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The Idiomatic Programmer - Learning Keras 
 

Handbook 1: Computer Vision Models 

Part 1 - Deep Neural Networks 
Part 2 - Convolutional and ResNet Neural Networks 
Part 3 - Wide Convolutional Networks - ResNeXt, Inception 
Part 4 - Advanced Computer Vision Models - DenseNet, Xception 
Part 5 - Mobile Convolutional Networks - MobileNet, SqueezeNet 

Part 1 - Deep Neural Networks 
As a Googler, one of my duties is to educate software engineers on how to use machine learning. I 
already had experience creating online tutorials, meetups, conference presentations, and 
coursework for coding school, but I am always looking for new ways to effectively teach. 

Welcome to my latest approach, the idiomatic programmer. My audience are software engineers 
who are proficient in non-AI frameworks, such as Angular, React, Django, etc. You should know at 
least the basics of Python. It's okay if you still struggle with what is a compression, what is a 
generator; you still have some confusion with the weird multi-dimensional array slicing, and this thing 
about which objects are mutable and non-mutable on the heap. For this tutorial it’s okay. 

You want to become a machine learning engineer. What does that mean? A machine learning 
engineer (MLE) is an applied engineer. You don't need to know statistics (really you don't!), you don't 
need to know computational theory. If you fell asleep in your college calculus class on what a 
derivative is, that's okay, and if somebody asks you to do a matrix multiplication, feel free to ask, 
“why?” 

Your job is to learn the knobs and levers of a framework, and apply your skills and experience to 
produce solutions for real world problems. That's what I am going to help you with. 

The Machine Learning Steps 
You've likely seen this before. A successful ML engineer will need to decompose a machine learning 
solution into the following steps: 
 
1. Identify the Type of Model for the Problem 
2. Design the Model 
3. Prepare the Data for the Model 
4. Train the Model 
5. Deploy the Model  
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Identify the Type of Model for the Problem 

The ​Keras​ framework is about building neural network models. Think of it as a bunch of nodes 
with lines connected between them. Hum, that sounds like a graph. Data flows from one node to 
another node in a specific direction. Hum, that sounds like a directed graph. The graph has an 
entry point (the input layer) and an exit point (the output layer). Between the entry and exit point 
are levels of nodes, which are called the layers. At depth 0 is the input layer. At depth n is the 
output layer. Everything in between is an internal layer, which can have names like hidden, 
pooling, convolution, dropout, activation, normalization, etc. Let's not get bogged down by this, 
they are just types of nodes. In ​Keras​, these nodes are represented by class objects. Each of 
these classes takes parameters which adjust how the node works. Alas, the class objects and 
corresponding methods are the buttons to push and the parameters are the levers to adjust. 
That's it. 

Neural Network layouts fall into four primary categories: 
 

1. DNN (Deep Neural Networks) - These are good for numerical solutions. 
2. CNN (Convolutional Neural Networks) - These are good for computer vision solutions and  

                (audio) signal processing. 
3. RNN (Recurrent Neural Networks) - These are good for text and speech recognition, and  

                anything else that has a time sequence nature to it. 
4. DGM (Deep Generative Models) - These are good for synthesizing creative  

               works, and reconstruction. 

Input Layer 

The input layer to a neural network takes numbers! All the input data is converted to numbers. 
Everything is a number. The text becomes numbers, speech becomes numbers, pictures 
become numbers, and things that are already numbers are just numbers. 

Neural networks take numbers either as vectors, matrices or tensors. They are names for the 
number of dimensions in an array. A ​vector​ is a one dimensional array, like a list of numbers. A 
matrix​ is a two dimensional array, like the pixels in a black and white image, and a ​tensor ​is 
any array three or more dimensions. That's it. 

Speaking of numbers, you might have heard terms like normalization or standardization. Hum, 
in standardization the numbers are converted to be centered around a mean of zero and one 
standard deviation on each side of the mean; and you say, 'I don't do statistics!' I know how you 
feel. Don't sweat. Packages like ​scikit-learn​ and ​numpy​ have library calls that do it for you, like 
its a button to push and it doesn’t even need a lever (no parameters to set!). 

Speaking of packages, you're going to be using a lot of ​numpy​. What is this? Why is it so 
popular? In the interpretive nature of Python, the language poorly handles large arrays. Like 
really big, super big arrays of numbers - thousands, tens of thousands, millions of numbers. 
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Think of Carl Sagan's infamous quote on the size of the Universe - billions and billions of stars. 
That's a tensor! 

One day a C programmer got the idea to write in low level C a high performance implementation 
for handling super big arrays and then added an external Python wrapper. Numpy was born. 
Today ​numpy​ is a class with lots of useful methods and properties, like the property ​shape 
which tells you the shape (dimensions) of the array, or the ​where()​ method which allows you to 
do SQL like queries on your super big array. 

All Python machine learning frameworks (Keras, TensorFlow, PyTorch, ...) will take as input on 
the input layer a ​numpy​ multidimensional array. And speaking of C, or Java, or C+, ..., the input 
layer in a neural network is just like the parameters passed to a function in a programming 
language. That's it. 

Let's get started. I assume you have ​Python installed​ (preferably version 3). Whether you 
directly installed it, or it got installed as part of a larger package, like​ ​Anaconda​, you got with it a 
nifty command like tool called ​pip​. This tool is used to install any Python package you will ever 
need again from a single command invocation. You go ​pip install​ and then the name of the 
package. It goes to the global repository PyPi of Python packages and downloads and installs 
the package for you. It's so easy. We want to start off by downloading and installing the ​Keras 
framework, the ​numpy​ package, and ​TensorFlow ​as the backend to ​Keras​. Guess what their 
names are in the registry, keras, tensorflow and numpy - so obvious! Let's do it together. Go to 
the command line and issue the following: 
 

cmd​>​ pip install keras 
cmd​>​ pip install tensorflow 
cmd​>​ pip install numpy 

Keras​ is based on object oriented programming with a collection of classes and associated 
methods and properties. Let's start simple. Say we have a dataset of housing data. Each row 
has fourteen columns of data. One column has the sale price of a home. We are going to call 
that the ​"label"​. The other thirteen columns have information about the house, like the sqft and 
property tax, etc. It's all numbers. We are going to call those the ​"features"​. What we want to do 
is ​"learn"​ to predict (or estimate) the ​"label"​ from the ​"features"​. Now before we had all this 
compute power and these awesome machine learning frameworks, people did this stuff by hand 
(we call them data analysts) or using formulas in an Excel spreadsheet with some amount of 
data and lots and lots of linear algebra. 

We will start by first importing the ​Keras​ framework (which you installed earlier with pip), which 
by default uses ​TensorFlow ​as the backend, and then instantiate an ​Input​ class object. For this 
class object, we define the shape (i.e., dimensions) of the input. In our example, the input is a 
one dimensional array (i.e., vector) of 13 elements, one for each feature. 
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from​ keras ​import​ ​Input 
 

Input​(​shape​=(​13​,)) 

 
When you run the above two lines in a notebook, you will see the output: 

<tf.Tensor 'input_1:0' shape=(?, 13) dtype=float32> 

This is showing you what ​Input(shape=(13,))​ evaluates to. It produces a tensor object by the 
name 'input_1:0'. This name will be useful later in assisting you in debugging your models. The 
'?' in shape shows that the input object takes an unbounded number of entries (your examples 
or rows) of 13 elements each. That is, at run-time it will bind the number of one dimensional 
vectors of 13 elements to the actual number of examples (rows) you pass in. The 'dtype' shows 
the default data type of the elements, which in this case is a 32-bit float (single precision). 

Deep Neural Networks (DNN) 
DeepMind, Deep Learning, Deep, Deep, Deep. Oh my, what's this? It just means that the neural 
network has one or more layers between the input layer and the output layer. Visualize a directed 
graph in layers of depth. The root nodes are the input layer and the terminal nodes are the output 
layer. The layers in between are known as the hidden (deep) layers. That's it. A four-layer DNN 
architecture would look like this: 
 input layer 
 hidden layer 
 hidden layer 

output layer 

For our purposes, we will start with every node in every layer, except the output layer, is the same 
type of node. And that every node on each layer is connected to every other node on the next layer. 
This is known as a fully connected neural network (FCNN). For example, if the input layer has three 
nodes and the next (hidden) layer has four nodes, then each node on the first layer is connected to 
all four nodes on the next layer for a total of 12 (3x4) connections. 
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Feed Forward 
The DNN (and CNN) are known as feed forward neural networks. This means that data moves 
through the network sequentially in one direction (from input to output layer). That's like a function in 
procedural programming. The inputs are passed as parameters (i.e., input layer), the function 
performs a sequenced set of actions based on the inputs (i.e., hidden layers) and outputs a result 
(i.e., output layer). 

There are two distinctive styles, which you will see in blogs, when coding a forward feed network in 
Keras​. I will briefly touch on both so when you see a code snippet in one style you can translate it to 
the other. 

The Sequential (API) Method Approach 

The ​Sequential​ API method is easier to read and follow for beginners, but the trade off is its less 
flexible. Essentially, you create an empty forward feed neural network with the ​Sequential​ class 
object, and then "add" one layer at a time, until the output layer. 
 

model ​=​ ​Sequential​() 
model​.​add​(​ ​/the first layer/​ ​) 
model​.​add​(​ ​/the next layer/​ ​) 
model​.​add​(​ ​/the output layer/​ ​) 

Alternatively, the layers can be specified in sequential order as a list passed as a parameter when 
instantiating the ​Sequential​ class object. 

 

model ​=​ ​Sequential​([​ ​/​the first layer​/, 
                     ​/​the ​next​ layer​/, 
                     ​/​the output layer​/ 
                   ​]) 

The Functional (API) Method Approach 

The ​Functional​ API method is more advanced, allowing you to construct models that are 
non-sequential in flow --such as branches, skip links, and multiple inputs and outputs. You build the 
layers separately and then "tie" them together. This latter step gives you the freedom to connect 
layers in creative ways. Essentially, for a forward feed neural network, you create the layers, bind 
them to another layer(s), and then pull all the layers together in a final instantiation of a ​Model​ class 
object. 
 

input ​=​ layers​.(/​the first layer​/) 
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hidden ​=​ layers​.(/​the ​next​ layer​/)(​ ​/​the layer to bind to​/​ ​) 
output ​=​ layers​.(/​the output layer​/)(​ ​/​the layer to bind to​/​ ​) 
model ​=​ ​Model​(​input​,​ output​) 

Input Shape vs Input Layer 

The input shape and input layer can be confusing at first. They are not the same thing. More 
specifically, the number of nodes in the input layer does not need to match the shape of the 
input vector. That's because every element in the input vector will be passed to every node in 
the input layer. If our input layer is ten nodes, and we use our above example of a thirteen 
element input vector, we will have 130 connections (10 x 13) between the input vector and the 
input layer. 

Each one of these connections between an element in the input vector and a node in the input 
layer will have a ​weight​ and ​bias​. This is what the neural network will ​"learn"​ during training. 
These are also referred to as parameters. This operation will otherwise be invisible to you. 

The Dense() Layer 

In ​Keras​, layers in a fully connected neural network (FCNN) are called ​Dense​ layers, as 
depicted in the picture above. A ​Dense​ layer is defined as having an "n" number of nodes, and is 
fully connected to the previous layer. Let's continue and define in ​Keras​ a three layer neural 
network, using the ​Sequential​ method, for our example. Our input layer will be ten nodes, and 
take as input a thirteen element vector (i.e., the thirteen features), which will be connected to a 
second (hidden) layer of ten nodes, which will then be connected to a third (output) layer of one 
node. Our output layer only needs to be one node, since it will be outputting a single real value 
("the predicted price of the house"). This is an example where we are going to use a neural 
network as a ​regressor​. That means, the neural network will output a single real number. 
 
 input layer    = 10 nodes 
                                     hidden layer = 10 nodes 

output layer  = 1 node 

For input and hidden layers, we can pick any number of nodes. The more nodes we have, the 
better the neural network can learn, but more nodes means more complexity and more time in 
training and predicting. 

Let's first do this using the ​Sequential​ method. In the example below, we have three ​add()​ calls 
to the class object ​Dense()​. The ​add()​ method "adds" the layers in the same sequential order we 
specified them in. The first (positional) parameter is the number of nodes, ten in the first and 
second layer and one in the third layer. Notice how in the first ​Dense()​ layer we added the 
(keyword) parameter ​input_shape​. This is where we will define the input vector and connect it to 
the first (input) layer in a single instantiation of ​Dense()​. 
 

6 



from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) with input shape 13 element vector (1D). 

model​.​add​(​Dense​(​10​,​ input_shape​=(​13​,))) 
# Add the second (hidden) layer of 10 nodes. 

model​.​add​(​Dense​(​10​)) 
# Add the third (output) layer of 1 node. 

model​.​add​(​Dense​(​1​)) 

 
Alternatively, we can define the sequential sequence of the layers as a list parameter when 
instantiating the ​Sequential​ class object. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense 
 

model ​=​ ​Sequential​([ 
                   ​# Add the first (input) layer (10 nodes) 
                   ​Dense​(​10​,​ input_shape​=(​13​,)), 
                   ​# Add the second (hidden) layer of 10 nodes. 
                   ​Dense​(​10​), 
                   ​# Add the third (output) layer of 1 node. 
                   ​Dense​(​1​) 
                   ​]) 

 
Let's now do the same but use the Functional API method. We start by creating an input vector by 
instantiating an ​Input()​ class object. The (positional) parameter to the ​Input()​ class is the shape of 
the input, which can be a vector, matrix or tensor. In our example, we have a vector that is thirteen 
elements long. So our shape is (13,). I am sure you noticed the trailing comma! That's to overcome a 
quirk in Python. Without the comma, a (13) is evaluated as an expression. That is, the integer value 
13 is surrounded by a parenthesis. Adding a comma will tell the interpreter this is a tuple (an ordered 
set of values). 

Next, we create the input layer by instantiating a ​Dense()​ class object. The positional parameter to 
the ​Dense()​ class is the number of nodes; which in our example is ten. Note the peculiar syntax that 
follows with a ​(inputs)​. The ​Dense()​ object is a callable. That is, the object returned by instantiating 
the ​Dense()​ class can be callable as a function. So we call it as a function, and in this case, the 
function takes as a (positional) parameter the input vector (or layer output) to connect it to; hence we 
pass it ​inputs​ so the input vector is bound to the ten node input layer. 

Next, we create the hidden layer by instantiating another ​Dense()​ class object with ten nodes, and 
using it as a callable, we (fully) connect it to the ​input​ layer. 
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Then we create the output layer by instantiating another ​Dense()​ class object with one node, and 
using it as a callable, we (fully) connect it to the ​hidden​ layer. 

Finally, we put it altogether by instantiating a ​Model()​ class object, passing it the (positional) 
parameters for the input vector and output layer. Remember, all the other layers in-between we 
already connected so we don't need to specify them when instantiating the ​Model()​ object. 
 

from​ keras ​import​ ​Input​,​ ​Model 
from​ keras​.​layers ​import​ ​Dense 
 

# Create the input vector (13 elements). 

inputs ​=​ ​Input​((​13​,)) 
# Create the first (input) layer (10 nodes) and connect it to the input vector. 

input ​=​ ​Dense​(​10​)(​inputs​) 
# Create the next (hidden) layer (10 nodes) and connect it to the input layer. 

hidden ​=​ ​Dense​(​10​)(​input​) 
# Create the output layer (1 node) and connect it to the previous (hidden) layer. 

output ​=​ ​Dense​(​1​)(​hidden​) 
# Now let's create the neural network, specifying the input layer and output layer. 

model ​=​ ​Model​(​inputs​,​ output​) 

Activation Functions 

When training or predicting (inference), each node in a layer will output a value to the nodes in the 
next layer. We don't always want to pass the value 'as-is', but instead sometimes we want to change 
the value by some manner. This process is called an activation function. Think of a function that 
returns some result, like ​return result​. In the case of an activation function, instead of returning 
result​, we would return the result of passing the result value to another (activation) function, like 
return A(result)​, where A() is the activation function. Conceptually, you can think of this as: 
 
def layer(params): 
    """ inside are the nodes """ 
    result = some_calculations 
    return A(result) 
 
def A(result): 
    """ modifies the result """ 
    return some_modified_value_of_result 

Activation functions assist neural networks in learning faster and better. By default, when no 
activation function is specified, the values from one layer are passed as-is (unchanged) to the next 
layer. The most basic activation function is a step function. If the value is greater than 0, then a 1 is 
outputted; otherwise a zero. It hasn't been used in a long, long time.  
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There are three activation functions you will use most of the time; they are the rectified linear unit 
(ReLU), sigmoid and softmax. The rectified linear unit passes values greater than zero as-is 
(unchanged); otherwise zero (no signal). 
 

 
        image source: ​https://towardsdatascience.com 
 

 
The rectified linear unit is generally used between layers. In our example, we will add a rectified 
linear unit between each layer. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense​,​ ​ReLU 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) with input shape 13 element vector (1D). 

model​.​add​(​Dense​(​10​,​ input_shape​=(​13​,))) 
# Pass the output from the input layer through a rectified linear unit activation  

# function. 

model​.​add​(​ReLU​()) 
# Add the second (hidden) layer (10 nodes). 

model​.​add​(​Dense​(​10​)) 
# Pass the output from the input layer through a rectified linear unit activation  

# function. 

model​.​add​(​ReLU​()) 
# Add the third (output) layer of 1 node. 

model​.​add​(​Dense​(​1​)) 

 
Let's take a look inside our model object and see if we constructed what we think we did. You can do 
this using the ​summary()​ method. It will show in sequential order a summary of each layer. 
 

model​.​summary​() 
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Layer​ ​(​type​)​                 ​Output​ ​Shape​              ​Param​ ​#  

================================================================= 

dense_56 ​(​Dense​)​             ​(​None​,​ ​10​)​                ​140  

_________________________________________________________________ 

re_lu_18 ​(​ReLU​)​              ​(​None​,​ ​10​)​                ​0  

_________________________________________________________________ 

dense_57 ​(​Dense​)​             ​(​None​,​ ​10​)​                ​110  

_________________________________________________________________ 

re_lu_19 ​(​ReLU​)​              ​(​None​,​ ​10​)​                ​0  

_________________________________________________________________ 

dense_58 ​(​Dense​)​             ​(​None​,​ ​1​)​                 ​11  

================================================================= 

Total​ ​params​:​ ​261 
Trainable​ ​params​:​ ​261 
Non​-​trainable ​params​:​ ​0 
_________________________________________________________________ 

 
For the above, you see the summary starts with a ​Dense​ layer of ten nodes (input layer), followed by 
a ​ReLU​ activation function, followed by a second ​Dense​ layer (hidden) of ten nodes, followed by a 
ReLU​ activation function, and finally followed by a ​Dense​ layer (output) of one node. Yup, we got 
what we expected. 

Next, let's look at the parameter field in the summary. See how for the input layer it shows 140 
parameters. You wonder how that's calculated? We have 13 inputs and 10 nodes, so 13 x 10 is 130. 
Where does 140 come from? You’re close, each connection between the inputs and each node has 
a weight, which adds up to 130. But each node has an additional bias. That's ten nodes, so 130 + 10 
= 140. It's the weights and biases the neural network will ​"learn" ​during training. 

At the next (hidden) layer you see 110 params. That's ten outputs from the input layer connected to 
each of the ten nodes from the hidden layer (10x10) plus the ten biases for the nodes in the hidden 
layers, for a total of 110 parameters to ​"learn"​. 

Shorthand Syntax 

Keras​ provides a shorthand syntax when specifying layers. You don't actually need to separately 
specify activation functions between layers, as we did above. Instead, you can specify the activation 
function as a (keyword) parameter when instantiating a ​Dense()​ layer. 

The code example below does exactly the same as the code above. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) with input shape 13 element vector (1D). 
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model​.​add​(​Dense​(​10​,​ input_shape​=(​13​,),​ activation​=​'relu'​)) 
# Add the second (hidden) layer (10 nodes). 

model​.​add​(​Dense​(​10​,​ activation​=​'relu'​)) 
# Add the third (output) layer of 1 node. 

model​.​add​(​Dense​(​1​)) 

 
Let's call the ​summary()​ method on this model. 
 

model​.​summary​() 

 

Layer​ ​(​type​)​                 ​Output​ ​Shape​              ​Param​ ​#  

================================================================= 

dense_59 ​(​Dense​)​             ​(​None​,​ ​10​)​                ​140  

_________________________________________________________________ 

dense_60 ​(​Dense​)​             ​(​None​,​ ​10​)​                ​110  

_________________________________________________________________ 

dense_61 ​(​Dense​)​             ​(​None​,​ ​1​)​                 ​11  

================================================================= 

Total​ ​params​:​ ​261 
Trainable​ ​params​:​ ​261 
Non​-​trainable ​params​:​ ​0 
_________________________________________________________________ 

 
Hum, you don't see the activations between the layers as you did in the earlier example. Why not? 
It's a quirk in how the summary() method displays output. They are still there. 

Optimizer (Compile) 

Once you've completed building the forward feed portion of your neural network, as we have for our 
simple example, we now need to add a few things for training the model. This is done with the 
compile()​ method. This step adds the ​backward propagation​ during training. That's a big phrase! 
Each time we send data (or a batch of data) forward through the neural network, the neural network 
calculates the errors in the predicted results (​loss​) from the actual values (​labels​) and uses that 
information to incrementally adjust the weights and biases of the nodes - what we are ​"learning"​. 

The calculation of the error is called a ​loss​. It can be calculated in many different ways. Since we 
designed our neural network to be a ​regresser​ (output is a real value ~ house price), we want to use 
a loss function that is best suited for a ​regresser​. Generally, for this type of neural network, the ​Mean 
Square Error ​method of calculating a loss is used. The ​compile()​ method takes a (keyword) 
parameter ​loss​ where we can specify how we want to calculate it. We are going to pass it the value 
'mse'​ for ​Mean Square Error​. 
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The next step in the process is the optimizer that occurs during ​backward propagation​. The optimizer 
is based on ​gradient descent​; where different variations of the ​gradient descent​ algorithm can be 
selected. This term can be hard to understand at first. Essentially, each time we pass data through 
the neural network we use the calculated loss to decide how much to change the weights and biases 
in the layers by. The goal is to gradually get closer and closer to the correct values for the weights 
and biases to accurately predict (estimate) the ​"label"​ for each example. This process of 
progressively getting closer and closer is called ​convergence​. As the ​loss​ gradually decreases we 
are converging and once the ​loss​ plateaus out, we have ​convergence​, and the result is the accuracy 
of the neural network. Before using ​gradient descent​, the methods used by early AI researchers 
could take years on a supercomputer to find ​convergence​ on a non-trivial problem. After the 
discovery of using the ​gradient descent​ algorithm, this time reduced to days, hours and even just 
minutes on ordinary compute power. Let's skip the math and just say that ​gradient descent​ is the 
data scientist's pixie dust that makes ​convergence​ possible. 

For our ​regresser​ neural network we will use the ​rmsprop​ method (root mean square property). 
 

model​.​compile​(​loss​=​'mse'​,​ optimizer​=​'rmsprop'​) 

 

Now we have completed building your first 'trainable' neural networks. Before we embark on 
preparing data and training the model, we will cover several more neural network designs first. 

 

DNN Binary Classifier 
Another form of a DNN, is a binary classifier (​logistic classifier​). In this case, we want the neural 
network to predict whether the input is or is not something. That is, the output can have two states 
(or classes): yes/no, true/false, 0/1, etc. 

For example, let's say we have a dataset of credit card transactions and each transaction is labeled 
as whether it was fraudulent or not (i.e., the label - what we want to predict). 

Overall, the design approach so far doesn't change, except the activation function of the 'single 
node' output layer and the loss/optimizer method. 

Instead of using a linear activation function on the output node, we will use a sigmoid activation 
function. The sigmoid squashes all values to be between 0 and 1, and as values move away from 
the center they quickly move to the extremes of 0 and 1. 
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We will now code this in several different styles. Let's start by taking our previous code example, 
where we specify the activation function as a (keyword) parameter. In this example, we add to the 
output ​Dense()​ layer the parameter ​activation='sigmoid'​ to pass the output result from the final node 
through a sigmoid function. 

Next, we are going to change our loss parameter to ​'binary_crossentropy'​. This is the loss function 
that is generally used in a binary classifier (​logistic classifier​). 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) with input shape 13 element vector (1D). 

model​.​add​(​Dense​(​10​,​ input_shape​=(​13​,),​ activation​=​'relu'​)) 
# Add the second (hidden) layer (10 nodes). 

model​.​add​(​Dense​(​10​,​ activation​=​'relu'​)) 
# Add the third (output) layer of 1 node, and set the activation function to a  

# Sigmoid. 

model​.​add​(​Dense​(​1​,​ activation​=​'sigmoid'​)) 
 

# Use the Binary Cross Entropy loss function for a Binary Classifier. 

model​.​compile​(​loss​=​'binary_crossentropy'​, 
              optimizer​=​'rmsprop'​, 
              metrics​=[​'accuracy'​]) 

 
Not all the activation functions have their own class method, like the ​ReLU()​. This is another quirk in 
the ​Keras​ framework. Instead, there is a class called ​Activation()​ for creating any of the supported 
activations. The parameter is the predefined name of the activation function. In our example, ​'relu' ​is 
for the rectified linear unit and ​'sigmoid'​ for the sigmoid. The code below does the same as the code 
above. 
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from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense​,​ ​Activation 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) with input shape 13 element vector (1D). 

model​.​add​(​Dense​(​10​,​ input_shape​=(​13​,))) 
# Pass the output from the input layer through a rectified linear unit activation  

# function. 

model​.​add​(​Activation​(​'relu'​)) 
# Add the second (hidden) layer (10 nodes) 

model​.​add​(​Dense​(​10​)) 
# Pass the output from the hidden layer through a rectified linear unit activation 

# function. 

model​.​add​(​Activation​(​'relu'​)) 
# Add the third (output) layer of 1 node. 

model​.​add​(​Dense​(​1​)) 
# Pass the output from the output layer through a sigmoid activation function. 

model​.​add​(​Activation​(​'sigmoid'​) 
 

# Use the Binary Cross Entropy loss function for a Binary Classifier. 

model​.​compile​(​loss​=​'binary_crossentropy'​, 
              optimizer​=​'rmsprop'​, 
              metrics​=[​'accuracy'​]) 

 
Now we will rewrite the same code using the Functional API approach. Notice how we repeatedly 
used the variable ​x​. This is a common practice. We want to avoid creating lots of one-time use 
variables. Since we know in this type of neural network, the output of every layer is the input to the 
next layer (or activation), except for the input and output, we just use ​x​ as the connecting variable. 

By now, you should start becoming familiar with the different styles and approaches. This will be 
helpful when reading blogs, online tutorials and stackoverflow questions which will aid in translating 
those snippets into the style/approach you choose. 
 

from​ keras ​import​ ​Sequential​,​ ​Model​,​ ​Input 
from​ keras​.​layers ​import​ ​Dense​,​ ​ReLU​,​ ​Activation 
 

# Create the input vector (13 elements) 

inputs ​=​ ​Input​((​13​,)) 
# Create the first (input) layer (10 nodes) and connect it to the input vector. 

x ​=​ ​Dense​(​10​)(​inputs​) 
# Pass the output from the input layer through a rectified linear unit activation 

# function. 

x ​=​ ​Activation​(​'relu'​)(​x​) 
# Create the next (hidden) layer (10 nodes) and connect it to the input layer. 

x ​=​ ​Dense​(​10​)(​x​) 

14 



# Pass the output from the hidden layer through a rectified linear unit activation  

# function. 

x ​=​ ​Activation​(​'relu'​)(​x​) 
# Create the output layer (1 node) and connect it to the previous (hidden) layer. 

x ​=​ ​Dense​(​1​)(​x​) 
# Pass the output from the output layer through a sigmoid activation function. 

output ​=​ ​Activation​(​'sigmoid'​)(​x​) 
# Now let's create the neural network, specifying the input layer and output layer. 

model ​=​ ​Model​(​inputs​,​ output​) 
 

# Use the Binary Cross Entropy loss function for a Binary Classifier. 

model​.​compile​(​loss​=​'binary_crossentropy'​, 
              optimizer​=​'rmsprop'​, 
              metrics​=[​'accuracy'​]) 

 

DNN Multi-Class Classifier 
Another form of a DNN is a multi-class classifier, which means that we are going to classify (predict) 
more than one class. For example, let's say from a set of body measurements (e.g., height and 
weight) and gender we want to predict if someone is a baby, toddler, preteen, teenager or adult, for 
a total of five classes. 

We can already see we will have some problems. For example, men on average as adults are taller 
than women. But during the preteen years, girls tend to be taller than boys. We know on average 
that men get heavier early in their adult years in comparison to their teenage years, but women on 
average are less likely. So we should anticipate lots of problems in predicting around the preteen 
years for girls, teenage years for boys, and adult years for women. 

These are examples of non-linearity, where there is not a linear relationship between a feature and a 
prediction, but is instead broken into segments of disjoint linearity. This is the type of problem neural 
networks are good at. 

Let's add a fourth measurement, the nose surface area. ​Studies​ have shown that for girls and boys, 
the surface area of the nose continues to grow between ages 6 and 18 and essentially stops at 18  

So now we have four “​features"​ and a ​"label"​ that consists of five classes. We will change our input 
vector in the next example to four, to match the number of features, and change our output layer to 
five nodes, to match the number of classes. In this case, each output node corresponds to one 
unique class (i.e., baby, toddler, etc). We want to train the neural network so each output node 
outputs a value between 0 and 1 as a prediction. For example, 0.75 would mean that the node is 
75% confident that the prediction is the corresponding class (e.g., toddler). 

Each output node will independently learn and predict its confidence on whether the input is the 
corresponding class. This leads to a problem in that because the values are independent, they won't 
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add up to 1 (i.e, 100%). Softmax is a mathematical function that will take a set of values (i.e., the 
outputs from the output layer) and squash them into a range between 0 and 1 and where all the 
values add up to 1. Perfect. This way, we can take the output node with the highest value and say 
both what is predicted and the confidence level. So if the highest value is 0.97, we can say we 
estimated the probability at 97% in our prediction. 

 

Next, we will change the activation function in our example to ​'softmax'​. Then we will set our loss 
function to ​'categorical_crossentropy'​. This is generally the most common used for multi-class 
classification. Finally, we will use a very popular and widely used variant of gradient descent called 
the ​Adam Optimizer​ (​'adam'​). ​Adam​ incorporates several aspects of other methods, such as rmsprop 
(root mean square) and adagrad (adaptive gradient), along with an adaptive learning rate. It's 
generally considered best-in-class for a wide variety of neural networks 

 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) with input shape 4 element vector (1D). 

model​.​add​(​Dense​(​10​,​ input_shape​=(​4​,),​ activation​=​'relu'​)) 
# Add the second (hidden) layer (10 nodes). 

model​.​add​(​Dense​(​10​,​ activation​=​'relu'​)) 
# Add the third (output) layer of 5 nodes, and set the activation function to a 

# Softmax. 

model​.​add​(​Dense​(​5​,​ activation​=​'softmax'​)) 
 

# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,  
        optimizer​=​'adam'​,  
        metrics​=[​'accuracy'​]) 

A Note on K.backend 
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If you've started looking at other code snippets on the web, you will find the use of ​K.backend​. The 
Keras​ framework is an abstraction layer on top of other computational graph based machine 
learning networks. These are known as the backend, such as ​TensorFlow©​, ​Theano​© and 
CNTK©​. 

The ​backend​ module gives you direct access to the implementation in the backend. By default, 
TensorFlow ​is the backend, and ​Theano​ is being phased out. I would recommend not using this 
syntax because it risks using constructs that may (or have) become deprecated. 

Below is an example of a code snippet where you might see someone directly referring to an 
implementation in the backend, in this case using the backend's implementation of the hyperbolic 
tangent (tanh) activation function. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense​,​ ​Activation 
# import the backend module and refer to it with the alias K 

from​ keras ​import​ backend ​as​ K 
 

model ​=​ ​Sequential​() 
# Add the first (input) layer (10 nodes) and use the backend's implementation 

# of tanh for the activation function. 

model​.​add​(​Dense​(​10​,​ activation​=​K​.​tanh​,​ input_shape​=(​13​,))) 

Simple Image Classifier 
Using neural networks for image classification is now used throughout computer vision. Let's start 
with the basics. For small size "gray scale" images, we can use a DNN similar to what we have 
already described. This type of DNN has been widely published in use of the MNIST dataset; which 
is a dataset for recognizing handwritten digits. The dataset consists of grayscale images of size 28 x 
28 pixels. 

We will need to make one change though. A grayscale image is a matrix (2D array). Think of them 
as a grid, sized height x width, where the width are the columns and the height are the rows. A DNN 
though takes as input a vector (1D array). Yeaks! 

 

Flattening 
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We are going to do classification by treating each pixel as a ​"feature"​. Using the example of the 
MNIST dataset, the 28 x 28 images will have 784 pixels, and thus 784 ​"features"​. We convert the 
matrix (2D) into a vector (1D) by flattening it. Flattening is the process where we place each row in 
sequential order into a vector. So the vector starts with the first row of pixels, followed by the second 
row of pixels, and continues by ending with the last row of pixels. 

 

In our next example below, we add a layer at the beginning of our neural network to flatten the input, 
using the class ​Flatten​. The remaining layers and activations are typical for the MNIST dataset. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense​,​ ​Flatten​,​ ​ReLU​,​ ​Activation 
 

model ​=​ ​Sequential​() 
# Take input as a 28x28 matrix and flatten into a 784 vector. 

model​.​add​(​Flatten​(​input_shape​=(​28​,​28​))) 
# Add the first (input) layer (512 nodes) with input shape 784 element vector (1D). 

model​.​add​(​Dense​(​512​)) 
model​.​add​(​ReLU​()) 
# Add the second (hidden) layer (512 nodes). 

model​.​add​(​Dense​(​512​)) 
model​.​add​(​ReLU​()) 
# Add the third (output) layer (10 nodes) with sigmoid activation function. 

model​.​add​(​Dense​(​10​)) 
model​.​add​(​Activation​(​'softmax'​)) 
 

# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,  
              optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 

 
Let's now look at the layers using the ​summary()​ method. As you can see, the first layer in the 
summary is the flattened layer and shows that the output from the layer is 784 nodes. That's what 
we want. Also notice how many parameters the network will need to ​"learn"​ during training ~ nearly 
700,000. 
 

model​.​summary​() 

 

Layer​ ​(​type​)​                 ​Output​ ​Shape​              ​Param​ ​#  
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================================================================= 

flatten_1 ​(​Flatten​)​          ​(​None​,​ ​784​)​               ​0  

_________________________________________________________________ 

dense_69 ​(​Dense​)​             ​(​None​,​ ​512​)​               ​401920  

_________________________________________________________________ 

re_lu_20 ​(​ReLU​)​              ​(​None​,​ ​512​)​               ​0  

_________________________________________________________________ 

dense_70 ​(​Dense​)​             ​(​None​,​ ​512​)​               ​262656  

_________________________________________________________________ 

re_lu_21 ​(​ReLU​)​              ​(​None​,​ ​512​)​               ​0  

_________________________________________________________________ 

dense_71 ​(​Dense​)​             ​(​None​,​ ​10​)​                ​5130  

_________________________________________________________________ 

activation_10 ​(​Activation​)​   ​(​None​,​ ​10​)​                ​0  

================================================================= 

Total​ ​params​:​ ​669​,​706 
Trainable​ ​params​:​ ​669​,​706 
Non​-​trainable ​params​:​ ​0 
_________________________________________________________________ 

 

Overfitting and Dropout 

During training (discussed in subsequent tutorial), a dataset is split into training data and test data. 
Only the training data is used during the training of the neural network. Once the neural network has 
reached ​convergence​, training stops. 

 

Afterwards, the training data is forward fed again without ​backward propagation​ enabled (i.e., no 
learning) to obtain an accuracy. This is also known as running the trained neural network in 
inference mode (prediction). In a train/test split (train/eval/test discussed in subsequent tutorial), the 
test data, which has been set aside and not used as part of training, is forward feed again without 
backward propagation​ enabled to obtain an accuracy. 
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Ideally, the accuracy on the training data and the test data will be nearly identical. In reality, the test 
data will always be a little less. There is a reason for this. 

Once you reach ​convergence​, continually passing the training data through the neural network will 
cause the neurons to more and more fit the data samples versus generalizing. This is known as 
overfitting. When the neural network is ​overfitted​ to the training data, you will get high training 
accuracy, but substantially lower accuracy on the test/evaluation data. 

Even without training past the ​convergence​, you will have some ​overfitting​. The dataset/problem is 
likely to have non-linearity (hence why you’re using a neural network). As such, the individual 
neurons will converge at a non-equal rate. When measuring ​convergence​, you're looking at the 
overall system. Prior to that, some neurons have already converged and the continued training will 
cause them to overfit. Hence, why the test/evaluation accuracy will always be at least a bit less than 
the training. 

Regularization​ is a method to address ​overfitting​ when training neural networks. The most basic type 
of regularization is called ​dropout​. Dropout is like forgetting. When we teach young children we use 
root memorization, like the 12x12 times table (1 thru 12). We have them iterate, iterate, iterate, until 
they recite in any order the correct answer 100% of the time. But if we ask them 13 times 13, they 
would likely give you a blank look. At this point, the times table is overfitted in their memory. We then 
switch to abstraction. During this second teaching phase, some neurons related to the root 
memorization will die (outside the scope of this article). The combination of the death of those 
neurons (forgetting) and abstraction allows the child's brain to generalize and now solve arbitrary 
multiplication problems, though at times they will make a mistake, even at times in the 12 x 12 times 
table, with some probabilistic distribution. 

The ​dropout​ technique in neural networks mimics this process. Between any layer you can add a 
dropout layer where you specify a percentage (between 0 and 1) to forget. The nodes themselves 
won't be dropped, but instead a random selection on each forward feed will not pass a signal forward 
(forget). So for example, if you specify a dropout of 50% (0.5), on each forward feed of data a 
random selection of 1/2 of the nodes will not send a signal. 

The advantage here is that we minimize the effect of localized ​overfitting​ while continuously training 
the neural network for overall ​convergence​. A common practice for dropout is setting values 
between 20% and 50%. 

In the example code below, we've added a 50% dropout to the input and hidden layer. Notice that 
we placed it before the activation (ReLU) function. Since dropout will cause the signal from the node, 
when dropped out, to be zero, it does not matter whether you add the ​Dropout​ layer before or after 
the activation function. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense​,​ ​Flatten​,​ ​ReLU​,​ ​Activation​,​ ​Dropout 
 

model ​=​ ​Sequential​() 
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model​.​add​(​Flatten​(​input_shape​=(​28​,​28​))) 
model​.​add​(​Dense​(​512​)) 
# Add dropout of 50% at the input layer. 

model​.​add​(​Dropout​(​0.5​)) 
model​.​add​(​ReLU​()) 
 

model​.​add​(​Dense​(​512​)) 
# Add dropout of 50% at the hidden layer. 

model​.​add​(​Dropout​(​0.5​)) 
model​.​add​(​ReLU​()) 
 

model​.​add​(​Dense​(​10​)) 
model​.​add​(​Activation​(​'softmax'​)) 
 

# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,  
              optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 

 

Next 
 
In the second part, we will cover the principal behind convolutional neural networks (CNN) and 
basic design patterns for constructing. 
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Part 2 - Convolutional and ResNet Neural Networks 

Convolutional Neural Networks (CNN) 
Convolutional Neural Networks (CNN) are a type of neural network that can be viewed as consisting 
of two parts, a frontend and a backend. The backend is a deep neural network (DNN), which we 
have already covered. The name convolutional neural network comes from the frontend, referred to 
as a convolutional layer(s). The frontend acts as a preprocessor. The DNN backend does the 
"classification learning". The CNN frontend preprocesses the image data into a form which is 
computationally practical for the DNN to learn from. The CNN frontend does the "feature learning". 

 

 

CNN Classifier 

Once we get to larger image sizes, the number of pixels for a DNN becomes computationally 
too expensive to be feasible. Presume you have a 1MB image, where each pixel is represented 
by a single byte (0..255 value). At 1MB you have one million pixels. That would require an input 
vector of 1,000,000 elements. And let's assume that input layer has 1024 nodes. The number of 
weights to ​"update and learn"​ learn would be over a billion (1 million x 1024) at just the input 
layer! Yeaks. Back to a supercomputer and a lifetime of computing power. Let's contrast this to 
our earlier MNIST example where we had 784 pixels times 512 nodes on our input layer. That's 
400,000 weights to learn, which is considerably smaller than 1 billion. You can do the former on 
your laptop, but don't dare try the latter. 
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Downsampling (Resize) 

To solve the problem of having too many parameters, one approach is to reduce the resolution of 
the image (downsampling). If we reduce the image resolution too far,  at some point we may lose the 
ability to distinguish clearly what's in the image -- it becomes fuzzy and/or has artifacts. So, the first 
step is to reduce the resolution down to the level that we still have enough details. The common 
convention for everyday computer vision is around 224 x 224. We do this by resizing (discussed in a 
later tutorial). Even at this lower resolution and three channels for color images, and an input layer of 
1024 nodes, we still have 154 million weights to ​"update and learn"​ (224 x 224 x 3 x 1024). 

 
                                                          ​Pet Cat (Pixabay) - ​License 

So training on real-world images was out of reach with neural networks until the discovery of using 
convolutional layers. To begin with, a convolutional layer is a frontend to a neural network, which 
transforms the images from a high dimensional pixel based image to a substantially lower 
dimensionality feature based image. The substantially lower dimensionality features can then be the 
input vector to a DNN. Thus, a convolutional frontend is a frontend between the image data and the 
DNN. 

 
But let's say we have enough computational power to use just a DNN and learn 154 million 
weights at the input layer, as in our above example. Well, the pixels are very position dependent 
on the input layer. So we learn to recognize a "cat" on the left-side of the picture. But then we 
shift the cat to the middle of the picture. Now we have to learn to recognize a "cat" from a new 
set of pixel positions - Wah! Now move it to the right, add the cat lying down, jumping in the air, 
etc. For basic 2D renderings like digits and letters, this works (brute-force), but for everything 
else, it's not going to work. 
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Feature Detection 
For these higher resolution and more complex images, we do recognition by detecting and 
classifying features instead of classifying pixel positions. Visualize an image, and ask yourself what 
makes you recognize what's there? Go beyond the high level of asking is that a person, a cat, a 
building, but ask why can you seperate in a picture a person standing in front of a building, or a 
person holding a cat. Your eyes are recognizing low-level features, such as edges, blurs, contrast, 
etc. These low-level features are built up into contours and then spatial relationships. Suddenly, the 
eye/brain have the ability to recognize nose, ears, eyes - that's a cat face, that's a human face. 
 

 
 

A convolutional layer performs the task of feature detection within an image. Each convolution 
consists of a set of filters. These filters are NxM matrices of values that are used to detect the 
likely presence (detection) of a feature. Think of them as little windows. They are slid across the 
image, and at each location a comparison is made between the filter and the pixel values at that 
location. That comparison is done with a matrix dot product, but we will skip the statistics here. 
What's important, is the result of this operation will generate a value that indicates how strongly 
the feature was detected at that location in the image. For example, a value of 4 would indicate 
a stronger presence of the feature than the value of 1. 

 
Prior to neural networks, imaging scientists hand designed these filters. Today, the filters along 
with the weights in the neural network are ​"learned"​. In a convolutional layer, one specifies the 
size of the filter and the number of filters. Typical filter sizes are 3x3 and 5x5, with 3x3 the most 
common. The number of filters varies more, but they are typically multiples of 16, such as 16, 32 
or 64 are the most common in shallow convolutional neural networks. Additionally, one specifies 
a stride. The stride is the rate that the filter is slid across the image. For example, if the stride is 
one, the filter advances one pixel at a time, thus the filter would partially overlap with the 
previous step in a 3x3 filter (and consequently so would a stride of 2). In a stride of 3, there 
would be no overlap. Most common practice is to use strides of 1 and 2. ​Each filter that is 
"learned"​ produces a feature map, which is a mapping (where) on how strongly the feature is 
detected in the image.  
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When there are multiple convolutional layers, the common practice is to keep the same or 
increase the number of filters on deeper layers, and to use stride of 1 on the first layer and 2 on 
deeper layers. The increase in filters provides the means to go from coarse detection of features 
to more detailed detection within coarse features, while the increase in stride offsets the 
increase in size of retained data, also referred to as feature downsampling. 
 

More Filters     => More Data 
Bigger Strides => Less Data 

 

Pooling 
 
Even though each feature map generated is less than the size of the image (e.g., ~75% to 90% 
reduction), because we generate multiple feature maps (e.g., 16), the total data size has gone up. 
Yeaks! The next step is to reduce the total amount of data, while retaining the features detected and 
corresponding spatial relationship between the detected features. 
 
This step is referred to as pooling. Pooling is the same as downsampling (or sub-sampling); whereby 
the feature maps are resized to a smaller dimension using either max (downsampling) or mean 
(sub-sampling) pixel average within the feature map. In pooling, we set the size of the area to pool 
as a NxM matrix as well as a stride. The common practice is a 2x2 pool size with a stride of 2. This 
will result in a 75% reduction in pixel data, while still preserving enough resolution that the detected 
features are not lost through pooling. 
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Flattening 
 
Recall that deep neural networks take vectors as input, that’s one dimensional arrays of 
numbers. In the case of the pooled maps, we have a list (plurality) of 2D matrices, so we need 
to transform these into a single 1D vector which then becomes the input vector to the DNN. This 
process is called flattening; that is, we flatten the list of 2D matrices into a single 1D vector. It’s 
pretty straight forward. We start with the first row of the first pooled map as the beginning of the 
1D vector. We then take the 2nd row and append it to the end, and then the 3rd row, and so 
forth. We then proceed to the second pooled map and do the same process, continuously 
appending each row, until we’ve completed the last pooled map. As long as we follow the same 
sequencing through pooled maps, the spatial relationship between detected features will be 
maintained across images for training and inference (prediction). 
 
For example, if we have 16 pooled maps of size 20x20 and three channels per pooled map 
(e.g., RGB channels in color image), our 1D vector size will be 16 x 20 x 20 x 3 = 19,200 
elements. 
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Basic CNN 
 
Let’s get started now with ​Keras​. Let’s assume a hypothetical situation, but resembles the real 
world today. Your company’s application supports human interfaces and currently can be 
accessed through voice activation. You’ve been tasked with developing a proof of concept to 
demonstrate expanding the human interface for Section 503 compliance accessibility to include 
a sign language interface. 
 
What you should not do is assume to train the model using arbitrary labeled sign language 
images and image augmentation. The data, its preparation and the design of the model must 
match the actual “in the wild” deployment. Otherwise, beyond disappointing accuracy, the model 
might learn noise exposing it to false positives of unexpected consequences, and being 
vulnerable to hacking. We will discuss this in more detail in later parts. 
 
For our proof of concept, we are only going to show recognizing hand signs for the letters of the 
english alphabet (A .. Z). Additionally, we assume that the individual will be signing directly in 
front of the camera from a dead-on perspective. Things we don’t want to learn as an example, is 
the ethnicity of the hand signer. So for this, and other reasons, color is not important. To make 
our model not learn color (“the noise”) we will train it in grayscale mode. That is, we will design 
the model to learn and predict (“inference”) in grayscale. What we do want to learn are contours 
of the hand. 
 
The code sample below is written in the​ ​Sequential​ ​method style and in long form, where 
activation functions are specified using the corresponding method (vs. specifying them as a 
parameter when adding the corresponding layer). 
 
We will design the model in two parts, the convolutional frontend and the DNN backend. We 
start by adding a convolutional layer of 16 filters as the first layer using the​ ​Conv2D​ ​class object. 
Recall that the number of filters equals the number of feature maps that will be generated, in 
this case 16. The size of each filter will be a 3x3, which is specified by the paramete​r 
kernel_size​ ​and a stride of 2 by the parameter​ ​strides​. ​Note that for strides a tuple of (2, 2) 
is specified instead of a single value 2. The first digit is the horizontal stride (across) and the 
second digit is the vertical stride (down). It’s a common convention for stride that the horizontal 
and vertical are the same; therefore one commonly says a “stride of 2” instead of “a 2x2 stride”. 
 
You may ask about what is with the 2D part in the name​ ​Conv2D​. ​The 2D means that input to 
the convolutional layer will be a matrix (2-dimensional array). For the purpose of this tutorial, we 
will stick with 2D convolutionals, which are the common practice for computer vision. 
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The output from the convolution layer is then passed through a rectified linear unit activation 
function, which is then passed to the max pooling layer, using the ​MaxPool2D​ class object. The 
size of the pooling region will be 2x2, specified by the parameter ​pool_size​, with a stride of 2 
by the parameter ​strides​. The pooling layer will reduce the feature maps by 75% into pooled 
feature maps. The pooled feature maps are then flattened, using the ​Flatten​ class object, into 
a 1D vector for input into the DNN. We will glance over the parameter ​padding​. It is suffice for 
our purposes to say that in almost all cases, you will use the value ​same​; it’s just that the default 
is ​valid​ and therefore you need to explicitly add it. 
 
Finally, we pick an input size for our images. We like to reduce the size to as small as possible 
without losing detection of the features which are needed for recognizing the contours of the 
hand. In this case, we choose 128 x 128. The ​Conv2D​ class has a quirk in that it always requires 
specifying the number of channels, instead of defaulting to one for grayscale; thus we specified 
it as (128, 128, 1) instead of (128, 128). 
 

# Keras's Neural Network components 

from​ keras​.​models ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense​,​ ​ReLU​,​ ​Activation 
# Kera's Convolutional Neural Network components 

from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Flatten 
 

model ​=​ ​Sequential​() 
# Create a convolutional layer with 16 3x3 filters and stride of two as the input  

# layer. 

model​.​add​(​Conv2D​(​16​,​ kernel_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​"same"​,  
           input_shape​=(​128​,​128​,​1​))) 
# Pass the output (feature maps) from the input layer (convolution) through a  

# rectified linear unit activation function. 

model​.​add​(​ReLU​()) 
# Add a pooling layer to max pool (downsample) the feature maps into smaller pooled  

# feature maps. 

model​.​add​(​MaxPooling2D​(​pool_size​=(​2​,​ ​2​),​ strides​=(​2​,​ ​2​))) 
# Add a flattening layer to flatten the pooled feature maps to a 1D input vector  

# for the DNN classifier 

model​.​add​(​Flatten​())  
 

# Add the input layer for the DNN, which is connected to the flattening layer of  

# the convolutional frontend. 

model​.​add​(​Dense​(​512​)) 
model​.​add​(​ReLU​()) 
# Add the output layer for classifying the 26 hand signed letters 

model​.​add​(​Dense​(​26​)) 
model​.​add​(​Activation​(​'softmax'​)) 
# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​, 
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metrics​=[​'accuracy'​]) 

Let’s look at the details of the layers in our model using the `summary()` method. 

 

model​.​summary​() 

 

Layer​ ​(​type​)​                            ​Output​ ​Shape​              ​Param​ ​#   
================================================================= 

conv2d_1 ​(​Conv2D​)​                ​(​None​,​ ​64​,​ ​64​,​ ​16​)​        ​160​   
 _________________________________________________________________ 

re_lu_1 ​(​ReLU​)​                   ​(​None​,​ ​64​,​ ​64​,​ ​16​)​        ​0​       
 _________________________________________________________________ 

max_pooling2d_1 ​(​MaxPooling2​     ​(​None​,​ ​32​,​ ​32​,​ ​16​)​        ​0​         
_________________________________________________________________ 

flatten_1 ​(​Flatten​)​              ​(​None​,​ ​16384​)​             ​0​         
_________________________________________________________________ 

dense_1 ​(​Dense​)​                  ​(​None​,​ ​512​)​               ​8389120​   
_________________________________________________________________ 

re_lu_2 ​(​ReLU​)​                   ​(​None​,​ ​512​)​               ​0​         
_________________________________________________________________ 

dense_2 ​(​Dense​)​                  ​(​None​,​ ​26​)​                ​13338  

_________________________________________________________________ 

activation_1 ​(​Activation​)​        ​(​None​,​ ​26​)​                ​0  

================================================================= 

Total​ ​params​:​ ​8​,​402​,​618 
Trainable​ ​params​:​ ​8​,​402​,​618 
Non​-​trainable ​params​:​ ​0 

Here’s how to read the Output Shape column. For the​ Conv2D​ input layer, the output shape 
shows (None, 64, 64, 16). The first value in the tuple is the number of examples (i.e., batch size) 
that will be passed through on a single forward feed. Since this is determined at training time, it 
is set to None to indicate it will be bound when the model is being fed data. The last number is 
the number of filters, which we set to 16.  The two numbers in the middle 64, 64 are the output 
size of the feature maps, in this case 64 x 64 pixels each (for a total of 16). The output size is 
determined by the filter size (3 x 3), the stride (2 x 2) and the padding (same). The combination 
that we specified will result in the height and width being halved, for a total reduction of 75% in 
size. 
 
For the ​MaxPooling2D​ layer, the output size of the pooled feature maps will be 32 x 32. By 
specifying a pooling region of 2 x 2 and stride of 2, the height and width of the pooled feature 
maps will be halved, for a total reduction of 75% in size. 
 
The flattened output from the pooled feature maps is a 1D vector of size 16,384, calculated as 
16 x (32 x 32). Each element (pixel) in the flattened pooled feature maps is then inputted to 
each node in the input layer of the DNN, which has 512 nodes. The number of connections 
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between the flattened layer and the input layer is therefore 16,384 x 512 = ~8.4 million. That’s 
the number of weights to ​“learn”​ at that layer and where most of the computation will 
(overwhelmingly) occur. 

Let’s now show the same code example in a variation of the ​Sequential​ method style where 
the activation methods are specified using the parameter ​activation​ in each instantiation of a 
layer (e.g., ​Conv2D()​, ​Dense()​). 
 
# Keras's Neural Network components 

from​ keras​.​models ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Dense 
 

# Kera's Convolutional Neural Network components 

from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Flatten 
 

model ​=​ ​Sequential​() 
 

# Create a convolutional layer with 16 3x3 filters and stride of two as the input  

# layer. 

model​.​add​(​Conv2D​(​16​,​ kernel_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​"same"​,  
          activation​=​'relu'​,​ input_shape​=(​128​,​128​,​ ​1​))) 
# Add a pooling layer to max pool (downsample) the feature maps into smaller pooled 

# feature maps. 

model​.​add​(​MaxPooling2D​(​pool_size​=(​2​,​ ​2​),​ strides​=(​2​,​ ​2​))) 
# Add a flattening layer to flatten the pooled feature maps to a 1D input vector  

# for the DNN. 

model​.​add​(​Flatten​()) 
 

# Create the input layer for the DNN, which is connected to the flattening layer of 

# the convolutional front-end. 

model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​26​,​ activation​=​'softmax'​)) 
 

# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,  
              optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 

 
Let’s now show the same code example in a third way using the Functional API method. In this 
approach we separately define each layer, starting with the input vector and proceed to the 
output layer. At each layer we use polymorphism to invoke the instantiated class (layer) object 
as a callable and pass in the object of the previous layer to connect it to.  
 
For example, for the first ​Dense​ layer, when invoked as a callable, we pass as the parameter the 
layer object for the ​Flatten​ layer. As a callable, this will cause the ​Flatten​ layer and the first 
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Dense​ layer to be fully connected (i.e., each node in the ​Flatten​ layer will be connected to 
every node in the ​Dense​ layer). 
 

from​ keras ​import​ ​Input​,​ ​Model 
from​ keras​.​layers ​import​ ​Dense 
from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Flatten 
 

# Create the input vector (128 x 128). 

inputs ​=​ ​Input​(​shape​=(​128​,​ ​128​,​ ​1​)) 
layer  ​=​ ​Conv2D​(​16​,​ kernel_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​"same"​,  

                activation​=​'relu'​)(​inputs​) 
layer  ​=​ ​MaxPooling2D​(​pool_size​=(​2​,​ ​2​),​ strides​=(​2​,​ ​2​))(​layer​) 
layer  ​=​ ​Flatten​()(​layer​) 
layer  ​=​ ​Dense​(​512​,​ activation​=​'relu'​)(​layer​) 
output ​=​ ​Dense​(​26​,​ activation​=​'softmax'​)(​layer​) 
 

# Now let's create the neural network, specifying the input layer and output layer. 

model ​=​ ​Model​(​inputs​,​ output​) 

 

VGG Networks 
 
The ​VGG​ type of CNN was designed by the ​Visual Geometry Group​ at ​Oxford​. It was designed 
to compete in the international ​ImageNet​ competition for image recognition for 1000 classes of 
images. The ​VGGNet ​in the 2014 contest took first place on image location task and second 
place on the image classification task. 
 
It is designed using a handful of principles that are easy to learn. The convolutional frontend 
consists of a sequence of pairs (and later triples) of convolutions of the same size, followed by a 
max pooling. The max pooling layer downsamples the generated feature maps by 75% and the 
next pair (or triple) of convolutional layers then doubles the number of learned filters. The 
principle behind the convolution design was that the early layers learn coarse features and 
subsequent layers, by increasing the filters, learn finer and finer features, and the max pooling is 
used between the layers to minimize growth in size (and subsequently parameters to learn) of 
the feature maps. Finally, the DNN backend consists of two identical sized dense hidden layers 
of 4096 nodes each, and a final dense output layer of 1000 nodes for classification. 
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The best known versions are the VGG16 and VGG19. The VGG16 and VGG19 that were 

used in the competition, along with their trained weights from the competition were 

made publicly available. They have been frequently used in transfer learning, where 

others have kept the convolutional frontend, and corresponding weights, and attached a 

new DNN backend and retrained for new classes of images. 

 

So, we will go ahead and code a VGG16 in two coding styles. The first in a sequential 

flow, and the second procedurally using “reuse” functions for duplicating the common 

blocks of layers, and parameters for their specific settings. We will also change 

specifying ​kernel_size​ and ​pool_size​ as keyword parameters and instead specify 

them as positional parameters. 

 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Flatten​,​ ​Dense 
 

model ​=​ ​Sequential​() 
 

# First convolutional block  

model​.​add​(​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
          activation​=​"relu"​,​ input_shape​=(​224​,​ ​224​,​ ​3​))) 
model​.​add​(​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​MaxPooling2D​((​2​,​ ​2​),​ strides​=(​2​,​ ​2​)))​ ​# reduce feature maps by 75% 
 

# Second convolutional block - double the number of filters 

model​.​add​(​Conv2D​(​128​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​Conv2D​(​128​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​MaxPooling2D​((​2​,​ ​2​),​ strides​=(​2​,​ ​2​)))​ ​# reduce feature maps by 75% 
  

# Third convolutional block - double the number of filters 

model​.​add​(​Conv2D​(​256​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​Conv2D​(​256​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​Conv2D​(​256​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​MaxPooling2D​((​2​,​ ​2​),​ strides​=(​2​,​ ​2​)))​ ​# reduce feature maps by 75% 
  

# Fourth convolutional block - double the number of filters 

model​.​add​(​Conv2D​(​512​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
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model​.​add​(​Conv2D​(​512​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​Conv2D​(​512​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​MaxPooling2D​((​2​,​ ​2​),​ strides​=(​2​,​ ​2​)))​ ​# reduce feature maps by 75% 
  

# Fifth (Final) convolutional block 

model​.​add​(​Conv2D​(​512​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​Conv2D​(​512​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​Conv2D​(​512​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​)) 
model​.​add​(​MaxPooling2D​((​2​,​ ​2​),​ strides​=(​2​,​ ​2​)))​ ​# reduce feature maps by 75% 
  

# DNN Backend  

model​.​add​(​Flatten​()) 
model​.​add​(​Dense​(​4096​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​4096​,​ activation​=​'relu'​)) 
 

# Output layer for classification (1000 classes) 

model​.​add​(​Dense​(​1000​,​ activation​=​'softmax'​)) 
 

# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,  
              optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 

 

You just coded a VGG16 - nice. Let’s now code the same using a procedural “reuse” style. 

In this example we created a procedure (function) call conv_block() which builds the 

convolutional blocks, and takes as parameters the number of layers in the block (2 or 3), 

and number of filters (64, 128, 256 or 512). Note that we kept the first convolutional 

layer outside of the conv_block. The first layer needs the input_shape parameter. We 

could have coded this as a flag to conv_block, but since it would only occur one time, 

then it’s not reuse. So we inline it instead. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Flatten​,​ ​Dense 
 

def​ conv_block​(​n_layers​,​ n_filters​): 
    ​""" 
        n_layers : number of convolutional layers 

        n_filters: number of filters 

    """ 

    ​for​ n ​in​ range​(​n_layers​): 
        model​.​add​(​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
                  activation​=​"relu"​)) 
    model​.​add​(​MaxPooling2D​(​2​,​ strides​=​2​)) 
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# Convolutional Frontend 

model ​=​ ​Sequential​()  

model​.​add​(​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,​ activation​=​"relu"​,  
          input_shape​=(​224​,​ ​224​,​ ​3​))) 
conv_block​(​1​,​ ​64​) 
conv_block​(​2​,​ ​128​) 
conv_block​(​3​,​ ​256​) 
conv_block​(​3​,​ ​512​) 
conv_block​(​3​,​ ​512​)  

 

# DNN Backend  

model​.​add​(​Flatten​()) 
model​.​add​(​Dense​(​4096​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​4096​,​ activation​=​'relu'​)) 
 

# Output layer for classification (1000 classes) 

model​.​add​(​Dense​(​1000​,​ activation​=​'softmax'​)) 
 

# Use the Categorical Cross Entropy loss function for a Multi-Class Classifier. 

model​.​compile​(​loss​=​'categorical_crossentropy'​,  
              optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 

 
Try running ​model.summary()​ on both examples and you will see that the output is identical. 
 

ResNet Networks 
 
The ​ResNet ​type of CNN was designed by Microsoft Research. It was designed to compete in 
the international ​ImageNet​ competition. The ​ResNet ​in the 2015 contest took first place in all 
categories for ​ImageNet ​and ​COCO ​competition.  
 
ResNet, and other architectures within this class, use different layer to layer connection 
patterns. The pattern we’ve discussed so far (ConvNet and VGG) use the fully connected layer 
to layer pattern. 
 
ResNet 34 ​introduced a new block layer and layer connection pattern, residual blocks and 
identity connection, respectively. The residual block in ResNet 34 consists of blocks of two 
identical convolutional layers without a pooling layer. Each block has an identity connection 
which creates a parallel path between the input of the residual block and its output. Like VGG, 
each successive block doubles the number of filters. Pooling is done at the end of the sequence 
of blocks. 
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One of the problems with neural networks is that as we add deeper layers (under the 
presumption of increasing accuracy) their performance can degrade. That is, it can get worse 
not better. We won’t go into why, but just discuss how this phenomenon can be addressed. 
Residual blocks allow neural networks to be built with deeper layers without a degradation in 
performance. 
 
Below is a code snippet showing how a residual block can be coded in ​Keras​ using the 
Sequential​ method approach. The variable ​x​ represents the output of a layer, which is the 
input to the next layer. At the beginning of the block, we retain a copy of the previous block/layer 
output as the variable ​shortcut​. We then pass the previous block/layer output (x) through two 
convolutional layers, each time taking the output from the previous layer as input into the next 
layer. Finally, the last output from the block (retained in the variable x) is added (matrix addition) 
with the original value of x (shortcut). This is the identity link. 
 

shortcut ​=​ x 
x ​=​ layers​.​Conv2D​(​64​,​ kernel_size​=(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
x ​=​ layers​.​Conv2D​(​64​,​ kernel_size​=(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
x ​=​ layers​.​add​([​shortcut​,​ x​]) 

 
Let’s now put the whole network together, using a procedural style. Additionally, we will need to 
add the entry convolutional layer of ResNet, which is not a residual block, and then the DNN 
backend. 
 
Like we did for the VGG example, we define a procedure (function) for generating the residual 
block pattern, following the pattern we used in the above code snippet. For our procedure 
residual_block()​, we pass in the number of filters for the block and the input layer (i.e., 
output from previous layer). 
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The ResNet architectures take as input a (224, 224, 3) vector. That is, an RGB image (3 
channels), of 224 (height) x 224 (width) pixels.  The first layer is a basic convolutional layer, 
consisting of a convolution using a fairly large filter size of 7 x 7. The output (feature maps) are 
then reduced in size by a max pooling layer. 
 
After the initial convolutional layer, there is a succession of groups of residual blocks, where 
(similar to VGG) each successive group doubles the number of filters. Unlike VGG though, there 
is no pooling layer between the groups that would reduce the size of the feature maps. Now, if 
we connected these blocks directly with each other, we have a problem. That is, the input to the 
next block has the shape based on the previous block’s filter size (let’s call it X). The next block 
by doubling the filters will cause the output of that residual block to be double in size (let’s call it 
2X). The identity link would attempt to add the input matrix (X) and the output matrix (2X). 
Yeaks, we get an error, indicating we can’t broadcast (for add operation) matrices of different 
sizes. 
 
For ResNet, this is solved by adding a convolutional block between each “doubling” group of 
residual blocks. The convolutional block doubles the filters to reshape the size and doubles the 
stride to reduce the size by 75%. 

 
 
The output of the last residual block group is passed to a pooling and flattening layer 
(​GlobalAveragePooling2D​), which is then passed to a single ​Dense​ layer of 1000 nodes 
(number of classes). 
 

from​ keras ​import​ ​Model 
import​ keras​.​layers ​as​ layers 
 

def​ residual_block​(​n_filters​,​ x​): 
    ​""" Create a Residual Block of Convolutions 
        n_filters: number of filters 

        x        : input into the block 

    """ 

    shortcut ​=​ x 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
                      activation​=​"relu"​)(​x​) 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
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                      activation​=​"relu"​)(​x​) 
    x ​=​ layers​.​add​([​shortcut​,​ x​]) 
    ​return​ x 
 

def​ conv_block​(​n_filters​,​ x​): 
    ​""" Create Block of Convolutions without Pooling 
        n_filters: number of filters 

        x        : input into the block 

    """ 

    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​"same"​,  
                  activation​=​"relu"​)(​x​) 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​"same"​,  
                  activation​=​"relu"​)(​x​) 
    ​return​ x 
 

# The input tensor 

inputs ​=​ layers​.​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
 

# First Convolutional layer, where pooled feature maps will be reduced by 75% 

x ​=​ layers​.​Conv2D​(​64​,​ kernel_size​=(​7​,​ ​7​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​,  
                  activation​=​'relu'​)(​inputs​) 
x ​=​ layers​.​MaxPool2D​(​pool_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

# First Residual Block Group of 64 filters 

for​ _ ​in​ range​(​2​): 
    x ​=​ residual_block​(​64​,​ x​) 
  

# Double the size of filters and reduce feature maps by 75% (strides=2, 2) to fit 

the next Residual Group 

x ​=​ conv_block​(​128​,​ x​) 
 

# Second Residual Block Group of 128 filters 

for​ _ ​in​ range​(​3​): 
    x ​=​ residual_block​(​128​,​ x​) 
  

# Double the size of filters and reduce feature maps by 75% (strides=2, 2) to fit 

the next Residual Group 

x ​=​ conv_block​(​256​,​ x​) 
 

# Third Residual Block Group of 256 filters 

for​ _ ​in​ range​(​5​): 
    x ​=​ residual_block​(​256​,​ x​) 
 

# Double the size of filters and reduce feature maps by 75% (strides=2, 2) to fit 

the next Residual Group 

x ​=​ conv_block​(​512​,​ x​) 
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# Fourth Residual Block Group of 512 filters 

for​ _ ​in​ range​(​2​): 
    x ​=​ residual_block​(​512​,​ x​) 
  

# Now Pool at the end of all the convolutional residual blocks 

x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
 

# Final Dense Outputting Layer for 1000 outputs 

outputs ​=​ layers​.​Dense​(​1000​,​ activation​=​'softmax'​)(​x​) 
 

model ​=​ ​Model​(​inputs​,​ outputs​) 

 
Let’s now run ​model.summary()​. We see that the total number of parameters to learn is 21 
million. This is in contrast of the VGG16 which has 138 million parameters. So the ResNet 
architecture is 6 times computationally faster. This reduction is mostly achieved by the 
construction of the residual blocks. Notice how the DNN backend is just a single output Dense 
layer. In effect, there is no backend. The early residual block groups act as the CNN frontend 
doing the feature detection, while the latter residual blocks perform the classification. In doing 
so, unlike VGG, there was no need for several fully connected dense layers, which would have 
substantially increased the number of parameters. 
 
Another advantage is the identity link, which provided the ability to add deeper layers, without 
degradation, for higher accuracy.  
 
ResNet50 i​ntroduced a variation of the residual block referred to as the bottleneck residual 
block. In this version, the group of two 3x3 convolution layers are replaced by a group of 1x1, 
then 3x3, and then 1x1 convolution layer. The 1x1 convolutions perform a dimension reduction 
reducing the computational complexity, and the last convolutional restores the dimensionality 
increasing the number of filters by a factor of 4. The bottleneck residual block allows for deeper 
neural networks, without degradation, and further reduction in computational complexity. 
 

 
 

Below is a code snippet for writing a bottleneck residual block as a reusable function: 
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def​ bottleneck_block​(​n_filters​,​ x​): 
    ​""" Create a Bottleneck Residual Block of Convolutions 
        n_filters: number of filters 

        x        : input into the block 

    """ 

    shortcut ​=​ x 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
                      activation​=​"relu"​)(​x​) 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
                      activation​=​"relu"​)(​x​) 
    x ​=​ layers​.​Conv2D​(​n_filters ​*​ ​4​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​,  
                      activation​=​"relu"​)(​x​) 
    x ​=​ layers​.​add​([​shortcut​,​ x​]) 
    ​return​ x 

 
 
Batch Normalization 
 
Another problem with adding deeper layers in a neural network is the ​vanishing gradient 
problem. This is actually about the computer hardware. During training (process of backward 
propagation and gradient descent), at each layer the weights are being multiplied by very small 
numbers, specifically numbers less than 1. As you know, two numbers less than one multiplied 
together make an even smaller number. When these tiny values are propagated through deeper 
layers they continuously get smaller. At some point, the computer hardware can’t represent the 
value anymore - and hence, the ​vanishing gradient​. 
 
The problem is further exacerbated if we try to use half precision floats (16 bit float) for the 
matrix operations versus single precision (32 bit float). The advantage of the former is that the 
weights (and data) are stored in half the amount of space and using a general rule of thumb by 
reducing the computational size in half, we can execute 4 times as many instructions per 
compute cycle. The problem of course is that with even smaller precision, we will encounter the 
vanishing gradient ​even sooner. 
 
Batch normalization is a technique applied to the output of a layer (before or after the activation 
function). Without going into the statistics aspect, it normalizes the shift in the weights as they 
are being trained. This has several advantages, it smoothes out (across a batch) the amount of 
change, thus slowing down the possibility of getting a number so small that it can’t be 
represented by the hardware. Additionally, by narrowing the amount of shift between the 
weights, convergence can happen sooner using a higher learning rate and reducing the overall 
amount of training time. Batch normalization is added to a layer in ​Keras ​with the 
BatchNormalization()​ class. It is though still of debate, whether the best practice is to add it 
before or after the activation function. 
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Below is a code example of using batch normalization in both before and after an activation 
function, in both a convolution and dense layer. 
 

from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Conv2D​,​ ​ReLU​,​ ​BatchNormalization​,​ ​Flatten​,​ ​Dense 
 

model ​=​ ​Sequential​() 
 

model​.​add​(​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​,  
                 input_shape​=(​128​,​ ​128​,​ ​3​))) 
# Add a batch normalization (when training) to the output before the activation  

# function. 

model​.​add​(​BatchNormalization​()) 
model​.​add​(​ReLU​()) 
 

model​.​add​(​Flatten​()) 
 

model​.​add​(​Dense​(​4096​)) 
model​.​add​(​ReLU​()) 
 

# Add a batch normalization (when training) to the output after the activation  

# function. 

model​.​add​(​BatchNormalization​()) 

 

ResNet50 
 
Below is an implementation of ​ResNet50​ using the bottleneck block combined with batch 
normalization: 
 

from​ keras ​import​ ​Model 
import​ keras​.​layers ​as​ layers 
 

def​ bottleneck_block​(​n_filters​,​ x​): 
    ​""" Create a Bottleneck Residual Block of Convolutions 
        n_filters: number of filters 

        x        : input into the block 

    """ 

    shortcut ​=​ x 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​))(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
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    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​"same"​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
 

    x ​=​ layers​.​Conv2D​(​n_filters ​*​ ​4​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​))(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
 

    x ​=​ layers​.​add​([​shortcut​,​ x​]) 
    x ​=​ layers​.​ReLU​()(​x​) 
 

    ​return​ x 
 

def​ conv_block​(​n_filters​,​ x​,​ strides​=(​2​,​2​)): 
    ​""" Create Block of Convolutions with feature pooling 
        Increase the number of filters by 4X 

        n_filters: number of filters 

        x        : input into the block 

    """ 

    ​# construct the identity link 
    ​# increase filters by 4X to match shape when added to output of block 
    shortcut ​=​ layers​.​Conv2D​(​4​ ​*​ n_filters​,​ ​(​1​,​ ​1​),​ strides​=​strides​)(​x​) 
    shortcut ​=​ layers​.​BatchNormalization​()(​shortcut​) 
 

    ​# construct the 1x1, 3x3, 1x1 convolution block 
 

    ​# feature pooling when strides=(2, 2) 
    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​1​,​ ​1​),​ strides​=​strides​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
 

    x ​=​ layers​.​Conv2D​(​n_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
 

    ​# increase the number of filters by 4X 
    x ​=​ layers​.​Conv2D​(​4​ ​*​ n_filters​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​))(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
 

    ​# add the  identity link to the output of the convolution block 
    x ​=​ layers​.​add​([​x​,​ shortcut​]) 
    x ​=​ layers​.​ReLU​()(​x​) 
 

    ​return​ x 
 

# The input tensor 

inputs ​=​ layers​.​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
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# First Convolutional layer, where pooled feature maps will be reduced by 75% 

x ​=​ layers​.​ZeroPadding2D​(​padding​=(​3​,​ ​3​))(​inputs​) 
x ​=​ layers​.​Conv2D​(​64​,​ kernel_size​=(​7​,​ ​7​),​ strides​=(​2​,​ ​2​),​ padding​=​'valid'​)(​x​) 
x ​=​ layers​.​BatchNormalization​()(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
x ​=​ layers​.​ZeroPadding2D​(​padding​=(​1​,​ ​1​))(​x​) 
x ​=​ layers​.​MaxPool2D​(​pool_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​))(​x​) 
 

x ​=​ conv_block​(​64​,​ x​,​ strides​=(​1​,​1​)) 
 

# First Residual Block Group of 64 filters 

for​ _ ​in​ range​(​2​): 
    x ​=​ bottleneck_block​(​64​,​ x​) 
 

# Double the size of filters and reduce feature maps by 75% (strides=2, 2) to fit 

the next Residual Group 

x ​=​ conv_block​(​128​,​ x​) 
 

# Second Residual Block Group of 128 filters 

for​ _ ​in​ range​(​3​): 
    x ​=​ bottleneck_block​(​128​,​ x​) 
 

# Double the size of filters and reduce feature maps by 75% (strides=2, 2) to fit 

the next Residual Group 

x ​=​ conv_block​(​256​,​ x​) 
 

# Third Residual Block Group of 256 filters 

for​ _ ​in​ range​(​5​): 
    x ​=​ bottleneck_block​(​256​,​ x​) 
 

# Double the size of filters and reduce feature maps by 75% (strides=2, 2) to fit 

the next Residual Group 

x ​=​ conv_block​(​512​,​ x​) 
 

# Fourth Residual Block Group of 512 filters 

for​ _ ​in​ range​(​2​): 
    x ​=​ bottleneck_block​(​512​,​ x​) 
 

# Now Pool at the end of all the convolutional residual blocks 

x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
 

# Final Dense Outputting Layer for 1000 outputs 

outputs ​=​ layers​.​Dense​(​1000​,​ activation​=​'softmax'​)(​x​) 
 

model ​=​ ​Model​(​inputs​,​ outputs​) 
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Next 

In the next part, we will discuss the principles and design patterns of the next evolution of wide 
layers in convolutional neural networks. 
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Part 3 - Wide Convolutional Networks - ResNeXt, Inception 
 

Inception v1 (GoogLeNet) - Wide Convolutional Neural Network 
In this section, we will cover the design patterns for several wide convolutional neural networks. Up 
to now, we’ve focused on networks with deeper layers, block layers and shortcuts. Starting in 2014 
with Inception v1 (GoogleNet) and 2015 with ResNeXt (Microsoft Research) and Inception v2, neural 
network designs moved into wide layers (vs. deeper layers).  Essentially, a wide layer is having 
multiple convolutions in parallel and then concatenating their outputs. 
 
The ​GoogLeNet​ (Inception v1) won the 2014 ImageNet contest and introduced the ‘inception 
module”. The inception module is a convolutional layer with parallel convolutions of different 
sizes, with the outputs concatenated together. The principle behind it was that instead of trying 
to pick the best filter size for a layer, each layer has multiple filter sizes in parallel, and the layer 
learns which size is the best. 
 
Naive Inception Module 
 
The figure below shows the naive inception module, which demonstrates the principle behind 
the inception module. In a conventional convolution block, the output from the convolution layer 
is passed through a pooling layer for dimensionality reduction. The output from a previous 
convolution layer is branched. One branch is passed through a pooling layer for dimensionality 
reduction, as in a conventional convolutional layer, and the remaining branches are passed 
through convolution layers of different sizes (i.e., 1x1, 3x3, 5x5). The outputs from the pooling 
and the other convolution layers are then concatenated together. 
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The theory behind it, is that the different filter sizes capture different levels of detail. The 1x1 
convolution captures fine details of features, while the 5x5 captures more abstract features. The 
code below demonstrates a naive inception module. The input from a previous layer x is 
branched and passed through a max pooling layer, 1x1, 3x3 and 5x5 convolution, which are 
then concatenated together. 
 

# The inception branches (where x is the previous layer) 

x1 ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​1​,​1​),​ padding​=​'same'​)(​x​) 
x2 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x3 ​=​ layers​.​Conv2D​(​96​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x4 ​=​ layers​.​Conv2D​(​48​,​ ​(​5​,​ ​5​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
 

# concatenate the filters 

x ​=​ layers​.​concatenate​([​x1​,​ x2​,​ x3​,​ x4​]) 

 
By setting ​padding=’same’​, the height and width dimensions are preserved. This allows 
concatenating the filters together. For example, if the above the input to this layer was 
28x28x256, the dimensions at the branch layers would be: 
 

x1 (pool) :  (?, 28, 28, 256) 
x2 (1x1) :  (?, 28, 28, 64) 
x2 (3x3) :  (?, 28, 28, 96) 
x3 (5x5) :  (?, 28, 28, 48) 

 
After the concatenation, the output would be: 
 

x (concat) : (?, 28, 28, 464) 
 
A ​summary()​ for these layers shows 544K parameters to train. 
 

max_pooling2d_161 ​(​MaxPooling2D​ ​(​None​,​ ​28​,​ ​28​,​ ​256​)​  ​0​           input_152​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13130 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_152​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13131 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​96​)​   ​221280​      input_152​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13132 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​48​)​   ​307248​      input_152​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

concatenate_429 ​(​Concatenate​)​   ​(​None​,​ ​28​,​ ​28​,​ ​464​)​  ​0 
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max_pooling2d_161​[​0​][​0​]  

                                                                 conv2d_13130​[​0​][​0​] 
                                                                 conv2d_13131​[​0​][​0​] 
                                                                 conv2d_13132​[​0​][​0​] 
===================================================================================

=============== 

Total​ ​params​:​ ​544​,​976 
Trainable​ ​params​:​ ​544​,​976 

 
 
If the ​padding=’same’​ argument is left out (defaults to padding=’valid’), the shapes would be 
instead: 
 

x1 (pool) :  (?, 26, 26, 256) 
x2 (1x1) :  (?, 28, 28, 64) 
x2 (3x3) :  (?, 26, 26, 96) 
x3 (5x5) :  (?, 24, 24, 48) 

 
Since the width and height dimensions do not match, if one tried to concatenate these layers, 
one would get an error:  
 
ValueError​: A ​Concatenate​ layer requires inputs with matching shapes except for the concat axis. 
Got inputs shapes: [(None, 26, 26, 256), (None, 28, 28, 64), (None, 26, 26, 96), (None, 24, 24, 48)] 
 
Inception v1 Module 
 
In the ​GoogLeNet​, a further dimensionality reduction was introduced by adding a 1x1 
convolution (bottleneck) to the pooling, 3x3 and 5x5 branches. This dimension reduction 
reduced the overall computational complexity by nearly ⅔. 
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Below is an example of an Inception v1 module: 
 

# The inception branches (where x is the previous layer) 

x1 ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​1​,​1​),​ padding​=​'same'​)(​x​) 
x1 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x1​) 
x2 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x3 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x3 ​=​ layers​.​Conv2D​(​96​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x3​) 
x4 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x4 ​=​ layers​.​Conv2D​(​48​,​ ​(​5​,​ ​5​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x4​) 
 

# concatenate the filters 

x ​=​ layers​.​concatenate​([​x1​,​ x2​,​ x3​,​ x4​]) 

 
A ​summary()​ for these layers shows 198K parameters to train. 
 

max_pooling2d_162 ​(​MaxPooling2D​ ​(​None​,​ ​28​,​ ​28​,​ ​256​)​  ​0​           input_153​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13135 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_153​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13137 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_153​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13133 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448 
max_pooling2d_162​[​0​][​0​]  

___________________________________________________________________________________
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_______________ 

conv2d_13134 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_153​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13136 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​96​)​   ​55392​       conv2d_13135​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13138 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​48​)​   ​76848​       conv2d_13137​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

concatenate_430 ​(​Concatenate​)​   ​(​None​,​ ​28​,​ ​28​,​ ​272​)​  ​0​           conv2d_13133​[​0​][​0​] 
                                                                 conv2d_13134​[​0​][​0​] 
                                                                 conv2d_13136​[​0​][​0​] 
                                                                 conv2d_13138​[​0​][​0​] 
===================================================================================

=============== 

Total​ ​params​:​ ​198​,​032 
Trainable​ ​params​:​ ​198​,​032 
 

 
The diagram below shows a block overview of Inception v1 (GoogLeNet). We have presented 
the architecture differently than the conventional diagrams, for the purpose of drawing one’s 
attention to the block and group structure of the neural network. GoogLeNet consists of four 
groups: 
 

Stem Convolutional Group : 
 This is the entry point into the neural network. The inputs (images) are processed  
 by a sequential (deep) set of convolutions and max pooling, much like a  

conventional ConvNet. 
 

Wide Convolutional Group : 
This is a set of seven inception blocks in five groups. The wider blocks in the  
diagram represent a group of two or three inception blocks, and the thinner ones  

 are a single inception block, for a total of nine inception blocks. The fourth and  
 seventh block (single blocks) are separated out to highlight they have an  
 additional component, referred to as the auxiliary classifier. 
 

Auxiliary Classifiers Group : 
This is a set of two classifiers, acting as auxiliary (aids) in training the neural  

 network, each consisting of a convolutional layer, a dense layer and a final  
softmax activation function. 
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Classifier Group 
This is a single and final classifier in both training the neural network and in  
prediction (inference). 

 
The GoogleLeNet architecture introduced the concept of an auxiliary classifier. The principle 
here is that as a neural network gets deeper in layers (i.e., the front layers get further away from 
the final classifier) the front layers are more exposed to a vanishing gradient and increased time 
(e.g., number of epochs) to train the weights in the front most layers. 
 
The theory is that at the semi-deep layers, there is some information to predict (classify) what 
the input is, albeit with less accuracy than the final classifier. These earlier classifiers are closer 
to the front layers and thus less prone to a vanishing gradient. During training, the cost function 
becomes a combination of the losses of the auxiliary classifiers and the final classifier. 

 
ResNeXt - Wide Residual Neural Network 
 
ResNeXt ​(Microsoft Research) was the winner of the 2015 ImageNet competition and 
introduced the concept of a wide residual (block) neural network and cardinality (i.e., width). 
This architecture uses a split, branch and merge method of parallel convolutional blocks. The 
number of parallel convolutional blocks (i.e., width) is referred to as the cardinality. For example, 
in the 2015 competition, the ResNeXt architecture used a cardinality of 32, meaning each 
ResneXt layer consisted of 32 parallel convolutional blocks. 
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At each ResNeXt layer, the input from the previous layer is split across the parallel convolutional 
blocks, and the output (feature maps) from each convolutional block is concatenated, and finally 
the input to the layer is matrix added to the concatenated output (identity link) to form the 
residual block. 
 
On blogs and tutorials throughout the Internet, one can find several variations of the wide 
residual block group (resnet layer) used in ResNeXt. We will describe here the prevailing 
convention (used in ​ResNeXt-50​). 
 
The wide residual block group consists of: 
 

1. A first bottleneck convolution ( 1 x 1 kernel ) 
2. A split-branch-concatenate convolution of a cardinality N 
3. A final bottleneck convolution ( 1 x 1 kernel ) 
4. An identity link between the input and the final convolution output 
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The first bottleneck convolution performs a dimensionality reduction (feature pooling), similar to 
its use in a residual block or inception module. After the bottleneck convolution, the feature 
maps are split among the parallel convolutions according to the cardinality. For example, if the 
number of feature maps (filters) is 128 and the cardinality is 32, then each parallel convolution 
will get 4 feature maps (128 / 32). The outputs from the parallel convolutions are then 
concatenated back into a full set of feature maps, which are then passed through a final 
bottleneck convolution for another dimensionality reduction (feature pooling). As in the residual 
block, there is an identity link between the input to and output from the resnext block, which is 
then matrix added. 
 
The code below implements a ​ResNeXt-50​ architecture, with batch normalization and rectified 
linear activation unit (ReLU) added after each convolution. The architecture starts with a stem 
convolution block for the input, which consists of a 7 x 7 convolution which is then passed 
through a max pooling layer for reducing the data.  
 
Following the stem are four groups of resnext blocks. Each group progressively doubles the 
number of filters outputted vs. the input. Between each block is a strided convolution, which 
serves two purposes: 
 

1. It reduces the data by 75% (feature pooling) 
2. It doubles the filters from the output of the previous layer, so when the identity link is 

made between the input of this layer and its output, the number of filters match for the 
matrix addition operation. 

 

 
 
After the final resnext group, the output is passed through a max pooling layer (and flattened) 
and then passed to a single dense layer for classification. 
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import​ keras​.​layers ​as​ layers 
from​ keras ​import​ ​Model 
 

def​ _resnext_block​(​shortcut​,​ filters_in​,​ filters_out​,​ cardinality​=​32​): 
    ​""" Construct a ResNeXT block 
        shortcut   : previous layer and shortcut for identity link 

        filters_in : number of filters  (channels) at the input convolution 

        filters_out: number of filters (channels) at the output convolution 

        cardinality: width of cardinality layer 

    """ 

 

    ​# Bottleneck layer 
    x ​=​ layers​.​Conv2D​(​filters_in​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),  
                      padding​=​'same'​)(​shortcut​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# Cardinality (Wide) Layer 
    filters_card ​=​ filters_in ​// cardinality 
    groups ​=​ ​[] 
    ​for​ i ​in​ range​(​cardinality​): 
        ​group​ ​=​ layers​.​Lambda​(​lambda​ z​:​ z​[:,​ ​:,​ ​:,​ i ​*​ filters_card​:​i ​*  
                              filters_card ​+​ filters_card​])(​x​) 
        groups​.​append​(​layers​.​Conv2D​(​filters_card​,​ kernel_size​=(​3​,​ ​3​),  
                                    strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​group​)) 
  

    ​# Concatenate the outputs of the cardinality layer together 
    x ​=​ layers​.​concatenate​(​groups​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# Bottleneck layer 
    x ​=​ layers​.​Conv2D​(​filters_out​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),  
                      padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
  

    ​# special case for first resnext block 
    ​if​ shortcut​.​shape​[-​1​]​ ​!=​ filters_out​: 
        ​# use convolutional layer to double the input size to the block so it  
        ​# matches the output size (so we can add them) 
        shortcut ​=​ layers​.​Conv2D​(​filters_out​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),  
                                 padding​=​'same'​)(​shortcut​) 
        shortcut ​=​ layers​.​BatchNormalization​()(​shortcut​) 
  

    ​# Identity Link: Add the shortcut (input) to the output of the block 
    x ​=​ layers​.​add​([​shortcut​,​ x​]) 
    x ​=​ layers​.​ReLU​()(​x​) 
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    ​return​ x 
 

# The input tensor 

inputs ​=​ layers​.​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
 

# Stem Convolutional layer 

x ​=​ layers​.​Conv2D​(​64​,​ kernel_size​=(​7​,​ ​7​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​inputs​) 
x ​=​ layers​.​BatchNormalization​()(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
x ​=​ layers​.​MaxPool2D​(​pool_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

# First ResNeXt Group 

for​ _ ​in​ range​(​3​): 
    x ​=​ _resnext_block​(​x​,​ ​128​,​ ​256​) 
 

# strided convolution to match the number of output filters on next block and  

# reduce by 2 

x ​=​ layers​.​Conv2D​(​512​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

# Second ResNeXt Group 

for​ _ ​in​ range​(​4​): 
    x ​=​ _resnext_block​(​x​,​ ​256​,​ ​512​) 
 

# strided convolution to match the number of output filters on next block and  

# reduce by 2 

x ​=​ layers​.​Conv2D​(​1024​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

# Third ResNeXt Group 

for​ _ ​in​ range​(​6​): 
    x ​=​ _resnext_block​(​x​,​ ​512​,​ ​1024​) 
 

# strided convolution to match the number of output filters on next block and  

# reduce by 2 

x ​=​ layers​.​Conv2D​(​2048​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

# Fourth ResNeXt Group 

for​ _ ​in​ range​(​3​): 
    x ​=​ _resnext_block​(​x​,​ ​1024​,​ ​2048​) 
 

# Final Dense Outputting Layer for 1000 outputs 

x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
outputs ​=​ layers​.​Dense​(​1000​,​ activation​=​'softmax'​)(​x​) 
 

model ​=​ ​Model​(​inputs​,​ outputs​) 
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In the above code, the ​Lambda()​ method performs the splitting of the feature maps. The 
sequence ​z[:, :, :, i * filters_card:i * filters_card + filters_card]​ ​is a sliding 
window that is splitting the input feature maps along the fourth dimension. 
 

Inception v2 - Factoring Convolutions 
 
Inception v2​ introduced the concept of factorization for the more expensive convolutions in an 
inception module to reduce computational complexity, and reduce information loss from 
representational bottlenecks. 
 
The larger a filter (kernel) size is in a convolution, the more computationally expensive it is. The 
paper which presented the Inception v2 architecture calculated that the 5 x 5 convolution in the 
inception module was 2.78x more computationally expensive than a 3 x 3. In the Inception v2 
module, the 5 x 5 filter is replaced by a stack of two 3 x 3 filters, which results in a reduction of 
computational complexity of the replaced 5 x 5 filter by 33%. 
 
Additionally, representational bottleneck loss occurs when there is large differences in filter 
sizes. By replacing the 5 x 5 with two 3 x 3, all the non-bottleneck filters are now of the same 
size, and the overall accuracy of the Inception v2 architecture increased over Inception v1. 
 

 
Below is an example of an inception v2 module: 
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# The inception branches (where x is the previous layer) 

x1 ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​1​,​1​),​ padding​=​'same'​)(​x​) 
x1 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x1​) 
x2 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x3 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x3 ​=​ layers​.​Conv2D​(​96​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x3​) 
x4 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x4 ​=​ layers​.​Conv2D​(​48​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x4​) 
x4 ​=​ layers​.​Conv2D​(​48​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x4​) 
 

# concatenate the filters 

x ​=​ layers​.​concatenate​([​x1​,​ x2​,​ x3​,​ x4​]) 

 
A ​summary()​ for these layers shows 169K parameters to train, when compared to 198K for the 
inception v1 module. 
 

Layer​ ​(​type​)​                    ​Output​ ​Shape​         ​Param​ ​#     Connected to 
===================================================================================

=============== 

input_163 ​(​InputLayer​)​          ​(​None​,​ ​28​,​ ​28​,​ ​256​)​  ​0 
___________________________________________________________________________________

_______________ 

conv2d_13148 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_163​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

max_pooling2d_163 ​(​MaxPooling2D​ ​(​None​,​ ​28​,​ ​28​,​ ​256​)​  ​0​           input_163​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13146 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_163​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13149 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​48​)​   ​27696​       conv2d_13148​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13144 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448 
max_pooling2d_163​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

conv2d_13145 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​64​)​   ​16448​       input_163​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13147 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​96​)​   ​55392​       conv2d_13146​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_13150 ​(​Conv2D​)​           ​(​None​,​ ​28​,​ ​28​,​ ​48​)​   ​20784​       conv2d_13149​[​0​][​0​] 
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___________________________________________________________________________________

_______________ 

concatenate_431 ​(​Concatenate​)​   ​(​None​,​ ​28​,​ ​28​,​ ​272​)​  ​0​           conv2d_13144​[​0​][​0​] 
                                                                 conv2d_13145​[​0​][​0​] 
                                                                 conv2d_13147​[​0​][​0​] 
                                                                 conv2d_13150​[​0​][​0​] 
===================================================================================

=============== 

Total​ ​params​:​ ​169​,​664 
Trainable​ ​params​:​ ​169​,​664 

 

Inception v3 - Stem and Auxiliary Classifier Improvements 
 
The​ Inception v3​ architecture primarily made updates to improve the auxiliary classifiers, which 
is outside the scope of this section; and additionally, the 7 x 7 convolution in the stem 
convolution group was factorized and replaced by a stack of three 3 x 3 convolutions, where: 
 

1. The first 3 x 3 is a strided convolution (strides=2, 2) which performs a feature map 
reduction. 

2. The second 3 x 3 is a regular convolution. 
3. The third 3 x 3 doubles the number of filters. 

 
Below is example code for implementing the Inception v3 stem group: 
 

# Inception v3 stem, 7 x 7 is replaced by a stack of 3 x 3 convolutions. 

x ​=​ layers​.​Conv2D​(​32​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​input​) 
x ​=​ layers​.​Conv2D​(​32​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x ​=​ layers​.​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
 

# max pooling layer 

x ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

# bottleneck convolution 

x ​=​ layers​.​Conv2D​(​80​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
 

# next convolution layer 

x ​=​ layers​.​Conv2D​(​192​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
 

# strided convolution - feature map reduction 

x ​=​ layers​.​Conv2D​(​256​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 

 
A ​summary()​ for the stem group shows 614K parameters to train with input (229, 229, 3): 
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_________________________________________________________________ 

Layer​ ​(​type​)​                 ​Output​ ​Shape​              ​Param​ ​#  

================================================================= 

input_2 ​(​InputLayer​)​         ​(​None​,​ ​229​,​ ​229​,​ ​3​)​       ​0  

_________________________________________________________________ 

conv2d_2 ​(​Conv2D​)​            ​(​None​,​ ​115​,​ ​115​,​ ​32​)​      ​896  

_________________________________________________________________ 

conv2d_3 ​(​Conv2D​)​            ​(​None​,​ ​115​,​ ​115​,​ ​32​)​      ​9248  

_________________________________________________________________ 

conv2d_4 ​(​Conv2D​)​            ​(​None​,​ ​115​,​ ​115​,​ ​64​)​      ​18496  

_________________________________________________________________ 

max_pooling2d_1 ​(​MaxPooling2​ ​(​None​,​ ​58​,​ ​58​,​ ​64​)​        ​0  

_________________________________________________________________ 

conv2d_5 ​(​Conv2D​)​            ​(​None​,​ ​58​,​ ​58​,​ ​80​)​        ​5200  

_________________________________________________________________ 

conv2d_6 ​(​Conv2D​)​            ​(​None​,​ ​58​,​ ​58​,​ ​192​)​       ​138432  

_________________________________________________________________ 

conv2d_7 ​(​Conv2D​)​            ​(​None​,​ ​29​,​ ​29​,​ ​256​)​       ​442624  

================================================================= 

Total​ ​params​:​ ​614​,​896 
Trainable​ ​params​:​ ​614​,​896 

 
Inception v4 - Stem Improvements 
 
The ​Inception v4 ​architecture made additional improvements to the stem convolution group to 
reduce computational complexity by introducing reduction blocks (which appear to be a variation 
of a residual block). In a reduction block, the input is branched and then merged with a 
concatenation operation. 
 

1. The max pooling layer is replaced with a reduction block. 
a. A max pooling layer 
b. A 3 x 3 strided convolution 

2. The bottleneck and second convolution layer are replaced with a variation of a reduction 
block. 

a. The bottleneck convolution is reduced from size (from 80 to 64) and stacked with 
a 3 x 3 convolution. 

b. The second convolution layer is replaced with a stack of 1 x 1 bottleneck, a nx1 
and 1xn pair and a 3 x 3 convolution. 

3. The final strided convolution is replaced with a reduction block. 
a. A max pooling layer 
b. A 3 x 3 strided convolution 
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Below is example code for implementing the Inception v4 stem group: 
 

# Inception v4 stem, 7 x 7 is replaced by a stack of 3 x 3 convolutions. 

x ​=​ layers​.​Conv2D​(​32​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​inputs​) 
x ​=​ layers​.​Conv2D​(​32​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
x ​=​ layers​.​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
 

# max pooling is replaced by reduction block of max pooling and strided convolution 

bpool ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
b3x3  ​=​ layers​.​Conv2D​(​96​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
x ​=​ layers​.​concatenate​([​bpool​,​ b3x3​]) 
 

# bottleneck and 3x3 convolution replaced by reduction block 

bnxn ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
bnxn ​=​ layers​.​Conv2D​(​64​,​ ​(​7​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​bnxn​) 
bnxn ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​7​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​bnxn​) 
bnxn ​=​ layers​.​Conv2D​(​96​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​bnxn​) 
b3x3 ​=​ layers​.​Conv2D​(​64​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
bnxn ​=​ layers​.​Conv2D​(​96​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​b3x3​) 
x ​=​ layers​.​concatenate​([​bnxn​,​ b3x3​]) 
 

# 3x3 strided convolution replaced by reduction block 

bpool ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
b3x3  ​=​ layers​.​Conv2D​(​192​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
x ​=​ layers​.​concatenate​([​bpool​,​ b3x3​]) 

 
A ​summary()​ for the stem group shows 426K parameters to train with input (229, 229, 3) vs. the 
614K for the Inception v3 stem group: 
 

Layer​ ​(​type​)​                    ​Output​ ​Shape​         ​Param​ ​#     Connected to 
===================================================================================

=============== 
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input_8 ​(​InputLayer​)​            ​(​None​,​ ​229​,​ ​229​,​ ​3​)​  ​0 
___________________________________________________________________________________

_______________ 

conv2d_45 ​(​Conv2D​)​              ​(​None​,​ ​115​,​ ​115​,​ ​32​)​ ​896​         input_8​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_46 ​(​Conv2D​)​              ​(​None​,​ ​115​,​ ​115​,​ ​32​)​ ​9248​        conv2d_45​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_47 ​(​Conv2D​)​              ​(​None​,​ ​115​,​ ​115​,​ ​64​)​ ​18496​       conv2d_46​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

max_pooling2d_8 ​(​MaxPooling2D​)​  ​(​None​,​ ​58​,​ ​58​,​ ​64​)​   ​0​           conv2d_47​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_48 ​(​Conv2D​)​              ​(​None​,​ ​58​,​ ​58​,​ ​96​)​   ​55392​       conv2d_47​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

concatenate_8 ​(​Concatenate​)​     ​(​None​,​ ​58​,​ ​58​,​ ​160​)​  ​0 
max_pooling2d_8​[​0​][​0​]  

                                                                 conv2d_48​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

conv2d_53 ​(​Conv2D​)​              ​(​None​,​ ​58​,​ ​58​,​ ​64​)​   ​10304 
concatenate_8​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

conv2d_54 ​(​Conv2D​)​              ​(​None​,​ ​58​,​ ​58​,​ ​96​)​   ​55392​       conv2d_53​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

concatenate_9 ​(​Concatenate​)​     ​(​None​,​ ​58​,​ ​58​,​ ​160​)​  ​0​           conv2d_54​[​0​][​0​] 
                                                                 conv2d_53​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

max_pooling2d_9 ​(​MaxPooling2D​)​  ​(​None​,​ ​29​,​ ​29​,​ ​160​)​  ​0 
concatenate_9​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

conv2d_55 ​(​Conv2D​)​              ​(​None​,​ ​29​,​ ​29​,​ ​192​)​  ​276672 
concatenate_9​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

concatenate_10 ​(​Concatenate​)​    ​(​None​,​ ​29​,​ ​29​,​ ​352​)​  ​0 
max_pooling2d_9​[​0​][​0​]  

                                                                 conv2d_55​[​0​][​0​] 
===================================================================================

=============== 
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Total​ ​params​:​ ​426​,​400 
Trainable​ ​params​:​ ​426​,​400 

 

Next 
 
In the next part, we will cover the principal and design patterns of today’s most state-of-the-art 
convolutional neural networks. 
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Part 4 - Advanced Computer Vision Models - DenseNet, Xception 
 
This part covers a variety of more advanced topics to modeling in computer vision. 

Pre-Stems 
 
As we have shown, the conventional model designs for computer vision start with a stem group. 
The stem is the input and first layers of the model. Following the stem are the blocks, such as 
residual, reduction, wide convolution, inception modules, etc, and finally the classifier. 
 
These designs have been optimized for specific feature and pooled map sizes. This optimization 
corresponds then to a specific input shape that will retain the feature and pooled map sizes that 
were optimized for the stem. For example, Inception uses an input shape of (299, 299, 3), while 
Resnet used (224, 224, 3) in their corresponding competition entries. 
 
Generally, your input data is preprocessed into a specific shape for the target network 
architecture. But what if you want to reuse the image data preprocessed for one neural network 
on another with a different input shape, without reprocessing it. 
 
The simplest approach would be to resize() the preprocessed image data, which could introduce 
the following issues: 
 

● The amount of computational time expended in re-processing the images. 
● Introduction of artifacts as a result of resizing, particularly if upsampled. 

 
The conventional practice when reusing preprocessed image data for a stem that takes a 
different input shape is: 
 

● If the input shape of the new stem is smaller, then downsample (resize()) the 
preprocessed images (e.g., (299, 299, 3) => (224, 224, 3)). 

● If the input shape of the new stem is greater, then zero pad the image to enlarge the 
dimensions to the new shape (e.g., (224, 224, 3) => (230, 230 3). That is your adding an 
outer pad of zeros to match the shape. 

 
Below is an example code snippet of a stem that will output feature maps with the dimensions of 
112 x 112, when given an input size of (230, 230, 3): 
 
 

61 



from​ keras ​import​ layers​,​ ​Input 
 

inputs ​=​ ​Input​(​shape​=(​230​,​ ​230​,​ ​3​)) 
 

# this stem's expected shape is (230, 230, 3) 

x ​=​ layers​.​Conv2D​(​64​,​ ​(​7​,​ ​7​),​ strides​=(​2​,​2​))(​inputs​) 
X ​=​ layers​.​BatchNormalization​()(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
 

# this will output: (?, 112, 112, 64) 

print​(​x​.​shape​) 

 
Let’s now assume that we instead use the input shape (224, 224, 3) on the same stem, as in the 
code example below. In this case, the stem would output a 109 x 109 feature maps instead of 
112 x 112 which the architecture was not optimized for. 
 

from​ keras ​import​ layers​,​ ​Input 
 

inputs ​=​ ​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
 

# this stem's expected shape is (230, 230, 3) 

x ​=​ layers​.​Conv2D​(​64​,​ ​(​7​,​ ​7​),​ strides​=(​2​,​2​))(​inputs​) 
X ​=​ layers​.​BatchNormalization​()(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
 

# this will output: (?, 109, 109, 64) 

print​(​x​.​shape​) 

 

This will be more problematic if the model has been pretrained (weights). The weights trained 
for the feature maps won’t match now. 
 
We fix this problem by adding padding around the input shape to match the input shape that the 
neural network architecture was optimized and/or trained for. In our example, we need to extend 
the 224 x 224 to 230 x 230. We can do this by adding a 3 x 3 pad (of zero values) around the 
image, as shown below: 
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The code below demonstrates using the ​ZeroPadding2D()​ method for adding a pad, where the 
parameter (3, 3) specifies the height and width of the pad to place around the image. 
 

from​ keras ​import​ layers​,​ ​Input 
 

# not the input shape expected by the stem (which is (230, 230, 3) 

inputs ​=​ ​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
 

# pre-stem 

inputs ​=​ layers​.​ZeroPadding2D​((​3​,​ ​3​))(​inputs​) 
# this will output: (230, 230, 3) 

print​(​inputs​.​shape​) 
 

# this stem's expected shape is (230, 230, 3) 

x ​=​ layers​.​Conv2D​(​64​,​ ​(​7​,​ ​7​),​ strides​=(​2​,​2​))(​inputs​) 
X ​=​ layers​.​BatchNormalization​()(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
 

# this will output: (?, 112, 112, 64) 

print​(​x​.​shape​) 

Representational Equivalence and Factorization 
 
In the previous part on ResNeXt​ ​and Inception we discussed factorization. Factorization is 
decomposing a first block structure into smaller components which are representationally 
equivalent. The term representational equivalence means that the replaced design will maintain 
the same accuracy during training. 
 
The goal of the factorization is to replace one design with another that is representationally 
equivalent but its computational complexity is less. The result is a smaller model to train, as 
measured by the number of weights, but retains the same accuracy. 
 

63 



The architectures for ResNeXt and for later versions of Inception relied on factorization. 
Typically, these factorizations are inferred through computational theory and then proved 
empirically. 
 
For example, the wide convolution block replacement of the residual block in the ResNeXt was 
inferred, and then empirically proven, factorization. The widely published Figure 3 from the 
corresponding paper shows that the design in Fig. 3C was representationally equivalent to that 
of Fig. 3A and Fig. 3B but had less computational complexity. 
 
While never presented in the paper, or published evidence of empirical data, using the 
argument in their paper it could have been hypothesized that the 1x1 bottleneck convolution 
after the concatenation of the 3 x 3 convolution splits, could have been factored by splitting it 
along with the 3 x 3 convolution. The hypothetical Fig. 3D depicts this factorization. The 
ResNeXt block of Fig. 3C when used in ​ResNeXt-50​ had a computational complexity of 25M 
trainable parameters. Replacing the block with the factorization of Fig. 3D in the same 
ResNeXt-50​ architecture has 16.7M trainable parameters, with a reduction of over 33% in 
computational complexity. 
 

 
 
Below is the implementation in ​Keras​: 
 

# ResNext variant, bottleneck in group 

import​ keras​.​layers ​as​ layers 
from​ keras ​import​ ​Model 
 

 

def​ _resnext_block​(​x​,​ filters_in​,​ filters_out​,​ cardinality​=​32​): 
    ​""" Construct a ResNeXT block 
        shortcut   : previous layer  

        filters_in : number of filters  (channels) at the input convolution 
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        filters_out: number of filters (channels) at the output convolution 

        cardinality: width of cardinality of the layer 

    """ 

    shortcut ​=​ x ​# shortcut for the identity link 
 

    ​# Bottleneck layer 
    x ​=​ layers​.​Conv2D​(​filters_in​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),  
                      padding​=​'same'​)(​shortcut​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# Cardinality (Wide) Layer 
    filters_card ​=​ filters_in ​// cardinality 
    groups ​=​ ​[] 
    ​for​ i ​in​ range​(​cardinality​): 
        ​group​ ​=​ layers​.​Lambda​(​lambda​ z​:​ z​[:,​ ​:,​ ​:,​ i ​*​ filters_card​:​i ​*  
                              filters_card ​+​ filters_card​])(​x​) 
        ​group​ ​=​ layers​.​Conv2D​(​filters_card​,​ kernel_size​=(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),  
                              padding​=​'same'​)(​group​) 
        ​group​ ​=​ layers​.​Conv2D​(​filters_card ​*​ ​2​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),  
                               padding​=​'same'​)(​group​) 
        ​group​ ​=​ layers​.​BatchNormalization​()(​group​) 
        groups​.​append​(​group​) 
  

    ​# Concatenate the outputs of the cardinality layer together 
    x ​=​ layers​.​concatenate​(​groups​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# special case for first resnext block 
    ​if​ shortcut​.​shape​[-​1​]​ ​!=​ filters_out​: 
        ​# use convolutional layer to double the input size to the block so it  
        ​# matches the output size (so we can add them) 
        shortcut ​=​ layers​.​Conv2D​(​filters_out​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),  
                                 padding​=​'same'​)(​shortcut​) 
        shortcut ​=​ layers​.​BatchNormalization​()(​shortcut​) 
  

    ​# Identity Link: Add the shortcut (input) to the output of the block 
    x ​=​ layers​.​add​([​shortcut​,​ x​]) 
    x ​=​ layers​.​ReLU​()(​x​) 
    ​return​ x 
 

# The input tensor 

inputs ​=​ layers​.​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
 

# First Convolutional layer 

x ​=​ layers​.​Conv2D​(​64​,​ kernel_size​=(​7​,​ ​7​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​inputs​) 
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x ​=​ layers​.​BatchNormalization​()(​x​) 
x ​=​ layers​.​ReLU​()(​x​) 
x ​=​ layers​.​MaxPool2D​(​pool_size​=(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

for​ _ ​in​ range​(​3​): 
    x ​=​ _resnext_block​(​x​,​ ​128​,​ ​256​) 
 

# strided convolution to match the number of output filters on next block and  

# reduce by 2 

x ​=​ layers​.​Conv2D​(​512​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

for​ _ ​in​ range​(​4​): 
    x ​=​ _resnext_block​(​x​,​ ​256​,​ ​512​) 
 

# strided convolution to match the number of output filters on next block and 

# reduce by 2 

x ​=​ layers​.​Conv2D​(​1024​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

for​ _ ​in​ range​(​6​): 
    x ​=​ _resnext_block​(​x​,​ ​512​,​ ​1024​) 
 

# strided convolution to match the number of output filters on next block and 

# reduce by 2 

x ​=​ layers​.​Conv2D​(​2048​,​ kernel_size​=(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
 

for​ _ ​in​ range​(​3​): 
    x ​=​ _resnext_block​(​x​,​ ​1024​,​ ​2048​) 
 

# Final Dense Outputting Layer for 1000 outputs 

x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
outputs ​=​ layers​.​Dense​(​1000​,​ activation​=​'softmax'​)(​x​) 
 

model ​=​ ​Model​(​inputs​,​ outputs​) 
model​.​summary​() 

 

Below is the ending of the ​summary()​ output: 
 

batch_normalization_1162 ​(​Batch​ ​(​None​,​ ​7​,​ ​7​,​ ​2048​)​   ​8192 
concatenate_300​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

re_lu_391 ​(​ReLU​)​                ​(​None​,​ ​7​,​ ​7​,​ ​2048​)​   ​0 
batch_normalization_1162​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

add_70 ​(​Add​)​                    ​(​None​,​ ​7​,​ ​7​,​ ​2048​)​   ​0​           re_lu_389​[​0​][​0​] 
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                                                                 re_lu_391​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

re_lu_392 ​(​ReLU​)​                ​(​None​,​ ​7​,​ ​7​,​ ​2048​)​   ​0​           add_70​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

global_average_pooling2d_4 ​(​Glo​ ​(​None​,​ ​2048​)​         ​0​           re_lu_392​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

dense_4 ​(​Dense​)​                 ​(​None​,​ ​1000​)​         ​2049000 
global_average_pooling2d_4​[​0​][​0​]  
===================================================================================

=============== 

Total​ ​params​:​ ​16​,​777​,​960 
Trainable​ ​params​:​ ​16​,​701​,​800 

DenseNet 
 
DenseNet​ introduced the concept of a Densely Connected Convolutional Network. The 
corresponding paper won ​CVPR 2017 (Best Paper Award). It is based on the principal, that the 
output of each residual block layer is connected to the input of every subsequent residual block 
layer. This extends the concept of identity links. 
 
Prior to DenseNet, an identity link between the input and output of a residual block was 
combined by matrix addition. In a dense block, the input to the residual block is concatenated to 
the output of the residual block. This change introduced the concept of feature (map) reuse. 
 
As an example for comparison, let’s assume the output of a layer are feature maps of size 28 x 
28 x 10. After a matrix addition, the outputs continue to be 28 x 28 x 10 feature maps. The 
values within them are the addition of the residual block’s input and output, and thus do not 
retain the original values (i.e., they have been merged). In the dense block, the input feature 
maps are concatenated (not merged) to the residual block output, and the original value of the 
identity link is preserved. In our example, assuming the input and output where 28 x 28 x 10, 
after the concatenation the output will be 28 x 28 x 20. Continuing to the next block, the output 
will be 28 x 28 x 30. In this way, the output of each layer is concatenated into the input of each 
subsequent layer (hence the reference to densely connected). 
 
The diagram below depicts the general construction and identity linking between residual 
blocks in a dense block. 
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The replacing of the matrix addition with a concatenation has the advantages of: 
 

● Further alleviating the vanishing gradient problem over deeper layers. 
● Further reducing the computational complexity (parameters) with narrower feature 

maps. 
 
With concatenation, the distance between the output (classifier) and the feature maps is shorter 
which reduces the vanishing gradient problem, allowing for deeper networks for higher 
accuracy.  
 
The reuse of feature maps has representational equivalence with the former operation of a 
matrix addition, but with more narrow layers. With the narrower layers, the overall number of 
parameters to train is reduced. 
 
To further reduce computational complexity, a transition block is inserted between each dense 
block. The transition block is a strided convolution and feature pooling used to reduce the 
overall size of the concatenated feature maps (feature reuse) as they move from one dense 
group to the next. 
 
Below is a diagram of the DenseNet 121 architecture. 
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Below is a code example implementing the ​DenseNet 121​ architecture. The architecture 
consists of: 
 

● A Stem Convolution Block consisting of a 7 x 7 kernel, which has become a conventional 
practice, for extracting coarse features. 

● Four Dense Groups, of 6, 12, 24 and 16 dense blocks respectively. 
● A transition block between each Dense Group for reducing the size of the concatenated 

feature maps. 
● A Classifier Block for classification of the output. 

 
 

# Dense Net 121 

from​ keras ​import​ layers​,​ ​Input​,​ ​Model 
 

def​ stem​(​inputs​): 
    ​""" The Stem Convolution Group 
        inputs : input tensor 

    """ 

    ​# First large convolution for abstract features for input 230 x 230 and output  
    ​# 112 x 112 
    x ​=​ layers​.​Conv2D​(​64​,​ ​(​7​,​ ​7​),​ strides​=​2​)(​inputs​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
    ​# Add padding so when downsampling we fit shape 56 x 56 
    x ​=​ layers​.​ZeroPadding2D​(​padding​=((​1​,​ ​1​),​ ​(​1​,​ ​1​)))(​x​) 
    x ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=​2​)(​x​) 
    ​return​ x 
 

def​ dense_block​(​x​,​ nblocks​,​ nb_filters​): 
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    ​""" Construct a Dense Block 
        x         : input layer 

        nblocks   : number of residual blocks in dense block 

        nb_filters: number of filters in convolution layer in residual block 

    """ 

    ​# Construct a group of residual blocks 
    ​for​ _ ​in​ range​(​nblocks​): 
        x ​=​ residual_block​(​x​,​ nb_filters​) 
    ​return​ x 
 

def​ residual_block​(​x​,​ nb_filters​): 
    ​""" Construct Residual Block 
        x         : input layer 

        nb_filters: number of filters in convolution layer in residual block 

    """ 

    shortcut ​=​ x ​# remember input tensor into residual block 
  

    ​# Bottleneck convolution, expand filters by 4 (DenseNet-B) 
    x ​=​ layers​.​Conv2D​(​4​ ​*​ nb_filters​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​))(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# 3 x 3 convolution with padding=same to preserve same shape of feature maps 
    x ​=​ layers​.​Conv2D​(​nb_filters​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​)  

    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​)  

  

    ​# Concatenate the input (identity) with the output of the residual block 
    ​# Concatenation (vs. merging) provides Feature Reuse between layers 
    x ​=​ layers​.​concatenate​([​shortcut​,​ x​]) 
    ​return​ x 
 

def​ trans_block​(​x​,​ reduce_by​): 
    ​""" Construct a Transition Block 
        x        : input layer 

        reduce_by: percentage of reduction of feature maps 

    """ 

  

    ​# Reduce (compression) the number of feature maps (DenseNet-C) 
    ​# shape[n] returns a class object. We use int() to cast it into the dimension  
    ​# size 
    nb_filters ​=​ ​int​(​ ​int​(​x​.​shape​[​3​])​ ​*​ reduce_by ​) 
  

    ​# Bottleneck convolution  
    x ​=​ layers​.​Conv2D​(​nb_filters​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​))(​x​)  
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​)  
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    ​# Use mean value (average) instead of max value sampling when pooling 
    ​# reduce by 75% 
    x ​=​ layers​.​AveragePooling2D​((​2​,​ ​2​),​ strides​=(​2​,​ ​2​))(​x​) 
    ​return​ x 
 

inputs ​=​ ​Input​(​shape​=(​230​,​ ​230​,​ ​3​)) 
 

# Create the Stem Convolution Group 

x ​=​ stem​(​inputs​) 
 

# number of residual blocks in each dense block 

blocks ​=​ ​[​6​,​ ​12​,​ ​24​,​ ​16​] 
 

# pop off the list the last dense block 

last​   ​=​ blocks​.​pop​() 
 

# amount to reduce feature maps by (compression) during transition blocks 

reduce_by ​=​ ​0.5 
 

# number of filters in a convolution block within a residual block 

nb_filters ​=​ ​32 
 

# Create the dense blocks and interceding transition blocks 

for​ nblocks ​in​ blocks​: 
    x ​=​ dense_block​(​x​,​ nblocks​,​ nb_filters​) 
    x ​=​ trans_block​(​x​,​ reduce_by​) 
  

# Add the last dense block w/o a following transition block 

x ​=​ dense_block​(​x​,​ ​last​,​ nb_filters​) 
 

# Classifier 

# Global Average Pooling will flatten the 7x7 feature maps into 1D feature maps 

x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
# Fully connected output layer (classification) 

x ​=​ layers​.​Dense​(​1000​,​ activation​=​'softmax'​)(​x​) 
 

model ​=​ ​Model​(​inputs​,​ x​) 
model​.​summary​() 

 
Below is the ending of the ​summary()​ output. Note how the number of trainable parameters in 
this 121 layer DenseNet architecture is half of that of a 50 layer ResNeXt architecture. 
 

conv2d_120 ​(​Conv2D​)​             ​(​None​,​ ​7​,​ ​7​,​ ​32​)​     ​36896​       re_lu_119​[​0​][​0​] 
___________________________________________________________________________________
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_______________ 

batch_normalization_120 ​(​BatchN​ ​(​None​,​ ​7​,​ ​7​,​ ​32​)​     ​128​         conv2d_120​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

re_lu_120 ​(​ReLU​)​                ​(​None​,​ ​7​,​ ​7​,​ ​32​)​     ​0 
batch_normalization_120​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

concatenate_58 ​(​Concatenate​)​    ​(​None​,​ ​7​,​ ​7​,​ ​1024​)​   ​0 
concatenate_57​[​0​][​0​]  

                                                                 re_lu_120​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

global_average_pooling2d_1 ​(​Glo​ ​(​None​,​ ​1024​)​         ​0 
concatenate_58​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

dense_1 ​(​Dense​)​                 ​(​None​,​ ​1000​)​         ​1025000 
global_average_pooling2d_1​[​0​][​0​]  
===================================================================================

=============== 

Total​ ​params​:​ ​7​,​946​,​408 
Trainable​ ​params​:​ ​7​,​925​,​928 
Non​-​trainable ​params​:​ ​20​,​480 

Xception 
 
The Xception (Extreme Inception) architecture was introduced by Google in 2017 as a further 
improvement over the Inception v3 architecture. In this architecture the factorization of a 
convolution into a spatial separable convolution in an inception module is replaced with a 
depthwise separable convolution. 

Normal Convolution 

In a normal convolution, the kernel (e.g., 3 x 3) is applied across the height (H), width (W) and depth 
(D, channels). Each time the kernel is moved, the number of multiply operations equals the number 
of pixels as H x W x D. 

On an RGB image (3 channels) with a 3 x 3 kernel done across all 3 channels, one has 3 x 3 x 3 = 
27 multiply operations, producing a N x M x 1 (e.g., 8 x 8 x 1) feature map (per kernel), where N and 
M are the resulting height and width of the feature map. 
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If we specify 256 filters for the output of the convolution, we have 256 kernels to train. In the RGB 
example using 256 3x3 kernels, we have 6,912 multiply operations each time the kernels move. 

 

Spatial Separable Convolution 

A spatial separable convolution factors a 2D kernel (e.g., 3x3) into two smaller 1D kernels. 
Representing the 2D kernel as H x W, then the factored two smaller 1D kernels would be H x 1 and 
1 x W. 

This factorization does not always maintain representational equivalence. When it does, it lowers the 
total number of computations by 1/3. This factorization is used in the Inception v2 module. 

In the RGB example with a 3 x 3 kernel, a normal convolution would be 3 x 3 x 3 (channels) = 27 
multiply operations each time the kernel is moved. 

In the same RGB example with a factored 3 x 3 kernel, a spatial separable convolution would be (3 x 
1 x 3) + (1 x 3 x 3) = 18 multiply operations each time the kernel is moved. 
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In the RGB example using 256 3x3 kernels, we have 4,608 multiples each time the kernels move. 

Depthwise Separable Convolution 

A depthwise separable convolution is used where a convolution cannot be factored into a spatial 
separable convolution without representational loss. A depthwise spatial convolution factors a 2D 
kernel into two 2D kernels, where the first is a depthwise convolution and the second is a pointwise 
convolution. 

Depthwise Convolution 

In a depthwise convolution the kernel is split into single H x W x 1 kernels, one per channel, and 
where each kernel operates on a single channel instead across all channels. 

In the RGB example using a 3x3 kernel, a depthwise convolution would be three 3x3x1 kernels. 
While the number of multiply operations as the kernel is moved is the same as the normal 
convolution (e.g., 27 for 3x3 on three channels), the output is a D depth feature map instead of a 2D 
(depth=1) feature map. 
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Pointwise Convolution 

The output from a depthwise convolution is then passed as the input to a pointwise convolution, 
which forms a depthwise separable convolution. The pointwise convolution is used to combine the 
outputs of the depthwise convolution and expand the number of feature maps to match the specified 
number of filters (feature maps). 

A pointwise convolution has a 1x1xD (number of channels). It will iterate through each pixel 
producing a N x M x 1 feature map, which replaces the N x M x D feature map. 

 

In the pointwise convolution we use 1x1xD kernels, one for each output. As in the early example, of 
our output is 256 filters (feature maps), we will use 256 1x1xD kernels. 

In the RGB example using a 3x3x3 kernel for the depthwise convolution, we have 27 multiply 
operations each time the kernel moves. This would be followed by a 1x1x3x256 (where 256 is the 
number of outputted filters) which is 768. The total number of multiply operations would be 795, vs. 
6912 for a normal convolution and 4608 for a spatial separable convolution. 

In the Xception architecture, the spatial separable convolutions in the inception module are replaced 
with a depthwise separable convolution, reducing computational complexity (number of multiply 
operations) by 83%. 

Below is the architecture of Xception, as depicted by its author Francois Chollet: 

75 



 

The code below is an implementation of Xception. The code is partitioned into an entry flow, middle 
flow and exit flow section. The entry flow is further sub-partitioned into a stem and body, and the exit 
flow is further sub-partitioned into a body and classifier. 

The depthwise separable convolution is implemented using the layers method ​SeparableConv2D()​, 
where the parameters are otherwise the same as the method ​Conv2D()​. 

 

# Xception 

from​ keras ​import​ layers​,​ ​Input​,​ ​Model 
 

def​ entryFlow​(​inputs​): 
    ​""" Create the entry flow section 
        inputs : input tensor to neural network 

    """ 

     

    ​def​ stem​(​inputs​): 
        ​""" Create the stem entry into the neural network 
            inputs : input tensor to neural network 

        """ 

        ​# First convolution 
        x ​=​ layers​.​Conv2D​(​32​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​))(​inputs​) 
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        x ​=​ layers​.​BatchNormalization​()(​x​) 
        x ​=​ layers​.​ReLU​()(​x​) 
         

        ​# Second convolution, double the number of filters 
        x ​=​ layers​.​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ strides​=(​1​,​ ​1​))(​x​) 
        x ​=​ layers​.​BatchNormalization​()(​x​) 
        x ​=​ layers​.​ReLU​()(​x​) 
        ​return​ x 
     

    ​# Create the stem to the neural network 
    x ​=​ stem​(​inputs​) 
     

    ​# Create three residual blocks 
    ​for​ nb_filters ​in​ ​[​128​,​ ​256​,​ ​728​]: 
        x ​=​ residual_block_entry​(​x​,​ nb_filters​) 
         

    ​return​ x 
 

def​ middleFlow​(​x​): 
    ​""" Create the middle flow section 
        x : input tensor into section 

    """ 

     

    ​# Create 8 residual blocks 
    ​for​ _ ​in​ range​(​8​): 
        x ​=​ residual_block_middle​(​x​,​ ​728​) 
    ​return​ x 
 

def​ exitFlow​(​x​): 
    ​""" Create the exit flow section 
        x : input tensor into section 

    """ 

    ​def​ classifier​(​x​): 
        ​""" The output classifier 
            x : input tensor 

        """ 

        ​# Global Average Pooling will flatten the 10x10 feature maps into 1D  
        ​# feature maps 
        x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
        ​# Fully connected output layer (classification) 
        x ​=​ layers​.​Dense​(​1000​,​ activation​=​'softmax'​)(​x​) 
        ​return​ x 
     

    shortcut ​=​ x 
     

    ​# First Depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​728​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
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    x ​=​ layers​.​BatchNormalization​()(​x​) 
     

    ​# Second Depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​1024​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Create pooled feature maps, reduce size by 75% 
    x ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
     

    ​# Add strided convolution to identity link to double number of filters to 
    ​# match output of residual block for the add operation 
    shortcut ​=​ layers​.​Conv2D​(​1024​,​ ​(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),  
                             padding​=​'same'​)(​shortcut​) 
    shortcut ​=​ layers​.​BatchNormalization​()(​shortcut​) 
     

    x ​=​ layers​.​add​([​x​,​ shortcut​]) 
     

    ​# Third Depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​1556​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Fourth Depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​2048​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Create classifier section 
    x ​=​ classifier​(​x​) 
     

    ​return​ x 
 

def​ residual_block_entry​(​x​,​ nb_filters​): 
    ​""" Create a residual block using Depthwise Separable Convolutions 
        x         : input into residual block 

        nb_filters: number of filters 

    """  

    shortcut ​=​ x 
     

    ​# First Depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​nb_filters​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Second depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​nb_filters​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
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    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Create pooled feature maps, reduce size by 75% 
    x ​=​ layers​.​MaxPooling2D​((​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'same'​)(​x​) 
     

    ​# Add strided convolution to identity link to double number of filters to 
    ​# match output of residual block for the add operation 
    shortcut ​=​ layers​.​Conv2D​(​nb_filters​,​ ​(​1​,​ ​1​),​ strides​=(​2​,​ ​2​),  
                             padding​=​'same'​)(​shortcut​) 
    shortcut ​=​ layers​.​BatchNormalization​()(​shortcut​) 
     

    x ​=​ layers​.​add​([​x​,​ shortcut​]) 
     

    ​return​ x 
 

def​ residual_block_middle​(​x​,​ nb_filters​): 
    ​""" Create a residual block using Depthwise Separable Convolutions 
        x         : input into residual block 

        nb_filters: number of filters 

    """  

    shortcut ​=​ x 
     

    ​# First Depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​nb_filters​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Second depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​nb_filters​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
     

    ​# Third depthwise Separable Convolution 
    x ​=​ layers​.​SeparableConv2D​(​nb_filters​,​ ​(​3​,​ ​3​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​)​         
 

    x ​=​ layers​.​add​([​x​,​ shortcut​]) 
    ​return​ x 
 

inputs ​=​ ​Input​(​shape​=(​299​,​ ​299​,​ ​3​)) 
 

# Create entry section 

x ​=​ entryFlow​(​inputs​) 
# Create the middle section 

x ​=​ middleFlow​(​x​) 
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# Create the exit section 

x ​=​ exitFlow​(​x​) 
 

model ​=​ ​Model​(​inputs​,​ x​) 
model​.​summary​() 

Below is the ending output of the ​summary()​ method. 
 

separable_conv2d_34 ​(​SeparableC​ ​(​None​,​ ​10​,​ ​10​,​ ​2048​)​ ​3202740​     re_lu_34​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

batch_normalization_40 ​(​BatchNo​ ​(​None​,​ ​10​,​ ​10​,​ ​2048​)​ ​8192 
separable_conv2d_34​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

re_lu_35 ​(​ReLU​)​                 ​(​None​,​ ​10​,​ ​10​,​ ​2048​)​ ​0 
batch_normalization_40​[​0​][​0​]  

___________________________________________________________________________________

_______________ 

global_average_pooling2d_1 ​(​Glo​ ​(​None​,​ ​2048​)​         ​0​           re_lu_35​[​0​][​0​] 
___________________________________________________________________________________

_______________ 

dense_1 ​(​Dense​)​                 ​(​None​,​ ​1000​)​         ​2049000 
global_average_pooling2d_1​[​0​][​0​]  
===================================================================================

=============== 

Total​ ​params​:​ ​22​,​999​,​464 
Trainable​ ​params​:​ ​22​,​944​,​896 
Non​-​trainable ​params​:​ ​54​,​568 

Next 

In the next part we will cover CNN architectures that are optimized for small devices, such as 
mobile devices, microcontrollers and other edge devices.  
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MobileNet 
 
MobileNet ​is an architecture introduced by Google in 2017 for producing smaller networks 
which can fit on mobile and embedded devices, while maintaining accuracy close to their larger 
network counterparts.​ The MobileNet architecture replaces normal convolutions with depthwise 
separable convolutions to further reduce computational complexity.  
 
Two additional hyperparameters were introduced for ​thinning​ the size of the network: ​width multiplier 
and ​resolution multiplier ​. 
 
Width Multiplier 

The first hyperparameter introduced was the width multiplier ​α ​(alpha), which thins a network 
uniformly at each layer. 

The value of ​α ​(alpha) is between 0 and 1, and will reduce the computational complexity of a mobile 
net by ​α ​(alpha)**2. Typically values are 0.25 (6%), 0.50 (25%), and 0.75 (56%). 

In tests results reported in the paper, a non-thinned mobilenet-224 had a 70.6% accuracy on 
ImageNet with 4.2 million parameters and 569 million matrix multi-add operations, while a 0.25 
(width multiplier) mobilenet-224 had 50.6% accuracy with 0.5 million parameters and 41 million 
matrix multi-add operations. 

Resolution Multiplier 

The second hyperparameter introduced was the resolution multiplier ​ρ​ ​(rho), which thins the input 
shape and consequently the feature map sizes at each layer. 

The value of ​ρ​ ​(rho) is between 0 and 1, and will reduced computational complexity of a mobile net 
by ​ρ​ ​(rho)**2. 

In tests results reported in the paper, a 0.25 (resolution multiplier) mobilenet-224 had 64.4% 
accuracy with 4.2 million parameters and 186 million matrix multi-add operations. 

Below is an implementation of a mobilenet-224: 
 

# MobileNet 

from​ keras ​import​ layers​,​ ​Input​,​ ​Model 
 

def​ stem​(​inputs​,​ alpha​): 
    ​""" Create the stem group 
        inputs : input tensor 

        alpha  : width multiplier 

    """ 
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    ​# Apply the width filter to the number of feature maps 
    filters ​=​ ​int​(​32​ ​*​ alpha​) 
  

    ​# Normal Convolutional block 
    x ​=​ layers​.​ZeroPadding2D​(​padding​=((​0​,​ ​1​),​ ​(​0​,​ ​1​)))(​inputs​) 
    x ​=​ layers​.​Conv2D​(​filters​,​ ​(​3​,​ ​3​),​ strides​=(​2​,​ ​2​),​ padding​=​'valid'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# Depthwise Separable Convolution Block 
    x ​=​ depthwise_block​(​x​,​ ​64​,​ alpha​,​ ​(​1​,​ ​1​)) 
    ​return​ x 
 

def​ classifier​(​x​,​ alpha​,​ dropout​,​ nb_classes​): 
    ​""" Create the classifier group 
        inputs    : input tensor 

        alpha     : width multiplier 

        dropout   : dropout percentage 

        nb_classes: number of output classes 

    """ 

  

    ​# Flatten the feature maps into 1D feature maps (?, N) 
    x ​=​ layers​.​GlobalAveragePooling2D​()(​x​) 
  

    ​# Reshape the feature maps to (?, 1, 1, 1024) 
    shape ​=​ ​(​1​,​ ​1​,​ ​int​(​1024​ ​*​ alpha​)) 
    x ​=​ layers​.​Reshape​(​shape​)(​x​) 
    ​# Perform dropout for preventing overfitting 
    x ​=​ layers​.​Dropout​(​dropout​)(​x​) 
  

    ​# Use convolution for classifying (emulates a fully connected layer) 
    x ​=​ layers​.​Conv2D​(​nb_classes​,​ ​(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​Activation​(​'softmax'​)(​x​) 
    ​# Reshape the resulting output to 1D vector of number of classes 
    x ​=​ layers​.​Reshape​((​nb_classes​,​ ​))(​x​) 
  

    ​return​ x 
 

def​ depthwise_block​(​x​,​ nb_filters​,​ alpha​,​ strides​): 
    ​""" Create a Depthwise Separable Convolution block 
        inputs    : input tensor 

        nb_filters: number of filters 

        alpha     : width multiplier 

        strides   : strides 

    """ 

    ​# Apply the width filter to the number of feature maps 
    filters ​=​ ​int​(​nb_filters ​*​ alpha​) 
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    ​# Strided convolution to match number of filters 
    ​if​ strides ​==​ ​(​2​,​ ​2​): 
        x ​=​ layers​.​ZeroPadding2D​(​padding​=((​0​,​ ​1​),​ ​(​0​,​ ​1​)))(​x​) 
        padding ​=​ ​'valid' 
    ​else​: 
        padding ​=​ ​'same' 
  

    ​# Depthwise Convolution 
    x ​=​ layers​.​DepthwiseConv2D​((​3​,​ ​3​),​ strides​,​ padding​=​padding​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
  

    ​# Pointwise Convolution 
    x ​=​ layers​.​Conv2D​(​filters​,​ ​(​1​,​ ​1​),​ strides​=(​1​,​ ​1​),​ padding​=​'same'​)(​x​) 
    x ​=​ layers​.​BatchNormalization​()(​x​) 
    x ​=​ layers​.​ReLU​()(​x​) 
    ​return​ x 
 

 

alpha      ​=​ ​1​    ​# width multiplier 
dropout    ​=​ ​0.5​  ​# dropout percentage 
nb_classes ​=​ ​1000​ ​# number of classes 
  

inputs ​=​ ​Input​(​shape​=(​224​,​ ​224​,​ ​3​)) 
 

# Create the stem group 

x ​=​ stem​(​inputs​,​ alpha​) 
 

# First Depthwise Separable Convolution Group 

# Strided convolution - feature map size reduction 

x ​=​ depthwise_block​(​x​,​ ​128​,​ alpha​,​ strides​=(​2​,​ ​2​)) 
x ​=​ depthwise_block​(​x​,​ ​128​,​ alpha​,​ strides​=(​1​,​ ​1​)) 
 

# Second Depthwise Separable Convolution Group 

# Strided convolution - feature map size reduction 

x ​=​ depthwise_block​(​x​,​ ​256​,​ alpha​,​ strides​=(​2​,​ ​2​)) 
x ​=​ depthwise_block​(​x​,​ ​256​,​ alpha​,​ strides​=(​1​,​ ​1​)) 
 

# Third Depthwise Separable Convolution Group 

# Strided convolution - feature map size reduction 

x ​=​ depthwise_block​(​x​,​ ​512​,​ alpha​,​ strides​=(​2​,​ ​2​)) 
for​ _ ​in​ range​(​5​): 
    x ​=​ depthwise_block​(​x​,​ ​512​,​ alpha​,​ strides​=(​1​,​ ​1​)) 
 

# Fourth Depthwise Separable Convolution Group 

# Strided convolution - feature map size reduction 
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x ​=​ depthwise_block​(​x​,​ ​1024​,​ alpha​,​ strides​=(​2​,​ ​2​)) 
x ​=​ depthwise_block​(​x​,​ ​1024​,​ alpha​,​ strides​=(​1​,​ ​1​)) 
 

x ​=​ classifier​(​x​,​ alpha​,​ dropout​,​ nb_classes​) 
 

print​(​x​) 
 

model ​=​ ​Model​(​inputs​,​ x​) 
model​.​summary​() 

Below is the output ending of the method ​summary()​: 
 

global_average_pooling2d_2 ​(​ ​(​None​,​ ​1024​)​              ​0  

_________________________________________________________________ 

reshape_1 ​(​Reshape​)​          ​(​None​,​ ​1​,​ ​1​,​ ​1024​)​        ​0  

_________________________________________________________________ 

dropout_1 ​(​Dropout​)​          ​(​None​,​ ​1​,​ ​1​,​ ​1024​)​        ​0  

_________________________________________________________________ 

conv2d_25 ​(​Conv2D​)​           ​(​None​,​ ​1​,​ ​1​,​ ​1000​)​        ​1025000  

_________________________________________________________________ 

activation_1 ​(​Activation​)​    ​(​None​,​ ​1​,​ ​1​,​ ​1000​)​        ​0  

_________________________________________________________________ 

reshape_2 ​(​Reshape​)​          ​(​None​,​ ​1000​)​              ​0  

================================================================= 

Total​ ​params​:​ ​4​,​264​,​808 
Trainable​ ​params​:​ ​4​,​242​,​920 
Non​-​trainable ​params​:​ ​21​,​888 
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SqueezeNet 
 
SqueezeNet ​is an architecture proposed by joint research of DeepScale and UC Berkeley and 
Stanford University in 2015. In the corresponding paper, the authors introduced a new type of 
module, referred to as the ​fire ​module, and introduced terminology for microarchitecture, 
macroarchitecture and metaparameters. 
 
The microarchitecture is the design of modules, or groups, while the macroarchitecture is how 
the modules, or groups, are connected. The use of the term metaparameters aided in better 
distinguishing what a hyperparameter is. Generally, the weights and biases that are learned 
during training are the model parameters. The term hyperparameters can be confusing. Some 
researchers/practitioners used the term to refer to the tunable parameters used to train the 
model, while others used the term to also be inclusive of the model architecture (e.g., layers, 
width, etc). In the paper, the authors used the term metaparameters to aid in clarity, where the 
metaparameters are the structure of the model architecture that is configurable. 
 
The authors tackled several issues in their paper. First, they wanted to demonstrate a CNN 
architecture design that would fit on a mobile device and still retain comparable accuracy of 
AlexNet ​on ​ImageNet 2012​ dataset, which the authors reported achieving the same results 
empirically with a 50X reduction (fewer) parameters. Second, they wanted to demonstrate a 
small CNN architecture that would maintain accuracy when compressed, which the authors 
reported achieving the same results after compressing with the ​DeepCompression​ algorithm, 
which reduced the size of the model from 4.8Mb to 0.47Mb. 
 
The SqueezeNet architecture consists of a stem group, followed by eight ​fire​ modules and then 
a classifier. 
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Design Principles 
 
In the corresponding paper on ​SqueezeNet​, the authors describe their design principles to 
achieve their objectives, which they referred to as strategy 1, 2 and 3: 
 

● Strategy 1: Use mostly 1x1 filters instead of the more common convention of 3x3 filters, 
which give a 9X reduction in the number of parameters. The v1.0 version of ​SqueezeNe​t 
used a 2:1 ratio of 1x1 to 3x3 filters. 
 

● Strategy 2: Reduce the number of input filters to the 3x3 layers to further reduce the 
number of parameters. They refer to this component of the ​fire​ module as the​ squeeze 
layer​. 
 

● Strategy 3: Delay downsampling of feature maps to as late as possible in the network, in 
contrast to the convention of the time to downsample early to preserve accuracy, by 
using a stride of 1 on the early convolution layers and delay using stride of 2, which are 
strided convolutions which perform feature map downsampling. 
 

The​ fire​ module consists of two convolutional layers, where the first layer is the ​squeeze layer 
and the second layer is the ​expand layer​. The ​squeeze layer​ uses a bottleneck convolution, 
which is a 1x1 convolution with a stride of 1 to preserve the size of the feature maps (i.e., no 
downsampling), and reduce the number of filters passed to the ​expand layer​. 
 
The​ expand layer ​is a branch of two convolutions, a 1x1 convolution and a 3x3 convolution. The 
outputs (feature maps) from the convolutions are then concatenated. The​ expand layer​ expands 
the number of feature maps by a factor of 4. 
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The downsampling of feature maps is delayed until after the third and seventh ​fire module​ using 
max pooling. After the last​ fire module​ is a classifier. The classifier does not follow the 
conventional practice of a global averaging pooling layer followed by a dense layer where the 
number of output nodes equals the number of classes. Instead, it uses a convolutional layer 
where the number of filters equals the number of classes, followed by a global averaging 
pooling layer such that each prior filter (class) is reduced to a single value. The outputs from the 
global averaging pooling layer are then passed through a softmax activation to get a probability 
distribution across all the classes. 
 
The code below implements the base SqueezeNet v1.0, as described in the paper.  
 

from​ keras ​import​ ​Input​,​ ​Model 
from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Concatenate​,​ ​Dropout 
from​ keras​.​layers ​import​ ​GlobalAveragePooling2D​,​ ​Activation 
 

def​ stem​(​inputs​): 
    ​''' The stem group convolution ''' 
    x ​=​ ​Conv2D​(​96​,​ ​(​7​,​ ​7​),​ strides​=​2​,​ padding​=​'same'​,​ activation​=​'relu'​, 
               kernel_initializer​=​'glorot_uniform'​)(​inputs​) 
    x ​=​ ​MaxPooling2D​(​3​,​ strides​=​2​)(​x​) 
    ​return​ x 
 

def​ fire​(​x​,​ n_filters​): 
    ​''' Create a fire module ''' 
    ​# squeeze layer 
    squeeze ​=​ ​Conv2D​(​n_filters​,​ ​(​1​,​ ​1​),​ strides​=​1​,​ activation​=​'relu'​,  
                     padding​=​'same'​,​ kernel_initializer​=​'glorot_uniform'​)(​x​) 
 

    ​# branch the squeeze layer into a 1x1 and 3x3 convolution and double the number  
    ​# of filters 
    expand1x1 ​=​ ​Conv2D​(​n_filters ​*​ ​4​,​ ​(​1​,​ ​1​),​ strides​=​1​,​ activation​=​'relu'​,  
                      padding​=​'same'​,​ kernel_initializer​=​'glorot_uniform'​)(​squeeze​) 
    expand3x3 ​=​ ​Conv2D​(​n_filters ​*​ ​4​,​ ​(​3​,​ ​3​),​ strides​=​1​,​ activation​=​'relu'​,  
                      padding​=​'same'​,​ kernel_initializer​=​'glorot_uniform'​)(​squeeze​) 
  

    ​# concatenate the feature maps from the 1x1 and 3x3 branches 
    x ​=​ ​Concatenate​()([​expand1x1​,​ expand3x3​]) 
    ​return​ x 
 

def​ classifier​(​x​,​ n_classes​): 
    ​''' The classifier ''' 
    ​# set the number of filters equal to number of classes 
    x ​=​ ​Conv2D​(​n_classes​,​ ​(​1​,​ ​1​),​ strides​=​1​,​ activation​=​'relu'​,​ padding​=​'same'​,  
               kernel_initializer​=​'glorot_uniform'​)(​x​) 
    ​# reduce each filter (class) to a single value 
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    x ​=​ ​GlobalAveragePooling2D​()(​x​) 
    x ​=​ ​Activation​(​'softmax'​)(​x​) 
    ​return​ x 
 

# The input shape 

inputs ​=​ ​Input​((​224​,​ ​224​,​ ​3​)) 
 

# Create the Stem Group 

x ​=​ stem​(​inputs​) 
 

# Start Fire modules, progressively increase number of filters 

x ​=​ fire​(​x​,​ ​16​) 
x ​=​ fire​(​x​,​ ​16​) 
x ​=​ fire​(​x​,​ ​32​) 
 

# Delayed downsampling 

x ​=​ ​MaxPooling2D​((​3​,​ ​3​),​ strides​=​2​)(​x​) 
 

x ​=​ fire​(​x​,​ ​32​) 
x ​=​ fire​(​x​,​ ​48​) 
x ​=​ fire​(​x​,​ ​48​) 
x ​=​ fire​(​x​,​ ​64​) 
 

# Delayed downsampling 

x ​=​ ​MaxPooling2D​((​3​,​ ​3​),​ strides​=​2​)(​x​) 
 

# Last fire module 

x ​=​ fire​(​x​,​ ​64​) 
 

# Dropout is delayed to end of fire modules 

x ​=​ ​Dropout​(​0.5​)(​x​) 
 

# Add the classifier  

outputs ​=​ classifier​(​x​,​ ​1000​) 
 

model ​=​ ​Model​(​inputs​,​ outputs​) 

 
Below shows the output from the method ​summary​. It shows 1.2 million parameters. With the 
weights as float32 and without compression, the model size will be 4.8Mb, which is consisted 
with size described in the corresponding paper. 
 

global_average_pooling2d_1 ​(​Glo​ ​(​None​,​ ​1000​)​         ​0​           conv2d_176​[​0​][​0​] 
__________________________________________________________________________________ 

activation_1 ​(​Activation​)​       ​(​None​,​ ​1000​)​         ​0 
global_average_pooling2d_1​[​0​][​0​]  
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===================================================================================

=============== 

Total​ ​params​:​ ​1​,​248​,​424 
Trainable​ ​params​:​ ​1​,​248​,​424 
Non​-​trainable ​params​:​ ​0 
__________________________________________________________________________________ 

 
The authors also experimented with adding identity links between various fire modules, and 
reported they could achieve upwards of an additional 2% accuracy. 
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