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A vital component of photo-realistic image synthesis is the simulation of indirect
diffuse reflections, which still remain a quintessential hurdle that modern rendering
engines struggle to overcome. Real-time applications typically pre-generate diffuse
lighting information offline using radiosity to avoid performing costly computations
at run-time.

In this thesis we present a variant of progressive refinement radiosity that utilizes
Nvidia’s novel RTX technology to accelerate the process of form-factor computation
without compromising on visual fidelity. Through a modern implementation built
on DirectX 12 we demonstrate that offloading radiosity’s visibility component to RT
cores significantly improves the lightmap generation process and potentially propels
it into the domain of real-time.
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Chapter 1

Preface

The computational synthesis of photorealistic images has been a quintessential chal-
lenge in the computer graphics domain since its inception. Growing industries such
as video games, virtual reality and visual effects have induced a veritable explosion
in demand for increased realism over the last few decades. A major step towards this
goal was taken by James Kajiya in 1989 when he formulated the rendering equation
[13], which provides a general mathematical description of how light propagates
through a 3D environment.

Unfortunately, the rendering equation proved far too complex to solve linearly.
Every surface can receive light from in nitely many directions and then scatter it
diffusely, effectively qualifying the surface as a separate light-source itself.

Computer graphics researchers have spent a large part of their endeavour grap-
pling with the conundrum that is nding an ideal, numerically solvable model to
this in nitely recursive complexity. Indeed, rendering algorithms we see employed
today can all be regarded as approximations, shortcuts or simpli cations of the ren-
dering equation.

With regard to global illumination two of these have stood the test of time: ray
tracing for the generation of individual, highly realisticimages and radiosityfor real-
time use cases that continuously render the same, static geometry from a large set of
camera angles.

1.1 Nvidia RTX

Over the last decades raytracing has generally found its place as a crude and expen-
sive approach that nevertheless provides a very high degree of photorealism, albeit
at a proportionally high cost in required computation time.

Yet in 2018, fty years after the rst computer-based ray-tracer was created [14],
the American tech company Nvidia unveiled their GeForce RTXseries of graphics
cards. Uniquely, these contain specialized computation units that can speed up
raytracing-related operations to such a degree that it propels this blunt, brute-force
approach into the domain of real-time [49].

The mathematical challenges faced by raytracing and radiosity are fundamen-
tally identical and thus inextricably linked. In this thesis we argue that the consid-
erable performance increase enabled by the RTX platform ought to be re ected in
radiosity to the same degree it is seen in raytracing.
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1.2 Motivation

Global illumination solutions based on radiosity typically generate lighting informa-
tion and then export it into a texture, which can be rendered a-posteriori within con-
sumer applications at virtually no cost at all. Despite great rendering performance,
the process of generating these textures remains a computationally expensive pro-
cess that can severely hamstring the development and design process of complex 3D
environments.

Radiosity's performance bottleneck unequivocally lies with the vast amount of
visibility calculations required [1]. Although this problem is, in theory, highly par-
allelizable [15], implementations of the radiosity model seem to generally favour
multi-core CPUs (approx. 4-16 high performance cores) over GPUs (approx. 1-10
thousand low performance cores) [16], because GPU variants rely on hemicuboid
z-Buffering for visibility determination [17].

In this thesis we investigate if an RTX-based visibility solution provides a perfor-
mance improvement suf cient enough to fully advance radiosity into the realm of
GPUs and parallel computing.

Not only is raytracing a highly adequate solution for visibility, but RTX GPUs
also perform their operations on dedicated hardware in the form of a moderate
amount (30 to 80) of highly specialized RT coreg[49]. This intermediate solution
between the parallelization levels of a CPU and a GPU may prove ideal for the ac-
celeration of the radiosity algorithm.

1.3 Obijective

The intended goal behind this thesis is to further the acceleration of radiosity com-
putations for developers and designers of 3D environments working on machines
compatible with RTX. Once lighting textures have been generated, they can in turn
be rendered on almost any graphics hardware, regardless of RTX compatibility.

To accomplish this, we grapple a common variant of radiosity found on GPUs,
known as progressive re hement radiosityand substitute its z-Buffering components
with an RTX-based approach. We will also investigate and examine potential per-
formance improvements in addition to how well this approach compares to already
existing solutions.

1.4 Thesis Structure

The next chapter will cover the theoretical knowledge required for the remainder of
the thesis by deriving the rendering equation and providing mathematical models
for several global illumination solutions.

Afterwards, chapter 3 takes a deep dive into RTX technology by examining and
reviewing the underlying Turing architectureand DirectX raytracing pipeline.

Chapters 4 and 5 will present RTRad our RTX-accelerated progressive re nement
radiosity implementation as well as any related tweaks and potential performance
improvements.

Lastly, in chapter 6, we compare and analyze the performance of this implemen-
tation upon which we draw our conclusions in chapter 7.
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Introduction

This chapter outlines the background knowledge and core concepts that are required
in the subsequent chapters. The rst section commences by deriving the core prob-
lem of computer graphics starting at the root. Afterwards, we show how the global
illumination problem is tackled speci cally by radiosity and raytracing.

2.1 The Speed - Realism Dichotomy

A classical image-synthetization process computes how light scattered into an en-
vironment translates into pixel colors on a retina. The color an object should adopt
on a virtual sensor can be traced back to the wavelengths absorbed by its surface in
relation to the light incident on it, which is turn affected by the light that is re ected,
refracted or emitted by other surfaces around it.

Combine this endless recursion with the vast amount of intrinsics this process
is subject to, such as physical properties or geometric arrangements, and it quickly
becomes clear that a complete, physically accurate light simulation is an unfeasible
computational task that needs to be approximated.

Indeed, even highly photorealistic, computationally heavy methods employ a
signi cant amount of approximation and reductionism. The question therefore be-
comes which simpli cations one is willing to make and what their payoff is in com-
putational expense.

The balance of speed vs. realism that underpins this challenge divides it into two
distinct problem domains: Whilst some industries, like CG Im-making and SFX, are
more geared towards realism, other areas have driven an increased demand of faster,
more responsive graphics, known under the umbrella term of real-time rendering

2.2 Rendering Optics

The essence of generating images from abstract descriptions can be narrowed down
to the simulation of a real-world camera in a virtual environment. As such, we
commence by examining the characteristics of virtual cameras as well as the related
concepts from radiometrythat help us model light propagation.

2.2.1 Camera Optics

Most genuine cameras have a series of common denominators arranged in a similar
construction:

An aperture allows light to enter through a convex lens, which casts an image
onto a light-capturing sensor. The convexity of the lens ensures that the direction in
which light hits the sensor is restricted, thus focusing the image with a limited depth
of eld, determined by the focal length.
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This directional limitation of incident light can also be accomplished without a
lens, by severely limiting the size of the camera's aperture, which is the principle of
the pinhole camerfr4] (as seenin g. 2.1).

FIGURE 2.1: Comparison of the optics behind a lens-based and pin-
hole camera.

Pinhole cameras have nearly in nite depth of eld and, unlike lens-based cam-
eras, do not suffer from lens distortion (see g. 2.2). However, their minuscule
apertures require proportionally lengthy exposure times to produce serviceable pho-
tographs [74], for which reason pinhole cameras tend to nd little to no use in real-
life photography [18].

However, virtual environments are not subject to the same physical constraints,
as any numerical value for light can arbitrarily be multiplied by some factor to con-
trol for brightness or exposure. As such, the notion of an exposure timés not a valid
one within a virtual context.

2.2.2 \Virtual Camera

A common observation one can make in computer-generated images is that they
tend to have unlimited depth of eld. This is, indeed, because virtual cameras
strongly mimic the simpli ed optics of a pinhole camera [74].

In reality, increasing the distance between a pinhole and its sensor would pro-
duce a weaker image due to inverse-square attenuation. But since brightness factors
and exposure times are irrelevant in a virtual context, the pinhole-sensor distance
can be entirely discarded. As such, the sensor can be regarded as being a virtual
screenin front of the camera [74], where light enters through grates corresponding
to pixels on the nal image. This arrangement is depicted in g. 2.3.
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FIGURE 2.2: Normal lens (left) vs. Pinhole lens (right). The pinhole
has greater depth of eld, but the image sharpness decreases with
pinhole size. Image credited to Leonard Lessin/Science Source [60].

By designating the location of the pinhole as the camera's position, we are left
with a location vector, a view direction and two  eld-of-view (FOV) angles that are
proportional to the height and width of the resulting image respectively .

Camerea= fC,*x,*y,*z,] x:] y9 (2.1)

where Cis the location of the camera, x, y and z are the camera's right, upward
and forward directions respectively and ] , ] y are the FOV angles for the x and y
directions.

In most practical cases, the given directions form an orthogonal coordinate sys-
temwith 2= X .

FIGURE 2.3: Optics of a virtual camera. The dimensions of the virtual
screen are directly tied to the angles ] x,] y making them independent
of their distance from C.

IMost computer graphics domains expand this de nition by also including a near and far  clipping
plang thus forming a view frustum[74].
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