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Introduction:

There exists a dose-response relationship between training stimulus and adaptation of the 
athlete (Bannister et al 1975, Busso 2003).  Training load can be expressed simply as:

Training load = Intensity · Duration (Eq. 1)

It is clear that different types of stimuli will effect different physiologic responses. It is less 
clear how to compare/quantify differing stimuli and their ability to affect the same 
response. A number of systems have been proposed, the most widely used of which is 
TRIMPS, which was devised by Dr. Eric Banister in the 1970’s. Simply put, Banister sought 
to relate an easily measured parameter (heart rate) to lactate production through the use of 
a population study. This made a great deal of sense, perhaps even more so today as it is 
now widely accepted that the work rate at lactate threshold (defined as a rise of serum 
lactate of 1 mmol/L over exercise baseline) is the primary determinant of endurance 
exercise performance (Coyle 1988, 1999)

TRIMPS = Duration · Average HR during exercise · A HR-dependant, 
intensity based weighting factor (Eq. 2)

 
The benefit of Banister’s system is that it takes into consideration the observation that 
higher workloads are more metabolically taxing (exponentially so, via the weighting 
factor) than lower workloads of equivalent duration (Bannister 1996). However, it is still 
dependent upon the measurement of heart rate, which is variable based on factors such as 
hydration, rest, illness, or cardiac drift. Furthermore, though HR is dependent upon 
workload, it may take minutes to stabilize when that workload changes. Because of these 
complicating factors, it would be preferable to measure work rate directly.

In 2003, Dr. Andrew Coggan refined Banister’s concept by developing a system that also 
incorporated lactate response to workload. This system related the change in lactate 
concentration with the change in an objective measure of exercise intensity: power output, 
which can be directly measured by on-bike power meters. 

Coggan devised a mathematical algorithm similar to that of Bannister, called the Training 
Stress Score (TSS). 

TSS = Exercise duration · Average power · Power-dependent,
intensity weighting factor (Eq. 3)

The power dependent intensity weighting factor was derived directly from a plot of blood 
lactate concentration as a percentage of concentration at threshold against % of threshold 
power. His work indicated a near 4th power relationship between the two.

The elegance of Coggan’s system is that while it successfully relates lactate concentration 
to power output, it is not dependent upon invasive tests. In 1988, Coyle et al. illustrated 



that the highest power output or pace an athlete can maintain over the course of an hour 
long exercise task is highly correlated with LT. Thus, to determine threshold intensity, the 
athlete need only perform such a test and use the resulting average power in the 
calculations. The concept carries over to the running literature as well, where 8k-10k to 1 
hour runs at the maximal pace sustainable for the duration of the run have been shown to 
be strongly correlated to both LT and maximal lactate steady state (MLSS); that is, the 
highest exercise intensity that does not result in a continual increase in serum lactate 
(Jones and Doust 1998, Daniels 2002). The swimming literature also concurs, where a 
3000M TT has been correlated to MLSS, as well as OBLA and IAT (Sharp 1993, Olbrecht 
1986).

While Coggan’s system is in wide use amongst recreational and professional athletes, and 
was recently validated in a small populations of athletes (N=6, Skiba 2007), transferring 
this conceptual framework to other sports is problematic, as there is often no practical way 
of measuring mechanical power output. Dr. Philip Friere Skiba developed the first solution 
suitable for walking, running and cross-country skiing utilizing GPS and a novel 
mathematical approach which is now in wide use amongst runners and triathletes 
(GOVSSTM, see Skiba 2006).

Many sports professionals and enthusiasts have sought to apply this methodology to 
swimming. However, these pursuits were fraught with problems because GPS does not 
work indoors, and currently available GPS meters are not compatible with immersion. 
However, swimming is rather unique in that lap splits are easily and regularly recorded. 
Thus, given the anthropometric data of a particular athlete and recorded velocity data, it is 
possible to calculate power output and training stress scores using first principles and the 
published literature on the subject.



Power Output Calculation:

A number of studies have described the power requirements of movement in terms of a 
power balance model. In swimming, such a model must include a rather obvious term: the 
power required to overcome drag (Pd), and a somewhat less intuitive term, the power 
required to change the kinetic energy of the water (Pk) (Toussaint 1988).

Po = Pd + Pk (Eq 4)

where:

    Pd = Fd · V
    Pk = 0.5m(u)2 · f

and:

    Fd = Force required to overcome drag
    V = swimming velocity
    m = mass of the displaced water
    u = velocity change of the displaced water
    f = stroke frequency

Drag has been demonstrated to be related to the square of velocity. Thus, the Pd is related 
to the cube of velocity (V * V2), and a constant drag factor. Thus:

Pd = KV3 (Eq 5)

where K is a drag factor that is essentially constant within any given individual. According 
to Toussaint (1988, 1990, 1998) this factor may be estimated by:

K = 0.35 * Mass + 2 (Eq 6)

Calculating Pk is more troublesome, because it is not clear how it is related to velocity. 
However, in 1988, Toussaint et al introduced the concept of propelling efficiency (ep), that 
is the ratio of Pd to Po, which is independent of swimming velocity and is essentially 
constant within an individual.

ep = Pd / (Pd + Pk) = Pd / Po (Eq 7)



This construct assumes constant velocity, which which is reasonable given the typical 
swim workouts of competitive athletes (e.g. intervals of various lengths / velocities, each of 
which is typically completed as a constant velocity). Introducing Toussaint’s concept of 
propelling efficiency:

Po = Pd / ep  = KV3 / ep =  K / ep ·  V3 (Eq 5)

Addressing Variability:

It is somewhat easier to address the variability of power output in swimming exercise than 
in other sports. The great majority of swimming workouts involve covering set distances at 
a constant pace. (The greatest source of variability in most athletes involves direction / 
velocity changes and acceleration / deceleration on the turns, which are ignored for the 
purposes of this analysis). However, there can be substantial variability in rest intervals, 
which may have a significant effect on the physiologic impact of the workout. Thus, 
an exponentially-weighted moving average algorithm is applied to the raw power data to 
account for the fact that the body has many process / responds to many stimuli with a half-
life of approximately 25-30 seconds (Figure 1).
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 Figure 1:  Instantaneous power output (blue) and exponentially weighted moving average for power 
 output (red), which is indicative of the time course of the physiologic response to the effort.



Addressing Intensity:

Because of the well described relationship between the intensity of exercise and the 
physiologic strain induced in the athlete, it is advantageous to differentially weight the 
exercise task as described in the introduction.  To this end, lactate data collected from 
9 trained collegiate swimmers during an incremental exercise protocol previously reported 
in the literature was analyzed (Wakayoshi 1992). Lactate concentration as a percentage of 
concentration at lactate threshold was was plotted against power output expressed as a 
percentage of power output at lactate threshold, and a regression was calculated (Figure 
2).

  Figure 2:  Percent power at LT vs. percent concentration of lactate at LT. For the purposes of 
  intensity weighting, the exponent is rounded up to 3.

SwimScore Calculation:

Using the above information and a protocol modified from that first described by Coggan 
(2003, 2006), it is now possible to calculate a training stress metric for swimming.

1. Find the athlete’s threshold velocity via a 3000M TT
2. Convert this velocity to a power value using Equation 4. This is the Threshold 

Power.
3. Analyze the data from a particular workout, computing an exponentially 

weighted moving average for power for each interval from the distance and time, 
including rest intervals.

4. Cube the values in step 3.
5. Average for the values from step 4.
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6. Take the cube root of step 5. This is the xPower.
7. Divide xPower by Threshold Power from step 2 to get the Relative Intensity.
8. Multiply the xPower by the duration of the workout in seconds to obtain the 

normalized work performed in joules.
9. Multiply value obtained in step 8 by the Relative Intensity to get a raw 

SwimScore.
10.Divide the values from step 9 by the amount of work performed during the 

threshold test.
11.Multiply the number from step 10 by 100 to obtain the final SwimScore.

This calculation appears laborious at first glance, however, inexpensive software has been 
developed which automates the process (http://www.physfarm.com?page_id=12).

http://www.physfarm.com?page_id=12
http://www.physfarm.com?page_id=12


References:

Banister EW, Calvert TW, Savage MV.  A systems model of training for athletic 
performance. Aust. J. Sports Med 1975; 7:57-61.

Banister EW. Modeling elite athletic performance. In: MacDougall JD, Wenger HA, Green 
HJ, eds. Physiological Testing of the High-Performance Athlete. Champaign, IL: Human 
Kinetics; 1996: 403-424. 

Busso T.  Variable dose-response relationship between exercise training and performance.  
Med Sci Sports Exerc. 2003; 35(7):1188-1195.

Coyle EF, Coggan AR, Hopper MK  Determinants of endurance in well- trained cyclists. J 
Appl Physiol. 1988; 64 (6): 2622-30.   

Coyle EF. Physiological determinants of endurance performance.  Journal of Science and 
Medicine in Sport.  1999; 2(3): 181-189, 1999.

Coggan, Andrew R. Training and racing using a power meter: an introduction. USA 
Cycling, 2003. Available at http://www.midweekclub.com/articles/coggan.pdf. Accessed 
September 20, 2005.

Coggan, Andrew R.  Making sense out of apparent chaos: Analyzing on the bike power 
data. In: The Science of Cycling: Transforming research into practical applications for 
athletes and coaches.  Highlighted symposium, American College of Sports Medicine 53rd 
Annual Meeting. May 31, 2006.

Jones A and Doust J.  The validity of the lactate minimum test for determination of the 
maximal lactate steady state. Med Sci Sports Exerc. 1998; 30(8):1304-1313.

Daniels JT. Daniels’ Running Formula. 2nd ed. Champaign, IL: Human Kinetics; 2002.

Sharp, Rick I. Prescribing and evaluating interval training sets in swimming: A proposed 
model. J Swim Res. 9:36-40.

Olbrecht et al. Relationship between swimming velocity and lactic concentration during 
continuous and intermittent training exercises. Int J Sports Med. 6(2):74-7, 1985.

Skiba, Philip Friere. Evaluation of a Novel Training Metric in Trained Cyclists. Med Sci 
Sports Exerc 39:5, Supplement, 2007.

Skiba, Philip Friere. Evaluation of a Novel Training Metric in a Trained Triathlete. Clin J 
Sports Med (In Press).   

Skiba, Philip Friere. Quantification of Training Stress in Distance Runners. Arch Phys Med 
Rehabil 87:29, 2006.

http://www.midweekclub.com/articles/coggan.pdf
http://www.midweekclub.com/articles/coggan.pdf


Toussaint et al. Propelling efficiency of front-crawl swimming. JAP 65(6): 2506-12, 1988.

Toussaint et al. Simulated front crawl swimming performance related to critical speed 
and critical power Med Sci Sports Exerc. 30(1): 144-151, 1998.

Toussaint et al. The mechanical efficiency of front crawl swimming. Med. Sci. Sports 
Exerc. 22:402-408, 1990. 

Toussaint et al.  Active drag related to velocity in male and female swimmers. J. Biomech. 
21:435-438, 1988. 

Toussaint et al. The effect of growth on drag in young swimmers. Int. J. Sport Biomech. 
6:18-28, 1990. 

Wakayoshi et al. Determination and validity of critical velocity as an index of swimming 
performance in the competitive swimmer. Eur J Appl Physiol. 64: 153-157, 1992.


