IMAGI- Child Friendly
Programming Language

Final Report

Prepared by:
Héctor Garcia (hector.garcia@upr.edu)
Edgardo Rivera (edgardo.rivera@upr.edu)
Jariel Laureano (jariel.laureano@upr.edu)

mailto:jariel.laureano@upr.edu

Table of Contents :

Introduction

Requirements

Scene Editor Tab

Code Editor Tab

N

Using Variables

Commands Features

Command Functions

Language Development

Conclusion

11

Introduction

Project Motivation

With the technology industry developing at a rapid pace, the need for more
programmers increases everyday. Little options exist to introduce programming to
kids successfully, this is why our team decided to attack this need. By creating a new
programming language focused and designed for children we will be able to
encourage and motivate students at a young age to pursue STEM related careers
but specifically, computer and software engineering majors. After experiencing
IMAGI, kids will be able to understand the basics of programming, learn to have fun
with it and be prepared to move to a more standard programming language like
python or java in the future.

Project Concept

IMAGI is a child friendly programming language developed with the goal of
introducing programming to kids in a new and interesting way from a very young
age. Lines of code alone will surely have a hard time arousing any children at such a
young age, this is the reason why IMAGI’'s programming experience is aided by a
simple graphical user interface which will allow the programmer to interact with
different characters and scenes, and create simple storylines by writing code. One of
the challenges of kids as our scope is that this language must try to develop the
programming instincts in the simplest way possible, avoiding complicated syntax,
overcrowding of commands and ambiguity. Using commonly known words and
making the programming language straightforward, as easy as talking, is the focus.

Requirements

The tools and requirements needed to be able to use our programming language are
kept to the minimum possible so that it is easy to use in any of the most popular
operating systems.lt is required that the user has Python v2.7.11, Qt4 and PyQt4
installed to make sure the language can be run from the command prompt.

Skills Required

IMAGI is a child friendly programming language thus no previous experience
programming is necessary. IMAGI is designed to develop various skills on children,
such as: programming, storytelling, spatial perception and imagination.

L TS
IVAGI

Scene Editor Tab

ﬁ IMAGI - Programming Language for Kids - Focus on Storytelling = X

/" Code Editor /" Scene Editor \,

CHARACTERS BACKGROUND
|:| ﬂ Fish O Desert Highway
‘¥ Dog (D) Cool Beach
|:| @ Lion @ Pink Tree Plains

Apply Scene Changes

IMAGINE |

On this tab can be selected the scene by clicking one of the 3 options presented on
the background section. The scenes available are:

e Desert Highway

e Cool Beach

e Pink Tree Plains

The character selection is on the left side below Characters. All characters can be
used at the same time by selecting each one or you just can choose the one that you
like the most. The available characters are:

e Fish

e Dog

e Lion

After selecting the options you want to apply to your scene just click the “Apply
Scene Changes” to save them .

Code Editor Tab

@ IMAGI - Programming Language for Kids - Focus on Storytelling = *

g" Code Editor V Scene Editor \

dog walk right;
dog say "Pink Tree Plains is beautiful!”;
dog dance;

Fink Tree Flains is beautiful!

IMAGINE

On the code editor tab is where all the magic occurs. It is located on the top of the
window. On this tab you can write your program lines, just let your imagination flow.
The code written can be tested on any moment by pressing the “IMAGINE” button.
The result will be displayed on the scene.

Copy paste the following lines depending the characters you are using for an
preview:

fish say “Hello my name is Fish!”;
dog dance;

lion jump;

lion say “Roar”;

Then just click “IMAGINE”

Using Variables
ﬂ IMAGI - Programming Language for Kids - Focus on Storytelling = X

| Code Editor \/” Scene Editor \

Number lionWalks 5;
Number dogWalks 3;
repeat lionWalks;
lion walk right;

endrepeat;

repeat dogWalks;

dog walk right;

endrepeat;

fish say "We are all friends!"

We are all friends!

IMAGINE |

Using variables on IMAGI is very simple. There are only two types of variables on
this language and they are:

e Number

e Word

To declare a variable you have to follow the following syntax:
VariableType varName Value;

An example of this can be see on the above image. The first two lines of the code
declare two variables of type Number.

Name Value
lionWalks 5
dogWalks 3

Example Wordtype: Word salute “Hello”;
Once that you have declared an variable, you would be able to use it later on code.

Commands Features

Commands/Tokens Target Number of /Attributes Description
Attributes
jump Character N/A No attributes needed.
walk Character 1 Direction: left or right.
say Character 1 Text to say: raw string or word
type
domath Character 3 Operator: +, -, * or/

Number/s to add: can be a raw
number or a number type
described below.

dance Character N/A No attributes needed

endrepeat N/A N/A No attributes needed

grow Character N/A No attributes needed

shrink Character N/A No attributes needed

ask Character 2 Text to prompt: raw string or word
type

Variable to store input: word or
number type

repeat N/A 1 Times to repeat, can be a raw
number or an NumberType
variable

run Character 1 Direction: right or left

Word N/A 2 Variable Name, raw string

Number N/A 2 Variable Name, value

Commands Functions

jump: insert a jumping animation to the given target.

walk: insert a walking animation with the desired direction to the given target.

say: create a dialog box with the given message.

domath: resolve the given mathematical expression (add, subtract, multiply,divide)
dance: insert a dancing animation to the given target.

repeat: the lines between the repeat statement and endrepeat, will repeat given
times.

endrepeat: ends a repeat loop.

grow: the target character will grow.

shrink: the target character will shrink.

ask: create a dialog box with the given question.

run: insert a running animation with the desired direction to the given target.

Word: create a variable of type word with the given string.

Number: create a variable of type with the given value.

Example of various commands
ﬁ IMAGI - Programming Language for Kids - Focus on Storytelling = et

[Code Editor \/” Scene Editor \

Word myString "Splash!"™;
fish walk right;
fish walk right;
fish walk right;

fish say myString;
repeat 190;
fish jump;
endrepeat;|

Language Development

Translator Architecture

The translator architecture of this language is composed of various modules
and It has a shell programming structure. The lexical analysis and parsing work
together to make this language a working one. There is a module that is in charge of
tokenizing every single program line and another module that check if the statement
is a valid one. Then if the statement is a valid one, there is a Command Processor
that is in charge of verifying if the command is a valid one and execute the
corresponding executable. All this is controlled by our own coded compiler.

Order of execution:
e Read Code Line from the code editor
Send Line to the Compiler
Tokenize Line (classify tokens)
Check if Valid Statement
Check if Valid Command
Execute Command
Repeat Again Until All Lines are Translated
Run All Animations (Presented on the Scene)

Module Interface

consists of the following modules:

e imagi_mainWindow is in charge of joining all the components that make up
IMAGI.

° is in charge of the syntax highlighting seen in the code editor of
IMAGI’s main window.

e imagi_character_class is used for creating character objects, the protagonist
of each story creates in IMAGI.

e |LA isthe IMAGI language analyzer. Is in charge of all the lexical analysis and
parsing.

IMAGI

imagi_character_class

Software Development Environment

Because we had a restricted budget, we decided to use PyCharm Community
Edition. As stated in their website, it provides code completion, error highlighting,
automated code refractors and more. It's smart code editor provides support for a

number of different programming languages like JavaScript, CSS, TypeScript and
Python which was the language used for the development of this project. Pycharm
also provides support for version control, letting you link your Github repository with
your project, making the team interaction and development a lot easier and agile.

Test Methodology During Development

Because of the time constraints we had for this project and the complexity of
the translator, automated testing was not implemented, since it would have
consumed a large amount of time to develop. Instead the best and easiest way to
test our translator was to write code snippets and run them for the translator to
analyze and present the result on the output console, using simple print commands
to make sure the correct functions were called during translation and the output was
displayed as expected. Once we identified flaws or errors in our output console, we
ran the same code snippet once again, but this time following the program execution
with the debugger. Doing this we were able to identify where our translator was
flawed and were able to find a fix in no time.

Example Programs
The following are images of example programs made during the development of
IMAGI.

@ IMAGI - Programming Language for Kids - Focus on Starytelling = d

[Code Editor \/” Scene Editor \

repeat 4;

dog walk right;

endrepeat;

dog say "lLet's Play go fish!";

dog walk right;
lion walk left;
fish walk right;

10

ﬁ IMAGI - Programming Language for Kids - Focus on Starytelling = et

f Code Editor \[Scene Editor
Number lionWalks 5;
Number dogWalks 3;

repeat lionWalks;
lion walk right;

endrepeat;

repeat dogWalks;

dog walk right;

endrepeat;

fish say "We are all friends!"

Conclusion

During the development of IMAGI, we had to learn many new technologies we
did not have experience or were not completely familiar with, these include but are
not limited to: Python as a programming language for a large scale project, Qt
Designer for designing the GUI component of our project, PyQt4 for integrating the
Qt Design into Python and using a GitHub repository for project version control. To
learn these technologies, we had to read complex documentation from the Qt API
which was done in C++ while we were using Python and watch several tutorials to
get the hang of the technologies before starting to work on our project which was a
very ambitious one since we deal with many animations. Working with a team was
also a new experience for most of us, so we had to organize ourselves the best we
could to avoid problems. From the very beginning of the semester we made a
schedule with milestones that we tried to accomplish the best we could, this helped
us in keeping our project organized and avoid the last minute deadline stress. Each
team member was in charge of a specific part of the project and whenever a doubt
was presented, the respective team member was the specialist and could help solve
the problem. Integrating the work done by each member was another challenge,
thankfully, code comments helped guide us through the implementation of it. The
overall experience of designing and developing IMAGI was a great one, each of us
learned about project management and other important software development skills
such as motivational team speaking when we doubted ourselves because of our
ambitious project, at the end we believe we did a great job and enjoyed our time
working with IMAGI.

11

