FREIE UNIVERSITAT BERLIN

MASTER’S THESIS

Hardware Acceleration of Progressive
Refinement Radiosity using Nvidia RTX

Author: Supervisor:
Benjamin KAHL Prof. Dr. Glinter ROTE

Revised and corrected version of a thesis submitted in fulfillment of the
requirements
for the degree of Master of Science
on

October 13, 2022
in the

Department of Mathematics and Computer Science

March 26, 2023

https://www.fu-berlin.de/
https://benjamin.kahl.fi
http://www.mi.fu-berlin.de/inf/groups/ag-ti/members/professoren/Rote_Guenter.html
https://www.mi.fu-berlin.de/en/index.html

FREIE UNIVERSITAT BERLIN

Abstract

Institute of Computer Science
Department of Mathematics and Computer Science

Master of Science

Hardware Acceleration of Progressive Refinement Radiosity using Nvidia RTX

by Benjamin KAHL

A vital component of photo-realistic image synthesis is the simulation of indirect
diffuse reflections, which still remain a quintessential hurdle that modern rendering
engines struggle to overcome. Real-time applications typically pre-generate diffuse
lighting information offline using radiosity to avoid performing costly computations
at run-time.

In this thesis we present a variant of progressive refinement radiosity that utilizes
Nvidia’s novel RTX technology to accelerate the process of form-factor computation
without compromising on visual fidelity. Through a modern implementation built
on DirectX 12 we demonstrate that offloading radiosity’s visibility component to RT
cores significantly improves the lightmap generation process and potentially propels
it into the domain of real-time.

HTTPS://WWW.FU-BERLIN.DE/
https://www.mi.fu-berlin.de/en/inf/index.html
https://www.mi.fu-berlin.de/en/index.html

Contents

Abstract [

1 Preface 1
1.1 NvidiaRTX . . 1
1.2 Motivation e 2
1.3 Objective e 2
1.4 ThesisStructure e 2

2 Introduction 3
2.1 The Speed - Realism Dichotomy 3
2.2 RenderingOptics e 3

221 CameraOptics i i 3
222 VirtualCamera e 4
2.3 Radiometric Quantities 6
231 SolidAngle e 6
232 Radiance e 7
233 RadiantFlux. 7
2.3.4 Irradiance and Radiant Exitance 8
2.3.5 BRDF andthe Re ectance Equation 9
2.4 TheRendering Equation, 9
2.5 Specularand Diffuse BRDFs, 10
251 SpecularReections 11
252 GlossyReections 11
253 DiffuseReectionso 12
2.6 Rasterization 13
2.7 Raytracing e e 14
271 RayDenition. 15
2.7.2 Ray-triangle Intersectiono 16
2.7.3 Bounding Volume Hierarchies 18
2.8 Radiosity e 19
28.1 ViewFactor 20
282 TheNusseltAnalog 21
The Hemicube Approximation 21
Monte-Carlo Integration 22
2.8.3 ClassicalRadiosity, 23
2.8.4 Progressive Radiosityo 23
2.8.5 Progressive Re nementRadiosity 24
2.8.6 Instant Radiosity and Sampling Approaches 25
2.9 \Visibility Determination Lo 26
29.1 Z-Buffering e 26

2.9.2 Raytracing for Visibility 0. 27

3 The Turing Architecture and DXR 28
3.1 GPUsandParallelism 28
3.2 The Turing Architecture e 28
3.2.1 TU102GPU Structure i e e 29
3.22 GPC . .. e 29
3.2.3 SM - Streaming Multiprocessor 0oL 30
CUDACOre o e e e e e 31
TensorCore e 31
RT Core e e 32
3.3 DirectX 32
3.3.1 DirectX Rasterization Pipeline 33
Input AssemblerStage L. 33
VertexShader 34
Tessellation Stage e 35
Geometry Shader 35
RasterizerStage e e e 35
Pixel Shader 36
OutputMergerStage o v i i i e 36
3.4 DirectXRaytraCing e e e e 36
341 DXRPipeline 36
RaysinDXR e 37
Programmable Shaders 37
3.4.2 TraceRayFunction 39
343 CodeExample.o 40
3.4.4 Hostlnitialization 0 o 41
3.4.5 Acceleration Structure L o oo 41
BLAS . . e 42
TLAS . . . e 43
ShaderTable 43
35 StatusQUOOfRTX e e 43
4 RTX Radiosity 45
4.1 Status Quo of GPU-based Radiosity 45
411 Lead-uptoRTRad, 45
4.1.2 TargetUse-Case i ittt 46
4.2 PreviousWork oL 46
4.2.1 GPURadiosity e 47
4.2.2 Rapid-Radiosity(RRad) 47
4.3 Source CodeandDependencies 48
431 Falcor. e 48
4.4 Program Structure L e e e e 49
441 ClassStructure e e 49
45 InputData e e 50
4.5.1 Subdivisionthrough UV Mapping 50
452 InputComponents e 51
Texture-Group 51
46 CITPASS o o e 52
4.6.1 SurfaceArea. e e 53
4.7 RTLPassS e e e 54
4.7.1 \Visibility Raytracing e 55
4.7.2 View Factor Calculation 57

4.7.3 Lighting Contribution 58
4.7.4 Indexing and Memory Conicts 59
475 Batching e 60
4.8 SewSeamsPass 61
49 VITPASS o i e 62
Performance Improvements 64
51 Renement. e 64
5.1.1 StaticUndersampling 64
Monte-Carlo Undersampling 65
5.1.2 Mipmapped Undersampling 66
5.1.3 Adaptive Subdivision L o o 66
Alpha-Embedded Substructuring 67
GradientCalculation oL 69
5.2 Visibility Caching e 70
5.2.1 Memory Complexity 70
5.2.2 Cantor Pairing Function 71
5.2.3 \VisibilityBuffer 71
5.3 VoxelRaymarching e 72
5.3.1 Raymarchingand 3D Textures 73
5.3.2 SceneVoxelization 0o 73
Vertex Shader 73
Geometry Shadero 73
Pixel Shader 75
5.4 Directional Sampling e 76
5.4.1 Hemispheric Direction Generation 77
Evaluation 80
6.1 RTRadOVEIVIEW e e e e e e e e e 80
6.2 EvaluationMethod 82
6.2.1 Pass-Time e 82
6.22 DFPR 82
6.2.3 SCENES 83
6.3 Results e 85
6.3.1 Pure Progressive Radiosity 85
6.3.2 Undersampling, 86
Undersampling Method Differences 88
6.3.3 Adaptive Subdivision o, 89
6.3.4 SceneComplexity 90
6.4 EXIENSIONS e 91
6.4.1 \VisibilityCaching 91
6.4.2 VoxelRaymarching, 92
6.4.3 DirectionalSampling 93
6.5 Comparison e e 95
6.5.1 UnityandUnrealEngine 96
6.6 SpecularReections. e 98

7 Verdict 99
7.1 SUMMAIY . . . o o e e e e e e 99
7.2 Limitations e e e 99
7.3 Conclusions e e 100
7.4 Future Work e e e e 101

8 Bibliography 103

Chapter 1

Preface

The computational synthesis of photorealistic images has been a quintessential chal-
lenge in the computer graphics domain since its inception. Growing industries such
as video games, virtual reality and visual effects have induced a veritable explosion
in demand for increased realism over the last few decades. A major step towards this
goal was taken by James Kajiya in 1989 when he formulated the rendering equation
[13], which provides a general mathematical description of how light propagates
through a 3D environment.

Unfortunately, the rendering equation proved far too complex to solve linearly.
Every surface can receive light from in nitely many directions and then scatter it
diffusely, effectively qualifying the surface as a separate light-source itself.

Computer graphics researchers have spent a large part of their endeavour grap-
pling with the conundrum that is nding an ideal, numerically solvable model to
this in nitely recursive complexity. Indeed, rendering algorithms we see employed
today can all be regarded as approximations, shortcuts or simpli cations of the ren-
dering equation.

With regard to global illumination two of these have stood the test of time: ray
tracing for the generation of individual, highly realisticimages and radiosityfor real-
time use cases that continuously render the same, static geometry from a large set of
camera angles.

1.1 Nvidia RTX

Over the last decades raytracing has generally found its place as a crude and expen-
sive approach that nevertheless provides a very high degree of photorealism, albeit
at a proportionally high cost in required computation time.

Yet in 2018, fty years after the rst computer-based ray-tracer was created [14],
the American tech company Nvidia unveiled their GeForce RTXseries of graphics
cards. Uniquely, these contain specialized computation units that can speed up
raytracing-related operations to such a degree that it propels this blunt, brute-force
approach into the domain of real-time [49].

The mathematical challenges faced by raytracing and radiosity are fundamen-
tally identical and thus inextricably linked. In this thesis we argue that the consid-
erable performance increase enabled by the RTX platform ought to be re ected in
radiosity to the same degree it is seen in raytracing.

Chapter 1. Preface 2

1.2 Motivation

Global illumination solutions based on radiosity typically generate lighting informa-
tion and then export it into a texture, which can be rendered a-posteriori within con-
sumer applications at virtually no cost at all. Despite great rendering performance,
the process of generating these textures remains a computationally expensive pro-
cess that can severely hamstring the development and design process of complex 3D
environments.

Radiosity's performance bottleneck unequivocally lies with the vast amount of
visibility calculations required [1]. Although this problem is, in theory, highly par-
allelizable [15], implementations of the radiosity model seem to generally favour
multi-core CPUs (approx. 4-16 high performance cores) over GPUs (approx. 1-10
thousand low performance cores) [16], because GPU variants rely on hemicuboid
z-Buffering for visibility determination [17].

In this thesis we investigate if an RTX-based visibility solution provides a perfor-
mance improvement suf cient enough to fully advance radiosity into the realm of
GPUs and parallel computing.

Not only is raytracing a highly adequate solution for visibility, but RTX GPUs
also perform their operations on dedicated hardware in the form of a moderate
amount (30 to 80) of highly specialized RT coreg[49]. This intermediate solution
between the parallelization levels of a CPU and a GPU may prove ideal for the ac-
celeration of the radiosity algorithm.

1.3 Obijective

The intended goal behind this thesis is to further the acceleration of radiosity com-
putations for developers and designers of 3D environments working on machines
compatible with RTX. Once lighting textures have been generated, they can in turn
be rendered on almost any graphics hardware, regardless of RTX compatibility.

To accomplish this, we grapple a common variant of radiosity found on GPUs,
known as progressive re hement radiosityand substitute its z-Buffering components
with an RTX-based approach. We will also investigate and examine potential per-
formance improvements in addition to how well this approach compares to already
existing solutions.

1.4 Thesis Structure

The next chapter will cover the theoretical knowledge required for the remainder of
the thesis by deriving the rendering equation and providing mathematical models
for several global illumination solutions.

Afterwards, chapter 3 takes a deep dive into RTX technology by examining and
reviewing the underlying Turing architectureand DirectX raytracing pipeline.

Chapters 4 and 5 will present RTRad our RTX-accelerated progressive re nement
radiosity implementation as well as any related tweaks and potential performance
improvements.

Lastly, in chapter 6, we compare and analyze the performance of this implemen-
tation upon which we draw our conclusions in chapter 7.

Chapter 2

Introduction

This chapter outlines the background knowledge and core concepts that are required
in the subsequent chapters. The rst section commences by deriving the core prob-
lem of computer graphics starting at the root. Afterwards, we show how the global
illumination problem is tackled speci cally by radiosity and raytracing.

2.1 The Speed - Realism Dichotomy

A classical image-synthetization process computes how light scattered into an en-
vironment translates into pixel colors on a retina. The color an object should adopt
on a virtual sensor can be traced back to the wavelengths absorbed by its surface in
relation to the light incident on it, which is turn affected by the light that is re ected,
refracted or emitted by other surfaces around it.

Combine this endless recursion with the vast amount of intrinsics this process
is subject to, such as physical properties or geometric arrangements, and it quickly
becomes clear that a complete, physically accurate light simulation is an unfeasible
computational task that needs to be approximated.

Indeed, even highly photorealistic, computationally heavy methods employ a
signi cant amount of approximation and reductionism. The question therefore be-
comes which simpli cations one is willing to make and what their payoff is in com-
putational expense.

The balance of speed vs. realism that underpins this challenge divides it into two
distinct problem domains: Whilst some industries, like CG Im-making and SFX, are
more geared towards realism, other areas have driven an increased demand of faster,
more responsive graphics, known under the umbrella term of real-time rendering

2.2 Rendering Optics

The essence of generating images from abstract descriptions can be narrowed down
to the simulation of a real-world camera in a virtual environment. As such, we
commence by examining the characteristics of virtual cameras as well as the related
concepts from radiometrythat help us model light propagation.

2.2.1 Camera Optics

Most genuine cameras have a series of common denominators arranged in a similar
construction:

An aperture allows light to enter through a convex lens, which casts an image
onto a light-capturing sensor. The convexity of the lens ensures that the direction in
which light hits the sensor is restricted, thus focusing the image with a limited depth
of eld, determined by the focal length.

Chapter 2. Introduction 4

This directional limitation of incident light can also be accomplished without a
lens, by severely limiting the size of the camera's aperture, which is the principle of
the pinhole camerfr4] (as seenin g. 2.1).

FIGURE 2.1: Comparison of the optics behind a lens-based and pin-
hole camera.

Pinhole cameras have nearly in nite depth of eld and, unlike lens-based cam-
eras, do not suffer from lens distortion (see g. 2.2). However, their minuscule
apertures require proportionally lengthy exposure times to produce serviceable pho-
tographs [74], for which reason pinhole cameras tend to nd little to no use in real-
life photography [18].

However, virtual environments are not subject to the same physical constraints,
as any numerical value for light can arbitrarily be multiplied by some factor to con-
trol for brightness or exposure. As such, the notion of an exposure timés not a valid
one within a virtual context.

2.2.2 \Virtual Camera

A common observation one can make in computer-generated images is that they
tend to have unlimited depth of eld. This is, indeed, because virtual cameras
strongly mimic the simpli ed optics of a pinhole camera [74].

In reality, increasing the distance between a pinhole and its sensor would pro-
duce a weaker image due to inverse-square attenuation. But since brightness factors
and exposure times are irrelevant in a virtual context, the pinhole-sensor distance
can be entirely discarded. As such, the sensor can be regarded as being a virtual
screenin front of the camera [74], where light enters through grates corresponding
to pixels on the nal image. This arrangement is depicted in g. 2.3.

Chapter 2. Introduction 5

FIGURE 2.2: Normal lens (left) vs. Pinhole lens (right). The pinhole
has greater depth of eld, but the image sharpness decreases with
pinhole size. Image credited to Leonard Lessin/Science Source [60].

By designating the location of the pinhole as the camera's position, we are left
with a location vector, a view direction and two eld-of-view (FOV) angles that are
proportional to the height and width of the resulting image respectively .

Camerea= fC,*x,*y,*z,] x:] y9 (2.1)

where Cis the location of the camera, x, y and z are the camera's right, upward
and forward directions respectively and] ,] y are the FOV angles for the x and y
directions.

In most practical cases, the given directions form an orthogonal coordinate sys-
temwith 2= X .

FIGURE 2.3: Optics of a virtual camera. The dimensions of the virtual
screen are directly tied to the angles] x,] y making them independent
of their distance from C.

IMost computer graphics domains expand this de nition by also including a near and far clipping
plang thus forming a view frustum[74].

	Abstract
	Preface
	Nvidia RTX
	Motivation
	Objective
	Thesis Structure

	Introduction
	The Speed - Realism Dichotomy
	Rendering Optics
	Camera Optics
	Virtual Camera

	Radiometric Quantities
	Solid Angle
	Radiance
	Radiant Flux
	Irradiance and Radiant Exitance
	BRDF and the Reflectance Equation

	The Rendering Equation
	Specular and Diffuse BRDFs
	Specular Reflections
	Glossy Reflections
	Diffuse Reflections

	Rasterization
	Raytracing
	Ray Definition
	Ray-triangle Intersection
	Bounding Volume Hierarchies

	Radiosity
	View Factor
	The Nusselt Analog
	The Hemicube Approximation
	Monte-Carlo Integration

	Classical Radiosity
	Progressive Radiosity
	Progressive Refinement Radiosity
	Instant Radiosity and Sampling Approaches

	Visibility Determination
	Z-Buffering
	Raytracing for Visibility

	The Turing Architecture and DXR
	GPUs and Parallelism
	The Turing Architecture
	TU102 GPU Structure
	GPC
	SM - Streaming Multiprocessor
	CUDA Core
	Tensor Core
	RT Core

	DirectX
	DirectX Rasterization Pipeline
	Input Assembler Stage
	Vertex Shader
	Tessellation Stage
	Geometry Shader
	Rasterizer Stage
	Pixel Shader
	Output Merger Stage

	DirectX Raytracing
	DXR Pipeline
	Rays in DXR
	Programmable Shaders

	TraceRay Function
	Code Example
	Host Initialization
	Acceleration Structure
	BLAS
	TLAS
	Shader Table

	Status Quo of RTX

	RTX Radiosity
	Status Quo of GPU-based Radiosity
	Lead-up to RTRad
	Target Use-Case

	Previous Work
	GPU Radiosity
	Rapid-Radiosity (RRad)

	Source Code and Dependencies
	Falcor

	Program Structure
	Class Structure

	Input Data
	Subdivision through UV Mapping
	Input Components
	Texture-Group

	CITPass
	Surface Area

	RTLPass
	Visibility Raytracing
	View Factor Calculation
	Lighting Contribution
	Indexing and Memory Conflicts
	Batching

	SewSeams Pass
	VITPass

	Performance Improvements
	Refinement
	Static Undersampling
	Monte-Carlo Undersampling

	Mipmapped Undersampling
	Adaptive Subdivision
	Alpha-Embedded Substructuring
	Gradient Calculation

	Visibility Caching
	Memory Complexity
	Cantor Pairing Function
	Visibility Buffer

	Voxel Raymarching
	Raymarching and 3D Textures
	Scene Voxelization
	Vertex Shader
	Geometry Shader
	Pixel Shader

	Directional Sampling
	Hemispheric Direction Generation

	Evaluation
	RTRad Overview
	Evaluation Method
	Pass-Time
	DFPR
	Scenes

	Results
	Pure Progressive Radiosity
	Undersampling
	Undersampling Method Differences

	Adaptive Subdivision
	Scene Complexity

	Extensions
	Visibility Caching
	Voxel Raymarching
	Directional Sampling

	Comparison
	Unity and Unreal Engine

	Specular Reflections

	Verdict
	Summary
	Limitations
	Conclusions
	Future Work

	Bibliography

