Hendrix Programming Team Reference

April 6, 2023

HENDRIX

COLLEGE

Contents

1 Newcomers’ Guide

2 Python Reference

3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Template L .
Math . . . o e
Lists/Tuples o o o o e e e e e e
Strings . . . o .. e e
Loops . . o o e e e e
Stack . . . e
QUEUE/AeqUEe . . v v v e e e e e e e
Priority queue L L
Set . e e e

Java Reference

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Template L e e
SCaANNEr e e e e e e

SEHING . o o e e e e e
StringBuilder
Character L e e
ATTayS . . o e e e e e e e e
ArrayList o e e e e e e e e e
Stack
Queue/ArrayDeque Lo e e
Comparator« v i e e e e e e e e e e
PriorityQueue e e e e e e e e e e e
Set . .
Map . o e e e
Biglnteger L e
SOrting e e e e
Fast I/O . . o o o

Limits

Data Structures

5.1
5.2
5.3
5.4
9.5
5.6
5.7

Pair . . . e
Bag/multiset o e e e e e e e
Union-find L e
Tries . . o o o e e e
Adjustable priority queue L e e e e e e
Segment trees and Fenwick trees o
Splay trees and/or treaps L e e

10
11
11
12
12
12
12

13
13
13
14
14
15
16
16
16
17
17
18
18
19
20
20
21
21

23

CONTENTS

CONTENTS

6 Enumeration and search

6.1 Complete search oo
6.2 Binarysearch o
6.3 Ternarysearch 0 .
7 Graphs
7.1 Graph basics o
7.2 Graph representationo
7.3 Breadth-First Search
74 DFS . . . o
7.5 SCCsand 2-SAT
7.6 Topological sorting o
7.7 Single-source shortest paths (Dijkstra)
7.8 All-pairs shortest paths (Floyd-Warshall)
7.9 Min spanning trees (Kruskal)
7.10 Eulerian paths 0o
7.11 Max flow/min cut
7.11.1 Flow network problem types
7.11.2 Flow network variants
7.11.3 Dinitz’ Algorithm
8 Trees

9 Dynamic Programming

10 Sequences and strings

10.1 Longest Increasing Subsequence (LIS)
10,2 LCSvia LIS oo e e
10.3 Z-algorithm
104 Suffix arrayso
11 Mathematics

11.1 GCD/Euclidean Algorithm
11.2 Rational numbers
11.3 Modular arithmetic
11.4 Primes and factorization

11.4.1 Trial division

11.4.2 Sieving L
11.5 Divisors and Euler’s Totient Function
11.6 Factorialo
11.7 Combinatoricso

11.7.1 Subsets and permutations

11.7.2 Binomial and multinomial coefficients
11.8 Probability
11.9 Game Theory o

12 Bit Tricks

13 Geometry

13.1 Vectors e e e e e e e e e
13.2 Dot Product e
13.3 Shortest Distance from Point to Line
13.4 Heron’s Formula
13.5 Cross Product e
13.6 Polygon Area

CONTENTS CONTENTS
13.7 Convex Hull o0 e e 76
13.8 Geometry References L 7

14 Miscellaneous 79
14.1 2D grids o o e e e e e e e 79
14.2 Hexagonal grids L e e 80
14.3 Range queries oL e e e e 80

14.3.1 Prefix scan (inverse required; O(1) queries; no updates) 81
14.3.2 Kadane’s Algorithm oo 81
14.3.3 2D prefix scan Lo e e e e e e 82
14.3.4 Doubling windows (no inverse; O(1) queries; no updates) 82
14.3.5 Fenwick trees (inverse required; O(lgn) queries; O(lgn) updates) 82
14.3.6 Segment trees (no inverse required; O(lgn) queries; O(lgn) updates) 83
14.4 Cycle finding o e e 83

15 Formulas 85

16 Advanced topics 87

A Reference 89
Al Primes . . . o o e 89
A2 Pascal’s Triangle L e e e 89

B Resources 91

CONTENTS CONTENTS

Chapter 1

Newcomers’ Guide

How To Get Good at Competitive Programming in XXX Easy Steps:

1.

Visit http://open.kattis.com, sign up for a free account, and solve lots of low-difficulty (1.x rating)
problems. (Click on “Problems” and sort by difficulty ascending order.)

No seriously, lots of them. You should aim to solve at least 50.

Start reading through this guide, one small section at a time. Don’t be afraid to just skim past things
that are confusing at first. Try solving some of the problems linked from each section.

Listen to more experienced team members coding/explaining solutions to more difficult problems.
Then see if you can recreate the solutions on your own.

profit!

http://open.kattis.com

CHAPTER 1. NEWCOMERS’ GUIDE

Chapter 2

Python Reference

Python’s built-in support for arbitrary-size integers (using BigInteger in Java is a pain!) and built-in

dictionaries with lightweight syntax make it attractive for certain kinds of problems.

2.1 Template

Below is a basic template showing how to read typical contest problem input in Python 3:
n = int(input()) # Read an int on a line by itself
for _ in range(n): # Do something n times

Read all the ints on a line into a list
xs = map(int, input().split())

Read a known number of ints into wariables
Ps 9 ¥, y = map(int, input().split())

2.2 Math

The standard math class contains useful standard mathematical constants and operations.

write

import math

and then access functions by prefixing them with math.
e XXX basic math and comparison operators
e 7 ismath.pi, and e is math.e. Also, math.exp(x) computes e*.
e abs finds the absolute value.

e min and max find the min or max of multiple values, or a list of values.

Typically we

e math.comb(n,k) is the number of ways to choose k items out of n (i.e. a binomial coefficient (})).

e math.factorial(n) isn!l=1-2-----n.

e math.floor, math.ceiling, and round round values down, up, or to the nearest integer respectively.

round(n,d) rounds n to d decimal places.

2.3. LISTS/TUPLES CHAPTER 2. PYTHON REFERENCE
e math.sin, math.cos, math.tan, math.asin, math.acos, math.atan compute standard trig functions,
and all expect arguments in radians. math.atan2(y,x) computes the angle to the point (z,y).
e math.degrees converts from radians to degrees, and math.radians does the opposite.
e math.log(x) computes the natural log of z; math.log(x,b) computes log, z.
e math.dist(p,q) computes the Euclidean distance between the points p and ¢ in n dimensions, repre-
sented by tuples or lists of length n.
e math.hypot(x,y,\dots) computes the Euclidean distance from the origin to the n-dimensional point
(2,1,).
e math.sqrt(x) is \/z.
e math.pow(x,y) computes z¥.
2.3 Lists/Tuples

Python lists are written using square brackets and commas: [1,2,3,4,5].
Python tuples are written using commas and no square brackets: 1,2,3,4,5.

Lists are mutable (they can be appended to, popped from, modified ...) and tuples are immutable (so
they can be used as dictionary keys).

You can assign multiple elements of XXX
Indexing (with negative indices)

slices [lo,hi)

append O(1)

pop() from end is O(1)

Split up a string using split

Convert with list

Sorting, .sort () vs sorted (sort with reverse = true, sort by custom key)

XXX write about list comprehensions
XXX how to make 2D lists, avoid gotcha with references

I item in 1st tests whether item is an element of the list 1st, but takes O(n) since it uses a linear
search. If you want to be able to quickly check whether an item is an element of a collection,
use a set instead of a list.

I pop(0) is O(n)! Use a deque if you want a queue.

10

CHAPTER 2. PYTHON REFERENCE 2.4. STRINGS

2.4 Strings

Values of type str represent sequences of characters. Strings in Python are sequences, so in some ways they
are similar to lists, e.g. strings can be concatenated with +, indexed, sliced, and iterated through using a
for loop.

Python does not have a separate character type; there are only one-character strings.

Strings can be compared lexicographically (dictionary order) using standard comparison operators.

e The split splits a string into a list of strings:

— s.split (), with no arguments, splits s on whitespace. It is very common to use this while reading
a line of input, to split it into individual words/tokens.
— s.split(p) splits s at every occurrence of p. For example, s.split(', ') would split on commas.

e Asin Java, Python strings are immutable. If you need to mutate individual characters of a string, first
convert the string into a list of characters using list(s).

e d.join(1st) joins the list of strings 1st into a single string, placing d in between each. For example,
"5'.join(['hi', 'there', 'world']) == 'hi;there;world'. Turn a list of characters back into
a string using ''.join(chars).

e s in t tests whether the string s occurs as a substring of t.

I Since strings are immutable, adding to the end of a string, as in s += 'Q', takes O(n) time.
Building an entire string by adding characters to the end one at a time thus takes O(n?) time!
Instead, append each character to a list of characters, and then use ''.join(chars) to turn the
list into a string at the end.

2.5 Loops

e for loops can be used to iterate through the elements of a collection (such as a list, set, or deque),
the characters of a string, the keys of a dictionary.

e enumerate can be used to loop through the elements of a collection and their indices at the same time.
For example:

for i,e in enumerate("ABC"):
print(f'Element {e} was at index {il}.')

Notice that the index comes first, then the element.
e range(n) generates the sequence of integers from 0 through n — 1. For example,

for i in range(6):
print (i)

prints the numbers 0 through 5. Sometimes range can be used if you just want to repeat an action a
certain number of times. For example:

n = int(input())
for _ in range(n):

print("hey")
e reversed iterates through the elements of a collection in reverse order, for example:

for x in reversed("ABC"):
print(x)

11

2.6. STACK CHAPTER 2. PYTHON REFERENCE

2.6 Stack

& Dbackspace, delimitersoup, islands, pairingsocks, reservoir, restaurant, symmetricorder,
throwns, zagrade

Python does not have any special built-in class for stacks; you can simply use a list as a stack, with
the end of the list corresponding to the top of the stack. Use the append method for pushing and the pop
method for popping, both of which take O(1) time. See the below example solution code for & backspace.

s = input()
word = []
for char in s:
if char == "<":
word.pop ()
else:

word.append (char)
print("".join(word))

2.7 Queue/deque

o,

¢9 eenymeeny, coconut, ferryloading4, integerlists, shuffling

XXX use deque

2.8 Priority queue
2.9 Set

The built-in set type stores a collection of values where each item occurs at most once, where we also do
not care about the order. set uses a hash table so supports O(1) add, remove, and membership testing.

Use len(s) to get the size of a set in O(1).

Use in to test whether a value is contained in a set in O(1).

Use pop() to remove and return one arbitrary element from the set.

Sets have a “truth value” indicating whether they are nonempty, so you can write while s: to iterate
until the set s is empty.

12

https://open.kattis.com/problems/backspace
https://open.kattis.com/problems/delimitersoup
https://open.kattis.com/problems/islands
https://open.kattis.com/problems/pairingsocks
https://open.kattis.com/problems/reservoir
https://open.kattis.com/problems/restaurant
https://open.kattis.com/problems/symmetricorder
https://open.kattis.com/problems/throwns
https://open.kattis.com/problems/zagrade
https://open.kattis.com/problems/backspace
https://open.kattis.com/problems/eenymeeny
https://open.kattis.com/problems/coconut
https://open.kattis.com/problems/ferryloading4
https://open.kattis.com/problems/integerlists
https://open.kattis.com/problems/shuffling

10

11

12

13

14

10

11

12

Chapter 3

Java Reference

3.1 Template

// *Don't* include a package declaration!

import java.util.x;
import java.math.*;

public class ClassName {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);

// Solution code here

System.out.println(answer) ;

3.2 Scanner

£ Scanner is relatively slow but should usually be sufficient for most purposes. If the input or output is
relatively large (> 1MB) and you suspect the time taken to read or write it may be a hindrance, you can
use Fast /0O (§3.17, page 21).

I Be sure to read the warning in the comment below about calling nextLine() after nextInt ()
and the like!

import java.util.x;

public class ScannerExample {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);

// All these read a single token (ignore leading whitespace,
// then read up until but not including the next whitespace)
String s = in.next();

int n = in.nextInt();

long 1 = in.nextLong();

double d = in.nextDouble();

13

https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3.3. MATH CHAPTER 3. JAVA REFERENCE

3.3

// WARNING!! A previous call to nextXXX will read up to a

// newline character but leave it unconsumed in the input, so

// the next call to nextLine() will just read that newline and

// return an empty string!

in.nextLine(); // throw away the empty line to get ready for the newt

// Read a whole line up to the next newline character.
// Consumes the newline but does not include it in the
// returned String.

String line = in.nextLine();

// Read until end of input

while (in.hasNext()) {
line = in.nextLine();

Math

The standard < Math class contains useful standard mathematical constants and operations. All are static,
so they can be accessed by prefixing their names with Math., i.e. Math.cos.

Constants E and PI represent (floating-point approximations of) e and 7.
abs finds the absolute value.

min and max find the min or max of two values. A common trick for saving a bit of typing is to use
something like

m = Math.max(m, val);
if you need m to accumulate the maximum of a set of values.

round rounds a floating-point number to the nearest integer. ceil and floor round up and down,
respectively. Note that whereas round returns a long when given a double, for some reason ceil and
floor both return double, so you may need to cast the results:

double x = ...
long n = (long)Math.floor(x);

exp(x) computes e”. log(x) computes Inz.
sqrt computes the square root. hypot (x,y) computes \/x2 + y2.
pow(a, b) computes a®.

sin, cos, tan, acos, asin, atan do what you would expect. Note also atan2(y,x) which returns an
angle 0 such that it converts rectangular coordinates (z,y) into polar coordinates (r,). This is almost
like atan(y/x) except that it avoids division by zero and handles all four quadrants properly.

toDegrees and toRadians convert angles from radians to degrees and degrees to radians, respectively.

3.4 String

14

https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html

10

11

12

13

14

15

16

CHAPTER 3. JAVA REFERENCE 3.5. STRINGBUILDER

o,

¢9 battlesimulation, bing, connectthedots, itsasecret, shiritori, suffixarrayreconstruction

The < String type can be used in Java to represent sequences of characters. Some useful String methods
include:

e concatenation (+)
e substring(i) yields the substring starting at index i up to the end of the string

e substring(i,j) yields the substring starting at i (inclusive) and ending just before j (same as Python
slices).

e charAt (i) yields the char at index i.

e toCharArray() converts to a char[], which can be convenient if you need to do a lot of indexing ([i]
instead of charAt(i)).

e split(String) splits a string into a String[] of pieces between occurrences of the splitting string.

e endsWith(String), startsWith(String), index0f (String), and replace(...) can occasionally be
useful.

Below is shown a solution to ¢ sumoftheothers, which uses split followed by Integer.parselnt to
read the integers on each line (necessary in this case because the input does not specify how many integers
will be on each line, although this is atypical).

import java.util.Scanner;

public class sumOfTheOthers {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
String[] s = in.nextLine().split(" ");
int out = 0;
for (String i : s) {
out += Integer.parselnt(i);
}
System.out.println(out / 2);
}

in.close();

Strings are immutable, which means in particular that concatenation has to allocate an entirely new
String and copy both arguments. Hence repeatedly appending individual characters to the end of a String

takes O(n?) time, since the entire string must be copied with each append operation. In this situation, either

pre-allocate a sufficiently large char[], or use the s StringBuilder class.

3.5 StringBuilder

& itsasecret, joinstrings

s StringBuilder is a mutable string class which supports efficient append and modification operations. If
you need to build up a long string by incrementally appending text bit by bit, you should use StringBuilder
instead of using String directly. StringBuilder also supports a reverse() method (unlike String).

As a simple example, the below code prints 0291817161514131211101987654321.

15

https://open.kattis.com/problems/battlesimulation
https://open.kattis.com/problems/bing
https://open.kattis.com/problems/connectthedots
https://open.kattis.com/problems/itsasecret
https://open.kattis.com/problems/shiritori
https://open.kattis.com/problems/suffixarrayreconstruction
https://docs.oracle.com/javase/10/docs/api/java/lang/String.html
https://open.kattis.com/problems/sumoftheothers
https://docs.oracle.com/javase/10/docs/api/java/lang/StringBuilder.html
https://open.kattis.com/problems/itsasecret
https://open.kattis.com/problems/joinstrings
https://docs.oracle.com/javase/10/docs/api/java/util/StringBuilder.html

3.6. CHARACTER CHAPTER 3. JAVA REFERENCE

StringBuilder sb = new StringBuilder();
for (int 1 = 1; i <= 20; i++) {

}

sb.append ("" + i);

System.out.println(sb.reverse());

3.6

Character

o,

(6O

ummcode, softpasswords

[TODO: Useful Character class methods like isDigit, isAlphabetic, etc.]

3.7 Arrays

& falcondive, freefood, traveltheskies

The basic syntax for creating a primitive array in Java is, for example,

int[] array = new int[500];

Some tips and tricks:

3.8

Array indexing starts at 0; however, problems sometimes index things from 1...n. In such a situation
it is usually a good idea to simply create an array with one extra slot and leave index 0 unused. The
alternative (fiddling with indices by subtracting and adding 1 in the right places) is quite error-prone.

You can initialize an entire array to a given value using Arrays.fill(array, value).

If you only want to initialize part of an array, use Arrays.fill(array, fromIndex, toIndex, value)
to fill the array from fromIndex (inclusive) up to toIndex (exclusive).

You can sort the contents of an array in-place using Arrays.sort; see Sorting (§3.16, page 21).

You can use Arrays.binarySearch(array, key) to look for key within a sorted array. Read the
documentation to make sure you understand how to interpret the return value. See also Binary
search (§6.2, page 31).

Other methods from the £ Arrays class may also occasionally be useful.
To iterate over the items in an array, you can use foreach syntax:

for (int item : array) {
// do something with %
}

ArrayList

s Arraylist represents a standard dynamically-extensible array, doubling the underlying storage when it
runs out of space so that appending takes O(1) amortized time. The add, get, set, size, and isEmpty
methods are useful, in addition to the ability to iterate over the elements in order. Avoid methods such as
contains, index0f, remove, and the version of add that takes an index, all of which take linear time. (If
you think you want any of these methods, it’s probably a sign that you ought to be using a different data
structure.)

If you need to store a list/array and you know in advance exactly how much storage space you will

need,

then prefer using a primitive array which has less overhead as well as more concise syntax. On the

16

https://open.kattis.com/problems/ummcode
https://open.kattis.com/problems/softpasswords
https://open.kattis.com/problems/falcondive
https://open.kattis.com/problems/freefood
https://open.kattis.com/problems/traveltheskies
https://docs.oracle.com/javase/10/docs/api/java/util/Arrays.html#sort(int%5B%5D)
https://docs.oracle.com/javase/10/docs/api/java/util/Arrays.html#binarySearch(int%5B%5D,int)
https://docs.oracle.com/javase/10/docs/api/java/util/Arrays.html#binarySearch(int%5B%5D,int)
https://docs.oracle.com/javase/10/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/10/docs/api/java/util/ArrayList.html

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 3. JAVA REFERENCE 3.9. STACK

other hand, if you want to be able to dynamically extend a list by appending new elements to the end, use
ArrayList. (If you want to be able to dynamically extend a list on both ends, use an ArrayDeque (§3.10,

page 17).)

ArraylList<Integer> lst = new ArrayList<>();
1st.add(3); lst.add(19); 1lst.add(6);
System.out.println(lst.get(2)); // prints 6

1st.set (1, 12); // changes 19 to 12

int sum = 0;

for (Integer i: 1st) { // iterate through all <tems
sum += 1ij;

}

System.out.println(sum) ; // prints 3 + 12 + 6 = 21

3.9 Stack

¢9 backspace, delimitersoup, islands, pairingsocks, reservoir, restaurant, symmetricorder,
throwns, zagrade

£ Stack provides a generic stack implementation with O(1) operations. Standard methods include
isEmpty, push, pop, peek, and size. The code below shows a sample solution to & backspace using:i
Stack (and < StringBuilder).

import java.util.x;

public class backspace {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
String line = in.next();
Stack<Character> editor = new Stack<>();
for(int i = 0; i < linme.length(); i++) {
if (line.charAt(i) == '<')
editor.pop(Q);
else
editor.push(line.charAt(i));
}
StringBuilder buildString = new StringBuilder();
while('editor.isEmpty()) {
buildString.append(editor.pop());
}
System.out.println(buildString.reverse().toString());

Stacks are often used in implementing DFS (§7.4, page 38) as well as dealing with parentheses, or nesting
more generaﬂy'(é§ pairingsocks, & islands, & reservoir).

3.10 Queue/ArrayDeque

N,

¢» eenymeeny, coconut, ferryloading4, integerlists, shuffling

£ Queue, unlike £ Stack, is not a class but an interface. There are several classes implementing the

Queue interface, but the best in the context of competitive programming is probably % ArrayDeque, which

17

https://open.kattis.com/problems/backspace
https://open.kattis.com/problems/delimitersoup
https://open.kattis.com/problems/islands
https://open.kattis.com/problems/pairingsocks
https://open.kattis.com/problems/reservoir
https://open.kattis.com/problems/restaurant
https://open.kattis.com/problems/symmetricorder
https://open.kattis.com/problems/throwns
https://open.kattis.com/problems/zagrade
https://docs.oracle.com/javase/10/docs/api/java/util/Stack.html
https://open.kattis.com/problems/backspace
https://docs.oracle.com/javase/10/docs/api/java/util/Stack.html
https://docs.oracle.com/javase/10/docs/api/java/util/StringBuilder.html
https://open.kattis.com/problems/pairingsocks
https://open.kattis.com/problems/islands
https://open.kattis.com/problems/reservoir
https://open.kattis.com/problems/eenymeeny
https://open.kattis.com/problems/coconut
https://open.kattis.com/problems/ferryloading4
https://open.kattis.com/problems/integerlists
https://open.kattis.com/problems/shuffling
https://docs.oracle.com/javase/10/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/10/docs/api/java/util/Stack.html
https://docs.oracle.com/javase/10/docs/api/java/util/ArrayDeque.html

3.11. COMPARATOR CHAPTER 3. JAVA REFERENCE

in fact implements a double-ended queue or deque, providing O(1) amortized addition and removal from both
ends.

The add and remove methods implement enqueueing and dequeueing. To access both ends, use addFirst,
addLast, removeFirst, and removelast, all of which run in O(1) amortized time. (add is the same as
addLast and remove is the same as removeFirst.)

Queues are very commonly used in implementing Breadth-First Search (§7.3, page 35) and in simulations
of various sorts (for examples of the latter, see the selection of problems above).

As a simple example of the syntax for creating and using a queue, the below code puts the numbers 1
through 10 in a queue and then extracts them to print them out in the same order.

Queue<Integer> q = new ArrayDeque<>();

for (int i = 1; i <= 10; i++) {
q.add(i);

}

while (!q.isEmpty()) {
System.out.println(q.remove());

}

3.11 Comparator

A £ Comparator is used to specify a custom ordering on some type, potentially different than its “natural”
ordering. Typically a Comparator can be passed as an optional argument to things that require an order-
ing. For example, given an ArrayList<Integer> arr, one can use Collections.sort(arr) to sort it in
increasing numeric order. If a different order is wanted, one can pass a Comparator as the second argument
to sort, as in

Collections.sort(arr, Collections.reverseOrder());
to sort in descending order, or
Collections.sort(arr, (i,j) -> qlil - ql[j1);

to sort a list of indices by the corresponding value in an array q. A Comparator can also be used as an
extra argument to the constructor when creating a data structure that depends on ordering, such as a
PriorityQueue, TreeSet, or TreeMap.

[TODO: Constructing Comparators via lambda; constructing via things like comparing, thenComparing.
Collections.reverseOrder().]

3.12 PriorityQueue

N,

¢» bank, ferryloading3, guessthedatastructure, knigsoftheforest, vegetables

A £ PriorityQueue allows adding new elements (add) and removing the minimum element (remove),
both in O(Ilgn) time. peek can also be used to get the minimum in O(1) without removing it. Priority queues
are commonly used in Dijkstra’s algorithm (§7.7, page 42), event-based simulations (&% ferryloading3),
and generally any situation where we need to do an “online sort”, that is, we need to get items in order from
smallest to biggest, but more items may continue to arrive/be generated as we go.

Methods you should generally not use with PriorityQueue include remove (Object) and contains(Object),
which take linear time.

The default constructor makes an empty min-PQ. If you want to use a different ordering, there is another

constructor which takes a < Comparator.

e For example, if you want a max priority queue, where remove() yields the largest element, write
something like

18

https://docs.oracle.com/javase/10/docs/api/java/util/Comparator.html
https://open.kattis.com/problems/bank
https://open.kattis.com/problems/ferryloading3
https://open.kattis.com/problems/guessthedatastructure
https://open.kattis.com/problems/knigsoftheforest
https://open.kattis.com/problems/vegetables
https://docs.oracle.com/javase/10/docs/api/java/util/PriorityQueue.html
https://open.kattis.com/problems/ferryloading3
https://docs.oracle.com/javase/10/docs/api/java/util/Comparator.html

CHAPTER 3. JAVA REFERENCE 3.13. SET

PriorityQueue<Integer> pq = new PriorityQueue<>(Collections.reverselrder());

e If you want some other ordering, you can also use a lambda to construct a Comparator on the fly, for

example:

PriorityQueue<Integer> pq = new PriorityQueue<>((a,b) -> dist[al - dist[b]);

Code like the above is used in Dijkstra’s algorithm where we want to compare vertices by their best
recorded distance from the start vertex.

Traditional presentations of priority queues often have a decrease key operation which can decrease the
priority of an item (or an adjust key operation which can arbitrarily change the priority) and reestablish
the data structure invariants in O(lgn) time; this operation is used, for example, in implementing Dijkstra’s
algorithm efficiently (§7.7, page 42). However, the Java PriorityQueue class has no such method. One
workaround is to simply call remove and then add so the item gets re-added with the new priority. However,
remove takes linear time, so this is not ideal, although in many cases it is still good enough. For those
(relatively rare) cases when an O(lgn) decrease key operation is truly essential, see Adjustable priority
queue (8§5.5, page 28).

3.13 Set

N,

(GO}

boatparts, bookingaroom, engineeringenglish, whatdoesthefoxsay, securedoors, bard, control

The < Set interface represents a collection of items where each item occurs at most once. Operations
supported by all Sets include add, remove, contains, size/isEmpty.

There are two main classes implementing Set:

o £ HashSet is implemented using a dynamically expanding hash table. It features O(1) add, remove,

and contains.

e £ TreeSet is implemented using a balanced binary tree (a red-black tree, in fact), and supports add,

remove, and contains in guaranteed O(lgn) time. Of course this is slower than HashSet; however,
TreeSet has several other advantages:

— Since the elements are stored in order in the tree, iterating over a TreeSet is guaranteed to yield

the items in order from smallest to biggest, whereas iterating over a HashSet yields the items in
an arbitrary order. For example, if you want to remove duplicates from a set of items and then
print them out in order, you might as well just throw them all into a TreeSet instead of putting
them in a HashSet and then sorting (& crowdcontrol). (And either one is probably going to
be faster than sorting and then removing duplicates.)

If you need to put objects of a custom class into a set, it is sometimes easier to implement
Comparable for your class and use a TreeSet than it is to override hashCode and use a HashSet.
The O(lgn) difference is rarely, if ever, going to be the difference between AC and TLE, so you
should use whichever approach will be easier to code.

TreeSet also supports the < OrderedSet and & NavigableSet interfaces, which provide addi-
tional methods like first and last (return the smallest or largest element in the set), headSet
and tailSet (return the subset of all items less or greater than a specified element), and floor,
ceiling, lower, and higher (find the first item in the set less/greater than a specified value).
This last set of methods can be especially useful for some types of problems.

N,

¢ closestsums, platforme, baloni, excellentengineers

19

https://open.kattis.com/problems/boatparts
https://open.kattis.com/problems/bookingaroom
https://open.kattis.com/problems/engineeringenglish
https://open.kattis.com/problems/whatdoesthefoxsay
https://open.kattis.com/problems/securedoors
https://open.kattis.com/problems/bard
https://open.kattis.com/problems/control
https://docs.oracle.com/javase/10/docs/api/java/util/Set.html
https://docs.oracle.com/javase/10/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/10/docs/api/java/util/TreeSet.html
https://open.kattis.com/problems/crowdcontrol
https://docs.oracle.com/javase/10/docs/api/java/util/OrderedSet.html
https://docs.oracle.com/javase/10/docs/api/java/util/NavigableSet.html
https://open.kattis.com/problems/closestsums
https://open.kattis.com/problems/platforme
https://open.kattis.com/problems/baloni
https://open.kattis.com/problems/excellentengineers

3.14. MAP CHAPTER 3. JAVA REFERENCE

There is also a < LinkedHashSet class which in addition to providing all the same features as a HashSet,
also remembers the order in which the items were added; iterating over the set is guaranteed to yield the
items in this order. This is a bit more sophisticated than simply keeping an ArrayList and a HashSet
side-by-side, in particular because a LinkedHashSet still supports O(1) removal. We currently do not know
of any example problems which can be solved most easily using a LinkedHashSet, but it never hurts to be
prepared!

3.14 Map

o,

¢» awkwardparty, administrativeproblems, snowflakes, pizzahawaii, snowflakes

The < Map interface represents a dictionary data structure associating keys to values. Supported opera-
tions include get (K), put (K,V), containsKey(K), remove(K), and size/isEmpty.
As with Set, there are two main classes implementing Map:

o« & HashMap is implemented using a hash table, and allows O(1) get, put, remove, and containsKey.

o« & TreeMap is implemented using a balanced binary tree. Many of the same comments apply as for
TreeSet:

— All operations run in worst-case O(lgn) time.

— Iterating over the keys in the map is guaranteed to return them in order from smallest to biggest.

¢

— TreeMap also implements the = SortedMap interface (allowing one e.g. to access the first or

last key or to get a submap of all the key/value pairs which lie in between certain keys) and <
NavigableMap interface (which lets you find the closest keys and values which are smaller /bigger
than a given query key).

For the purposes of programming contests, TreeMap and HashMap are basically interchangeable. HashMap
is faster in theory but a factor of lgn is not that much, and HashMap has its own overhead costs.

e To iterate over the keys of a map, use keySet:
for (K key : map.keySet()) {
. e
e To iterate over the values, use values:
for (V val : map.values()) {
. ..
e You can also iterate over both at once:

for (Map.Entry<K,V> e : map.entrySet()) {
. e.getKey() ... e.getValue()
}

3.15 Biglnteger

20

https://docs.oracle.com/javase/10/docs/api/java/util/LinkedHashSet.html
https://open.kattis.com/problems/awkwardparty
https://open.kattis.com/problems/administrativeproblems
https://open.kattis.com/problems/snowflakes
https://open.kattis.com/problems/pizzahawaii
https://open.kattis.com/problems/snowflakes
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html
https://docs.oracle.com/javase/10/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/10/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/10/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/10/docs/api/java/util/NavigableMap.html

CHAPTER 3. JAVA REFERENCE 3.16. SORTING

o,

9 basicremains

& BigInteger represents arbitrarily large integer values, though it’s not actually needed all that often.
You can import it as java.math.BigInteger. For combinatorics problems where the answer is going to be
a big number, consider using Python instead.

e To turn an int or long into a BigInteger, use BigInteger.valueOf.
e BigInteger also provides the constants BigInteger.ZERO, .0ONE, .TWO, and .TEN.

e To do arithmetic, use methods such as add, subtract, and multiply, which all return their result as
a new BigInteger:

Biglnteger a
BigInteger b e
BigInteger c = a.add(b.multiply(BigInteger.TEN)); // ¢ = a + b*10

e BigInteger can occasionally be useful in scenarios other than representing large numbers, because of
its useful utility methods such as gcd and its ability to convert between different bases.

3.16 Sorting

e You can sort an array using Arrays.sort(array).
e You can sort a list-like collection (such as an ArrayList) using Collections.sort(list).
e These sort methods also take an optional Comparator (§3.11, page 18).

You should rarely, if ever, have to code your own sorting algorithms; the exception is when you need to
enhance a sorting algorithm to keep track of some extra information while sorting (for example, look up the
divide-and-conquer algorithm for counting inversions).

It is relatively common that one needs to sort according to some key, but carry along additional informa-
tion with the keys. The easiest way to do this is to make a small class to contain all the relevant information,
then implement the Comparable interface.

class Person implements Comparable<Person> {
int age; String name;
public Person(int _age, String _name) { age = _age; name = _name; }
int compareTo(Person p) { return age - p.age; }

ArrayList<Person> people = ...
Collections.sort(people); // sort by age, carrying names along too

Occasionally, you need to sort an array of items, but also keep track of the original index of each item
(& keepitcool). To do this, you can use a technique like the above, where each object stores an item as
well as its index in the original list, and sorts according to the item. Then sorting the objects will sort the
items, but each item carries along its original index.

3.17 Fast I/O

o,

¢» avoidland, cd, grandpabernie, minspantree, ozljeda

Typically ACM ICPC problems are designed so Scanner and System.out.println are fast enough to
read and write the required input and output within the time limits. However, these are relatively slow since
they are unbuffered (every single read and write happens immediately). Occasionally it can be useful to have
faster I/0; indeed, a few problems on Kattis cannot be solved in Java without using this. See Figure 3.1 for
a faster drop-in replacement for Scanner, adapted from the Kattio class provided by Kattis.

21

https://open.kattis.com/problems/basicremains
https://docs.oracle.com/javase/10/docs/api/java/math/BigInteger.html
https://open.kattis.com/problems/keepitcool
https://open.kattis.com/problems/avoidland
https://open.kattis.com/problems/cd
https://open.kattis.com/problems/grandpabernie
https://open.kattis.com/problems/minspantree
https://open.kattis.com/problems/ozljeda

10

11

12

13

14

15

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

3.17. FAST I/O

CHAPTER 3. JAVA REFERENCE

/* Ezample usage:

*
* FastI0 to = new FastIO(System.in, System.out)
¥

* while (io.hasNexzt()) {

* wnt n = to0.nextInt();

* double d = 10.nextDouble();

* double ans = d#¥n;

*

* i0.println("Adnswer: " + ans);

* }

*

* 40.flush(); // DON'T FORGET THIS LINE!

import java.util.*;
import java.io.*;

class FastI0 extends PrintWriter {
public FastIO(InputStream i, OutputStream o)
super (new BufferedOutputStream(o));

r = new BufferedReader (new InputStreamReader(i));

}

public boolean hasNext() { return peekToken() != null; }

’

{

public int nextInt() { return Integer.parselnt(nextToken()); }
public double nextDouble() { return Double.parseDouble(nextToken()); }
public long nextLong() { return Long.parseLong(nextToken()); }

public String next() { return nextToken(); }

private BufferedReader r;
private String line, token;
private StringTokenizer st;

private String peekToken() {
if (token == null)

try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}

token = st.nextToken();
} catch (IOException e) { }
return token;

private String nextToken() {

String ans = peekToken(); token = null; return ans;

}

Figure 3.1: Fast I/0O

22

Chapter 4

Limits

As a rule of thumb, you should assume about 10® (= 100 million) operations per second. If you can think
of a straightforward brute force solution to a problem, you should check whether it is likely to fit within the
time limit; if so, go for it! Some problems are explicitly written to see if you will recognize this. If a brute
force solution won’t fit, the input size can help guide you to search for the right algorithm running time.
Example: suppose a problem requires you to find the length of a shortest path in a weighted graph.

If the graph has |V| = 400 vertices, you should use Floyd-Warshall (§7.8, page 45): it is the easiest to
code and takes O(V?3) time which should be good enough.

If the graph has |V| = 4000 vertices, especially if it doesn’t have all possible edges, you can use
Dijkstra’s algorithm (§7.7, page 42), which is O(Elog V).

If the graph has |V| = 10° vertices, you should look for some special property of the graph which
allows you to solve the problem in O(V') or O(V log V') time—for example, perhaps the graph is a tree
(§7.1, page 35), so you can run a BFS/DFS (§7.4, page 38) to find the unique path and then add up
the weights. An input size of 10° is a common sign that you are expected to use an O(nlgn) or O(n)
algorithm—it’s big enough to make O(n?) too slow but not so big that the time to do I/O makes a big
difference.

n Worst viable running time Example

11 O(n!) Generating all permutations (§11.7, page 66)
25 02" Generating all subsets (§12, page 69)

100 O(n?) Some brute force algorithms

400 O(n?) Floyd-Warshall (§7.8, page 45)

10* O(n?) Testing all pairs

10° O(nlgn) BFS/DFS; sort+greedy

)

bing, transportationplanning, dancerecital, prozor, rectanglesurrounding, weakvertices

210 = 1024 ~ 103.

One int is 32 bits = 4 bytes. So e.g. an array of 10 ints requires < 4 MB—no big deal since the
typical memory limit is 1 GB. Don’t be afraid to make arrays with millions of elements!

int holds 32 bits; the largest int value is Integer.MAX_VALUE = 23! — 1, a bit more than 2 - 10°.

long holds 64 bits; the largest long value is Long.MAX_VALUE = 253 — 1, a bit more than 9 - 10*®. To
write literal long values you can add an L suffix, as in long x = 1234567890123L;.

23

https://open.kattis.com/problems/bing
https://open.kattis.com/problems/transportationplanning
https://open.kattis.com/problems/dancerecital
https://open.kattis.com/problems/prozor
https://open.kattis.com/problems/rectanglesurrounding
https://open.kattis.com/problems/weakvertices

CHAPTER 4. LIMITS

e If you need larger values, use Biglnteger (§3.15, page 20) or just use Python (§2, page 9); see also
Combinatorics (§11.7, page 66).

& different

24

https://open.kattis.com/problems/different

Chapter 5

Data Structures

5.1 Pair

Java has a Pair class in javafx.util.Pair, but one can’t necessarily assume that this will be available in
a contest environment. The following simple class suffices to store pairs of values, which is especially useful
in representing e.g. coordinates in a 2D grid. Note in a competitive programming context we don’t bother
adding getter and setter methods; the a and b fields are public so we can just access them directly.

public class Pair<A,B> {
A a; B b;
public Pair(A a, B b) { this.a = a; this.b = b; }
public int hashCode() { return 31 * (31 * 7 + a.hashCode()) + b.hashCode(); }
public boolean equals(Object o) {
Pair<A,B> p = (Pair<A,B>)o;
return a.equals(p.a) && b.equals(p.b);
}
public String toString() { return "(" + a + "," + b + ")"; }

Below is a variant which implements the Comparable interface. CPair objects sort in lexicographic order:
first by the first component, and then ties in the first component are broken by the second component.

import java.util.Comparator;

public class CPair<A extends Comparable<A>, B extends Comparable>
implements Comparable<CPair<A,B>> {
A a; B b;
public CPair(A a, B b) { this.a = a; this.b = b; }
public int hashCode() { return 31 * (31 * 7 + a.hashCode()) + b.hashCode(); }
public boolean equals(Object o) {
CPair<A,B> p = (CPair<A,B>)o;

10

11

12

13

14

15

16

17

18

return a.equals(p.a) && b.equals(p.b);
}
public String toString() { return "(" + a + "," + b + ")"; }
public int compareTo(CPair<A,B> p) { // sort by a, then b
if ('a.equals(p.a)) return a.compareTo(p.a);
else return b.compareTo(p.b);

25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

5.2. BAG/MULTISET CHAPTER 5. DATA STRUCTURES

5.2 Bag/multiset

N,

¢9 cookieselection, kattissquest

A bag, aka multiset, is a collection of elements where order does not matter (like a set) but multiplicity
does matter, i.e. there can be duplicates and we need to keep track of how many duplicates there are of
each item. Bags are not needed often but can occasionally be useful. It is not too hard to build a bag as
a map from items to integer counts, but there are a few corner cases so it’s worth copying a well-tested
implementation instead of writing one from scratch.

The implementation below is based on a < TreeMap (§3.14, page 20), and hence supports operations like
first() and last(). If desired one could easily change the TreeMap to a HashMap and remove the methods
which are no longer supported, although the factor of O(lgn) is unlikely to make a practical difference.

import java.util.x;

public class TreeBag<E extends Comparable<E>> implements Iterable<E> {

private TreeMap<E, Integer> map;

private int totalSize;

public TreeBag() { map = new TreeMap<>(); }

public void add(E e) {
if (!'map.containsKey(e)) map.put(e,0);
map.put (e, map.get(e) + 1);
totalSizet++;

}

public void remove(E e) {
if (map.containsKey(e)) {

if (map.get(e) == 1) map.remove(e);

else map.put(e, map.get(e) - 1);

totalSize--;

}

}
public int size() { return totalSize; }
public boolean isEmpty() { return map.isEmpty(); }
public int count(E e) { return map.containsKey(e) 7 map.get(e) : 0; }
public E first() { return map.firstKey(); }
public E last() { return map.lastKey(); }
public E pollFirst() { E e = first(); remove(e); return e; }
public E polllLast() { E e = last(); remove(e); return e; }
public E floor(E e) { return map.floorKey(e); }
public E ceiling(E e) { return map.ceilingKey(e); }
public E lower(E e) { return map.lowerKey(e); }
public E higher(E e) { return map.higherKey(e); }

public Iterator<E> iterator() {
return new Iterator<E>() {
Iterator<E> it = map.keySet().iterator();
E cur; int count = 0;

public boolean hasNext() { return it.hasNext() || count > 0; }
public E next() {
if (count == 0) { cur = it.next(); count = map.get(cur); }
count--; return cur;
}

26

https://open.kattis.com/problems/cookieselection
https://open.kattis.com/problems/kattissquest
https://docs.oracle.com/javase/10/docs/api/java/util/TreeMap.html

CHAPTER 5. DATA STRUCTURES 5.3. UNION-FIND

5.3 Union-find

& firetrucksarered, forestfires, kastenlauf, ladice, numbersetseasy, unionfind, virtualfriends
watersheds, wheresmyinternet

A union-find structure can be used to keep track of a collection of disjoint sets, with the ability to quickly
test whether two items are in the same set, and to quickly union two given sets into one. It is used in
Kruskal’s Minimum Spanning Tree algorithm (§7.9, page 46), and can also be useful on its own (see the
above Kattis problems for examples). find and union both take essentially constant amortized time.

class UnionFind {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

private bytel] r; private int[] p; // rank, parent

// Make a new union-find structure with n items in singleton sets,
// numbered 0 .. n-1 .
public UnionFind(int n) {
r = new byte[n]; p = new int[n];
for (int i = 0; i < nj; i++) {
r[i] = 0; pl[il = i;

// Return the root of the set containing v, with path compresstion. 0(1).

// Test whether u and v are in the same set with find(u) == find(v).
public int find(int v) {

return v == p[v] 7 v : (plv] = find(p[vl));
}

// Union the sets containing uw and v. 0(1).
public void union(int u, int v) {
int ru = find(u), rv = find(v);

if (ru !'= rv) {
if (rlru] > rlrvl]) plrvl] = ru;
else if (r[rv] > rl[rul) plrul = rv;

else { plrul = rv; rlrvl++; }

The above code can easily be enhanced to keep track of the number of sets (initialize to n; subtract one
every time union hits the ru !'= rv case), or to keep track of the actual size of each set instead of just the
rank /height (keep a size for each index; initialize all to 1; add sizes appropriately when doing union).

5.4 Tries

N,

¢ boggle, heritage, herkabe, phonelist

The code below is a very simple implementation of a trie—there are many other methods that could be
added, and it is not very efficient since it repeatedly uses the O(n) substring operation as it recurses down
the trie, but it is sufficient for some problems.

[TODO: More efficient /full-featured Trie class]

class Trie<K,V> {
Map<K, V> children;

27

https://open.kattis.com/problems/firetrucksarered
https://open.kattis.com/problems/forestfires
https://open.kattis.com/problems/kastenlauf
https://open.kattis.com/problems/ladice
https://open.kattis.com/problems/numbersetseasy
https://open.kattis.com/problems/unionfind
https://open.kattis.com/problems/virtualfriends
https://open.kattis.com/problems/watersheds
https://open.kattis.com/problems/wheresmyinternet
https://open.kattis.com/problems/boggle
https://open.kattis.com/problems/heritage
https://open.kattis.com/problems/herkabe
https://open.kattis.com/problems/phonelist

10

11

12

13

14

15

16

17

18

20

21

22

10

11

5.5. ADJUSTABLE PRIORITY QUEUE CHAPTER 5. DATA STRUCTURES

boolean mark;

public Trie() {
children = new HashMap<>(); mark = false;
}
public void add(String s) { addR(s); }
public void addR(String s) {
if (s.equals("")) mark = true;
else ensureChild(s.charAt(0)).addR(s.substring(1));
}
public Trie getChild(Character c) { return children.get(c); 1}
public Trie ensureChild(Character c) {
Trie t = getChild(c);
if (t == null) {
t = new Trie();
children.put(c, t);
}

return t;

Tries are intimately connected with MSD radix sort, which can be thought of as equivalent to building
a trie and then traversing it in order. However, no implementation of radix sort actually builds an inter-
mediate trie. Sometimes it can be helpful to think about a problem in terms of a trie, but never actually
implement /materialize the trie at all (& herkabe): just do a modified radix sort, first grouping strings
by their first character, then recursing on each group, keeping track of needed auxiliary information (e.g.
depth) along the way.

5.5 Adjustable priority queue

o)

¢» flowerytrails, shopping

As discussed in PriorityQueue (§3.12, page 18), Java’s PriorityQueue class has no way to efficiently
alter the priority of an item already stored in the queue; simply removing and re-adding the item does the
trick but takes O(n) time. The efficiency of this operation really does make a difference in the asymptotic
performance of Dijkstra’s algorithm (§7.7, page 42), and occasionally it really needs to be O(lgn) in order to
meet the time limits (e.g. & flowerytrails). A suitable implementation of a priority queue with O(lgn)
priority adjustment is shown below. The key idea is to keep a hash table on the side which can be used
to quickly find the index of any item stored in the priority queue; of course, the hash table has to be kept
suitably updated whenever items are shuffled in the heap. The adjust(e) method is used to inform the
priority queue that the priority of item e has changed, so that the queue has an opportunity to move the
item if necessary to reestablish the heap invariants.

import java.util.x;

public class AdjustablePQ<E extends Comparable<E>> {
protected ArrayList<E> elems;
protected HashMap<E, Integer> indices;
protected Comparator<E> cmp;
public AdjustablePQ() { this(Comparator.naturalOrder()); }
public AdjustableP((Comparator<E> cmp) {
elems = new ArrayList<>(); elems.add(null);
indices = new HashMap<>();
this.cmp = cmp;

28

https://open.kattis.com/problems/herkabe
https://open.kattis.com/problems/flowerytrails
https://open.kattis.com/problems/shopping
https://open.kattis.com/problems/flowerytrails

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 5. DATA STRUCTURES

5.6. SEGMENT TREES AND FENWICK TREES

}
public int size() { return elems.size() - 1; }
public boolean isEmpty() { return size() == 0; }

public void add(E item) { set(elems.size(), item); reheapUp(last()); 2}

public E remove() {
E ret = elems.get(1);

set (1, elems.get(last())); elems.remove(last());

reheapDown (1) ;
return ret;

}

public E peek() { return elems.get(1); }
public void adjust(E item) { int i = indices.get(item); reheapUp(i); reheapDown(i); }

protected int last() { return elems.size() - 1; }

protected void set(int i, E item) {

if (i == elems.size()) elems.add(item);

else elems.set(i, item);
indices.put(item, 1i);
}

protected void swap(int i, int j) {

E tmp = elems.get(i); set(i, elems.get(j)); set(j, tmp);

}
protected void reheapUp(int i) {
if (1 <= 1) return;

if (cmp.compare(elems.get(i), elems.get(i/2)) >= 0) return;

swap(i, i/2); reheapUp(i/2);

}

protected void reheapDown(int i) {
if (2%i > last()) return;
int small = 2%i;

if (2%i+1 <= last() && cmp.compare(elems.get(2%i), elems.get(2%i+1)) > 0)

small++;

if (cmp.compare(elems.get(i), elems.get(small)) > 0) {
swap(i, small); reheapDown(small);

3

5.6 Segment trees and Fenwick trees

See Range queries (§14.3, page 80).

5.7 Splay trees and/or treaps

[TODO: Write about these?]

29

5.7. SPLAY TREES AND/OR TREAPS CHAPTER 5. DATA STRUCTURES

30

Chapter 6

Enumeration and search

6.1 Complete search

& bing, classpicture, coloring, cycleseasy, dancerecital, lektira, freefood, gepetto, kastenlauf
mjehuric, paintings, prozor, rectanglesurrounding, reducedidnumbers, reseto, sheldon, shuffling,
weakvertices, wheels, transportationplanning

See CP3 for a fuller discussion of complete search, aka brute force, and a list of relevant techniques
(nested loops, recursive backtracking, etc.). Just remember that there’s no need to code anything more
sophisticated if a back-of-the-envelope analysis shows that a simple complete search will finish under the
time limit. (Although some kinds of complete search can themselves be rather sophisticated. For example,
see Bit Tricks (§12, page 69). Some of the above problems are much harder than others!)

Sometimes complete search isn’t in and of itself the full solution to a problem, but the problem is set up
so that a subpart can be done via complete search, to keep the solution complexity from getting out of hand
and allowing you to focus your efforts on the more “interesting” part of the problem.

[TODO: Generating all k-subsets with nested loops; generating all subsets with bit vectors; generating
all permutations (Heap’s algorithm, recursive backtracking)]

6.2 Binary search
If you need to do a traditional binary search—that is, finding the index where a given element occurs in

a sorted array—you should just use the standard Arrays.binarySearch method. However, the underlying
idea of binary search applies in many more contexts.

Binary search on a real interval

& bottles, cheese, fencebowling, speed, suspensionbridges, tetration, queenspatio

This is probably the most common form of binary search in competitive programming. Given a function f
which is monotonic (i.e. always increasing, or always decreasing) on a given interval of the real line [a, b], find
a < x < bsuch that f(z) is equal to some target value. This can be accomplished by straightforward binary
search: keep track of a current subinterval [z, x]; at each step, evaluate f at the midpoint m = (xp+xy)/2
of the interval, and update z or xy to m depending on whether the value of f is too small or too big,
respectively. Iterate until zy — 2y, is within an appropriate tolerance (or simply iterate a fixed number of
times—>50 should be plenty), and return (zy, + 25)/2. This is actually easier than traditional binary search
since one doesn’t have to worry about indexing, off-by-one errors, and the like.

The main trick is to realize when this technique is applicable. Sometimes the function f is plainly stated
in the problem description, but sometimes the thing being searched for is more subtle. Whenever a problem
asks for a floating-point number as the answer, it’s worth considering whether you can binary search for it.

31

https://open.kattis.com/problems/bing
https://open.kattis.com/problems/classpicture
https://open.kattis.com/problems/coloring
https://open.kattis.com/problems/cycleseasy
https://open.kattis.com/problems/dancerecital
https://open.kattis.com/problems/lektira
https://open.kattis.com/problems/freefood
https://open.kattis.com/problems/gepetto
https://open.kattis.com/problems/kastenlauf
https://open.kattis.com/problems/mjehuric
https://open.kattis.com/problems/paintings
https://open.kattis.com/problems/prozor
https://open.kattis.com/problems/rectanglesurrounding
https://open.kattis.com/problems/reducedidnumbers
https://open.kattis.com/problems/reseto
https://open.kattis.com/problems/sheldon
https://open.kattis.com/problems/shuffling
https://open.kattis.com/problems/weakvertices
https://open.kattis.com/problems/wheels
https://open.kattis.com/problems/transportationplanning
https://open.kattis.com/problems/bottles
https://open.kattis.com/problems/cheese
https://open.kattis.com/problems/fencebowling
https://open.kattis.com/problems/speed
https://open.kattis.com/problems/suspensionbridges
https://open.kattis.com/problems/tetration
https://open.kattis.com/problems/queenspatio

6.3. TERNARY SEARCH CHAPTER 6. ENUMERATION AND SEARCH

Binary search on an integer interval

& outofsorts, guess, eko, freeweights, inversefactorial, reservoir, pullingtheirweight

Suppose we again have a monotonic function f and want to find a value n such that f(n) is equal to
some target value t—except that f is defined on the integers instead of the real numbers. We can again use
binary search, but we have to be much more careful about potential off-by-one errors.

e Remember that to do binary search in a sorted array a, that is, find the index ¢ such that a[i] is equal
to some target value, one can just use Arrays.binarySearch.

e In the basic version, we simply want to find n such that f(n) = ¢, or report that no such n exists.
In this case it works well to use a half-open interval, that is, we maintain the invariant that possible
values of n lie in the interval [lo, hi), including lo but excluding hi. This has the advantage that the
size of the remaining interval can be computed as simply hi — lo, and an appropriate condition for the
loop is hi — lo > 0.

The midpoint of [lo, hi) can be computed as mid = (lo + hi)/2;' mid always lies within the interval,
even if hi — lo = 1 (the rounding behavior of integer division plays a crucial role).

If mid does not hold the target, one must then either update hi to mid, or lo to mid + 1 (not mid!)
depending on whether the item at mid is larger or smaller than the target, respectively.

[TODO: Example code]

e A slightly more sophisticated variant is where we need to find the largest n such that f(n) <t¢, or the
smallest such that f(n) > ¢, or something similar. This requires even more care. In this situation it
tends to be better to use a closed interval [lo, hi], and using great care to update lo and hi appropriately
(to mid — 1, mid, or mid + 1) depending on the desired properties of the value being searched for.

In this scenario, when there can be duplicate values of f(n), it’s not possible to stop the search early,
since any given n for which f(n) = ¢ may not be the optimal one. One must continue searching until
the interval has reached size 1, and then return the sole remaining value.

[TODO: Talk about how to find midpoint based on whether we want greatest or least] [TODO: Example
code] [TODO: if we want biggest value satisfying something, need to set mid to CEILING of (lo+hi)/27]

Unbounded binary search

o) .
9 queenspatio

Consider the following problem: given an increasing function f and a target value ¢, find the smallest
positive value of = such that f(z) > ¢. (The domain of f can be either the reals or the integers.)

The idea is to start by finding an appropriate upper bound using repeated doubling: starting at v = 1,
evaluate f(u); if it is less than ¢, double u and repeat. Keep doubling u until finding the first such value of u
(that is, the first power of two) such that f(u) > t. Then do a traditional binary search on the range [1, u].

[TODO: Find some example Kattis problems that need an initial unbounded search?|

6.3 Ternary search

o,

¢» brocard, euclideantsp, infiniteslides, janitortroubles, dailydivision

Ternary search can be used to find the minimum or maximum of a function which is concave or convex
on a given interval (that is, the function only decreases until the minimum and then only increases, or vice
versa). Binary search does not apply in this case, since just by looking at the value of the function at the

LOr mid = lo+(hi—10)/2, if you are worried about lo+hi overflowing, but this is unlikely to ever be an issue in a competitive
programming context.

32

https://open.kattis.com/problems/outofsorts
https://open.kattis.com/problems/guess
https://open.kattis.com/problems/eko
https://open.kattis.com/problems/freeweights
https://open.kattis.com/problems/inversefactorial
https://open.kattis.com/problems/reservoir
https://open.kattis.com/problems/pullingtheirweight
https://open.kattis.com/problems/queenspatio
https://open.kattis.com/problems/brocard
https://open.kattis.com/problems/euclideantsp
https://open.kattis.com/problems/infiniteslides
https://open.kattis.com/problems/janitortroubles
https://open.kattis.com/problems/dailydivision

CHAPTER 6. ENUMERATION AND SEARCH 6.3. TERNARY SEARCH

midpoint of the interval, it is impossible to know whether we should recurse on the left or right half of the
interval.

Suppose we are currently considering the interval [L, R] and looking for the minimum of a function f on the
interval. We compute the two points 1/3 and 2/3 of the way through the interval, namely m; = (2L + R)/3
and mr = (L +2R)/3.

e If m; < mpg, then we know the minimum can’t be to the right of mp (because then it would increase
from mj, to mpr and then decrease—but we assume the function decreases until the minimum and then
only increases after that). Hence, we can recurse on the interval [L, mpg].

e If my > mpg, we can likewise recurse on [mp, R].

e If m; = mpg, we can recurse on [mp, mg] (though lumping this case in with either of the above two
cases works fine and requires writing less code).

In any case, we decrease the size of the interval by at least 1/3 with each iteration, so we need only a
logarithmic number of iterations relative to the ratio between the starting interval size and the desired

accuracy.
[TODO: Example code]

Integer ternary search

When ternary searching over an interval of integers, much of the same advice applies as for binary search
(see the previous section). However, care must be taken with the stopping conditions; depending on exactly
how the recursion works it is possible to end up in a scenario where it loops infinitely on an interval of size
1 or 2. Even if it is possible to come up with an elegant design that does not require any special cases, it
may be easiest to simply stop the loop when the interval has size 2 or smaller, and then simply check the
few remaining items manually.

33

6.3. TERNARY SEARCH CHAPTER 6. ENUMERATION AND SEARCH

34

Chapter 7

Graphs

7.1 Graph basics

e Every edge in a directed graph has an orientation, i.e. a “from” vertex and a “to” vertex. Edges in an
undirected graph have no orientation.

e Simple graphs have at most one edge between any two vertices, and no self-loops. Most graph problems
feature simple graphs. Sometimes, however, there can be loop edges from a vertex back to itself and/or
multiple edges between the same two vertices.

[TODO: Directed, undirected, weighted, unweighted, self loops, multiple edges] [TODO: characterization
of trees] [TODO: New virtual source/sink node trick]

o,

¢ chopwood

7.2 Graph representation

[TODO: Adjacency matrix, adjacency maps. Edge objects. Implicit graphs.]

Figure 7.1 has a sample solution for & horrorlist which builds an adjacency map representation of an
undirected graph.

[TODO: State space search with complex states: make a class, implement Comparable, use TreeMap]

7.3 Breadth-First Search

¢ ballsandneedles, brexit, buttonbashing, collapse, erdosnumbers, grapevine, horrorlist,
mazemakers, hogwarts2

Breadth-first search (BFS) can be used to find single-source shortest paths (i.e. shortest paths from
a particular starting vertex to all other vertices) in an unweighted graph. BFS comes up often in many
different guises, so it’s worth being very familiar with BFS and its variants. Below is pseudocode showing a
generic BFS implementation. Important invariants:

e Every vertex in @ has already been marked visited. (This is important since it prevents vertices from
being added to @ multiple times.)

e () only contains vertices from at most two (consecutive) levels at a time.

35

https://open.kattis.com/problems/chopwood
https://open.kattis.com/problems/horrorlist
https://open.kattis.com/problems/ballsandneedles
https://open.kattis.com/problems/brexit
https://open.kattis.com/problems/buttonbashing
https://open.kattis.com/problems/collapse
https://open.kattis.com/problems/erdosnumbers
https://open.kattis.com/problems/grapevine
https://open.kattis.com/problems/horrorlist
https://open.kattis.com/problems/mazemakers
https://open.kattis.com/problems/hogwarts2

7.3. BREADTH-FIRST SEARCH CHAPTER 7. GRAPHS

Algorithm BFS
: § ¢ starting vertex
Mark s visited
@ < new queue containing only s
level[s] + 0
while @ not empty do
u Q.remove
for each neighbor v of u do
if v is not visited then
level[v] + levelu] + 1 > Optionally mark level
Add v to Q
Mark v visited
parent[v] < u > Optionally record parent

_ = =
N = O

Some options/variants:

e The level array shown above is optional, and can be omitted if not needed. Sometimes it makes sense
to have the level array do double-duty to also track visited vertices: if the level of every vertex is
initialized to some nonsensical value such as —1 or oo, then a vertex is visited iff its level is not equal
to the initial value.

Figure 7.1 shows a sample solution for & horrorlist, exhibiting a BFS with level labelling.

e The parent map is also optional, and can be used to reconstruct an actual shortest path from s to any
vertex, by starting with the end vertex and iteratively following parents backwards until reaching s.

e If you want to compute shortest paths from any of a set of starting vertices, simply replace the
initialization of s with the desired set (i.e. mark them all visited, add them all to @, and set their level
to 0 before starting the loop; the loop itself does not change) (&% zoning).

e Replacing @ with a stack results in a depth-first rather than breadth-first search (although often it
makes more sense to implement a DFS recursively; see (§7.4, page 38)).

[TODO: Applications of BFS: identify reachable vertices; identify (weakly) connected components; iden-
tify bipartite graphs/odd cycles (detect cross-edges with map of level sets)]

36

https://open.kattis.com/problems/horrorlist
https://open.kattis.com/problems/zoning

CHAPTER 7. GRAPHS 7.3. BREADTH-FIRST SEARCH

import java.util.*;

public class horrorList {
public static void main(String[] args) {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

Scanner in = new Scanner(System.in);

int movie_num = in.nextInt();

int horror_num = in.nextInt();

int linked_num = in.nextInt();

int[] scores = new int[movie_num];
Queue<Integer> hi = new ArrayDeque<Integer>();

for(int i = 0; i < movie_num; i++) {
scores[i] = Integer .MAX_VALUE;
}
for(int i = 0; i < horror_num; i++) {
int a = in.nextInt();
scores[a] = 0;
hi.add(a);
}
HashMap<Integer, HashSet<Integer>> graph = new HashMap<>();
int j = 0;
while (j < linked_num) {
int a = in.nextInt();
int b = in.nextInt();
if (! graph.containsKey(a)) graph.put(a, new HashSet<Integer>());
if (! graph.containsKey(b)) graph.put(b, new HashSet<Integer>());
graph.get(b) .add(a);
graph.get(a).add(b);
jtts
}
while(! hi.isEmpty()) {
int temp = hi.remove();
if (graph.containsKey (temp)) {
for(int i: graph.get(temp)) {
if (scores[i] == Integer.MAX_VALUE) {
scores[i] = scores[temp] + 1;
hi.add(i);

}
int output = 0;
int max = 0;
for(int i = 0; i < movie_num; i++) {
if (scores[i] > max) {
max = scores[i];
output = i;

}
System.out.println(output) ;

Figure 7.1: Sample solution for horrorlist (Adjacency set representation; BFS with level labelling)

37

)

© 0 N e v s W

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

74. DFS CHAPTER 7. GRAPHS

import java.util.*;

class DFS {
static HashMap<Integer, ArrayList<Integer>> graph = new HashMap<>();
// You can either use a HashSet or an array of booleans to keep track
// of your visited vertices. Array of boolean is the best choice
// whenever the number of wertices within the graph is small, and
// if all of the vertices have a high chance of being visited.
static HashSet<Integer> visited = new HashSet<>();

// Initialize graph then run dfs on your starting vertez.
public static void dfs(Integer start) {
visit(start);
// Here you can check to see which wertices start is connected to.

}

public static void visit(Integer v) {
if (!visited.contains(v)) {

visited.add(v);
// At this point you would also keep track of the time that each wvertez was found
// if the problem requires %t.
// Do any tracking or operations you want (e.g. Parent map, print output, etc...)
for (Integer u: graph.get(v)) {

visit(u);

}

Figure 7.2: Depth First Search

7.4 DFS

& caveexploration, birthday

[TODO: How to decide on start/finish labelling, recursive vs stack]

Depth First Search (DFS) is very similar to BFS, but with the change that we fully explore one child
before we move on to the next instead of interleaving them. Note that while this means we can’t use it to
calculate a sense of ‘depth’ at each vertex, we can use it to split the graphs into ‘chunks’ that are reachable
from each child.

Articulation points are defined as the vertices which are a chokepoint for all paths between two (or more)
parts of the graph. That is, if they were removed then parts of the graph that were previously connected
would be disconnected. Similarly, bridges are edges that would split the graph into more components if they
are removed. Both of these can be detected with a slightly modified version of DFS to split the graph into
bi-connected components (regions with two entirely different paths between vertices).

38

https://open.kattis.com/problems/caveexploration
https://open.kattis.com/problems/birthday

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

CHAPTER 7. GRAPHS 7.4. DFS

import java.util.*;

class ArticulationPoints {

static
static
static
static
static

HashMap<Integer, ArrayList<Integer>> graph = new HashMap<>();

boolean[] visited = new boolean[0]l; // Initialize to the num of vertices.

int[] depth = new int[0]; // Same here.

int[] parent = new int[0]; // Same here. Initialize all parents to Integer out of your bounds of wertice
int[] low = new int[0]; // 4And here.

// initialize your graph and the arrays accordingly then call ArticulationPoints(i, 0) on all vertices % that h

public

static void articulationPoints(int i, int d) {

visited[i] = true;

depth[il = d;

low[i] = d;

int childCount = 0;

boolean isArticulation = false;

for (Integer ni : graph.get(i)) {

}
if

}

if (!visited[ni]) {
parent[ni] = ij;
articulationPoints(ni, d + 1);
childCount++;
if (low[ni] >= depth[il) {
isArticulation = true;
}
low[i] = Math.min(low[il], low[nil);
}
else if (ni != parent[i]) {
low[i] = Math.min(low[i], depth[nil);
}

((parent[i] !'= -1 &% isArticulation) || (parent[i] == -1 && childCount > 1)) {
System.out.println(i + " is an Articulation Point.");

Figure 7.3: Articulation Points via DFS

39

7.5. SCCS AND 2-SAT CHAPTER 7. GRAPHS

7.5 SCCs and 2-SAT

N,

¢» loopycabdrivers, cantinaofbabel, pieceittogether, cleaningpipes

[TODO: Finding explicit 2-SAT solutions| Strongly Connected Components are components of a graph in
which all pairs of vertices can reach each other in either direction. The vital thing to recognize is that if we
think of entire SCCs as vertices in a larger DAG (because if the condensed graph had cycles then it must
have a way to return to where you started).

A problem which is solvable with SCCs is looking for a simultaneous solution to a group of ‘or’ questions
on a set of boolean values. The core idea is to construct a graph with two nodes for each boolean (representing
it being provably true or provably false). If we have a constraint a; V as this is equivalent to saying ‘if a;
is false then ay must be true’ and ‘if ay is false then a; must be true’. Because of that we add two edges
between —a; and ags and —ag and a;. The SCCs in this graph represent values which each imply each other
if any of them are true. Thus, if there is any variable which is in the same SCC as its negation there is a
contradiction in the constraints and no solution exists.

40

https://open.kattis.com/problems/loopycabdrivers
https://open.kattis.com/problems/cantinaofbabel
https://open.kattis.com/problems/pieceittogether
https://open.kattis.com/problems/cleaningpipes

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

CHAPTER 7. GRAPHS 7.5.

SCCS AND 2-SAT

import java.util.*;

class SCC {
static HashMap<Integer, ArrayList<Integer>> outEdges = new HashMap<>();
static HashMap<Integer, ArrayList<Integer>> inEdges = new HashMap<>();
static ArrayList<Integer> L = new ArrayList<>();
static HashSet<Integer> visited = new HashSet<>();
static HashSet<Integer> assigned = new HashSet<>();
static HashMap<Integer, ArrayList<Integer>> components = new HashMap<>();

// Initialize outEdges and inEdges, then run kosarajusSccAdlorithm.
public static HashMap<Integer, ArraylList<Integer>> kosarajusSccAlgorithm() {
for (Integer vertex : outEdges.keySet()) {
visit (vertex);
}
for (int i = L.size(; i >= 0; i--) {
assign(L.get(i), L.get(i));
}

return components;

public static void visit(int u) {
if (!visited.contains(u)) {
visited.add(u);

for (Integer v : outEdges.get(u)) {
visit(v);

}

L.add(u);

public static void assign(int u, int root) {
if ('assigned.contains(u)) {

assigned.add(u);

if (!components.containsKey(root)) {
components.put (root, new ArrayList<>());

}

components.get (root) .add (u) ;

for (Integer integer : inEdges.get(u)) {
assign(integer, root);

}

Figure 7.4: O(V + E) Kosaraju’s Algorithm

41

7.6. TOPOLOGICAL SORTING CHAPTER 7. GRAPHS

7.6 Topological sorting

& builddeps, easyascab, eatingeverything, excavatorexpedition, mravi, promotions, reactivity,
runningmom, succession

A topological sort of a directed graph G is a list of vertices such that whenever there is an edge from
to v, u comes before v in the list; G has a topological sort if and only if it is acyclic. Topological sorting can
thus be used to detect the presence of cycles. It is also often used in conjunction with dynamic programming
(& eatingeverything, excavatorexpedition, mravi): if we need to compute some value of each vertex
such that the value can be computed once we already know the values for all the outgoing (or incoming)
neighbors, topological sort gives us the right order for computing the values.

There are two main methods to do a topological sort. Method 1 (Kahn’s Algorithm) is to repeatedly
remove nodes with no incoming edges (or dually, nodes with no outgoing edges). Empirically this seems to
be faster than Method 2, but is perhaps a bit more code. Pseudocode is as follows:

Algorithm ToPSORT(G)
Require: Directed graph G = (V, E).

1: T + empty list (to store topsort)

2: 7 <+ empty queue (to store nodes with 0 indegree)
3: in < dictionary mapping all vertices to their indegree
4: Put all vertices with indegree 0 into Z

5: while Z is not empty do

6: v < Z.dequeue

7: append v to T

8: for each u adjacent to v do

9: decrement infu)

10: if in[u] =0 then

11: add u to Z

If the queue becomes empty before all vertices have been added to the topsort, then a cycle exists.

For a sample implementation of this algorithm, see the solution to & succession at https://github.
com/Hendrix-CS/programming-team/blob/master/solved/Succession. java.

The second method is to do a recursive DFS: simply add each vertex to a list just after recursively
processing all its neighbors; this yields a topsort in reverse order.

Algorithm Topological sort via DFS
function ToPSORT-DFS(G)
T « empty list/stack to hold topsort
for allv € V do
if v is not visited then DFS(v, T')

1:
2
3
4
5: return T
6:
7:
8
9

function DFS(z, T')
Mark x visited
for all (z,y) € E do
10: if y is not visited then DFS(y, T')

11: Addz to T

7.7 Single-source shortest paths (Dijkstra)

42

https://open.kattis.com/problems/builddeps
https://open.kattis.com/problems/easyascab
https://open.kattis.com/problems/eatingeverything
https://open.kattis.com/problems/excavatorexpedition
https://open.kattis.com/problems/mravi
https://open.kattis.com/problems/promotions
https://open.kattis.com/problems/reactivity
https://open.kattis.com/problems/runningmom
https://open.kattis.com/problems/succession
https://open.kattis.com/problems/eatingeverything
https://open.kattis.com/problems/excavatorexpedition
https://open.kattis.com/problems/mravi
https://open.kattis.com/problems/succession
https://github.com/Hendrix-CS/programming-team/blob/master/solved/Succession.java
https://github.com/Hendrix-CS/programming-team/blob/master/solved/Succession.java

CHAPTER 7. GRAPHS 7.7. SINGLE-SOURCE SHORTEST PATHS (DIJKSTRA)

& bigtruck, blockcrusher, coffeedate, detour, george, getshorty, kitchen, rainbowroadrace,
shortestpathl, shortestpath2, showroom, walkway

Dijkstra’s algorithm is the standard algorithm for solving the single-source shortest path problem in
weighted, directed graphs. That is, given a graph with (possibly) directed edges and a weight on each edge,
Dijkstra’s algorithm can find the shortest directed path from a single chosen start vertex to every other
vertex in the graph (where the length of a path is the sum of the weights on the edges). If you want to
find the shortest path in a weighted, undirected graph, just make a directed graph with edges going both
directions between each pair of vertices. Figure 7.5 has a basic implementation.

IF" Since Java’s & PriorityQueue class does not have a “decrease key” method, on line 28 we have to
instead do a remove followed by an add; but remove is O(n), making the whole algorithm O(V E).
If you really need O(E lg V') performance (& flowerytrails), you can use an Adjustable priority
queue (§5.5, page 28). In some situations you can also simply call add without calling remove;
see the discussion below.

[TODO: using adjust, you have to decide whether to ’add’ or ’adjust’|

There are many possible variants of this basic template; here are a few.

The given code explores the entire graph. However, if you have a particular target vertex in mind you
can stop early once you find it: just break out of the loop if removing the next node from the priority
queue yields the target node, since at that point we are guaranteed that we know the shortest path
from the start node to the target node.

If the vertices of your graph are not naturally represented as integers in the range 0...n — 1, one could
modify the algorithm to use Maps in place of the parent and dist arrays. Alternatively, it may be
easier to deal with this outside of Dijkstra’s algorithm: just arbitrarily assign indices to vertices and
use a Map or two to keep track of the assignment. Then run Dijkstra using the assigned vertex indices
and translate the result back to the original vertices.

If the priority queue contains objects whose priority never changes once they are put in the priority
queue (note that the example code in Figure 7.5 does mot have this property, since Integers in the
PQ are compared by the value stored in the external array dist, which can change) then it can be an
optimization to simply call pq.add(next) without calling pq.remove(next) first. The priority queue
will end up with multiple copies of the same node, each with a different priority, but this is not a
problem; when removing the next node from the PQ just ignore it if it has already been visited. (&
nikola)

Dijkstra’s algorithm uses addition to combine the weights of consecutive edges and min to pick the
shortest path among parallel options. However, there are other pairs of operations one can use with
the same basic algorithm template.!

— Using min/max in place of +/min yields an algorithm which finds the path with the maximum
possible minimum weight (& vuk, crowdcontrol, muddyhike). For example, if the edge weights
are thought of as capacities, and the capacity of a path is equal to the minimum capacity of any
of its edges (i.e. the bottleneck) then this corresponds to finding maximum-capacity paths. One
must be careful to:

*x update the comparison operation for the priority queue to use min instead of max (e.g. by
switching to dist[v] - dist[u] instead of dist[ul - dist[v]),

* initialize all the entries of dist to an appropriate identity value for max such as 0, -1, or -INF
instead of INF,

* change the definition of nextDist to use min instead of +, and

IThe details of which properties of the operations are needed for this to work are too far outside the scope of this document;
see [TODO: XXX]

43

https://open.kattis.com/problems/bigtruck
https://open.kattis.com/problems/blockcrusher
https://open.kattis.com/problems/coffeedate
https://open.kattis.com/problems/detour
https://open.kattis.com/problems/george
https://open.kattis.com/problems/getshorty
https://open.kattis.com/problems/kitchen
https://open.kattis.com/problems/rainbowroadrace
https://open.kattis.com/problems/shortestpath1
https://open.kattis.com/problems/shortestpath2
https://open.kattis.com/problems/showroom
https://open.kattis.com/problems/walkway
https://docs.oracle.com/javase/10/docs/api/java/util/PriorityQueue.html
https://open.kattis.com/problems/flowerytrails
https://open.kattis.com/problems/nikola
https://open.kattis.com/problems/vuk
https://open.kattis.com/problems/crowdcontrol
https://open.kattis.com/problems/muddyhike

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

7.7. SINGLE-SOURCE SHORTEST PATHS (DIJKSTRA) CHAPTER 7. GRAPHS

import java.util.*;

public class Dijkstra {
static int INF = Integer.MAX_VALUE;

// Dijkstra's algorithm. Assumes vertices are numbered 0 .. n-1.
// Parameters = # of wertices, start vertez, and adjacency map
// describing the (directed, wetghted) graph.
public static int[] dijkstra(int n, int s, Map<Integer, ArrayList<Edge>> g) {
// parent is optional. If you need access to both dist and
// parent after dijkstra runs, just make them both global
// static variables.
int[] parent = new int[n], dist = new int[n];
Arrays.fill(dist, INF); dist[s] 0;

PriorityQueue<Integer> pq
= new PriorityQueue<>(n, (Integer u, Integer v) -> dist[u] - dist[v]);
pq.add(s);

while (!pq.isEmpty()) {
int cur = pq.remove();
if (!g.containsKey(cur)) continue;

for (Edge e : g.get(cur)) {
int next = e.to;
int nextDist = dist[cur] + e.weight;
if (nextDist < dist[mext]) {
dist[next] = nextDist; parent[next] = cur;
pq.remove (next) ; pq.add(next);

}

return dist;

class Edge {
public int to, weight;
public Edge(int to, int weight) { this.to = to; this.weight = weight; }

Figure 7.5: O(VE) Dijkstra’s algorithm

44

CHAPTER 7. GRAPHS 7.8. ALL-PAIRS SHORTEST PATHS (FLOYD-WARSHALL)

* change the comparison of nextDist and dist[next] to use > instead of <.

— If we have a directed graph with edge weights corresponding to probabilities, where the probability
of a path is defined as the product of the probabilities of its edges, then Dijkstra’s algorithm with
*/max finds highest-probability paths. Similar modifications have to be made as in the previous
example.

e One can modify the basic algorithm to keep track of extra information, such as the number of shortest
paths from the start to any given node: add to the count when finding a new path equal in weight to

the previous best-known path; reset the count when finding a shorter path than previously known (&
visualgo).

e Dijkstra can also deal with edges whose weight depends on the time they are reached (think of e.g.
bus routes, where you may have to wait a while for the next bus to come depending on what time you
reach the stop). (& coffeedate)

7.8 All-pairs shortest paths (Floyd-Warshall)

o,

¢9 crosscountry, allpairspath, shoppingmalls, transportationplanning, units

The all-pairs shortest path problem is to find the shortest path in a (directed, weighted) graph between
any pair of vertices. Typically the idea is to precompute some table(s) and then be able to quickly look
up any pair of vertices to find the distance between them. This could be done by running e.g. Dijkstra’s
algorithm once from every vertex, but that takes at least O(V ElogV) (which is O(V3log V) for a dense
graph) and doesn’t work if there are negative edge weights. The Floyd-Warshall algorithm runs in O(V?)
no matter how many edges there, can handle negative edge weights, and is just a few lines of code.

Note this only works when |V| is small enough for a cubic algorithm to fit in the time limits, typically
something like |V| < 400, though I have seen examples with |V| even up to 1000 that work. Each individual
loop of Floyd-Warshall is only a few operations so the constant factor is very small.

Assume the vertices in G are labelled {0,...,n — 1}. Create a 2D matrix of distances d and initialize it
like so:
0 ifi=j
dli][j] = wi; if there is an edge i — j

oo otherwise

If there can be multiple edges from ¢ to j, be sure to set d[¢][j] to the minimum of all the edge weights. In
practice, for oo, just use a value that is much larger than any other values that could occur in the problem.

Then the Floyd-Warshall algorithm is as follows. We iterate k from 0 to n — 1; k represents the interme-
diate vertex we will consider. Then for every possible pair of vertices u and v, we check if there is a way to
get from u to k and a way to get from k to v, and the sum of these distances is less than the current shortest
distance from u to v. If so, we update it.

for (int k = 0; k < n; k++)
for (int u = 0; u < n; u++)
for (int v = 0; v < n; v++)
if (d[ul [k] < INF && d[k][v] < INF)
d[u] [v] = Math.min(d[u][v], d[ul[k] + d[k][v]);

After running the above loops, d[i][j] will contain the length of the shortest path from ¢ to j. If there
is no path from ¢ to j then the length will be co. Analyzing the running time of this algorithm is a Data
Structures student’s dream: there are literally three nested loops which each iterate exactly |V| times, so
the running time is O(V3).

Variants:

45

https://open.kattis.com/problems/visualgo
https://open.kattis.com/problems/coffeedate
https://open.kattis.com/problems/crosscountry
https://open.kattis.com/problems/allpairspath
https://open.kattis.com/problems/shoppingmalls
https://open.kattis.com/problems/transportationplanning
https://open.kattis.com/problems/units

7.9. MIN SPANNING TREES (KRUSKAL) CHAPTER 7. GRAPHS

7.9

If you want to detect the presence of negative cycles, you can use the fact that after running the main
algorithm, d[i][i] < 0 if and only if vertex ¢ is contained in some negative cycle. Hence if there are no
negative numbers along the diagonal of the matrix, the graph is negative-cycle-free. However, if there
are negative cycles then the distances found may not be valid (if there is a negative cycle along a path
from u to v then one could travel around the cycle any number of times before finally going to v).

If you actually want to distinguish negative-cycle-free paths (for which the computed minimum distance
is valid) from others (& allpairspath), you can run the following additional code, which propagates
information about negative cycles:

for (int u = 0; u < n; u++)
for (int v = 0; v < nj; v++)
for (int k = 0; d[ul[v] !'= -INF && k < n; k++)
if (d[ul[k] < INF && d[k][k] < O && d[k][v] < INF)
d[u] [v] = -INF;

For each pair of vertices u, v, we check all possible intermediate nodes k. If there is a path u — k and
a path k£ — v, and k is part of some negative cycle, then we set the distance from u to v to —oco to
signify that the length of a path from u to v can be arbitrarily small.

Sometimes you want to know not only the length of the shortest path, but the actual shortest path
itself. This can be accomplished by keeping a 2D array next such that next[i][j] stores the next vertex
along the shortest path from ¢ to j. Initialize next[i][j] to j whenever there is an edge from i to j
(it does not matter what value it has otherwise). Then update the if statement in the inner loop as
follows:

if (d[ul [k] < INF && d[k][v] < INF && d[u] [k] + d[k][v] < d[ul[v]) {
dlul [v] = dl[ul[k] + d[k][v];
next[u] [v] = next[u][k];

}

Now after running the algorithm, the shortest path from u to v can be recovered by looking up
uz = nextlu)[v], then uz = next[us][v], and so on, until v is reached.

Min spanning trees (Kruskal)

o,

¢» drivingrange, islandhopping, jurassicjigsaw, lostmap, minspantree, treehouses

Kruskal’s algorithm is the go-to algorithm for computing a minimum spanning tree (MST). It is relatively
straightforward to code, given an implementation of a Union-find (§5.3, page 27) data structure.

Create an initial union-find structure uf with one entry corresponding to each vertex.

Sort the edges of the graph by weight. Typically, one makes a small class to store an edge (it may
store e.g. the two endpoints of the edge and its weight), which implements Comparable in such a way
that compareTo compares the weights. Then one can simply make an ArrayList of edge objects and
call Collections.sort on it.

Iterate through the edges from smallest to largest weight.

For each edge, check whether its endpoints are already connected (uf.find(x) == uf.find(y)). If
not, connect them (uf.union(x,y)) and add the edge to the MST. (If so, discard the edge and move
on to the next.)

Stop as soon as the number of chosen edges is one less than the number of vertices.

Given an efficient union-find implementation, the running time is dominated by the time to sort the
edges, O(Elg E).

An example solution for & minspantree is shown in Figure 7.6.

46

https://open.kattis.com/problems/allpairspath
https://open.kattis.com/problems/drivingrange
https://open.kattis.com/problems/islandhopping
https://open.kattis.com/problems/jurassicjigsaw
https://open.kattis.com/problems/lostmap
https://open.kattis.com/problems/minspantree
https://open.kattis.com/problems/treehouses
https://open.kattis.com/problems/minspantree

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

CHAPTER 7. GRAPHS

7.9. MIN SPANNING TREES (KRUSKAL)

import java.

class Edge i

util.*;

mplements Comparable<Edge> {

int from, to, weight;

public E
if (
else
weig

1

public i

public i

public i

public class
public s
Katt

whil

}

jio.f

dge (int _from, int _to, int _weight) {
_from < _to) { from = _from; to = _to; } // problem requires
{ from = _to; to = _from; }

ht = _weight;

nt compareTo(Edge e) { return weight - e.weight; }
nt getFrom() { return from; }
nt getTo() { return to; }

MinSpanTree {
tatic void main(String[] args) {
io io = new Kattio(System.in, System.out);

e (true) {
int n = io.getInt(); int m = io.getInt();
if (n == 0 &% m == 0) break;

ArraylList<Edge> edges = new ArrayList<>();
for (int i = 0; i < m; i++) {

vertices sorted

edges.add(new Edge(io.getInt(), io.getInt(), io.getInt()));

}

/) ----- Kruskal's algorithm -----
Collections.sort(edges); // sort by weight
UnionFind uf = new UnionFind(n);

ArraylList<Edge> mstEdges = new ArrayList<Edge>();

for (Edge e : edges) {
if (uf.find(e.from) != uf.find(e.to)) {
uf.union(e.from, e.to);
mstEdges.add(e) ;

}
if (mstEdges.size() == n-1) break;
}
/) ----- Output -----
if (mstEdges.size() !=n - 1) {
io.println("Impossible"); // No spanning tree ezists
} else {
int total = 0;
for (Edge e : mstEdges) total += e.weight;
io.println(total);
// sort edges lezicographically
Collections.sort (mstEdges,
Comparator.comparing (Edge: :getFrom) . thenComparing (Edge
for (Edge e : mstEdges) io.println(e.from + " " + e.to);
}
lush(Q);

Figure 7.6: Sample solution for minspantree

47

1:getTo));

7.10. EULERIAN PATHS CHAPTER 7. GRAPHS

7.10 Eulerian paths

o,

¢» railroad2, eulerianpath, catenyms

An FEulerian path is one which traverses every edge exactly once (but may visit vertices multiple times).
An Eulerian circuit is an Eulerian path which starts and ends at the same vertex.
Checking whether an Eulerian path/circuit ezists (& railroad?2) is relatively simple:

e An undirected graph has an Eulerian path if and only if it is connected, and exactly zero or two vertices
have odd degree, and all the rest have even degree. If all vertices have even degree then it the Eulerian
path is actually a cycle.

e A directed graph has an Eulerian path if and only if it is strongly connected, and every vertex has
equal in- and out-degrees, except possibly two, one of which must have one more incoming edge than
outgoing, and the other has one more outgoing edge than incoming. If all vertices have equal in- and
out-degree then the Eulerian path is actually a cycle.

[TODO: This is not correct. Need to check if it’s weakly connected from start vertex if we want a
path not a cycle.] [TODO: Include sample code for eulerianpath?] In other words, first check whether the
graph is connected using DFS (§7.4, page 38) or Breadth-First Search (§7.3, page 35). Then compute the
(in/out) degrees of every vertex and check how many are even/odd (for undirected graphs) or how many
have matching in/out degrees (for directed).

To find an Eulerian path, use Hierholzer’s Algorithm. In an undirected graph, start at a vertex with odd
degree, (or at any vertex if there are no odd-degree vertices); in a directed graph, start at the vertex whose
outdegree is one greater than the indegree (or any vertex if all have equal in/out-degree). [TODO: Explain,
example code.]

7.11 Max flow/min cut

& copsandrobbers, escapeplan, gopher2, guardianofdecency, marblestree, maxflow, mincut,
paintball, pianolessons, waif

A flow network is a directed, weighted graph where the edge weights (typically integers) are thought of
as representing capacities (e.g. imagine pipes of varying sizes). The max flow problem is to determine, given
a flow network, the maximum possible amount of flow which can move through the network between given
source and sink vertices, subject to the constraints that the flow on any edge is no greater than the capacity,
and the sum of incoming flows equals the sum of outgoing flows at every vertex other than the source or
sink.

7.11.1 Flow network problem types

e Certain types of problems about optimally assigning items or resources subject to some constraints
can be solved by finding a maximum flow in an appropriate flow network (& escapeplan, gopher?2,
pianolessons, waif).

e Maximum matchings in a bipartite graph can be found by creating two new virtual nodes, a source
node with a connection to every vertex in the left-hand set and a sink node with a connection from
every vertex in the right-hand set. Set all edge capacities to 1; then a maximum flow corresponds to a
maximum matching in the graph (&% guardianofdecency, paintball)

e A famous theorem asserts that the maximum flow on a network corresponds exactly to the minimum
cut, which is the minimum “bottleneck”, i.e. the minimum possible sum of capacities of a set of edges
that splits the graph into two halves (&% mincut, copsandrobbers).

48

https://open.kattis.com/problems/railroad2
https://open.kattis.com/problems/eulerianpath
https://open.kattis.com/problems/catenyms
https://open.kattis.com/problems/railroad2
https://open.kattis.com/problems/copsandrobbers
https://open.kattis.com/problems/escapeplan
https://open.kattis.com/problems/gopher2
https://open.kattis.com/problems/guardianofdecency
https://open.kattis.com/problems/marblestree
https://open.kattis.com/problems/maxflow
https://open.kattis.com/problems/mincut
https://open.kattis.com/problems/paintball
https://open.kattis.com/problems/pianolessons
https://open.kattis.com/problems/waif
https://open.kattis.com/problems/escapeplan
https://open.kattis.com/problems/gopher2
https://open.kattis.com/problems/pianolessons
https://open.kattis.com/problems/waif
https://open.kattis.com/problems/guardianofdecency
https://open.kattis.com/problems/paintball
https://open.kattis.com/problems/mincut
https://open.kattis.com/problems/copsandrobbers

© ® N o ;oA W N e

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

CHAPTER 7. GRAPHS 7.11. MAX FLOW/MIN CUT

7.11.2 Flow network variants

e Flow networks must have a single source node and a single sink node. You can model multiple
sources/sinks simply by adding a new virtual source and/or sink node and connecting it to all the
source/sink nodes with infinite capacity edges.

e To model networks where the vertices have capacities, just split each vertex into two vertices with an
edge in between them having the given vertex capacity. All the incoming edges connect to the first
new vertex and all the outgoing edges emanate from the second new vertex.

e [TODO: Minimum-cost max flow: use Edmonds-Karp with Dijkstra?]

7.11.3 Dinitz’ Algorithm

Dinitz’ Algorithm? is probably the best all-around algorithm to use for solving max flow problems in com-
petitive programming. It takes O(V?E) in theory (although is often much faster in practice). In the special
case where we are modelling a bipartite matching problem, Dinitz’ Algorithm reduces to the Hopcroft-Karp
algorithm which runs in O(EVV).

Some general guidelines for using the max flow code below:

e Be very careful to decide which edges should be directed and which should be undirected; this makes a
big difference, and the code given below requires calling addDirEdge or addEdge appropriately (calling
addEdge is not the same as calling addDirEdge once in each direction!).

e The vertices of the graph must be labelled 0...n — 1. Typically they have some other labels which are
specified as part of the problem. You must carefully keep track of which entities in the problem map
to which vertex indices, either via some formulas or using some lookup tables.

class FlowNetwork {
private static final int INF = ~(1<<31);
int[] level;
boolean[] pruned;
HashMap<Integer, HashMap<Integer, Edge>> adj;

public FlowNetwork(int n) {
level = new int[n];
pruned = new boolean[n];
adj = new HashMap<>();

for (int i = 0; i < m; i++)
adj.put (i, new HashMap<>());
}

public void addDirEdge(int u, int v, long cap) {
if (adj.get(u).containsKey(v)) {
adj.get(u) .get(v) .capacity = cap;
} else {
Edge e = new Edge(u,v,cap);
Edge r = new Edge(v,u,0);
e.setRev(r);
adj.get(u) .put(v, e);
adj.get(v) .put(u, r);

}

// 4dd an UNdirected edge u<->v with a given capacity
public void addEdge(int u, int v, long cap) {

2You may also see it spelled “Dinic’s Algorithm” but this is not the preferred spelling of its inventor, Yefim Dinitz.

49

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

MAX FLOW/MIN CUT CHAPTER 7. GRAPHS

new Edge(u,v,cap);
new Edge(v,u,cap);
e.setRev(r);

adj.get(u) .put(v, e);
adj.get(v).put(u, r);

public long maxFlow(int s, int t) {
t) return INF;

long totalFlow
while (bfs(s,t)) totalFlow += sendFlow(s,t);
return totalFlow;

private long sendFlow(int s, int t) {
for (int i = 0; i < pruned.length; i++)
pruned[i] = false;
return sendFlowR(s, t, INF);

private long sendFlowR(int s, int t, long available) {
t) return available;

long sent = 0;
for (Edge e : adj.get(s).values()) {

if (e.remaining() > O && 'pruned[e.to] && levelle.to]
= sendFlowR(e.to, t, Math.min(available, e

-= flow; sent += flow;

levells] + 1) {
.remaining ()));

flow; e.rev.flow -= flow;
if (available == 0) break;

if (sent == 0) pruned[s] = true;
return sent;

private boolean bfs(int s, int t) {
for (int i = 0; i < level.length; i++) levell[il]

Queue<Integer> q = new ArrayDeque<>();
q.add(s); level[s] = 0;

while (!q.isEmpty()) {

q.remove() ;

: adj.get(cur).values()) {
if (e.remaining() > 0 && levelle.to
levelle.to] = levellcur]+1;

q.add(e.to);

for (Edge e

return level[t] >= 0;

class Edge {
int from, to;
long capacity, flow;

89

90

91

92

93

94

95

CHAPTER 7. GRAPHS

7.11. MAX FLOW/MIN CUT

Edge rev;
public Edge(int from, int to, long cap) {

this.from = from; this.to = to; this.capacity = cap; this.flow

}
public void setRev(Edge rev) { this.rev = rev; rev.rev
public long remaining() { return capacity - flow; }

[TODO: Include a sample solution using a flow network]

51

this; }

0;

7.11. MAX FLOW/MIN CUT CHAPTER 7. GRAPHS

52

Chapter 8

Trees

[TODO: Special facts about tree graphs] [TODO: Reading and storing trees, orienting/rooting trees| [TODO:
Problems that can be solved more easily on trees] [TODO: LCA queries] [TODO: Priifer codes]

53

CHAPTER 8. TREES

54

Chapter 9

Dynamic Programming

& balanceddiet, drivinglanes, justpassingthrough, ticketpricing, walkforest, ninepacks

[TODO: subset sum] [TODO: knapsack, longest common subsequence| [TODO: longest increasing subse-
quence (O(n?) and O(nlgn), see https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-inc
[TODO: DP with 3 (or more?) parameters (& justpassingthrough)|

55

https://open.kattis.com/problems/balanceddiet
https://open.kattis.com/problems/drivinglanes
https://open.kattis.com/problems/justpassingthrough
https://open.kattis.com/problems/ticketpricing
https://open.kattis.com/problems/walkforest
https://open.kattis.com/problems/ninepacks
https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing-subsequence-using-dynamic-programming
https://open.kattis.com/problems/justpassingthrough

CHAPTER 9. DYNAMIC PROGRAMMING

56

Chapter 10

Sequences and strings

10.1 Longest Increasing Subsequence (LIS)

¢9 increasingsubsequence, longincsubseq, manhattanmornings, signals

A subsequence of a sequence is a subset of the elements, taken in order, but not necessarily contiguous.
(By contrast, a contiguous subset of elements is often referred to as a subinterval.) For example, [1,3,4,7] is
a subsequence of 1,2, 3,4, 5,6,7,8]. Given a sequence of integers (or any elements which can be ordered), the
longest increasing subsequence (LIS) problem is to find the longest subsequence which is in strictly increasing
order. For example, given the sequence [9,2,8,10,5,4,20,16,7,1], one increasing subsequence is [2,5, 16],
but it is not the longest. There are several increasing subsequences of length 4, such as [2,8, 10, 16], and it
turns out that this is the longest possible.

Conceptually, to compute the LIS of a sequence, we first build a downravel, a set of nonincreasing
subsequences which partition the original sequence. We keep these subsequences as a list of stacks, and
maintain the invariant that their top elements are always sorted from smallest to biggest. We iterate through
the elements of S and push each onto the leftmost possible stack whose top is > the element being added.

Algorithm Building a downravel of a sequence S

1: function DOWNRAVEL(S)

2 D + empty list of stacks

3 for all x € S do

4 k « first stack in D whose top is > z
5: if no such k exists then
6

7

8

9

Add a new singleton stack containing x to the end of D
else
Push z onto k
return D

[TODO: add some pictures?]

The length of the LIS is the same as the length of the downravel D. Naively, this runs in O(n?) time,
since for each of the the n elements in S, we have to search through up to O(n) stacks in D to find the right
one to push. However, there are several possible optimizations.

e First, although the stacks are conceptually helpful, we do not actually need to store them. It’s enough
to simply store the current top element of each stack. So instead of having a list of stacks we just have
a list of elements.

e Second, since this list will always be sorted from smallest to biggest, we can use a binary search to find
the proper place to push each new element. This brings the running time down to a very respectable
O(nlgn).

57

https://open.kattis.com/problems/increasingsubsequence
https://open.kattis.com/problems/longincsubseq
https://open.kattis.com/problems/manhattanmornings
https://open.kattis.com/problems/signals

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

10.2. LCS VIA LIS CHAPTER 10. SEQUENCES AND STRINGS

Of course, we might want not just the length of the LIS but an actual LIS itself.

e First of all, we need to modify D so it stores not the elements themselves but their indices in S. This
requires a bit of extra indirection while doing a binary search for the correct place to put each new
element.

e We keep an extra array back such that back[i] stores the index of an element that could come before
S[i] in a LIS up to and including S[i]. Every time we put a new element S[i] into D, we set back[i]
to the previous value in D—that is, the index of the element currently on top of the previous stack in
the list.

e After running the algorithm we start with the item represented by the last entry in D, and then keep
following back links to get each previous item. This yields a LIS in reverse order.

[TODO: include some examples and pictures]

public class LIS {
public static int[] LIS(int[] arr) {
if (arr.length == 0) return new int[0];
int[] prev = new int[arr.length];
ArrayList<Integer> downravel = new ArrayList<>();

for (int i = 0; i < arr.length; i++) {
int opt = 0, lo = 1, hi = downravel.size();
while (lo <= hi) {
int mid = (lo + hi)/2;

// For longest *non-decreasing* sequence, change < to <=
if (arr[downravel.get(mid-1)] < arr[i]) { opt = mid; lo = mid + 1; }
else { hi = mid - 1; }

if (opt < downravel.size()) downravel.set(opt, 1i);
else downravel.add(i);
prev[i] = opt == 0 ? -1 : downravel.get(opt-1);

}

int[] incseq = new int[downravel.size()];

int j = downravel.size() - 1, cur = downravel.get(j);

while (cur !'= -1) { incseql[j] = cur; cur = prev[cur]; j--; }

return incseq;

10.2 LCS via LIS

o,

¢» inflagrantedelicto, princeandprincess

Given two sequences, the longest common subsequence (LCS) problem is to find the longest sequence
which is a subsequence of both. This comes up in quite a few real-world applications including DNA
processing and diffing (i.e. what Github does when it shows you which lines have changed).

Most generally, the LCS of two sequences with lengths m and n can be computed via Dynamic Programming (§9,
page 55) in O(mn) time. However, in the special case that the sequences do not have too many repeated
elements, it is possible to solve it more quickly, as follows.

Suppose the sequences are called A and B.

58

https://open.kattis.com/problems/inflagrantedelicto
https://open.kattis.com/problems/princeandprincess

CHAPTER 10. SEQUENCES AND STRINGS 10.3. Z-ALGORITHM

e Construct all pairs of indices (7, j) such that A[i] = B[j], that is, all pairs of locations where A and B
agree.

e Sort these pairs lexicographically, that is, sort them first by ¢ and break ties by j.
e Now make an array consisting of just the j values from these sorted pairs.

e A longest increasing subsequence in this array of j values gives the length of a LCS of A and B.
(Exercise for the reader: why does this work?)

10.3 Z-algorithm

10.4 Suffix arrays

59

10.4. SUFFIX ARRAYS CHAPTER 10. SEQUENCES AND STRINGS

60

Chapter 11

Mathematics

11.1 GCD/Euclidean Algorithm

The Fuclidean algorithm can be used to compute the greatest common divisor of two nonnegative integers.
(If you need it to work for negative numbers as well, just take absolute values first.) It runs in logarithmic
time. The extended Euclidean algorithm not only finds the GCD g of a and b, but also finds integers x and
y such that ax + by = g.

N,

¢» fairwarning, jughard, kutevi, candydistribution, diagonalcut

10

11

12

13

14

15

16

17

18

19

public class GCD {
public static long gcd(long a, long b) {
return b == 0 7 a : gcd(b, a % b);
}

public static EGCD egcd(long a, long b) {
if (b == 0) return new EGCD(a, 1, 0);
EGCD e = egcd(b, a % b);
return new EGCD(e.g, e.y, e.x - a / b * e.y);

}

class EGCD { // For storing result of egcd function
long g, x, ¥;
public EGCD(long _g, long _x, long _y) {
= 8 X = X3 ¥ = _¥;
}

11.2 Rational numbers

& bikegears, jointattack, prosjek, prsteni, rationalarithmetic, wheels, zipfsong

Occasional problems may require dealing with explicit rational values rather than using floating-point
approximations. If a problem involves non-integer values but requires being able to test values for equality
ezxactly, then likely rational numbers are required. The below code for a Rational class is not difficult but
it’s nice to have it as a reference. Of course in a real contest situation you may not need all the methods.

61

https://open.kattis.com/problems/fairwarning
https://open.kattis.com/problems/jughard
https://open.kattis.com/problems/kutevi
https://open.kattis.com/problems/candydistribution
https://open.kattis.com/problems/diagonalcut
https://open.kattis.com/problems/bikegears
https://open.kattis.com/problems/jointattack
https://open.kattis.com/problems/prosjek
https://open.kattis.com/problems/prsteni
https://open.kattis.com/problems/rationalarithmetic
https://open.kattis.com/problems/wheels
https://open.kattis.com/problems/zipfsong

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

11.3. MODULAR ARITHMETIC CHAPTER 11.

MATHEMATICS

class Rational implements Comparable<Rational> {
long n, d;
public Rational(long _n, long _d) {
n=_n; d=_d;
if (d<0){n=-n;d=-d; }
long g = gcd(Math.abs(n),d); n /= g; d /= g;
}
private long gcd(long a, long b) {
return b == 0 7 a : gcd(b, a % b);
}
public Rational(long n) { this(n,1); }

public Rational plus(Rational other) {

return new Rational(n * other.d + other.n * d, d * other.d);
}
public Rational minus(Rational other) {

return new Rational(n * other.d - other.n * d, d * other.d);
}
public Rational negate() {

return new Rational(-n, d);
}
public Rational times(Rational other) {

return new Rational(n * other.n, d * other.d);
}
public Rational divide(Rational other) {

return new Rational(n * other.d, d * other.n);
}
public boolean equals(Object otherObj) {

Rational other = (Rational)other(Obj;

return (n == other.n) && (d == other.d);
}
public int compareTo(Rational r) {

long diff = n * r.d - d * r.n;

if (diff < 0) return -1;

else if (diff > 0) return 1;

else return 0;

}
public String toString() {

return d == 1 7 ("" +n) : (m + "/" + d);
}

11.3 Modular arithmetic

& crackingrsa, modulararithmetic, pseudoprime, reducedidnumbers

nonnegative result.

I Java’s mod operator % behaves strangely on negative numbers. In many other languages (e.g.
Python, Haskell) a % b always returns a result between 0 and b — 1; however, in Java (as in
C/C++), if a is negative then a % b will also be negative. Try adding b first if you need a

For example, suppose i is an index into an array of length n and you need to shift by an offset o, wrapping
around in case the index goes off the end of the array. The obvious way to write this would be

62

https://open.kattis.com/problems/crackingrsa
https://open.kattis.com/problems/modulararithmetic
https://open.kattis.com/problems/pseudoprime
https://open.kattis.com/problems/reducedidnumbers

CHAPTER 11. MATHEMATICS 11.3. MODULAR ARITHMETIC

i= (@ + o) % n;

however, this is incorrect if o could be negative! If we assume that o will never be larger in absolute
value than n, then we could write this correctly as

i (i + o0 +mn) % n;
If o could be arbitrarily large then we could write

(((1 +0) %n) +n) % n;

(the first mod operation reduces it to lie between —n ... n; adding n ensures it is positive; and the final mod
reduces it to the range [0,n)).

i

Modular exponentiation and modular inverses

Sometimes one needs to compute the modular exponentiation ¢ mod m for some base b, exponent e, and
modulus m. Using repeated squaring, it is possible to do this efficiently even for very large exponents e.
Relatedly, if b is relatively prime to m, it is possible to compute b~ mod m, the modular inverse of b, that
is, the unique number 0 < &’ < m such that b6’ =1 (mod m).

In Java, probably the easiest way to compute these is using the modPow method from the BigInteger
class (§3.15, page 20). If b, e, and m are BigIntegers, then b.modPow(e, m) is a BigInteger that represents
b mod m. The exponent e can also be negative; in particular, if e is —1 then b.modPow(e,m) will compute
the inverse of b modulo m.

It is also useful to know how to compute modular exponentiation and inverses manually, in case you need
some sort of variant version, or if BigInteger is not fast enough.

Modular exponentiation can be computed by repeated squaring. The basic idea is to compute b° by
splitting up e into a sum of powers of two (according to its binary expansion), raising b to each power of two

and taking the product. This can be done efficiently since we can get from »2" to b2 just by squaring.

I" Even if you need the answer modulo an int value such as 10° 4 7, it is important to use long in
the method below: the product of two int values does not necessarily fit in an int, even if the
very next step will reduce it modulo m back into the range of an int.

public static long modexp(long b, long e, long m) {

long res = 1;

while (e > 0) {
if ((e & 1) == 1) res = (res * b) i m; // include current power of b?
b= (b * b) 7% m; // square to get mext power of b
e >>= 1; // shift out rightmost bit of e

}

return res;

}

Note this correctly computes 0° = 1. It would be possible to add a special case for when b = 0 and e # 1,
to avoid multiplying 0 by itself a bunch of times, but it’s hardly worth it.

Modular inverses can be computed using the extended Euclidean algorithm (§11.1, page 61). In
particular, suppose a and b are relatively prime, that is, their GCD is 1. In that case the egcd algorithm
will compute numbers z and y such that axz + by = 1. Taking this equation (modb) yields

ar+by=axr=1 (modbd),

and so z is the modular inverse of ¢ modulo b (in practice one may want to reduce mod b so z is between
0and b—1).
Alternatively, for a prime p, Fermat’s Little Theorem says that

a?’” ' =1 (mod p)

and hence aP~2 is the modular inverse of @ modulo p, which can be computed using modular exponentiation.

63

10

11

12

13

14

15

16

17

18

11.4. PRIMES AND FACTORIZATION CHAPTER 11. MATHEMATICS

11.4 Primes and factorization

Methods for primality testing and prime factorization that may show up in a contest can be put in two main
classes. First, methods based on trial division are relatively simple to code and work well for testing just
one or a few numbers. Sieve based methods construct a whole table of primes or factors all at once, and are
often more efficient when many numbers need to be factored or tested for primality.

11.4.1 Trial division

& almostperfect, candydivision, crypto, enlarginghashtables, flowergarden, goldbach2, happypn

iks, listgame, olderbrother, pascal, primalrepresentation

To test whether a single number is prime, you can use the following function which performs (somewhat
optimized) trial division. Note that although there are faster primality testing methods (e.g. Miller-Rabin,
Baille-PSW), it is highly unlikely that a contest would ever require anything more sophisticated than di-
visibility testing: Miller-Rabin is not hard to code but it is probabilistic, so a program using it may give
different results on subsequent runs, hardly suitable for a competitive programming environment; Baille-PSW
is known to be deterministic for numbers up to 24, but is much more complex to code.

Note that isPrime has runtime O(y/n) and is hence appropriate for numbers up to the maximum size of
an int (=~ 2-10%); running it on inputs up to the maximum size of a long is likely to be too slow.

public static boolean isPrime(int n) {
if (n < 2) return false;
if (n < 4) return true;
if (n 7 2 == || n % 3 == 0) return false;
if (n < 25) return true;
for (int i = 5; i*i <=n; i += 6) // O(y/n)
if (n % i == [l n% (1 + 2) == 0) return false;
return true;

}

The following method takes O(y/n) to factor a number into its prime factorization, also using trial
division. The returned prime factors will be sorted from smallest to biggest.

public static ArrayList<Integer> factor(int n) {
ArraylList<Integer> factors = new ArrayList<>(Q);
while ((n & 1) == 0) { factors.add(2); n >>= 1; } // get factors of 2
int 4 = 3; // get odd factors
while (d*d <= n) { // O(y/n)
if (% d==0){
factors.add(d); // found a factor

n /= d;
} else { // try next odd divisor
d += 2;

}
if (n !'= 1) factors.add(n); // don't forget final prime
return factors;

11.4.2 Sieving

o,

¢» industrialspy, nonprimefactors, primereduction, primesieve, reseto

64

ime,

https://open.kattis.com/problems/almostperfect
https://open.kattis.com/problems/candydivision
https://open.kattis.com/problems/crypto
https://open.kattis.com/problems/enlarginghashtables
https://open.kattis.com/problems/flowergarden
https://open.kattis.com/problems/goldbach2
https://open.kattis.com/problems/happyprime
https://open.kattis.com/problems/iks
https://open.kattis.com/problems/listgame
https://open.kattis.com/problems/olderbrother
https://open.kattis.com/problems/pascal
https://open.kattis.com/problems/primalrepresentation
https://open.kattis.com/problems/industrialspy
https://open.kattis.com/problems/nonprimefactors
https://open.kattis.com/problems/primereduction
https://open.kattis.com/problems/primesieve
https://open.kattis.com/problems/reseto

10

11

12

13

14

15

16

10

11

12

13

14

15

16

CHAPTER 11. MATHEMATICS 11.4. PRIMES AND FACTORIZATION

The term sieve comes from the ancient Sieve of Eratosthenes, a very effective method for generating
all the primes up to a certain bound. The basic idea is to make a table of all the numbers from 1 up to
some upper bound n and iterate through the table. Each time we discover a prime p we “cross out” all the
multiples of p in the table; we know a number is prime if it hasn’t yet been crossed out by the time we get
to. This takes time O(nloglogn) (essentially linear time) to construct a table for 1...n. The code below
uses a < BitSet which uses less memory than an array of booleans. Constructing a PrimeSieve of size 108
should take about a second and use only about 12 MB of memory; constructing smaller prime sieves should
be quite fast. Even a PrimeSieve of size Integer.MAX_VALUE, i.e. ~ 2-10%, will fit quite easily in memory,
although constructing it will probably take too long for most contest problems. (However, there may be
occasional problems that require building a sieve of this size in order to precompute some data offline—i.e.
writing a program that runs for a few minutes in order to precompute some kind of set or lookup table to
be included in the submitted solution.)

import java.util.x;

public class PrimeSieve {
BitSet prime;
public PrimeSieve(int MAX) {
prime = new BitSet(MAX+1);

prime.set(2,MAX+1,true); // initialize all to true
for (int p = 2; p*p <= MAX; p++) // tterate up to vVMAX
if (prime.get(p)) // found a prime p

for (int m = p*p; m <= MAX; m += p) // cross out multiples of p
prime.set(m,false);
}
public boolean isPrime(int n) { // Once sieve is built, test primality in O(1)
return prime.get(n);

}

Instead of simply storing a boolean indicating whether each number is prime or not, we could also store
the smallest prime factor. We can still use this to test whether a given number is prime, by checking
whether smallest[n] == n. But we can also use it to quickly factor any composite n: simply divide n
by smallest[n] and repeat. We can construct the smallest factor array using a sieving method similar to
PrimeSieve. The tradeoff is that this uses much more memory: instead of one bit per number, we use an
entire int, that is, 32 bits. A FactorSieve of size 10® will take up around 380 MB.

The FactorSieve class below includes a trivial isPrime method as well as a factor method, which is
carefully written to work even for int values which are bigger than the lookup table.

import java.util.x;

public class FactorSieve {
int[] smallest;
public FactorSieve(int MAX) {
smallest = new int[MAX+1];
smallest[1] = 1;
int p = 2;
for (; pxp <= MAX; p++) { // Sieve up to VMAX
if (smallest[p] == 0) {
smallest[p] = p;
for (int m = p*p; m <= MAX; m += p)
if (smallest[m] == 0) smallest[m] = p;

}
for (; p <= MAX; p++) // Fill in remaining primes

65

https://docs.oracle.com/javase/10/docs/api/java/util/BitSet.html

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

11.5. DIVISORS AND EULER’S TOTIENT FUNCTION CHAPTER 11. MATHEMATICS

if (smallest[p] == 0)
smallest[p] = p;
}

public ArrayList<Long> factor(long n) {
ArrayList<Long> factors = new ArrayList<>();
while ((n & 1L) == 0) { factors.add(2L); n >>= 1L; }
long d = 3;
// Pull out factors until n %is small enough to look up
while (d*d <= n && n >= smallest.length) {
if (% d==0) 1
factors.add(d);

n /= d;
} else {
d += 2;

}
}
// Now just look up remaining factors in the table
if (n < smallest.length) {
while (smallest[(int)n] != n) {
factors.add((long) (smallest[(int)n]));
n /= smallest[(int)n];
}
}
if (n !'= 1) factors.add(n);
return factors;

11.5 Divisors and Euler’s Totient Function

o,

¢y farey, relatives

[TODO: Number of divisors. Euler’s ¢ function: computing directly and by sieving,.]|

11.6 Factorial

& eulersnumber, factstone, howmanydigits, lastfactorialdigit, inversefactorial, loworderzerd
factovisors

n!=1-2-.-nis the number of ways of arranging n things in a sequence. Computing n! is straightforward
with a loop, although note that

e 12! = 479001600 is the largest factorial that fits in a 32-bit int, and
o 20! = 2432902008176640000 is the largest factorial that fits in a 64-bit long.

Note that log(n!) =log(1-2---n) =logl+log2+ --- 4 logn which is occasionally handy. For example,
the number of base-10 digits needed to represent a number n is |log;on], so by summing logs instead of
computing a factorial and then taking the log, you can figure out how many digits are in very large factorials
even when the numbers themselves would not fit in a long (& howmanydigits).

11.7 Combinatorics

66

https://open.kattis.com/problems/farey
https://open.kattis.com/problems/relatives
https://open.kattis.com/problems/eulersnumber
https://open.kattis.com/problems/factstone
https://open.kattis.com/problems/howmanydigits
https://open.kattis.com/problems/lastfactorialdigit
https://open.kattis.com/problems/inversefactorial
https://open.kattis.com/problems/loworderzeros
https://open.kattis.com/problems/factovisors
https://open.kattis.com/problems/howmanydigits

10

11

12

CHAPTER 11. MATHEMATICS 11.7. COMBINATORICS

& insert, anagramcounting, nine, secretsanta, kingscolors, howmanyzeros, thedealoftheday

Some basic principles of combinatorics:

e If two sets of choices are completely disjoint, add their sizes to get the total number of choices. For
example, the number of subsets of {1,...,n} is equal to the number of subsets that do contain 3 plus
the number that don’t.

e If two sets of choices are independent, multiply their sizes to get the total number of combinations.
For example, if we can pick one of five different shirts and independently pick one of seven different
hats, we have 35 possible outfit choices.

e Often, the answer to a combinatorics problem will be very large, so the problem asks for the answer
modulo 10?47 (the smallest prime bigger than 10”), which fits in a 32-bit int. Since taking remainders
commutes with addition and multiplication, just reduce via mod at every step to make sure that the
intermediate values never overflow.

I Although the sum of two values under 10° 47 will fit in a 32-bit int, their product will not.
If you need an answer modulo 10° + 7 but computing the answer involves multiplication,
you must use 64-bit (long) values to make sure the intermediate steps do not overflow.

For example, to compute n! (mod 10° + 7), make a long accumulator initialized to 1, and then loop
from 1 to n, on each step multiplying by the current index and then taking the remainder mod 10° 4 7.

11.7.1 Subsets and permutations

[TODO: Number of subsets of set of size n is 2. Number of permutations is n!. Explain how these follow
from principle of multiplication. To actually generate all of them, see complete search section, bit tricks,
etc.|

11.7.2 Binomial and multinomial coefficients

(&)= (2

counts the number of ways to choose a set of £ things out of n possibilities; it is the kth entry in the nth
row (both counting from 0) of Pascal’s Triangle (§A.2, page 89). (}) can be computed using the following
code, which works up to n = 60 (higher values of n will cause overflow):

The binomial coefficient

public static long choose(int n, int k) {
if @ <0 ||l k<0 ||l k>n) return 0;

k = Math.min(k,n-k);

long res = 1;

for (int 1 = 1; i <= k; i++) {
res = res * (n-i+1) / 1i;

}

return res;

3

Some useful identities:

e (3) = (1) =1 (there is only one way to choose none of the items, or all of the items).

« () =08+ G0

67

https://open.kattis.com/problems/insert
https://open.kattis.com/problems/anagramcounting
https://open.kattis.com/problems/nine
https://open.kattis.com/problems/secretsanta
https://open.kattis.com/problems/kingscolors
https://open.kattis.com/problems/howmanyzeros
https://open.kattis.com/problems/thedealoftheday

11.8. PROBABILITY CHAPTER 11. MATHEMATICS

The multinomial coefficient

" -
ki ko ... K 7k1‘k;2|kll’

where n = k1 + ko + - - - + ki, represents the number of ways of partitioning a set of n things into distinguished

groups of sizes k1, ko, . . ., k;. Note that the usual binomial coefficient (Z) can be thought of as the multinomial

coefficient (k (T:L_ k)), or more symmetrically, as (a"b) where a +b = n.
[TODO: Computing multinomial coefficients.]

[TODO: Large binomial coefficients modulo a prime (modular inverse factorial tables, Lucas’s theorem).]
[TODO: PIE]

11.8 Probability

[TODO: Write me]

11.9 Game Theory

[TODO: Write me]

68

Chapter 12

Bit Tricks

& Dbits, classpicture, data, flipfive, font, gepetto, hypercube, mazemakers, pagelayout,
pebblesolitaire, safepassage, satisfiability, turningtrominos

int values are represented as a sequence of 32 bits; long values are 64 bits. Sometimes it is useful to
think about/work with such values directly as a sequence of bits rather than as a number. We typically
think of the bits as indexed from 0 starting at the rightmost (least significant) bit. For example,

97410 = 1111001110

9876543210

In general, a 1 bit at index ¢ has value 2°.

One frequently useful point of view is to think of a value of type int/long as representing a particular
subset of a given set of up to 32/64 items. The bit at index ¢ indicates whether item 4 is included in the
subset or not.

Java has built-in operators to manipulate values at the bit level:

e & represents bitwise logical AND. That is, the index-i bit of the result is the logical AND of the index-i
bits of the inputs; each bit index is considered separately. It is often useful to think of & as a “masking”
operation: given values v and mask, evaluating v & mask will only “let through” the bits of v which
correspond to 1 bits in mask; all other bits will be “turned off”. For example, if you want to extract
only the last three bits of a value v, you can compute v & 7 (since bitwise AND with 7 = 1115 will
turn off all bits except the last three).

If values are thought of as representing subsets, then & corresponds to set intersection.

o | represents bitwise logical OR. This can be used to “turn on” certain bits: v & on will result in a
value which is the same as v except that the bits which are set to 1 in on will be turned on.

If values are thought of as representing subsets, then | corresponds to set union.

e ~ represents bitwise logical XOR. This can be used to “toggle” bits: v ~ toggle will result in a value
which is the same as v except that the bits in positions corresponding to the 1 bits in toggle have
been flipped.

If values are thought of as representing subsets, then ~ corresponds to symmetric difference: a ~ b
represents the set of elements which are in a or b but not both.

e n >> kshifts n right by & bits, chopping off the rightmost k bits. This corresponds to (integer) division
by 2*. n << k shifts n left by k bits, adding k zeros on the right; this corresponds to multiplying by
2k,

Note that right shifting uses something called sign extension so that it fills in bits on the left according
to whatever the leftmost bit was initially: a value starting with a zero bit (i.e. a positive value) will
have zeros filled in on the left, but a (negative) value beginning with a one bit will have ones filled in

69

https://open.kattis.com/problems/bits
https://open.kattis.com/problems/classpicture
https://open.kattis.com/problems/data
https://open.kattis.com/problems/flipfive
https://open.kattis.com/problems/font
https://open.kattis.com/problems/gepetto
https://open.kattis.com/problems/hypercube
https://open.kattis.com/problems/mazemakers
https://open.kattis.com/problems/pagelayout
https://open.kattis.com/problems/pebblesolitaire
https://open.kattis.com/problems/safepassage
https://open.kattis.com/problems/satisfiability
https://open.kattis.com/problems/turningtrominos

CHAPTER 12. BIT TRICKS

on the left. If you don’t want this (it rarely matters!) you can use n >>> k which does a right shift by
k bits without sign extension, that is, it always fills in zero bits on the left regardless of the initial bit
of n.

Here is a list of some non-obvious but sometimes useful things that can be done with bitmasks:

e To iterate through all possible subsets of an n-element set (represented by an n-bit mask), just use a
counter:

for (int S = 0; S < (1 << mn); S++) {
// process subset S
}

As the value of S progresses from 0 through 2™ — 1, it will take on every possible pattern of n bits.

e To check whether a particular bit is turned on, mask out everything except that particular bit and
check whether the result is 0. For example, to check whether bit j is set to 1 in S:

if (8 & (1 << 3)) t=0)
Be careful: the precedence of & is actually lower than that of !'=, so you need a bunch of parentheses.

e The least significant bit (LSB) of a value S can be extracted using the expression S & (-S). The result
is a value with only a single bit set, corresponding to the LSB of S. For example, if S = 10001011000,
then S & (-S) will be 00000001000. It’s worth taking a minute to convince yourself that this works,
keeping in mind that to negate a value in 2’s complement representation, you invert all the bits and
then add one.

One way this can be used is when iterating over all subsets of a set: for each subset, instead of iterating
over all elements and checking whether each one is in the subset, one can quickly iterate through only
the elements which are actually in the subset. In some cases this can yield a big constant-factor
speedup.

for (int S = 0; S < (1 << n); S++) {
int T =8; // Save a copy of current subset § into T

// Iterate through all elements of T
while (T != 0) {
int X =T & (-T); // Find last element X of T
. // process X
T ~= X; // Remove X to move on to the next element

}

Another place this technique is used is in the implementation of Fenwick trees (§14.3.5, page 82).
e The least significant zero (LSZ) can be computed by first inverting all the bits, then finding the LSB.

e There is no quick way to compute the most significant bit (MSB), which amounts to finding the
logarithm base 2 (rounded down). The simplest is to keep shifting right until reaching 1, keeping a
count of the number of shifts required.

o)

e The popcount operation counts the number of 1 bits in a number, and sometimes comes in useful (&
bits, iboard, enviousexponents, pebblesolitaire). It can be accessed via the Long.bitCount (.. .)
or Integer.bitCount(...) functions. Note that processors typically have a special popcount instruc-
tion, so this should be very fast—certainly much faster than manually looping through the bits of a
number and counting how many are set to 1.

o Iterating through all the sub-subsets of a subset https://cp-algorithms.com/algebra/all-submasks.
html

70

https://open.kattis.com/problems/bits
https://open.kattis.com/problems/iboard
https://open.kattis.com/problems/enviousexponents
https://open.kattis.com/problems/pebblesolitaire
https://cp-algorithms.com/algebra/all-submasks.html
https://cp-algorithms.com/algebra/all-submasks.html

CHAPTER 12. BIT TRICKS

[TODO: iterating through sub-subsets| https://cp-algorithms.com/algebra/all-submasks.html
[TODO: BitSet instead of array of booleans.]

o)

Co 1ith

71

https://cp-algorithms.com/algebra/all-submasks.html
https://open.kattis.com/problems/ith

CHAPTER 12. BIT TRICKS

72

Chapter 13

Geometry

& alldifferentdirections, convexpolygonarea, cookiecutter, countingtriangles, cranes, glyphrecognition,
hittingtargets, hurricanedanger, jabuke, janitortroubles, polygonarea, rafting

[TODO: Keep building above list—grep for geom. Next to look at is robotprotection.|
See also list of formulas.

[TODO: Points, angles. Degrees/radians. atan2. Rotation. Vector magnitude, norm (squared), normal-
ize. Perpendicular (generate, test).]

13.1 Vectors

Vectors are one of the most basic units required in many geometrical programming problems. Vectors are
very similar to line or line segments, but the key difference is that a vector will have a certain direction in
which it is pointing and a point that exists on the vector. The direction of a vector is given by a coordinate
pair (x4,yq). This coordinate pair does not indicate the position of the vector, but it does indicate the
direction of the vector. Vectors are also described by a given point (z,,y,) that the vector passes through.
For example if we are given a vector with direction (1,2) and point (3,4), then we know that the vector will
extend to the point (z, + za,¥yp + ya) = (4,6) IF the point is included in the vector’s magnitude (length).
Sometimes you’re given an origin point for the vector and the point of the tip of that vector. In this case
you need to calculate the direction of the vector yourself. The information about the vector that you need
to use depends on the context of the problem. Calculating the dot product of two vectors requires finding
their lengths and the angle between them. Calculating the cross product of two vectors requires vectors
represented by points that have a common origin.

13.2 Dot Product

The Dot Product of two vectors can be thought of as a measurement of how similar their directions are.
The dot product of the length of two vectors a and b is defined as a - b = |a| x |b| x cosf. Let 6 be defined
as the amplitude of the angle between vectors a and b and |a| and |b| be defined as the lengths of the two
vectors. The more similar the vectors’ direction are to each other, the greater their dot product will be. If
¢ = 5, then the dot product of a and b or a - b equals 0. Therefore, if the vectors are perpendicular, then
the dot product will be 0. If the angle between the vectors is acute, then the dot product will be positive.
If the angle between the vectors is obtuse, then the dot product will be negative. The dot product can also
be considered as the projection p of a onto b.

73

https://open.kattis.com/problems/alldifferentdirections
https://open.kattis.com/problems/convexpolygonarea
https://open.kattis.com/problems/cookiecutter
https://open.kattis.com/problems/countingtriangles
https://open.kattis.com/problems/cranes
https://open.kattis.com/problems/glyphrecognition
https://open.kattis.com/problems/hittingtargets
https://open.kattis.com/problems/hurricanedanger
https://open.kattis.com/problems/jabuke
https://open.kattis.com/problems/janitortroubles
https://open.kattis.com/problems/polygonarea
https://open.kattis.com/problems/rafting

13.3. SHORTEST DISTANCE FROM POINT TO LINE CHAPTER 13. GEOMETRY

a/ Projection
//) Yy b -

With this visualization, where p is defined as the dot product of a and b, it becomes evident why the dot
product of two vectors is 0 when they are perpendicular. The dot product is often used in problems to test if
two vectors are perpendicular. In practice if you are given two vectors (vy,vy) and (ug,uy), the calculation
for dot product is simply v, X Uz + vy X Uy.

13.3 Shortest Distance from Point to Line

Calculating the shortest distance from a point to a line can be made relatively easy by using dot product.
Let | be the line and let a be the point. Let’s imagine that on the line [there exists a point . Let the
distance from a to x be the shortest distance from a to [. If the vector az is perpendicular to [, then the
length of az represents the shortest distance from [to a. If we treat [like a vector [, then [, - ax = 0.

Let I, = (pz,py) +t X (vg,vy). This is a simple equation for representing vectors. (ps,p,) represents
a point on the vector (usually the origin of the vector, but if you're specifically dealing with a line as we
are, then the origin of the vector is irrelevant to the problem). The coordinate pair (v;,v,) describe the
direction of the vector (in many cases this corresponds to the slope of the line. See the section on vectors
for more information). Let’s have ¢ represent a coefficient. Lets say we want to find a point on I,. Simple:
(pz +t X vz, py +t X vy) where t is a real number (if [was really a vector, which it is not, then it would
matter to us if ¢ was positive or negative. If ¢ was negative and [was truly a vector with origin at (p,,py)
then a would be behind [, and, since vectors only go one direction, the closest point on the vector to a would
be (pg,py)). So (py +1t X vy, py +t X v,) represents all of the points on [. If this represents all of the points
on ! then the coordinates of can be represented by = (p; +t X vy, py +t X vy). Therefore the direction of
ax where a = (2q,Yq) 18 (Dz +1 X Vg — Ta, Py +1 X Uy — Ya).

Now we have direction vectors of both [, and ax. We can now use the dot product on these two vectors
to solve for ¢, and, once we have ¢, we can calculate the position of x and use the vector distance formula to

find the length of az. By the definition of the dot product, we know that [, -ax = vy X (pz +t X vz —) + vy X

— Vg X (wa_pl')"l‘vy X(ya_py)

e . Now use the vector distance

(py +1t x vy —ya) = 0. Solving for ¢ leaves us with t =

formula to find the shortest distance from a to {. Distance d = \/(pgﬂ +1 X vy —2q)%+ (py + 1 X vy —ya)?.
TLDR; If you're in a rush and just need a quick formula, then the distance d from a point (g, yo) to the

o =0is d = laatblo)te|
line in standard form az + by + ¢ = 01is d = ==7=7>

13.4 Heron’s Formula

There is an easy way to calculate the area of a triangle from only its sidelengths a,b,c. We define the
semi-perimeter s = 9t2+¢ The area is /s(s — a)(s — b)(s — ¢). This is also useful for finding the area of
quadrilaterals, if you can find the length of a diagonal and split it into two triangles.

13.5 Cross Product

Given two vectors u, v, the Cross Product u x v is the signed area of the parallelogram with points at the
origin and the tips of u and v. It is defined as u X v = uzvy — VL Uy.

74

CHAPTER 13. GEOMETRY 13.6. POLYGON AREA

Note that this really requires 3D vectors in the definitions a typical Linear Algebra class uses, but when
both input vectors are on the same plane the output can be described by a real number. Also, by ‘signed’,
We mean that the result is positive if v is counter-clockwise relative to v and negative if clockwise.

We can calculate the area of a triangle from its three corners by shifting them all such that one of the
points is at origin, and then taking half the absolute value of the cross product of the vectors corresponding
to the other two points.

13.6 Polygon Area

Given that we have the way to calculate the area of a triangle from its corners, calculating the area of a
polygon is mostly a matter of cutting it into triangles. The easiest way to do this is to take each adjacent
pair and a third point inside the polygon to define the corners. However, we can simplify this. Our third
point can be the origin (0,0) no matter where the polygon is, meaning we can eliminate the step of shifting
all the points. But to make this work we have to make sure to consider the pairs of adjacent corners in
counter-clockwise order and calculate the signed area of each triangle. This is called the Shoelace Formula,
and works because the far side of the polygon will have positive sign while the close side will have negative
sign and thus be cancelled out.

For the exact same reason, considering the points in clockwise order will give the correct answer but
negative. The only restriction that we have is that the edges must not self intersect, in which case the
polygon is ‘simple’. This is typically true in programming competitions, but it is good to check for. Note
that we also have to account for the connection between the last and first point (here outside of the loop).

static double cross(double[] u, double[] v) {

return ul[0] * v[1] - v[0] * u[1];
}

static double polyArea(double[][] points) {
double result = 0.0;

for (int 1 = 1; i < points.length; i++) {

75

13.7. CONVEX HULL CHAPTER 13. GEOMETRY

result += cross(points[i - 1], points[i]);
}
result += cross(points[points.length - 1], points[0]);
return result / 2.0;

[TODO: Lines/rays (point + vector). Line intersection. Segment intersection.] [TODO: law of cosines.]

13.7 Convex Hull

The Convex Hull problem asks for the smallest Convex polygon which contains a specific set of points. The
(easiest) algorithm to handle this is Andrew’s Monotone Chain, which breaks the answer into two chains
(representing the top and bottom halves of the answer). We first sort the points lexicographically (by x
coordinates, breaking ties with y coordinates). If at any point the last 3 vertices in the chain make a
clockwise turn that means that the 2nd is inside the hull, and the 1st and 3rd are the only ones required.
We can construct the partial convex hull of the points with lower x value than points[i] by ensuring that it
only consists of Counter-Clockwise turns. We then add the next point by eliminating vertices which are now
inside considering our added point. Going through all the points results in the lower half of the chain, and
we can then go in the reverse direction (right to left) to get the upper chain.

— Upper Hull
— Lower Hull

static double[] sub(double[] v, doublel[] u) {
return new double[] {
v[0] - u[0], v[1] - u[1]
};
}
static boolean ccw(double[] o, double[] u, doublel[] v) {
return cross(sub(u, o), sub(v, o)) > 0.0;

}

//Note: This code will probably need to be changed for edge cases like where only 1 or 2 points are giv
static double[][] convexHull(double[][] points) {

int n = points.length;

int k = 03

double[][] H = new double[n * 2]1[2]; //chain could contain each point twice

Arrays.sort(points, Comparator.comparingDouble((double[] point) - > point[0])
.thenComparing(Comparator.comparingDouble ((double[] point) - > point[1])));

for (int i = 0; i < n; ++i) {
while (k >= 2 && 'ccw(H[k - 2], H[k - 1], points[i]))
k-3

76

CHAPTER 13. GEOMETRY 13.8. GEOMETRY REFERENCES

H[k++]

points[i];
3
for (int i =n -2, t=k+ 1; i > 0; i--) {

while (k >= t && 'ccw(H[k - 2], H[k - 1], points[i]))

k--;

H[k++] = points[i];
3
//In most cases our chain will not contain every point, so we need to trim
//also, the final point is a duplicate of the first to represent the 'wrap around'
return Arrays.copyOfRange(H, 0, k - 1);

[TODO: Inside/outside testing.]
13.8 Geometry References

https://codeforces.com/blog/entry/48868
https://vlecomte.github.io/cp-geo.pdf

7

https://codeforces.com/blog/entry/48868
https://vlecomte.github.io/cp-geo.pdf

13.8. GEOMETRY REFERENCES CHAPTER 13. GEOMETRY

78

Chapter 14

Miscellaneous

14.1 2D grids

2D grids/arrays (of characters, numbers, booleans. ..) are a popular feature of many competitive program-
ming problems.

e There is a trick for reading in a grid of characters which can save a bit of coding effort. The “traditional”
way to read a grid of characters would be something like:

char[][] grid = new char[R][C];
for (int r = 0; r < R; r++) {
String line = in.nextLine();
for (int ¢ = 0; ¢ < C; c++) {
grid[r] [c] = line.charAt(c);
}
}

However, it is possible to assign each row of the 2D array all at once, like so:

char[][] grid = new char[R][C];
for (int r = 0; r < R; r++)
grid[r] = in.nextLine().toCharArray();

e In many cases the grid should be thought of as a graph where each cell is a vertex which is connected
by edges to its neighbors. Note that in these cases one rarely wants to explicitly construct a different
representation of the graph, but simply use the grid itself as an (implicit) graph representation.

e It is often useful to be able to assign a unique number to each cell in the grid, so we can store ID
numbers of cells in data structures rather than making some class to represent a pair of a row and
column index. The easiest method is to number the first row from 0 to C'— 1 (where C' is the number
of columns), then the second row C to 2C' — 1, and so on.

0 1 2 [Cc-1
C C+1 C+2 . 20—1
2C 20+ 1 2C +2 . 3Cc—1
(R—1)C | (R—1)C+1 | (R—1)C+2]|... | RC—1

e Using this scheme, to convert between (r,¢) pairs and ID numbers n, one can use the formulas
(r,e)—r-C+c n— (n/C,n%C)

79

14.2. HEXAGONAL GRIDS CHAPTER 14. MISCELLANEOUS

e To list the four neighbors of a given cell (r,¢) to the north, east, south, and west, one can of course
simply list the four cases manually, but sometimes this is tedious and error-prone, especially if there is
a lot of code to handle each neighbor that needs to be copied four times.

Instead, one can use the following template. The idea is that (dr,dc) specifies the offset from the
current cell (r,c) to one of its neighbors; each time through the loop we rotate it counterclockwise by
1/4 turn using the mapping (dr,dc) — (—dec,dr) (see Geometry (§13, page 73)).

1 int dr = 1, dc = 0; // starting offset of (1,0); nothing special about this chotice
2 for (int k = 0; k < 4; k++) {

3 int nr = r + dr, nc = ¢ + dc;

4 // process neighbor (nr, nc)

5

6 int tmp = dr; dr = -dc; dc = tmp; // rotate offset ccw
7 // to get cw instead, switch the negative sign

s}

14.2 Hexagonal grids

& beehouseperimeter, honey, settlers2, beeproblem, honeyheist

Occasionally a problem will involve a 2D grid of tiled hexagons instead of a grid of squares. (Typically
such problems involve a story about bees.) They are often not too hard (e.g. some kind of straightforward
application of Breadth-First Search (§7.3, page 35)) other than the fact that dealing with hexagonal grids
can be annoying, unless you know a few tricks for working with them elegantly.

[TODO: Write about hexagonal grids, storage, coordinate systems, etc.] Reference: https://www.
redblobgames. com/grids/hexagons/

14.3 Range queries

Suppose we have a 1-indexed array A[l...n| containing some values, and there is some operation & which
takes two values and combines them to produce a new value. Given indices ¢ and j, we want to quickly find
the value that results from combining all the values in the range Afi...j], i.e. Ali]®@ A[i +1] & - - @ A[j].

For example, A could be an array of integers, and @ could be max, that is, we want to find the maximum
value in the range Afi...j]. Likewise & could be sum, or product, or GCD. Or A could be an array of
booleans, and we want to find the AND, OR, or XOR of the range Afi...j].

e For this to make sense, the combining operation must typically be associative, i.e. a®(b®c) = (a®b)De.
(This is called a semigroup.)

e Sometimes there is also an inverse operation © which “cancels out” the effects of the combining oper-
ation, that is, (a @ b) © b = a (this is called a group). For example, subtraction cancels out addition.
On the other hand, there is no operation that can cancel out the effect of taking a maximum.

e If we only need to find the value of combining a single range Ali...j], then ignore everything in this
section and simply iterate through the interval, combining all the values in O(n) time.

e More typically, we need to do many queries, and O(n) per query is not fast enough. The idea is to
preprocess the array into a data structure which allows us to answer queries more quickly, i.e. in O(1)

or O(lgn).

e Sometimes we also need to be able to update the array in between queries; in this case we need a more
sophisticated query data structure that can be quickly updated.

Each of the below subsections outlines one approach to solving this problem; for quick reference, each
subsection title says whether an inverse operation is required, how fast queries are, and whether the technique
can handle updates.

80

https://open.kattis.com/problems/beehouseperimeter
https://open.kattis.com/problems/honey
https://open.kattis.com/problems/settlers2
https://open.kattis.com/problems/beeproblem
https://open.kattis.com/problems/honeyheist
https://www.redblobgames.com/grids/hexagons/
https://www.redblobgames.com/grids/hexagons/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

CHAPTER 14. MISCELLANEOUS 14.3. RANGE QUERIES

14.3.1 Prefix scan (inverse required; O(1) queries; no updates)

In a situation where we have an inverse operation and we do not need to update the array, there is a very
simple solution. First, make a prefiz scan array P[0...n] such that P[i] stores the value that results from
combining A[1...4]. (P[0] stores the unique “identity” value a © a, e.g. zero if the combining operation is
sum.) P can be computed in linear time by scanning from left to right; each P[i] = P[i — 1] ® A[i]. Now
the value of Afi...j] can be computed in O(1) time as P[j] © P[i — 1]. That is, P[j] gives us the value of
All]®--- & Alj], and then we cancel P[i—1] = A[1] @ -+ A[i — 1] to leave just A[{] @ --- P A[j] as desired.

Note that having P[0] store the identity value is not strictly necessary, but it removes the need for a
special case. If A is already 0-indexed instead of 1-indexed, then it’s probably easier to just put in a special
case for looking up the value of A[0...j] as P[j], without the need for an inverse operation.

For example, suppose we are given an array of 10° integers, along with 10° pairs (i, j) for which we must
output the sum of Afi...j]. Simply adding up the values in each range would be too slow. We could solve
this with the following code:

import java.util.x;
public class PrefixSum {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);

// Read array

int n = in.nextInt();

int[] A = new int[n+1];

for (int 1 = 1; i <= n; i++) {
A[i] = in.nextInt();

}

// Do prefiz scan

int[] P = new int[n+1];

for (int 1 = 1; i <= n; i++) {
P[il = P[i-1] + A[il;

}

// Answer queries

int Q@ = in.nextInt();

for (int q = 0; q < Q; gqt++)
int i = in.nextInt(), j = in.nextInt();
System.out.println(P[j] - P[i-1]);

-~

More commonly, a prefix scan is a necessary first step in a more complex solution.

o,

¢» divisible, dvoniz, srednji, subseqghard

14.3.2 Kadane’s Algorithm

As an aside, suppose we want to find the subsequence Ali ... j] with the biggest sum. A brute-force approach
is O(n?): iterate through all (4, j) pairs and find the sum of each subsequence. Using the prefix scan approach,
we can cut this down to O(n?), since we can compute the sums of the O(n?) possible subsequences in O(1)
time each. However, there is an even better O(n) algorithm which is worth knowing, known as Kadane’s
Algorithm.

The basic idea is simple: scan through the array, keeping a running sum in an accumulator, and also
keeping track of the biggest total seen. Whenever the running sum drops below zero, reset it to zero. Below

81

https://open.kattis.com/problems/divisible
https://open.kattis.com/problems/dvoniz
https://open.kattis.com/problems/srednji
https://open.kattis.com/problems/subseqhard

10

11

12

13

14

15

16

14.3. RANGE QUERIES CHAPTER 14. MISCELLANEOUS

is a sample solution to & commercials. Note that subtracting P from each input is specific to the problem,
but the rest is purely Kadane’s Algorithm.

import java.util.x;

public class Commercials {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int N = in.nextInt(); int P = in.nextInt();

int max = 0, sum = O;

for (int 1 = 0; i < Nj; i++) {
sum += in.nextInt() - P;
if (sum < 0) sum = 0; // or sum
if (sum > max) max = sum; // or mazx

Math.maz (sum, 0);
Math.maz (maz, sum);

I

3

System.out.println(max) ;

14.3.3 2D prefix scan

[TODO: make pictures|

It is possible to extend the prefix scan idea to two dimensions. Given a 2D array A, we create a parallel
2D array P such that P[i][j] is the result of combining all the entries of A in the rectangle from the upper-left
corner to (4,) inclusive. The simplest way to do this is to compute

Plillj] = Alills] + Pli = 1][j] + Plilj — 1] = Pli = 1][5 = 1]

Including P[i — 1][j] and P[i][j — 1] double counts all the entries in the rectangle from the upper left to
(i — 1,7 — 1) so we have to subtract them.

Given P, to compute the combination of the elements in some rectangle from (a,b) to (¢, d), we can
compute

P[c][d] — Pla — 1][d] — P[c][b — 1] + Pla — 1][b — 1]

& prozor can be solved by brute force, but it’s a nice exercise to solve it using the above approach.

14.3.4 Doubling windows (no inverse; O(1) queries; no updates)
[TODO: Include link to discussion in CP3|

14.3.5 Fenwick trees (inverse required; O(lgn) queries; O(lgn) updates)

o,

¢» fenwick, supercomputer, turbo, moviecollection, dailydivision

We can use a Fenwick tree to query the range Ai..j] (i.e. get the combination of all the values in the
range Ali] ... A[j] according to the combining operation @) in O(lgn) time. We can also dynamically update
any entry in the array in O(lgn) time. If dynamic updates are required and we have an invertible combining
operation, a Fenwick tree should definitely be the first choice because the code is quite short. (Segment
trees (§14.3.6, page 83) can also handle dynamic updates, and work for any combining operation, even with
no inverse, but the required code is a bit longer.)

The code shown here stores int values and uses addition as the combining operation, so range queries
return the sum of all values in the range; but it can be easily modified for any other type of values and any
other invertible combining operation: change the type of the array, change the + operation in the prefix
and add methods, change the subtraction in the range method, and change the assignment s = 0 in prefix
to the identity element instead of zero.

82

https://open.kattis.com/problems/commercials
https://open.kattis.com/problems/prozor
https://open.kattis.com/problems/fenwick
https://open.kattis.com/problems/supercomputer
https://open.kattis.com/problems/turbo
https://open.kattis.com/problems/moviecollection
https://open.kattis.com/problems/dailydivision

12

13

14

15

16

17

CHAPTER 14. MISCELLANEOUS 14.4. CYCLE FINDING

I Note that this FenwickTree code assumes the underlying array is 1-indexed!

class FenwickTree {
private longl] a;
public FenwickTree(int n) { a = new long[n+1]; }

// A[i] += delta. 0(lg n).
public void add(int i, long delta) {

for (; i < a.length; i += LSB(i)) al[il += delta;
}

// query [t1..5]. 0(lg n).
public long range(int i, int j) { return prefix(j) - prefix(i-1); }

private long prefix(int i) { // query [1..4]. 0(lg n).

long s = 0; for (; i > 0; i -= LSB(i)) s += al[i]; return s;
}
private int LSB(int i) { return i & (-i); }

e The constructor creates a FenwickTree over an array of all zeros.

e To create a FenwickTree over a given l-indexed array A, simply create a default tree and then loop
through the array, calling ft.add(i, A[i]) for each i. This takes O(nlgn).

e ft.add(i, delta) can be used to update the value at a particular index by adding delta to it.

e If you want to simply replace the value at index ¢ instead of adding something to it, you could use
ft.add(i, newValue - ft.range(i,i)).

e ft.range(i,j) returns the sum Afi] +--- 4+ A[j].

[TODO: Discuss CP3 presentation of Fenwick trees; explain how Fenwick trees work]

14.3.6 Segment trees (no inverse required; O(lgn) queries; O(lgn) updates)
[TODO: Segment trees.|

14.4 Cycle finding

[TODO: Floyd’s algorithm, Brent’s algorithm]

83

14.4. CYCLE FINDING CHAPTER 14. MISCELLANEOUS

84

Chapter 15

Formulas

e Ceiling division (& soylent, wordcloud, amultiplicationgame). If p and q are positive values of
type int or long, then p/q computes |p/q|, the quotient (rounded down). If you want the quotient
rounded wup, that is, [p/q], compute

pP+q-1)/aqg

Note that -((-p)/q) does not work in Java since Java truncates the result of integer division towards
zero, instead of always taking the floor.

e Derangements (& secretsanta). The number of permutations of n objects such that no object is
left in its original place is

L (—1)* n!
In=nln-1)+(-1)" :nlz (kl') - {'] 7
k=0

e

where 11 = 0, and [z] denotes the closest integer to z. The first few values of In are

0,1,2,9,44, 265, 1854, 14833, 133496, 1334961.

e Heron’s Formula. The area of a triangle with side lengths a, b, ¢ is

Vs(s —a)(s —b)(s —c) where s = (a+ b+ ¢)/2.

e Brahmagupta’s Formula (& janitortroubles). The area of a quadrilateral with side lengths a,
b, ¢, and d, with all vertices lying on a common circle, is

V(s —a)(s —b)(s —c)(s — d) where s = (a+ b+ c+d)/2.
This is also the maximum possible area of a quadrilateral with the given side lengths.

e Euler’s formula (& dontfencemein). In a planar graph with V vertices, F edges, F faces (a “face”
is a maximal connected region of the plane, separated from other faces by one or more edges), and C

connected components,
V-E+F=C+1.

85

https://open.kattis.com/problems/soylent
https://open.kattis.com/problems/wordcloud
https://open.kattis.com/problems/amultiplicationgame
https://open.kattis.com/problems/secretsanta
https://open.kattis.com/problems/janitortroubles
https://open.kattis.com/problems/dontfencemein

CHAPTER 15. FORMULAS

86

Chapter 16

Advanced topics

This is a list of advanced topics that may eventually be included in this document, but for now you can go
read up on them if you are interested! (And then of course write up what you have learned for inclusion in
this document.)

Chinese Remainder Theorem (& heliocentric, generalchineseremainder, dvdscreensaver)
Divisors of n! (& factovisors)

Gauss-Jordan elimination (i.e. row reduction i.e. solving linear systems) (& primonimo)

Exact Set Cover with Algorithm X/dancing links (& programmingteamselection)

Matrix powers

o,

¢» diceandladders, driving, linearrecurrence, mortgage, overlappingmaps, squawk, timing

Markov chains

o,

¢9 lostinthewoods, gruesomecave

Min cost max flow
Max flow with minimum and maximum capacities
o)

Discrete logarithms with baby step/giant step (& discretelogging)

Faster primality testing with Miller-Rabin (e.g. testing with a = 2,3,5,7,11,13,17,19, 23,29, 31, 37,41
makes it deterministic).

Divide & conquer algorithm for counting inversions.

o,

¢» excursion, froshweek, ultraquicksort

2-SAT

SAT solving with DPLL

LCA queries: Tarjan’s OLCA; via RMQ; binary lifting (& tourists)
Convolutions with FFT/NTT (& tiles, aplusb, kinversions)

Testing DFA equivalence with Hopcroft-Karp union-find algorithm (& outsourcing)

87

https://open.kattis.com/problems/heliocentric
https://open.kattis.com/problems/generalchineseremainder
https://open.kattis.com/problems/dvdscreensaver
https://open.kattis.com/problems/factovisors
https://open.kattis.com/problems/primonimo
https://open.kattis.com/problems/programmingteamselection
https://open.kattis.com/problems/diceandladders
https://open.kattis.com/problems/driving
https://open.kattis.com/problems/linearrecurrence
https://open.kattis.com/problems/mortgage
https://open.kattis.com/problems/overlappingmaps
https://open.kattis.com/problems/squawk
https://open.kattis.com/problems/timing
https://open.kattis.com/problems/lostinthewoods
https://open.kattis.com/problems/gruesomecave
https://open.kattis.com/problems/discretelogging
https://open.kattis.com/problems/excursion
https://open.kattis.com/problems/froshweek
https://open.kattis.com/problems/ultraquicksort
https://open.kattis.com/problems/tourists
https://open.kattis.com/problems/tiles
https://open.kattis.com/problems/aplusb
https://open.kattis.com/problems/kinversions
https://open.kattis.com/problems/outsourcing

CHAPTER 16. ADVANCED TOPICS

88

Appendix A

Reference

A.1 Primes

All primes up to 1000:

235711131719 2329 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293

307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397

401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499

503 509 521 523 541 547 557 563 569 571 577 587 593 599

601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691

701 709 719 727 733 739 743 751 757 761 769 773 787 797

809 811 821 823 827 829 839 853 857 859 863 877 881 883 887

907 911 919 929 937 941 947 953 967 971 977 983 991 997

A.2 Pascal’s Triangle

1 7 21 35 35 21 7 1
1 8 28 96 70 96 28 8§ 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

89

A.2. PASCAL’S TRIANGLE APPENDIX A. REFERENCE

90

Appendix B

Resources

Some good resources for further learning/reference:

e Problems/online judges

— Of course, Open Kattis has a collection of over 1000 great problems ranging from trivial to very
difficult.

— The UVa Online Judge has been around much longer than Kattis and also has a huge collection
of problems, mostly disjoint from those on Kattis.

— The CP3 website has a Methods to Solve page with a huge annotated list of problems from Kattis
and UVa, grouped by topic (corresponding to sections in CP3) with small hints for each one.

e Books

— Competitive Programming, 3rd edition (aka CP3) by Steven and Felix Halim is amazing. Anyone
serious about competitive programming should get a copy.

— Programming Challenges by Skiena and Revilla is also good.
e Reference

— [TODO: Geeksforgeeks]

— [TODO: Topcoder]

— [TODO: Codeforces]

— [TODO: cp-algorithms.com]

91

http://open.kattis.com
https://uva.onlinejudge.org/
https://cpbook.net/methodstosolve
http://cpbook.net
http://acm.cs.buap.mx/downloads/Programming_Challenges.pdf

	Newcomers' Guide
	Python Reference
	Template
	Math
	Lists/Tuples
	Strings
	Loops
	Stack
	Queue/pythondeque
	Priority queue
	Set

	Java Reference
	Template
	Scanner
	Math
	String
	StringBuilder
	Character
	Arrays
	ArrayList
	Stack
	Queue/ArrayDeque
	Comparator
	PriorityQueue
	Set
	Map
	BigInteger
	Sorting
	Fast I/O

	Limits
	Data Structures
	Pair
	Bag/multiset
	Union-find
	Tries
	Adjustable priority queue
	Segment trees and Fenwick trees
	Splay trees and/or treaps

	Enumeration and search
	Complete search
	Binary search
	Ternary search

	Graphs
	Graph basics
	Graph representation
	Breadth-First Search
	DFS
	SCCs and 2-SAT
	Topological sorting
	Single-source shortest paths (Dijkstra)
	All-pairs shortest paths (Floyd-Warshall)
	Min spanning trees (Kruskal)
	Eulerian paths
	Max flow/min cut
	Flow network problem types
	Flow network variants
	Dinitz' Algorithm

	Trees
	Dynamic Programming
	Sequences and strings
	Longest Increasing Subsequence (LIS)
	LCS via LIS
	Z-algorithm
	Suffix arrays

	Mathematics
	GCD/Euclidean Algorithm
	Rational numbers
	Modular arithmetic
	Primes and factorization
	Trial division
	Sieving

	Divisors and Euler's Totient Function
	Factorial
	Combinatorics
	Subsets and permutations
	Binomial and multinomial coefficients

	Probability
	Game Theory

	Bit Tricks
	Geometry
	Vectors
	Dot Product
	Shortest Distance from Point to Line
	Heron's Formula
	Cross Product
	Polygon Area
	Convex Hull
	Geometry References

	Miscellaneous
	2D grids
	Hexagonal grids
	Range queries
	Prefix scan (inverse required; O(1) queries; no updates)
	Kadane's Algorithm
	2D prefix scan
	Doubling windows (no inverse; O(1) queries; no updates)
	Fenwick trees (inverse required; O(lgn) queries; O(lgn) updates)
	Segment trees (no inverse required; O(lgn) queries; O(lgn) updates)

	Cycle finding

	Formulas
	Advanced topics
	Reference
	Primes
	Pascal's Triangle

	Resources

