
Introduction to Git
“The stupid1 content tracker”

Naoki Pross — np@0hm.ch

XX. March 2025

1git (British) – a foolish or worthless person



Obligatory XKCD

Plan for Today

1 A tiny bit of graph theory
and even less cryptography

2 Understand (instead of
memorizing) Git

3 Flex on your friends by
finding what caused a bug
using a logarithmic search
over the directed acyclic
graph that represents the
change history

4 Put it on your CV and profit



Table of Contents

1 The Problem

2 The Solution

3 The Implementation

4 Using Git

5 Extras (to flex)



What do we want?

The Problem
Synchronize data across multiple computers, with multiple people
working on (possibly the same) files.

Linus’ Wishes (The guy who invented Git)

Synchronization always works
Teamwork is possible and efficient
Works offline
Fast

neither intuitive nor easy to use were not on his list!



Other Solutions?

Popular at Linus’ Time

CVS Slow to synchronize. CVS requires a centralized
server which can get overloaded, was usually set up
by the company IT.

E-Mail People sent patch files to each other via email.

Popular Tools Today

Cloud Storage Does not work offline. Their whole business model
is against you. You have no (real) control over when
to sync. Also, sharepoint is garbage. No way to
compare changes.

Mercurial Less popular than Git, used by Mozilla.
Jujitsu Git-compatible VCS, even less popular and very new.



Table of Contents

1 The Problem

2 The Solution
Commit Graph
Blobs and Trees
Branches
Merging Strategies
Remotes

3 The Implementation

4 Using Git

5 Extras (to flex)



Solving the Problem: Snapshots

Project/

Changes

Time

20
19

-0
9-

18
16

:0
4:

28

20
19

-0
9-

18
16

:3
7:

01

20
19

-0
9-

18
17

:1
5:

44

20
19

-0
9-

18
18

:0
1:

03



Solving the Problem: Concurrent Changes I

ff ff ff ff

A B C M

B’ C’

ff ff ff ff

B
ob

A
lic

e

edit

from

edit

from

edit

from

edit

from

“sync”

from

“sync”

from

save save save

copy

save save

copy

copy



Solving the Problem: Concurrent Changes II

High Level Overview
Store changes using a directed acyclic graph (DAG) called the
commit graph.

Nodes are saved points in time called commits
Arcs point to state from which change was made
Commits with multiple children (A) are branching commits
Commits with multiple parents (M) are merge commits

Problems

1 We care about file content not the files itself
2 How do we merge changes?
3 Alice and Bob are not working on the same computer



Solving the Problem: Multiple Files

Project/

src/

main.c

Makefile
…

release/

magic

awesome.a

Filesystem Jargon

Tree Folder / Directory
Blob Binary Large OBject, raw data (bits)

of file contenta

File Blob + Metadata (Name, Date, …)

Solution
Treat all blobs as single entity with
metadata. Examples:

Rename file ⇒ Same blob, commit
name change
Move file ⇒ Same blob, commit
change tree

aDemo: hexdump vs stat



Mathematical Digression: DAG

Directed Acyclic Graph
A DAG 𝐺 = (𝑉 , 𝐴) is defined by a
finite set of vertices 𝑉 and a finite
set of arcs 𝐴 and may not contain
loops.

Partial Order
DAG have a partial order relation
𝑢 ≻ 𝑣 for comparable 𝑢, 𝑣 ∈ 𝑉 .

Topological Order
A DAG 𝐺 = (𝑉 , 𝐴) has a total order
≻∗ by having that for all (𝑢, 𝑣) ∈ 𝐴
𝑢 ≻∗ 𝑣. If 𝐺 has a Hamiltonian path
≻∗ is unique.

A

B C

D E

F G

H I

J

A

C

B

E

D

G

F

I

H

J



Solving the Problem: Concurrent Changes III

quickfix

master

feature

Branch (informal)

Branches are subgraphs
(subtrees) from a common
anchestor in the commit graph.

Naming Branches
Branch names are labels on their
most recent commit.

Examples

quickfix branch is from
master
Magenta (no name) branch
was merged into master
master branch was merged
into feature



Solving the Problem: Fast-Forward-Merge

BX

BY

BX

BY

in BX merge BY

History

1 From an existing branch BX
(with orange commits) a
branch BY added new
commits (magenta)

2 We merge BY into BX

FF-Merge
Apply changes of commits in BY
starting at BX until you get to BY.
Or BX just needs to “catch up” to
BY. No new commits are created.



Solving the Problem: 3-Way-Merge I

BX

BY

BX

BY

in BX merge BY

History

1 Branches BX and BY have
new commits (magenta and
green resp.) and share a
common history (orange)

2 We merge BY into BX

Observations
When you merge you are in BX
importing changes from BY

“our” changes are from BX
“their” changes are from BY

Need to make choices, which get
saved in a new merge commit.



Solving the Problem: 3-Way-Merge II

BX BY

oursours theirstheirs

merged

Merge BY into BX

3-Way-Merge

Use a (3-way-merge)
algorithm to merge trees
and blobs from each
commit
If not possible the user
has to choose between
‘our’ changes and ‘their’
changes

Merge Conflict
When the algorithm cannot
merge the file automatically it
is called merge conflict.



Solving the Problem: Multiple Computers I
B

ob
’s

PC

trunk

feat

A
lic

e’
s

PC

trunk

feat

clone

Remotes and Clone
Other computers are called
remotes. Clone means you copy
the commit graph on the
remote machine onto yours.

Example

1 Alice has cloned Bob’s
(green) commit graph

2 Alice has merged trunk
onto feat and made
changes

3 Bob has also made
changes on trunk



Solving the Problem: Multiple Computers II
B

ob
’s

PC

bob
trunk

feat

A
lic

e’
s

PC

alice
trunk

feat

bob/trunk

bob/feat

fetch

Fetch
Copy the changes of the
remote git graph into your
local git graph.

Running Example
Alice fetches Bob’s
changes.

Remote Branches
A branch that represents
changes done in another
machine. When a graph is
cloned, the machine from
which it was cloned has the
default name origin.



Solving the Problem: Multiple Computers III
B

ob
’s

PC

bob
trunk

feat

alice/trunk

alice/feat

A
lic

e’
s

PC

alice
trunk

feat

bob/trunk

bob/feat

pushfetch

Push
Copy the changes of your
local git graph to the
remote machine.

Running Example
This is the same as if Bob
had fetched Alice’s
changes.

Network Access
In practice you cannot directly
access other people’s machines,
so people use a third computer
to which both parties have
access (more later).



Solving the Problem: Multiple Computers IV

pull = fetch + merge



Table of Contents

1 The Problem

2 The Solution

3 The Implementation
Hash and Merkle DAG
Git Commits
Git Repositories

4 Using Git

5 Extras (to flex)



Mathematical Digression: Hashes and Merkle DAG
“One-way fast” functions

Hash Function
A (cryptographic) hash function
is an ℎ ∶ Ω → {0, 1}𝑑 for a fixed
hash length 𝑑 such that:

1 Given 𝑦 = ℎ(𝑥) it is hard to
find 𝑥

2 It is hard to find 𝑥, 𝑦 ∈ Ω
s.t. ℎ(𝑥) = ℎ(𝑦)

3 Given ℎ(𝑥) it is hard to find
𝑦 s.t. ℎ(𝑥) = ℎ(𝑦)

4 Given ℎ(𝑥) and a function 𝑓
it is hard to find ℎ(𝑓(𝑥))

Hashes are not unique!

Merkle DAG
A Merkle DAG is a DAG
𝐺 = (𝑉 , 𝐴) with a hash

ℎ ∶ 𝑉 × {0, 1}𝑑 → {0, 1}𝑑

that defines a label function

ℓ(𝑣) = ℎ(𝑣, ∑
𝑢∈n+(𝑣)

ℓ(𝑢))

Properties

Immutable data structure
Cryptographic verification



Mathematical Digression: Visualizing Merkle DAGs
To compute the label of a node, you need to first compute the
label of all nodes on which it depends. Changing a label has a
cascading effect on descendents.

B H

A E

C D G

F
ℎ(A, 0)

ℎ(B, ℓ(A
))

ℎ(E, ℓ(A) ⊕ ℓ(B) ⊕ ℓ(D)))

ℎ(C, ℓ(A
))
ℎ(D, ℓ(C

))

ℎ(F, ℓ(D))

ℎ(H, ℓ(E))

ℎ(G, ℓ(E) ⊕ ℓ(F))

Technicality: Sum symbol represents hash concatenation.



Git Commits

Commit Contents

Content (Blobs and Trees) hash
Parent(s) commit(s) hash(es)
Metadata: Author, Date, Message

Example

commit 1cfdf5c198f1c74c2f894067baf4670f5bca8e70
Author: Nao Pross <np@0hm.ch>
Date: Wed Feb 9 19:53:06 2022 +0100

Fix arrayobject.h path on Debian based distros

On Debian Linux and its derivatives such as Ubuntu and LinuxMint, Python
packages installed through the package manager are kept in a different
non-standard directory called 'dist-packages' instead of the normal
'site-packages' [1].

To detect the Linux distribution the 'platform' library (part of the
Python stdlib) provides a function 'platform.freedesktop_os_release()'
that parses a standard file '/etc/os-release' available in most Linux
distributions [2]. However this function is rather new (Python >= 3.10)
and unavailable in most python installations, so the core of its
functionaly was reimplemented here.

[1]: https://wiki.debian.org/Python#Deviations_from_upstream
[2]: https://docs.python.org/3/library/platform.html#linux-platforms

Signed-off-by: Jonas Schmid <schmid@stettbacher.ch>



Git Repositories

Project/

.git/

src/

main.c

Makefile
…

release/

magic

awesome.a

Repository
(index)

Work Tree
Work Tree
Root of your project,
contains (hidden) .git.
Never delete .git.

Repository

Commit graph
(Blobs, …)
Staging Area (will
come next)



Table of Contents

1 The Problem

2 The Solution

3 The Implementation

4 Using Git
The Conceptual Areas
Branches and Merging
Time Travel
Command Line vs GUI
Best Practices
GitHub and Others, Fork

5 Extras (to flex)



The 3 (or 4) Conceptual Areas of Git

Tracked Staging Area Commit Graph

Work Tree

Untracked

Storage .git

a.ca.c a.ca.c

u.cu.c u.cu.c

add

reset

add

reset

commit



Branches, Remotes and your HEAD



Automatic Merge Failed (Conflicts)

Tracked Staging Area Commit Graph

Work Tree

Untracked

Storage .git

ERRERR OKOK

FIXFIX

merged
automatically

merged by hand

resolve

& add
commit



Restoring Changes from the Past



Graphical User Interfaces

Command Line Interface
If you learn to use Git on the terminal you are set forever, but

you have to think (tip: use git status!)

Graphical Interfaces
A good GUI that does not hide complexity

Sublime Merge
Alternatives

SourceTree, GitKraken
TortoiseGit (integrates with Windows Explorer)

Bad GUI (why? It tries to hide complexity until you inevitabily
screw up something, and then you have no clue what is going on)

GitHub Desktop
More at https://git-scm.com/downloads/guis

https://git-scm.com/downloads/guis


What is a Commit Anyways?



Trunk, Feature Branches



Releases and Tags



Git Services (GitHub, GitLab, …)



Forking Projects



Forking and Pull / Merge Requests

Laptop Server
Ri

ck
M

or
ty

proj rick/proj

proj morty/proj

push / pull

push / pull

fork pull request



Table of Contents

1 The Problem

2 The Solution

3 The Implementation

4 Using Git

5 Extras (to flex)
Logarithmic Search
Git bisect
Outlook



Mathematical Digression: Logarithmic Search I

ℝ𝐽1 𝐽2𝐽3 𝐽4

𝑎3 𝑏3

Toy Problem
Given a set of disjoint
intervals 𝑆 = {𝐽1, … , 𝐽𝑛},
𝐽𝑖 ⊂ ℝ, log2(𝑛) ∈ ℕ find to
which interval belongs
𝑞 ∈ ⋃𝑖 𝐽𝑖.

Naive Solution
For every 𝐽 ∈ 𝑆 interval
check if 𝑞 ∈ 𝐽 . This is 𝑂(𝑛).

Total Order in 𝑆
Intervals [𝑎, 𝑏) ∈ 𝑆 can be ordered.
Define 𝐽𝑖 ≻ 𝐽𝑗 if 𝑎𝑖 > 𝑎𝑗.

Logarithmic Search Intuition
If 𝑞 ∉ 𝐽 = [𝑎, 𝑏) then either

𝑞 > 𝑎 so 𝑞 ∈ 𝐽 ′ ≻ 𝐽
𝑞 < 𝑎 and 𝑞 ∈ 𝐽 ′ ≺ 𝐽



Mathematical Digression: Logarithmic Search II

Logarithmic Search Intuition
If 𝑞 ∉ 𝐽 = [𝑎, 𝑏) then either

𝑞 > 𝑎 so 𝑞 ∈ 𝐽 ′ ≻ 𝐽
𝑞 < 𝑎 and 𝑞 ∈ 𝐽 ′ ≺ 𝐽

Idea
Recursively apply intuition.

Complexity (Landau)

Base 𝑏 logarithmic search is
𝑂(log𝑏(𝑛)). In this case 𝑏 = 2
(two options 𝑞 > 𝑎 or 𝑞 < 𝑎), so
it usually called binary search.

Logarithmic Search
Start with 𝑄 = 𝑆 then

1 take 𝐽 ∈ 𝑄 in the “middle”
of 𝑄 and if 𝑞 ∈ 𝐽 we are
done

2 otherwise
1 if 𝑞 > 𝑎 repeat with

𝑄 ∶= {𝐽 ′ ∈ 𝑄 ∶ 𝐽 ′ ≻ 𝐽}
2 if 𝑞 < 𝑎 repeat with

𝑄 ∶= {𝐽 ′ ∈ 𝑄 ∶ 𝐽 ′ ≺ 𝐽}
Does not check every 𝐽 ∈ 𝑆 (fast
for large 𝑛!).



Mathematical Digression: Logarithmic Search III

We can visualize the decisions of logarithmic searching as a tree.
The decision goes to the left or right branch depending on whether
𝑞 < 𝑎 or 𝑞 > 𝑎 respectively. Obseve that the tree has depth
3 = log2(8).

𝑞 ∉ 𝐽4
𝑞 ∉ 𝐽6

𝑞 ∉ 𝐽2 𝑞 ∉ 𝐽3

𝑞 ∉ 𝐽6
𝑞 ∉ 𝐽7 𝑞 ∉ 𝐽1

𝐽2 𝐽8 𝐽3 𝐽4 𝐽7 𝐽6 𝐽1 𝐽5

ℝ



Git Bisect Theory

Purpose
You are looking for a commit
that caused something, e.g.

Introduced a bug
Deleted / added something
Anything really

Rough Idea

1 Take commit graph
𝐺 = (𝑉 , 𝐴) we want to find
̄𝑣 ∈ 𝑉 that did above

2 Topologically sort 𝐺, i.e.
add order ≻∗ to 𝑉

3 Logarithmic search ̄𝑣 in 𝐺

A

B C

D E

F G

H I

J

A

C

B

E

D

G

F

I

H

J



Git Bisect Practice

You want to find the commit that did X. Initialization:
1 git bisect start
2 git bisect bad (current commit is bad, no X)
3 git bisect good 258dbc1 (commit 258dbc1… was good,

has X)
Git will checkout (go back in time to) a commit between the good
one and the bad one and you have to say

git bisect good
git bisect bad
git bisect skip (cannot test this commit for X)

Process repeats a few time (≈ log of # of commits between good
and bad). If you have a script e.g. check.py that returns 0 for
good, 125 for skip, any other number for bad, it can be automated

git bisect run check.py



Outlook

That’s (most of) it

Learn More
Git and its ecosystem have many more features

Stash, Rebase, Blame, …
LFS (Large File Storage) for big (gigabytes) files
Email “old school” workflow (e.g. sr.ht and Linux Kernel)
Integration with CI (e.g. GitHub Actions, GitLab Workers)

https://sr.ht

	The Problem
	The Solution
	Commit Graph
	Blobs and Trees
	Branches
	Merging Strategies
	Remotes

	The Implementation
	Hash and Merkle DAG
	Git Commits
	Git Repositories

	Using Git
	The Conceptual Areas
	Branches and Merging
	Time Travel
	Command Line vs GUI
	Best Practices
	GitHub and Others, Fork

	Extras (to flex)
	Logarithmic Search
	Git bisect
	Outlook


