
FREIE UNIVERSITÄT BERLIN

MASTER’S THESIS

Hardware Acceleration of Progressive
Refinement Radiosity using Nvidia RTX

Author:
Benjamin KAHL

Supervisor:
Prof. Dr. Günter ROTE

Revised and corrected version of a thesis submitted in fulfillment of the
requirements

for the degree of Master of Science
on

October 13, 2022

in the

Department of Mathematics and Computer Science

March 26, 2023

https://www.fu-berlin.de/
https://benjamin.kahl.fi
http://www.mi.fu-berlin.de/inf/groups/ag-ti/members/professoren/Rote_Guenter.html
https://www.mi.fu-berlin.de/en/index.html

i

FREIE UNIVERSITÄT BERLIN

Abstract
Institute of Computer Science

Department of Mathematics and Computer Science

Master of Science

Hardware Acceleration of Progressive Refinement Radiosity using Nvidia RTX

by Benjamin KAHL

A vital component of photo-realistic image synthesis is the simulation of indirect
diffuse reflections, which still remain a quintessential hurdle that modern rendering
engines struggle to overcome. Real-time applications typically pre-generate diffuse
lighting information offline using radiosity to avoid performing costly computations
at run-time.

In this thesis we present a variant of progressive refinement radiosity that utilizes
Nvidia’s novel RTX technology to accelerate the process of form-factor computation
without compromising on visual fidelity. Through a modern implementation built
on DirectX 12 we demonstrate that offloading radiosity’s visibility component to RT
cores significantly improves the lightmap generation process and potentially propels
it into the domain of real-time.

HTTPS://WWW.FU-BERLIN.DE/
https://www.mi.fu-berlin.de/en/inf/index.html
https://www.mi.fu-berlin.de/en/index.html

ii

Contents

Abstract i

1 Preface 1
1.1 Nvidia RTX . 1
1.2 Motivation . 2
1.3 Objective . 2
1.4 Thesis Structure . 2

2 Introduction 3
2.1 The Speed - Realism Dichotomy . 3
2.2 Rendering Optics . 3

2.2.1 Camera Optics . 3
2.2.2 Virtual Camera . 4

2.3 Radiometric Quantities . 6
2.3.1 Solid Angle . 6
2.3.2 Radiance . 7
2.3.3 Radiant Flux . 7
2.3.4 Irradiance and Radiant Exitance 8
2.3.5 BRDF and the Reflectance Equation 9

2.4 The Rendering Equation . 9
2.5 Specular and Diffuse BRDFs . 10

2.5.1 Specular Reflections . 11
2.5.2 Glossy Reflections . 11
2.5.3 Diffuse Reflections . 12

2.6 Rasterization . 13
2.7 Raytracing . 14

2.7.1 Ray Definition . 15
2.7.2 Ray-triangle Intersection . 16
2.7.3 Bounding Volume Hierarchies 18

2.8 Radiosity . 19
2.8.1 View Factor . 20
2.8.2 The Nusselt Analog . 21

The Hemicube Approximation 21
Monte-Carlo Integration . 22

2.8.3 Classical Radiosity . 23
2.8.4 Progressive Radiosity . 23
2.8.5 Progressive Refinement Radiosity 24
2.8.6 Instant Radiosity and Sampling Approaches 25

2.9 Visibility Determination . 26
2.9.1 Z-Buffering . 26
2.9.2 Raytracing for Visibility . 27

iii

3 The Turing Architecture and DXR 28
3.1 GPUs and Parallelism . 28
3.2 The Turing Architecture . 28

3.2.1 TU102 GPU Structure . 29
3.2.2 GPC . 29
3.2.3 SM - Streaming Multiprocessor 30

CUDA Core . 31
Tensor Core . 31
RT Core . 32

3.3 DirectX . 32
3.3.1 DirectX Rasterization Pipeline 33

Input Assembler Stage . 33
Vertex Shader . 34
Tessellation Stage . 35
Geometry Shader . 35
Rasterizer Stage . 35
Pixel Shader . 36
Output Merger Stage . 36

3.4 DirectX Raytracing . 36
3.4.1 DXR Pipeline . 36

Rays in DXR . 37
Programmable Shaders . 37

3.4.2 TraceRay Function . 39
3.4.3 Code Example . 40
3.4.4 Host Initialization . 41
3.4.5 Acceleration Structure . 41

BLAS . 42
TLAS . 43
Shader Table . 43

3.5 Status Quo of RTX . 43

4 RTX Radiosity 45
4.1 Status Quo of GPU-based Radiosity . 45

4.1.1 Lead-up to RTRad . 45
4.1.2 Target Use-Case . 46

4.2 Previous Work . 46
4.2.1 GPU Radiosity . 47
4.2.2 Rapid-Radiosity (RRad) . 47

4.3 Source Code and Dependencies . 48
4.3.1 Falcor . 48

4.4 Program Structure . 49
4.4.1 Class Structure . 49

4.5 Input Data . 50
4.5.1 Subdivision through UV Mapping 50
4.5.2 Input Components . 51

Texture-Group . 51
4.6 CITPass . 52

4.6.1 Surface Area . 53
4.7 RTLPass . 54

4.7.1 Visibility Raytracing . 55
4.7.2 View Factor Calculation . 57

iv

4.7.3 Lighting Contribution . 58
4.7.4 Indexing and Memory Conflicts 59
4.7.5 Batching . 60

4.8 SewSeams Pass . 61
4.9 VITPass . 62

5 Performance Improvements 64
5.1 Refinement . 64

5.1.1 Static Undersampling . 64
Monte-Carlo Undersampling . 65

5.1.2 Mipmapped Undersampling . 66
5.1.3 Adaptive Subdivision . 66

Alpha-Embedded Substructuring 67
Gradient Calculation . 69

5.2 Visibility Caching . 70
5.2.1 Memory Complexity . 70
5.2.2 Cantor Pairing Function . 71
5.2.3 Visibility Buffer . 71

5.3 Voxel Raymarching . 72
5.3.1 Raymarching and 3D Textures 73
5.3.2 Scene Voxelization . 73

Vertex Shader . 73
Geometry Shader . 73
Pixel Shader . 75

5.4 Directional Sampling . 76
5.4.1 Hemispheric Direction Generation 77

6 Evaluation 80
6.1 RTRad Overview . 80
6.2 Evaluation Method . 82

6.2.1 Pass-Time . 82
6.2.2 DFPR . 82
6.2.3 Scenes . 83

6.3 Results . 85
6.3.1 Pure Progressive Radiosity . 85
6.3.2 Undersampling . 86

Undersampling Method Differences 88
6.3.3 Adaptive Subdivision . 89
6.3.4 Scene Complexity . 90

6.4 Extensions . 91
6.4.1 Visibility Caching . 91
6.4.2 Voxel Raymarching . 92
6.4.3 Directional Sampling . 93

6.5 Comparison . 95
6.5.1 Unity and Unreal Engine . 96

6.6 Specular Reflections . 98

v

7 Verdict 99
7.1 Summary . 99
7.2 Limitations . 99
7.3 Conclusions . 100
7.4 Future Work . 101

8 Bibliography 103

1

Chapter 1

Preface

The computational synthesis of photorealistic images has been a quintessential chal-
lenge in the computer graphics domain since its inception. Growing industries such
as video games, virtual reality and visual effects have induced a veritable explosion
in demand for increased realism over the last few decades. A major step towards this
goal was taken by James Kajiya in 1989 when he formulated the rendering equation
[13], which provides a general mathematical description of how light propagates
through a 3D environment.

Unfortunately, the rendering equation proved far too complex to solve linearly.
Every surface can receive light from infinitely many directions and then scatter it
diffusely, effectively qualifying the surface as a separate light-source itself.

Computer graphics researchers have spent a large part of their endeavour grap-
pling with the conundrum that is finding an ideal, numerically solvable model to
this infinitely recursive complexity. Indeed, rendering algorithms we see employed
today can all be regarded as approximations, shortcuts or simplifications of the ren-
dering equation.

With regard to global illumination, two of these have stood the test of time: ray
tracing for the generation of individual, highly realistic images and radiosity for real-
time use cases that continuously render the same, static geometry from a large set of
camera angles.

1.1 Nvidia RTX

Over the last decades raytracing has generally found its place as a crude and expen-
sive approach that nevertheless provides a very high degree of photorealism, albeit
at a proportionally high cost in required computation time.

Yet in 2018, fifty years after the first computer-based ray-tracer was created [14],
the American tech company Nvidia unveiled their GeForce RTX series of graphics
cards. Uniquely, these contain specialized computation units that can speed up
raytracing-related operations to such a degree that it propels this blunt, brute-force
approach into the domain of real-time [49].

The mathematical challenges faced by raytracing and radiosity are fundamen-
tally identical and thus inextricably linked. In this thesis we argue that the consid-
erable performance increase enabled by the RTX platform ought to be reflected in
radiosity to the same degree it is seen in raytracing.

Chapter 1. Preface 2

1.2 Motivation

Global illumination solutions based on radiosity typically generate lighting informa-
tion and then export it into a texture, which can be rendered a-posteriori within con-
sumer applications at virtually no cost at all. Despite great rendering performance,
the process of generating these textures remains a computationally expensive pro-
cess that can severely hamstring the development and design process of complex 3D
environments.

Radiosity’s performance bottleneck unequivocally lies with the vast amount of
visibility calculations required [1]. Although this problem is, in theory, highly par-
allelizable [15], implementations of the radiosity model seem to generally favour
multi-core CPUs (approx. 4-16 high performance cores) over GPUs (approx. 1-10
thousand low performance cores) [16], because GPU variants rely on hemicuboid
z-Buffering for visibility determination [17].

In this thesis we investigate if an RTX-based visibility solution provides a perfor-
mance improvement sufficient enough to fully advance radiosity into the realm of
GPUs and parallel computing.

Not only is raytracing a highly adequate solution for visibility, but RTX GPUs
also perform their operations on dedicated hardware in the form of a moderate
amount (30 to 80) of highly specialized RT cores [49]. This intermediate solution
between the parallelization levels of a CPU and a GPU may prove ideal for the ac-
celeration of the radiosity algorithm.

1.3 Objective

The intended goal behind this thesis is to further the acceleration of radiosity com-
putations for developers and designers of 3D environments working on machines
compatible with RTX. Once lighting textures have been generated, they can in turn
be rendered on almost any graphics hardware, regardless of RTX compatibility.

To accomplish this, we grapple a common variant of radiosity found on GPUs,
known as progressive refinement radiosity, and substitute its z-Buffering components
with an RTX-based approach. We will also investigate and examine potential per-
formance improvements in addition to how well this approach compares to already
existing solutions.

1.4 Thesis Structure

The next chapter will cover the theoretical knowledge required for the remainder of
the thesis by deriving the rendering equation and providing mathematical models
for several global illumination solutions.

Afterwards, chapter 3 takes a deep dive into RTX technology by examining and
reviewing the underlying Turing architecture and DirectX raytracing pipeline.

Chapters 4 and 5 will present RTRad, our RTX-accelerated progressive refinement
radiosity implementation as well as any related tweaks and potential performance
improvements.

Lastly, in chapter 6, we compare and analyze the performance of this implemen-
tation upon which we draw our conclusions in chapter 7.

3

Chapter 2

Introduction

This chapter outlines the background knowledge and core concepts that are required
in the subsequent chapters. The first section commences by deriving the core prob-
lem of computer graphics starting at the root. Afterwards, we show how the global
illumination problem is tackled specifically by radiosity and raytracing.

2.1 The Speed - Realism Dichotomy

A classical image-synthetization process computes how light scattered into an en-
vironment translates into pixel colors on a retina. The color an object should adopt
on a virtual sensor can be traced back to the wavelengths absorbed by its surface in
relation to the light incident on it, which is turn affected by the light that is reflected,
refracted or emitted by other surfaces around it.

Combine this endless recursion with the vast amount of intrinsics this process
is subject to, such as physical properties or geometric arrangements, and it quickly
becomes clear that a complete, physically accurate light simulation is an unfeasible
computational task that needs to be approximated.

Indeed, even highly photorealistic, computationally heavy methods employ a
significant amount of approximation and reductionism. The question therefore be-
comes which simplifications one is willing to make and what their payoff is in com-
putational expense.

The balance of speed vs. realism that underpins this challenge divides it into two
distinct problem domains: Whilst some industries, like CG film-making and SFX, are
more geared towards realism, other areas have driven an increased demand of faster,
more responsive graphics, known under the umbrella term of real-time rendering.

2.2 Rendering Optics

The essence of generating images from abstract descriptions can be narrowed down
to the simulation of a real-world camera in a virtual environment. As such, we
commence by examining the characteristics of virtual cameras as well as the related
concepts from radiometry that help us model light propagation.

2.2.1 Camera Optics

Most genuine cameras have a series of common denominators arranged in a similar
construction:

An aperture allows light to enter through a convex lens, which casts an image
onto a light-capturing sensor. The convexity of the lens ensures that the direction in
which light hits the sensor is restricted, thus focusing the image with a limited depth
of field, determined by the focal length.

Chapter 2. Introduction 4

This directional limitation of incident light can also be accomplished without a
lens, by severely limiting the size of the camera’s aperture, which is the principle of
the pinhole camera [74] (as seen in fig. 2.1).

FIGURE 2.1: Comparison of the optics behind a lens-based and pin-
hole camera.

Pinhole cameras have nearly infinite depth of field and, unlike lens-based cam-
eras, do not suffer from lens distortion (see fig. 2.2). However, their minuscule
apertures require proportionally lengthy exposure times to produce serviceable pho-
tographs [74], for which reason pinhole cameras tend to find little to no use in real-
life photography [18].

However, virtual environments are not subject to the same physical constraints,
as any numerical value for light can arbitrarily be multiplied by some factor to con-
trol for brightness or exposure. As such, the notion of an exposure time is not a valid
one within a virtual context.

2.2.2 Virtual Camera

A common observation one can make in computer-generated images is that they
tend to have unlimited depth of field. This is, indeed, because virtual cameras
strongly mimic the simplified optics of a pinhole camera [74].

In reality, increasing the distance between a pinhole and its sensor would pro-
duce a weaker image due to inverse-square attenuation. But since brightness factors
and exposure times are irrelevant in a virtual context, the pinhole-sensor distance
can be entirely discarded. As such, the sensor can be regarded as being a virtual
screen in front of the camera [74], where light enters through grates corresponding
to pixels on the final image. This arrangement is depicted in fig. 2.3.

Chapter 2. Introduction 5

FIGURE 2.2: Normal lens (left) vs. Pinhole lens (right). The pinhole
has greater depth of field, but the image sharpness decreases with
pinhole size. Image credited to Leonard Lessin/Science Source [60].

By designating the location of the pinhole as the camera’s position, we are left
with a location vector, a view direction and two field-of-view (FOV) angles that are
proportional to the height and width of the resulting image respectively 1.

Camera = {C,
⇀
x ,

⇀
y ,

⇀
z ,∡x,∡y} (2.1)

where C is the location of the camera,
⇀
x ,

⇀
y and

⇀
z are the camera’s right, upward

and forward directions respectively and ∡x, ∡y are the FOV angles for the x and y
directions.

In most practical cases, the given directions form an orthogonal coordinate sys-
tem with ẑ = x̂× ŷ.

FIGURE 2.3: Optics of a virtual camera. The dimensions of the virtual
screen are directly tied to the angles ∡x, ∡y making them independent

of their distance from C.

1Most computer graphics domains expand this definition by also including a near and far clipping
plane, thus forming a view frustum [74].

Chapter 2. Introduction 6

2.3 Radiometric Quantities

The process of rendering a virtual object from the perspective of a virtual camera
now comes down to measuring the light that the object emits or reflects towards the
location of the virtual pinhole C.

The direction of incident photons from a given surface cannot be described by
a simple 3D vector, as surfaces subtend an infinite amount of directions towards a
single point. Thus, it is useful to define a measurement of solid angle for the total field
of view an object occupies towards an observer.

2.3.1 Solid Angle

Regular 2D angles can be adequately represented by the length of the arc they cover
on a unit circle. Analogously, solid angles are proportional to the area a surface
projects onto a unit sphere around the point of origin [1, 67]. Solid angles are mea-
sured in steradians and limited by the total surface area 4π of a unit sphere.

Let dA be a differential, arbitrarily rotated surface area at point x′ with the nor-
mal vector

⇀
n . The solid angle that dA occupies at another point x can be calculated

using two separate operations [1], both of which are illustrated in fig. 2.4.

FIGURE 2.4: A surface projected onto a plane results in a surface area
of dA cos θ. Projecting a perpendicular surface towards the center of
a sphere results in a projected surface area on the sphere of dA/∥x−

x′∥2. Image from work by Benjamin Kahl [8].

• The surface area dA projects onto a plane perpendicular to x′ − x is equal to
dA cos(θ), where θ is the angle between

⇀
n and x′ − x [1]. This operation ac-

counts for the rotation of dA and gives us the surface area of dA that is perpen-
dicular to x.

Chapter 2. Introduction 7

• Projecting a perpendicular, differential surface onto a unit sphere around x is
simply given by the inverse square of their distance [1]. This operation is given
by the inverse square law and accounts for the distance between x and x′.

Combining both these operations into a single formula, will take both rotation
and distance into consideration [1, 68]:

ω =
cos(θ)dA
∥x′ − x∥2 (2.2)

The field-of-view that an object occupies on the sensor of a virtual camera can
be quantified through a solid angle. What color the corresponding pixels should
adopt now depends on the light that the object emits, reflects or refracts towards the
camera, which is given by its radiance.

2.3.2 Radiance

Radiance describes the radiant energy propagating in a given direction
⇀
ω at a given

location x.
Let p(x,

⇀
ω, λ) be the volume density of photons of wavelength λ at position x

that are travelling in direction
⇀
ω, then the corresponding radiance L(x,

⇀
ω) equates

to the product of said photon density and the energy of a single photon hc
λ , integrated

over all wavelengths [1]:

L(x,
⇀
ω) =

∫
λ

p(x,
⇀
ω, λ)

hc
λ

(2.3)

Since the retinas in human eyes consist of three different types of photorecep-
tor cones (red, green and blue respectively), pixel colors are usually modelled as
3D vectors with each dimension corresponding to a respective color component. A
commonly employed format is the RGB 24-bit color depth format, which assigns
each component 8 bits of depth, with another optional 8 bits for transparency in an
alpha channel.

The overall magnitude of a color-vector is a measure of its overall energy, which
corresponds to the radiometric quantity of flux.

2.3.3 Radiant Flux

In computer graphics the quantum nature of light (photon density) tends to be dis-
carded in favour of radiant flux Φ, which amounts to a general measure of radiant
energy per unit time [1, 68]:

Φ =
∂Q
∂t

[W] (2.4)

where Q is the energy emitted, transmitted or reflected.
The total flux a surface A emanates is equal to the total radiance all the points on

this surface emit in all directions [1]:

Φo =
∫

x∈A

∫
ω

L(x,
⇀
ω) (2.5)

Respectively, the radiance exiting a surface in a particular direction is the total
flux the surface emits per unit solid angle per unit projected surface area [8]:

Chapter 2. Introduction 8

L =
dΦ

dωdA⊥
=

dΦ
dωdA cos θ

(2.6)

This formulation of radiance is of particular importance, as it acts as a measure
of how bright a surface would appear to a camera in direction

⇀
ω [1].

Henceforth we will refer to radiance exiting a surface point in a certain direction
as Lo(x,

⇀
ω) and radiance incident on that point from

⇀
ω as Li(x,

⇀
ω).

Under the assumption that a surface does not emit any light of its own, we can
discern that the radiance Lo emitted towards a camera would have to be less or
equal to the flux incident on the surface, as per conservation of energy. The total flux
incident on a given surface can be quantified by the value of irradiance.

2.3.4 Irradiance and Radiant Exitance

The total flux incident on a surface per unit surface area is termed the irradiance E of
that surface (sometimes known as illuminance) [1, 68]:

E =
dΦi

dA
[W/m2] (2.7)

It is equivalent to the radiance incident from all directions in a hemisphere Ω
above the surface [1, 68]:

E =
dΦi

dA
=

∫
Ω

Li(ω) cos θdω (2.8)

FIGURE 2.5: Visualization of flux, radiance, irradiance and radiant
exitance (a-d). Images based on depictions by Jarosz et al. [19].

Chapter 2. Introduction 9

The opposite of irradiance is the radiant exitance B, which is defined as the flux
per surface area leaving or being emanated from a surface [2]:

B =
dΦo

dA
=

∫
Ω

Lo(ω) cos θdω (2.9)

The first law of thermodynamics dictates that energy is neither created nor de-
stroyed. In the context of computer graphics it implies that the radiance reflected by
a non-emissive surface must be less or equal to the radiance it receives.

Put differently, the radiance of a point x must be proportional to its irradiance
under a coefficient of one or less [1]:

dLo(
⇀
ωo) ∝ dE(

⇀
ωi) (2.10)

The coefficient of proportionality that ordains this relationship is given by the
bidirectional reflectance distribution function of x.

2.3.5 BRDF and the Reflectance Equation

For any given pair of differential solid angles (i.e. directions)
⇀
ωi and

⇀
ωo, a material’s

bidirectional reflectance distribution function (BRDF) defines the ratio of flux concentra-
tion per steradian incident from

⇀
ωi that is reflected into

⇀
ωo [1, 67]:

fr(
⇀
ωi →

⇀
ωo) =

Lo(
⇀
ωo)

E(
⇀
ωi)

=
Lo(

⇀
ωo)

Li(
⇀
ωi) cos θdωi

(2.11)

If we solve this equation for Lo and perform the same hemispherical integral over
the set of all incident directions Ω as in (2.8), we arrive at the total amount of light
reflected by a surface in a specified direction, also known as the reflectance equation
[1]:

fr(
⇀
ωi →

⇀
ωo) =

Lo(
⇀
ωo)

E(
⇀
ωi)

⇔Lo(
⇀
ωo) =

∫
Ω

fr(
⇀
ωi →

⇀
ωo)Li(

⇀
ωi) cos θidωi

(2.12)

Put simply, the reflectance equation prescribes that the radiance Lo a surface re-
flects in a particular direction

⇀
ωo equates to its BRDF weighted irradiance.

2.4 The Rendering Equation

The reflectance equation yields the light a surface point reflects towards a camera.
Including a term Le(x,

⇀
ω) for emission (light the point x emits itself) provides the

total radiance the surface emanates in a direction
⇀
ω [1] (see fig. 2.6). This sum

constitutes the Rendering Equation, as originally formulated by Kayija et al. in 1986
[13, 1]:

Lo(x,
⇀
ω) = Le(x,

⇀
ω) +

∫
Ω

fr(
⇀
ωi,

⇀
ω, x)Li(x,

⇀
ωi)(

⇀
ωi ·

⇀
nx)dωi (2.13)

The rendering equation states that "the transport intensity of light from one sur-
face point to another is simply the sum of emitted light and the total light intensity
which is scattered toward x form all other surface points" [13].

Chapter 2. Introduction 10

FIGURE 2.6: The fundamentals of the rendering equation: L is a
weighted integral over all incident directions.

An alternative formulation of this equation can be derived by replacing the hemi-
spheric integral of directions by an integral over all other surface points [13, 1].

Let S be the set of all surfaces in the scene, then the irradiance E incident on a
given surface point x is the integral over all light leaving any other surface point
towards x, so long as x and the other point x′ are mutually visible. The term of
visibility - or occlusion - is given by a function V(x, x′) which is equal to 1 if x and
x′ are mutually visible, 0 if not:

E =
∫

S
Lo(x′,

⇀
ω
′
)V(x, x′)

cos θ cos θ′

∥x− x′∥2 dA (2.14)

The multiplication of the two cosines cos θ and cos θ′ accounts for the mutually
projected surface area of the two locations and the division by the square of their
distance stems from the inverse-square law.

Applying this equation for irradiance to the reflectance equation in (2.12) and
adding the emissive component Le, leaves us with the following variant of the ren-
dering equation [13, 1]:

Lo(x,
⇀
ω) = Le(x,

⇀
ω) +

∫
S

fr(
⇀
ω
′
,
⇀
ω, x)Lo(x′,

⇀
ω
′
)V(x, x′)

cos θ cos θ′

∥x− x′∥2 dA (2.15)

For the sake of simplicity, we will henceforth refer to these individual variants as
the hemispheric- and surface-based rendering equation respectively.

2.5 Specular and Diffuse BRDFs

Materials we encounter in reality tend to be highly granular and possess immense
detail on a microscopic scale, which leads to light being reflected in complex distri-
butions of outgoing directions that our simple, computational models cannot fully
replicate.

The tendency in computer graphics is to differentiate between three distinct re-
flectance components: diffuse, specular and glossy [1, 8], as portrayed in fig. 2.7
and fig. 2.8. These components are weighed in various proportions to one another,
depending on the underlying material’s physical properties and parameters.

Chapter 2. Introduction 11

FIGURE 2.7: Reflectance components as part of a BRDF for a given
angle of incidence (in red).

2.5.1 Specular Reflections

In a specular reflection the incident lights’ trajectory is perfectly mirrored across the
surface’s normal vector. We can model this behaviour by applying a dirac delta func-
tion to the angle around the normal [1]:

fr(
⇀
ωi →

⇀
ωo) =

δ(cos θi − cos θo)

cos θi
δ(ϕi − (ϕo ± π)) (2.16)

The values of θ and ϕ correspond to the angles with and around the upward axis
respectively. The delta function δ yields zero for any non-zero parameter.

2.5.2 Glossy Reflections

Glossy reflections typically describe specular reflections with a small to moderate
amount of scattering and variation. A material’s glossiness determines the degree of
diffusion that occurs.

Mathematically, a broader version of the delta function can be modelled by tak-
ing the dot product of two normalized vectors and raising it to some high exponent
[8, 75].

Let
⇀
R be the vector of a perfectly specular reflection and

⇀
ωo be a vector that points

from a surface towards the camera, then the glossy radiance equates to the following
[8, 75, 20]:

Lo(
⇀
ωo) = Lidωi(max(

⇀
R ·⇀ωo), 0)α (2.17)

Chapter 2. Introduction 12

The value of max(
⇀
R · ⇀ωo), 0) is zero for angles larger than 90° and increases if

⇀
R and

⇀
ωo are of similar angle to the surface normal. The glossiness α dictates the

narrowness of the underlying pseudo-delta function.

FIGURE 2.8: Reflectance components on a sphere rendered in the
Blender 2.8 EEVEE engine.

2.5.3 Diffuse Reflections

As depicted in fig. 2.7, labertian diffuse reflections are defined as completely isotropic,
where the apparent brightness and surface color remain equal for all angles of ob-
servation [1]:

∀α, β ∈ Ω : fr(x → α) = fr(x → β) (2.18)

The corresponding BRDF fr thus acts as a constant, since it retains the same value
for all parameters.

Replacing the BRDF in the reflectance equation (2.12) by a constant allows for
it to be separated from the integrand, providing us with a constant fraction of the
irradiance E [1]:

Lo(
⇀
ωo) =

∫
Ω

frLi(
⇀
ωi) cos θidωi

= fr

∫
Ω

Li(
⇀
ωi) cos θidωi

= frE

(2.19)

Intuitively, this equation describes that if the light incident on a surface gets scat-
tered evenly, then the same fraction of the irradiance is reflected in all directions.

Since genuine surfaces typically absorb a portion of the light incident on them, it
is useful to define a measure of reflectivity ρ that defines what percentage of irradi-
ance is reflected into radiant exitance [1]:

ρ =
B
E
=

∫
Ωo

Lo(
⇀
ωo) cos θodωo

E
(2.20)

Lo is constant for all directions and Ω constitutes a hemisphere, as such, ρ consti-
tutes the BRDF constant multiplied by π [1]:

Chapter 2. Introduction 13

ρ =

∫
Ωo

Lo(
⇀
ωo) cos θodωo

E

=
Lo

∫
Ωo

cos θodωo

E

=
Loπ

E
= π fr

(2.21)

Which, in turn, implies that the BRDF for a lambertian diffuse reflection is equal
to a multiplication by ρ

π [1]:

fr =
ρ

π
(2.22)

Diffuse reflections are the most difficult type of reflections to model accurately,
as they require knowing the total light incident for all directions.

2.6 Rasterization

The rendering equation provides a mathematical model of what brightness and color
a given surface adopts for a given observer. To compile this information into an
actual image, we require the set of pixels on the image that a surface occupies.

In practice, three-dimensional scenes are usually described by a series of simple
polygons - known as primitives - that span areas between 3D points known as ver-
tices. The conversion process of a primitive into a corresponding set of pixels that it
occupies on a screen is known as rasterization and forms a vital step in the majority
of rendering pipelines. A more detailed account of this process is given in section
3.3.1.

The most common rasterization methods triangulate higher degree polygons
and proceed to only rasterize pixels if their center lies completely inside a trian-
gle. Conservative rasterization can add some certainty to pixel rendering, as all pixels
that are at least partially covered by a rendered primitive are rasterized [50] (see fig.
2.9).

FIGURE 2.9: Default and conservative rasterization in comparison:
Default rasterization only rasterizes fragments if their center is cov-
ered by the triangle. Conservative rasterization additionally includes

all fragments partially covered by the triangle.

Chapter 2. Introduction 14

Once the pixels a surface occupies have been determined, a plethora of different
lighting models can be applied to compute the color for each pixel individually, such
as the Phong local illumination model [20]. So called global illumination models will
include indirect light, i.e. light that bounces more than once before reaching the
camera (see fig. 2.10).

All illumination models are, in essence, an exercise in solving the rendering equa-
tion through approximation.

FIGURE 2.10: Local illumination (left) vs. global illumination (right)
in the Unity 2020.2 Engine. Note in particular the indirect, green light

on the sphere and angled surfaces.

2.7 Raytracing

The infinite recursion and integration of the rendering equation might appear to
have one simple solution: Apply a maximum recursion-depth limit and approx-
imate the hemispheric integral as a finite sum of directions. This exact thought-
process lies behind raytracing, which has long stood as one the simplest and most
intuitive approaches of numerically solving the rendering equation.

The core concept is simple and consists of tracing rays starting from the camera
position through each pixel of the virtual screen and then setting the pixel colors
based on the surfaces the respective rays collide with [67, 3]. Shooting rays directly
from the camera makes a discrete rasterization unnecessary.

Computing a surface’s lit color usually involves launching further sets of rays,
which depend on the surface’s material properties as well as the specific raytracing
variant that is being utilized [3]. For instance, if the intersection surface is smooth, a
specular ray is cast in the reflection direction and whichever surface this specular ray
collides with will be mirror-reflected by the former surface. Rough surfaces, on the
other hand, require sampling a myriad of rays to account for diffuse light (see fig.
2.11).

This process occurs recursively, with each intersection shooting its own set of
rays until either a light source is hit or a maximum amount of bounces is reached.
Whereupon the tree of rays is evaluated bottom-up until, at the root, the pixel’s final
color can be calculated [3].

Chapter 2. Introduction 15

FIGURE 2.11: Illustration of the raytracing process with the resulting
image. Specular rays are marked in red, diffuse rays in green and

initial rays in blue.

This process is, in essence, a brute-force approach at computing the Riemann
sum of the hemispheric rendering equation, as defined in (2.13):

Lo(x,
⇀
ω) = Le(x,

⇀
ω) +

∫
Ω

fr(
⇀
ωi,

⇀
ω, x)Li(

⇀
ωi, x)(

⇀
ωi ·

⇀
nx)dωi (2.23)

Let I(x,
⇀
ω) be a function that yields the closest surface intersected by a ray along

⇀
ω starting from x. The radiance incident at a surface point x from a given direction
⇀
ω must be equal to the light exiting the closest surface visible from

⇀
ω in the reverse

direction taken to the inverse square of their distance:

Li(
⇀
ω, x) =

Lo(I(x,
⇀
ω),−⇀

ω)

∥x− I(x,
⇀
ω)∥2

(2.24)

Based on this concept, raytracing collapses the hemispherical integral of the ren-
dering equation into a finite sum of directions that are randomly and isotropically
selected from the hemisphere:

Lo(x,
⇀
ω) = Le(x,

⇀
ω) +

1
|Ω| ∑

⇀
ωi∈Ω

fr(
⇀
ωi,

⇀
ω, x)Lo(I(x,

⇀
ωi),−

⇀
ω)

⇀
ωi ·

⇀
nx

∥x− I(x,
⇀
ωi)∥2

(2.25)

where Ω is such a finite set of directions.
Despite being fundamentally simple, raytracing can produce highly photoreal-

istic images because physical effects like refractions or caustics can easily be repli-
cated. However, it does come at an equally high computational cost, as the recursive
process can create a colossal amount of rays, all of which have to undergo a vast
amount of intersection tests with the scene’s geometry.

2.7.1 Ray Definition

Rays follow the mathematical description of a three-dimensional half-line consti-

tuted by an origin o and a direction
⇀
d [3]. In its parametric form, a ray can be

described as:

Chapter 2. Introduction 16

R(t) = o + t
⇀
d for 0 ≤ t < ∞ (2.26)

In practice it can be useful to compute cosines between vectors via dot-products,
as is done in glossy reflections (see section 2.5.2). To facilitate this process, direction
vectors are often restricted to be normalized unit vectors d̂ [3].

This restriction also implies that the distance from the origin is directly repre-
sented by t. More generally, the difference in t value is equal to the distance between
the respective points [3]:

∥R(t1)− R(t2)∥ = |t1 − t2| (2.27)

FIGURE 2.12: A ray launched from o to P. To avoid precision prob-
lems the interval is offset by ϵ. Of the three intersections the first is
reported as the closest hit. Image based on a depiction from Raytracing

Gems [3].

In raytracing, rays are intersected with a finite amount of geometry to determine
collision points. As such, the semi-infinite description of a ray is not practical. In-
stead, rays frequently are defined with an additional interval that constitutes the
range of t-values for which an intersection is useful: t ∈ [tmin, tmax]. Intersections
that lie outside this interval are not reported (see fig. 2.12).

The utility of this interval comes in the form of several advantages: Firstly, the
minimum value can help prevent self-intersections with the geometry itself that can
arise from floating-point inaccuracies [3]. Secondly, the maximum value can speed
up intersection calculations when hits beyond a certain point do not matter, like with
a shadow ray that is shot towards a light-source [3].

2.7.2 Ray-triangle Intersection

Ray-triangle intersection tests are at the heart of the raytracing algorithm. Given a
triangle T with the three vertices V1, V2 and V3 as well as a ray R with origin o and

direction
⇀
d , we seek the intersection point where R is equal to T.

Chapter 2. Introduction 17

One of the most commonly employed intersection algorithms in computer graph-
ics is the Möller-Trumbore algorithm [21], which functions with minimal memory re-
quirements by defining triangles in their parametric form of their barycentric coordi-
nates:

T(u, v) = (1− u− v)V1 + uV2 + vV3 (2.28)

where the barycentric coordinates u and v must fulfill the conditions u ≥ 0, v ≥ 0
and u + v ≤ 1.

FIGURE 2.13: The system of linear equations produced in Möller-
Trumbore algorithm effectively expresses the point of intersection in
t, u, v space. The unit triangle spanned by u and v corresponds to T.

Image based on depiction by Scratchapixel [76].

Equating T with the definition for a ray put forth in (2.26) yields the following
expression [21]:

R(t) = T(u, v)

⇐⇒ o + t
⇀
d = (1− u− v)V1 + uV2 + vV3

⇐⇒ o + t
⇀
d = V1 + u(V2 −V1) + v(V3 −V1)

⇐⇒ o−V1 = −t
⇀
d + u(V2 −V1) + v(V3 −V1)

(2.29)

which can be written as a linear system of equations [21]:

o−V1 =
[
−D (V2 −V1) (V3 −V1)

] t
u
v

 (2.30)

This process is equivalent with expressing the point of intersection in a coordi-
nate system spanned by the t, u and v axes, as depicted in fig. 2.13.

There are several methods for solving linear equation systems, but the one em-
ployed by Möller and Trumbore is Cramer’s Rule [21].

The resulting t, u and v values give both the distance from the ray origin as well
as the barycentric triangle coordinates of the intersection. If the conditions from

Chapter 2. Introduction 18

(2.28) are not met or t lies outside of its defined interval, then no intersection exists
[21].

Running this algorithm for every triangle in a scene whilst minimizing for t gives
us the first - or closest - point that a ray encounters, which corresponds to the func-
tion I defined above:

I(o,
⇀
d) = o + t

⇀
d for t being the minimal value in [tmin, tmax] that satisfies

R(o,
⇀
d) = Ti(u, v) with

u ≥ 0, v ≥ 0 and u + v ≤ 1
for any triangle Ti in the scene

(2.31)

FIGURE 2.14: Simplified illustration of a BVH of a simple 3D scene.

2.7.3 Bounding Volume Hierarchies

The intersection tests required for tracing a ray can constitute a huge computational
endeavour that acceleration data structures aim to ameliorate.

Primitives can be grouped into bounding boxes that can in turn be grouped as
well, thereby forming a hierarchy [3], as depicted in fig. 2.14. Naturally, if a ray does
not intersect a bounding volume it cannot intersect any of the contained primitives.

A bounding volume hierarchy (BVH) stores the triangles in the leaves of a tree struc-
ture with each node corresponding to a bounding volume. Ray traversal can then
commence at the root and progresses into the child nodes, in practice, reducing the
time complexity to logarithmic in the number of primitives [3, 9].

Other acceleration structures like binary space partitions can also be used, but to-
day’s consensus is that BVHs are generally the best suited for raytracing, as they
guarantee maximum memory usage threshold [3].

Chapter 2. Introduction 19

2.8 Radiosity

In computer graphics, the term radiosity refers to a finite-element approximation of
the rendering equation for diffuse reflections. This method has its roots in heat trans-
fer models used in thermal engineering [22] and, in contrast to raytracing, is far more
adequate for real-time rendering purposes.

In (2.22) we defined diffuse BRDFs as being constant and irrespective of the angle
of observation. This means that, within a static environment, every surface retains its
diffuse color no matter what perspective it is being rendered from. Radiosity makes
use of this fact by offloading the computation costs required for global illumina-
tion to a phase of pre-computation. Pre-computed values are stored in a so-called
lightmap, then simply retrieved on demand at minimal cost.

This method can only account for diffuse reflections on static (non-moving) ge-
ometry. Any displaced object will require the entire generation process to be re-
peated, while specular reflections have to be deferred to a different method, such as
raytracing [23].

The mathematical basis behind radiosity can be derived from the surface-based
rendering equation defined in (2.15):

Lo(x,
⇀
ω) = Le(x,

⇀
ω) +

∫
S

fr(
⇀
ω
′
,
⇀
ω, x)Lo(x,

⇀
ω
′
)V(x, x′)

cos θ cos θ′

∥x− x′∥2 dA (2.32)

Since only diffuse reflections are accounted for, the BRDF fr can entirely be re-
placed by the constant ρ

π defined in section 2.5.3. Furthermore, any directional pa-
rameters such as

⇀
ω can be dropped, as lambertian diffuse reflections are equal in all

directions [1]:

Lo(x) = Le(x) +
ρ(x)

π

∫
S

Lo(x)V(x, x′)
cos θ cos θ′

∥x− x′∥2 dA (2.33)

Similarly to raytracing, radiosity makes use of the finite element method by subdi-
viding the environment’s geometry into a series of small patches, thus collapsing the
area-integral into a finite sum [1]. Fig. 2.15 illustrates the two Riemann sums these
approaches correspond to.

FIGURE 2.15: Illustration of raytracing (left) and radiosity (right), as
depicted by Benjamin Kahl [8].

Chapter 2. Introduction 20

The term V(x, x′) cos θ cos θ′

∥x−x′∥2 dA is separated into a view factor Fi,j that describes the
fraction of the energy leaving patch i that arrives at j. Let n be the amount of sur-
faces - e.g. patches - in our scene. Then the diffuse radiance of a patch i can be
approximated by the following equation [1, 22]:

Lo(i) = Le(i) +
ρ(i)
π

n

∑
j=1

Lo(j)Fi,j (2.34)

which constitutes the Radiosity Equation as it was formulated in 1984 by Goral
et al. [22]. The individual components behind this mathematical transformation is
illustrated in fig. 2.16.

FIGURE 2.16: Approximating the rendering equation through radios-
ity and raytracing. The inverse square factor is contained within the

definition of Li. Image based on a depiction by Benjamin Kahl [8].

2.8.1 View Factor

Also known as form factor, a view factor Fi,j describes how well two surfaces i and j
are visible to one another and consists purely of geometric parameters.

In the engineering field of heat transfer, view factors are calculated through the
same geometric term we abstracted from the rendering equation above, integrated
for all point-pairs on the two surfaces [69]:

Fi,j =
1
Ai

∫
Ai

∫
Aj

cos θi cos θj

∥xi − xj∥2 dAidAj (2.35)

The division over the surface area Ai results in the reciprocity rule, which states
that if Ai and Aj are of equal size, then Fi,j is equal to Fj,i [69]:

Fi,j Ai = Fj,i Aj (2.36)

Chapter 2. Introduction 21

This implies that if both Ai and Aj are known quantities, only half of the form
factors need to computed or stored, as each respective mirror pair follows from Fi,j =

Fj,i
Aj
Ai

.

2.8.2 The Nusselt Analog

The numerical computation of form factors is not a wholly simple task, as differential
surfaces are difficult to establish. An analog to differential form factors developed
by Wilhem Nusselt can provide some useful intuition for the algorithms that follow
[1].

The Nusselt analog corresponds to the same procedures outlined in the section
on solid angles (see fig. 2.4), where a patch Aj is projected onto an imaginary unit
hemisphere centered at Ai and then orthogonally down onto the base of the hemi-
sphere [1, 24]. Thus, the view factor equates to the area projected onto the base
divided by the area of the base itself.

The Hemicube Approximation

Nusselt’s analog illustrates how two differential surfaces that occupy the same solid
angle must have the same form factor. Likewise, if a surface is projected radially
onto an intermediate surface, such as a hemicube, the form factor of the projection
will be the same as that of the original element [1] (see fig. 2.17).

This is the justification behind the hemicube approximation, devised by Cohen et al.
in 1985 [24]. It approximates the hemisphere with a hemicube, the faces of which are
subdivided into small cells. Once one establishes how many of these cells are occu-
pied by a patch projected onto the hemicube, this results in an amount proportional
to the patches’ view factor.

FIGURE 2.17: The justification behind using a hemicube: Patches A, B
and C have the same view factor, with D corresponding to the Nusselt
analog. The size of B can be approximated by the amount of cells it
occupies on the hemicube. Depiction based on an image by Watt et

al. [4].

Chapter 2. Introduction 22

In graphics card programs the cells of a hemicube can easily be encoded as pixels
on a cubemap. Figuring out which cells a surface occupies then simply amounts to
rasterizing said surface into a cubemap from the perspective of the patch (see fig.
2.18). Rasterizing all other surfaces alongside it lets us make a full accounting of
which surface has what contribution (view-factor) from the current patch, including
the visibility term V. This process is closely related to Z-Buffering, which is described
in further detail in section 2.9.1.

FIGURE 2.18: Rendering a scene through a hemicube to determine
visible patches and their view factors, giving an overall approxima-

tion of irradiance. Image adapted from work by Hugo Elias [77].

Monte-Carlo Integration

An alternative method of determining a view factor is to simply use a randomized
sample set of pairs that are uniformly distributed points from each surface. Let xki
and xkj be the k’th random pair of points for the two surfaces Ai and Aj respectively.
Then the form factor between Ai and Aj can be computed through a Monte-Carlo
approximation of K samples [25] (see fig. 2.19):

Fi,j =
1
K

K

∑
k=1

Aj
cos θki cos θkj

∥xki − xkj∥2 V(xki, xkj) (2.37)

FIGURE 2.19: Form factor calculation requires solving a double inte-
gral over surfaces of patches. We can instead randomly sample the

4D space that each patch-pair lies in to get an accurate estimate.

Chapter 2. Introduction 23

2.8.3 Classical Radiosity

Recall the radiosity equation as defined in (2.34):

Lo(i) = Le(i) +
ρ(i)
π

N

∑
j=1

Lo(j)Fi,j (2.38)

Now, where the view factors Fi,j have been defined, the radiance values Lo can be
formulated as a solution vector, which allows the problem to be entirely expressed
as a matrix equation [1, 69]:

Lo(1)
Lo(2)

...
Lo(n)

 =

Le(1)
Le(2)

...
Le(n)

+

ρ1 0 ... 0
0 ρ2 ... 0
...
0 0 ... ρn

F11 F12 ... F1n
F21 F22 ... F2n
...

Fn1 Fn2 ... Fnn

Lo(1)
Lo(2)

...
Lo(n)

 (2.39)

Through some algebraic transformation (see Cohen et al. [1]), this can formally
be written as:

Lo = (I − ρF)−1Le (2.40)

where I is an identity matrix of size n× n.
Solving this system yields the complete solution to the radiosity equation di-

rectly, but requires the entire computational cost to be paid upfront, which becomes
prohibitive for larger values of n. Instead, it is common practice to solve the equation
progressively, with each bounce of light performed separately [70].

2.8.4 Progressive Radiosity

The nature of diffuse reflections combined with the inverse square law implies that
lighting values converge rather quickly, which can be leveraged in iterative solu-
tions where each iteration applies the calculations for a single bounce of light. The
amount of iterations - e.g. passes - will determine the brightness and fidelity of the
scene but also linearly impact the required computation time. Since each subsequent
bounce has a lesser impact on the resulting image, fewer than 16 iterations tend to
be sufficient in most cases, after which the difference in radiance tends to become
non-tangible.

FIGURE 2.20: Progressive radiosity after a specified amount of addi-
tional light bounces, as done by the 2014 VRAD tool and rendered by

the 2009 Source Engine. Image from work by Benjamin Kahl [8].

Chapter 2. Introduction 24

The prevalence of algorithms such as instant radiosity [26] and voxel cone tracing
[27] imply that, frequently, a mere two bounces tend to be sufficient for an adequate
approximation of indirect light (see fig. 2.20). Progressive radiosity can be halted
after any iteration, once a desired solution has been reached.

Standard iterative methods for solving matrix equations include the Jacobi itera-
tion and the Gauss-Seidel method [69]. The solution can also be configured as a shoot-
ing or gathering variant, depending on which patches are processed in the algorithms
outermost for-each loop [28].

A generalized pseudo-code of progressive radiosity (adapted from Wüthrich
[70]) is listed below:

Algorithm 1 Progressive Radiosity

1: for each iteration do
2: for Ai ∈ S do
3: for Aj ∈ S do
4: Calculate or retrieve Fi,j
5: Update radiosity of Aj
6: Update emission of Aj
7: end for
8: Set emission of Ai to 0
9: end for

10: end for

Henceforth, we will refer to this algorithm as pure progressive radiosity, to dif-
ferentiate it from its variants that employ additional enhancements to improve per-
formance.

2.8.5 Progressive Refinement Radiosity

An extension to pure radiosity, progressive refinement radiosity, was first introduced
by Cohen et al. in 1988 [29]. This reformulation of the original algorithm eliminates
the memory requirements for view factors entirely by computing them on-the-fly.
Patches are processed in sorted order according to their energy contribution to the
environment and then updated simultaneously after each pass.

More importantly is the use of refinement through adaptive subdivision, which
had already been introduced by Cohen et al. in 1986 [30]. This process dynami-
cally sub-divides or merges individual radiosity patches depending on the gradient
across them. The resulting quad-tree will have more leaves in places of relevance,
such as the boundary of a shadow, whilst treating, flat mono-colored surfaces as
single patches (as depicted in fig. 2.21).

Refinement in general is not exclusive to progressive radiosity and can be per-
formed in a number of varieties. Most techniques operate a posteriori, meaning they
adjust the amount of patches based on the output of each iteration. These are com-
monly categorized as follows (as done by Slusallek et al. [69]):

• r-refinement: Repositions vertices of a mesh based on the lighting gradient.

• h-refinement: Stores lighting data in a quad-tree and subdivide each node de-
pending on a gradient threshold.

• p-refinement: Increases polynomial order of patches depending on a gradient
threshold.

Chapter 2. Introduction 25

FIGURE 2.21: Radiosity with adaptive subdivision. More patches are
allocated to areas with a high gradient, such as shadow boundaries.

Image based on a concept by Coombe et al. [17].

• remeshing: Re-computes an entirely new mesh, with edges and vertices aligned
along shadow boundaries.

The primary goal behind refinement is to drive down the need for large patch
amounts, thus improving performance.

Some solutions (see Coombe et al. [5]) model the patches that are sampled (i.e
shot towards) as separate sub-set of the set of all patches in scene. This allows one
to maintain a large set of evenly distributed patches, whilst only sampling the most
important ones, in accordance to a subdivided quad-tree.

2.8.6 Instant Radiosity and Sampling Approaches

To complement radiosity’s slow rate of convergence and static geometry constraints,
Instant Radiosity was introduced by Keller in 1997 [26]. It approximates global illumi-
nation effects by creating additional, virtual light-sources on inter-reflecting surfaces,
making it perfectly fit to be used within real-time requirements [78].

Rays are shot in random directions from light-sources. Then, at their intersection
locations with other geometry, virtual point lights (VPLs) are created that emit light
corresponding with the underlying surface’s color and brightness (see fig. 2.22). The
process can be repeated for each of these light-sources recursively, with the amount
of virtual point-lights ultimately determining the quality of global illumination.

Instant radiosity does not require costly pre-computations and can accommo-
date dynamic scene changes on demand, but generally does not produce the same
lighting and shadow quality as regular radiosity, and requires significant amount of
GPU power to run in real-time. Incremental instant radiosity [31] allows incremen-
tally adding new VPLs over time, whilst maintaining an even distribution of VPLs
across the scene.

Instant radiosity can loosely be classified as a directional sampling approach. In
regular radiosity, visibility is determined separately for all possible patch-pairs, which

Chapter 2. Introduction 26

FIGURE 2.22: Concept behind instant radiosity. Rays are scattered
from a light-source. On their points of collision we place a new, vir-
tual point-light. The entire scene (including virtual point-lights) can

then be rendered using a model like phong.

results in a complexity of at least O(n2) in the number of patches. In directional sam-
pling approaches, we isotropically scatter a set of rays for each patch, then calculate
lighting contribution for each patch hit by a ray. In theory this drops the complexity
to O(n ∗m), where m is the maximum amount of samples taken for each patch.

2.9 Visibility Determination

The surface-based rendering equation in (2.15) defines a function V(x, x′) that is
equal to 1 if no other geometry lies between the two points x and x′, otherwise 0.

Determination of visibility has been a cornerstone problem in computer graphics
from its very beginning. Conundrums such as the art gallery problem, watchman route
problem or graph visibility provide great insight into the theoretical perspective in
that the underlying issue is NP-hard [32].

A common solution in computer graphics is to leverage the celerity of rasteriza-
tion pipelines to calculate approximate visibility through a Z-Buffer. This method is
frequently employed for the calculation of shadows, whilst a binary-space partition
(BSP)2 restricts the selection to only relevant geometry [33].

2.9.1 Z-Buffering

A z-buffer (or depth buffer) consists of the clip-space z-coordinates for every pixel of
a rendered primitive. These values correspond to the "image depth" or the distance
of the painted geometry to the camera [67] (see 2.23 for an example). Z-buffers are
regular by-products of the rasterization process.

To determine whether an object is visible to a certain location, a scene can be
rasterized from the perspective of the given point, as described by the hemicube
approximation (see 2.8.2). Instead of the object’s colors, it is sufficient to simply store
a unique ID for each object into the pixels of the raster image. The result will contain

2Sometimes referred to as Portal-Engine / Portal rendering

Chapter 2. Introduction 27

FIGURE 2.23: Rasterization of basic shapes (left) and respective z-
buffer (right).

the IDs of all visible objects, barring translucent or small surfaces that occupy less
than a pixel [67, 34].

This method is frequently used to generate shadows in real-time, although a low
render resolution can impair the quality and can lead to shadow pixelation (see fig.
2.24).

FIGURE 2.24: Red cuboid with a pixelated shadow as a result of z-
buffering (Unity Engine 2021.3.21f).

2.9.2 Raytracing for Visibility

Instead of translating a 3D location to a screen position, we can translate a screen
position to a 3D location by tracing a ray through the corresponding pixel in the
image plane. Likewise, two locations x1 and x2 are mutually visible if a ray launched
from x1 can reach x2 unimpeded:

V(x1, x2)↔ I(x1, x2 − x1) = x2 (2.41)

Whilst z-Buffering can be very quick in computing the visibility of several objects
from a single location (like with shadows of a point-light), it is not as well-suited for
the visibility computation of large sets of arbitrary point-pairs, as is required by
radiosity.

28

Chapter 3

The Turing Architecture and DXR

In August 2018 the multinational tech company Nvidia introduced the first consumer
products capable of genuine real-time raytracing in the form of the GeForce 20 series
of GPUs.

Built on a newly developed Turing microarchitecture, these chips subsume several
different types of specialized processor cores to accelerate their respective tasks con-
siderably [49]. The so-called RT core is designed specifically to process the traversal
of bounding volume hierarchies and triangle intersection tests, thereby enabling Tur-
ing GPUs to execute rudimentary raytracing algorithms at a rate of several billions
of rays per second [49, 3].

In this chapter we will review the exact makeup of this architecture and what its
key enablers are for the significant boost in graphics performance. Additionally we
will outline its embedded solution for real-time raytracing and how it can be used
through the DirectX 12 raytracing pipeline.

3.1 GPUs and Parallelism

GPUs (graphics processing units) can be generally defined as specialized processing
units designed for the quick computation and management of visual data in a frame
buffer.

In essence, their primary intended task is to continuously compute 2D matrices
of color values that represent pixels on a screen. For most intents and purposes
(excluding post-processing effects such as anti-aliasing, bloom or blurring), the color
of any one individual pixel is independent of its predecessor and neighbours. As
such, this task is highly adequate for parallelization.

Fig. 3.1 shows the generalized differences in architecture between CPUs and
GPUs: The latter contain hundreds to thousands of cores/ALUs (arithmetic logical
units) that can run a large set of lightweight threads simultaneously, whilst CPUs
are geared towards a small number of highly efficient, general-purpose cores and
fast access to system memory.

Due to their immense power in parallel computing, GPUs have found use in
many other areas than graphics, such as machine learning and cryptography.

3.2 The Turing Architecture

The Turing GPU microarchitecture (named after Alan Turing) was introduced in Au-
gust 2018 [49] and is the architecture that Nvidia’s newest range of consumer-grade
graphics processors are built upon.

Turing cards inherit large parts of their design from earlier microarchitectures,
namely the 2010 Fermi [52] architecture and its successors (Kepler (2012), Maxwell

Chapter 3. The Turing Architecture and DXR 29

FIGURE 3.1: General architecture of a CPU (left) vs. a GPU (right).
Image adapted from the Nvidia CUDA programming guide 2022 [51].

(2014) and Pascal (2016)). Turing’s key enabler for its new features and improved per-
formance is the overhauled GPU processor which accommodates "improved shader
execution efficiency, and a new memory system architecture that includes support
for the latest GDDR6 memory technology"[49].

3.2.1 TU102 GPU Structure

The TU102 is a a high-end GPU of the GeForce 20 series and is divided into six
Graphics Processing Clusters (GPCs) each of which contains a hybrid makeup of
computational units [49]. Below we provide a description of its primary components
in line with the Turing architecture whitepaper [49].

The GPU receives its instructions and data through a PCIe 3.0 interface, which
connects it to the rest of the computer and acts as the main access point to the systems
main memory [49]. Each GPC comes equipped with its own L1 cache, whilst all six
GPCs share twelve memory controllers and an additional 512kb of L2 cache [49].

An onboard, chip-level GigaThread Engine receives command queues from the
host via the PCIe bus and executes these by setting up shaders on available hardware
[52]. This is the central command processor that manages the entire chip, including
context switches, scheduling and power management [52].

3.2.2 GPC

Each GPC, as depicted in fig. 3.2, houses six Texture Processor Clusters (TPCs), which
are nested sub-clusters in of themselves, as well as a dedicated raster engine [49].
The GPC/TPC subdivision is useful for distributing and allocating of the computa-
tional workload evenly, as they can be managed as a single unit [49].

Each TPC consists of two Streaming Multiprocessors (SM), which the parent TPC
can wake and sleep based on how heavy the incoming workload is [49].

Chapter 3. The Turing Architecture and DXR 30

FIGURE 3.2: Architecture of the TU102: 6 GPCs, each consisting of 6
TPCs that contain 2 SMs each. Each SM contains a number of ALUs
for integer, floating point and matrix operations as well as a single RT
core. Each RT core has a separate core for BVH traversal and triangle
intersections respectively. Image adapted from the Turing architec-

ture whitepaper [49].

3.2.3 SM - Streaming Multiprocessor

The streaming multiprocessor houses all the primary computation units of the GPU
itself. Each one contains its own onboard memory in the form of a 256KB register
file, four texture units and 89 KB of L1 shared memory which can be dynamically
allocated depending on the workload [49].

Each SM contains three different types of processing cores that represent the
GPU’s entire computational capacity [49]:

Chapter 3. The Turing Architecture and DXR 31

• 64 CUDA cores (4608 total)

• 2 Tensor cores (576 total)

• 1 RT core (72 total)

All of these components can be identified on the GPU die itself, as shown in fig.
3.3.

FIGURE 3.3: Turing GPU die. Image adapted from the Turing archi-
tecture whitepaper [49].

CUDA Core

CUDA cores are basic computational units that perform common integer- or floating
point operations [49, 51]. These can be used both for rendering but also other parallel
computing purposes through the CUDA platform1.

Unlike its predecessors, the Turing architecture provides separate data-paths for
integer and floating-point operations. In previous generations the execution of an
integer-based instruction would have blocked floating-point instructions from issu-
ing [49].

Tensor Core

Tensor cores are specialized execution units that are built specifically and purely to
accelerate the process of matrix (or tensor) multiplication [79]. These find heavy
usage in vertex transformation operations of common rendering applications but
also for deep learning (neural network) purposes.

Turing’s tensor cores have been enhanced for inferencing and equipped with
additional integer precision modes [49].

1Note that we are using the term "CUDA core" as an umbrella term for a GPUs general purpose
ALUs. Whilst CUDA is technically an Nvidia-exclusive platform, all GPUs are equipped with equiva-
lent computational units.

Chapter 3. The Turing Architecture and DXR 32

RT Core

One of the biggest innovations of the Turing architecture is the introduction of RT
cores, a specialized processing core that exclusively performs BVH traversal and ray-
triangle intersections to facilitate real-time raytracing [49]. The underlying accelera-
tion concepts are not new; parallelization and BVHs have been common practice in
raytracing for some time.

But unlike previous raytracing solutions built on the GPU, RT cores can run au-
tonomously, in parallel to the CUDA cores and thus offload the SM [49]. This means
that when a shader dispatches a ray, it can continue performing other calculations
whilst the ray is being traced in parallel. Similarly, once a ray intersects geometry,
the RT core can directly move on to tracing the next ray, whilst the CUDA and ten-
sor cores take care of shading and lighting. The horizontal parallelism this concept
provides is demonstrated in fig. 3.4.

RT cores consist of two different units: one for bounding box testing and a sec-
ond for ray-triangle intersections [49]. This distinction allows for further horizontal
parallelism, as the first unit can move on to the next triangle/input whilst the second
unit still finishes the previous input.

FIGURE 3.4: Software emulated raytracing on Pascal GPUs (left) vs.
hardware accelerated raytracing on Turing GPUs (right). Image in

line with the depictions in the Turing whitepaper [49].

Pascal GPUs have retroactively been made compatible with RTX through the
DirectX raytracing API. But since no RT cores are available on these, a software ap-
proximation that runs on CUDA cores is employed instead (see fig. 3.4). This results
in significant performance degradation. Turing GPUs can process 10+ Giga-Rays
per second, whilst high end Pascal GPUs only reach approximately 1.1 Giga-Rays
per second [49].

The general umbrella term for Nvidias real-time raytracing technology is RTX,
which is an abbreviation for Ray Tracing Texel eXtreme.

3.3 DirectX

Rendering applications typically interact with GPU hardware through graphics APIs
that span across multiple programming languages and platforms. These describe an
abstract programming layer that specifies exactly what result, input and output of
each function ought to be. Minor variations in how computation is performed on a

Chapter 3. The Turing Architecture and DXR 33

hardware-level, can produce divergent results even when a program is executed on
the same API2.

The most notable APIs are OpenGL, Vulkan and DirectX, which have all seen
industry-wide adoptions across most common graphics cards and applications [10].

Upon their release, Turing’s raytracing features were only exposed through Di-
rectX 12, later becoming available on Vulkan and (partially) OpenGL as well [54].
Since the compatibility has most matured on DirectX, the remainder of this thesis
will focus primarily on DirectX 12.

3.3.1 DirectX Rasterization Pipeline

When a scene is rendered into a frame output buffer using rasterization, DirectX
employs a programmable graphics pipeline, which sequentially executes a series of
highly specialized, fixed-function steps that allow the system to efficiently draw ab-
stract 3D geometry in a given perspective. Each of these steps executes a concrete
task with the output of the previous step as its input parameters. Given the consec-
utive nature of the pipeline, the individual steps can easily be executed in parallel
for successive frames to be rendered.

The GPU programs that can be inserted in-between these steps are commonly
termed shaders and let developers configure custom pipeline behaviour. In a DirectX
context, shaders are written in a high-level shader language (HLSL), which strongly
resembles the syntax used in C-based languages.

Fig. 3.5 shows a simplified overview of the individual stages that form the Di-
rectX rasterization pipeline (as described in the DirectX 12 documentation [50]).

FIGURE 3.5: Stages of the DirectX 12 rasterization pipeline. Pro-
grammable shaders are marked in green. Image based on informa-

tion from the DirectX12 documentation [50].

Input Assembler Stage

The Input Assembler Stage reads geometry data from the allocated buffers and as-
sembles it into primitives (usually triangles) that are usable by the other pipeline
stages [50]. This stage will also attach system-generated values, such as primitive

2For instance, Qualcomm Adreno 2xx processors use 24 bit floating precision in fragment shaders,
whilst the Nvidia X1 uses the more common 32 bit precision. The OpenGL 4.6 specification states that
it "does not guarantee an exact match between images produced"[53].

Chapter 3. The Turing Architecture and DXR 34

IDs, instance IDs or a vertex IDs, so that subsequent shader stages can reduce pro-
cessing to only instances, primitives or vertices that have not already undergone
processing [50].

The primitives generated by the input assembler stage are subsequently trans-
ferred to the vertex shader.

Vertex Shader

The vertex shader is the first and arguably most important geometry processing step
in any graphics pipeline. It is an input-output program that is executed on every
vertex individually and lets the user transform, modify or otherwise set up vertex-
specific data for later pipeline stages [75].

The most common operations performed in the vertex shader are the applica-
tions of the model-, view- and projection- matrices [67, 75]. To conserve memory,
3D model data is stored in local coordinates so each instance of any 3D model in a
scene comes with a model matrix that describes the object’s position, rotation and
scale. The model matrix is a 4x4 affine transformation matrix that converts vertex
positions from local space into world space.

FIGURE 3.6: Coordinate system transformations in the vertex shader,
as pictured by Joey de Vries [75].

The view matrix will thereafter transform the coordinates into view space and
the projection matrix applies the FOV-based distortion of non-orthographic cam-
eras to each vertex. The final vertices find themselves in a [−1, 1]-ranged clip space
coordinate-system, where vertices outside this range lie outside the camera’s view
frustum. The entire transformation process is depicted in fig. 3.6.

Furthermore, additional data-points such as a vertex’s texture coordinates and
normal vector are likewise set up in the vertex shader. By the end of this stage, each
vertex will possess its own set of data known as attributes, which subsequent pipeline
stages linearly interpolate on for respective values anywhere on the spanned primi-
tive.

Chapter 3. The Turing Architecture and DXR 35

Tessellation Stage

The tessellation stage is an optional stage added in DirectX 12, which allows the
user to generate additional vertices directly on the GPU [50]. The utility of this stage
plays no importance in remainder of this thesis.

Geometry Shader

Another optional step that allows for additional processing is the geometry shader,
which is executed on a per-primitive basis. For triangles, each set of three vertices
relayed by the vertex shader are passed into the geometry shader as a triplet, which
lets the user remove, subdivide or otherwise transform them in a manifold of ways
[75, 50].

This stage is frequently used for triangle-based effects like enlargements or shrink-
ing (see fig. 3.7) as well as a vital part for GPU-based voxelization [8, 71] (see 5.3.2).

FIGURE 3.7: Example: Shrinking triangles in the geometry shader.
Image by Bailey [72].

Rasterizer Stage

As implied by its name, the rasterizer stage converts each primitive into the set of
pixels that it occupies on-screen, whilst interpolating the per-vertex attributes across
it, so that each pixel has a corresponding set of values for normal vectors, positions,
texture coordinates etc.

If the pipeline is set to utilize multi-sampling (compute several color values per
pixel), the individual sub-samples are likewise arranged here [50]. This stage addi-
tionally discards any pixels that do not face the camera (face culling), are occluded

Chapter 3. The Turing Architecture and DXR 36

by other objects (depth clip) or are outside the viewport (scissor clip) [50]. This limits
the amount of pixels - i.e. fragments - that need to be processed in the next stage.

Pixel Shader

The pixel shader (known as fragment shader in OpenGL) is executed once for each
pixel provided by the rasterization step [75, 50]. This is typically the most performance-
intensive stage, as it is executed most frequently and includes the vital lighting cal-
culations that produce the final color of each pixel.

Mathematical models like Phong [20] can be used to compute the pixel bright-
ness and color composition equating to the radiance emanated from the fragment
position towards the camera. The input data for these will be a position-based linear
interpolation between the vertex attributes of each triangle. The factors of this inter-
polation can be equated with the fragment’s barycentric coordinates on the triangle.

Output Merger Stage

The final stage of the pipeline utilizes any present depth/stencil buffers to perform
depth-testing and blending of transparent objects (alpha testing) with the colors pro-
vided by the pixel shader to generate the final image [50].

If the image is being rendered into multiple render targets (DirectX 12 supports
up to 8 [50]), the writing process is likewise handled by the output merger stage.

3.4 DirectX Raytracing

Since the raytracing procedure fundamentally differs from classic rasterization, Di-
rectX introduces an entirely new graphics pipeline with a whole new set of pro-
grammable shaders to accommodate it.

DirectX Raytracing, or simply DXR, shares several similarities with its rasteri-
zation counterpart, as it aims to strike a balance between fixed-function and pro-
grammable stages to maximize both execution efficiency and potential for customiza-
tion [55].

3.4.1 DXR Pipeline

The system is intended to process rays independently and in parallel. Once a ray
hits or misses, it can create further sub-rays, but generated rays that are in-flight can
never be dependent on each other [55].

FIGURE 3.8: Simplified overview of RTX pipeline stages. Depiction
based on an image from the Microsoft DXR Specification [55].

Chapter 3. The Turing Architecture and DXR 37

On a surface level, the raytracing pipeline can be divided into three core com-
ponents: Ray generation, BVH traversal and shading (see fig. 3.8). Scheduling
functionalities of which ray or shader is processed in which order is an opaque,
hardware-bound process and cannot be altered [55]. Likewise, the BVH traversal is
treated as a single, fixed-function step that is offloaded to the RT cores. In their ex-
amination of RTX performance, Sanzharov et al. [35] concluded that RTX does some
ray grouping and sorting during the GPU work creation process, in order to speed
up bundles of rays traversing through the same BVH leaves.

Rays in DXR

The data structure that represents a ray in DXR closely follows the definition put
forth in section 2.7.1, consisting of an origin, direction and a min-max distance inter-
val [3]. Each of these values needs to be initialized before the ray can be traced:

1 s t r u c t RayDesc
2 {
3 f l o a t 3 Origin ;
4 f l o a t 3 D i r e c t i o n ;
5 f l o a t TMin ;
6 f l o a t TMax ;
7 } ;

Furthermore, rays in DXR can carry a payload, which is a custom data-structure of
limited memory that can be accessed on a per-ray basis by any of the programmable
shaders [3]. An example of how this payload may be utilized is given in section
3.4.3.

Programmable Shaders

The DirectX raytracing pipeline introduces a total of five new programmable shader
types that are invoked during the raytracing process based on the flow diagram
depicted in fig. 3.9.

Below we list a brief description for each one in line with how their documenta-
tion in Ray Tracing Gems [3].

• The ray generation shader is launched once for every instance of some enumer-
able index (1D, 2D or 3D grid) and handles the initial ray launches [3]. In
a traditional raytracing application, this shader would launch the initial rays
from the camera through each virtual pixel. An HLSL TraceRay(...) function
is available for this purpose.

• Intersection shaders define how intersections are calculated with arbitrary primi-
tives [3]. By using intrinsic functions like ReportHit() or AcceptHitAndEndSearch()
the user can define which intersections are counted as hits or not. If no inter-
section shader is provided, the pipeline employs a high-performance default
that uses triangles [3]. Utilizing intersection shaders instead of the build-in
ray-triangle intersection is less efficient but offers far more flexibility [3, 55].

• As the intersection shader defines which hits to report and which not to, any-
hit shaders are executed for all reported hits [3]. In addition to running regular

Chapter 3. The Turing Architecture and DXR 38

FIGURE 3.9: Overview of the DXR pipeline as depicted in the Ray-
tracing Gems book [3]. It includes the five programmable shader types

marked in orange. BVH traversal is marked by a grey outline.

HLSL code (like writing data into textures on hit) any hit shaders allow other-
wise valid intersections to be discarded, such as transparent surfaces.

• As the name implies, closest-hit shaders are executed at the closest intersection
for each ray [3]. In a traditional raytracing context, this would recursively
launch additional rays to compute the color the hit location has.

• If no hit is registered for a ray, the miss shader is executed [3]. This can be
used, for instance, to display a background color for pixels not occupied by
geometry.

This pipeline shares many components and concepts with regular raytracers. Al-
gorithm 2 illustrates how a standard DXR pipeline would function if it were exe-
cuted in sequence.

Algorithm 2 DXR Raytracing Process (Adapted from Raytracing Gems [3])

1: for x, y ∈ image.dimensions() do
2: ray← createRay(x, y) ▷ Ray from C through pixel (x, y)
3: closestHit← null
4: while lea f ← f indBvhLeadNode(ray, scene) do ▷ BVH traversal
5: hit← intersectGeometry(ray, lea f) ▷ intersection shader
6: if isCloser(hit, closestHit) & isOpaque(hit) then
7: closestHit← hit
8: end if
9: end while

10: if closestHit then
11: image(x, y)← shade(ray, closestHit) ▷ closest-hit shader
12: else
13: image(x, y)← miss(ray) ▷ miss shader
14: end if
15: end for

Chapter 3. The Turing Architecture and DXR 39

3.4.2 TraceRay Function

The DXR-intrinsic TraceRay(...) function can be used in programmable shaders
to commence a raytracing process on an RT core. It operates under the following
parameters [55]:

1 TraceRay (
2 R a y t r a c i n g A c c e l e r a t i o n S t r u c t u r e A c c e l e r a t i o n S t r u c t u r e ,
3 uint RayFlags ,
4 uint InstanceInclusionMask ,
5 uint RayContributionToHitGroupIndex ,
6 uint MultiplierForGeometryContributionToHitGroupIndex ,
7 uint MissShaderIndex ,
8 RayDesc Ray ,
9 inout payload_t Payload

10) ;

• The first parameter selects the BVH containing the geometry that needs to be
traced. In most instances only one BVH of a scene exists, but multiple ones can
be defined to trace on different scenes from a single shader.

• The second parameter is an integer where each bit represents a certain flag that
affects ray behaviour. Some notable flags are

RAY_FLAG_CULL_BACK_FACING_TRIANGLES to disregard intersections on trian-
gles not facing the ray, or

RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH to terminate the BVH traversal
immediately when any geometry is hit.

• The third parameter is an instance mask that allows skipping geometry on a
per-instance basis. Passing a value of 0xFF (in hexadecimal) would cause all
geometry to be tested for intersections, whilst 0x00 would test none.

• The fourth and fifth parameters define the hit-group for this ray. A hit group
consists of an intersection, closest-hit and anyhit shader. Typically each ray-
type is separated into a respective hit-group so that the respective shader code
is executed. (For instance, shadow-rays, diffuse reflections and specular reflec-
tions would each possess their own hit groups)

• The sixth parameter lets us configure which miss shader to use, irrespective of
the hit group.

• The seventh parameter is the ray description, as defined in 3.4.1, and

• the eighth parameter is the payload the ray carries over its lifetime.

An alternative TraceRayInline(...) function exists, that does not use separate
shaders, and defers all shading to the caller [50].

Chapter 3. The Turing Architecture and DXR 40

3.4.3 Code Example

The code below serves as a simple example for the respective shaders a simple DXR
program for shadow rays would utilize. The respective anyhit and miss shaders are
marked by [shader("anyhit")] and [shader("miss")] attributes respectively:

1 / / Custom ray − p a y l o a d d a t a t y p e
2 s t r u c t ShadowPayload {
3 bool i s V i s i b l e ;
4 } ;
5
6 [shader (" miss ")]
7 void ShadowMiss (inout ShadowPayload payload) {
8 payload . i s V i s i b l e = f a l s e ;
9 }

10
11 [shader (" anyhit ")]
12 void ShadowAnyHit (i n t o u t ShadowPayload payload ,

B u i l t I n T r i a n g l e I n t e r s e c t i o n A t t r i b u t e s a t t r i b)
13 {
14 / / I g n o r e t r a n s p a r e n t s u r f a c e s
15 i f (i sTransparent (a t t r i b , Pr imit iveIndex ())) {
16 IgnoreHit () ;
17 }
18 }
19
20 [shader (" raygenerat ion ")]
21 void rayGen ()
22 {
23 f l o a t 3 o r i g i n = CameraPosition () ;
24
25 f l o a t 3 d i r = P i x e l P o s i t i o n (DispatchRaysIndex () . xy) −

o r i g i n ;
26
27 RayDesc ray = {
28 Origin = or ig in ,
29 D i r e c t i o n = dir ,
30 TMin = 0 .001 f ,
31 TMax = 1000 f
32 } ;
33
34 ShadowPayload payload = { t rue } ;
35
36 TraceRay (scene ,
37 RAY_FLAG_SKIP_CLOSEST_HIT_SHADER ,
38 0xFF , 0 , 1 , 0 , ray , payload) ;
39
40 i f (payload . i s V i s i b l e) {
41 OutputTexture [DispatchRaysIndex () . xy] = RED;
42 }
43 e lse {

Chapter 3. The Turing Architecture and DXR 41

44 OutputTexture [DispatchRaysIndex () . xy] = BLACK;
45 }
46 }

This example colors every pixel that is occupied by geometry in red. It uses the
ray payload to mark whether a pixel is occupied by any non-transparent geometry.
The isVisible component is initialized as true, but is set to false in the miss shader.
The anyhit shader discards intersections with transparent geometry 3.

3.4.4 Host Initialization

The foregoing sections provide a comprehensive overview of the DXR raytracing
pipeline and its GPU-side functions and capabilities. However, as with any graphics
API, the global pipeline state and execution is managed by the device host (CPU
side) through a series of API function calls.

Low level DirectX code is typically highly verbose, with even simple projects
requiring hundreds to thousands of lines in C++ code. For the sake of brevity, this
thesis will only provide superficial examination of the key functions required for
raytracing.

Initialization of a DXR raytracer typically follow these common steps [3]:

• Initializing the DirectX device (GPU) and verifying that it supports raytracing.

• Loading scene geometry and generating a BVH acceleration structure from it.

• Loading and compiling the respective HLSL shaders, defining root signatures
and shader tables.

• Defining a DirectX pipeline state object.

• Dispatching a workload to the pipeline.

3.4.5 Acceleration Structure

As described in section 2.7.3, utilizing a hierarchical acceleration structure can re-
duce the complexity per ray from linear to logarithmic in the number of triangles.
There are a variety of acceleration structure types available and DirectX does not
mandate the use of any particular one, though bounding volume hierarchies (BVHs)
are generally best suited [3].

The construction process and data structure of DirectX BVHs is entirely opaque,
as they are built and maintained by the device driver on the GPU [3]. Different
graphics card vendors may choose alternative structures, but DirectX operates on a
given set of structural principles [3, 55]:

The acceleration structure consists of two levels: a bottom-level acceleration struc-
ture (BLAS), which contains geometric primitives, and a top-level acceleration struc-
ture (TLAS), that contains one or more bottom-level structures (see fig. 3.10).

3Some functionality given in the example, such as the functions CameraPosition(), isTransparent()
and PixelPosition() are not part of DXR and have been abstracted for the sake of simplicity.

Chapter 3. The Turing Architecture and DXR 42

FIGURE 3.10: Key components of an RTX pipeline: TLAS, BLAS and
shader binding table. Image from the Microsoft DXR specification

[55].

BLAS

A bottom-level acceleration structure is usually a BVH in of itself that represents a
single geometry type. Ray-triangle intersection tests are performed on BLAS data
[3].

If the geometry topology remains fixed, BLAS structures can be refit with scene
changes, which is an order of magnitude faster than complete rebuilds. However,
repeatedly performing refit operations may degrade the quality and performance of
the acceleration structure over time. It is generally recommended to use an appro-
priate combination of refits and complete rebuilds [3].

Chapter 3. The Turing Architecture and DXR 43

TLAS

Analogously to how single 3D models can be instantiated multiple times with indi-
vidual model matrices, BLAS instances within a TLAS are referenced with memory
pointers alongside a transformation matrix [55] (see fig. 3.11). Whilst the reuse of
geometry has great benefits to memory requirements, its overuse can impact perfor-
mance, as the individual BLAS instances ought to overlap as little as possible [3].

A TLAS is, in essence, an acceleration structure of acceleration structures. Point-
ers to BLAS structures already living in GPU memory are contained alongside an
instance matrix as well as other data like shader-index, flags etc.

FIGURE 3.11: Simplified illustration of how the individual compo-
nents of a scene relate to BLAS-TLAS components.

Shader Table

The whens and hows of tracing rays in DXR are not as strictly mandated by a sequen-
tial pipeline as in rasterization. As such, all resource bindings and shaders must be
simultaneously available during the entire execution time. The selection of which
shader to run is treated as any other resource binding and kept as a set of shader
records in a contiguous region of memory known as the shader table.

The shader binding table is, in essence, a region of 64-bit aligned GPU memory
that is owned and managed by the application [55]. It links the acceleration struc-
tures, hit groups and shader functions together by indicating what programs are
executed for which geometry and which resources are associated with it [55].

3.5 Status Quo of RTX

In their examination of RTX technology, Sanzharov et al. conclude that whilst RTX
on Turing GPUs performs well, its software-emulated variant that runs without RT-
cores is an inefficient and expensive process that "essentially loses to simple and
straightforward open source ray tracing" [35], implying that "’the golden age of soft-
ware’ has ended and that ’the golden age of compilers and HW/SW projects’ has
started" [35].

Chapter 3. The Turing Architecture and DXR 44

The visual fidelity that hardware-accelerated RTX can provide has indeed found
favour with developers, as implied by its widespread adoption across many prod-
ucts and rendering engines such as software by Adobe, Unity and a vast catalogue
of video games [80]. Even more predicating is the fact that one of Nvidia’s pri-
mary competitors on GPU market, AMD released their newest line of products, the
Radeon RX 6000 Series, with an RT-core equivalent component, designed specifically
for hardware-accelerated raytracing [81].

Despite these successes, lower frames-per-second, in addition to price and com-
patibility constraints, show that RTX remains an enhancement, not a replacement, to
classical rasterization. The underlying concept of raytracing remains just as compu-
tationally expensive as it has been since its inception in the late 1970s.

In the same time, rasterization-based techniques have come a long way in find-
ing ideal mathematical approximations, shortcuts and simplifications that maximize
photorealism. Combining the newest kinds of these techniques can produce images
of similar quality to raytracing, albeit at far greater speeds.

FIGURE 3.12: Screen-space reflections (left) vs ray-traced reflections
(right). Screen-space reflections are generally less resource-intensive,
but can only reflect geometry that is rendered to the screen itself. Im-
ages taken from the PC game Hellblade: Senua’s Sacrifice by Ninja The-

ory.

A great example of how clever and sophisticated these techniques have become
can be observed in the form of screen-space reflections (fig. 3.12). This is a fast method
of creating realistic looking reflections by simply taking respective pixel values al-
ready rendered into the FBO [36]. At minimal performance impact, this requires no
triangle-intersections or BVH traversals, but only geometry that is visible on screen
can be reflected [36].

Raytracing, on the other hand, provides a more powerful, brute-force approach
that costs exponentially more. Consumers may prefer incurring the small cost in
photorealism provided by raytracing in return for a more responsive application
running at a higher frame-rate.

It is generally recommended by Nvidia themselves, to opt for a hybrid approach
by using rasterization as a base and complement it with raytracing where it provides
the most benefits (such as specular reflections, refractions and shadows) [49, 11].

In chapter 2 we demonstrated that radiosity and raytracing share many funda-
mental aspects by deriving both from the rendering equation. The underlying impli-
cation, which we will examine in the subsequent chapters, is that the performance
increase RTX provides for raytracing ought to applicable to radiosity as well.

45

Chapter 4

RTX Radiosity

The preceding chapters delineate how Nvidia’s RTX technology functions and how
it can be leveraged through the DirectX 12 API.

In this chapter we present a concrete implementation in the form of an RTX-
based radiosity application referred to as RTRad. We commence by first exhibiting
the primary components of regular, progressive radiosity, which we later expand to
incorporate refinement (and more) in chapter 5.

4.1 Status Quo of GPU-based Radiosity

Radiosity variants or derivations are used industry-wide in many real-time render-
ing engines. Yet despite their immense potential for paralellization, many radiosity
implementations continue to perform better on high core-count CPUs as opposed to
GPUs.

In their measurements, Carr et al. found that although CPUs currently perform
better in matrix-based radiosity calculations, a GPU’s performance scaling is signif-
icantly closer to linear, albeit with a fairly constricting upper limit, due to a GPU’s
limited memory capacity [16].

The algorithm finds itself in an unusual predicament, where it is neither particu-
larly well suited for CPU nor GPU execution. Each radiosity patch can be processed
in parallel on a GPU, but solving the visibility function V requires a data structure
to be traversed sequentially, a process better suited to the powerful cores of a CPU.

Some solutions, like the one proposed by D’Azevedo et al. [37], attempt to tackle
this imbalance by dividing the workload onto a hybrid GPU/CPU platform, where
only the view-factors are computed GPU-side via a compute-shader, then read back
into CPU memory and finally used in a rudimentary CPU-based solution.

The introduction of RT cores strikes a compromising balance between the few,
high-performance cores of a CPU and the many, low-performance cores of a GPU.
Offloading the visibility component of radiosity onto this new hardware may prove
to be an ideal solution to this bottleneck.

4.1.1 Lead-up to RTRad

Raytracing and radiosity are both based on the rendering equation and, as such,
share many fundamental mathematical components. The primary goal behind RTRad
is to demonstrate that the performance increase RTX provides to raytracing is appli-
cable to radiosity as well.

In this chapter we set out to alleviate the visibility bottleneck by substituting
techniques based on hemicuboid z-buffering with an RTX-based solution, which
should prove more adequate for for random rays requiring random memory-access
[35].

Chapter 4. RTX Radiosity 46

The introduction of the Turing architecture opens the door to an entirely new
set of specialized computation units on GPUs that may well be useful in areas be-
yond their intended use-case. Similarly to how regular graphics processors, initially
intended purely for 3D rendering, have found themselves beneficial for purposes
such as cryptography and machine learning, RT cores may also prove themselves
useful for applications outside of the real-time raytracing domain.

With the implementation of an RTX-based radiosity algorithm, we put forth the
general argument that RT cores can offer a great computational shortcut for highly
accurate visibility simulations in general (see fig. 4.1).

FIGURE 4.1: Different methods for calculating visibility. This the-
sis examines how RTX and voxel-raymarching hold up against z-

Buffering.

4.1.2 Target Use-Case

The implementation presented in this thesis is fully capable of quickly producing
high-quality radiosity lightmaps that can be used as textures for diffuse global illu-
mination. However, the underlying software is primarily intended as a research
project and proof-of-concept, not a consumer-targeted application to be used in
production-ready applications.

The underlying use case an RTX-based lightmapper could cover in practice, is
mainly oriented towards developers or designers of 3D environments working on
specialized workstations with RTX-compatible graphics cards. The faster compu-
tation time would facilitate a more comfortable workflow and, once computed, the
lightmaps can be mapped onto geometry and displayed to end-users on any PC at
virtually no cost at all.

4.2 Previous Work

The relative novelty of RTX means its application or examination in anything other
than real-time raytracing is quite sparse.

According to its documentation, contemporary versions of Unreal Engine make
use of RTX in their GPU Lightmass system [56], although it is not clear in what man-
ner or capacity. Shcherbakov et al. hint at the idea of potentially utilizing RTX in the
future to accelerate their Dynamic Radiosity algorithm [38], and Lin advocates for its
usage to accelerate the VPL generation process in instant radiosity [82].

Radiosity implementations running on GPU hardware without RTX have existed
for some time alongside several noteworthy publications describing them.

Chapter 4. RTX Radiosity 47

4.2.1 GPU Radiosity

As part of the 2005 GPU Gems 2 book [5], Coombe et al. provide an early implemen-
tation of the progressive refinement radiosity algorithm that runs on common GPUs
using z-Buffering for visibility.

Alongside a series of other acceleration techniques, this solution can ultimately
"compute a radiosity solution of a 10,000-element version of the Cornell Box scene
to 90 percent convergence at about 2 frames per second" [5].

This implementation has served as a primary influence on this thesis with several
core concepts, such as using GPU-generated mipmaps to decrease shooting resolu-
tion, being derived from it.

4.2.2 Rapid-Radiosity (RRad)

Not to be confused with the program presented in this thesis (RTRad), RRad [61] is a
GPU-based implementation that served as a direct lead-up to this thesis, made with
the open-source API OpenGL. Completed as a software project part of the computer
graphics lecture at the Freie Universität Berlin, it highlights with clarity how visi-
bility is the only major hurdle that prevents the widespread adoption of GPU-based
radiosity.

RRad approximates a scene through basic geometric shapes (spheres and trian-
gles) and then loops over each shape and performs a simple, discrete ray-intersection
on each. This geometric approximation is hard-coded into the shader’s code itself,
making the application simple and lightweight, but entirely unsuitable to complex
environments. Fig. 4.2 shows the default RRad scene with a lightmap of 512× 512
pixels, for which a single bounce of light requires approx. 2 seconds of computation
time on a GeForce RTX 2070S GPU.

FIGURE 4.2: Simple render done with RRad. The GPU implementa-
tion means that performance is decent, but the amount and complex-
ity of the shapes (spheres and triangles) is highly limited, which are

all tested for intersections sequentially.

Chapter 4. RTX Radiosity 48

Many fundamental design choices presented in this thesis have their roots in
RRad, with the most substantial change being the replacement of the discrete, hard-
coded raytraces that run on CUDA cores, to a fully flexible RTX solution.

4.3 Source Code and Dependencies

RTRad was developed in C++ 17 with Nvidia’s own Falcor as the underlying frame-
work. Visual Studio 2022 served as the primary IDE and the program was exclu-
sively tested on a system with an Nvidia RTX 2070S GPU and an AMD Ryzen 3900X
CPU.

The complete source code, a demonstration video, as well all executable files
for the finished project can be found on the following github repository1: https:
//github.com/Helliaca/RTRad

4.3.1 Falcor

Falcor is an open-source framework intended specifically for rapid prototyping of
real-time rendering applications [62, 83]. Maintained as well as internally utilized by
Nvidia, it provides a considerable set of advanced graphics features such as stereo
rendering for VR, physically based shading and, most importantly for the context of
this thesis, built-in RTX support [83].

Additionally, there are thin abstraction layers on top of DirectX 12 that reduce the
amount of redundant, verbose DirectX code required for a functioning application
as well as convenient UI and profiling systems.

RTRad is built on Falcor 4.4, leaving some advanced features available in later
versions (Faclor 5.2 being the most recent at the time of writing) such as DLSS aside.

FIGURE 4.3: GUI of the RTRad application. Each render pass has its
dedicated GUI window to adjust settings, alongside scene controls,

pipeline controls and a profiler.

1The latest commit ID at the time of writing is 056e0e1b7cc89190231a6fbb1e81bd04ac6e0701.

https://github.com/Helliaca/RTRad
https://github.com/Helliaca/RTRad

Chapter 4. RTX Radiosity 49

4.4 Program Structure

The employed programming patterns were kept consistent with the precedent set
in Falcor’s source code and respective educational content (see [62, 83, 84]), includ-
ing the usage of factory methods to create objects and referencing them with smart
pointers to avoid memory leaks.

The core program takes the form of a graphics-pipeline that consists of several
graphics passes which are executed and managed by a central manager object based
on Falcor’s IRenderer interface.

4.4.1 Class Structure

RTRad follows the class structure depicted in fig 4.4: A BasePipelineElement class
serves as a base class that provides a custom GUI method, so that each pipeline com-
ponent can manage their own GUI elements that are used to adjust settings which
are bound to their respective parents through the SettingsObject template (see fig.
4.3).

FIGURE 4.4: Simplified class diagram of RTRad. The TextureGroup
class (green) represents the input/output data container, which is

processed by up to four subsequent passes (orange).

Chapter 4. RTX Radiosity 50

A BaseRenderPass serves as the base class for render passes which form the back-
bone of the pipeline. A central RTRad object manages its execution and data-flow.
Each pass self-manages its UI elements, shaders and shader-uniform variables. A
TextureGroup serves as the input-output data structure which is passed through the
pipeline.

4.5 Input Data

The underlying goal is to take a scene, consisting of geometry and materials, and
generate a bitmap texture containing diffuse global illumination as the output, where
each pixel corresponds to a radiosity patch.

Mapping each pixel in the output texture to a surface in 3D space is accomplished
through the scene’s UV coordinates.

4.5.1 Subdivision through UV Mapping

The process of ascribing each 3D vertex an additional 2D coordinate on a texture
is called UV mapping. Utilizing this process for radiosity patch placement comes
with the benefit of streamlining the data-containers for each input. Increasing or
decreasing the resolution of the lightmap can occur seamlessly, as every patch points
to a texture-coordinate correspondent to it.

There exist a plethora of algorithms to automatically generate UV unwrappings
for any 3D model or scene [39]. In practice, rendering engines tend to come equipped
with their own built-in tools specifically meant for automatic lightmap UV genera-
tion [57, 58].

Making these unwrappings as seamless and efficient as possible is a unique chal-
lenge beyond the scope of this thesis. All unwrappings utilized in RTRad were cre-
ated manually, or with the tools contained in the Blender 3D modelling software.

FIGURE 4.5: The default RRad scene [61] (right) and its UV coordi-
nates (left) with a checker pattern applied as a texture. Each square of

the checker pattern would correspond to a radiosity patch.

Chapter 4. RTX Radiosity 51

4.5.2 Input Components

Recall the Monte-Carlo approximation for view factors established in (2.37):

Fi,j =
1
K

K

∑
k=1

Aj
cos θki cos θkj

∥xki − xkj∥2 V(xki, xkj) (4.1)

cos θki can be derived as the dot product between the normalized normal vector
of the sample point and the normalized vector pointing from xki to xkj. As such, the
exact data required to calculate a form factor Fi,j is the following:

• Surface area Aj

• Normal vectors nki and nkj

• World-space positions xki and xki

• Visibilities of the the two locations V(xki, xkj)

Since the processing order of rays is not deterministic, it is imperative that all of
these data points for all patches are available at all times of a radiosity iteration. We
accomplish this by pre-computing individual textures that contain each data-point
for all patches. The conglomeration of these textures is aptly named TextureGroup,
and serves as the primary input-output data structure for the entire application.

Texture-Group

Each individual texture contains different information, but conforms to the exact
same UV mapping. If, for instance, we require the normal vector of a patch, we
simply perform a look-up operation on the texture containing normal vectors.

In total, following textures make up the texture group:

• pos: World-position

• nrm: World-space normal vector (normalized)

• mat: Material properties (color)

• ar f : Surface area of each patch

• ligin: Input lighting - i.e. emission - values of the current iteration

• ligout: Output lighting texture to write to

Pixels that are not occupied by any geometry at all, are marked as ’non-patches’
by setting their alpha value in the pos texture to zero. When sampling for lighting
contribution, only pixels with a non-zero alpha value are processed.

Chapter 4. RTX Radiosity 52

FIGURE 4.6: Original scene (left) and corresponding texture group
at a resolution of 128× 128 (right). The bottom rows corresponds to

each texture being mapped back onto the geometry.

4.6 CITPass

The create input textures pass is a separate, a-priori rasterization pass that generates
the above described textures from the scene’s 3D geometry.

It involves applying a custom vertex shader that places each vertex into a po-
sition in clip-space that corresponds to its UV coordinates. Whilst a typical vertex
shader commonly applies an objects model, view and projection matrices like so:

vert(v) = P ∗V ∗M ∗ v.pos (4.2)

our custom vertex shader for the CITPass simply applies a vertex’s UV coordi-
nates:

vert(v) =

2 ∗ (v.uv.x− 1

2)
2 ∗ (v.uv.y− 1

2)
0
1

 (4.3)

Chapter 4. RTX Radiosity 53

UV coordinates range from zero to one, whilst clip-space is defined as the [−1, 1]
range, hence the subtraction of 1

2 and multiplication by 2. We assume the UV map-
ping to contain no overlapping geometry, making the z-coordinate produced by this
vertex shader irrelevant.

With the vertex shader in place, setting the output resolution to the desired reso-
lution of the input textures then ensures that the subsequent pixel shader is executed
exactly once for each pixel - e.g. each patch - in these textures.

An example how how this texturegroup looks like after the CITPass can be seen
in fig. 4.6. The lighting textures ligin and ligout store the emissive values Le for each
patch, which serves as the radiant-exitance for the first radiosity pass.

4.6.1 Surface Area

Whilst normal vectors, positions and material properties are easily passed into the
pixel shader through the rasterization pipeline, surface areas of patches require ad-
ditional information that a simple, barycentric interpolation cannot provide.

FIGURE 4.7: Approximation of a patches surface area: Since this tri-
angle occupies 12 patches on the lightmap, the world-space surface
area of each patch can be approximated by ascribing each patch the

surface area of the triangle divided by the amount of patches.

Our textures consist of pixels, effectively squares, which correspond to radiosity
patches. The set of pixels rastered by a triangle, will only partially cover or be covered
by it. As such it is difficult to calculate an accurate value for the world-space surface
area each patch possesses, for which we employ the following approximation: The
surface area of any one patch is equal to the surface area of the underlying triangle divided
by the total amount of patches occupied by said triangle.

Let Aw
△ be the world-space surface area of the triangle, with Auv

△ being its surface
area on the [0, 1] bounded UV map. The amount of patches a triangle occupies can
be derived from the product of its UV surface area and the total amount of patches in
the texture n. For instance, if a triangle occupies half of the UV map, its UV surface
area will be equal to 1

2 , which implies that it is represented by n
2 patches.

The world-space surface area Aw
⊡ of a single patch can then be computed from

the relationship between this product and its world-space triangle Aw
△ (see fig. 4.7):

Aw
⊡ ≈

Aw
△

Auv
△ ∗ n

(4.4)

Chapter 4. RTX Radiosity 54

FIGURE 4.8: Dataflow diagram of the CITPass, resulting in the tex-
turegroup that serves as the input-output datastructure for subse-

quent passes.

We perform this operation on a per-triangle basis within the geometry shader
of the CITPass. Unlike other common applications of geometry shaders (see 3.3.1)
we do not modify the output vertices, but merely append the fraction above as an
attribute to each vertex, which then gets passed on to the pixel shader that stores it
in the surface area texture arf.

The overall execution and information flow of the CITPass is visualized in fig.
4.8.

4.7 RTLPass

The central component of our application is the ray-traced lightmap pass (RTLPass),
which takes the generated texturegroup as its input values and produces an output
texture correspondent to the lightmap after a single iteration of progressive radiosity.
For each subsequent pass the output lighting-texture is swapped and fed back into
the algorithm as the input for the next iteration (see fig. 4.9).

The RTLPass is the only DXR pass (non-rasterization pass) in the entire appli-
cation. It launches the ray-generation shader for each pixel in the lighting texture,
which commences a separate GPU thread for each radiosity patch which loops over
all the other patches to sum up their respective lighting contribution into the output
texture2.

The overarching procedure of this pass closely resembles the progressive ra-
diosity algorithm given in section 2.8.4 and can be summarized with the following
pseudo-code:

2Note that since visibility is symmetrical under V(x1, x2) = V(x2, x1), only half the rays given in
algorithm 3 are theoretically required. Unfortunately, in practice this leads to multi-threading memory
collisions that are described in section 4.7.4.

Chapter 4. RTX Radiosity 55

FIGURE 4.9: Generalized overview of information flow in RTRad.
The 3D scene is used by the CITPass to populate a blank texturegroup
which, alongside the acceleration structure, serves as the input for the
RTLPass. The output texture of the RTLPass can then be used as input
for the next iteration. Textures can be visualized on screen through a
VITPass (see 4.9). The purpose of CVMPass and SewSeamsPass are de-

scribed in sections 5.3 and 4.8 respectively.

Algorithm 3 RTLPass

1: for i ∈ [0, n] do ▷ For each patch (executed in parallel)
2: Lout(i)← Le(i) ▷ Set initial lighting value
3: for j ∈ [0, n] do
4: if j ̸= i then ▷ For every other patch
5: Shoot a ray from pos(i) to pos(j)
6: if no geometry is encountered along the way then
7: Calculate view factor F(i, j)
8: Lout(i)← Lout(i) + mat(i) ∗ F(i, j) ∗ Lin(j) ▷ Add contribution
9: end if

10: end if
11: end for
12: end for

4.7.1 Visibility Raytracing

As defined in section 2.9.2, two locations x1 and x2 are mutually visible if a ray
launched from one towards the other, arrives at the other unimpeded:

V(x1, x2)↔ I(x1, x2 − x1) = x2 (4.5)

The insight gained from the shader execution order pictured in chapter 3 (fig.
3.9) implies that, in order to minimize the required amount of BLAS traversal the

Chapter 4. RTX Radiosity 56

ray lengths ought to be kept as short as possible in addition to stopping execution
upon any intersections.

As an alternative to the equation above, two points xi and xj are also mutually
visible if a ray from xi towards xj with some offset ε and of length |xi − xj| − 2ε does
not encounter any geometry at all, which in RTX would trigger the execution of the
miss shader.

Shortening the rays to a length of |xi − xj| − 2ε and then determining visibility
through the miss shader requires fewer intersection tests, binding-table lookups and
should generally speed up the algorithm, as any non-visible pairs can be quickly
discarded through the RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH flag.

In our implementation, we use the ray payload to get indices on the origin and
destination patches into the miss shader. Alternatively, one could also store a boolean
that represents visibility and then perform lighting calculations in the ray-generation
shader itself.

Below we provide a simplified, superficial version of our RTLPass shader code:

1 / / Custom ray − p a y l o a d
2 s t r u c t RayPayload
3 {
4 uint2 or ig in_coord ; / / s a m p l e r p a t c h
5 uint2 des t ina t ion_coord ; / / sampled p a t c h
6 } ;
7
8 [shader (" raygenerat ion ")]
9 void launchRays ()

10 {
11 uint2 or ig in_coord = DispatchRaysIndex () . xy ;
12
13 for (u int x = 0 ; x < lightmap . width () ; x++) {
14 for (u int y = 0 ; y < lightmap . height () ; y++) {
15
16 uint2 dest in_coord = uint2 (x , y) ;
17
18 f l o a t 3 or ig in_pos = pos [or ig in_coord] ;
19 f l o a t 3 dest in_pos = pos [dest in_coord] ;
20
21 RayDesc ray ;
22 ray . Origin = or ig in_pos ;
23 ray . D i r e c t i o n = dest in_pos − or ig in_pos ;
24 ray . TMin = EPSILON ;
25 ray . TMax = d i s t a n c e (origin_pos , dest in_pos) − 2 *

EPSILON ;
26
27 RayPayload r p l = { origin_coord , dest in_coord } ;
28
29 TraceRay (scene ,
30 RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH,
31 0xFF , 0 , 0 , 0
32 ray ,
33 r p l
34) ;

Chapter 4. RTX Radiosity 57

35 }
36 }
37 }
38
39 [shader (" miss ")]
40 void primaryMiss (inout RayPayload r p l)
41 {
42 / / L i g h t i n g c a l c u l a t i o n s .
43 / / Determine what l i g h t r p l . d e s t i n _ c o o r d c o n t r i b u t e s on to

r p l . o r i g i n _ c o o r d
44 }

4.7.2 View Factor Calculation

From the results of some of our early prototypes we deduced that increasing the
amount of samples in a Monte-Carlo based view factor was operationally equivalent
with simply increasing the resolution of the underlying lightmap itself. Instead of
sampling a single patch multiple times, this would essentially divide the patch up
into several smaller ones (see fig. 4.10).

FIGURE 4.10: Original scene (a) and patches for a lightmap of 32× 32,
64× 64 and 128× 128 pixels respectively (b-d). Each black or white

rectangle corresponds to a single patch.

In light of the foregoing, we determined that a Monte-Carlo view factor with
K = 1 was sufficient, where larger values of K can effectively be simulated by larger
lightmaps as well as our employed Monte-Carlo undersampling (see section 5.1.1).
As such, we are able to compute view factors in a single step through the following
formula:

Fi,j =
1
K

K

∑
k=1

Aj
cos θki cos θkj

∥xki − xkj∥2 V(xki, xkj) ≈ Aj
cos θi cos θj

∥xi − xj∥2 V(xi, xj) (4.6)

Bearing in mind the individual textures given in section 4.5.2, allows us formu-
late this equation as the exact programmatic steps our shader undertakes to compute
the view factors between two patches i and j:

F(i, j) = ar f (j)
(nrm(i) · pos(j)−pos(i)

||pos(j)−pos(i)||) ∗ (nrm(j) · pos(i)−pos(j)
||pos(i)−pos(j)||)

||pos(i)− pos(j)||2 (4.7)

Chapter 4. RTX Radiosity 58

where nrm(i) represents a texture-lookup on the normal-vector texture for patch
i etc.

4.7.3 Lighting Contribution

Combining the factors from the radiosity equation given in 2.34 with the view factor
definition given above, yields the total lightflow from a patch j to another patch i as
the following:

L(j −→ i) = ligin(j) ∗mat(i) ∗ ρ

π
∗ F(i, j) (4.8)

where ρ is the reflectivity constant, mat is the color of the material and ligin is the
input lighting texture (equivalent to the emission texture on the first pass).

This equation can be seen reflected in the code of our miss shader. A simplified
version of said shader is listed below:

1 void AddContribution (uint2 s e l f _ c , u int2 other_c) {
2 / / World p o s i t i o n s
3 f l o a t 3 self_wpos = pos [s e l f _ c] . xyz + minPos ;
4 f l o a t 3 other_wpos = pos [other_c] . xyz + minPos ;
5
6 / / D i s t a n c e
7 f l o a t 3 s e l f _ t o _ o t h e r = other_wpos − self_wpos ;
8 f l o a t r = length (s e l f _ t o _ o t h e r) * d i s t a n c e _ f a c t o r ;
9

10 / / C o s i n e s
11 s e l f _ t o _ o t h e r = normalize (s e l f _ t o _ o t h e r) ;
12 f l o a t 3 self_nrm = nrm[s e l f _ c] . xyz ;
13 f l o a t 3 other_nrm = nrm[other_c] . xyz ;
14 f l o a t s e l f _ c o s = dot (self_nrm , s e l f _ t o _ o t h e r) ;
15 f l o a t other_cos = dot (other_nrm , − s e l f _ t o _ o t h e r) ;
16
17 i f (s e l f _ c o s <= 0 . 0 f || other_cos <= 0 . 0 f) return ;
18
19 / / Form f a c t o r
20 f l o a t F = a r f [other_c] . r * s e l f _ c o s * other_cos * (1 . 0 f /

(PI * r * r)) ;
21
22 / / Apply c o n t r i b u t i o n
23 l i g _ o u t [s e l f _ c] += l i g _ i n [other_c] * mat [s e l f _ c] *

r e f l e c t i v i t y _ f a c t o r * F ;
24 }

We found that several custom tweaks not shown in the pseudo-code above, such
as clamping lighting contribution and form factors to certain maximum values, sig-
nificantly improved lighting quality.

Chapter 4. RTX Radiosity 59

4.7.4 Indexing and Memory Conflicts

In theory, the reciprocity rule (2.36) implies that a view factor between two patches
only needs to be computed once, with its inverse resulting from a simple multiplica-
tion in the form of Fji =

Ai
Aj

Fij. This simple fact has far-reaching implications in that
dramatically fewer texture-lookup and ray-trace operations are required, effectively
cutting the required computational expense in half. Unfortunately, it does not play
out this trivially in practice.

A naive implementation may look as follows:

Algorithm 4 RTLPass - Reciprocity Rule

1: for i ∈ [0, n] do
2: Lout(i)← (0, 0, 0)
3: for j ∈ [i + 1, n] do
4: Shoot a ray from pos(i) to pos(j)
5: if no geometry is encountered along the way then
6: Calculate view factor F(i, j)
7: Lout(i)← Lout(i) + F(i, j) ∗ Lin(j)
8: Lout(j)← Lout(j) + F(i, j) ∗ ar f (i)

ar f (j) ∗ Lin(i)
9: end if

10: end for
11: end for

Note in particular line 3, where the inner for-loop commences at i+ 1. Under this
offset the complexity of the algorithm is lowered to its Gaussian sum n2+n

2 which,
despite ultimately boiling down to O(n2), still provides a considerable gain in per-
formance.

The crux of this approach emerges from parallelization, as multiple threads mod-
ifying a single patch cause memory write collisions. Specifically, parallelizing the outer
for loop in algorithm 4 will cause such collisions on line 8, as multiple separate
threads adopt the same value for j. If the inner loop is parallelized, the same issue
will occur on line 7.

Thread safety features, such as mutex locks, come with their own respective per-
formance overheads and are not available in common GPUs. If ignored, these write
conflicts manifest themselves as unusual artifacts depicted in fig. 4.11. The resulting
smudges can be allayed under specific conditions using certain batching parameters,
though the results are highly unreliable3.

For a more reliable solution, following options are available:

• Adhering to our original algorithm 3, where each thread is assigned a singular
patch i that it can write to. No writing conflicts will occur, albeit view factors
and rays will have to be computed twice for each patch-pair.

• These duplicate calculations can be prevented by temporarily caching their
results. For instance, a thread processing patch i would temporarily store the
visibility and/or view factor towards another patch j in memory, so that when
the thread processing patch j samples patch i, the cached value can simply be
retrieved. Unfortunately, GPUs have notoriously limited memory capacities

3The results in fig. 4.11 have been produced with a lightmap resolution of 128× 128 and a batch size
of 64× 64. On our hardware, different batch sizes sway the rate and intensity of these imperfections,
but finding the ideal size largely comes down to trial-and-error.

Chapter 4. RTX Radiosity 60

FIGURE 4.11: Results when applying a regular algorithm 3 (right)
and when applying the flawed algorithm 4 (left). Note in particular
the grey smudges on the walls that result from collisions of multiple
threads writing simultaneously to the same memory address. The
location and intensity of the smudges are mostly consistent across

multiple runs, but differ depending on input parameters.

and the amount of memory required lies in O(n2). Our testing concluded that
caching visibility data can be viable for small lightmaps. A detailed account on
our findings regarding visibility caching can be found in section 5.2.

• Since Turing GPUs contain between 40 to 80 RT cores, a rough limit of 40-80
threads can be assumed to be writing to memory simultaneously. An indexing
solution ensuring that any patch-pairs which may potentially write into shared
memory are far enough apart in the index-sequence may diminish the effects
of memory-conflicts sufficiently to make the final result identical.

Most multi-threaded, progressive refinement solutions implement the first solu-
tion by calculating all view factors on-the-fly. Naturally, the performance balance
depends on whether the benefits of GPU parallelization can outweigh the cost in-
curred by doubling the amount of visibility calculations.

Our implementation runs, by default, with the same approach but also allows
visibility caching to be enabled for smaller lightmaps (see section 5.2).

4.7.5 Batching

Operating systems typically expect applications to remain responsive in scheduling.
Forcing an indefinitely large workload onto the GPU will cause the program to be
terminated by the OS after exceeding a certain time threshold, which can be reached
rather quickly by a workload as complex as progressive radiosity.

To circumvent this problem, we compute lightmaps in a series of batches, as
opposed to all at once. The batching process is managed by internally the RTLPass
object, which allows the user to adjust certain batching parameters through its GUI.
These parameters allow defining the dimensions of the rectangle - or strip - that is
computed with each batch.

Chapter 4. RTX Radiosity 61

By gradually testing various thresholds, we determined an upper limit of 1284

rays traced per batch to be adequate for our specific hardware. Depending on the
sampling and resolution settings, the RTLPass object ensures that batching parame-
ters are dynamically adjusted in order to remain at or below this limit.

We recommend maintaining the batch size as close to this limit as possible, be-
cause a larger batch count (such as a single patch per batch) inevitably comes with a
large overhead cost in setting up each individual render pass.

4.8 SewSeams Pass

When patches are not aligned with geometry, lights and shadows can leak and pro-
duce undesirable protuberances in the form of unrealistic shadows or highlights
[69].

Increasing lightmap size or adjusting UV coordinates can eliminate these issues
entirely, but is difficult to do automatically. Some re-meshing solutions generate
edges along predicted discontinuities of the radiosity function [69], though this only
functions if each patch is given its own primitive.

Similar inaccuracies (labeled as geometry leaks in fig. 4.12) can result from pixels
neighbouring a patch that does not have its center covered by a surface, as these will
not be rasterized by the CITPass. These types of leaks can be far more frequent than
the former and will not only manifest themselves in corners.

Conservative rasterization prevents this issue, but produces additional prob-
lems, as it overwrites patches when occupied by several primitives in addition to
annulling our approximation for surface area (see section 4.6.1).

FIGURE 4.12: Light and shadow leaks on UV-mapped lighting tex-
tures. Geometry leaks occur when a patch/pixel is only marginally

covered by a surface.

We employed a custom solution in the form of an additional SewSeams pass that
is executed after each radiosity iteration.

Chapter 4. RTX Radiosity 62

This pass runs for every lightmap pixel that was not rastered by the CITPass
and thus is not treated as a patch. If any of the pixel’s neighbours is a patch, then
the pixel assumes its color. This process effectively expands the UV mapping of
each cohesive shape by a margin of one pixel, which eliminates the vast majority of
geometry-based leaks entirely (as shown in fig. 4.13).

FIGURE 4.13: Scene without (a) and with (b) a SewSeams pass.

4.9 VITPass

For visualization purposes we employ an additional visualize input textures pass (VIT-
Pass), which serves as a tool to display and analyze input and output data. Whilst
this pass may not be an intrinsic part of our algorithm, it certainly proved invaluable
to debug, optimize and analyze our implementation.

We employ a plethora of settings that can be accessed through Falcor’s UI to
adjust precisely what output should be displayed and in what form. The user can
choose which mipmap level of which texture to display and whether to render them
as texture, masked texture or applied to the underlying 3D model.

As is common practice in radiosity, we employ a bi-linear magnification filter to
smooth out each texture, which can be toggled on or off (see fig. 4.14).

The VITPass is built on a custom vertex and pixel shader, which allow for a wide
variety of different setups. Additional information such as lightmap resolution,
refinement-nodes or voxel-maps can also be adequately visualized (see fig. 4.15).

All scene renders or raw textures contained in this thesis are produced using the
VITPass (unless stated otherwise).

Chapter 4. RTX Radiosity 63

FIGURE 4.14: Low resolution lightmap (64 × 64) without (left) and
with (right) a bilinear magnification filter.

FIGURE 4.15: Examples of data visualization through the VITPass.
left-to-right, top-to-bottom: Normal vectors, voxel map, texture reso-

lution and quad-tree of a scene.

64

Chapter 5

Performance Improvements

Put together, the components outlined in the previous chapter already constitute a
fully functional implementation of the progressive radiosity algorithm. In this chap-
ter we expand it to include refinement in addition to further performance enhance-
ments and variations commonly seen in other implementations.

5.1 Refinement

In traditional radiosity, patches are assumed to have a uniform radiant exitance
across their surface [22, 29]. Since ray-traces are of logarithmic complexity [3], our
doubly nested, pair-wise for-loop results in an altogether complexity of O(n2 log t)
where t is the number of primitives and n is the amount of patches. This complex-
ity suggests that lowering the amount of required samples (e.g. the "contributing"
patches n) yields a far greater positive impact on performance than diminishing the
value of t.

There are several different approaches of accomplishing this goal, which were
broadly categorized in section 2.8.5. In this chapter we primarily focus on meth-
ods based on h-refinement, namely static undersampling and adaptive subdivision. Our
approaches follow the precedent set by the implementation presented in the GPU
Gems 2 [5], by separating the sampled patches as a proper subset of the overall
lightmap. Our different strategies of generating such a subset are depicted in fig.
5.1.

5.1.1 Static Undersampling

A crude and simple method of sampling at a lower resolution than that of the lightmap
is to simply do so through a static stride. The nature of UV unwrapping implies that
neighbouring pixels on the lightmap likely also represent neighbouring patches in
world space, thus increasing the viability of discarding samples belonging to these.
Whilst no common name has been established for this method, we will refer to it as
static undersampling.

In its simplest version, we simply discard all but the upper, left-most pixel of
each consecutive square consisting of m pixels (the sampling window).

This inherently degrades the algorithms’ complexity to O(n2

m log t), albeit the
quality of the resulting lighting may likewise suffer in proportion to m. The de-
creased amount of samples needs to be reflected in the lighting contribution values
(as given in 4.7.3) as a factor of m, which is the amount of patches each sample rep-
resents:

L(j −→ i) = m ∗ ligin(j) ∗mat(i) ∗ ρ

π
∗ F(i, j) (5.1)

Chapter 5. Performance Improvements 65

Monte-Carlo Undersampling

If the edges of a scene’s UV map are aligned along one of the texture’s axes, then
the fixed-step nature of static undersampling may lead to certain colors or surfaces
being grossly over-represented in the aggregate lighting contribution. This effect can
be mitigated by selecting a randomized pixel from each

√
m×
√

m square.
Naturally, the employed randomization ought to be seeded on the patch-index

of the contributor, not the shooter.

FIGURE 5.1: Different strategies for undersampling on a lightmap of
64× 64 pixels. One sample is taken for each window of 4× 4 pixels
(m = 16), with the sampled patches marked in yellow. Mipmapped
takes averages and thus has the best coverage, whilst substructuring
(e.g. adaptive subdivision) allocates more samples to areas of a high

gradient.

Chapter 5. Performance Improvements 66

5.1.2 Mipmapped Undersampling

The information loss incurred by static undersampling can be placated by comput-
ing averages for each set of pixels. Some GPU implementations utilize mipmapping
as a fast and convenient tool to accomplish this [5].

Mipmaps are a sequence of pre-calculated, down-scaled versions of a given tex-
ture. With each level, the image resolution is a factor of four smaller than the previous
level. Their applications are primarily centered on texture filtering with the intent to
reduce aliasing artefacts at long render distances.

The GPU employs a minification filter to dictate how mipmaps are derived from
the original texture. The most commonly used types are the nearest neighbour and
bilinear filters [8, 75]. Bilinear mipmaps are the functionally equivalent inverse of
the bilinear magnification filter which we touched on in section 4.9: Each pixel in the
minified image corresponds to the average of a 2× 2 square in the level below (see
fig. 5.2).

Since generating mipmaps on a GPU is a near-instantaneous process, they can be
used as a tool to sample texture areas for their average color values conveniently [8,
27, 5]. Computing the average color of a

√
m×
√

m square simply corresponds to a
texture lookup on the mipmap of level log2(

√
m).

Mipmapped undersampling ensures no vital patches (such as light-sources) are
discarded, but can lead to colors leaking from one surface to another when sampled.

FIGURE 5.2: Bilinear mipmaps of a lightmap (under a bilinear mag-
nification filter). These are the lightmaps sampled by mipmapped
undersampling with a value of m = 4, m = 16 and m = 64 respec-

tively.

5.1.3 Adaptive Subdivision

Adaptive subdivision is a more sophisticated counterpart to static undersampling and
is generally regarded as a core part of progressive refinement radiosity [29]. Patches
that have a high gradient across them, such as shadow boundaries and penumbras,
are subdivided into finer grids, whilst low detail areas are represented by a single
patch [70, 29] (see fig. 5.3).

Chapter 5. Performance Improvements 67

Our implementation of this concept in RTRad is loosely based on the hierar-
chical, quad-tree approach used by Willmott et al. [40] as well as the "progressive
accuracy" solution employed by Elias [77], whilst we somewhat diverge from other
GPU implementations that map each patch to a specific scene polygon and maintain
a quad-tree datastructure inside a static buffer [5].

Given our emphasis on handling data directly within UV-wrapped textures, we
opted to store meta-information on our quad-tree structure within the alpha-channel
of the lightmap texture itself. This approach allows us to keep the algorithm shown
in the previous chapter mostly intact, whilst letting us sample at a significantly lower
rate.

FIGURE 5.3: Quad-tree substructuring of a surface. More subdivi-
sions are made in areas of high detail.

Alpha-Embedded Substructuring

Section 4.5.2 briefly mentions that RTRad uses the alpha channel of the position-
texture to mark patches that are not occupied by any geometry and thus have no
respective surface in the scene. Our quad-tree employs a similar scheme in that the
alpha value of each pixel equates to the amount of patches its color value represents
in sampling.

Before commencing a radiosity iteration, we run a fullscreen pixel shader on
the input lighting texture that constructs the appropriate quad-tree inside the alpha
channel. The tree is constructed bottom-up, with each pass of the shader processing
a single level. For a maximum node size of 16× 16 pixels, the required passes would
thus be log2(16) = 4, equivalent to the height of a quad-tree that can represent
16× 16 values under a single root.

Each pass examines the gradient of every four neighbours and determines whether
these are to be merged into a single node or not. If the colors hardly deviate, the up-
per left-most node is designated to represent the entire group, with its siblings being
dropped from the sampling pool.

Chapter 5. Performance Improvements 68

FIGURE 5.4: A 64× 64 RGB lightmap (a) and its alpha channel (b-e)
after 0, 1, 2 and 3 substructuring passes respectively with a gradient

threshold of 0.2.

The algorithm functions in accordance to the following pseudo-code:

Algorithm 5 Alpha - Substructuring

1: for each pixel (x, y) ∈ lightmap do ▷ Initialize all alpha values as 1
2: alpha(x, y)← 1
3: end for
4: for step ∈ {2, 4, 8...} do
5: for each pixel (x, y) ∈ lightmap do
6: if x and y are divisible by step then ▷ For every step× step pixels
7: child1 ← (x, y) ▷ Get 4 neighbouring child-nodes
8: child2 ← (x + step

2 , y)
9: child3 ← (x, y + step

2)

10: child4 ← (x + step
2 , y + step

2)

11: if all child-nodes have alpha(childx) ≥ (step
2)2 then ▷ Only merge

nodes that have no children of their own
12: g← gradient(child1, child2, child3, child4) ▷ Calculate gradient
13: if g < threshold then ▷ Merge children
14: alpha(child1)← ∑4

i=1 alpha(childi)
15: alpha(child2)← 0
16: alpha(child4)← 0
17: alpha(child5)← 0
18: end if
19: end if
20: end if
21: end for
22: end for

Chapter 5. Performance Improvements 69

As shown in fig 5.4, all occupied geometry will commence with an alpha value of
one, then each 2× 2 square with a low gradient is merged by transferring the alpha
value of all pixels inside the square into the its upper, left-most member. The same
process is repeated for 4× 4 and 8× 8 squares respectively.

Once the alpha-embedded quad-tree is constructed for the ligin texture, the RTL-
Pass will loop over all other patches, but disregard those with alpha values of zero
and multiply the lighting contribution of the rest by their alpha values. The follow-
ing algorithm amends our original algorithm 3 from the previous chapter:

Algorithm 6 RTLPass with Adaptive Subdivision

1: for i ∈ [0, n] do
2: Lout(i)← (0, 0, 0)
3: for j ∈ [0, n] do
4: if j ̸= i and alpha(j) > 0 then
5: Shoot a ray from pos(i) to pos(j)
6: if no geometry is encountered along the way then
7: Calculate view factor F(i, j)
8: Lout(i)← Lout(i) + alpha(j) ∗mat(i) ∗ F(i, j) ∗ Lin(j)
9: end if

10: end if
11: end for
12: end for

The alpha channel of a standard GPU texture can typically only hold 8 bits of
information which, under our algorithm, limits the maximum size of a node to√

282
= 16× 16 pixels, amounting to a maximum quad-tree height of four. Although

this limitation is negligible, as one could simply store the logarithmic or fractional
alpha value instead, the remainder of this thesis will work with an upper node limit
of 16× 16.

Gradient Calculation

Determining an approximate gradient for a lighting texture can be accomplished
in a number of ways and can incorporate data such as color values to variations
in normal vectors. We based our function largely on Willmott et al. [40], which
uses the standard deviation of each patch’s radiosity value. We additionally include
deviation in normal vectors, to ensure the edges of cohesive surfaces are weighed
more heavily in the gradient:

grad(a, b, c, d) =
1
2
∥lig(a)−mean(lig(a), lig(b), lig(c), lig(d))∥

+
1
2
∥nrm(a)−mean(nrm(a), nrm(b), nrm(c), nrm(d))∥

(5.2)

where, in our case, a is the upper left-most child or pixel.
Adjusting the gradient threshold respectively leads to more or fewer samples

taken (see fig. 5.5). For small lightmaps, we found a value of 0.05 to provide a decent
balance between performance and accuracy. Given that each consecutive RTLPass
iteration has a lesser effect on lighting than the previous, a reasonable approach
would be to ramp this value up successively with each pass.

Chapter 5. Performance Improvements 70

FIGURE 5.5: A 64 × 64 RGB lightmap (a) and its alpha-embedded
quad-tree for different gradient thresholds (b-e) (black pixels are not
sampled). A larger threshold will lead to more aggressive merging.

5.2 Visibility Caching

In this section we describe a visibility caching method used to complement the
RTRad algorithm. The resulting performance shows promise for smaller lightmaps
and is analyzed in greater detail further ahead (see section 6.4.1).

5.2.1 Memory Complexity

The required memory for all pairs of n radiosity patches lies in O(n2). In a naive
implementation, a modest lightmap of 256x256 pixels would thus require 2564 bits
(approx. 0.5GB) of storage, which already borders a critical threshold of what lower
grade GPUs can accommodate.

Fortunately, not every pair of patches needs to be considered. Self-referencing
pairs of the form (0, 0), (1, 1)...(n, n) as well as mirrored pairs ((x, y) or (y, x)) can
be discarded, bringing the required raw memory down to 1

2 ∗ n2 − n bits. Built-in
compression algorithms are unlikely to alleviate this problem, as their intended use
is centered on compression of geometry, textures or z-Buffers [41].

Our implementation stores visibility information as an uncompressed, contigu-
ous buffer of bits which we append to our existing texturegroup. We chose an upper
limit of 232 bytes, as common GPUs tend not to have more than 8GB of onboard
memory, and Falcor disallows the allocation of larger buffers. Theoretically, a buffer
of this size can provide full coverage of lightmaps with sizes up to 512× 512.

Figuring out which memory address (index) each patch pair is assigned in the
visibility buffer, requires a bijective mapping function between unique pairs and
respective indeces.

Chapter 5. Performance Improvements 71

5.2.2 Cantor Pairing Function

Pairing functions uniquely encode two natural numbers into a single one. There are
a wide variety of them each with their own use cases and respective advantages [73,
42]. For visibility caching we encode each unique pair of patches to an index in a
cohesive memory sequence, which makes the Cantor pairing function a good choice,
as it traverses a 2D grid in a triangular shape which can be modified to exactly cover
each unique pair and no more (see fig. 5.6).

A vanilla cantor pairing function for non-negative integers follows this formula
[42]:

Cantor(x, y) =
x2 + 3x + 2xy + y + y2

2
= x +

(x + y)(x + y + 1)
2

(5.3)

We ensure pair uniqueness by sorting x and y in ascending order. We also mirror
the x-axis to ensure that at a given cutoff point (namely 1

2 ∗ n2− n) only unique pairs
have been covered:

address(x, y) = Cantor(nx −min(x, y), max(x, y)) (5.4)

where nx is the lightmap resolution along the x axis.
In this memory-sequence function, the parameters (patches) are encoded as a sin-

gle number, whilst on the lightmap they are given by two coordinates. Converting
between each format is a trivial process:

patch1D = patch2D.x + patch2D.y ∗ nx (5.5)

FIGURE 5.6: Vanilla Cantor pairing function (left) and our custom
pairing function (right) on a 5× 5 grid. The area marked in orange
contains all unique, non self-referencing pairs. Up to the index of
10, our pairing function excludes both mirrored and self-referencing

pairs, thus encompassing exactly this area.

5.2.3 Visibility Buffer

Visibility data is stored inside a standard DirectX RWBuffer of unsigned integers with
a maximum size of 232 bytes. The modified cantor pairing function defined above

Chapter 5. Performance Improvements 72

ascribes each pair of patches a corresponding index inside the buffer. If the result
exceeds the maximum value of 8 ∗ 232, no cached data is available and the visibility
will have to be computed on-the-fly through raytracing.

Accessing the individual bits of a buffer directly is not possible in HLSL, so we
employ equivalent bit-shifting functions that operate on 32-bit unsigned integers
instead1.

In theory this approach may also be used to partially store visibility data on larger
lightmaps, though based on our measurements, this only lead to performance degra-
dation. The visibility data required by a lightmap of 10242 pixels would require up-
wards of 500 billion bits, of which the entirety of our 4GB buffer would only cover
less than 7%. The cost of having to calculate the cantor-index for all patch pairs
heavily outweighs the advantage of being able to skip the raytraces for just 7% of
them.

5.3 Voxel Raymarching

The primary mechanism behind Nvidia’s RTX technology is the complete paral-
lelization of BVH traversal, triangle intersecting and shading. Given the immense
number of rays required for a full radiosity iteration, we can safely assume that the
limited amount of RT cores still pose a meaningful bottleneck within this system.

We devised a simple, low memory alternative for visibility calculations that can
be executed on regular CUDA cores. The underlying idea consists of idle CUDA
cores tapping into the unprocessed workload when all RT cores are otherwise busy.

The aforementioned visibility alternative has its roots in voxel cone tracing ([8,
27]).

FIGURE 5.7: Raymarching through a voxelized 3D scene. On each of
the sampled locations the respective value in the 3D texture is read. In
this example the ray will be marked as obstructed (i.e. not visible), be-
cause one of the sampled locations contains a value larger than zero.

1Since 32bit integers are read and written to simultaneously, this leads to similar memory colli-
sion inaccuracies as in section 4.7.4. In our testing their effects were mostly negligible for the smaller
lightmaps this algorithm functions on, though became noticeable on a 512× 512 resolution.

Chapter 5. Performance Improvements 73

5.3.1 Raymarching and 3D Textures

Intuitively, 3D textures function just like regular textures only with an additional
depth dimension [8]. The pixel equivalents are aptly named voxels, resulting from a
combination of the words volume and pixel.

Raymarching is a technique usually employed when surface functions are not eas-
ily solvable. Unlike raytracing, this process "marches" forward along the ray direc-
tion in a series of steps, sampling each point along the way [8]. Raymarching has a
wide range of variations such as sphere tracing or SDF ray marching, which require
signed distance functions [43].

Storing a voxelized representation of a scene into a 3D texture and sampling that
texture whilst marching along a ray serves as a crude approximation to a regular
ray-trace (see fig. 5.7).

This approach is subject to a number of limitations mostly related to its geometric
inaccuracies, yet the performance remains independent of a scene’s triangle count
and is instead tied to the overall size of the employed 3D texture [8].

5.3.2 Scene Voxelization

To voxelize a scene into a 3D texture we employ an algorithm virtually identical to
the one described by Crassin et al. [8, 27, 44], which allows an entire scene to be
voxelized in a single, lightweight rasterization pass.

We run this pass as an extension to the CITPass, the CVMPass (create-voxel-map-
pass), which consists of a unique vertex, geometry and pixel shader:

Vertex Shader

To ensure all surfaces are voxelized, the first step scales the scene to fit entirely into
the rendered clipspace. The formula applied to each vertex simply follows from:

vert(v) = 2
v− Pmin

Pmax − Pmin − (1, 1, 1)
(5.6)

where Pmin and Pmax are the minimum and maximum world positions the scene
encompasses. In essence, all scene vertices are linearly interpolated from a [Pmin, Pmax]
interval into the clipspace interval [−1, 1].

The viewport resolution is set to be equal to the width and height of the vox-
elmap which, when rendered, corresponds to each primitive being projected along
a texture axis [8]. The process of choosing the ideal axis of projection is performed
by the geometry shader.

Geometry Shader

Rasterizing all surfaces along a single axis may leave gaps in the resulting projection
if a surface’s normal vector subtends a steep angle with the axis of projection [8, 71,
44]. For instance, if the green cuboid in fig. 5.8 were to be rasterized along a single
axis, only one of the three surfaces would contain pixels.

In order to ensure a voxelization that covers all surfaces fully, one can either re-
peat the process for each axis individually or, preferably, rotate each triangle so that
the dominant component of its normal vector is aligned with the axis of projection
[8, 27, 85].

Chapter 5. Performance Improvements 74

This process is aptly named dominant axis selection, and is easily performed in a
geometry shader. The dominant axis of a triangle corresponds to the axis that its nor-
mal vector shares its largest component with. Commonly, rasterization applications
project triangles along the z-axis, so a respective geometry shader would function
like so:

Algorithm 7 Dominant Axis Selection (Adapted from VXCT [8])

1: procedure PROCESSTRIANGLE(v1, v2, v3)
2:

⇀
n ← |(v2 − v1)× (v3 − v1)| ▷ Calculate normal vector

3: for v ∈ {v1, v2, v3} do ▷ Rotate each vertex to maximize z
4: if n.x = max(n.x, n.y, n.z) then
5: v.xyz← v.zyx
6: else if n.y = max(n.x, n.y, n.z) then
7: v.xyz← v.xzy
8: else n.z = max(n.x, n.y, n.z)
9: v.xyz← v.xyz

10: end if
11: end for
12: end procedure

FIGURE 5.8: The individual steps of the GPU voxelization algorithm
proposed by Crassin et al. Note that the geometry shader technically
does not project the geometry, but merely rotates it so that the domi-

nant axis is aligned with the axis of projection.

Chapter 5. Performance Improvements 75

Pixel Shader

The rasterization pipeline delivers the world position that each fragment had before
the geometry shader’s rotations took place. For each rendered pixel that position
now corresponds to a coordinate within the 3D texture that is set to be a "solid"
voxel (see fig. 5.9).

In voxel cone tracing, each voxel stores information on direct lighting calculated
by the phong model [8]. For our purposes it is sufficient to simply store a 0 for empty
space and 1 for geometry.

FIGURE 5.9: Phong-model direct light values stored in voxelmaps of
different resolutions, as depicted by Benjamin Kahl [8].

We store the voxelmap alongside our other textures in the texturegroup. March-
ing through it along a ray until a voxel is solid becomes a trivial procedure that can
be directly called instead of the RTX TraceRay function.

In RTRad, we allow the user to set a custom ratio of RTX ray-traces that are
replaced by voxel-raymarches. We found that, for small voxelmaps, this could in-
deed lead to an improvement in pass-time but would significantly deprecate lighting
quality. Nevertheless, raymarching does serve as a simple and lightweight fallback
for graphics cards that do not support RTX. A more detailed account on our findings
is listed in section 6.4.2.

Chapter 5. Performance Improvements 76

5.4 Directional Sampling

Some radiosity implementations rely on the hemicube approximation for visibility
and do not calculate view factors explicitly [5]. Instead, gathered intensity is esti-
mated by generating samples on a hemicube and determining which patch a ray
incoming from that direction would have originated on. The total gathered inten-
sity can thus be estimated as the average for each of these directions. This process
corresponds, in essence, to the same distribution that a classical raytracing program
would sample for diffuse reflections. We broadly categorized this approach as "di-
rectional sampling" in section 2.8.6.

To analyze the viability and performance of RTX in these types of implementa-
tions, we included a modified version of our algorithm that relies on direction-based
sampling.

For each patch, a number of rays are shot through a surrounding hemisphere.
Whichever surfaces these encounter are sampled for their color and added into the
final lighting sum. Instead of weighing lighting contribution by patch surface area,
we compute a rudimentary average over the number of samples |Ω|.

Mathematically, this approach is described by the equation for raytracing, as
given in (2.25):

Lo(x,
⇀
ω) = Le(x,

⇀
ω) +

1
|Ω| ∑

⇀
ωi∈Ω

fr(
⇀
ωi,

⇀
ω, x)Lo(I(x,

⇀
ωi),−

⇀
ω)

⇀
ωi ·

⇀
nx

∥x− I(x,
⇀
ωi)∥2

(5.7)

Since radiosity is only concerned with diffuse reflections, the BRDF fr collapses
into a generic diffuse BRDF of ρ

π :

Lo(x) = Le(x) +
ρ

π|Ω| ∑
⇀
ωi∈Ω

Lo(I(x,
⇀
ωi))

⇀
ωi ·

⇀
nx

∥x− I(x,
⇀
ωi)∥2

(5.8)

The equation above can be adapted fairly easily into our existing architecture
by using DXR’s closest-hit shader which, in essence, corresponds to our intersection
function I(x,

⇀
ω).

The closest-hit shader allows one to retrieve information on the closest intersec-
tion, including UV coordinates which lets us access all required data through our
existing texturegroup. The lighting value sampled by each ray can be blurred by
sampling a higher mipmap level in order to avoid sporadic illumination effects due
to small texture details.

Algorithm 8 outlines the respectively modified RTLPass for this approach. For
the sake of brevity, we kept the exact operations (such as mipmap-sampling, ac-
counting for patch-size, tangent-space transformation etc.) obfuscated, but the entire
closest-hit shader can be viewed on the RTRad open source repository (see [63]).

Chapter 5. Performance Improvements 77

Algorithm 8 RTLPass

1: for i ∈ [0, n] do ▷ For each patch (executed in parallel)
2: Lout(i)← Le(i) ▷ Set initial lighting value
3: for

⇀
ω ∈ Ω do

4:
⇀
ωt ←

⇀
ω in tangent-space of patch i

5: Shoot a ray from pos(i) in direction
⇀
ωt

6: if the ray hits another patch j then ▷ Closest-hit shader

7: g←
⇀
ωi ·nrm(i)

∥pos(i)−pos(j)∥2 ▷ Geometric factor

8: Lout(i)← Lout(i) + g ∗mat(i) ∗ ρ
π|Ω| ∗ Lo(j) ▷ Add contribution

9: end if
10: end for
11: end for

5.4.1 Hemispheric Direction Generation

The algorithm above assumes that a set of directions Ω is given. To sample directions
uniformly across a hemisphere, we utilize the same method that Laine et al. use in
incremental instant radiosity [31] to distribute additional VPLs from a light-source.

Laine et al. represent samples as 2D points inside a unit circle (rather than points
on a hemisphere) [78, 31], which can subsequently be projected onto a hemisphere
using the following operation:

(
x
y

)
−→

 x
y√

1− (x2 + y2)

 (5.9)

As can be observed in fig. 5.11, evenly scattered points on a circle result in a
lower density of vectors that strongly deviate from the surface’s normal vector. This,
in essence, induces the geometric cosine-term applied in sampling 2.

In incremental instant radiosity, the direction a new VPL is shot towards gets
determined by finding the largest empty circle within the unit circle and placing a
new sample at its center [31]. This helps maintain an even distribution of VPLs,
without prior knowledge on how many samples will be generated.

Geometrically, the largest empty circle inside a sampled area must be centered at
either

• a vertex in the Voronoi diagram that touches connects three Voronoi regions,

• the intersection between an infinite Voronoi endge and the bounding polygon
or

• a vertex of the bounding polygon [31].

With last option being irrelevant when the boundary is a perfect unit circle [31].
Our algorithm, which pre-computes a set of evenly distributed samples Ω, is

largely based on this principle by adhering to the steps listed in algorithm 9.

2Our implementation follows the pseudo-code listed in algorithm 8, meaning we apply the geo-
metric cosine-term (dot product), despite the projection onto a hemisphere already inducing the same
effect. Leaving this factor out may produce different, potentially better, results.

Chapter 5. Performance Improvements 78

Algorithm 9 Directional Sample Generation

1: Ω← 4 random points in a unit circle
2: for n iterations do
3: Calculate the Voronoi diagram of Ω
4: V ← Set of all Voronoi vertices inside the unit sphere as well as all intersec-

tions between Voronoi edges and the unit circle boundary.
5: Find the point in V that has the largest distance to its nearest neighbour and

add it as a new sample to Ω.
6: end for

The results of this algorithm can be observed in fig. 5.10, whilst fig. 5.11 shows
their respective 3D directions. Incremental instant radiosity is intended to maintain
relatively even distributions under a growing sample count. We chose this method
to ensure users can select the exact amount of samples to be used for radiosity, whilst
not having to worry about those samples being unevenly distributed.

In order to cut down on unnecessary computations during runtime, we use a
separate program written in Python (included in the RTRad repository [63]) to pre-
compute a list of directions, which are then simply read by the RTLPass shader in
the exact same order they were added to the set.

Coding directions in this static manner allows us to omit the complexities of
generating Voronoi diagrams during runtime, thus greatly increasing performance.
The resulting downside is that the maximum amount of samples becomes restricted
to the amount that was pre-generated, as well as the maximum DirectX array size.
Our chosen upper limit was 1024, although much larger sets could theoretically be
accommodated using GPU data-buffers.

FIGURE 5.10: Unit circles with various amount of samples (blue)
alongside their respective Voronoi diagrams (black/orange).

Chapter 5. Performance Improvements 79

FIGURE 5.11: One hundred generated directions (top) and their cor-
responding Voronoi diagram projected onto a hemisphere (bottom).

80

Chapter 6

Evaluation

The advent of the Nvidia RTX platform allows us to offload the costly visibility com-
putations of radiosity onto RT cores. By combining RTX and progressive refinement
radiosity we seek to provide a competitively fast algorithm that does not compro-
mise on visual fidelity.

This chapter aims to determine if and to what degree RTX can accelerate exist-
ing GPU radiosity implementations, as well as which quirks and enhancements are
most beneficial. We will discuss our findings and assessments of the presented im-
plementation and compare its performance with other industry-standard lightmap
generators.

6.1 RTRad Overview

In chapter 4 we presented our implementation of an RTX-based progressive radios-
ity lightmap generator, which was subsequently expanded upon in chapter 5.

The proposed algorithm operates entirely on textures with a series of swift pre-
and post-processing rasterization passes that translate the scene into a usable format,
generate meta-information on refinement quad-trees and ameliorate leaks on UV
seams, as shown in fig. 6.1.

FIGURE 6.1: Simplified overview of the RTRad rendering passes. For
a more detailed overview refer to fig. 4.9.

Chapter 6. Evaluation 81

The most important component of our pipeline is the RTLPass, which is executed
for each patch and uses the TraceRay function to test for visibility of other patches.
A single-sample Monte-Carlo approximation of the view factors provides the light-
ing contribution for any patch that passes the test. Once completed, the input and
output lighting textures are swapped for the next pass.

The RTLPass can be configured in manifold ways, including visibility caching,
directional sampling and various methods for reducing sample counts. Fig. 6.2
shows an overview of these various configurations.

FIGURE 6.2: Flow-diagram of the RTLPass. Most condition branches
are implemented using preprocessor directives and do not cost com-

putation time.

Chapter 6. Evaluation 82

6.2 Evaluation Method

The measurements we exhibit in this chapter were exclusively performed with the
built-in Falcor profiler, which uses the most accurate available CPU and GPU timers
to measure given functions as an event hierarchy [62].

Our benchmarking system consists of an AMD Ryzen 3900X CPU and an RTX
2070 Super graphics card1 running on Windows 10.0.19044 with Nvidias GeForce
Driver version 516.40.

6.2.1 Pass-Time

Our primary reference for performance is the pass-time, which constitutes the total
of GPU time utilized by the RTLPass for all batches of a pass.

Our application automatically extracts this information from the profiler and out-
puts it at the end of a pass. We generally deemed pass-times of under a second to be
suitable for real-time applications.

6.2.2 DFPR

To assess general lighting quality, this chapter provides images at the primary points
of contention. In addition, we employ a self-conceived unit for deviation from pure
radiosity, henceforth shortened as DFPR. This value measures how close the results
of an optimized radiosity variant are to its un-optimized counterpart:

d f pr(L) =
1
n

n

∑
i=0
∥L(i)− P(i)∥ (6.1)

where L is the lightmap in question and P is a lightmap of the same size, gener-
ated with pure, progressive radiosity for the same scene.

The DFPR of an image is computed as its euclidean distance from a correspond-
ingly large lightmap computed with pure radiosity, averaged across all pixels. A
"perfect" DFPR of zero would equate to the image being an exact copy, whilst a the-
oretical worst DFPR would be

√
3 (the average RGB distance between a completely

white and a completely black image).
We found that a DFPR value of 0.025 served as a very conservative threshold at

which differences became noticeable to a human observer.
Fig. 6.3 illustrates this concept with a number of examples: Optimized radiosity

algorithms run significantly faster, but also deviate from the results of pure radiosity.
This deviation is given by the DFPR and serves as a measurement for visual fidelity
under a given lightmap resolution.

Theoretically, dividing the DFPR by the corresponding pass-time could serve as
a general measure for quality per cost, but we found that this did not accurately
reflect empirical results.

1The 2070S contains a total of 40 RT Cores. Higher end RTX GPUs contain up to 82 and would
perform respectively faster. We expect that lower end cards, which start at 30 RT cores, would still
provide comparable results.

Chapter 6. Evaluation 83

FIGURE 6.3: Examples of how the DFPR is calculated on lightmaps
of varying quality.2The DFPR of a lightmap results from the average
magnitude of all pixels in the subtraction of the lightmap itself and a

corresponding "pure" lightmap.

6.2.3 Scenes

We employed a total of six different scenes for testing our algorithm and analyzing
its performance, all of which are rendered through RTRad in fig. 6.4. Three of these
are based on the Cornell box and are meant to directly demonstrate the system’s capa-
bilities in realistic global illumination. A further three scenes are significantly more
complex and are meant to simulate a realistic use-case workload:

• CornellLucy: Consists of a simplified version3 of the "Lucy" statue from the
Stanford 3D scanning repository [64] inside a Cornell box with a large light-
source above. Used to test indirect light on a high-detail 3D model with abun-
dant light.

2The lightmaps in this image are all of the size 128× 128. The optimized variants are generated
using Monte-Carlo undersampling with sampling windows of 2× 2, 4× 4, 8× 8 and 16× 16 respec-
tively.

3The same version that was used by Benjamin Kahl in VXCT [8].

Chapter 6. Evaluation 84

FIGURE 6.4: Our employed testing scenes rendered through RTRad
with a lightmap of 10242 pixels.

• CornellGeom: Consists of a series of simple geometric shapes inside a Cor-
nell box with a narrow light-source. Used to test inter-reflection in low-light
environments and hard shadows.

• CornellLayers: A modified Cornell box that is split down the middle with a
wedge. Used to ensure no color leaks from one section to the other as well as
to test soft shadows.

• SponzaScene: A commonly employed graphics benchmarking scene created
by CryTek [65]. To ensure compatibility with lower resolution lightmaps our
version is somewhat simplified and texture-less, but still consists of over 150
thousand triangles.

• NvidiaScene: A reconstruction of the scene employed by Pharr et al. in the
2005 GPU Gems 2 book [5]. It works well for testing small-scale light-sources as

Chapter 6. Evaluation 85

well as a general point of comparison to the GPU-based progressive refinement
solution presented by Nvidia in the aforementioned book.

• TextureScene: A custom-built scene that consists of several colored light-sources
inside an octagonal room with a (simplified) dragon statue from the Stanford
repository [64]. This scene is, uniquely, covered with detailed color-textures.

The overall triangle counts of these scenes range from from 60 (CornellLayers)
to over 150 thousand (Sponza). Further scenes (with an adequate UV map) can be
brought into RTRad quite easily in the form of FBX-formatted 3D models.

Based on Falcor’s scene information, all acceleration structures consisted of a
single TLAS, but were subdivided into multiple opaque BLAS geometries.

6.3 Results

6.3.1 Pure Progressive Radiosity

The core algorithm provided in chapter 4 constitutes an instance of progressive ra-
diosity in of itself. This is a very crude, brute-force approach that does not com-
promise on realism but comes at a respectively high computational cost. A humbly
sized lightmap of 256× 256 pixels, for instance, would involve up to 2564 visibility
tests, resulting in well over 4 billion rays being traced.

This quadratic growth is clearly reflected in our measurements depicted in fig.
6.5. The approximate 4 billion rays are processed in approx. 2 seconds.

FIGURE 6.5: Average pass-time across three measurements of the
same progressive radiosity workload for different lightmap sizes. The
underlying scene (CornellLucy) has a UV mapping with a coverage

of approx. 86%. The chosen batchsize is 64× 64.

Chapter 6. Evaluation 86

The pass-times required for low resolution lightmaps lie well within the lenien-
cies of real-time applications, despite the costly nature of pure progressive radiosity.

Inevitably, the exponential cost overwhelms the leeway enabled by paralleliza-
tion as resolutions reach the 512× 512 mark4, which is equivalent to an n of 260.000
(70+ billion visibility tests).

6.3.2 Undersampling

Although the scalability of quadradically complex algorithms can never be fully nul-
lified, the cost of higher resolution lightmaps can be ameliorated by lowering the
samples performed for each patch.

FIGURE 6.6: Results of Monte-Carlo undersampling after two passes
for different combinations of texture resolution and sampling win-
dow. Anomalies only become noticeable when the sampling window
is very large in relation to the lightmap size (towards the lower left

corner).

4The largest measurement we took for pure progressive radiosity was a lightmap of 768× 768 pix-
els, which took 867 seconds to complete.

Chapter 6. Evaluation 87

Undersampling, as layed out in chapter 5, has an enormous positive impact on
pass-times. Under the correct parameters, even larger lightmaps, such as 1024 ×
1024, can be fully computed in under five seconds without any noticeable differences
to their pure radiosity counterpart (DFPR < 0.025).

All three undersampling methods have near identical pass-times, except for Monte-
Carlo undersampling, which requires 5 to 10 percent longer, presumably due to the
large amount of pseudo-random number generation.

Differences in visual fidelity only become noticeable under extreme parameters
where the sampling window is large in relation to the lightmap resolution (see fig.
6.6 and fig. 6.7). For smaller sampling windows the pass-time benefits massively
whilst only producing minimal, indistinguishable differences in the final yield.

We found particular success with a ratio of 1
128 between lightmap texture and

sampling window, which produces adequate pass-times and DFPRs for most lightmap
resolutions. In table 6.1 we list our measurements under these recommended set-
tings.

FIGURE 6.7: DFPR of Monte-Carlo undersampling for different reso-
lutions and sampling windows (lower is better). Differences become
noticeable at a threshold between 0.025 and 0.1, depending on the

scene.

Lightmap Size Sampling Window DFPR Pass-Time

128× 128 1× 1 0.0000 0.151s
256× 256 2× 2 0.0063 0.163s
512× 512 4× 4 0.0069 0.977s
1024× 1024 8× 8 <0.01965 4.267s
2048× 2048 16× 16 <0.03455 16.480s

TABLE 6.1: Pass-time and DFPR with Monte-Carlo undersampling
using our recommended ratio of 1

128 .

Chapter 6. Evaluation 88

Undersampling Method Differences

Despite being somewhat more costly, Monte-Carlo produces the highest quality
lighting of the three undersampling methods. Whilst the differences are not sub-
stantial in most scenes, lightsources with small UV geometry can produce uneven
shadows when lit with one of the alternatives.

FIGURE 6.8: Uneven shadows produced by mipmapped or static-
stride undersampling (left) as opposed to Monte-Carlo undersam-

pling (right) in low-light environments.

The uneven shadows seen in fig. 6.8 are spread out by the randomization of
Monte-Carlo undersampling which instead produces a minimal amount of noise
(see fig. 6.9), unnoticeable under most circumstances.

We found that most other types of artifacts (such as unnatural highlights along
corners) prominent in the latter two can almost entirely be eliminated by clamping
the lighting contribution of any one patch to a maximum magnitude of 0.05.

FIGURE 6.9: A single wall in CornellGeom lit with pure radiosity
(left), Monte-Carlo undersampling (middle). To the right is the dif-
ference between the two textures, with its brightness multiplied by

50 to make the noise visible.

5We used a 512× 512 lightmap as the pure reference to calculate this DFPR, which overestimates the
value.

Chapter 6. Evaluation 89

6.3.3 Adaptive Subdivision

Unlike undersampling, adaptive subdivision does not produce noise and is less
prone to the cascading shadow effect highlighted in fig. 6.8.

The gains made in pass-time, however, largely depend on the gradient threshold
that is chosen (see fig. 6.10).

FIGURE 6.10: DFPR and average pass-time for different gradient
thresholds in adaptive subdivision. Lightmap resolution is 512× 512,

max-node size 8× 8 and batch-size 64× 64.

Undersampling does not require the storage or retrieval of quad-tree metadata,
and as such runs significantly faster in most cases. Rudimentary undersampling is
simpler and its parameters are scene-independent, which makes the results more
predictable. With adaptive subdivision even minor changes in the chosen gradient
threshold can manifest themselves in significant differences in pass-times.

It is noteworthy that our approach is entirely contained within a textures alpha-
channel, which allows for a simple implementation and visualization, but may offer
worse performance than a quad-tree contained in a memory buffer or a separately
generated sampling texture.

In general we found that adaptive subdivision, although offering vastly reduced
pass-times over pure radiosity, gets frequently outclassed by the swifter pass-times
offered by Monte-Carlo undersampling (see fig. 6.11).

Chapter 6. Evaluation 90

FIGURE 6.11: Avg. pass-time and visual comparison between differ-
ent sampling techniques on a 256× 256 lightmap. Lighting quality
is worse with directional sampling, but pass-time scale linearly. Un-
dersampling can exaggerate ambient occlusion, but is generally faster

than adaptive subdivision.

6.3.4 Scene Complexity

Measuring performance relative to a scene’s triangle count is difficult to do accu-
rately, as the cost incurred by BVH traversal can highly vary depending on the spe-
cific arrangement and concentration of these triangles.

Nevertheless, our results are roughly indicative of the logarithmic scaling that
the underlying theory would predict.

Fig. 6.12 depicts the pass-time for each of our scenes under the same pass param-
eters. The curve generally follows a logarithmic pattern, apart from our largest scene
(SponzaScene) being significantly faster than our second largest (CornellLucy).

FIGURE 6.12: Average pass-time (across five passes) for each of our
testing scenes. Parameters: 256 × 256, pure radiosity, batch-size of

64× 64.

Chapter 6. Evaluation 91

The underlying cause for this anomaly is likely the specific arrangement of the
geometry in these scenes. CornellLucy has the vast majority of its triangles at its
center, with the surrounding walls consisting of a large number of radiosity patches.
Correspondingly, most rays cross this center area and will likewise be traced against
large portions of the BVH.

SponzaScene on the other hand has its triangles spread out and segregated into
smaller sub-volumes. Given that our rays are only as long as they need to be, it
stands to reason that such an arrangement would induce a swifter BVH traversal
per ray. Furthermore, RTX’s ray-grouping technique [35] may contribute to this phe-
nomenon as well.

6.4 Extensions

Below we disclose the impact provided by the implemented extensions that go be-
yond the scope of progressive refinement radiosity, such as visibility caching, ray-
marching and directional sampling.

6.4.1 Visibility Caching

Visibility data can be stored in its entirety for lightmaps smaller or equal to 512× 512
pixels. Correspondingly, all lightmaps of this size demonstrate a significant speedup
for all passes beyond the first (see fig. 6.13). The first pass, in contrast, is slowed
down by 10% to 20%, due to the necessity to compute the cantor-index and store the
visibility bit.

Smaller lightmaps benefit less from this increase in speed, but the maximum size
remains capped at 512× 512.

FIGURE 6.13: Percentage change in pass-time after enabling visibility
caching for the first and subsequent passes. A value of 50% would
equate to the pass running twice as fast, 200% twice as slow etc. (Cor-

nellLucy scene with maximum batch-size).

Chapter 6. Evaluation 92

The overall computation speed is greatly improved for resolutions between 256×
256 and 512× 512. Unfortunately, higher resolutions cannot viably be covered by
our method due to the respective buffer index exceeding the maximum value of an
unsigned, 32bit memory pointer.

The unfortunate conclusion is thus that visibility caching is only possible for lower
resolutions, which least require it. Although the approach may find itself useful for
real-time lightmapping on small to medium sized lightmaps, the results demon-
strate why GPU-based radiosity implementations generally refrain from caching
visibility data: The available memory is unable to harbour the exponential amount
demanded by larger lightmaps.

6.4.2 Voxel Raymarching

Visibility estimation through voxel-raymarching is inherently less accurate than RTX.
Fig. 6.14 shows the precision of visibility estimation for a single patch, which is
favourable to raymarching. Patches located in non-flat, detailed environments are
likely to degrade accuracy even further, because all the detail within the vicinity gets
simplified into a single voxel. This deterioration in quality can clearly be observed
in fig. 6.15, where complex geometry, or geometry miss-aligned with the voxelmap
produces unrealistic shadows.

FIGURE 6.14: The red patch (highlighed by a circle) is visible to the
white patches. Visibility accuracy of RTX compared with voxel ray-

marching on differently sized voxelmaps.

Chapter 6. Evaluation 93

FIGURE 6.15: Pass-time and DFPR with regular RTX (left) and voxel
raymarching on voxelmaps of different sizes. Pass-times only be-
come worthwhile for very small voxelmaps, whereupon the quality

degrades too much to remain viable.

In addition, voxel raymarches do not run on dedicated hardware and, as such,
will not benefit from RT-core parallelization. In our testing, voxel raymarching was
consistently slower than RTX-based raytracing, except for very small voxelmaps,
which are less suited to complex scenes and provide unsatisfactory lighting quality.

In chapter 5 we postulated the idea of complementing our RTX-based algorithm
with regular voxel raymarches to relieve pressure on the limited amount of RT cores.

Unfortunately, this concept did not materialize and ended largely in failure. The
only instance for which interleaving ray-traces and raymarches demonstrated im-
proved pass-times was when the voxel-maps were so small that raymarches were
inherently faster.

However, using larger voxelmaps does provide accurate visibility and may serve
as a fallback method for graphics cards that are not RTX compatible or in scenes that
contain an exorbitant amount of triangles.

If nothing else, it is still serves as an indicative testament to RTX’s impressive
performance.

6.4.3 Directional Sampling

Employing a directional sampling approach as opposed to a rudimentary, patch-pair
approach led to a dramatic improvement in performance for large lightmaps, even
though the overall performance per ray suffered, due to rays traversing further into
the BVH than previously.

This method is of linear complexity O(n) relative to the amount of patches, as
the number of rays fired per patch is constant, which makes it is highly adequate for

Chapter 6. Evaluation 94

very large lightmaps. We were able to fully compute lightmaps of 20482 pixels in
under two seconds, with 1024 samples taken per patch.

FIGURE 6.16: Directional sampling with different amount of samples
on a lightmap of 128× 128 pixels. The white patches are sampled to
compute the lighting value of the red patch (highlighted by a circle).

Visual fidelity is comparable with that of undersampling techniques, but signifi-
cantly deteriorates in scenes with small light-sources, as seen in fig. 6.17.

Our implementation employs pre-computed directions that are hard-coded into
the shader, which is very beneficial towards performance, but limits the maximum
amount of samples to that of the pre-generated set. Examples of which patches our
pre-generated sets sample can be seen in fig. 6.16.

FIGURE 6.17: Directional sampling in environments with small light-
sources. Because the chance of a ray hitting the light-source is low,
noisy shadows are produced on the walls. The noise becomes less

pronounced with each subsequent pass.

We recommend using directional sampling for large lightmaps in scenes with
large light-sources, but suggest falling back to Monte-Carlo undersampling in other
instances. Alternatively, a hybrid approach that utilizes directional sampling in con-
junction with discrete sampling of important patches (such as light-sources) may
provide an ideal middle-ground.

Chapter 6. Evaluation 95

FIGURE 6.18: Overall comparison of RTRad performance enhance-
ments. Note that a different implementation of sub-structuring could

yield results more comparable to undersampling.

6.5 Comparison

In GPU Gems 26, Pharr et al. claim to achieve 2 frames per second on a scene
with 10.000 patches using their GPU-based progressive refinement radiosity, with
Coombe et al. achieving comparable results in their own implementation [17, 5].

In contrast, RTRad manages similar framerates with lightmaps of 60.000-100.000
patches. Fig. 6.19 provides a side-by-side comparison for visual differences between
the two programs.

FIGURE 6.19: Scene with one million elements as shown in GPU Gems
2 [5] (left) and our reconstruction rendered with RTRad (right).

6GPU Gems 2 was published in 2005. Given the advancements in hardware since then, it is safe to
assume that their system would run significantly faster on modern hardware.

Chapter 6. Evaluation 96

6.5.1 Unity and Unreal Engine

Two of the most prolific rendering engines in the domains of video games, research
and filmmaking, are Unity and Unreal Engine [45, 46].

Both of these have their own built-in CPU lightmap generation system: Unity in
its Progressive Lightmapper and Unreal in its Lightmass system. Either system can also
be set up for GPU execution7.

Fig. 6.21 shows a performance comparison between each application , with a
detailed account of this data listed in table 6.2. Despite being a purely research-
oriented application that was developed with limited time and resources, RTRad
competes impressively well with these well-established industrial solutions.

FIGURE 6.20: Lightmap of 1024× 1024 pixels for the same scene com-
puted with different lightmapping tools.

7Unity’s Progressive GPU Lightmapper and Unreal’s GPU Lightmass are both preview/beta fea-
tures that, whilst usable, have not yet been officially released.

Chapter 6. Evaluation 97

FIGURE 6.21: Total bake time of the CornellLucy scene for two
bounces of light with different applications and lightmap sizes.

Lightmap Size Device Engine Bake Time

2562 CPU Unity 2020.3.21 4.1s
2562 GPU Unity 2020.3.21 4.2s
2562 CPU Unreal Engine 5.0.3 6.5s
2562 GPU Unreal Engine 5.0.3 3.36s
2562 GPU RTRad (Undersampling) 0.5s
2562 GPU RTRad (Directional) 0.12s

5122 CPU Unity 2020.3.21 16.3s
5122 GPU Unity 2020.3.21 5.4s
5122 CPU Unreal Engine 5.0.3 16.4s
5122 GPU Unreal Engine 5.0.3 57.91s
5122 GPU RTRad (Undersampling) 2.49s
5122 GPU RTRad (Directional) 0.42s

10242 CPU Unity 2020.3.21 58.5s
10242 GPU Unity 2020.3.21 13.4s
10242 CPU Unreal Engine 5.0.3 50.4s
10242 GPU Unreal Engine 5.0.3 27.3s
10242 GPU RTRad (Undersampling) 8.59s
10242 GPU RTRad (Directional) 0.70s

20482 CPU Unity 2020.3.21 214.2s
20482 GPU Unity 2020.3.21 31.1s
20482 CPU Unreal Engine 5.0.3 179.2s
20482 GPU Unreal Engine 5.0.3 102.3s
20482 GPU RTRad (Undersampling) 33.17s
20482 GPU RTRad (Directional) 2.96s

TABLE 6.2: Expanded data corresponding to fig. 6.21.

Chapter 6. Evaluation 98

To create comparable results (see fig. 6.20), each configuration was given its own
custom settings, which we list below:

• Unity Engine (CPU and GPU): Shadowmask, medium quality.

• Unreal Engine (CPU): High quality preset.

• Unreal Engine (GPU): 512 GI samples, no irradiance caching.

• RTRad (Undersampling): Monte-Carlo undersampling in line with our recom-
mended settings from table 6.1 and maximum batchsize.

• RTRad (Directional): 1024 samples with maximum batchsize.

The exhibited measurements are naturally not all-conclusive, as Unity and Un-
real are both powerful game engines made for far more than just lightmapping [56,
58]. Each algorithm employs diverging techniques and operates on entirely different
parameters in addition to potential differences in their approach for time measure-
ment.

We can, however, establish a clear trend in that leveraging RTX for radiosity is
not only competitive, but highly advantageous in most circumstances.

6.6 Specular Reflections

A limitation inherent to radiosity as a whole is that only diffuse reflections are ac-
counted for. RTRad does contain any non-diffuse functionality itself, but allows
generated lightmaps to be exported as textures. These can then be brought into a
different rendering pipeline to be complemented with specular reflections, as we
did in fig. 7.1 with Unity.

99

Chapter 7

Verdict

In this chapter we sum up our primary conclusions in relation to our initial goals.
Additionally, we list some of the limitations encountered as well as questions

that require further research to answer.

7.1 Summary

Radiosity has long proven itself an ideal solution for real-time global illumination
in static scenes. Unfortunately, drawn-out periods of pre-computation can hinder
productivity in designing 3D environments with realistic lighting.

Attempts to speed up this process have been centered around either

• the general reduction of computational complexity, as is done in instant ra-
diosity, or

• the exploitation of its parallelizable nature.

Both of these techniques manifest themselves in progressive refinement radiosity,
where patches are organized in quad-trees and updated simultaneously. Yet, few
instances of this algorithm are implemented for GPU execution, and those that are
typically rely on a z-buffered hemicube approximation for visibility, which comes at
a significant expense whilst providing less realistic results.

Nvidia’s Turing GPUs come equipped with dedicated raytracing hardware in-
tended to speed up real-time raytracing. In chapter 2 we demonstrated how ray-
tracing and radiosity both share the same underlying principles by deriving each
method from the rendering equation, implying that the performance gains enabled
by RTX ought not only to speed up raytracing, but also radiosity.

In chapter 6 we successfully demonstrated that this idea is both viable and com-
petitive. Through our implementation we put a significant number of different
methods and configurations to the test as well as examining additional extensions
that serve as performance enhancements.

7.2 Limitations

In our evaluation we described the limitations encountered concerning visibility
caching and voxel-raymarching in particular.

Since these do not present an obstacle to the core idea of leveraging RTX for
progressive refinement radiosity, holistically, the concept appears viable.

Chapter 7. Verdict 100

Below we list our encountered limitations that are specific to our implementation
of RTRad:

• Unless lightmap resolutions are sufficiently low or directional sampling is used,
the performance remains marginally outside the domain of real-time.

• Directional samples either require large light-sources or a vast amount of rays
to produce serviceable results.

• Our implementation of adaptive subdivision is subject to significant speed
constraints because all pixels need to be tested for their alpha value. This prob-
lem may be ameliorated by creating an entirely separate texture consisting only
of the pixels with an alpha value larger than zero.

• Our implementation only uses a single UV channel both for color textures and
lightmaps. This approach is unsuitable for a PBR material system, but is easily
expandable by including an additional channel.

• All light-sources must be reflected as a patch in the texturegroup. Point-lights
or directional lights, as they are traditionally used in the phong illumination
model, do not work.

7.3 Conclusions

Our analysis in chapter 6 comes with several implications. In regards to our initial
goals, we arrived at the following overarching conclusions:

Conclusion 1: On the GPU, simpler radiosity variants perform better.
Performance-wise, our findings were generally more favourable to simpler tech-

niques over adaptive subdivision. In our assessment, Monte-Carlo undersampling
using the recommended settings listed in section 6.3.2 generally provides the best
balance between speed, visual fidelity and reliability. For very large lightmaps and
well-lit scenes, directional sampling is fastest.

Visibility-caching and voxel-raymarching are generally discouraged, but can be
advantageous in specific use-cases.

We expect that a potential hybrid solution utilizing a conjoined set of patches
sampled directionally and based on a quad-tree to provide ideal results.

Conclusion 2: RTX can significantly improve GPU radiosity performance.
As a whole, we were successful in demonstrating that RTX has the capability to

speed up the offline lightmap generation process and, as more applications begin to
move their heavy workloads onto the GPU, we expect radiosity to follow suit.

According to the Steam Hardware Survey of July 2022, approximately 30% of gaming-
oriented PCs are equipped with a Turing graphics card [66]. If this number continues
to grow, we anticipate engines utilizing GPU lightmapping (such as Unity, Blender
or Unreal) to begin leveraging this power.

Conclusion 3: RTX can quickly compute vast amounts of accurate visibility data for
arbitrary point-pairs.

Extensively, RTX appears to be a great potential asset to any application that re-
quires large sets of highly accurate visibility data. This precedent is not strictly tied
to just the domains of graphics or lighting, but may be expanded to computer vision,
physics simulations and photogrammetry.

Chapter 7. Verdict 101

7.4 Future Work

RTX may prove useful for a variety of purposes depending on how widespread its
adoption becomes. Our demonstration of its viability in lightmap generation opens
up several new paths that would benefit from further research:

• We believe that the directional sampling approach in particular, which this the-
sis only touched on superficially, is the way forward for progressive radiosity
on a very large scale. The potential that a hybrid approach may provide re-
quires further examination. We expect that introducing multiple-importance
sampling by prioritizing light-sources in combination with a number of direc-
tional samples for indirect light to function as a reasonable foundation for this
approach.

• The utilization of proxy geometry has proved itself useful in computing global
illumination with RTX [12]. It thus stands to reason that radiosity’s perfor-
mance may benefit from this as well.

• Whilst our implementation performs all calculations on the GPU, hybrid meth-
ods that combine both GPU and CPU have demonstrated potential in the past
[37]. This opens the door to expanding a batch-wise view-factors computa-
tion on the GPU with RTX, whilst the CPU performs the steps related to light-
transfer.

• Elias’ radiosity implementation [77] utilizes a static texture that is multiplied
with the samples of a hemicube. The brightness of this texture is proportional
to the cosine of the angle between the surface normal, and the direction of
the light which saves a significant amount of work on view factor calculation.
Using a directional sampling approach with a hemicube and storing this value
in the ray payload may prove to be faster and more flexible.

• Diffuse indirect light scatters uniformly and usually does not require the same
resolution as direct light. A common practice in applications handling global
illumination is to isolate direct and indirect light by computing them sepa-
rately [5]. Using a model like Phong to compute direct light may allow a far
lower lightmap resolution to be generated in RTRad to exclusively include the
diffuse indirect component, enabling significantly shorter pass-times.

Chapter 7. Verdict 102

FIGURE 7.1: RTRad-generated lightmaps rendered in real-time us-
ing Unity’s built-in rendering pipeline with specular reflection probes

and some rudimentary post-processing effects.

103

Bibliography

Books

[1] Michael F. Cohen, John Wallace, and Pat Hanrahan. Radiosity and Realistic Im-
age Synthesis. San Diego, CA, USA: Academic Press Professional, Inc., 1993.
ISBN: 0-12-178270-0.

[2] R.G. Grainger. Atmospheric Radiative Transfer (Draft Chapters). URL: http://
eodg.atm.ox.ac.uk/user/grainger/research/book/ (visited on 09/30/2022).

[3] Eric Haines and Tomas Akenine-Moller. Ray Tracing Gems: High-Quality and
Real-Time Rendering with DXR and Other APIs. USA: Apress, 2019. ISBN: 1484244265.
DOI: 10.1007/978-1-4842-4427-2.

[4] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques. New
York, NY, USA: Association for Computing Machinery, 1991. ISBN: 0201544121.

[5] Matt Pharr, ed. GPU Gems 2: Programming Techniques for High-Performance Graph-
ics and General-Purpose Computation. Addison Wesley, 2005.

[6] Ian Ashdown. Radiosity: A Programmer’s Perspective. New York, NY, USA: John
Wiley & Sons, Inc., 1994. ISBN: 0471304441.

[7] Andrew S. Glassner. Principles of Digital Image Synthesis. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1994. ISBN: 1558602763.

Theses and Dissertations

[8] Benjamin Kahl. Real-Time Global Illumination Using OpenGL And Voxel Cone
Tracing (Bachelor’s Thesis) Freie Universität Berlin. 2021. arXiv: 2104.00618.

[9] Thomas Bernhard Koch. Visibility Precomputation with RTX Ray Tracing. [Diploma
Thesis, Technische Universität Wien]. 2021. DOI: 10.34726/hss.2021.79729.

[10] Joseph A. Shiraef. An exploratory study of high performance graphics application
programming interfaces. Masters Theses and Doctoral Dissertations. May 2016.
URL: https://scholar.utc.edu/theses/446/ (visited on 09/30/2022).

[11] Maximilian Mader. Hybrides Ray Tracing mit RTX-Technologie in Vulkan. 2019.
URL: https://nbn- resolving.org/urn:nbn:de:kola- 18906 (visited on
09/30/2022).

[12] Simon Moos. Evaluating the Use of Proxy Geometry for RTX-based Ray Traced Dif-
fuse Global Illumination. 2020. URL: https://hdl.handle.net/20.500.12380/
302019 (visited on 10/02/2022).

http://eodg.atm.ox.ac.uk/user/grainger/research/book/
http://eodg.atm.ox.ac.uk/user/grainger/research/book/
https://doi.org/10.1007/978-1-4842-4427-2
https://arxiv.org/abs/2104.00618
https://doi.org/10.34726/hss.2021.79729
https://scholar.utc.edu/theses/446/
https://nbn-resolving.org/urn:nbn:de:kola-18906
https://hdl.handle.net/20.500.12380/302019
https://hdl.handle.net/20.500.12380/302019

Chapter 8. Bibliography 104

Articles and Proceedings

[13] James T. Kajiya. “The Rendering Equation”. In: SIGGRAPH Comput. Graph.
20.4 (Aug. 1986), pp. 143–150. ISSN: 0097-8930. DOI: 10.1145/15886.15902.

[14] Arthur Appel. “Some Techniques for Shading Machine Renderings of Solids”.
In: Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference.
AFIPS ’68 (Spring). Atlantic City, New Jersey: Association for Computing Ma-
chinery, 1968, pp. 37–45. ISBN: 9781450378970. DOI: 10.1145/1468075.1468082.

[15] Derek Paddon and Alan Chalmers. “Parallel processing of the radiosity method”.
In: Computer-Aided Design 26.12 (1994), pp. 917–927. ISSN: 0010-4485. DOI: 10.
1016/0010-4485(94)90057-4.

[16] Nathan Carr, Jesse Hall, and John Hart. “The Ray Engine”. In: Graphics Hard-
ware 2002 (Jan. 2002), pp. 37–46.

[17] Greg Coombe, Mark J. Harris, and Anselmo Lastra. “Radiosity on Graph-
ics Hardware”. In: SIGGRAPH ’05 (2005), 179–es. DOI: 10.1145/1198555.
1198782.

[18] M. Young. “Pinhole Optics”. In: Appl. Opt. 10.12 (Dec. 1971), pp. 2763–2767.
DOI: 10.1364/AO.10.002763.

[19] Wojciech Jarosz et al. “Theory, Analysis and Applications of 2D Global Illumi-
nation”. In: ACM Transactions on Graphics (Presented at SIGGRAPH) 31.5 (Sept.
2012), 125:1–125:21. DOI: 10/gbbrkb.

[20] Bui Tuong Phong. “Illumination for Computer Generated Pictures”. In: Com-
mun. ACM 18.6 (June 1975), pp. 311–317. ISSN: 0001-0782. DOI: 10.1145/360825.
360839.

[21] Tomas Möller and Ben Trumbore. “Fast, Minimum Storage Ray/Triangle In-
tersection”. In: ACM SIGGRAPH 2005 Courses. SIGGRAPH ’05. Los Angeles,
California: Association for Computing Machinery, 2005, 7–es. ISBN: 9781450378338.
DOI: 10.1145/1198555.1198746.

[22] Cindy M. Goral et al. “Modeling the Interaction of Light between Diffuse Sur-
faces”. In: SIGGRAPH Comput. Graph. 18.3 (Jan. 1984), pp. 213–222. ISSN: 0097-
8930. DOI: 10.1145/964965.808601.

[23] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. “A Two-pass
Solution to the Rendering Equation: A Synthesis of Ray Tracing and Radiosity
Methods”. In: SIGGRAPH Comput. Graph. 21.4 (Aug. 1987), pp. 311–320. ISSN:
0097-8930. DOI: 10.1145/37402.37438.

[24] Michael Cohen, Michael Greenberg, and P.C. Donald. “The Hemi-Cube: A Ra-
diosity Solution for Complex Environments”. In: SIGGRAPH ’85 conference pro-
ceedings. July, 1985. vol. 19 ; no. 3: pp. 31-39 : ill. (some col.). includes bibliography
19 (Jan. 1985). DOI: 10.1145/325165.325171.

[25] Philippe Bekaert et al. “Hierarchical Monte Carlo Radiosity”. In: Proc. of the
9th Eurographics Workshop on Rendering (Jan. 1998), pp. 259–268. DOI: 10.1007/
978-3-7091-6453-2_24.

[26] Alexander Keller. “Instant Radiosity”. In: SIGGRAPH ’97 (1997), pp. 49–56.
DOI: 10.1145/258734.258769.

[27] Cyril Crassin et al. “Interactive Indirect Illumination Using Voxel Cone Trac-
ing”. In: Comput. Graph. Forum 30 (Sept. 2011), pp. 1921–1930. DOI: 10.1111/
j.1467-8659.2011.02063.x.

https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1016/0010-4485(94)90057-4
https://doi.org/10.1016/0010-4485(94)90057-4
https://doi.org/10.1145/1198555.1198782
https://doi.org/10.1145/1198555.1198782
https://doi.org/10.1364/AO.10.002763
https://doi.org/10/gbbrkb
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/1198555.1198746
https://doi.org/10.1145/964965.808601
https://doi.org/10.1145/37402.37438
https://doi.org/10.1145/325165.325171
https://doi.org/10.1007/978-3-7091-6453-2_24
https://doi.org/10.1007/978-3-7091-6453-2_24
https://doi.org/10.1145/258734.258769
https://doi.org/10.1111/j.1467-8659.2011.02063.x
https://doi.org/10.1111/j.1467-8659.2011.02063.x

Chapter 8. Bibliography 105

[28] Min-Zhi Shao and Norman Badler. “A Gathering and Shooting Progressive
Refinement Radiosity Method”. In: (Jan. 1993).

[29] Michael F. Cohen et al. “A Progressive Refinement Approach to Fast Radiosity
Image Generation”. In: SIGGRAPH Comput. Graph. 22.4 (June 1988), pp. 75–84.
ISSN: 0097-8930. DOI: 10.1145/378456.378487.

[30] Michael F. Cohen et al. “An Efficient Radiosity Approach for Realistic Image
Synthesis”. In: IEEE Computer Graphics and Applications 6.3 (1986), pp. 26–35.
DOI: 10.1109/MCG.1986.276629.

[31] Samuli Laine et al. “Incremental Instant Radiosity for Real-Time Indirect Illu-
mination”. In: EGSR’07 (2007). DOI: https://dl.acm.org/doi/10.5555/
2383847.2383883, pp. 277–286.

[32] W Chin and S Ntafos. “Optimum Watchman Routes”. In: SCG ’86. Yorktown
Heights, New York, USA: Association for Computing Machinery, 1986, pp. 24–
33. ISBN: 0897911946. DOI: 10.1145/10515.10518.

[33] Jiří Bittner and Peter Wonka. “Visibility in Computer Graphics”. In: Environ-
ment and Planning B: Planning and Design 30.5 (2003), pp. 729–755. DOI: 10.
1068/b2957.

[34] Charley M. Wu et al. “Specialization and selective social attention establishes
the balance between individual and social learning”. In: bioRxiv (2021). DOI:
10.1101/2021.02.03.429553.

[35] Vadim Sanzharov et al. “Examination of the Nvidia RTX”. In: (Nov. 2019),
pp. 7–12. DOI: 10.30987/graphicon-2019-2-7-12.

[36] M Gatu Johnsson. “Approximating ray traced reflections using screenspace
data”. In: 2014.

[37] Eduardo D’Azevedo et al. “Solving a large scale radiosity problem on GPU-
based parallel computers”. In: Journal of Computational and Applied Mathemat-
ics 270 (2014). Fourth International Conference on Finite Element Methods in
Engineering and Sciences (FEMTEC 2013), pp. 109–120. ISSN: 0377-0427. DOI:
10.1016/j.cam.2014.02.011.

[38] Alexandr Shcherbakov and Vladimir Frolov. “Dynamic Radiosity”. In: (Jan.
2019). DOI: 10.24132/CSRN.2019.2901.1.10.

[39] Takeo Igarashi and Dennis Cosgrove. “Adaptive Unwrapping for Interactive
Texture Painting”. In: I3D ’01 (2001), pp. 209–216. DOI: 10 . 1145 / 364338 .
364404.

[40] Andrew J. Willmott and Paul S. Heckbert. “An Empirical Comparison of Ra-
diosity Algorithms”. In: (Apr. 1997).

[41] Mike Houston and Wei Koh. “Compression in the Graphics Pipeline”. In: (2001).

[42] Matthew P. Szudzik. “The Rosenberg-Strong Pairing Function”. In: (2017). DOI:
10.48550/ARXIV.1706.04129.

[43] Kevin Watters and Fernando Ramallo. “Raymarching Toolkit for Unity: A Highly
Interactive Unity Toolkit for Constructing Signed Distance Fields Visually”. In:
ACM SIGGRAPH 2018 Studio. SIGGRAPH ’18. Vancouver, British Columbia,
Canada: Association for Computing Machinery, 2018. ISBN: 9781450358194.
DOI: 10.1145/3214822.3214828.

[44] Cyril Crassin and Simon Green. “Octree-Based Sparse Voxelization Using the
GPU Hardware Rasterizer”. In: OpenGL Insights. 2012.

https://doi.org/10.1145/378456.378487
https://doi.org/10.1109/MCG.1986.276629
https://dl.acm.org/doi/10.5555/2383847.2383883
https://dl.acm.org/doi/10.5555/2383847.2383883
https://doi.org/10.1145/10515.10518
https://doi.org/10.1068/b2957
https://doi.org/10.1068/b2957
https://doi.org/10.1101/2021.02.03.429553
https://doi.org/10.30987/graphicon-2019-2-7-12
https://doi.org/10.1016/j.cam.2014.02.011
https://doi.org/10.24132/CSRN.2019.2901.1.10
https://doi.org/10.1145/364338.364404
https://doi.org/10.1145/364338.364404
https://doi.org/10.48550/ARXIV.1706.04129
https://doi.org/10.1145/3214822.3214828

Chapter 8. Bibliography 106

[45] Eleftheria Christopoulou and Stelios Xinogalos. “Overview and Comparative
Analysis of Game Engines for Desktop and Mobile Devices”. In: International
Journal of Serious Games 4.4 (Oct. 2017). DOI: 10.17083/ijsg.v4i4.194.

[46] A. Andrade. “Game engines: a survey”. In: EAI Endorsed Transactions on Game-
Based Learning 2 (Nov. 2015), p. 150615. DOI: 10.4108/eai.5-11-2015.150615.

[47] Alfred Schmitt, Heinrich Müller, and Wolfgang Leister. “Ray Tracing Algo-
rithms — Theory and Practice”. In: (1988). Ed. by Rae A. Earnshaw, pp. 997–
1030. DOI: 10.1007/978-3-642-83539-1_42.

[48] Cyril Crassin et al. “Interactive Indirect Illumination Using Voxel Cone Trac-
ing: A Preview”. In: I3D ’11. San Francisco, California: Association for Com-
puting Machinery, 2011, p. 207. ISBN: 9781450305655. DOI: 10.1145/1944745.
1944787.

Manuals and Documentation

[49] Nvidia Corp. Nvidia Turing GPU architecture whitepaper (version WP-09183-001-
v0). 2018. URL: https://images.nvidia.com/aem-dam/en-zz/Solutions/
design-visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf (visited on 09/30/2022).

[50] Microsoft Corp. DirectX 12 Documentation. URL: https://docs.microsoft.
com/en-us/windows/win32/direct3d12/direct3d-12-graphics (visited on
09/30/2022).

[51] Nvidia Corp. CUDA C++ Programming Guide (ver. PG-02829-001-v11.6). Mar.
2022. URL: https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf (visited on 09/30/2022).

[52] Peter N. Glaskowsky. NVIDIA’ s Fermi : The First Complete GPU Computing
Architecture. 2009. URL: https://www.nvidia.com/content/PDF/fermi_
white_papers/P.Glaskowsky_NVIDIA%27s_Fermi-The_First_Complete_GPU_
Architecture.pdf (visited on 09/30/2022).

[53] Mark Segal and Kurt Akeley. OpenGL 4.6 Core Profile. Oct. 2019. URL: https:
/ / www . khronos . org / registry / OpenGL / specs / gl / glspec46 . core . pdf
(visited on 09/30/2022).

[54] Nvidia Corp. Nvidia Documentation on RTX Extensions for Vulkan and OpenGL.
URL: https://developer.nvidia.com/vulkan-turing (visited on 09/30/2022).

[55] Microsoft Corp. DirectX Raytracing (DXR) Functional Spec (v1.19 8/10/2022).
URL: https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
(visited on 09/30/2022).

[56] Epic Games Inc. Unreal Engine 5 Documentation. 2022. URL: https://docs.
unrealengine.com/5.0/en-US/ (visited on 10/01/2022).

[57] Epic Games Inc. Unreal Engine 4.27 Documentation - Unwrapping UVs for Lightmaps.
URL: https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/
Types/StaticMeshes/LightmapUnwrapping/ (visited on 09/30/2022).

[58] Unity Technologies. Unity Documentation. 2022. URL: https://docs.unity3d.
com/Manual/index.html (visited on 10/02/2022).

[59] Blender Online Community. Blender - Documentation. Blender Foundation. Sticht-
ing Blender Foundation, Amsterdam, 2022. URL: https://docs.blender.org/
(visited on 10/02/2022).

https://doi.org/10.17083/ijsg.v4i4.194
https://doi.org/10.4108/eai.5-11-2015.150615
https://doi.org/10.1007/978-3-642-83539-1_42
https://doi.org/10.1145/1944745.1944787
https://doi.org/10.1145/1944745.1944787
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.microsoft.com/en-us/windows/win32/direct3d12/direct3d-12-graphics
https://docs.microsoft.com/en-us/windows/win32/direct3d12/direct3d-12-graphics
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA%27s_Fermi-The_First_Complete_GPU_Architecture.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA%27s_Fermi-The_First_Complete_GPU_Architecture.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA%27s_Fermi-The_First_Complete_GPU_Architecture.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://developer.nvidia.com/vulkan-turing
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://docs.unrealengine.com/5.0/en-US/
https://docs.unrealengine.com/5.0/en-US/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Types/StaticMeshes/LightmapUnwrapping/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Types/StaticMeshes/LightmapUnwrapping/
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://docs.blender.org/

Chapter 8. Bibliography 107

Repositories and Databases

[60] Leonard Lessin/Science Source Stock Photos. Image SS2836731 / 3C7166. URL:
https://www.sciencesource.com/ (visited on 09/30/2022).

[61] Benjamin Kahl. RRad Project and Repository. 2020. URL: https://github.com/
Helliaca/RRad (visited on 09/30/2022).

[62] Simon Kallweit et al. The Falcor Rendering Framework. Mar. 2022. URL: https:
//github.com/NVIDIAGameWorks/Falcor (visited on 09/30/2022).

[63] Benjamin Kahl. RTRad Project and Repository. URL: https : / / github . com /
Helliaca/RTRad (visited on 10/02/2022).

[64] The Stanford 3D Scanning Repository. 2022. URL: http://graphics.stanford.
edu/data/3Dscanrep/ (visited on 09/30/2022).

[65] Crytek. Sponza Scene (CryEngine Asset Database). URL: https://www.cryengine.
com/marketplace/product/crytek/sponza-sample-scene (visited on 09/30/2022).

[66] Valve Corp. Steam Hardware Survey (July 2022). URL: https://store.steampowered.
com/hwsurvey/videocard/ (visited on 07/10/2022).

Lectures and Slides

[67] FU Berlin Computer Graphics Lectures (Summer semester). 2020.

[68] UCDavis Computer Graphics Lectures. 2012. URL: https://www.youtube.com/
watch?v=gLfYTP4F23g (visited on 10/02/2022).

[69] Philipp Slusallek, Karol Myszkowski, and Gurprit Singh. Realistic Image Syn-
thesis - Radiosity (Lecture Slides). Uni-Saarland, 2020. URL: https://graphics.
cg.uni- saarland.de/courses/ris- 2020/slides/RIS- 02- Radiosity-
2020.pdf (visited on 10/03/2022).

[70] Charles A. Wüthrichs. Computer Graphics 7 - Radiosity (Lecture Slides) Bauhaus-
Universität Weimar. URL: https://www.uni-weimar.de/fileadmin/user/fak/
medien/professuren/Computer_Graphics/7-globillu-radiosMG17.pdf.

[71] Cyril Crassin. Octree-Based Sparse Voxelization for Real-Time Global Illumination
(Slides). 2012. URL: http://www.icare3d.org/research/GTC2012_Voxelization_
public.pdf (visited on 09/30/2022).

[72] Mike Bailey. GLSL Geometry Shaders. 2019. URL: http://web.engr.oregonstate.
edu/~mjb/cs519/Handouts/geometry_shaders.1pp.pdf (visited on 10/02/2022).

[73] Matthew Szudzik. An Elegant Pairing Function (Slides). 2006. URL: http : / /
szudzik.com/ElegantPairing.pdf (visited on 09/30/2022).

Other

[74] Scratchapixel. 3D Viewing: the Pinhole Camera Model. URL: https://www.scratchapixel.
com/lessons/3d- basic- rendering/3d- viewing- pinhole- camera/how-
pinhole-camera-works-part-1 (visited on 10/12/2022).

[75] Joey de Vries. LearnOpenGL. 2014. URL: https://learnopengl.com/ (visited
on 09/30/2022).

https://www.sciencesource.com/
https://github.com/Helliaca/RRad
https://github.com/Helliaca/RRad
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/Helliaca/RTRad
https://github.com/Helliaca/RTRad
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://www.cryengine.com/marketplace/product/crytek/sponza-sample-scene
https://www.cryengine.com/marketplace/product/crytek/sponza-sample-scene
https://store.steampowered.com/hwsurvey/videocard/
https://store.steampowered.com/hwsurvey/videocard/
https://www.youtube.com/watch?v=gLfYTP4F23g
https://www.youtube.com/watch?v=gLfYTP4F23g
https://graphics.cg.uni-saarland.de/courses/ris-2020/slides/RIS-02-Radiosity-2020.pdf
https://graphics.cg.uni-saarland.de/courses/ris-2020/slides/RIS-02-Radiosity-2020.pdf
https://graphics.cg.uni-saarland.de/courses/ris-2020/slides/RIS-02-Radiosity-2020.pdf
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Computer_Graphics/7-globillu-radiosMG17.pdf
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Computer_Graphics/7-globillu-radiosMG17.pdf
http://www.icare3d.org/research/GTC2012_Voxelization_public.pdf
http://www.icare3d.org/research/GTC2012_Voxelization_public.pdf
http://web.engr.oregonstate.edu/~mjb/cs519/Handouts/geometry_shaders.1pp.pdf
http://web.engr.oregonstate.edu/~mjb/cs519/Handouts/geometry_shaders.1pp.pdf
http://szudzik.com/ElegantPairing.pdf
http://szudzik.com/ElegantPairing.pdf
https://www.scratchapixel.com/lessons/3d-basic-rendering/3d-viewing-pinhole-camera/how-pinhole-camera-works-part-1
https://www.scratchapixel.com/lessons/3d-basic-rendering/3d-viewing-pinhole-camera/how-pinhole-camera-works-part-1
https://www.scratchapixel.com/lessons/3d-basic-rendering/3d-viewing-pinhole-camera/how-pinhole-camera-works-part-1
https://learnopengl.com/

Chapter 8. Bibliography 108

[76] Scratchapixel. Ray Tracing: Rendering a Triangle. URL: https://www.scratchapixel.
com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/
moller-trumbore-ray-triangle-intersection (visited on 10/02/2022).

[77] Hugo Elias. Radiosity. URL: https : / / www . jmeiners . com / Hugo - Elias -
Radiosity/ (Preserved on a website by J. Meiners). (Visited on 09/30/2022).

[78] Ingo Radax. Instant Radiosity for Real-Time Global Illumination. Tech. rep. TR-
186-2-08-15. Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria: Institute
of Computer Graphics and Algorithms, Vienna University of Technology, 2008.
URL: https://www.cg.tuwien.ac.at/research/publications/2008/radax-
2008-ir/ (visited on 09/30/2022).

[79] Jeremy Appleyard and Scott Yokim. Programming Tensor Cores in CUDA 9.
[Nvidia Technical Blog] URL: https://developer.nvidia.com/blog/programming-
tensor-cores-cuda-9/. 2017. (Visited on 10/02/2022).

[80] Andrew Burnes. NVIDIA RTX: List Of All Games, Engines And Applications Fea-
turing GeForce RTX-Powered Technology. 2021. URL: https : / / www . nvidia .
com/en-us/geforce/news/nvidia-rtx-games-engines-apps/ (visited on
09/30/2022).

[81] Advanced Micro Devices, Inc. A Foundation for High Performing Graphics - AMD
RDNA 2 Explained. URL: https://www.amd.com/system/files/documents/
rdna2-explained-radeon-pro-W6000.pdf (visited on 03/26/2023).

[82] Daqi Lin. Using RTX to Accelerate Instant Radiosity. Jan. 2019. URL: https://
dqlin.xyz/tech/2019/01/24/dxr-ir/ (visited on 10/02/2022).

[83] Chris Wyman. A Gentle Introduction To DirectX Raytracing. URL: http://cwyman.
org/code/dxrTutors/dxr_tutors.md.html (visited on 10/02/2022).

[84] Martin Stich. Introduction to NVIDIA RTX and DirectX Ray Tracing [Nvidia Tech-
nical Blog]. 2018. URL: https://developer.nvidia.com/blog/introduction-
nvidia-rtx-directx-ray-tracing/ (visited on 10/02/2022).

[85] Masaya Takeshige. The Basics of GPU Voxelization. 2015. URL: https://developer.
nvidia.com/content/basics-gpu-voxelization (visited on 10/02/2022).

[86] Kurt Zimmerman. Developing the Rendering Equations. 1998. URL: https://
www.cs.princeton.edu/courses/archive/fall10/cos526/papers/zimmerman98.
pdf (visited on 10/02/2022).

[87] Emmett Kilgariff et al. NVIDIA Turing Architecture In-Depth. [Nvidia Techni-
cal Blog] URL: https://developer.nvidia.com/blog/nvidia- turing-
architecture-in-depth/. 2018. (Visited on 10/02/2022).

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.jmeiners.com/Hugo-Elias-Radiosity/
https://www.jmeiners.com/Hugo-Elias-Radiosity/
https://www.cg.tuwien.ac.at/research/publications/2008/radax-2008-ir/
https://www.cg.tuwien.ac.at/research/publications/2008/radax-2008-ir/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://www.nvidia.com/en-us/geforce/news/nvidia-rtx-games-engines-apps/
https://www.nvidia.com/en-us/geforce/news/nvidia-rtx-games-engines-apps/
https://www.amd.com/system/files/documents/rdna2-explained-radeon-pro-W6000.pdf
https://www.amd.com/system/files/documents/rdna2-explained-radeon-pro-W6000.pdf
https://dqlin.xyz/tech/2019/01/24/dxr-ir/
https://dqlin.xyz/tech/2019/01/24/dxr-ir/
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
http://cwyman.org/code/dxrTutors/dxr_tutors.md.html
https://developer.nvidia.com/blog/introduction-nvidia-rtx-directx-ray-tracing/
https://developer.nvidia.com/blog/introduction-nvidia-rtx-directx-ray-tracing/
https://developer.nvidia.com/content/basics-gpu-voxelization
https://developer.nvidia.com/content/basics-gpu-voxelization
https://www.cs.princeton.edu/courses/archive/fall10/cos526/papers/zimmerman98.pdf
https://www.cs.princeton.edu/courses/archive/fall10/cos526/papers/zimmerman98.pdf
https://www.cs.princeton.edu/courses/archive/fall10/cos526/papers/zimmerman98.pdf
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

	Abstract
	Preface
	Nvidia RTX
	Motivation
	Objective
	Thesis Structure

	Introduction
	The Speed - Realism Dichotomy
	Rendering Optics
	Camera Optics
	Virtual Camera

	Radiometric Quantities
	Solid Angle
	Radiance
	Radiant Flux
	Irradiance and Radiant Exitance
	BRDF and the Reflectance Equation

	The Rendering Equation
	Specular and Diffuse BRDFs
	Specular Reflections
	Glossy Reflections
	Diffuse Reflections

	Rasterization
	Raytracing
	Ray Definition
	Ray-triangle Intersection
	Bounding Volume Hierarchies

	Radiosity
	View Factor
	The Nusselt Analog
	The Hemicube Approximation
	Monte-Carlo Integration

	Classical Radiosity
	Progressive Radiosity
	Progressive Refinement Radiosity
	Instant Radiosity and Sampling Approaches

	Visibility Determination
	Z-Buffering
	Raytracing for Visibility

	The Turing Architecture and DXR
	GPUs and Parallelism
	The Turing Architecture
	TU102 GPU Structure
	GPC
	SM - Streaming Multiprocessor
	CUDA Core
	Tensor Core
	RT Core

	DirectX
	DirectX Rasterization Pipeline
	Input Assembler Stage
	Vertex Shader
	Tessellation Stage
	Geometry Shader
	Rasterizer Stage
	Pixel Shader
	Output Merger Stage

	DirectX Raytracing
	DXR Pipeline
	Rays in DXR
	Programmable Shaders

	TraceRay Function
	Code Example
	Host Initialization
	Acceleration Structure
	BLAS
	TLAS
	Shader Table

	Status Quo of RTX

	RTX Radiosity
	Status Quo of GPU-based Radiosity
	Lead-up to RTRad
	Target Use-Case

	Previous Work
	GPU Radiosity
	Rapid-Radiosity (RRad)

	Source Code and Dependencies
	Falcor

	Program Structure
	Class Structure

	Input Data
	Subdivision through UV Mapping
	Input Components
	Texture-Group

	CITPass
	Surface Area

	RTLPass
	Visibility Raytracing
	View Factor Calculation
	Lighting Contribution
	Indexing and Memory Conflicts
	Batching

	SewSeams Pass
	VITPass

	Performance Improvements
	Refinement
	Static Undersampling
	Monte-Carlo Undersampling

	Mipmapped Undersampling
	Adaptive Subdivision
	Alpha-Embedded Substructuring
	Gradient Calculation

	Visibility Caching
	Memory Complexity
	Cantor Pairing Function
	Visibility Buffer

	Voxel Raymarching
	Raymarching and 3D Textures
	Scene Voxelization
	Vertex Shader
	Geometry Shader
	Pixel Shader

	Directional Sampling
	Hemispheric Direction Generation

	Evaluation
	RTRad Overview
	Evaluation Method
	Pass-Time
	DFPR
	Scenes

	Results
	Pure Progressive Radiosity
	Undersampling
	Undersampling Method Differences

	Adaptive Subdivision
	Scene Complexity

	Extensions
	Visibility Caching
	Voxel Raymarching
	Directional Sampling

	Comparison
	Unity and Unreal Engine

	Specular Reflections

	Verdict
	Summary
	Limitations
	Conclusions
	Future Work

	Bibliography

