUmSjybZkuSq7r6zql43678yye4kFya5J8nXkvzcoeZOcBoAAOtuys/Apbt3ZzGkLW27csl+J3n9aucCABwLplxCBQDgCRDgAAAGI8ABAAxGgAMAGIwABwAwGAEOAGAwAhwAwGAEOACAwQhwAACDEeAAAAYjwAEADGbSe6GO4pa3XTx1CWvm4os/nn37vpy5k07IezbxeQLAZuIKHADAYAQ4AIDBCHAAAIMR4AAABiPAAQAMRoADABiMAAcAMBgBDgBgMH7IF4Cjbtu2bd+xBY4uAQ6Ao25hYWHqEmBTs4QKADCYSQJcVZ1YVddX1d2z7TNWGHNGVf1JVX2mqu6sqjcu6fu1qtpXVbfOHheu7xkAAExnqitwlyW5obvPSnLD7Hi5R5P8m+7+/iQvSvL6qnrekv7f6u6zZ4/da18yAMDGMFWA257k6tn+1UlesXxAd9/f3X8+238kyWeSnLZeBQIAbFRTBbhTuvv+ZDGoJTn5UIOr6swk/zjJ/17SfElV3VZVV620BAsAsFmt2bdQq+rjSVb6/vivHOHz/P0kH0zypu7+8qz5nUl+I0nPtr+Z5OcPMn9Hkh1JMjc3dyQvDUds7q23T13Cmjnu4ouTffty3InPztxbPzF1OQDHtDULcN390oP1VdUXqurU7r6/qk5N8sBBxj05i+Htvd39oSXP/YUlY96V5MOHqGNnkp1JMj8/30d8IgAAG8xUS6i7krx2tv/aJNcuH1BVleT3knymu//zsr5Tlxy+Mskda1QnAMCGM1WAuzzJ+VV1d5LzZ8epqmdV1WPfKD03yWuS/LMVfi5koapur6rbkpyX5M3rXD8AwGQmuRNDdz+c5MdWaN+f5MLZ/ieT1EHmv2ZNCwQA2MDciQEAYDACHADAYAQ4AIDBCHAAAIMR4AAABiPAAQAMRoADABiMAAcAMBgBDgBgMAIcAMBgBDgAgMEIcAAAgxHgAAAGI8ABAAxGgAMAGIwABwAwGAEOAGAwAhwAwGAEOACAwQhwAACDEeAAAAYjwAEADEaAAwAYzCQBrqpOrKrrq+ru2fYZBxn3uaq6vapurao9RzofAGAzmuoK3GVJbujus5LcMDs+mPO6++zunn+C8wEANpWpAtz2JFfP9q9O8op1ng8AMKypAtwp3X1/ksy2Jx9kXCf5WFXdUlU7nsB8AIBN57i1euKq+niSbSt0/coRPM253b2/qk5Ocn1Vfba7bzzCOnYk2ZEkc3NzRzIVAGBDWrMA190vPVhfVX2hqk7t7vur6tQkDxzkOfbPtg9U1TVJzklyY5JVzZ/N3ZlkZ5LMz8/3Ez8jAOBo27Zt23dsWZ01C3CHsSvJa5NcPtteu3xAVT0tyZO6+5HZ/suS/Ppq5wMAG9/CwsLUJQxpqs/AXZ7k/Kq6O8n5s+NU1bOqavdszClJPllVf5HkU0k+0t3XHWo+AMCxYJIrcN39cJIfW6F9f5ILZ/v3Jnn+kcwHADgWuBMDAMBgBDgAgMEIcAAAgxHgAAAGI8ABAAxGgAMAGIwABwAwGAEOAGAwAhwAwGAEOACAwQhwAACDEeAAAAYjwAEADEaAAwAYjAAHADAYAQ4AYDACHADAYAQ4AIDBCHAAAIMR4AAABiPAAQAMRoADABiMAAcAMJhJAlxVnVhV11fV3bPtM1YY831VdeuSx5er6k2zvl+rqn1L+i5c95MAAJjIVFfgLktyQ3efleSG2fF36O67uvvs7j47yQuSfC3JNUuG/NZj/d29ez2KBgDYCKYKcNuTXD3bvzrJKw4z/seS/GV3f34tiwIAGMFUAe6U7r4/SWbbkw8z/qIk71/WdklV3VZVV620BAsAsFmtWYCrqo9X1R0rPLYf4fMcn+Qnk/z+kuZ3JnlukrOT3J/kNw8xf0dV7amqPQ8++OCRnwgAwAZz3Fo9cXe/9GB9VfWFqjq1u++vqlOTPHCIp3p5kj/v7i8see5v71fVu5J8+BB17EyyM0nm5+f7CE7hmLBt27bv2AIAG9+aBbjD2JXktUkun22vPcTYV2XZ8ulj4W92+Mokd6xFkceChYWFqUsAAI7QVJ+BuzzJ+VV1d5LzZ8epqmdV1be/UVpVT531f2jZ/IWqur2qbktyXpI3r0/ZAADTm+QKXHc/nMVvli5v35/kwiXHX0vyzBXGvWZNCwQA2MDciQEAYDACHADAYAQ4AIDBCHAAAIMR4AAABiPAAQAMRoADABiMAAcAMBgBDgBgMAIcAMBgBDgAgMFMci9UYDzbtm37ji0A0xHggFVZWFiYugQAZiyhAgAMRoADABiMAAcAMBgBDgBgMAIcAMBgBDgAgMEIcAAAgxHgAAAGI8ABAAxGgAMAGEx199Q1rJuqejDJ56euYwM6KclDUxfBELxXOBLeL6yW98rKnt3dW1fqOKYCHCurqj3dPT91HWx83iscCe8XVst75chZQgUAGIwABwAwGAGOJNk5dQEMw3uFI+H9wmp5rxwhn4EDABiMK3AAAIMR4I4xVfX0qvrFqetgHFX1S1X1map679S1sLF5r7Aa/g4dHZZQjzFVdWaSD3f3D0xdC2Ooqs8meXl3/9XUtbCxea+wGv4OHR3HTV0A6+7yJM+tqluTfDPJV7P444k/kOSWJK9uqZ6ZqroyyT9Isquq5pLsSnJakjOSLHT3u6asj41jhffKB2fHc0n+S3e/fcr62FCW/x36epKHk3xfkhuT/GJ3/7/pyhuDK3DHmKX/86mqlyS5Nsk/SrI/yU1J3tLdn5ysQDacqvpckvkklyR5ZZIXJXlakv+T5IXdvX+66thIlr1XXpbkvCQnJLkrybbu/uZ01bFRrPB36Lokz8vinZKuS/K73f0HkxU4CJ+B41PdvXf2v51bk5w5bTlscNd299e7+6Ekf5LknKkLYsP6SHf/3ey98kCSU6YuiA3rU919b3d/K8n7k/zo1AWNQIDj75bsfyuW1Tm05ZfsXcLnYPzbwmr5d+UJEOCOPY9kcUkDnojtVfX3quqZSV6S5OaJ6wHGs/zv0DlV9ZyqelKSf5nEx3hWwf+IjjHd/XBV3VRVd2Txg6NfmLomhvKpJB/J4gfTf8Pn34AjtcLfof+VxS82/GAWv8RwzZT1jcKXGIBVqapfS/KV7v5PU9cCbA6zLzH8cnf/+MSlDMcSKgDAYFyBAwAYjCtwAACDEeAAAAYjwAEADEaAA1hBVT29qn5x6joAViLAAazs6UkEOGBDEuAAVnZ5kudW1a1V9ftVtf2xjqp6b1X9ZFX9bFVdW1XXVdVdVfWrS8a8uqo+NZv/u1W1ZZKzADYlAQ5gZZcl+cvuPjvJbyf5uSSpqu9N8k+S7J6NOyfJzyQ5O8k/r6r5qvr+LN4S6NzZ/G/NxgAcFW6lBXAY3f2Jqrqiqk5O8lNJPtjdj1ZVklzf3Q8nSVV9KMmPJnk0yQuS3Dwb85QkD0xSPLApCXAAq/Pfs3gV7aIkP7+kffmvoXeSSnJ1d//bdaoNOMZYQgVY2SNJTlhy/O4kb0qS7r5zSfv5VXViVT0lySuS3JTkhiQ/Pbtil1n/s9ehZuAY4QocwAq6++Gquqmq7kjyx939lqr6TJI/XDb0k1m8OvcPk7yvu/ckSVX9uyQfq6onJflmktcn+fy6nQCwqbkXKsAqVNVTk9ye5Ie7+0uztp9NMt/dl0xZG3DssYQKcBhV9dIkn03yjsfCG8CUXIEDABiMK3AAAIMR4AAABiPAAQAMRoADABiMAAcAMBgBDgBgMP8fHZEe0jfoAscAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAE9CAYAAACLPV+MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZDklEQVR4nO3de7BlZX3m8e9Dt1TUoYItDQcbjhCnywlJkImn0AxWlGhbQBkbLJPBijYxl46jOKM1Yw8Zp4g1VqqsY26VyIhtgkLipcYoodUWBCoDI5rYjSHS3AaCIN1Nc/OCFwps/c0fZ7WzPezTvQ/d+6zznvP9VO3aa73rfff67apdfZ5e77qkqpAkSVI7Duu7AEmSJM2PAU6SJKkxBjhJkqTGGOAkSZIaY4CTJElqjAFOkiSpMSv7LmAhHXXUUXXCCSf0XYYkSdIB3XjjjQ9X1eph25ZVgDvhhBPYvn1732VIkiQdUJJ759rmFKokSVJjDHCSJEmNMcBJkiQ1xgAnSZLUGAOcJElSYwxwkiRJjTHASZIkNcYAJ0mS1BgDnCRJUmOW1ZMYJEkLY9OmTezZs4eJiQmmp6f7LkdacgxwkqRDbs+ePezatavvMqQlyylUSZKkxhjgJEmSGmOAkyRJaowBTpIkqTG9BrgkZyS5I8ldSS4Ysv0dSW7qXjuS/DDJqm7bPUlu7rZtX/jqJUmS+tHbVahJVgAXAeuAncC2JFuq6tZ9farqvcB7u/6/Cry9qr4x8DGnV9XDC1i2JElS7/o8AncqcFdV3V1VTwAfB9bvp//rgI8tSGWSJEmLWJ8Bbg1w38D6zq7tSZI8AzgD+ORAcwGfT3Jjko1jq1KSJGmR6fNGvhnSVnP0/VXghlnTp6dV1e4kRwNXJ7m9qq5/0k5mwt1GgMnJyYOtWZIkqXd9HoHbCRw/sH4csHuOvucya/q0qnZ37w8ClzMzJfskVbW5qqaqamr16tUHXbQkSVLf+gxw24C1SU5McjgzIW3L7E5Jfhp4KXDFQNszkxyxbxl4JbBjQaqWJEnqWW9TqFW1N8n5wFXACuCSqrolyZu67Rd3Xc8BPl9V3xsYfgxweRKY+Q4fraorF656SZKk/vT6MPuq2gpsndV28az1DwMfntV2N/CCMZcnSZK0KPkkBkmSpMYY4CRJkhpjgJMkSWqMAU6SJKkxBjhJkqTGGOAkSZIaY4CTJElqjAFOkiSpMQY4SZKkxhjgJEmSGmOAkyRJaowBTpIkqTEGOEmSpMYY4CRJkhpjgJMkSWqMAU6SJKkxBjhJkqTGGOAkSZIaY4CTJElqzMq+C5AkScvXpk2b2LNnDxMTE0xPT/ddTjMMcJIkqTd79uxh165dfZfRHKdQJUmSGmOAkyRJaowBTpIkqTEGOEmSpMb0GuCSnJHkjiR3JblgyPaXJfl2kpu614WjjpUkSVqqersKNckK4CJgHbAT2JZkS1XdOqvr/6mqVz3FsZIkSUtOn0fgTgXuqqq7q+oJ4OPA+gUYK0mS1LQ+A9wa4L6B9Z1d22y/lOSfk3wuyc/Nc6wkSdKS0+eNfDOkrWatfwV4blV9N8lZwN8Ba0ccO7OTZCOwEWBycvIpFytJkrRY9HkEbidw/MD6ccDuwQ5V9WhVfbdb3go8LclRo4wd+IzNVTVVVVOrV68+lPVLkiT1os8Atw1Ym+TEJIcD5wJbBjskmUiSbvlUZup9ZJSxkiRJS1VvU6hVtTfJ+cBVwArgkqq6Jcmbuu0XA68F/kOSvcBjwLlVVcDQsb18EUmSpAXW68Psu2nRrbPaLh5Yfh/wvlHHSpIkLQc+iUGSJKkxBjhJkqTGGOAkSZIaY4CTJElqjAFOkiSpMQY4SZKkxhjgJEmSGmOAkyRJaowBTpIkqTEGOEmSpMYY4CRJkhrT67NQJbVj06ZN7Nmzh4mJCaanp/suR5KWNQOcpJHs2bOHXbt29V2GJAmnUCVJkppjgJMkSWqMAU6SJKkxBjhJkqTGGOAkSZIaY4CTJElqjAFOkiSpMQY4SZKkxhjgJEmSGmOAkyRJaowBTpIkqTEGOEmSpMb0GuCSnJHkjiR3JblgyPbfSPLV7vXFJC8Y2HZPkpuT3JRk+8JWLkmS1J+Vfe04yQrgImAdsBPYlmRLVd060O1rwEur6ptJzgQ2Ay8a2H56VT28YEVLkiQtAn0egTsVuKuq7q6qJ4CPA+sHO1TVF6vqm93qPwDHLXCNkiRJi06fAW4NcN/A+s6ubS6/DXxuYL2Azye5McnGMdQnSZK0KPU2hQpkSFsN7ZiczkyAe8lA82lVtTvJ0cDVSW6vquuHjN0IbASYnJw8+KolSZJ61ucRuJ3A8QPrxwG7Z3dKcjLwl8D6qnpkX3tV7e7eHwQuZ2ZK9kmqanNVTVXV1OrVqw9h+ZIkSf3oM8BtA9YmOTHJ4cC5wJbBDkkmgU8Bb6iq/zvQ/swkR+xbBl4J7FiwyiVJknrU2xRqVe1Ncj5wFbACuKSqbknypm77xcCFwLOB/5kEYG9VTQHHAJd3bSuBj1bVlT18DUmSpAXX5zlwVNVWYOustosHln8H+J0h4+4GXjC7XZIkaTnwSQySJEmNMcBJkiQ1xgAnSZLUGAOcJElSYwxwkiRJjTHASZIkNcYAJ0mS1BgDnCRJUmMMcJIkSY0xwEmSJDXGACdJktQYA5wkSVJjen2YvSQtZ6f9xWl9lzA2h3/rcA7jMO771n1L9nve8NYb+i5By5hH4CRJkhpjgJMkSWrMfqdQk3waqLm2V9WrD3lFkiRJ2q8DnQP3R937a4AJ4G+69dcB94ypJkmSJO3HfgNcVV0HkOTdVfXLA5s+neT6sVYmSZKkoUY9B251kp/Zt5LkRGD1eEqSJEnS/ox6G5G3A/87yd3d+gnA742lIkmSJO3XSAGuqq5Mshb4N13T7VX1+PjKkiRJ0lzmcyPfFzJz5G0l8IIkVNVlY6lKkiRJcxopwCX5a+B5wE3AD7vmAgxwkiRJC2zUI3BTwElVNec94SRJkrQwRr0KdQcz94GTJElSz0YNcEcBtya5KsmWfa+D3XmSM5LckeSuJBcM2Z4kf95t/2qSXxx1rCRJ0lI16hTquw71jpOsAC4C1gE7gW1JtlTVrQPdzgTWdq8XAe8HXjTiWEmSpCVppCNw3RMZ7gGe1i1vA75ykPs+Fbirqu6uqieAjwPrZ/VZD1xWM/4BODLJsSOOlSRJWpJGvQr1d4GNwCpmrkZdA1wMvPwg9r0GuG9gfSczR9kO1GfNiGM1gk2bNrFnzx4mJiaYnp7uuxxJkjSCUadQ38LMUa9/BKiqO5McfZD7zpC22Ve5ztVnlLEzH5BsZCZ8Mjk5OZ/6fuyF71i6d0s54pY7WfH4o3z94e8s2e9543s3LNi+vv4/fmHB9rXQ9n5jFbCSvd+4d8l+z8kLb17Q/d3w1hsWdH8LacO2Dez63i6OP/J4Lnvr0vy3ZSFd98sv7buEsXls5QpIeGznziX7PV96/XWH/DNHvYjh8W6qEoAkK5kjMM3DTuD4gfXjgN0j9hllLABVtbmqpqpqavVqH98qSZLaN2qAuy7JfwOenmQd8Ang0we5723A2iQnJjkcOBeYfWXrFmBDdzXqi4FvV9X9I46VJElakkadQr0A+G3gZmYeYr8V+MuD2XFV7U1yPnAVsAK4pKpuSfKmbvvF3X7OAu4Cvg+8cX9jD6YeSZKkVoz6MPsfAR/sXodMVW1lJqQNtl08sFzMnH830lhJkqTlYKQp1CSvSvJPSb6R5NEk30ny6LiLkyRJ0pONOoX6Z8BrgJt9HqokSVK/Rr2I4T5gh+FNkiSpf6MegdsEbE1yHfD4vsaq+pOxVCVJkqQ5jRrg/hD4LvBTwOHjK0eSJM02jhvBLhZ/tWED7NrF0487jpde5k2fRzVqgFtVVa8cayWSJEkayajnwF2TxAAnSZK0CIwa4N4CXJnkMW8jIkmS1K9Rb+R7xLgLkSRJ0mhGPQeOJCcDJwyOqapPjaEmSZIk7cdIAS7JJcDJwC3Aj7rmAgxwkiRJC2zUI3AvrqqTxlqJJEmSRjLqRQxfSmKAkyRJWgRGPQJ3KTMhbg8zT2IIUFV18tgqkyRJ0lCjBrhLgDcAN/P/z4GTJElSD0YNcF+vqi1jrUSSJEkjGTXA3Z7ko8Cn+cmH2XsVqiRJ0gIbNcA9nZngNvg4LW8jIkmS1INRn8TwxnEXIkmSpNGMdBuRJMcluTzJg0keSPLJJMeNuzhJkiQ92aj3gfsQsAV4DrCGmXPhPjSuoiRJkjS3UQPc6qr6UFXt7V4fBlaPsS5JkiTNYdQA93CS1ydZ0b1eDzwyzsIkSZI03KgB7reAXwf2APcDr+3aJEmStMBGvQr168Crx1yLJEmSRjDqVaiXJjlyYP1ZSS55qjtNsirJ1Unu7N6fNaTP8Un+PsltSW5J8p8Gtr0rya4kN3Wvs55qLZIkSa0ZdQr15Kr61r6Vqvom8G8PYr8XANdW1Vrg2m59tr3Af66qnwVeDLwlyUkD2/+0qk7pXlsPohZJkqSmjBrgDhs8SpZkFaM/xWGY9cCl3fKlwNmzO1TV/VX1lW75O8BtzNzCRJIkaVkbNYT9MfDFJH/LzCO0fh34w4PY7zFVdT/MBLUkR++vc5ITmDni948Dzecn2QBsZ+ZI3TcPoh5JkqRmjHoRw2VJtgO/AgR4TVXdur8xSa4BJoZseud8Ckzyr4BPAm+rqke75vcD72YmTL6bmYA59KrYJBuBjQCTk5Pz2bU0b5MX3tx3CWOzcsMG2LWLlauey+SF1/VdjiQta/OZBl0FfK+qPpRkdZITq+prc3WuqlfMta17HNex3dG3Y4EH5+j3NGbC20eq6lMDn/3AQJ8PAp/ZTx2bgc0AU1NTNffXkyRJasOoV6H+AfBfgd/vmp4G/M1B7HcLcF63fB5wxZB9Bvgr4Laq+pNZ244dWD0H2HEQtUiSJDVl1IsYzmHmPnDfA6iq3cARB7Hf9wDrktwJrOvWSfKcJPuuKD0NeAPwK0NuFzKd5OYkXwVOB95+ELVIkiQ1ZdQp1CeqqpIUQJJnHsxOq+oR4OVD2ncDZ3XLX2DmfLth499wMPuXJElq2QGPwHVTmZ9J8gHgyCS/C1wDfHDcxUmSJOnJDngErjvydjYz58A9CjwfuLCqrh5zbZIkSRpi1CnULwHfqqp3jLMYSZIkHdioAe504PeS3Et3IQNAVZ08lqokSZI0p1ED3JljrUKSJEkjG/VJDPeOuxBJkiSNZtT7wEmSJGmRMMBJkiQ1xgAnSZLUGAOcJElSYwxwkiRJjTHASZIkNcYAJ0mS1BgDnCRJUmMMcJIkSY0xwEmSJDXGACdJktQYA5wkSVJjDHCSJEmNMcBJkiQ1xgAnSZLUGAOcJElSYwxwkiRJjTHASZIkNcYAJ0mS1JheAlySVUmuTnJn9/6sOfrdk+TmJDcl2T7f8ZIkSUtRX0fgLgCuraq1wLXd+lxOr6pTqmrqKY6XJElaUvoKcOuBS7vlS4GzF3i8JElSs/oKcMdU1f0A3fvRc/Qr4PNJbkyy8SmMlyRJWnJWjuuDk1wDTAzZ9M55fMxpVbU7ydHA1Ulur6rr51nHRmAjwOTk5HyG/tiN793wlMa1YMOGa9i161EmjzqCy5bw95QkaSkZW4CrqlfMtS3JA0mOrar7kxwLPDjHZ+zu3h9McjlwKnA9MNL4buxmYDPA1NRUPfVvJEmStDj0NYW6BTivWz4PuGJ2hyTPTHLEvmXglcCOUcdLkiQtVX0FuPcA65LcCazr1knynCRbuz7HAF9I8s/Al4HPVtWV+xsvSZK0HIxtCnV/quoR4OVD2ncDZ3XLdwMvmM94SZKk5cAnMUiSJDXGACdJktQYA5wkSVJjDHCSJEmNMcBJkiQ1pperUCVJS9vExMRPvEs6tAxwkqRDbnp6uu8SpCXNKVRJkqTGGOAkSZIaY4CTJElqjAFOkiSpMQY4SZKkxhjgJEmSGmOAkyRJaowBTpIkqTEGOEmSpMYY4CRJkhpjgJMkSWqMAU6SJKkxBjhJkqTGGOAkSZIaY4CTJElqjAFOkiSpMQY4SZKkxhjgJEmSGmOAkyRJakwvAS7JqiRXJ7mze3/WkD7PT3LTwOvRJG/rtr0rya6BbWct+JeQJEnqSV9H4C4Arq2qtcC13fpPqKo7quqUqjoFeCHwfeDygS5/um97VW1diKIlSZIWg74C3Hrg0m75UuDsA/R/OfAvVXXvOIuSJElqQV8B7piquh+gez/6AP3PBT42q+38JF9NcsmwKdh9kmxMsj3J9oceeujgqpYkSVoExhbgklyTZMeQ1/p5fs7hwKuBTww0vx94HnAKcD/wx3ONr6rNVTVVVVOrV6+e/xeRJEljMzExwZo1a5iYmOi7lKasHNcHV9Ur5tqW5IEkx1bV/UmOBR7cz0edCXylqh4Y+OwfLyf5IPCZQ1GzJElaWNPT032X0KS+plC3AOd1y+cBV+yn7+uYNX3ahb59zgF2HNLqJEmSFrG+Atx7gHVJ7gTWdeskeU6SH19RmuQZ3fZPzRo/neTmJF8FTgfevjBlS5Ik9W9sU6j7U1WPMHNl6ez23cBZA+vfB549pN8bxlqgJEnSIuaTGCRJkhpjgJMkSWqMAU6SJKkxBjhJkqTGGOAkSZIaY4CTJElqjAFOkiSpMQY4SZKkxhjgJEmSGmOAkyRJaowBTpIkqTEGOEmSpMb08jB7Se2ZmJj4iXdJUn8McJJGMj093XcJkqSOU6iSJEmNMcBJkiQ1xgAnSZLUGAOcJElSYwxwkiRJjTHASZIkNcYAJ0mS1BgDnCRJUmMMcJIkSY0xwEmSJDXGACdJktSYXgJckl9LckuSHyWZ2k+/M5LckeSuJBcMtK9KcnWSO7v3Zy1M5ZIkSf3r6wjcDuA1wPVzdUiyArgIOBM4CXhdkpO6zRcA11bVWuDabl2SJGlZ6CXAVdVtVXXHAbqdCtxVVXdX1RPAx4H13bb1wKXd8qXA2WMpVJIkaRFazOfArQHuG1jf2bUBHFNV9wN070fP9SFJNibZnmT7Qw89NLZiJUmSFsrKcX1wkmuAiSGb3llVV4zyEUPaar51VNVmYDPA1NTUvMcvdRMTEz/xLkmSFr+xBbiqesVBfsRO4PiB9eOA3d3yA0mOrar7kxwLPHiQ+1q2pqen+y5BkiTN02KeQt0GrE1yYpLDgXOBLd22LcB53fJ5wChH9CRJkpaEvm4jck6SncAvAZ9NclXX/pwkWwGqai9wPnAVcBvwv6rqlu4j3gOsS3InsK5blyRJWhZStXxOC5uamqrt27f3XYYkSdIBJbmxqobeL3cxT6FKkiRpCAOcJElSYwxwkiRJjTHASZIkNcYAJ0mS1BgDnCRJUmMMcJIkSY1ZVveBS/IQcG/fdSxCRwEP912EmuBvRfPh70Wj8rcy3HOravWwDcsqwGm4JNvnulGgNMjfiubD34tG5W9l/pxClSRJaowBTpIkqTEGOAFs7rsANcPfiubD34tG5W9lnjwHTpIkqTEegZMkSWqMAW6ZSXJkkjf3XYfakeQ/JrktyUf6rkWLm78VjcK/Q4eGU6jLTJITgM9U1c/3XYvakOR24Myq+lrftWhx87eiUfh36NBY2XcBWnDvAZ6X5CbgB8D3mLl54s8DNwKvL1O9OkkuBn4G2JJkEtgCrAGOB6ar6oN91qfFY8hv5ZPd+iTwZ1X1533Wp0Vl9t+hx4BHgOcD1wNvrqof9VdeGzwCt8wM/s8nycuAK4CfA3YDNwDvqKov9FagFp0k9wBTwPnAOcCLgWcC/wS8qKp291edFpNZv5VXAqcDRwB3ABNV9YP+qtNiMeTv0JXAScw8KelK4ANV9be9FdgIz4HTl6tqZ/e/nZuAE/otR4vcFVX1WFU9DPw9cGrfBWnR+mxVPd79Vh4Ejum7IC1aX66qu6vqh8DHgJf0XVALDHB6fGD5hzitrv2bfcjeQ/iai/+2aFT+u/IUGOCWn+8wM6UhPRXrk/xUkmcDLwO29VyPpPbM/jt0apITkxwG/HvA03hG4P+IlpmqeiTJDUl2MHPi6AN916SmfBn4LDMnpr/b898kzdeQv0NfYubChl9g5iKGy/usrxVexCBpJEneBXy3qv6o71okLQ3dRQz/pape1XMpzXEKVZIkqTEegZMkSWqMR+AkSZIaY4CTJElqjAFOkiSpMQY4SRoiyZFJ3tx3HZI0jAFOkoY7EjDASVqUDHCSNNx7gOcluSnJJ5Ks37chyUeSvDrJbya5IsmVSe5I8gcDfV6f5Mvd+A8kWdHLt5C0JBngJGm4C4B/qapTgPcBbwRI8tPAvwO2dv1OBX4DOAX4tSRTSX6WmUcCndaN/2HXR5IOCR+lJUkHUFXXJbkoydHAa4BPVtXeJABXV9UjAEk+BbwE2Au8ENjW9Xk68GAvxUtakgxwkjSav2bmKNq5wG8NtM++G3oBAS6tqt9foNokLTNOoUrScN8BjhhY/zDwNoCqumWgfV2SVUmeDpwN3ABcC7y2O2JHt/25C1CzpGXCI3CSNERVPZLkhiQ7gM9V1TuS3Ab83ayuX2Dm6Ny/Bj5aVdsBkvx34PNJDgN+ALwFuHfBvoCkJc1noUrSCJI8A7gZ+MWq+nbX9pvAVFWd32dtkpYfp1Al6QCSvAK4HfiLfeFNkvrkEThJkqTGeAROkiSpMQY4SZKkxhjgJEmSGmOAkyRJaowBTpIkqTEGOEmSpMb8P9GTy00JtjkVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAE9CAYAAABQhvWuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASMElEQVR4nO3db4xld33f8c/Xu3FDI6cW9cI4toc16SqtQwpKpg4pKBgFImyhOEEkNaq1gTzYpGDSVCorV6mgap6gSR60ARTHUQm4SUP/pMRL2ZgE1Nq1VeQ/KQGMbdV1bby7bIxNTQyhlLW/fTDXzXgZ786ufe/57czrJY3mnnPP3Psd6Wrnveece251dwAAGMtZUw8AAMC3E2kAAAMSaQAAAxJpAAADEmkAAAMSaQAAA9o59QDzcN555/Xu3bunHgMA4KTuuuuuR7t71/HrJ420qvpgkjcmeaS7X7bB/ZXkXya5IslfJHlrd//JyR539+7dufPOO5/vcQEAnndV9dBG66c+3PmhJG84wf2XJ9kz+9qX5DcWMBMAwOQmjbTuviXJV06wyZVJbug1n05yblWdv5jpAACmM/WetJO5IMnD65YPzdYBAGxpo0dabbBuww8brap9VXVnVd355S9/ec5jAQDM1+iRdijJReuWL0xyZKMNu/v67l7p7pVdu77tDRIAAGeU0SPtQJK9teaVSb7a3V+aeigAgHmb+hIcv5fksiTnVdWhJO9J8h1J0t3XJTmYtctv3J+1S3C8bZpJAQAWa9JI6+63nOT+TvKOBY0DADCM0Q93AgBsS1vyY6F4pv379+fo0aNZWlrK6urq1OMAAJsg0raBo0eP5vDhw1OPAQCcAoc7AQAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGNGmkVdUbquq+qrq/qq7d4P7LquqrVfWZ2de7p5gTAGDRdk71xFW1I8kHkrw+yaEkd1TVge7+wnGb/tfufuPCBwQAmNCUe9IuTXJ/dz/Q3f83yUeSXDnhPAAAw5gy0i5I8vC65UOzdcf7kar606r6w6r6/sWMBgAwrckOdyapDdb1cct/kuQl3f21qroiyR8k2bPhg1XtS7IvSZaXl5/HMQEAFm/KPWmHkly0bvnCJEfWb9Ddf97dX5vdPpjkO6rqvI0erLuv7+6V7l7ZtWvXvGYGAFiIKSPtjiR7quriqjo7yVVJDqzfoKqWqqpmty/N2ryPLXxSAIAFm+xwZ3cfq6prknwiyY4kH+zuu6vqF2b3X5fkzUn+QVUdS/KNJFd19/GHRAEAtpwpz0l7+hDmwePWXbfu9vuTvH/RcwEATM0nDgAADEikAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADEikAQAMaOfUAwBj2b9/f44ePZqlpaWsrq5OPQ7AtiXSgGc4evRoDh8+PPUYANuew50AAAMSaQAAAxJpAAADEmkAAAMSaQAAAxJpAAADEmkAAANynbR1fuhdN0w9wlyc8+gT2ZHki48+sWV/x7t+de/UIwDA88qeNACAAYk0AIABiTQAgAGJNACAAYk0AIABiTQAgAGJNACAAYk0AIABiTQAgAGJNACAAYk0AIABiTQAgAGJNACAAYk0AIABiTQAgAGJNACAAYk0AIABTRppVfWGqrqvqu6vqms3uL+q6tdn93+2qn5wijkBABZtskirqh1JPpDk8iSXJHlLVV1y3GaXJ9kz+9qX5DcWOiQAwER2Tvjclya5v7sfSJKq+kiSK5N8Yd02Vya5obs7yaer6tyqOr+7v7T4cQFYb//+/Tl69GiWlpayuro69Tiw5UwZaRckeXjd8qEkP7yJbS5I8m2RVlX7sra3LcvLy6c10F2/uve0fm50e/d+MocP/3mWzzsnN2zR33HRvvjPf2DqEebm2FdemGRnjn3loS37ey6/+3MLfb5Xve9VC32+RTn73rNz1tfPysOPP7xlf8fb3nnbQp/v5h99zUKfj+fXa265+Xl9vCnPSasN1vVpbLO2svv67l7p7pVdu3Y95+EAAKY0ZaQdSnLRuuULkxw5jW0AALacKSPtjiR7quriqjo7yVVJDhy3zYEke2fv8nxlkq86Hw0A2A4mOyetu49V1TVJPpFkR5IPdvfdVfULs/uvS3IwyRVJ7k/yF0neNtW8AACLtKlIq6oLk7wvyauTPJXk1iT/sLsPPZcn7+6DWQux9euuW3e7k7zjuTwHAMCZaLOHO387a4cez8/auys/NlsHAMAcbPZw567uXh9lH6qqX5rDPADAFvQ7O87K41U5tztXP/nU1OOcETa7J+3Rqrq6qnbMvq5O8tg8BwMAto7Hq/KVqjxeG11di41sNtJ+LsnPJDmatQvJvnm2DgCAOdjU4c7u/mKSn5jzLAAAzJww0qpqf3evVtX7ssGV/rv7F+c2GQDANnayPWn3zL7fOe9BAAD4SyeMtO7+2Oz7hxczDgAAyckPd34sz/KB5knS3c5TAwCYg5Md7vy12fc3JVlK8juz5bckeXBOMwEAbHsnO9x5c5JU1a9094+uu+tjVXXLXCcDANjGNnudtF1V9dKnF6rq4iS75jMSAACb/Viof5Tkv1TVA7Pl3Ul+fi4TAQCw6YvZ3lRVe5L8zdmqe7v7m/MbCwBge9vsnrQk2ZPk+5J8Z5KXV1W6+4b5jAUAsL1tKtKq6j1JLktySZKDSS5PcmsSkQYAMAebfePAm5P8WJKj3f22JC9P8lfmNhUAwDa32Uj7P939VJJjVfXdSR5J8tKT/AwAAKfppIc7q6qSfLaqzk3yW0nuSvK1JLfPdzQAgO3rpJHW3V1Vr+jux5NcV1U3Jfnu7v7s3KcDANimNnu489NV9XeSpLsfFGgAAPO12UtwvDbJz1fVQ0m+nqSytpPtb89tMgCAbWyzkXb5XKcAAOAZNvuJAw/NexAAAP7SZs9JAwBggUQaAMCARBoAwIBEGgDAgEQaAMCARBoAwIBEGgDAgDZ7MVtgneV3f27qEeZm5969yeHD2fnCl2T53TdPPQ7AtmVPGgDAgEQaAMCARBoAwIBEGgDAgEQaAMCARBoAwIBEGgDAgEQaAMCARBoAwIBEGgDAgEQaAMCARBoAwIBEGgDAgEQaAMCARBoAwIBEGgDAgEQaAMCAdk7xpFX1wiT/NsnuJA8m+Znu/t8bbPdgkieSPJnkWHevLG5KAIDpTLUn7dokn+ruPUk+NVt+Nq/t7lcINABgO5kq0q5M8uHZ7Q8n+cmJ5gAAGNJUkfbi7v5Sksy+v+hZtuskf1RVd1XVvoVNBwAwsbmdk1ZVn0yytMFdv3wKD/Oq7j5SVS9K8sdVdW933/Isz7cvyb4kWV5ePuV5AQBGMrdI6+7XPdt9VfVnVXV+d3+pqs5P8sizPMaR2fdHquqjSS5NsmGkdff1Sa5PkpWVlX6u8wMATGmqw50Hkvzs7PbPJrnx+A2q6ruq6pynbyf58SSfX9iEAAATmirS3pvk9VX1P5K8fracqvqeqjo42+bFSW6tqj9NcnuSj3f3TZNMCwCwYJNcJ627H0vyYxusP5LkitntB5K8fMGjAQAMwScOAAAMSKQBAAxIpAEADGiSc9JYrKWlpWd8BwDGJ9K2gdXV1alHAABOkcOdAAADEmkAAAMSaQAAAxJpAAAD8sYBgDm77Z23TT3CXOy9Y28Of/1wLjr3otzwzhumHmdLeM0tN089wtz8q717k8OH84ILL8xrbvB62Qx70gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGJNIAAAYk0gAABiTSAAAGtHPqAYCxLC0tPeM7ANMQacAzrK6uTj0CAHG4EwBgSCINAGBAIg0AYEAiDQBgQCINAGBAIg0AYEAiDQBgQCINAGBAk0RaVf10Vd1dVU9V1coJtntDVd1XVfdX1bWLnBEAYEpT7Un7fJI3Jbnl2Taoqh1JPpDk8iSXJHlLVV2ymPEAAKY1ycdCdfc9SVJVJ9rs0iT3d/cDs20/kuTKJF+Y+4AAABMb+Zy0C5I8vG750GwdAMCWN7c9aVX1ySRLG9z1y91942YeYoN1fYLn25dkX5IsLy9vakYAgFHNLdK6+3XP8SEOJblo3fKFSY6c4PmuT3J9kqysrDxrzAEAnAlGPtx5R5I9VXVxVZ2d5KokByaeCQBgIaa6BMdPVdWhJD+S5ONV9YnZ+u+pqoNJ0t3HklyT5BNJ7kny77r77inmBQBYtKne3fnRJB/dYP2RJFesWz6Y5OACRwMAGMLIhzsBALYtkQYAMCCRBgAwIJEGADAgkQYAMCCRBgAwIJEGADAgkQYAMCCRBgAwIJEGADCgST4WCgDYXpaWlp7xnZMTaQDA3K2urk49whnH4U4AgAGJNACAAYk0AIABiTQAgAGJNACAAXl3JwCnxSUVYL5EGgCnxSUVYL4c7gQAGJBIAwAYkEgDABiQSAMAGJBIAwAYkEgDABiQSAMAGJBIAwAYkEgDABiQSAMAGFB199QzPO+q6stJHpp6jsGcl+TRqYfgjOH1wmZ5rXAqvF429pLu3nX8yi0ZaXy7qrqzu1emnoMzg9cLm+W1wqnwejk1DncCAAxIpAEADEikbR/XTz0AZxSvFzbLa4VT4fVyCpyTBgAwIHvSAAAGJNK2oKo6t6rePvUcnDmq6her6p6q+t2pZ2F8Xi9shr9Fz53DnVtQVe1O8p+6+2VTz8KZoaruTXJ5d/+vqWdhfF4vbIa/Rc/dzqkHYC7em+R7q+ozSb6V5OtZu3jgy5LcleTqVufMVNV1SV6a5EBVLSc5kOSCJBclWe3u35pyPsaywevl92fLy0n+RXf/+pTzMZTj/xZ9I8ljSb4vyS1J3t7dT0033vjsSduC1v/vpaouS3Jjku9PciTJbUne1d23TjYgw6mqB5OsJLkmyU8leWWS70ry35P8cHcfmW46RnPc6+XHk7w2yTlJ7kuy1N3fmm46RrHB36KbklyStU8EuinJb3b3f5hswDOAc9K2h9u7+9DsfyyfSbJ72nEY3I3d/Y3ufjTJf05y6dQDMbSPd/c3Z6+XR5K8eOqBGNbt3f1Adz+Z5PeSvHrqgUYn0raHb667/WQc5ubEjt+9bnc7J+LfFzbLvy2nSKRtTU9k7dADnI4rq+o7q+qvJ7ksyR0TzwOcmY7/W3RpVV1cVWcl+XtJnHZzEv7HswV192NVdVtVfT5rJ2r+2dQzcUa5PcnHs3Yi+K84Hw04HRv8LfpvWXszwQ9k7Y0DH51yvjOBNw4A/19V/bMkX+vuX5t6FmDrmL1x4B939xsnHuWM4nAnAMCA7EkDABiQPWkAAAMSaQAAAxJpAAADEmnAtlZV51bV26eeA+B4Ig3Y7s5NItKA4Yg0YLt7b5LvrarPVNW/r6orn76jqn63qn6iqt5aVTdW1U1VdV9VvWfdNldX1e2zn//NqtoxyW8BbDkiDdjurk3yP7v7FUnen+RtSVJVfy3J301ycLbdpUn+fpJXJPnpqlqpqr+VtY+3edXs55+cbQPwnPlYKICZ7r65qj5QVS9K8qYkv9/dx6oqSf64ux9Lkqr6j0leneRYkh9KcsdsmxckeWSS4YEtR6QBPNO/ztresKuS/Ny69cdf+buTVJIPd/c/WdBswDbicCew3T2R5Jx1yx9K8ktJ0t13r1v/+qp6YVW9IMlPJrktyaeSvHm25y2z+1+ygJmBbcCeNGBb6+7Hquq2qvp8kj/s7ndV1T1J/uC4TW/N2l62v5Hk33T3nUlSVf80yR9V1VlJvpXkHUkeWtgvAGxZPrsTYJ2q+qtJPpfkB7v7q7N1b02y0t3XTDkbsL043AkwU1WvS3Jvkvc9HWgAU7EnDQBgQPakAQAMSKQBAAxIpAEADEikAQAMSKQBAAxIpAEADOj/ARFK4iVvcPD9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAE9CAYAAABk/zSyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYrElEQVR4nO3dfZBldX3n8ffHGamoywaRgR4H2iHulBXyIKtdoIu1yOpYQBkHUrECiULcZEdXcdfsrixWttDdrd2i2jyVSsQxoYSsSsUoMtFRBColK+o6gyEwCCwTIjJPMOATUSs4+t0/+ox7bbpn7h3m9ulf9/tVdeue83s493urbk1/5vzuPSdVhSRJktrytL4LkCRJ0ugMcZIkSQ0yxEmSJDXIECdJktQgQ5wkSVKDDHGSJEkNWtl3AQvtuOOOq7Vr1/ZdhiRJ0iHdfvvtj1bVqrn6ll2IW7t2Ldu2beu7DEmSpENK8uB8fS6nSpIkNcgQJ0mS1CBDnCRJUoN6D3FJrk7ySJLt8/QnyXuS7EhyZ5IXDfSdneS+ru+yhatakiSpX72HOOBDwNkH6T8HWNc9NgLvB0iyAriy6z8FuDDJKWOtVJIkaZHoPcRV1a3ANw8yZANwbc34MnBMktXAacCOqnqgqp4AruvGSpIkLXm9h7ghrAEeGtjf2bXN1y5JkrTktRDiMkdbHaT9yQdINibZlmTbvn37jmhxkiRJfWghxO0EThrYPxHYfZD2J6mqTVU1VVVTq1bNedFjSZKkprRwx4bNwCVJrgNOB75TVXuS7APWJTkZ2AVcAPxGj3VKkgZceuml7N27l4mJCaanp/suR1pyeg9xST4KvBw4LslO4J3A0wGq6ipgC3AusAP4PvCGrm9/kkuAG4EVwNVVdfeCvwFJ0pz27t3Lrl27+i5DWrJ6D3FVdeEh+gt4yzx9W5gJeZIkSctKC9+JkyRJ0iyGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBq3suwBJkrS8XXrppezdu5eJiQmmp6f7LqcZhjhJktSrvXv3smvXrr7LaE7vy6lJzk5yX5IdSS6bo//tSe7oHtuT/CjJsV3f15Pc1fVtW/jqJUmS+tHrmbgkK4ArgfXATmBrks1V9bUDY6rq3cC7u/G/AvxuVX1z4DBnVdWjC1i2JElS7/o+E3casKOqHqiqJ4DrgA0HGX8h8NEFqUySJGkR6zvErQEeGtjf2bU9SZJnAmcDHx9oLuBzSW5PsnFsVUqSJC0yff+wIXO01TxjfwW4bdZS6hlVtTvJ8cBNSe6tqluf9CIzAW8jwOTk5FOtWZIkqXd9n4nbCZw0sH8isHuesRcwaym1qnZ3z48A1zOzPPskVbWpqqaqamrVqlVPuWhJkqS+9R3itgLrkpyc5Chmgtrm2YOS/CxwJnDDQNuzkhx9YBt4FbB9QaqWJEnqWa/LqVW1P8klwI3ACuDqqro7yZu6/qu6oecDn6uq7w1MPwG4PgnMvI+PVNVnF656SZKk/vT9nTiqaguwZVbbVbP2PwR8aFbbA8ALx1yeJEnSotT3cqokSZIOgyFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIa1HuIS3J2kvuS7Ehy2Rz9L0/ynSR3dI/Lh50rSZK0VK3s88WTrACuBNYDO4GtSTZX1ddmDf3fVfXqw5wrSZK05PR9Ju40YEdVPVBVTwDXARsWYK4kSVLT+g5xa4CHBvZ3dm2zvTTJ3yb5TJJfGHEuSTYm2ZZk2759+45E3ZIkSb3qO8Rljraatf9V4HlV9ULgvcAnR5g701i1qaqmqmpq1apVh1urJEnSotF3iNsJnDSwfyKwe3BAVX23qv6h294CPD3JccPMlSRJWqr6DnFbgXVJTk5yFHABsHlwQJKJJOm2T2Om5seGmStJkrRU9frr1Kran+QS4EZgBXB1Vd2d5E1d/1XArwH/Nsl+4AfABVVVwJxze3kjkiRJC6zXEAc/WSLdMqvtqoHt9wHvG3auJEnSctD3cqokSZIOgyFOkiSpQYY4SZKkBhniJEmSGtT7DxvUv0svvZS9e/cyMTHB9PR03+VIkqQhGOLE3r172bVrV99lSJKkEbicKkmS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgf50qST06471n9F3C2Bz17aN4Gk/joW8/tCTf521vva3vErTMeSZOkiSpQYY4SZKkBrmcKmlo3t1DkhYPQ5ykoXl3D0laPFxOlSRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQG9R7ikpyd5L4kO5JcNkf/bya5s3t8MckLB/q+nuSuJHck2bawlUuSJPWn14v9JlkBXAmsB3YCW5NsrqqvDQz7e+DMqvpWknOATcDpA/1nVdWjC1a0JEnSItD3mbjTgB1V9UBVPQFcB2wYHFBVX6yqb3W7XwZOXOAaJUmSFp2+Q9wa4KGB/Z1d23x+G/jMwH4Bn0tye5KNY6hPkiRpUer73qmZo63mHJicxUyIe9lA8xlVtTvJ8cBNSe6tqlvnmLsR2AgwOTn51KuWJEnqWd9n4nYCJw3snwjsnj0oyS8DfwpsqKrHDrRX1e7u+RHgemaWZ5+kqjZV1VRVTa1ateoIli9JktSPvkPcVmBdkpOTHAVcAGweHJBkEvgE8Pqq+r8D7c9KcvSBbeBVwPYFq1ySJKlHvS6nVtX+JJcANwIrgKur6u4kb+r6rwIuB54D/EkSgP1VNQWcAFzfta0EPlJVn+3hbUiSJC24vr8TR1VtAbbMartqYPt3gN+ZY94DwAtnt0uSJC0HfS+nSpIk6TAY4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBg0d4jLjdUku7/Ynk8x5w3lJkiSN1yhn4v4EeClwYbf/OHDlEa9IkiRJhzTKvVNPr6oXJfkbgKr6VpKjxlSXJEmSDmKUEPfDJCuAAkiyCvjxWKqSJEk/5fP/8sy+SxibH6xcAQk/2Llzyb7PM2/9/BE/5ijLqe8BrgeOT/I/gC8A//OIVyRJkqRDGuVM3F8CtwOvAAKcBzw8hpokSZJ0CKOEuE8A51XVvQBJVgM3AS8eR2GSJEma3yjLqZ8EPpZkRZK1wI3AO8ZRlCRJkg5u6DNxVfXB7teonwTWAm+sqi+OqS5JkiQdxCFDXJL/MLgLnATcAbwkyUuq6g/HVJskSZLmMcyZuKNn7V8/T7skSZIWyCFDXFX914UoRJIkScMbZjn1j6vqbUn+iu5Cv4Oq6jVjqUySJEnzGmY59c+7598fZyGSJEka3jDLqbd3z0f+fhGSJEk6LIe8TlySu5LcOd/jqRaQ5Owk9yXZkeSyOfqT5D1d/51JXjTsXEmSpKVqmOXUV4/rxZOsAK4E1gM7ga1JNlfV1waGnQOs6x6nA+8HTh9yriRJ0pI0zHLqg8McKMmXquqlI77+acCOqnqgO8Z1wAZgMIhtAK6tqgK+nOSY7pZfa4eYK0mStCSNctutQ/mZw5izBnhoYH9n1zbMmGHmSpIkLUlD33ZrCE+6/MgQMsRx5hszzNyZAyQbgY0Ak5OTo9T3Ey9++7WHNa8FRz/6OCuAbzz6+JJ8n7e/+6IFfb1v/LdfWtDXW0j7v3kssJL933xwyb7PycvvWtDXu+2tty3o6y2ki7ZexK7v7eKkY07i2rcuvX9bFtqZty7d3xf+2UUXwa5dPOPEEznzWj8rwzqSZ+IOx05mbuN1wInA7iHHDDMXgKraVFVTVTW1atWqp1y0JElS345kiJvrzNihbAXWJTk5yVHABcDmWWM2Axd1v1J9CfCdqtoz5FxJkqQl6Ugup75+1AlVtT/JJcCNwArg6qq6O8mbuv6rgC3AucAO4PvAGw4294i8E0mSpEVumNtuPc7//67ZgbNtB76TVlX1T5nZ2H44BVTVFmaC2mDbVQPbBbxl2LmSJEnLwTCXGDl6IQqRJEnS8Eb6TlySlyV5Q7d9XJKTx1OWJEmSDmboEJfkncB/Bt7RNR0F/K9xFCVJkqSDG+VM3PnAa4DvAVTVbsClVkmSpB6MEuKe6H5kUABJnjWekiRJknQoQ4W4JAE+leQDwDFJ/g1wM/DBcRYnSZKkuQ11nbiqqiTnMfOduO8CLwAur6qbxlibJEmS5jHKxX6/BHy7qt4+rmIkSZI0nFFC3FnAG5M8SPfjBoCq+uUjXpUkSZIOapQQd87YqpAkSdJIhg5xVfXgOAuRJEnS8Ea6Y4MkSZIWB0OcJElSgwxxkiRJDTLESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktSgUW67tazd/u6L+i5hbC666GZ27fouk8cdzbVL+H1KkrSUeCZOkiSpQYY4SZKkBhniJEmSGtRbiEtybJKbktzfPT97jjEnJfnrJPckuTvJvx/oe1eSXUnu6B7nLuw7kCRJ6k+fZ+IuA26pqnXALd3+bPuB/1hVPw+8BHhLklMG+v+oqk7tHlvGX7IkSdLi0GeI2wBc021fA5w3e0BV7amqr3bbjwP3AGsWqkBJkqTFqs8Qd0JV7YGZsAYcf7DBSdYC/xz4PwPNlyS5M8nVcy3HSpIkLVVjDXFJbk6yfY7HhhGP80+AjwNvq6rvds3vB54PnArsAf7gIPM3JtmWZNu+ffsO781IkiQtImO92G9VvXK+viQPJ1ldVXuSrAYemWfc05kJcB+uqk8MHPvhgTEfBD51kDo2AZsApqamauQ3IkmStMj0uZy6Gbi4274YuGH2gCQB/gy4p6r+cFbf6oHd84HtY6pTkiRp0ekzxF0BrE9yP7C+2yfJc5Mc+KXpGcDrgX81x6VEppPcleRO4Czgdxe4fkmSpN70du/UqnoMeMUc7buBc7vtLwCZZ/7rx1qgJEnSItZbiJMkLW0TExM/9SzpyDLESZLGYnp6uu8SpCXNe6dKkiQ1yDNx0hE2efldfZcwNisvugh27WLlsc9j8vLP912OJC1rnomTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhrUW4hLcmySm5Lc3z0/e55xX09yV5I7kmwbdb4kSdJS1OeZuMuAW6pqHXBLtz+fs6rq1KqaOsz5kiRJS0qfIW4DcE23fQ1w3gLPlyRJalafIe6EqtoD0D0fP8+4Aj6X5PYkGw9jviRJ0pKzcpwHT3IzMDFH1++NcJgzqmp3kuOBm5LcW1W3jljHRmAjwOTk5ChTJUnSmE1MTPzUs4Yz1hBXVa+cry/Jw0lWV9WeJKuBR+Y5xu7u+ZEk1wOnAbcCQ83v5m4CNgFMTU3V4b8jSZJ0pE1PT/ddQpP6XE7dDFzcbV8M3DB7QJJnJTn6wDbwKmD7sPMlSZKWqj5D3BXA+iT3A+u7fZI8N8mWbswJwBeS/C3wFeDTVfXZg82XJElaDsa6nHowVfUY8Io52ncD53bbDwAvHGW+JEnScuAdGyRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAb1FuKSHJvkpiT3d8/PnmPMC5LcMfD4bpK3dX3vSrJroO/cBX8TkiRJPenzTNxlwC1VtQ64pdv/KVV1X1WdWlWnAi8Gvg9cPzDkjw70V9WWhShakiRpMegzxG0Arum2rwHOO8T4VwB/V1UPjrMoSZKkFvQZ4k6oqj0A3fPxhxh/AfDRWW2XJLkzydVzLccekGRjkm1Jtu3bt++pVS1JkrQIjDXEJbk5yfY5HhtGPM5RwGuAjw00vx94PnAqsAf4g/nmV9WmqpqqqqlVq1aN/kYkSZIWmZXjPHhVvXK+viQPJ1ldVXuSrAYeOcihzgG+WlUPDxz7J9tJPgh86kjULEmS1II+l1M3Axd32xcDNxxk7IXMWkrtgt8B5wPbj2h1y8jExARr1qxhYmKi71IkSdKQxnom7hCuAP4iyW8D3wBeC5DkucCfVtW53f4zgfXAG2fNn05yKlDA1+fo15Cmp6f7LkGSJI2otxBXVY8x84vT2e27gXMH9r8PPGeOca8fa4GSJEmLmHdskCRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhq0su8CJLVjYmLip54lSf0xxEka2vT0dN8lSJI6LqdKkiQ1yBAnSZLUIEOcJElSgwxxkiRJDTLESZIkNai3EJfktUnuTvLjJFMHGXd2kvuS7Ehy2UD7sUluSnJ/9/zshalckiSpf32eidsO/Cpw63wDkqwArgTOAU4BLkxyStd9GXBLVa0Dbun2JUmSloXeQlxV3VNV9x1i2GnAjqp6oKqeAK4DNnR9G4Bruu1rgPPGUqgkSdIitNi/E7cGeGhgf2fXBnBCVe0B6J6PX+DaJEmSejPWOzYkuRmY6/48v1dVNwxziDna6jDq2AhsBJicnBx1uiRJ0qIz1hBXVa98iofYCZw0sH8isLvbfjjJ6qrak2Q18MhB6tgEbAJIsi/Jg0+xrqXoOODRvotQE/ysaBR+XjQsPytze958HYv93qlbgXVJTgZ2ARcAv9H1bQYuBq7onoc5s0dVrRpDnc1Lsq2q5v2VsHSAnxWNws+LhuVnZXR9XmLk/CQ7gZcCn05yY9f+3CRbAKpqP3AJcCNwD/AXVXV3d4grgPVJ7gfWd/uSJEnLQqpG/oqZliD/B6Rh+VnRKPy8aFh+Vka32H+dqoWzqe8C1Aw/KxqFnxcNy8/KiDwTJ0mS1CDPxEmSJDXIELcMJTkmyZv7rkNtSPLvktyT5MN916LFz8+LhuHfoSPD5dRlKMla4FNV9Yt916LFL8m9wDlV9fd916LFz8+LhuHfoSNjsV8nTuNxBfD8JHcAPwS+x8wFFn8RuB14XZnuBSS5Cvg5YHOSSWauz7iGmYtwT1fVB/usT4vLHJ+Xj3f7k8AfV9V7+qxPi8rsv0M/AB4DXgDcCry5qn7cX3lt8EzcMjT4P6AkL2fmQsm/wMzdMG4D3l5VX+itQC0qSb4OTDFzzcbzgZcAzwL+Bji9qnbPP1vLzazPy6uAs4CjgfuAiar6YX/VabGY4+/QZ4FTgAe77Q9U1V/2VmAj/E6cAL5SVTu7//XcAazttxwtYjdU1Q+q6lHgr4HT+i5Ii9qnq+ofu8/LI8AJfRekResrVfVAVf0I+Cjwsr4LaoEhTgD/OLD9I1xm1/xmn7r3VL4Oxn9bNCz/bTkMhrjl6XFmljekUW1I8jNJngO8nJn7G0vSqGb/HTotyclJngb8OuBXeobg/4qWoap6LMltSbYz82XSh/uuSc34CvBpZr6o/t/9PpykwzHH36EvMfNjh19i5ocN1/dZXyv8YYOkoSR5F/APVfX7fdciaenoftjwn6rq1T2X0hyXUyVJkhrkmThJkqQGeSZOkiSpQYY4SZKkBhniJEmSGmSIk6R5JDkmyZv7rkOS5mKIk6T5HQMY4iQtSoY4SZrfFcDzk9yR5GNJNhzoSPLhJK9J8ltJbkjy2ST3JXnnwJjXJflKN/8DSVb08i4kLUmGOEma32XA31XVqcD7gDcAJPlZ4F8AW7pxpwG/CZwKvDbJVJKfZ+b2QWd083/UjZGkI8LbbknSEKrq80muTHI88KvAx6tqfxKAm6rqMYAknwBeBuwHXgxs7cY8A3ikl+IlLUmGOEka3p8zczbtAuBfD7TPvmp6AQGuqap3LFBtkpYZl1MlaX6PA0cP7H8IeBtAVd090L4+ybFJngGcB9wG3AL8Wnfmjq7/eQtQs6RlwjNxkjSPqnosyW1JtgOfqaq3J7kH+OSsoV9g5izdPwM+UlXbAJL8F+BzSZ4G/BB4C/Dggr0BSUua906VpCEleSZwF/CiqvpO1/ZbwFRVXdJnbZKWH5dTJWkISV4J3Au890CAk6Q+eSZOkiSpQZ6JkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlB/w8GM7OFYD1B4wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAE9CAYAAABk/zSyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ1UlEQVR4nO3de5CldX3n8feHGYloiIgMNAIjLJm4wQtEu9As1CJRLKDUwd1ccBMBc5l4QVdrl5FcSs26lZB2TTYq6zgadEi81BpFZs3ItSxZiUYGHWEQWRBF5tIw4AUUShz97h/nGT003T3nzPTpp5+e96vq1Hkuv995vqfq1PRnfr/nkqpCkiRJ3bJf2wVIkiRpeIY4SZKkDjLESZIkdZAhTpIkqYMMcZIkSR1kiJMkSeqgpW0XMN8OOeSQOvroo9suQ5IkabduvPHG+6pq2XT7Wg9xSS4BXgLcW1XPnGZ/gL8DzgQeAs6rqi83+05v9i0BPlBVF+3ueEcffTQbN26cw28gSZI0GknummnfQphO/RBw+iz7zwBWNK9VwHsBkiwBLm72Hwe8IslxI61UkiRpgWg9xFXVdcB3ZmmyEri0er4IHJTkcOBE4I6qurOqHgE+1rSVJEla9FoPcQM4Ari7b31Ls22m7ZIkSYteF0JcptlWs2x/7Ackq5JsTLJxx44dc1qcJElSG7oQ4rYAR/WtHwlsm2X7Y1TV2qoar6rxZcumvcBDkiSpU7oQ4tYD56Tn+cD3q2o7cAOwIskxSfYHzm7aSpIkLXoL4RYjHwVeABySZAvwVuBxAFW1BthA7/Yid9C7xcirmn07k5wPXEnvFiOXVNUt8/4FJEmSWtB6iKuqV+xmfwGvm2HfBnohT5IkaZ/ShelUSZIkTdH6SJwkaXFavXo1k5OTjI2NMTEx0XY50qJjiJMkjcTk5CRbt25tuwxp0XI6VZIkqYMMcZIkSR1kiJMkSeogQ5wkSVIHGeIkSZI6yBAnSZLUQYY4SZKkDjLESZIkdZAhTpIkqYMMcZIkSR1kiJMkSeogQ5wkSVIHGeIkSZI6yBAnSZLUQYY4SZKkDjLESZIkdZAhTpIkqYMMcZIkSR1kiJMkSeogQ5wkSVIHGeIkSZI6yBAnSZLUQYY4SZKkDjLESZIkdVDrIS7J6UluS3JHkgun2X9Bkk3Na3OSnyQ5uNn3rSQ3N/s2zn/1kiRJ7Vja5sGTLAEuBk4DtgA3JFlfVV/b1aaq3gG8o2n/UuBNVfWdvo85tarum8eyJUmSWtf2SNyJwB1VdWdVPQJ8DFg5S/tXAB+dl8okSZIWsLZD3BHA3X3rW5ptj5HkCcDpwCf6NhdwVZIbk6waWZWSJEkLTKvTqUCm2VYztH0pcP2UqdSTqmpbkkOBq5N8vaque8xBegFvFcDy5cv3tmZJkqTWtT0StwU4qm/9SGDbDG3PZspUalVta97vBS6jNz37GFW1tqrGq2p82bJle120JElS29oOcTcAK5Ick2R/ekFt/dRGSZ4EnAJc3rftiUkO3LUMvBjYPC9VS5IktazV6dSq2pnkfOBKYAlwSVXdkuTVzf41TdOXA1dV1Q/7uh8GXJYEet/jI1V1xfxVL0mS5sLq1auZnJxkbGyMiYmJtsvpjLbPiaOqNgAbpmxbM2X9Q8CHpmy7Ezh+xOVJkqQRm5ycZOvWrW2X0TltT6dKkiRpDxjiJEmSOsgQJ0mS1EGGOEmSpA4yxEmSJHWQIU6SJKmDDHGSJEkdZIiTJEnqIEOcJElSBxniJEmSOsgQJ0mS1EGGOEmSpA4yxEmSJHWQIU6SJKmDDHGSJEkdZIiTJEnqIEOcJElSBxniJEmSOsgQJ0mS1EGGOEmSpA4yxEmSJHWQIU6SJKmDDHGSJEkdZIiTJEnqIEOcJElSBxniJEmSOsgQJ0mS1EGth7gkpye5LckdSS6cZv8Lknw/yabm9ZZB+0qSJC1WS9s8eJIlwMXAacAW4IYk66vqa1Oa/t+qeske9pU0R1avXs3k5CRjY2NMTEy0XY4k7dPaHok7Ebijqu6sqkeAjwEr56GvpD0wOTnJ1q1bmZycbLsUSdrntR3ijgDu7lvf0myb6teTfDXJZ5I8Y8i+JFmVZGOSjTt27JiLuiVJklrVdojLNNtqyvqXgadV1fHAu4FPDdG3t7FqbVWNV9X4smXL9rRWSZKkBaPtELcFOKpv/UhgW3+Dqnqgqn7QLG8AHpfkkEH6SpIkLVZth7gbgBVJjkmyP3A2sL6/QZKxJGmWT6RX8/2D9JUkSVqsWr06tap2JjkfuBJYAlxSVbckeXWzfw3wm8BrkuwEHgbOrqoCpu3byheRJEmaZ62GOPjZFOmGKdvW9C2/B3jPoH0lSZL2BW1Pp0qSJGkPGOIkSZI6yBAnSZLUQYY4SZKkDjLESZIkdZAhTpIkqYMMcZIkSR1kiJMkSeogQ5wkSVIHGeIkSZI6yBAnSZLUQYY4SZKkDjLESZIkdZAhTpIkqYMMcZIkSR1kiJMkSeogQ5wkSVIHGeIkSZI6aOnuGiR5N1Az7a+qN8xpRZIkSdqtQUbiNgI3Ao8HngPc3rxOAH4yssokSZI0o92OxFXVOoAk5wGnVtWPm/U1wFUjrU6SJEnTGuacuKcCB/at/2KzTZIkSfNstyNxfS4CvpLks836KcDb5rwiSZIk7dbAIa6qPpjkM8Dzmk0XVtXkaMqSJEnSbIYZiQNYAuxo+v1Kkl+pquvmvixJ2jec9O6T2i5hZPb/3v7sx37c/b27F+X3vP7117ddgvZxA4e4JH8N/A5wC/DTZnMBhjhJkqR5NsxI3FnA06vqR3NZQJLTgb+jN8r3gaq6aMr+3wXe3Kz+AHhNVX212fct4EF6tzrZWVXjc1mbJEnSQjVMiLsTeBwwZyEuyRLgYuA0YAtwQ5L1VfW1vmbfBE6pqu8mOQNYy8/Py4PebU/um6uaJEmSumCYEPcQsCnJtfQFub18YsOJwB1VdSdAko8BK4Gfhbiq+pe+9l8EjtyL40mSJC0Kw4S49c1rLh0B3N23voVHj7JN9QfAZ/rWC7gqSQHvq6q1c1yfJEnSgjTMLUbWJTkAWF5Vt83R8TPdoaZtmJxKL8Sd3Lf5pKraluRQ4OokX5/uatkkq4BVAMuXL9/7qiVJklo28BMbkrwU2ARc0ayfkGRvR+a2AEf1rR8JbJvm2M8GPgCsrKr7d22vqm3N+73AZfSmZx+jqtZW1XhVjS9btmwvS5YkSWrfMI/dehu9kPQ9gKraBByzl8e/AViR5Jgk+wNnM2XKNsly4JPAK6vq//Vtf2KSA3ctAy8GNu9lPZIkSZ0wzDlxO6vq+8mjZkCnnfocVFXtTHI+cCW9W4xcUlW3JHl1s38N8BbgKcD/ao6961YihwGXNduWAh+pqiv2ph5JkqSuGCbEbU7yn4AlSVYAbwD+ZTd9dquqNgAbpmxb07f8h8AfTtPvTuD4vT2+JElSFw0znfp64Bn0bi/yUeAB4I0jqEmSJEm7MczVqQ8Bf9a8JEmS1KJhnp06DvwpcHR/v6p69tyXJUmSpNkMc07ch4ELgJuBn46mHEmSJA1imBC3o6rm+okNkiRJ2gPDhLi3JvkAMPXZqZ+c86okSZI0q2FC3KuAfws8jp9Ppxa9G/FKkiRpHg0T4o6vqmeNrBJJkiQNbJj7xH0xyXEjq0SSJEkDG2Yk7mTg3CTfpHdOXIDyFiPdt3r1aiYnJxkbG2NiYqLtciRJ0gCGCXGnj6wKtWpycpKtW7e2XYYkSRrCME9suCvJk4GjpvS7a86rkiRJ0qyGeWLD24HzgG/QuyqV5v035r4sSZIkzWaY6dTfBo6tqkdGVYwkSZIGM8zVqZuBg0ZUhyRJkoYwzEjcXwFfSbKZRz+x4WVzXpUkSXqUz/37U9ouYWQeXroEEh7esmXRfs9TrvvcnH/mMCFuHfDXwM38/IkNkiRJasEwIe6+qnrXyCqRJEnSwIYJcTcm+StgPY+eTv3ynFclSZKkWQ0T4n6teX9+3zZvMSJJktSCYW72e+ooC5EkSdLgBr7FSJInJfmbJBub1zuTPGmUxUmSJGl6w9wn7hLgQXo3/f1t4AHgg6MoSpIkSbMb5py4Y6vqP/at/0WSTXNcjyRJkgYwzEjcw0lO3rWS5CTg4bkvSZIkSbszzEjca4B1fefBfRc4b84rkiRJ0m4Nc3XqJuD4JL/UrD8wqqIkSZI0u2GuTv3LJAdV1QNV9UCSJyf573tbQJLTk9yW5I4kF06zP0ne1ey/KclzBu0rSZK0WA1zTtwZVfW9XStV9V3gzL05eJIlwMXAGcBxwCuSHDf1uMCK5rUKeO8QfSVJkhalYULckiS/sGslyQHAL8zSfhAnAndU1Z1V9QjwMWDllDYrgUur54vAQUkOH7CvJEnSojTMhQ3/CFyb5IP0Hrf1+8C6vTz+EcDdfetbgOcN0OaIAftKkiQtSsNc2DCR5CbgRUCAt1fVlXt5/Ex3qAHbDNK39wHJKnpTsSxfvnyY+n7muRdcukf9uuDA+x5kCfDt+x5clN/zxnecM6/H+/Z/e9a8Hm8+7fzOwcBSdn7nrkX7PZe/5eZ5Pd71r79+Xo83n8654Ry2/nArRx10FJe+fvH92zLfTrnuc22XMDJ/f845sHUrBxx5JKdc6m9lUMOMxAHcCuysqmuSPCHJgVX14F4cfwtwVN/6kcC2AdvsP0BfAKpqLbAWYHx8fNqgJ0mS1CXDXJ36R8A/Ae9rNh0BfGovj38DsCLJMUn2B84G1k9psx44p7lK9fnA96tq+4B9JUmSFqVhRuJeR+9ign8FqKrbkxy6Nwevqp1JzgeuBJYAl1TVLUle3exfA2ygdxXsHcBDwKtm67s39UiSJHXFMCHuR1X1SNI7FS3JUmY4B20YVbWBXlDr37amb7noBciB+kqSJO0LhrnFyOeS/ClwQJLTgI8D/2c0ZUmSJGk2w4S4NwM7gJuBP6Y3AvbnoyhKkiRJsxtoOjXJfsBNVfVM4P2jLUmSJEm7M9BIXFX9FPhqkj27yZokSZLm1DAXNhwO3JLkS8APd22sqpfNeVWSJEma1TAh7i9GVoUkSZKGMsxjt2Z93keSL1TVr+99SVK3zfdjm+bT0ubROEsPfhrL37J4HwEkSV0wzNWpu/P4OfwsSZIkzWIuQ5zPJJUkSZoncxniJEmSNE/mMsRlDj9LkiRJs5jLEPfKOfwsSZIkzWK3V6cmeZCfn++2a7StmuWqql+it7B5JBVKkiTpMXYb4qrqwPkoRJIkSYMbajo1yclJXtUsH5LkmNGUJUmSpNkMHOKSvBV4M/Anzab9gX8cRVGSJEma3TAjcS8HXkbz3NSq2gY41SpJktSCYULcI1VVNBc5JHniaEqSJEnS7gwU4pIE+HSS9wEHJfkj4Brg/aMsTpIkSdPb7dWp0LuPSJKz6J0T9wDwdOAtVXX1CGuTJEnSDAYKcY0vAN+rqgtGVYwkSZIGM0yIOxX44yR30VzcAFBVz57zqiRJkjSrYULcGSOrQpIkSUMZOMRV1V2jLESSJEmDG+qJDZIkSVoYDHGSJEkdZIiTJEnqoNZCXJKDk1yd5Pbm/cnTtDkqyWeT3JrkliT/uW/f25JsTbKpeZ05v99AkiSpPW2OxF0IXFtVK4Brm/WpdgL/pap+FXg+8Lokx/Xt/9uqOqF5bRh9yZIkSQtDmyFuJbCuWV4HnDW1QVVtr6ovN8sPArcCR8xXgZIkSQtVmyHusKraDr2wBhw6W+MkRwO/Bvxr3+bzk9yU5JLppmMlSZIWq5GGuCTXJNk8zWvlkJ/zi8AngDdW1QPN5vcCxwInANuBd87Sf1WSjUk27tixY8++jCRJ0gIyzBMbhlZVL5ppX5J7khxeVduTHA7cO0O7x9ELcB+uqk/2ffY9fW3eD3x6ljrWAmsBxsfHa+gvIkmStMC0OZ26Hji3WT4XuHxqgyQB/h64tar+Zsq+w/tWXw5sHlGdkiRJC06bIe4i4LQktwOnNeskeWqSXVeangS8EviNaW4lMpHk5iQ3AacCb5rn+iVJkloz0unU2VTV/cALp9m+DTizWf48kBn6v3KkBUqSJC1gPrFBkiSpgwxxkiRJHWSIkyRJ6iBDnCRJUgcZ4iRJkjrIECdJktRBrd1ipGtufMc5bZcwMueccw1btz7A8kMO5NJF/D0lSVpMHImTJEnqIEOcJElSBxniJEmSOsgQJ0mS1EFe2CBJGomxsbFHvUuaW4Y4SdJITExMtF2CtKg5nSpJktRBhjhJkqQOMsRJkiR1kCFOkiSpgwxxkiRJHWSIkyRJ6iBDnCRJUgcZ4iRJkjrIECdJktRBhjhJkqQOMsRJkiR1kCFOkiSpgwxxkiRJHWSIkyRJ6qDWQlySg5NcneT25v3JM7T7VpKbk2xKsnHY/pIkSYtRmyNxFwLXVtUK4NpmfSanVtUJVTW+h/0lSZIWlTZD3EpgXbO8DjhrnvtLkiR1Vpsh7rCq2g7QvB86Q7sCrkpyY5JVe9BfkiRp0Vk6yg9Pcg0wNs2uPxviY06qqm1JDgWuTvL1qrpuyDpWAasAli9fPkxXSZKkBWmkIa6qXjTTviT3JDm8qrYnORy4d4bP2Na835vkMuBE4DpgoP5N37XAWoDx8fHa828kSZK0MLQ5nboeOLdZPhe4fGqDJE9McuCuZeDFwOZB+0uSJC1WIx2J242LgP+d5A+AbwO/BZDkqcAHqupM4DDgsiTQq/UjVXXFbP0lSVK3jI2NPepdg2ktxFXV/cALp9m+DTizWb4TOH6Y/pIkqVsmJibaLqGTfGKDJElSBxniJEmSOsgQJ0mS1EGGOEmSpA4yxEmSJHWQIU6SJKmDDHGSJEkdZIiTJEnqIEOcJElSBxniJEmSOsgQJ0mS1EGGOEmSpA4yxEmSJHWQIU6SJKmDlrZdgKTuGBsbe9S7JKk9hjhJA5uYmGi7BElSw+lUSZKkDjLESZIkdZAhTpIkqYMMcZIkSR1kiJMkSeogQ5wkSVIHGeIkSZI6yBAnSZLUQYY4SZKkDjLESZIkdZAhTpIkqYNaC3FJDk5ydZLbm/cnT9Pm6Uk29b0eSPLGZt/bkmzt23fmvH8JSZKklrQ5EnchcG1VrQCubdYfpapuq6oTquoE4LnAQ8BlfU3+dtf+qtowH0VLkiQtBG2GuJXAumZ5HXDWbtq/EPhGVd01yqIkSZK6oM0Qd1hVbQdo3g/dTfuzgY9O2XZ+kpuSXDLddKwkSdJiNdIQl+SaJJunea0c8nP2B14GfLxv83uBY4ETgO3AO2fpvyrJxiQbd+zYMfwXkSRJWmCWjvLDq+pFM+1Lck+Sw6tqe5LDgXtn+agzgC9X1T19n/2z5STvBz49Sx1rgbUA4+PjNcRXkCRJWpDanE5dD5zbLJ8LXD5L21cwZSq1CX67vBzYPKfVSZIkLWBthriLgNOS3A6c1qyT5KlJfnalaZInNPs/OaX/RJKbk9wEnAq8aX7KliRJat9Ip1NnU1X307vidOr2bcCZfesPAU+Zpt0rR1rgPmRsbOxR75IkaeFrLcRp4ZiYmGi7BEmSNCQfuyVJktRBhjhJkqQOMsRJkiR1kCFOkiSpgwxxkiRJHWSIkyRJ6iBDnCRJUgcZ4iRJkjrIECdJktRBhjhJkqQOSlW1XcO8SrIDuKvtOhagQ4D72i5CneBvRcPw96JB+VuZ3tOqatl0O/a5EKfpJdlYVeNt16GFz9+KhuHvRYPytzI8p1MlSZI6yBAnSZLUQYY47bK27QLUGf5WNAx/LxqUv5UheU6cJElSBzkSJ0mS1EGGuH1QkoOSvLbtOtQNSd6Q5NYkH267Fi18/l40CP8OzQ2nU/dBSY4GPl1Vz2y7Fi18Sb4OnFFV32y7Fi18/l40CP8OzY2lbRegVlwEHJtkE/Bj4If0brD4TOBG4PfKdC8gyRrg3wDrkywH1gNHAEcBE1X1/jbr08Iyze/lE836cuB/VtW72qxPC8rUv0MPA/cDTweuA15bVT9tr7xucCRuH9T/P6AkLwAuB54BbAOuBy6oqs+3VqAWlCTfAsaB84GXA88Hngh8BXheVW1rrzotNFN+Ly8GTgUOBG4Dxqrqx+1Vp4Vimr9DVwDH0Xui0hXA+6rqn1orsCM8J04AX6qqLc3/ejYBR7dbjhawy6vq4aq6D/gscGLbBWlB++eq+lHze7kXOKztgrRgfamq7qyqnwAfBU5uu6AuMMQJ4Ed9yz/BaXbNbOrQvUP5mo3/tmhQ/tuyBwxx+6YH6U1vSMNameTxSZ4CvAC4oeV6JHXT1L9DJyY5Jsl+wO8AntIzAP9XtA+qqvuTXJ9kM72TSe9puyZ1xpeAf6Z3ovrbPR9O0p6Y5u/QF+hd7PAsehc2XNZmfV3hhQ2SBpLkbcAPqup/tF2LpMWjubDhv1bVS1oupXOcTpUkSeogR+IkSZI6yJE4SZKkDjLESZIkdZAhTpIkqYMMcZI0gyQHJXlt23VI0nQMcZI0s4MAQ5ykBckQJ0kzuwg4NsmmJB9PsnLXjiQfTvKyJOcluTzJFUluS/LWvja/l+RLTf/3JVnSyreQtCgZ4iRpZhcC36iqE4D3AK8CSPIk4N8BG5p2JwK/C5wA/FaS8SS/Su/xQSc1/X/StJGkOeFjtyRpAFX1uSQXJzkU+A/AJ6pqZxKAq6vqfoAknwROBnYCzwVuaNocANzbSvGSFiVDnCQN7h/ojaadDfx+3/apd00vIMC6qvqTeapN0j7G6VRJmtmDwIF96x8C3ghQVbf0bT8tycFJDgDOAq4HrgV+sxm5o9n/tHmoWdI+wpE4SZpBVd2f5Pokm4HPVNUFSW4FPjWl6efpjdL9MvCRqtoIkOTPgauS7Af8GHgdcNe8fQFJi5rPTpWkASV5AnAz8Jyq+n6z7TxgvKrOb7M2Sfsep1MlaQBJXgR8HXj3rgAnSW1yJE6SJKmDHImTJEnqIEOcJElSBxniJEmSOsgQJ0mS1EGGOEmSpA4yxEmSJHXQ/wcgmgxev7RgwQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAE9CAYAAAC7sU6tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASKUlEQVR4nO3dfYxl913f8c/XXgJpamKldjLG9sZp6kYNoUlh64Q6wnFLUByhOGmBhjZdnKp1IXGgqpptUKs80H+soU/kQTiGBmyggFogtohj8iBkN1aQvQYHHAiqG2K8sx78kAebYEIcvv1jrtXx7No71zt3zm9mXi9pde+55+y935Gudt57zrnnVncHAIDxnDL1AAAAHJ9QAwAYlFADABiUUAMAGJRQAwAYlFADABjUvqkHWIQzzjijzzvvvKnHAAA4odtvv/2B7j7zeOt2Zaidd955OXz48NRjAACcUFXd/UTrHPoEABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAY1K78ZgKOdejQoayurmZpaSnLy8tTjwMAbIJQ2yNWV1ezsrIy9RgAwBwc+gQAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlFADABjU5KFWVR+oqvuq6s4nWF9V9e6ququqfreqvnW7ZwQAmMLkoZbkZ5O86knWX5Lk/Nmfy5P85DbMBAAwuclDrbtvTvL5J9nk0iTX9prfSnJ6VZ21PdMBAExn8lDbhLOT3LNu+cjsMQCAXW0nhFod57E+ZqOqy6vqcFUdvv/++7dhLACAxdoJoXYkybnrls9JcnTjRt19dXcf6O4DZ5555rYNBwCwKDsh1K5PcnD26c+XJflSd9879VAAAIu2b+oBquoXk7wiyRlVdSTJO5J8XZJ091VJbkjy6iR3JfmzJG+cZlIAgO01eah19/efYH0nefM2jQMAMIydcOgTAGBPEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAgxJqAACDEmoAAIMSagAAg9o39QDAeA4dOpTV1dUsLS1leXl56nEA9iyhBhxjdXU1KysrU48BsOc59AkAMCihBgAwKKEGADAooQYAMCihBgAwKKEGADAooQYAMKjJr6NWVa9K8hNJTk3y09195Yb1r0hyXZI/mj30q939Y4uY5dveeu0innYIpz3wcE5N8scPPLxrf87bf/zg1CMAwJaaNNSq6tQk70vyyiRHktxWVdd39+9v2PR/d/d3b/uAAAATmvrQ5wVJ7uruz3b3XyT5pSSXTjwTAMAQpg61s5Pcs275yOyxjb69qj5VVR+uqm8+3hNV1eVVdbiqDt9///2LmBUAYFtNHWp1nMd6w/JvJ3lud784yXuSfPB4T9TdV3f3ge4+cOaZZ27tlAAAE5g61I4kOXfd8jlJjq7foLsf6u4/nd2/IcnXVdUZ2zciAMA0pg6125KcX1XPq6qnJXl9kuvXb1BVS1VVs/sXZG3mB7d9UgCAbTbppz67+9GquiLJb2Tt8hwf6O5PV9UPztZfleR7kvxQVT2a5JEkr+/ujYdHAQB2ncmvozY7nHnDhseuWnf/vUneu91zAQBMbepDnwAAPAGhBgAwKKEGADAooQYAMCihBgAwKKEGADAooQYAMCihBgAwKKEGADAooQYAMCihBgAwqMm/6xOAnevQoUNZXV3N0tJSlpeXpx4Hdh2hBsBTtrq6mpWVlanHgF3LoU8AgEFtOtSq6plV9V+r6vDsz3+uqmcucjgAgL1snj1qH0jyUJLvm/15KMnPLGIoAADmO0ft+d39j9Ytv6uq7tjieQAAmJlnj9ojVfXyxxaq6sIkj2z9SAAAJPPtUfuhJNfMzkurJJ9PctkihgIAYI5Q6+47kry4qr5xtvzQooYCAGAToVZVb+jun6+qf7Ph8SRJd/+XBc0GALCnbWaP2jNmt6ctchAAAB7vhKHW3e+f3b5r8eMAAPCYzRz6fPeTre/uH966cQAAeMxmDn3ePru9MMkLk/zybPl7160DAHhShw4dyurqapaWlrK8vDz1ODvCZg59XpMkVXVZkou7+6uz5auSfGSh0wEAu8bq6mpWVlamHmNHmeeCt9+Ux3+g4K/OHgMAYAHmueDtlUl+p6p+c7Z8UZJ3bvlEAAAkme+Ctz9TVR9O8tLZQ2/r7tXFjAUAwDyHPpPkK0nuTfKFJH+zqr5j60cCACCZY49aVf2LJD+S5JwkdyR5WZJPJvn7C5kMAGCPm2eP2o8k+btJ7u7ui5P8nST3L2QqAADmCrU/7+4/T5Kq+vru/kySFyxmLAAA5vnU55GqOj3JB5N8tKq+kOToIoYCAGC+T32+bnb3nbNLdDwzyY0LmQoAgM2FWlWdkuR3u/tFSdLdNy10KgAANneOWnf/ZZJPVdX+Bc8DAMDMPOeonZXk01V1a5IvP/Zgd79my6cCAGCuUHvXwqYAAOAY83yY4EnPS6uqT3b3t5/8SAAAJPN/hdST+YYtfC4AgD1vK0Ott/C5AAD2vK0MNQAAttBWhlpt4XMBAOx5Wxlq/2wLnwsAYM874ac+q+rh/P/zzx7ba9az+93d35i1O3cuZEIAgD3qhKHW3adtxyAAADzeXIc+q+rlVfXG2f0zqup5ixkLAIBNh1pVvSPJv0vyo7OHnpbk5xcxFAAA8+1Re12S12T2PZ/dfTSJw6IAAAsyz3d9/kV3d1V1klTVM7ZigKp6VZKfSHJqkp/u7is3rK/Z+lcn+bMkl3X3b2/Fa8PJ+OMf+5apR1iYRz//rCT78ujn7961P+f+t//e1CMAnNCm9qjNYunXq+r9SU6vqn+Z5GNJfupkXryqTk3yviSXJHlhku+vqhdu2OySJOfP/lye5CdP5jUBAHaKTe1Rm+1Je23WzlF7KMkLkry9uz96kq9/QZK7uvuzSVJVv5Tk0iS/v26bS5Nc292d5Leq6vSqOqu77z3J1wYAGNo8hz4/meSL3f3WLXz9s5Pcs275SJKXbmKbs5MINQBgV5sn1C5O8q+q6u7MPlCQJN39t0/i9Y/3tVMbv9x9M9ukqi7P2qHR7N+//ykNc/uPH3xKf28nOHjwY1lZeSj7zzgt1+7in3M77eZznPYdPJisrGTfs56b/W+/aepxdrwL33Ph1CMszNO++LScklNyzxfv2bU/5y1vuWVbX++m77hoW19vOz2y79SkKo8cObJrf86Lbt7afzPnCbVLtvSV1xxJcu665XOSHH0K26S7r05ydZIcOHDgmJADANhpNh1q3X33Al7/tiTnzy6cu5Lk9Un+yYZtrk9yxez8tZcm+ZLz0wCAvWCePWpbrrsfraorkvxG1i7P8YHu/nRV/eBs/VVJbsjapTnuytrlOd441bwAANtp0lBLku6+IWsxtv6xq9bd7yRv3u65AACmNtd3fQIAsH2EGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKD2TT0A22NpaelxtwDA+ITaHrG8vDz1CADAnBz6BAAYlFADABiUUAMAGJRQAwAYlFADABiUUAMAGJRQAwAYlOuoASzYLW+5ZeoRFubgbQez8uWVnHv6ubn2LddOPc6ucNHNN009wsL894MHk5WVPP2cc3LRtd4vm2GPGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKD2TfXCVfWsJL+c5Lwkn0vyfd39heNs97kkDyf5WpJHu/vA9k0JADCdKfeovS3Jx7v7/CQfny0/kYu7+yUiDQDYS6YMtUuTXDO7f02S1043CgDAeKYMted0971JMrt99hNs10k+UlW3V9Xl2zYdAMDEFnqOWlV9LMnScVb9+zme5sLuPlpVz07y0ar6THfffJzXujzJ5Umyf//+pzQvAMBIFhpq3f2dT7Suqv6kqs7q7nur6qwk9z3Bcxyd3d5XVb+W5IIkx4Rad1+d5OokOXDgQG/F/AAAU5ry0Of1SX5gdv8Hkly3cYOqekZVnfbY/STfleTObZsQAGBCU4balUleWVX/J8krZ8upqm+qqhtm2zwnySeq6lNJbk3yoe6+cZJpAQC22WTXUevuB5P8g+M8fjTJq2f3P5vkxds8GgDAEHwzAQDAoIQaAMCghBoAwKAmO0cNGNfS0tLjbgGYhlADjrG8vDz1CADEoU8AgGEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQQk1AIBB7Zt6AABgb1haWnrcLScm1ACAbbG8vDz1CDuOQ58AAIMSagAAgxJqAACDEmoAAIMSagAAg/KpTwCeMpdbgMUSagA8ZS63AIvl0CcAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCEGgDAoIQaAMCghBoAwKCqu6eeYctV1f1J7p56jgGdkeSBqYdgx/B+YbO8V5iH98uxntvdZx5vxa4MNY6vqg5394Gp52Bn8H5hs7xXmIf3y3wc+gQAGJRQAwAYlFDbW66eegB2FO8XNst7hXl4v8zBOWoAAIOyRw0AYFBCbZeqqtOr6k1Tz8HOUVU/XFV/UFW/MPUsjM17hc3yu+jkOfS5S1XVeUl+vbtfNPUs7AxV9Zkkl3T3H009C2PzXmGz/C46efumHoCFuTLJ86vqjiRfTfLlrF1g8EVJbk/yhlbpzFTVVUn+epLrq2p/kuuTnJ3k3CTL3f1TU87HOI7zXvmV2fL+JP+tu9895XwMZ+PvokeSPJjkBUluTvKm7v7L6cYbnz1qu9T6/8VU1SuSXJfkm5McTXJLkrd29ycmG5DhVNXnkhxIckWS1yV5WZJnJPmdJC/t7qPTTcdINrxXvivJxUlOS/KHSZa6+6vTTcdIjvO76MYkL8zatwfdmOT93f2/JhtwB3CO2t5xa3cfmf3P5Y4k5007DoO7rrsf6e4HkvxmkgumHohhfai7vzJ7r9yX5DlTD8TQbu3uz3b315L8YpKXTz3Q6ITa3vGVdfe/Foe9eXIbd7Xb9c4T8W8L8/Bvy5yE2u71cNYORcBTcWlVfUNV/bUkr0hy28TzADvTxt9FF1TV86rqlCT/OIlTcE7A/3x2qe5+sKpuqao7s3by5p9MPRM7yq1JPpS1E8T/o/PTgKfiOL+LPpm1Dxh8S9Y+TPBrU863E/gwAfA4VfXOJH/a3f9p6lmA3WP2YYJ/293fPfEoO4pDnwAAg7JHDQBgUPaoAQAMSqgBAAxKqAEADEqoAXteVZ1eVW+aeg6AjYQaQHJ6EqEGDEeoAaxdgPP5VXVHVf3Pqrr0sRVV9QtV9ZqquqyqrquqG6vqD6vqHeu2eUNV3Tr7+++vqlMn+SmAXUeoASRvS/J/u/slSd6b5I1JUlXPTPL3ktww2+6CJP80yUuSfG9VHaiqv5W1r8K5cPb3vzbbBuCk+QopgHW6+6aqel9VPTvJP0zyK939aFUlyUe7+8EkqapfTfLyJI8m+bYkt822eXqS+yYZHth1hBrAsX4ua3vFXp/kn697fOMVwjtJJbmmu390m2YD9hCHPgGSh5Octm75Z5P86yTp7k+ve/yVVfWsqnp6ktcmuSXJx5N8z2wPXGbrn7sNMwN7gD1qwJ7X3Q9W1S1VdWeSD3f3W6vqD5J8cMOmn8ja3ra/keR/dPfhJKmq/5DkI1V1SpKvJnlzkru37QcAdi3f9QmwQVX9lSS/l+Rbu/tLs8cuS3Kgu6+YcjZgb3HoE2CdqvrOJJ9J8p7HIg1gKvaoAQAMyh41AIBBCTUAgEEJNQCAQQk1AIBBCTUAgEEJNQCAQf0/TcbmdzTQ2wYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "for category in QUESTIONS+[\"rel_\"+q for q in QUESTIONS]:\n", " plt.figure(figsize=(10,5))\n", " ax = sns.barplot(x=\"type\", y=category, data=df_survey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Explaining the linear regression model of popularity score using audioLIME \n", "\n", "We will use the approach presented in the preprint paper: [Haunschmid et al. (2020) \"audioLIME: Listenable Explanations Using Source Separation\"](https://arxiv.org/abs/2008.00582)\n", "\n", "This approach will allow us to generate \"listenable\" explainations of the music - which parts of the music piece increase and which decrease the assigned score.\n", "We used the original dataset creators code to compute the music parameters from raw data. The method is still being fine-tuned to get the best performance, therefore we present only the preliminary results (and listenable explainations) in our analysis." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "# Feature computation code cloned from FMA repository (features.py)\n", "\n", "def columns():\n", " feature_sizes = dict(chroma_stft=12, chroma_cqt=12, chroma_cens=12,\n", " tonnetz=6, mfcc=20, rmse=1, zcr=1,\n", " spectral_centroid=1, spectral_bandwidth=1,\n", " spectral_contrast=7, spectral_rolloff=1)\n", " moments = ('mean', 'std', 'skew', 'kurtosis', 'median', 'min', 'max')\n", "\n", " columns = []\n", " for name, size in feature_sizes.items():\n", " for moment in moments:\n", " it = ((name, moment, '{:02d}'.format(i+1)) for i in range(size))\n", " columns.extend(it)\n", "\n", " names = ('feature', 'statistics', 'number')\n", " columns = pd.MultiIndex.from_tuples(columns, names=names)\n", "\n", " # More efficient to slice if indexes are sorted.\n", " return columns.sort_values()\n", "\n", "def compute_features(x):\n", " features = pd.Series(index=columns(), dtype=np.float32)\n", "\n", " def feature_stats(name, values):\n", " features[name, 'mean'] = np.mean(values, axis=1)\n", " features[name, 'std'] = np.std(values, axis=1)\n", " features[name, 'skew'] = stats.skew(values, axis=1)\n", " features[name, 'kurtosis'] = stats.kurtosis(values, axis=1)\n", " features[name, 'median'] = np.median(values, axis=1)\n", " features[name, 'min'] = np.min(values, axis=1)\n", " features[name, 'max'] = np.max(values, axis=1)\n", "\n", " sr = 44100\n", "\n", " x = librosa.to_mono(x)\n", " f = librosa.feature.zero_crossing_rate(x, frame_length=2048, hop_length=512)\n", " feature_stats('zcr', f)\n", "\n", " cqt = np.abs(librosa.cqt(x, sr=sr, hop_length=512, bins_per_octave=12,\n", " n_bins=7*12, tuning=None))\n", " assert cqt.shape[0] == 7 * 12\n", " assert np.ceil(len(x)/512) <= cqt.shape[1] <= np.ceil(len(x)/512)+1\n", "\n", " f = librosa.feature.chroma_cqt(C=cqt, n_chroma=12, n_octaves=7)\n", " feature_stats('chroma_cqt', f)\n", " f = librosa.feature.chroma_cens(C=cqt, n_chroma=12, n_octaves=7)\n", " feature_stats('chroma_cens', f)\n", " f = librosa.feature.tonnetz(chroma=f)\n", " feature_stats('tonnetz', f)\n", "\n", " del cqt\n", " stft = np.abs(librosa.stft(x, n_fft=2048, hop_length=512))\n", " assert stft.shape[0] == 1 + 2048 // 2\n", " assert np.ceil(len(x)/512) <= stft.shape[1] <= np.ceil(len(x)/512)+1\n", " del x\n", "\n", " f = librosa.feature.chroma_stft(S=stft**2, n_chroma=12)\n", " feature_stats('chroma_stft', f)\n", "\n", " f = librosa.feature.rms(S=stft)\n", " feature_stats('rmse', f)\n", "\n", " f = librosa.feature.spectral_centroid(S=stft)\n", " feature_stats('spectral_centroid', f)\n", " f = librosa.feature.spectral_bandwidth(S=stft)\n", " feature_stats('spectral_bandwidth', f)\n", " f = librosa.feature.spectral_contrast(S=stft, n_bands=6)\n", " feature_stats('spectral_contrast', f)\n", " f = librosa.feature.spectral_rolloff(S=stft)\n", " feature_stats('spectral_rolloff', f)\n", "\n", " mel = librosa.feature.melspectrogram(sr=sr, S=stft**2)\n", " del stft\n", " f = librosa.feature.mfcc(S=librosa.power_to_db(mel), n_mfcc=20)\n", " feature_stats('mfcc', f)\n", "\n", " # except Exception as e:\n", " # print('{}: {}'.format(tid, repr(e)))\n", "\n", " return features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### For audioLIME to work, we need to repare one function which:\n", "* takes a raw soundwave input\n", "* computes the librosa feature set for the input\n", "* selects the significant features, propagates them through regression model\n", "* takes the result and makes it classification output" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "# p: Minimum deviation from dist mean which changes classification outcome\n", "# Higher value gives better results but requires much more samples to be\n", "# processed in order to find distortions which \"flip\" the class.\n", "p = 0.25\n", "\n", "\n", "def analysis_thread(x):\n", " feat_comp = pd.DataFrame([compute_features(x)])\n", " feat_comp.columns = ['_'.join(col) for col in feat_comp.columns.values]\n", " feat_comp = feat_comp[selected_features].values[0]\n", " feat_comp_scaled = min_max_scaler.transform(feat_comp.reshape(1, -1))\n", " feat_comp_scaled = pd.DataFrame(feat_comp_scaled)\n", " feat_comp_scaled.insert(0, 'const', 1.0)\n", " score = results.predict(feat_comp_scaled).values[0]\n", " #return np.array([score])\n", " if score > p: # Popular\n", " return np.array([0, 0, 1])\n", " elif score < -p: # Unpopular\n", " return np.array([1, 0, 0])\n", " else: # Average\n", " return np.array([0, 1, 0])\n", "\n", "def predict_fn(xs):\n", " res = pqdm(xs, analysis_thread, n_jobs=4)\n", " \n", " pbar.update(xs.shape[0])\n", " return np.array(res)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Testing the function" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3d895a63d4b749ed8de2c5b86fbea1ad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dc349303659847e9a524614a597f7467", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='SUBMITTING | ', max=2.0, style=ProgressStyle(description_…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d2c42f9198f4400baeaded9bac11dd3f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='PROCESSING | ', max=2.0, style=ProgressStyle(description_…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fcc9140bf9e14ffa973e3dda168cab42", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='COLLECTING | ', max=2.0, style=ProgressStyle(description_…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "[[0 1 0]\n", " [0 1 0]]\n", "\n" ] } ], "source": [ "pbar = tqdm(total=2)\n", "\n", "x_local, sr = torchaudio.load(f\"{datasource}/fma_large/050/050952.mp3\")\n", "print(predict_fn(np.array([x_local.numpy(), x_local.numpy()])))\n", "\n", "pbar.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Processing the file using audioLIME" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [], "source": [ "# Fixing some code by forkin our own classes out of audioLIME code\n", "\n", "def separate(separator, waveform, target_sr, spleeter_sr):\n", " waveform = librosa.resample(waveform, target_sr, spleeter_sr)\n", " waveform = np.expand_dims(waveform, axis=1)\n", " prediction = separator.separate(waveform)\n", " return prediction\n", "\n", "class FMAAudioProvider(DataProvider):\n", " def __init__(self, audio_path, target_sr=44100):\n", " self.target_sr = target_sr\n", " super().__init__(audio_path)\n", "\n", " def initialize_mix(self):\n", " waveform, _ = torchaudio.load(self._audio_path)\n", " return waveform.mean(axis=0).numpy()\n", "\n", "\n", "class FMAFactorization(DataBasedFactorization):\n", " def __init__(self, data_provider, n_temporal_segments, composition_fn, model_name,\n", " spleeter_sources_path=None, target_sr=44100):\n", "\n", " self.model_name = model_name\n", " self.target_sr = target_sr\n", " sample_name = os.path.basename(data_provider.get_audio_path().replace(\".mp3\", \"\"))\n", " if spleeter_sources_path is not None:\n", " self.sources_path = os.path.join(spleeter_sources_path,\n", " model_name.replace(\"spleeter:\", \"\"), sample_name)\n", " else:\n", " self.sources_path = None\n", "\n", " super().__init__(data_provider, n_temporal_segments, composition_fn)\n", "\n", " def initialize_components(self):\n", " spleeter_sr = 44100\n", "\n", " prediction_path = None\n", " if self.sources_path is not None:\n", " prediction_path = os.path.join(self.sources_path, \"prediction.pt\")\n", "\n", " if not prediction_path is None and os.path.exists(prediction_path):\n", " print(\"loading {} ...\".format(prediction_path))\n", " prediction = pickle.load(open(prediction_path, \"rb\"))\n", " else:\n", " waveform = self.data_provider.get_mix()\n", " separator = Separator(self.model_name, multiprocess=False)\n", " prediction = separate(separator, waveform, self.target_sr, spleeter_sr)\n", "\n", " if not prediction_path is None: # need to store\n", " if not os.path.exists(self.sources_path):\n", " os.mkdir(self.sources_path)\n", " pickle.dump(prediction, open(prediction_path, \"wb\"))\n", "\n", " self.original_components = [\n", " librosa.resample(np.mean(prediction[key], axis=1), spleeter_sr, self.target_sr) for\n", " key in prediction]\n", "\n", " self._components_names = list(prediction.keys())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ac7b05a455dd403488a70dce84b95971", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=1024.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Apply unet for vocals_spectrogram\n", "INFO:tensorflow:Apply unet for piano_spectrogram\n", "INFO:tensorflow:Apply unet for drums_spectrogram\n", "INFO:tensorflow:Apply unet for bass_spectrogram\n", "INFO:tensorflow:Apply unet for other_spectrogram\n", "INFO:tensorflow:Restoring parameters from pretrained_models/5stems/model\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/mbien/.local/lib/python3.8/site-packages/audioLIME/factorization.py:84: UserWarning: last 8 samples are ignored\n", " warnings.warn(\"last {} samples are ignored\".format(audio_length - explained_length))\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0ed74245644243cf85bda7f0432c60e8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='SUBMITTING | ', max=256.0, style=ProgressStyle(descriptio…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c05bf456710e40f2801bf043f0a15126", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='PROCESSING | ', max=256.0, style=ProgressStyle(descriptio…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Number of distortion tries, the more the better\n", "num_samples = 128\n", "\n", "# ID of the audio sample\n", "audio_id = 50952\n", "\n", "pbar = tqdm(total=num_samples)\n", "\n", "audio_str = str(audio_id).zfill(6)\n", "audio_path = f\"{datasource}/fma_large/{audio_str[:3]}/{audio_str}.mp3\"\n", "\n", "\n", "\n", "data_provider = FMAAudioProvider(audio_path)\n", "\n", "# We split into 3s samples\n", "spleeter_factorization = FMAFactorization(data_provider,\n", " n_temporal_segments=10,\n", " composition_fn=None,\n", " model_name='spleeter:5stems',\n", " target_sr=44100)\n", "\n", "explainer = lime_audio.LimeAudioExplainer(verbose=True, absolute_feature_sort=False)\n", "\n", "explanation = explainer.explain_instance(factorization=spleeter_factorization,\n", " predict_fn=predict_fn,\n", " labels=[\"unpopular\", \"average\", \"popular\"],\n", " top_labels=3,\n", " num_samples=num_samples,\n", " batch_size=64\n", " )\n", ":¶\n", "pbar.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Let's check if we have enough samples, and proceed" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "Label unpopular: 23 components found\n", "2\n", "Label popular: 0 components found\n", "0\n", "Label average: 27 components found\n" ] } ], "source": [ "labels = list(explanation.local_exp.keys())\n", "rlabel = [\"average\", \"unpopular\", \"popular\"]\n", "\n", "\n", "for label in labels:\n", " print(label)\n", " top_components, component_indeces = explanation.get_sorted_components(label,\n", " positive_components=True,\n", " negative_components=False,\n", " num_components=30,\n", " return_indeces=True)\n", " print(f\"Label {rlabel[label]}: {len(top_components)} components found\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Write the original music file and explainations to the `output` folder" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [], "source": [ "!rm -rf output\n", "!mkdir -p output\n", "\n", "for label in labels:\n", " top_components, component_indeces = explanation.get_sorted_components(label,\n", " positive_components=True,\n", " negative_components=False,\n", " num_components=5,\n", " return_indeces=True)\n", "\n", " #print(top_components)\n", " if len(top_components) > 0:\n", " sf.write(os.path.join(\"output\", f\"explanation_{rlabel[label]}.wav\"), sum(top_components), 44100)\n", "sf.write(os.path.join(\"output\", \"original.wav\"), spleeter_factorization.data_provider.get_mix(), 44100)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# play the most important components of the original song\n", "exp, sr = librosa.load(\"output/original.wav\", sr=None, mono=True)\n", "\n", "display.Audio(data=exp, rate=sr)" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# play the \"unpopular\" explaination\n", "exp, sr = librosa.load(\"output/explanation_unpopular.wav\", sr=None, mono=True)\n", "\n", "display.Audio(data=exp, rate=sr)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# play the \"average\" explaination\n", "exp, sr = librosa.load(\"output/explanation_average.wav\", sr=None, mono=True)\n", "\n", "display.Audio(data=exp, rate=sr)" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [], "source": [ "# # play the \"popular\" explaination\n", "# exp, sr = librosa.load(\"output/explanation_popular.wav\", sr=None, mono=True)\n", "\n", "# display.Audio(data=exp, rate=sr)" ] }, { "cell_type": "markdown", "metadata": { "id": "kzh2C67x9cNU" }, "source": [ "# Efforts to use Wav2Vec2.0 for popularity estimation " ] }, { "cell_type": "markdown", "metadata": { "id": "l7Kgte_k-MRX" }, "source": [ "## Loading the dataset\n", "\n", "To run this code, you must have an undersampled version of `fma_large` dataset, which can be created using the code from [milestone3-wav2vec2.ipynb](https://github.com/Glorf/DH-401/blob/main/milestone3-wav2vec2.ipynb)" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "O4PHqQ219sWg", "outputId": "53fc46c0-a2bc-4fab-d23a-19045a500d70" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
track_idpop_score
01472460.361502
115577-0.022418
2127407-0.745016
31316431.275226
4116637-0.683588
\n", "
" ], "text/plain": [ " track_id pop_score\n", "0 147246 0.361502\n", "1 15577 -0.022418\n", "2 127407 -0.745016\n", "3 131643 1.275226\n", "4 116637 -0.683588" ] }, "execution_count": 92, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, max_length=480000)\n", "min_train = -3.3939661205367715\n", "max_train = 5.098214985136099\n", "\n", "class PopularityDataset(torch.utils.data.Dataset):\n", " def __init__(self, dataframe):\n", " self.dataframe = dataframe\n", "\n", " def __len__(self):\n", " return len(self.dataframe)\n", "\n", " def __getitem__(self, index):\n", " row = self.dataframe.iloc[index]\n", " track_id = str(int(row.track_id)).zfill(6)\n", " audio_sample, _ = torchaudio.load(f\"{datasource}/musicology-dataset-downsampled/{track_id}.mp3\")\n", " audio_sample = torch.mean(audio_sample, dim=0, keepdim=True)\n", " audio_sample = audio_sample.squeeze().numpy()\n", " audio_sample = feature_extractor(audio_sample, sampling_rate=16000, return_tensors=\"pt\", padding='max_length', max_length=480000).input_values\n", " #score = (row.pop_score - min_train)/(max_train-min_train)\n", " return {\n", " \"input_ids\": audio_sample.flatten()[:480000],\n", " \"labels\": torch.tensor(row.pop_score).float(),\n", " }\n", "\n", "# Ensure we are using the same split as the one used for finetuning\n", "test = pd.read_csv(\"https://mbien-public.s3.eu-central-1.amazonaws.com/dh-401/pop_test.csv\")\n", "\n", "test_ds = PopularityDataset(test[:10])\n", "test.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "mEbX0imc-hJT" }, "source": [ "## Setup model architecture and load it from the hub\n", "Only difference compared to the training code is no Dropout" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "id": "Fp_m2hfW-fvp" }, "outputs": [], "source": [ "class Wav2Vec2ForAudioClassification(Wav2Vec2PreTrainedModel):\n", " def __init__(self, config):\n", " super().__init__(config)\n", "\n", " self.wav2vec2 = Wav2Vec2Model(config)\n", " self.dropout = nn.Dropout(0)\n", " self.classifier = nn.Linear(768, 1)\n", "\n", " self.init_weights()\n", "\n", " def forward(self, input_ids):\n", " outputs = self.wav2vec2(\n", " input_ids,\n", " output_attentions=True,\n", " output_hidden_states=True\n", " )\n", " pooled_output = outputs.last_hidden_state[:,0,:]\n", "\n", " return self.classifier(pooled_output)\n", "\n", "model = Wav2Vec2ForAudioClassification.from_pretrained(\"mbien/fma2vec2popularity\").to(\"cuda\")" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xGKSzwK_G8tl", "outputId": "f5513371-0b89-4215-cb72-9eab475640a3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original: 0.3615018427371979 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: -0.02241761051118374 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: -0.7450163960456848 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: 1.275226354598999 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: -0.6835883855819702 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: 0.2886952757835388 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: -1.2600702047348022 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: -0.020840361714363098 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: -0.7316892147064209 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n", "Original: 1.057540774345398 Predicted: tensor([[-0.1074]], device='cuda:0', grad_fn=)\n" ] } ], "source": [ "test_dl = DataLoader(test_ds)\n", "\n", "for sample in test_dl:\n", " model.eval()\n", " out = model(sample[\"input_ids\"].to(\"cuda\"))\n", " print(\"Original:\", sample[\"labels\"].item(), \"Predicted:\", out)" ] }, { "cell_type": "markdown", "metadata": { "id": "xOEMxO9tL_8_" }, "source": [ "## Is this just a very expensive average number calculator?\n", "We tested also:\n", "* variable size and amount of output layers\n", "* classification output with variable number of classes\n", "* pooled output as average of all the units of last hidden layers instead of only first unit\n", "* other architecture modifications such as more dropouts, different activation functions\n", "\n", "None of this options allowed to fine-tune the model with performance above average. \n", "### Our guesses about why this didn't work:\n", "* We pre-trained the model on 1 Tesla V100 for 16 hours. FAIR did it on 32 Teslas for several days, therefore we certainly didn't pretrain that well\n", "* The model originally designed for speech processing task might not be as versatile as we expected, and the adjustment for music might require much more hyperparam tuning\n", "* The classification head might be either too complicated or too easy to predict\n", "\n", "### Anyway, as we reached dead end for this approach, we will scope on the results of our linear regression and LIME interpretations for the rest of the project" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [ "wplv74nr9cM8" ], "machine_shape": "hm", "name": "milestone3.ipynb", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "26e1ad0b929d4916876da4db38bf1869": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "initial" } }, "2909cd6e3ee844bbaf818d7f98007288": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "44ec8feff73d4e6abd372e5e88c79c76": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_fd2983b086e94940a10b5d7d51fd4530", "IPY_MODEL_bb42199b84314b7995f56e39c850c25c" ], "layout": "IPY_MODEL_2909cd6e3ee844bbaf818d7f98007288" } }, "491b8e5ab24548e38c65cbbfed26e091": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a6d4c1db736047ef98ffc7f9d93be588": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bb42199b84314b7995f56e39c850c25c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a6d4c1db736047ef98ffc7f9d93be588", "placeholder": "​", "style": "IPY_MODEL_cda6871a5a5c4625939f7a72040cbd35", "value": " 14395/14395 [11:11<00:00, 21.44it/s]" } }, "cda6871a5a5c4625939f7a72040cbd35": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "fd2983b086e94940a10b5d7d51fd4530": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "100%", "description_tooltip": null, "layout": "IPY_MODEL_491b8e5ab24548e38c65cbbfed26e091", "max": 14395, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_26e1ad0b929d4916876da4db38bf1869", "value": 14395 } } } } }, "nbformat": 4, "nbformat_minor": 4 }