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Context

These are notes created based on the lectures by Prof. Federico Ardila at San
Francisco State University. Hopf algebras seem to be a difficult topic to introduce
as a simple definition. They apparently have applications in quantum field theory,
pertinent to Feynman diagrams and renormalisation.
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1 Introduction

A Hopf algebra is a complicated mathematical structure with a definition involving lots
of properties and scary commutative diagrams. It fundamentally invokes the tensor
product and develops coalgebras with their respective properties, which merits thor-
ough investigation. Some interesting examples allow for good practice in combina-
torics as well so far. It is difficult to construct as a complete definition in one sitting, so
we must start with smaller definitions and build up the structure progressively.

Definition 1 (Hopf algebra). A Hopf algebra H is a K-vector space with five operations:

Multiplication: m : H ⊗ H → H
Unit: u : K→ H

Comultiplication: ∆ : H → H ⊗ H
Counit: ε : H → K

Antipode: S : H → H

These definitions invoke lots of commutative diagrams that are difficult to TEX, so they’ll
be shown later once a better understanding is developed. Now we must preliminarily
define the tensor product.

Definition 2 (Tensor product). Let K be a field, and let V and W be vector spaces over
K. The tensor product V ⊗ W is a vector space over K generated by vectors v ⊗ w,
v ∈ V, w ∈ W , and satisfying the following properties:

Distributivity over addition: (v + v′) ⊗ (w + w′) � v ⊗ w + v ⊗ w′ + v′ ⊗ w + v′ ⊗ w′

Scalar multiplication independent of two arguments: λ(v ⊗ w) � λv ⊗ w � v ⊗ λw

The combination of these is a property called bilinearity. Note that this vector space is
much larger than the product space V ×W:

dimU × V � dimU + dimV
dimU ⊗ V � dimU dimV

This is intuitively obvious because the tensor product defines an actual product be-
tween elements of V and W , instead of a restricted component structure induced by a
Cartesian product, which constrains manipulations to V and W independently.

Example (Tensor product of bases). If {vi}i∈I and
{

w j
}

j∈ J are bases of V and W , then{
vi ⊗ w j | i ∈ I , j ∈ J

}
is a basis for V ⊗W . Let {vi} and

{
w j

}
be the standard bases
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in two and three dimensions, represented as column and row vectors respectively. One
element of the basis for the tensor product is:

v1 ⊗ w3 �

[
1
0

]
⊗

[
0 0 1

]
�

[
0 0 1
0 0 0

]
It is clear that this construction develops the standard basis for V2 ⊗W3.

Example (Polynomial ring and matrices). Let V � R[x] and W � Mat2×2(R). A formal

expression of an element in V ⊗W is, for example, (2 + 2x) ⊗
[
0 1
1 0

]
.

Example (Dirac matrices). The following anticommutation relations have a corre-
sponding matrix representation called the Pauli matrices:

σ2i � I2 , σiσ j + σ jσi � 0, i , j

σ1 �

[
0 1
1 0

]
, σ2 �

[
0 −i
i 0

]
, σ3 �

[
1 0
0 −1

]
To develop the relativistic theory of the electron, Dirac constructed 4 × 4 matrices
γµ , µ � 0, 1, 2, 3, out of the Pauli matrices using tensor products. The details are
not relevant, so we will just display the results:

γ B

[
0 1
−1 0

]
γ0

� σ3 ⊗ I2 �

[
I2 0
0 −I2

]
�


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


γi

� γ ⊗ σi �

[
0 σi
−σi 0

]
, i � 1, 2, 3

The Pauli and Dirac matrices form Clifford algebras respectively.

1.1 Motivating Examples for Hopf Algebras

Example 1 (Groups). Let G be a finite group and K a field. To allow multiplication of
scalars into the group, define the group ring:

H � KG �

{
n∑

i�1

λi gi

���� n ∈ N, λi ∈ K, gi ∈ G

}
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with the ring multiplication g ·h � gh, the group multiplication. Extending this linearly:(
m∑

i�1

λi gi

)©­«
n∑

j�1

µ j h j
ª®¬ �

m∑
i�1

n∑
j�1

λiµ j(gi h j)

Comultiplication: ∆(g) � g ⊗ g. Extending this linearly:

∆

(
n∑

i�1

λi gi

)
�

n∑
i�1

λi(gi ⊗ gi)

These definitions do give a Hopf algebra according to the lecturer.

Remark. The comultiplication ∆(g) � 1 ⊗ g + g ⊗ 1 + g ⊗ g should also be valid, as the
mapping should point to all possible information of where g can come from. As we will
see later, this idea will be partially evident in future definitions of different structures.

Example 2 (Polynomial rings). Let H � K[X], the polynomial ring.

Multiplication: m
(
X i ⊗ X j ) � X i+ j . Extending this linearly:

m©­«
n∑

i�0

αiX i ⊗
p∑

j�0

β jX jª®¬ �

n∑
i�0

p∑
j�0

αiβ jX i+ j , ∀ αi , β j ∈ K, ∀ n , p ∈ N

Remark. This is a commutative multiplication because X i+ j � X j+i .

Comultiplication: Extending the logic from groups:

∆(X) � (1 ⊗ X) + (X ⊗ 1)

Remark. The combination (X ⊗ X) is not included here probably because the addition
of ring elements is analogous to multiplication of group elements, justifying g ⊗ g in
the definition for groups.

This ring already has a multiplicative structure, which the coproduct should obey nat-
urally:

∆
(
X2

)
� [1 ⊗ X + X ⊗ 1] · [1 ⊗ X + X ⊗ 1]
� 1 ⊗ X2

+ 2(X ⊗ X) + X2 ⊗ 1
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This suggests the following extension:

∆(Xn) �
n∑

i�1

(
n
i

) (
X i ⊗ Xn−i

)
Notice the following, which shows the information about the coefficient of a comulti-
plication:

m(∆(Xn)) �
n∑

i�1

(
n
i

)
Xn

� 2nXn

Example 3 (Graphs). Let [G] be the isomorphism class of the graph G � (V, E). The
collection of all isomorphic graphs is denoted by L � { [G] | G ∈ G }, where G is the
class of all graphs. Define the vector space H � KL, in which the elements are linear
combinations of graphs:

H �

{
n∑

i�1

ki[Gi]
���� ki ∈ K, Gi ∈ G , n ∈ N0

}
Multiplication: Defined most naturally as a disjoint union of the arguments as compo-
nents of the graph, which is commutative:

m

(
⊗

)
�

Comultiplication: Not entirely obvious, but a satisfactory definition can be deduced
from the previous examples and observations. The comultiplication of an element is
essentially the sum of all of its possible decompositions into two complementary subele-
ments.
This idea can be implemented in this algebra as well by selecting a subset S of the ver-
tex set of the graph V(G) and taking the tensor product of the graphs induced by S and
its complement V(G) − S (a graph induced by a subset of the vertex set consists of ver-
tices in that subset and all of the edges between these vertices that occur in the original
graph). This is shown by (dropping the isomorphism class notation for brevity):

∆(G) �
∑

S⊆V(G)
G
��
S ⊗ G

��
V(G)−S
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This is illustrated using the following example:

∆

( )
�

(
⊗

)
+

(
⊗

)
+

(
⊗

)
+ · · ·

The number of tensor products is easily countable as the number of subsets of V(G),
which is 2n , where n is the number of vertices of the graph G. For the above example,
there are 5 vertices, so there are 32 tensor products to be summed over.

Remark. The product of the coproduct of a graph is:

m(∆(G)) , G

This indicates that the product of the coproduct of a graph does not bring back the
original argument, so m and ∆ are not inverse operations. (Note: This is also evident
from the group and the polynomial ring examples.)

Example 4 (Permutations). Let Pn denote the set of all permutations of N (mod n) B
{1, 2, . . . , n}, for a given non-negative integer n. Let P denote the set of all permuta-

tions of N (mod n), for all non-negative integers n — i.e., P B
∞⋃

n�0
Pn . Here are two

permutations in P:

p �

(
1 2 3 4 5
2 1 3 4 5

)
, q �

(
1 2
2 1

)
Remark. Although they might have the ‘same’ action, they are fundamentally different
elements of P, as p is an element of P5 and q that of P2.

The vector space is defined as:

H � KP B

{
n∑

i�1

ki pi

���� ki ∈ K, pi ∈ P, n ∈ N0

}
Note that the coefficients do not denote the number of times of application of their
corresponding permutations; they just depict a formal linear extension in the vector
space.

Multiplication: An example is 12 ⊗ 321 using one-line notation:

m(12 ⊗ 321) �12543 + 15243 + 15423 + 15432 + 51243 +

51423 + 51432 + 54123 + 54132 + 54312
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This shows that it respects the relative order of the elements within each argument as in
a riffle shuffle of cards and generates only some permutations in P5 as a result. Also note
how the elements 1, 2, 3 in the second argument were relabelled 3, 4, 5 respectively, to
ensure that we get an element of P5 after shuffling. This might be represented as given
below, with ui denoting the ith element in the permutation U:

m(U ⊗ V) � m
(
u1 · · · un ⊗ v1 · · · vp

)
�

∑
w1 · · ·wn+p

Where w1 · · ·wn+p stands for every possible permutation of the resultant set with the
values of v j right-shifted by n, under the rule that the relative orders of the elements
of U and V respectively are not lost — i.e., for any two wi , w j , 1 ≤ i < j ≤ n + p, one
of the following holds:

1. wi � uk and w j � vr + n

2. wi � vr + n and w j � uk

3. wi � uk and w j � ul , with k < l

4. wi � vr + n and w j � vs + n, with r < s

where 1 ≤ k , l ≤ n, 1 ≤ r, s ≤ p.

Comultiplication: Similar to graphs, the coproduct of permutations is obtained by cut-
ting a line between the numbers (in one-line notation, e.g. 12 | 345), and writing the
outer product with each piece as a component, then summing over all complementary
combinations.

∆(u1u2 · · · un) �
n∑

i�0

u1 · · · ui ⊗ v1 · · · vn−i

where v1 , . . . , vn−i are obtained by relabelling ui+1 , . . . , un respectively in such a way
that the resulting set {v1 , . . . , vn−i} � N (mod (n − i)), but preserving the relative order
of elements. An example using a permutation of P5:

∆(42531) � (� ⊗ 42531) + (1 ⊗ 2431) + (21 ⊗ 321) + · · ·

Remark. Nothing so far.
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2 Algebras Over a Field/Ring

An algebra over a field is a structure that is simultaneously a vector space and a ring. The
setup will be a field K and a ring A with a multiplicative identity 1, called a K-algebra.
Three definitions are introduced that will be shown to be equivalent.

Definition 3 (K-algebra). A forms a K-algebra if K ⊆ Z(A) and 1K � 1A, where Z(A)
is the centre of the ring.

Example (Polynomial rings). Let A � K[x]. This forms a K-algebra because the ring
is commutative and the elements of the field in the ring are the constant polynomials,
and 1K is the same as 1A. This directly generalises to the multivariate polynomial ring
B � K[x1 , . . . , xn], n ∈ N.

An example of a ring that is a vector space, but does not form a K-algebra as per
Definition 3 is A � Matn×n(K). This is because K * A. However, a “copy” of K exists as
the subfield of matrices of the form λI, where I is the identity matrix of corresponding
dimensions, and λ ∈ K. This structure should form a K-algebra, which motivates the
second definition.

Definition 4 (K-algebra). A is a K-algebra if there is an embedding u : K → A such
that u(K) ⊆ Z(A) and u(1K) � 1A.

Remark. This allows A � Matn×n(K) to form a K-algebra if we define u(λ) � λI , ∀λ ∈
K. An observation is that any A now forms a K-vector space because scalar multiplica-
tion is implemented as λ ·a B u(λ)a , λ ∈ K, a ∈ A. The construction of the polynomial
ring K[x] as a K-algebra also follows directly from this definition.

An algebra over a ring, by analogy, is a module and a ring with a multiplicative identity
defined similarly:

Definition 5 (R-algebra). M is an R-algebra if there is a ring homomorphism u : R →
M such that u(R) ⊆ Z(A) and u(1R) � 1A with a left or right multiplication specified.

Example (Z-algebra). A quaternion a + bi + c j + dk is a Hurwitz quaternion if a, b, c,
and d are either all integers, or all half-integers — i.e., halves of odd integers. Let

H B

{
a + bi + c j + dk

���� a , b , c , d ∈ Z or a , b , c , d ∈ Z + 1

2

}
be the set of all Hurwitz quaternions. Then H is a Z-algebra, since its centre consists
of all Hurwitz quaternions with imaginary parts zero, which contains a copy of Z as a
subring.
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2.1 Algebra Homomorphism

Definition 6. Let A1 ,A2 be K-algebras. An algebra homomorphism is φ : A1 → A2

which is a ring homomorphism and linear map simultaneously.

Remark. Observations:

• B ⊆ A is a subalgebra if B is both a subspace and subring.

• A structure that quotients the algebra must quotient the vector space and the ring
simultaneously. A subspace quotients the vector space, and an ideal quotients the
ring. All ideals form subspaces, therefore ideals quotient the algebra.

• If φ : A → B is a K-algebra homomorphism, then Imφ � A/kerφ, where kerφ
forms an ideal I. This is analogous to the first isomorphism theorem for groups,
rings, vector spaces, etc.

• The direct product of two K-algebras is also a K-algebra, as the vector space
and ring structures are independently inherited. The tensor product also forms a
K-algebra.

Definition 7 (K-algebra). A K-algebra is a vector space A over a field K equipped with
linear maps

Multiplication: m : A ⊗ A→ A
Unit: u : K→ A

such that the following diagrams commute:

A ⊗ A ⊗ A

id⊗m
��

m⊗id // A ⊗ A

m
��

A ⊗ A m
// A

K ⊗ A u⊗id //

f
%%

A ⊗ A

m
��

A ⊗ Kid⊗uoo

g
yy

A

where f and g are the natural isomorphisms K⊗A→ A, λ ⊗ x 7→ λx and A ⊗K→ A,
x ⊗ λ 7→ λx respectively.

Remark. For vectors x and y, we write m(x , y) as x y.
For the first diagram: (m ⊗ id)(x ⊗ y ⊗ z) � x y ⊗ z , m(x y ⊗ z) � (x y)z and (id ⊗
m)(x ⊗ y ⊗ z) � x ⊗ yz , m(x ⊗ yz) � x(yz), which shows that the multiplication m is
associative:

m(m(x ⊗ y) ⊗ z) � m(x ⊗ m(y ⊗ z))
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For the second diagram: (u ⊗ id)(λ ⊗ x) � u(λ) ⊗ x, and m(u(λ) ⊗ x) � u(λ)x; also,
f (λ ⊗ x) � λx. Since the diagram commutes, u(λ)x � λx. This shows that left-
multiplying a vector x by the vector u(λ) is equivalent to multiplying it by the scalar
λ. The same holds for right multiplication. If 1A B u(1K), then 1Ax � 1Kx � x and
x1A � x1K � x, which shows that the multiplication m is unitary, with unity 1A.
This definition is equivalent to the previous one, which can be verified by checking if
the structure shares the remaining property of a ring, distributivity, which is satisfied
because of the linearity of m:

m(u ⊗ (v + w)) � m(u ⊗ v) + m(u ⊗ w) � uv + uw

Remark. To show that the previous definition implies the current one, the only non-
trivial construction required is m, which is defined as a multiplication under the previ-
ous definition: m : A ⊗A→ A such that m(a ⊗ b) B ab; this remark is a little troubling
because we do not have a clear definition of the tensor product and its relations with
other algebraic structures, which will be investigated now.

3 Tensor Products

Definition 8 (Free vector space). Let F(V × W) � K-span{ (v , w) | v ∈ V, w ∈ W },
called the free vector space on V ×W .

Definition 9 (Tensor product). The tensor product space is the quotient:

V ⊗W � F(V ×W)/I

where I is generated by linear relations of v and w:

(v1 + v2 , w) ∼ (v1 , w) + (v2 , w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)
(cv , w) ∼ (v , cw) ∼ c(v , w)

Remark. The tensor a ⊗ b � (a , b), an equivalence class, and a′ ⊗ b′ can be equal to
a ⊗ b , a′ , a , b′ , b.

To define a linear m : V ⊗ W → W , we would have to define an n : F(V ×W) → W
such that n(I) � 0, which implies that n is a bilinear map.
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3.1 Universal Property

Theorem 1 (Universal property of tensor products). Let φ : V × W → V ⊗ W be a
bilinear map. If f : V ×W → L is a bilinear map, then there exists a unique linear map
f̃ : V ⊗W → L such that f � f̃ ◦ φ, which satisfied the commutative diagram:

V ×W
φ
//

f
%%

V ⊗W

f̃
��

L

Proof. Let φ(v , w) B (v , w) + I � v ⊗ w. The following are evident from their respec-
tive properties:

f (λv , w) � λ f (v , w) (bilinearity)
φ(λv , w) � φ(v , λw) � λ(v , w) + I � λ(v ⊗ w) (bilinearity)

f̃ (λ(v ⊗ w)) � λ f̃ (v ⊗ w) B λ f (v , w) (linearity)

Extending f̃ linearly:

f̃

(
m∑

i�1

λi vi ⊗ wi

)
B

n∑
i�1

λi f (vi , wi)

If
∑m

i�1 λi(vi , wi) �
∑n

j�1 µ j(x j , y j), then for the map to be well-defined, we must have:

f

(
m∑

i�1

λi(vi , wi)
)
� f ©­«

n∑
j�1

µ j(x j , y j)
ª®¬

Because
∑m

i�1 λi(vi , wi) −
∑n

j�1 µ j(x j , y j) ∈ I. �

So the definitions f and f̃ determine each other. We can choose bases {vi | i ∈ I} and{
v j | j ∈ J

}
of U,V. The procedure is defining the mappings of the basis elements and

extending bilinearly.

3.2 Useful Examples

Example (A-ring). The problem of the tensor product on the A-ring can be solved
now using the universal property. Since A ×A filters through A ⊗ A, the multiplication
m(a ⊗ b) � ab directly.
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Therefore definitions 4 and 7 are equivalent.

Example (Isomorphisms of K-algebras). Let A be a K-algebra, then K ⊗ A � A as
K-algebras. From the universal property, we construct a bilinear map f : K × A → A;
the most natural definition for this is f (λ, a) � λa. Note that this is a valid algebra
homomorphism. Im f � Im f̃ and ker f̃ is trivial from the bilinearity of φ. This can be
observed by taking a sum of tensor products:

n∑
i

λi ⊗ ai �

n∑
i

1K ⊗ λi ai

which is zero when either λi or ai is zero. Another way is by constructing the inverse
map g : A → K ⊗ A, which should be g(a) � 1K ⊗ a. This is clearly an inverse since
g(λa) � 1K ⊗ λa � λ ⊗ a from bilinearity of the tensor product.

Example (Tensor product of two R-algebras). Let C be the complex vector space over
R, which forms a ring as well, and is therefore an R-algebra. Then C ⊗ R[x] � C[x],
which is also an R-algebra. Note that only reals can be transferred over the tensor prod-
uct. Using the universal property, construct the bilinear map f (z , p(x)) � zp(x), z ∈
C, p(x) ∈ R[x], then f̃ (z ⊗ p(x)) � zp(x). This is a valid algebra homomorphism as the
multiplication is preserved. To show that the kernel is trivial, take the sum of tensor
products:

n∑
i

zi ⊗ pi(x)

One requires bases of C and R[x] to decompose the terms into sums of their respective
components, each summing to zero. Surjectivity is immediate, as every zp(x) comes
from f̃ (z ⊗ p(x)).
Example. Does there exist a natural (linear!) map between vector spaces V ⊗W → V?
Try the map f : V ×W → V, where (v , w) 7→ v; however, this map is not bilinear. Try
the mapping (v , w) 7→ [α∗(w)]v, where α∗ is any linear functional that lives in the dual
space W ∗. The motivation for this selection is preservation of bilinearity while deleting
information of w. This is indeed bilinear by observing:

f (v , w1 + w2) � [α∗(w1) + α∗(w2)]v
Using the universal property, take the sum of tensor products:

f̃

(∑
i

vi ⊗ wi

)
�

∑
i

[α∗(wi)]vi
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As an example, one can select α∗ as projections of a basis {wi : i ∈ I}.

Lemma 1. If
{

w j | j ∈ J
}

is a basis for W , and
n∑

i�1
vi ⊗ w ji � 0 then vi � 0, ∀ i ∈ I.

Proof. Let f̃ : V ⊗W → W , using the linear map from the previous example with the
following linear functional:

α∗(w j) ≡
{
1, j � jk

0, j , jk

for any k � 1, . . . , n. Therefore:

f̃

(
n∑

i�1

vi ⊗ w ji

)
� 0

n∑
i�1

f̃
(
vi ⊗ w ji

)
� 0

n∑
i�1

α∗
(
w ji

)
vi � vk � 0

�

Some instructive exercises are:

V ⊗W � W ⊗ V
(U ⊗ V) ⊗W � U ⊗ (V ⊗W)

(U ⊕ V) ⊗W � (U ⊗W) + (V ⊗W)

If A is a K-algebra and K ⊂ L, then A ⊗K L is an L-algebra.

Example. R[x] ⊗R C is a C-algebra.

Exercise 1. Let V and W be F-vector spaces. If {vi | i ∈ I} is a basis for V and{
w j | j ∈ J

}
is a basis for W , prove that

{
vi ⊗ w j | i ∈ I , j ∈ J

}
is a basis for V ⊗ W .

Conclude that, if dimV and dimW are finite, then dimV ⊗W � dimV dimW .

Solution. Suppose that ∑
i , j

λi j vi ⊗ w j � 0.
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Rewriting this, ∑
j

v′j ⊗ w j � 0,

where v′j �
∑

i λi j vi . Then, since the w j form a basis of W , each v′j � 0 by Lemma 1.
That is,

∑
i
λi j vi � 0 for each j. Since the vi form a basis of V, this implies that each

λi j � 0. Therefore
{

vi ⊗ w j | i ∈ I , j ∈ J
}

is linearly independent.
To see that the set is spanning, every element of V ⊗W can be written as:

∑
k

v′k ⊗ w′k �

∑
k

(∑
i

αki vi

)
⊗ ©­«

∑
j

βk j w j
ª®¬

�

∑
i , j

λi j
(
vi ⊗ w j

)
, λi j �

∑
k

αkiβk j

The dimension of V ⊗ W is
��{ vi ⊗ w j | i ∈ I , j ∈ J

}�� � |{ vi | i ∈ I }| ·
��{ w j | j ∈ J

}�� �
dimV dimW .

Exercise 2. (a) Prove that F[x] ⊗ F[x] � F[x , y] as F-algebras.

(b) If A is an F-algebra, let Mn×n(A) be the F-algebra of n×n matrices with entries in
A. Explain briefly why Mn×n(A) is an F-algebra. Prove that Mn×n(A) � Mn×n(F)⊗
A as F-algebras.

(c) Prove that Mm×m(F) ⊗Mn×n(F) � Mmn×mn(F) as F-algebras.

Solution. (a) Since F[x] ⊗ F[x] has a basis
{

x i ⊗ x j | i , j ∈ N0

}
, and F[x , y] has a ba-

sis
{

x i y j | i , j ∈ N0

}
, the mapping x i ⊗ x j 7→ x i y j defines a linear transformation

(by linear extension). This transformation is an algebra homomorphism, for

(x i ⊗ x j)(xk ⊗ x l) � x i+k ⊗ x j+l 7→ x i+k y j+l
� (x i y j)(xk y l).

The map x i y j 7→ x i ⊗ x j (linearly extended) is clearly the inverse of the above
homomorphism, which shows that F[x] ⊗ F[x] � F[x , y].

(b) Matrices form a vector space, the multiplication is given by matrix multiplication,
and the identity matrix is the 1 of the ring, so the copy of the field is the set of
scalar multiples of the identity matrix.
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Define a map Mn×n(F) ⊗ A→ Mn×n(A),
∑
k
Λk ⊗ ak 7→

∑
k
Λk ak , where Λk �

[
λ(k)i j

]
is a matrix in Mn×n(F) and ak ∈ A for each k. This map is obviously a linear

transformation, and since
(∑

k
Λk ⊗ ak

) (∑
l
Γl ⊗ bl

)
�

∑
k ,l
ΛkΓl⊗ak bl 7→

∑
k ,l
ΛkΓl ak bl ,

it is an algebra homomorphism as well. If the kernel is trivial, then this is an
isomorphism. Therefore, consider

∑
k
Λk ⊗ ak 7→

∑
k
Λk ak � 0. Then, for each i,

j, we have
∑
k
λ(k)i j ak � 0. Let Ei j be the n × n F-matrix with (i , j)-entry 1 and all

other entries 0. Then, ∑
k

Λk ⊗ ak �

∑
k

©­«
∑
i , j

λ(k)i j Ei j
ª®¬ ⊗ ak

�

∑
i , j

Ei j ⊗
(∑

k

λ(k)i j ak

)
�

∑
i , j

Ei j ⊗ 0

� 0.

Thus, the kernel is trivial and the mapping is an isomorphism of algebras.

(c) Since each one forms an F-algebra, the previous definition can be used.

3.3 Graded Algebras

Definition 10 (Graded algebras). An algebra A is graded if there exists a decomposition

A � A0 ⊕ A1 ⊕ A2 ⊕ · · ·

such that AiA j ⊆ Ai+ j , ∀i , j, where Ai stands for homogeneous elements of degree i.

Example (Polynomial ring). The polynomial ring has a decomposition:

K[x] �
∞⊕

i�0

Kx i

15



Example (Multivariate polynomial ring). The multivariate polynomial ring has the
following decomposition:

K[x1 , . . . , xn] �
∞⊕

d�0

Ad

where Ad � K
{

xa1
1 , . . . , x

an
n | a1 + . . . + an � d , ai ≥ 0

}
. The dimension d is found by

solving the problem of partitioning d into n multisets ignoring the relative positioning,
which is

(n+d−1
d

)
. This combinatorial problem’s answer is explained later in the exercise

of the symmetric algebra.

Example (Permutation algebra). The permutation algebra, denoted earlier as KP, has
the following decomposition:

KP �

∞⊕
n�0

KPn

where Pn is from the same investigation of the permutation algebra.

Note. An ideal I is called homogeneous if it is generated by homogeneous elements. If
A is a graded algebra, then A/I is also a graded algebra if I is homogeneous.

Definition 11 (Hilbert series). The Hilbert series of a graded algebra A is a generating
function:

Hilb(A; q) �
∞∑

d�0

dim (Ad)qd

which generates the dth dimension of the decomposition of a graded algebra as the dth

coefficient of a power series.

Example. The multivariate polynomial ring has the Hilbert series:

Hilb
(
K[x1 , . . . , xn]; q

)
�

∞∑
n�0

(
n + d − 1

n

)
qn

Exercise 3. Let V be a given d-dimensional F-vector space for some d ∈ N and let
V⊗k � V ⊗ · · · ⊗ V (where there are k copies of V) be the kth tensor power of V.

(a) Find the Hilbert series of the tensor algebra, defined as:

T(V) �
∞⊕

k�0

V⊗k
� F ⊕ V ⊕ V⊗2 ⊕ V⊗3 ⊕ · · ·

16



(b) Find the Hilbert series of the symmetric algebra of V, defined as:

S(V) � T(V)/〈u ⊗ v − v ⊗ u | u , v ∈ V〉

(c) Find the Hilbert series of the exterior algebra of V, defined as:∧
(V) � T(V)/〈v ⊗ v | u , v ∈ V〉

Solution. (a) The dimension of V⊗k is dk , so the Hilbert series is:

Hilb(T(V); q) �
∞∑

k�0

dk qk
�

1

1 − dq

(b) The quotient introduces commutativity of the tensor product as another condition
into the free vector space. Extending this using the associativity of the tensor
product, the cross terms are reduced by their symmetries in the kth dimension.
This analysis is done most easily by borrowing index notation of tensors, which
is extensively used in general relativity.

Let a tensor T of kth dimension be denoted by using k indices: Tαβγ..., where
α, β, γ . . . each range from 1 to d, so the dimension of the tensor is dk when
there are no symmetries. Symmetry between indices is denoted as equality upon
interchange of the relative index placements. For example, Tαβγµ � Tαµγβ de-
notes symmetry of the tensor in β and µ. Take a tensor with k indices that is
symmetric in all of them. The symmetric part is completely specified by the mul-
tisets of length k with the entries ranging from 1 to d. So the problem reduces
to partitioning k objects into d sets ignoring the relative positioning. Since there
are d − 1 spaces and k dividers, the number of ways of choosing k places for the
objects is

(k+d−1
k

)
. These are the number of independent components of the sym-

metric tensor T ∈ V⊗k , and hence its dimension. Therefore, the Hilbert series
is:

Hilb(S(V); q) �
∞∑

k�0

(
k + d − 1

k

)
qk

�
1

(1 − q)d

(c) In the quotient algebra, v ⊗ v � 0. This also implies that u ⊗ v � −v ⊗ u, which
is easily seen by using bilinearity to expand (u + v) ⊗ (u + v) � 0 and rearranging
the non-zero terms. Therefore, in the quotient of the kth tensor power V⊗k , any
product v1 ⊗ v2 ⊗ · · · ⊗ vk is zero if any two of its terms are equal (vi � v j ,
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i , j). Two products u1 ⊗ · · · ⊗ uk and v1 ⊗ · · · ⊗ vk are equal up to a difference
in sign if one is obtained from the other by any permutation of terms. Thus, if
{v1 , v2 , · · · , vd} is a basis of V, then a basis for V⊗k consists of elements of the
form v′1 ⊗ v′2 ⊗ · · · ⊗ v′k , where each v′i is some basis vector v j , and all the v′i are
distinct, with no two elements being equivalent under rearrangement of terms.
In other words, every basis element of V⊗k corresponds to a selection of d distinct
basis vectors from the k basis vectors of V. Thus, the dimension is

(d
k

)
. Therefore,

the Hilbert series is:

Hilb
(∧
(V); q

)
�

∞∑
k�0

(
d
k

)
qk

� (1 + q)d

4 Coalgebras

Definition 12 (Coalgebra). A coalgebra is a K-vector space C with linear maps

Comultiplication: ∆ : C→ C ⊗ C
Counit: ε : C→ K

such that the following diagrams commute:

C ⊗ C ⊗ C C ⊗ Cid⊗∆oo

C ⊗ C

∆⊗id

OO

C
∆

oo

∆

OO K ⊗ C C ⊗ Cε⊗idoo id⊗ε // C ⊗ K

C

∆

OO

(1⊗−)

dd

(−⊗1)

::

Remark. These diagrams encode properties called coassociativity and counitarity.

Example 5 (Set coalgebra). Let KS be a vector space generated by the set S. Define
the following maps:

∆(s) � s ⊗ s
ε(s) � 1

Checking coassociativity:

(∆ ⊗ id)(s ⊗ s) � s ⊗ s ⊗ s
(id ⊗ ∆)(s ⊗ s) � s ⊗ s ⊗ s

18



Checking counitarity:

(ε ⊗ id)(s ⊗ s) � 1 ⊗ s ≡ s
(id ⊗ ε)(s ⊗ s) � s ⊗ 1 ≡ s

Example 6 (Incidence coalgebra). Let P be a poset. For x ≤ y, the interval is defined
as

[
x , y

]
�

{
x ≤ z ≤ y | z ∈ P

}
. Denote the set of all intervals in P as Int(P) B{ [

x , y
]
| x ≤ y ∈ P

}
. The incidence coalgebra is defined as C B KInt(P). Define the

following:

∆
[
x , y

]
�

∑
z∈[x ,y]

[x , z] ⊗
[
z , y

]
ε
[
x , y

]
�

{
1, x � y
0, x < y

Checking coassociativity:

(∆ ⊗ id)©­«
∑

z∈[x ,y]
[x , z] ⊗

[
z , y

]ª®¬ �

∑
z∈[x ,y]

©­«
∑

z′∈[x ,z]
[x , z′] ⊗ [z′, z]ª®¬ ⊗

[
z , y

]
(id ⊗ ∆)©­«

∑
z∈[x ,y]

[x , z] ⊗
[
z , y

]ª®¬ �

∑
z∈[x ,y]

[x , z] ⊗ ©­«
∑

z′∈[z ,y]
[z , z′] ⊗

[
z′, y

]ª®¬
Checking counitarity:

(ε ⊗ id)©­«
∑

z∈[x ,y]
[x , z] ⊗ [z , y]ª®¬ �

∑
z∈[x ,y]

ε[x , z] ⊗ [z , y] � 1 ⊗ [x , y]

(id ⊗ ε)©­«
∑

z∈[x ,y]
[x , z] ⊗ [z , y]ª®¬ �

∑
z∈[x ,y]

[x , z] ⊗ ε[z , y] � [x , y] ⊗ 1

Exercise 4. In a coalgebra, we say the element x is grouplike if ∆(x) � x ⊗ x. Prove
that in the group ring F[G], x is grouplike if and only if x ∈ G.
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Solution. Let x �

n∑
i�1
λi gi ∈ F[G] be grouplike. Then:

∆(x) � x ⊗ x

∆

(
n∑

i�1

λi gi

)
�

(
n∑

i�1

λi gi

)
⊗

(
n∑

i�1

λi gi

)
Using linearity of the coproduct and bilinearity of the tensor product:

n∑
i�1

λi
(
gi ⊗ gi

)
�

(
n∑

i�1

λi gi

)
⊗ ©­«

n∑
j�1

λ j g j
ª®¬

n∑
i�1

(
gi ⊗ λi gi

)
�

n∑
i�1

©­«gi ⊗ λi

n∑
j�1

λ j g j
ª®¬

n∑
i�1

(
gi ⊗ λi gi

)
−

n∑
i�1

©­«gi ⊗ λi

n∑
j�1

λ j g j
ª®¬ � 0

n∑
i�1

gi ⊗ λi
©­«gi −

n∑
j�1

λ j g j
ª®¬
 � 0

Since gi form the basis of the group ring, Lemma 1 implies that for each i, the second
argument of the tensor product is zero. Thus, for each i � 1, . . . , n:

λi � 0 or
n∑

j�1

λ j g j � gi

This implies that if λi , 0 for some i, then, since gi are basis elements, λ j � 0 for all
j , i and λi � 1. That is, λi is non-zero for at most one i, in which case λi � 1. Thus,

x �

n∑
i�1
λi gi � gi or x � 0.

Exercise 5. Consider the F-algebra H4 generated by indeterminates g and x subject to
the relations g2 � 1, x2 � 0 and x g � −gx.

(a) Show that 1, g , x and gx form a basis for H4.
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(b) Express the product (a1 + b1g + c1x + d1gx)(a2 + b2g + c2x + d2gx) in terms of
this basis, where ai , bi , ci , di ∈ F, i � 1, 2.

(c) Show that the coproduct ∆g � g ⊗ g and ∆x � x ⊗ 1+ g ⊗ x and the counit given
by ε(g) � 1 and ε(x) � 0 turn H4 into a bialgebra.

(d) Express the coproduct ∆(a + b g + cx + dgx) in terms of this basis.

Solution. (a) Any expression gm reduces to either g or 1 depending on m is odd or
even. Any expression xm reduces to zero for m > 1. Therefore, any expression
containing more than one x will reduce to zero using the anticommutation re-
lation between g and x. Thus, any non-zero expression is of the form gm x gn ,
which reduces to an expression of the form ±gx or ±x. Therefore, these four
elements form a basis for the algebra.

(b) The product is (a1a2 + b1b2) + (a1b2 + a2b1 + b1d2 + b2d1)g + (a1c2 + a2c1)x +

(a1d2 + a2d1 + b1c2 + b2c1)gx.

(c) Since ∆ and ε are assumed to be algebra homomorphisms:

∆(gx) � ∆g∆x �
(
g ⊗ g

) (
x ⊗ 1 + g ⊗ x

)
� gx ⊗ g + 1 ⊗ gx

ε(gx) � ε(g)ε(x) � 0

∆(1) � 1 ⊗ 1, ε(1) � 1

Coassociativity holds:

(id ⊗ ∆)∆g � g ⊗ g ⊗ g � (∆ ⊗ id)∆g

(id ⊗ ∆)∆x � (id ⊗ ∆)
[
x ⊗ 1 + g ⊗ x

]
� x ⊗ 1 ⊗ 1 +

(
g ⊗ x ⊗ 1 + g ⊗ g ⊗ x

)
(∆ ⊗ id)∆x � (∆ ⊗ id)

[
x ⊗ 1 + g ⊗ x

]
�

(
x ⊗ 1 ⊗ 1 + g ⊗ x ⊗ 1

)
+ g ⊗ g ⊗ x

(id ⊗ ∆)∆(gx) � (id ⊗ ∆)
(
gx ⊗ g + 1 ⊗ gx

)
� gx ⊗ g ⊗ g +

(
1 ⊗ gx ⊗ g + 1 ⊗ 1 ⊗ gx

)
(∆ ⊗ id)∆(gx) � (∆ ⊗ id)

(
gx ⊗ g + 1 ⊗ gx

)
�

(
gx ⊗ g ⊗ g + 1 ⊗ gx ⊗ g

)
+ 1 ⊗ 1 ⊗ gx
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Similarly, counitarity holds:

(ε ⊗ id)∆g � ε(g) ⊗ g � 1 ⊗ g
(id ⊗ ε)∆g � g ⊗ ε(g) � g ⊗ 1

(ε ⊗ id)∆x � ε(x) ⊗ 1 + ε(g) ⊗ x � 1 ⊗ x
(id ⊗ ε)∆x � x ⊗ ε(1) + g ⊗ ε(x) � x ⊗ 1

(ε ⊗ id)∆(gx) � ε(gx) ⊗ g + ε(1) ⊗ gx � 1 ⊗ gx
(id ⊗ ε)∆(gx) � gx ⊗ ε(g)1 ⊗ ε(gx) � gx ⊗ 1

These form a bialgebra by assumption of ∆ and ε as algebra homomorphisms.

(d) ∆(a + b g + cx + dgx) � a ⊗ 1 + b(g ⊗ g) + c(x ⊗ 1 + g ⊗ x) + d(gx ⊗ g + 1 ⊗ gx)

4.1 Duality

Definition 13 (Duality of vector spaces). If V is a K-vector space, then the dual vector
space is V∗ B HomK(V,K).
Remark. A finite-dimensional vector space V is isomorphic to its dual space V∗, and
naturally isomorphic to its double dual V∗∗ B (V∗)∗. These definitions are extended to
algebras and coalgebras:
If C is a coalgebra, then C∗ is naturally an algebra. If A is a finite-dimensional algebra,
then A∗ is a coalgebra.
Dirac’s bra-ket notation, which is used in quantum physics, will be used to denote
elements of linear algebra. In this notation, vectors are denoted by ‘kets’ |v〉 ∈ V, dual
vectors are denoted by ‘bras’ 〈v | ∈ V∗. The notation for tensors is denoted as follows:
|v〉 ⊗ |w〉 ≡ |v ⊗ w〉 ∈ V ⊗W .
The inner product of two vectors is defined as the bilinear map 〈−|−〉 : V×V → K, such
that 〈v1 |v2〉 B v∗1(v2), 〈v1 | ∈ V∗ , |v2〉 ∈ V. This is generalised to the tensor product of
vector spaces in the following manner:

Definition 14 (Inner product of tensors). The inner product of tensors is defined as
the map 〈− ⊗ −|− ⊗ −〉 : (V ⊗W) × (V ⊗W) → K, such that 〈v1 ⊗ w1 |v2 ⊗ w2〉 B
〈v1 |v2〉 〈w1 |w2〉.
Remark. The definition of this map requires the construction of the following map
ρ : V∗ ⊗W ∗ → (V ⊗W)∗, such that 〈v | ⊗ 〈w | 7→ 〈v ⊗ w |. This is an injective map, as
the following argument shows. Suppose that 〈v ⊗ w | � 〈0| for some v and w. Then
in particular, 〈v ⊗ w |v ⊗ w〉 � 〈v |v〉 〈w |w〉 � 0, which means that either 〈v | � 0 or
〈w | � 0, and therefore, 〈v | ⊗ 〈w | � 0. Thus, ker ρ is trivial, and ρ is injective. When V
and W are finite-dimensional, ρ is bijective.
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Remark (Important). For any linear map f : V →W , there exists a dual map f ∗ : W ∗ →
V∗, such that

〈
f ∗(w)

��v〉
�

〈
w
�� f (v)

〉
.

To extend this concept to algebras and coalgebras, we introduce duals of algebras. But
first, we discuss important tools that will be handy in the future.

Theorem 2 (Categorical imperative). Every proposition can be proved using commuta-
tive diagrams.

Proof. Ask Kant. �

Definition 15 (Dual of a coalgebra). Let C be a coalgebra with the comultiplication
∆ : C → C ⊗ C and counit ε : C → K. Let C∗ be the dual of C with multiplication and
unit defined by the following diagrams:

C∗ ⊗ C∗ m //

ρ
&&

C∗

(C ⊗ C)∗
∆∗

88 K
u //

�K
  

C∗

K∗
ε∗

>>

Similarly, the dual of a finite-dimensional algebra (A,m , u), denoted as A∗ forms a
coalgebra with the comultiplication ∆ : A∗ → A∗ ⊗ A∗ and counit ε : A∗ → K.

Compositions are “reversed" by duals. For linear maps V
f
// W

g
// X , we have〈

x
��g( f (v))〉 �

〈
g∗(x)

�� f (v)
〉
�

〈
f ∗(g∗(x))

��v〉
, which shows that (g ◦ f )∗ � f ∗ ◦ g∗. The

following lemma is immediate from this observation.

Lemma 2. The dual of a commutative diagram is also commutative.

Remark. The dual of a diagram is the one obtained by replacing every vector space by
its dual space and every linear map by its dual map, which naturally involves reversing
all arrows.

Example (Incidence algebra). The incidence algebra C∗(P) is defined as the dual of
the incidence coalgebra C(P). The elements of this algebra are linear functionals
c∗ : C(P) → K as functions of the form c∗ : Int(P) → K. The multiplication m : C∗ ⊗
C∗ → C∗ ≡ ∆∗ρ (from the commutative diagram) is defined as c∗ ⊗ d∗ 7→ c∗d∗ such that:〈

∆∗(c ⊗ d)
��[x , y]

〉
�

〈
c ⊗ d

��∆[x , y]
〉
B

∑
z∈[x ,y]

c∗([x , z])d∗
(
[z , y]

)
The unit u : K → C∗ ≡ [ε∗◦ �K] is defined accordingly:〈

u(1)
��[x , y]

〉
�

〈
ε∗(1)

��[x , y]
〉
�

〈
1
��ε[x , y]

〉
�

{
1, x � y
0, x < y
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Exercise 6. Prove that (C∗ ,m , u) forms an algebra.

Solution. The duals of the comultiplication and counit commutative diagrams are:

(C ⊗ C ⊗ C)∗ (id⊗∆)
∗
//

(∆⊗id)∗
��

(C ⊗ C)∗

∆∗

��

(C ⊗ C)∗
∆∗

// C∗

(K ⊗ C)∗ (ε⊗id)
∗
//

(1⊗−)∗
&&

(C ⊗ C)∗

∆∗

��

(C ⊗ K)∗(id⊗ε)∗
oo

(−⊗1)∗
xx

C∗

Using the multiplication commutative diagram for C∗ in the first diagram:

C∗ ⊗ C∗
ρ

%%

(C ⊗ C)∗ ⊗ C∗
ρ(1)2

%%

∆∗⊗id
99

(C ⊗ C)∗

∆∗

%%
C∗ ⊗ C∗ ⊗ C∗

ρ⊗id
99

id⊗ρ
%%

(C ⊗ C ⊗ C)∗

(∆⊗id)∗
99

(id⊗∆)∗ %%

C∗

C∗ ⊗ (C ⊗ C)∗
ρ1(2)

99

id⊗∆∗
%%

(C ⊗ C)∗
∆∗

99

C∗ ⊗ C∗
ρ

99

4.2 Sweedler Notation

In a coalgebra, the map ∆ : C→ C ⊗ C is defined in general as:

∆(c) �
∑

i

c1i ⊗ c2i

To avoid the double subscripts, the following notation for the coproduct introduced by
Sweedler is useful:

∆(c) �
∑
(c)

c(1) ⊗ c(2) , c(1) , c(2) ∈ C
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The index (c) helps keep track of which ‘c’ the coproduct will be taken of in further
coproduct operations. This will be elucidated in the coassociativity property by com-
parison with the previous notation. Using the comultiplication commutative diagram:

(∆ ⊗ id)∆(c) � (∆ ⊗ id)©­«
∑
(c)

c(1) ⊗ c(2)
ª®¬ �

∑
(c)
∆c(1) ⊗ c(2) �

∑
(c)

c(1) ⊗ c(2) ⊗ c(3)

(id ⊗ ∆)∆(c) � (id ⊗ ∆)©­«
∑
(c)

c(1) ⊗ c(2)
ª®¬ �

∑
(c)

c(1) ⊗ ∆c(2) �
∑
(c)

c(1) ⊗ c(2) ⊗ c(3)

It is important to note that the double summation induced by the second coproduct is
reduced to a single summation by relabeling the indices, since all the elements belong
to C. Since ∆ is coassociative, the following notation is used:

∆2(c) � (∆ ⊗ id)∆(c) � (id ⊗ ∆)∆(c) �
∑
(c)

c(1) ⊗ c(2) ⊗ c(3)

Using the multiple subscript notation, the following unreadable mess is obtained:

∆2(c) �
∑

j

∑
i

c1i j
⊗ c2i j

⊗ c3i

The operation of multiple coproducts is easily generalised:

∆n−1(c) �
∑
(c)

c(1) ⊗ c(2) ⊗ · · · ⊗ c(n)

Using the universal property of the tensor product:

f̃∆n−1(c) �
∑
(c)

f (c1 , c2 , . . . , cn)

Coassociativity in Sweedler notation is written as:∑
(c)
∆c(1) ⊗ c(2) �

∑
(c)

c(1) ⊗ ∆c(2)

Using the counitary commutative diagram:

(ε ⊗ id)∆(c) � (ε ⊗ id)
∑
(c)

c(1) ⊗ c(2) �
∑
(c)
ε
(
c(1)

)
⊗ c(2)

(id ⊗ ε)∆(c) � (id ⊗ ε)
∑
(c)

c(1) ⊗ c(2) �
∑
(c)

c(1) ⊗ ε
(
c(2)

)
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4.3 Homomorphisms

Like the reworking of Definition 3 into commutative diagrams, we will rework Defini-
tion 6, the algebra homomorphism, into a commutative diagram as well.

Definition 16. The linear map f : A→ B, where A and B are algebras, is a K-algebra
homomorphism if and only if the following diagrams commute:

A ⊗ A
f ⊗ f
//

mA

��

B ⊗ B

mB

��

A
f

// B

A
f

// B

K

uA

__

uB

??

f is a vector space homomorphism by definition; the diagrams encode the properties
of a ring. The first diagram encodes the property f (a1a2) � f (a1) f (a2). This is easily
shown: [

f ◦ mA
]
(a1 ⊗ a2) �

[
mb ◦ ( f ⊗ f )

]
(a1 ⊗ a2)

f (a1a2) � mb
(

f (a1) ⊗ f (a2)
)

f (a1a2) � f (a1) f (a2)

The second diagram encodes unitarity f ◦ uA ≡ uB.

Definition 17 (Subalgebras). Let B be a K-algebra and A ⊆ B. Then A is a subalgebra
if m(A ⊗ A) ⊆ A and 1B ⊂ A.

More generally, A is a two-sided ideal if m(A ⊗ B) ⊂ A and m(B ⊗ A) ⊂ A.

Definition 18 (Coalgebra homomorphism). Using duality, a linear map g : C→ D is a
coalgebra homomorphism if the following diagrams commute:

C ⊗ C
g⊗g
// D ⊗ D

C

∆C

OO

g
// D

∆D

OO C
g

//

εC
��

D

εD
��

K

The diagrams encode
[
(g ⊗ g) ◦ ∆C

]
≡ ∆D ◦ g and εD ◦ g ≡ εC. Using Sweedler
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notation: [
(g ⊗ g) ◦ ∆C

]
(c) � ∆D ◦ g(c)(

g ⊗ g
)©­«

∑
(c)

c(1) ⊗ c(2)
ª®¬ �

∑
(g(c))
[g(c)](1) ⊗ [g(c)](2)∑

(c)
g(c(1)) ⊗ g(c(2)) �

∑
(g(c))
[g(c)](1) ⊗ [g(c)](2)

εC(c) � εD[g(c)]
Definition 19 (Subcoalgebras). Let D be a coalgebra and C ⊆ D. Then C is a subcoal-
gebra if ∆C(C) ⊆ C.

More generally, C is a two-sided coideal if ∆C(C) ⊂ C ⊗ D + D ⊗ C.

4.3.1 Duality of Homomorphisms

Theorem 3. If f : C→ D is a coalgebra homomorphism, then the dual map f ∗ : D∗ → C∗

is an algebra homomorphism.

Proof. Dualising the coalgebra homomorphism diagrams and inserting the multiplica-
tion and unitary duality commutative diagrams:

D∗ ⊗ D∗

mD

��

ρD
&&

f ∗⊗ f ∗
// C∗ ⊗ C∗

ρC
yy

mC

��

(D ⊗ D)∗
( f ⊗ f )∗

//

∆∗D

xx

(C ⊗ C)∗
∆∗C

%%
D∗

f ∗
// C∗

D∗
f ∗

// C∗

K∗

ε∗D

gg

�K

��

ε∗C

77

K

uD∗

^^

uC∗

@@
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For the first diagram, the bottom, left and right diagrams commute as seen before. The
top diagram indicates ( f ⊗ f )∗ ◦ ρD ≡ ρc ◦ f ∗ ⊗ f ∗, which can be checked using inner
product notation. The second diagram can also be checked similarly. �

Similarly, if the map f : A → B, where A and B are finite-dimensional algebras, is an
algebra homomorphism, then f ∗ : B∗ → A∗ is a coalgebra homomorphism.

5 Quotients

Let V be a vector space and V∗ its dual space. Given S ⊂ V and T∗ ⊂ V∗, let their
orthogonal complements be defined as:

S⊥ B { v ∈ V | 〈v |S〉 � 0 } ⊂ V∗

(T∗)⊥ B { v ∈ V | 〈T |v〉 � 0 } ⊂ V

Theorem 4. Let C be a coalgebra and C∗ its dual algebra. Then D ⊂ C is a coalgebra of
C if and only if D⊥ ⊂ C∗ is an ideal of C∗.

Theorem 5. Let C be a coalgebra and C∗ its dual algebra. Then D ⊂ C is a coideal of C
if and only if D⊥ ⊂ C∗ is a subalgebra.

Lemma 3. Let f : V → V′ and g : W → W′ be linear. Then f ⊗ g : V ⊗W → V′ ⊗W′

is linear and satisfies:

1. Im( f ⊗ g) � Im f ⊗ Im g

2. ker( f ⊗ g) � ker f ⊗W + V ⊗ ker g.
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