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Abstract. We present HVM2, an efficient, massively parallel evaluator for ex-
tended interaction combinators. When compiling non-sequential programs from a
high-level programming language to C and CUDA, we achieved a near-ideal parallel
speedup as a function of cores available, scaling from 400 million interactions per
second (MIPS) (Apple M3 Max; single thread), to 5,200 MIPS (Apple M3 Max; 16
threads), to 74,000 MIPS (NVIDIA RTX 4090; 32,768 threads). In this paper we
describe HVM2′s architecture, present snippets of the reference implementation in
Rust, share early benchmarks and experimental results, and discuss current limita-
tions and future plans.

This paper is a work in progress. See the HVM repo for the latest version.

1. Introduction
Interaction Nets (IN’s) (Lafont 1990) and Interaction Combinators (IC’s) (La-

font 1997) were introduced by Lafont as a minimal and concurrent model of compu-
tation. Lafont proved that IC’s were not only Turing Complete, but that they also
preserve the complexity class and degree of parallelism. Moreover, Lafont argued
that while Turing Machines are a universal model of sequential computation, IC’s
are a universal model of distributed computation. The locality and strong conflu-
ence of Lafont’s ICs make it suitable for massive parallel computation. This heavily
implied that IC’s are an optimal model of computation, in a very fundamental
sense. Yet, it remained to be seen if this system could be implemented efficiently
in practice.

In this paper, we answer this question positively. By storing Interaction Com-
binator nodes in a memory-efficient format, we’re able to implement its core oper-
ations (annihilation, commutation, and erasure) as lightweight C procedures and
CUDA kernels. Furthermore, by representing wires as atomic variables, we’re able
to perform interactions atomically, in a lock-free fashion and with minimal syn-
chronization. We also extend our system with global definitions (for fast function
applications) and native numbers (for fast numeric operations). The result, HVM2,
is an efficient, massively parallel evaluator for ICs that achieves near-ideal speedup,
up to at least 16,384 concurrent cores, peaking at 74 billion interactions per second
on an NVIDIA RTX 4090.

This level of performance makes it compelling to propose HVM2 as a general
framework for parallel computing. By translating constructs such as functions,
algebraic data types, pattern matching, and recursion to HVM2, we see it as a
potential compilation target for modern programming languages such as Python
and Haskell. As a demonstration of this possibility, we also introduce Bend, a high-
level programming language that compiles to HVM2. We explain how some of these
translations work, and set up a general framework to translate arbitrary languages,
procedural or functional, to HVM2.
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3. Syntax
HVM2′s syntax consists of an Interaction Calculus system which textually rep-

resents an Interaction Combinator system (Fernández, Mackie 1999). This textual
system is capable of representing any arbitrary Interaction Net, and it is therefore
possible to represent “vicious circles” (Lafont 1997). We only consider HVM2 pro-
grams which do not contain any vicious circles.

HVM2′s syntax has seven different types of agents (in Lafont’s terms) or Nodes.
Additionally, HVM2 also has Variables to represent wires which connect ports
across Nodes. Trees are either Variables or Nodes. They are represented syntacti-
cally as:

<Node> ::=
    | "*"                    -- (ERA)ser
    | "@" <alphanumeric>     -- (REF)erence
    | <Numeric>              -- (NUM)eric
    | "(" <Tree> <Tree> ")"  -- (CON)structor
    | "{" <Tree> <Tree> "}"  -- (DUP)licator
    | "$(" <Tree> <Tree> ")" -- (OPE)rator
    | "?(" <Tree> <Tree> ")" -- (SWI)tch

<Tree> ::=
    | <alphanumeric>         -- (VAR)iable
    | <Node>

<alphanumeric> ::= [a-zA-Z0-9_.-/]+

(For details on the <Numeric> syntax, see Numbers (Section 6))

Notice that Nodes form a tree-like structure, and throughout this document we
will make systematic confusion between Nodes and Trees. For example, in Inter-
actions (Section 4), it is critical to know when a Variable is permissible or not
when referring to arbitrary Nodes. In Memory Layout (Section 7.1), however, we
purposefully blur the line between Nodes and Variables as the memory layout is
greatly simplified by doing so.

The first three node types (ERA, REF, NUM) are nullary, and the last 4 types (CON,
DUP, OPE, SWI) are binary. As implied above, VAR can be seen as an additional node
type. As in Lafont’s Interaction Nets, every node has an extra distinguished edge,
called the main or principal port (Lafont 1997). Thus, nullary nodes have one port
(one main and zero auxiliary), while binary nodes have three ports (one main and
two auxiliary).

With the syntax above, the main port of the root node is “free”, as it is not wired
to another port. We can connect two main ports and form a reducible expression
(redex), using the following syntax:

<Redex> ::= <Tree> "~" <Tree>

A Net consists of a root tree and a (possibly empty) list of &-separated redexes:
<Net> ::= <Tree> ("&" <Redex>)*
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HVM2 Nets represent what are known as configurations in the literature. A Net like
t1 & v1 ~ w1
   & ..
   & vn ~ wn

graphically represents a net like,

Figure 1. A configuration¹

¹This is a modified image of a configuration with multiple free main ports (Salikhmetov 2016).

where 𝜔 is a wiring. Thus, HVM2 Nets contain only a single free main port. Wirings
are possible between trees through pairs of VAR nodes with the same names. Note,
however, that a variable can only occur twice. This aligns with Interaction Nets in
that a wire can only connect two ports.

Lastly, an Book consists of a list of top-level definitions, or, “named” Nets:
<Book> ::= ("@" <name> "=" <Net>)*

Each .hvm2 file contains a book, which is executed by HVM2. The entry point for
HVM2 programs is the @main definition.

3.1. An Example.
The following definition:

@succ = ({(a b) (b R)} (a R))

Represents the HVM2 encoding of the 𝜆-calculus term λs λz (s (s z)), and can
be drawn as the following Interaction Combinator net:

b

R

a

Figure 2. An example 𝜆-calculus term.
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Notice how CON/DUP nodes in HVM2 correspond directly to constructor and dupli-
cator nodes in Lafont’s Interaction Combinators (Lafont 1997). Aux-to-main wires
are implicit through the tree-like structure of the syntax, while aux-to-aux wires
are explicit through variable nodes, which are always paired.

Additionally, main ports being implicit is critical to storing nodes efficiently in
memory. Nodes can be represented as just two ports (the HVM2 memory model
for wires) rather than three. In HVM2, since every port is 32 bits, this allows us to
store a single node in a 64-bit word. This compact representation lets us use built-
in atomic operations in various parts of the code, which was key to making parallel
C and CUDA versions efficient. For details on the precise memory representation,
see Section 7.

3.2. Interpretation of the Syntax.
Semantically, CON, DUP, and ERA nodes correspond accordingly to Lafont’s con-

structor, duplicator, and eraser symbols (Lafont 1997), and behave like Mazza’s
Symmetric Interaction Combinators (Mazza 2007). The VAR node represents a
wiring in the graph, connecting two ports of a Net. They are linear and paired in
the sense that (except for the free main port) every port is connected to exactly
one other port, and therefore each variable occurs exactly twice.

REF nodes are an extension to Lafont’s IC’s, and they represent an immutable
net that is expanded in a single interaction. While not essential for the expressivity
of the system, REF nodes are essential for performance, as they enable fast global
functions, a degree of laziness in a strict setup (critical to making GPU implemen-
tations viable), and allow us to represent tail recursion in constant space.

NUM, OPE and SWI nodes are also not essential expressivity-wise, but are too im-
portant for performance reasons. Modern processors are equipped with native ma-
chine integer operations. Emulating these operations with IC constructs analogous
to Church or Scott Numerals would be very inefficient. Thus, these numeric nodes
are necessary for HVM2 to be efficient in practice.
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4. Interactions
The AST above specifies HVM2′s data format. As a virtual machine, it also

provides a mechanism to compute with that data. In traditional VMs, these are
called instructions. In term rewriting systems, there are usually reductions. In
HVM2, the mechanism for computation is called interactions. There are ten of
them. All interactions are listed below using Gentzen-style rules (redexes in the
line above reduce to ones in the line below).

Arbitrary Nodes (including VAR) A, B, C, D ≔ <Tree>

Binary Nodes ² (), {} ≔ CON | DUP | OPA | SWI
Nullary Nodes ∙, ⚬ ≔ ERA | REF | NUM
Numeric Nodes N, M ≔ NUM (Numbers or Operations)
Numeric Value Nodes (Not Operators) #n, #m ≔ NUM where n, m ∈ ℚ
Erasure Nodes * ≔ ERA
Variables x, y, z, w ≔ VAR

²In the interaction rules () and {} refer to arbitrary binary nodes, not just CON and DUP.

(link) 
B contains x

x ~ A
B[x ← A] (call) 

A is not a VAR node
@foo ~ A

expand(@foo) ~ A

(void) ∙ ~ ⚬ (erase) ∙ ~ (A B)
∙ ~ A
∙ ~ B

(commute) (A B) ~ {C D}{x y} ~ A
{z w} ~ B
(x z) ~ C
(y w) ~ D

(annihilate) (A B) ~ (C D)A ~ C
B ~ D

(operate 1) N ~ $(M A)
op(N, M) ~ A (switch 1) #0 ~ ?(A B)A ~ (B *)

(operate 2) 

A is not a NUM node
N ~ $(A B)
A ~ $(N B)

(switch 2) #n+1 ~ ?(A B)
A ~ (* (#n B))

Note that rules are symmetric: if a rule applies to a redex A ~ B then it also applies
to B ~ A. Explanations and implementation details of each of the rules follow.

4.1. Link. “Links” two ports where at least one is a VAR Node. A global sub-
stitution is performed replacing the single other occurrence of x with A. Recall
that there is exactly one other occurrence of x in the net. In the graph-rewriting
system of Interaction Nets, linking two ports isn’t technically an interaction, as
wires are not named. However, for the term-rewriting calculus, wires are named
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and must be substituted for. When applying this rule, the redex x ~ A is removed,
and the occurrence of x in B node is replaced with A. This is the only rule where
nodes “far apart” can affect each other. See for details on the link function.

4.2. Call. Expands a REF, replacing it with its definition. The definition is es-
sentially copied from the static Book to the global memory, allocating its nodes and
creating fresh variables. This operation is key to enable fast function application,
since, without it, one would need to use duplicator nodes for the same purpose,
which brings considerable overhead. It also introduces some laziness in a strict
evaluator, allowing for global recursive functions, and constant-space tail-calls.

4.3. Void. Erases two nullary nodes connected to each other. The result is
nothing: both nodes are consumed, fully cleared from memory. The VOID rule com-
pletes a garbage collection process.

4.4. Erase. Erases a binary node (A B) connected to an nullary node, propa-
gating the nullary node towards both nodes A and B. The rule performs a granular,
parallel garbage collection of nets that go out of scope.

When the nullary node is a NUM or a REF, the erase rule actually behaves as
a copy operation, cloning the NUM or REF, and connecting to both ports. However,
when a copy operation is applied to a REF which contains DUP nodes, it instead
is computed as a normal call operation. This allows us to perform fast copy of
“function pointers”, while still preserving Interaction Combinator semantics.

4.5. Commute. Commutes two binary nodes of different types, essentially
cloning them. The commute rule can be used to clone data and to perform loops
and recursion, although these are preferably done via calls: Cloning large net-
works is faster through the call interaction, as it can be done in a single pass, as
opposed to the incremental commute interactions that would have to propagate
throughout the network.

4.6. Annihilate. Annihilates two binary nodes of the same type connected
to each-other, replacing them with two redexes. The annihilate rule is the most
essential computation rule, and is used to implement beta-reduction and pattern-
matching.

4.7. Operate. Performs a numeric operation between two NUM nodes N and M
connected by an OPE node. Note that N and M should not both be numeric values for
this interaction to perform a sensible numeric operation. Dispatching to different
native numeric operations depends on the N and M nodes themselves. See Numbers
(Section 6) for details.

Note than when counting the number interactions, operate 2 is not counted,
as this would cause the number of interactions to be non-deterministic.

4.8. Switch. Performs a switch on a NUM node #n connected to a SWI node,
treating it like a Nat ::= Zero | (Succ pred). Here, A is expected to be a tuple
(first reference of the term “tuple”, it’s unclear what the encoding is) with both
cases: zero and succ, and B is the return port. If n is 0, we return the zero case,
and erase the succ case. Otherwise, we return the succ case applied to n-1, and
erase the zero case.
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4.9. Interaction Table.
Since there are eight node types, there is a total of 64 possible pairwise node

interactions. The interaction rule for an active pair is uniquely determined by the
types of the two nodes in the pair. The table below shows which interaction rule
is triggered for each possible pair of nodes that form a redex. Since the interaction
rules are symmetric, this table is symmetric across the main diagonal. CON-SWI being
comm is problematic; should be removed or the reduction for swit should change.

| A\B |  VAR |  REF |  ERA |  NUM |  CON |  DUP |  OPR |  SWI |
|-----|------|------|------|------|------|------|------|------|
| VAR | LINK | LINK | LINK | LINK | LINK | LINK | LINK | LINK |
| REF | LNIK | VOID | VOID | VOID | CALL | ERAS | CALL | CALL |
| ERA | LINK | VOID | VOID | VOID | ERAS | ERAS | ERAS | ERAS |
| NUM | LINK | VOID | VOID | VOID | ERAS | ERAS | OPER | SWIT |
| CON | LINK | CALL | ERAS | ERAS | ANNI | COMM | COMM | COMM |
| DUP | LINK | ERAS | ERAS | ERAS | COMM | ANNI | COMM | COMM |
| OPR | LINK | CALL | ERAS | OPER | COMM | COMM | ANNI | COMM |
| SWI | LINK | CALL | ERAS | SWIT | COMM | COMM | COMM | ANNI |

Because for each active pair exactly one rule applies, HVM2 retains the same
strong confluence that Lafont’s Interaction Combinators do (Lafont 1997). This
implies that not only can HVM2 programs be reduced completely in parallel, but
also that the number of reductions is invariant to the order in which interaction
rules are applied. This ensures that HVM2 can reduce redexes in any order without
any risk of complexity blowups.



HVM2: A PARALLEL EVALUATOR FOR INTERACTION COMBINA-
TORS 9

5. Substitution Map & Atomic Linker
While HVM2 retains the strong confluence property of Lafont’s IC’s, locality

is more difficult to obtain. This is due to HVM2′s variables. Variables link two
different parts of the program, and thus can cause interference when two threads
attempt to reduce two redexes in parallel. For example, consider a subset of a Net:

& (a b) ~ (d c)
& (c d) ~ (f e)

Two threads attempting to reduce this Net can be represented as follows:

     Thread_0     Thread_1
--a--|\____/|--c--|\____/|--e--
--b--|/    \|--d--|/    \|--f--

Notice that in the reduction of these two redexes, both Thread_0 and Thread_1 will
need to access variables c and d. This requires synchronization.

In HVM2, there is a global collection of redexes that is mutated in parallel by
a variety of threads. See Architecture (Section 7) for details. Since every variable
occurs exactly twice, the link interaction with a variable x will also occur twice,
but possibly at very different times. The first time is when this variable is first
encountered, and somehow a substitution must be “deferred” until the link inter-
action rule is applied to the second occurrence of x.

This is accomplished by a global, atomic substitution map, which tracks these
deferred substitutions. When a variable is linked to a node, or to another variable,
it is inserted into the substitution map. When that same variable is linked again,
it will already have an entry in the substitution map, and then the proper redex
will be constructed.

The substitution map can be represented efficiently with a flat buffer, where the
index is the variable name, and the value is the node that has been substituted.
This can be done atomically, via a simple lock-free linker. In pseudocode, this
roughly looks like:
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# Attempts to link A and B.
def link(subst: Dict[str, Node], A: Node, B: Node):
    while True:
        # If A is not a VAR: swap A and B, and continue.
        if type(A) != VAR:
            swap(A, B)

        # If A is not a VAR: both are non-vars. Create a new redex.
        if type(A) != VAR:
            push_redex(A, B)

        # Here, A is a VAR. Create a `A: B` entry in the map.
        got: Port = subst.set_atomic(A, B)

        # If there was no `A` entry, stop.
        if got is None:
            break

        # Otherwise, delete `A` and link `got` to `B`.
        del subst[A]
        A = got

To see how this algorithm works, let’s consider, again, the scenario above:

     Thread_0     Thread_1
--a--|\____/|--c--|\____/|--e--
--b--|/    \|--d--|/    \|--f--

Assume we start with a substitution a ← #42, and let both threads reduce a redex
in parallel. Each thread are an ANNI rule, their effect is to link both ports; thus,
the resulting wire connected to #42 (with the wires a, d, and e labelled for clarity)
should be

#42 ---a---.         .---e---
            '---d---'

That is, e must be directly linked to #42. Let’s now evaluate the algorithm in an
arbitrary order, step-by-step. Recall that the initial Net is:

& (a b) ~ (d c)
& (c d) ~ (f e)

And for simplicity we’re observing only ports a, d, and e. Thread_0 will attempt
to perform link(a, d) and Thread_1 will attempt link(d, e). There are many
possible orders of execution:
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5.1. Possible Execution Order 1.

- a: #42
======= Thread_2: link(d, e)
- a: #42
- d: e
======= Thread_1: link(a, d)
- a: d
- d: e
======= Thread_1: got `a: #42`, thus, delete `a` and link(d, #42)
- d: #42
======= Thread_1: got `d: e`, thus, delete `d` and link(e, #42)
- e: #42

The resulting substitution map is linking e to 42, as required.

5.2. Possible Execution Order 2.

- a: #42
======= Thread_1: link(d, a)
- a: #42
- d: a
======= Thread_2: link(d, e)
- a: #42
- d: e
======= Thread_2: got `d: a`, thus, delete `d` and link(a, e)
- a: e
======= Thread_2: got `a: #42`, thus, delete `a` and link(e, #42)
- e: 42

The resulting substitution map is linking, again, e to 42, as required.

5.3. Possible Execution Order 3.

- a: #42
======= Thread_1: link(d, a)
- a: #42
- d: a
======= Thread_2: link(e, d)
- a: #42
- d: a
- e: d

In this case, the result isn’t directly linking e to #42. But it does link e to d, which
links to a, which links to #42. Thus, e is, indirectly, linked to #42. While it does
temporarily use more memory in this case, it is, semantically, the same result.
Additionally, the indirect links will be cleared as soon as e is linked to something
else. It is easy enough to see that this holds for all possible evaluation orders.
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6. Numbers
HVM2 has a built-in support for 32-bit numerics and operations represented by

the NUM node type. NUM nodes in HVM2 have a 5-bit tag and a 24-bit payload. De-
pending on the tag, numbers can represent unsigned integers (U24), signed integers
(I24), IEEE 754 binary32 floats (F24), or (possibly partially applied) operators.
These choices mean any numeric node can be represented in 29 bits, which can be
unboxed in a 32-bit port with a 3 bit tag for the node type.

6.1. Syntax.
Numeric nodes can either be a number or a (possibly partially applied) operator.

Syntactically,
<Numeric> ::=
    | <Number>
    | <Operator>

<Number> ::=
    | <Nat>
    | <Int>
    | <Float>

<Operator> ::=
    | "[" <Operation> "]"           -- (unapplied)
    | "[" <Operation> <Number> "]"  -- (partially applied)

<Operation> ::=
    | "+"   -- (ADD)
    | "-"   -- (SUB)
    | "*"   -- (MUL)
    | "/"   -- (DIV)
    | "%"   -- (REM)
    | "="   -- (EQ)
    | "!"   -- (NEQ)
    | "<"   -- (LT)
    | ">"   -- (GT)
    | "&"   -- (AND)
    | "|"   -- (OR)
    | "^"   -- (XOR)
    | ">>"  -- (SHR)
    | "<<"  -- (SHL)
    | ":-"  -- (FP_SUB)
    | ":/"  -- (FP_DIV)
    | ":%"  -- (FP_REM)
    | ":>>" -- (FP_SHR)
    | ":<<" -- (FP_SHL)

where <Int> is disambiguated from <Nat> by requiring a sign prefix +/-, and flipped
versions of non-commutative operators (FP_*) are provided for convenience.
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6.2. Numeric Node Memory Layout.
In order to understand how numeric operations are derived from the numeric

nodes, we must look at the memory layout of the different numeric values and
operations. As stated above, numeric nodes fit into 29 bits, so they can be inlined
into a 32-bit ports. Numeric nodes have the following layout

VVVVVVVVVVVVVVVVVVVVVVVVTTTTT

Where the 5-bit tag T has 19 possible values: one of the three number types (U24,
I24, F24), one of the 15 operations, or a special value SYM. The 24-bit value V has
a few possible interpretations:

• If T ∈ {U24, I24, F24}, then V is interpreted as a number with the type T.
For example: 123, -123, 1.0.

• If T ∈ <Operation>, then V is an untyped number. This is a partially applied
operation. The type of the second argument (when applied) will dictate
the interpretation of V. For example: [/123], [*-123], [%1.0].

• If T = SYM, then V ∈ <Operator>. This is an unapplied operator, like [+].

6.3. U24 - Unsigned 24-bit Integer.
U24 numbers represent unsigned integers from 0 to 16,777,215 (224 − 1).
The 24-bit payload directly encodes the integer value. For example:

0000 0000 0000 0000 0000 0001 = 1
0000 0000 0000 0000 0000 0010 = 2
1111 1111 1111 1111 1111 1111 = 16,777,215

6.4. I24 - Signed 24-bit Integer.
I24 numbers represent signed integers from −8,388,608 to 8,388,607.
The 24-bit payload uses two’s complement encoding. For example:

0000 0000 0000 0000 0000 0000 = 0
0000 0000 0000 0000 0000 0001 = 1
0111 1111 1111 1111 1111 1111 = 8,388,607
1000 0000 0000 0000 0000 0000 = -8,388,608
1111 1111 1111 1111 1111 1111 = -1

6.5. F24 - 24-bit IEEE 754 binary32 Float.
F24 numbers represent a subset of IEEE 754 binary32 floating point numbers; it

supports approximately the same range, but with less precision. The 24-bit payload
is laid out as follows:

SEEE EEEE EMMM MMMM MMMM MMMM

Where:
• S is the sign bit (1 = negative, 0 = positive)
• E is the 8-bit exponent, with a bias of 127 (range of −126 to +127)
• M is the 15-bit significand (mantissa) precision

The value is calculated as:
• If E = 0 and M = 0, the value is signed zero
• If E = 0 and M ≠ 0, the value is a subnormal number:

(−1)𝑆 × 2−126 × (0.𝑀 in base 2)
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• If 0 < E < 255, the value is a normal number:
(−1)𝑆 × 2𝐸−127 × (1.𝑀 in base 2)

• If E = 255 and M = 0, the value is signed infinity
• If E = 255 and M ≠ 0, the value is NaN (Not-a-Number)

F24 supports a range of approximately ±3.4 × 1038. The smallest positive normal
number is 2−126 ≈ 1.2 × 10−38, while the smallest subnormal numbers go down to 
2−141 ≈ 3.6 × 10−43.

6.6. Numeric Operations.
When two NUM nodes are connected by an OPE node, as shown in Interaction

Rules (Section 4), a numeric operation is performed using the op function. The
operation to be performed depends on the tags of each numeric node.

Some operations op(N, M) are invalid, and simply return 0:
• If both numeric tags are types.
• If both numeric tags are operations.
• If both numeric tags are SYM.

Otherwise:
• If one of the tags is SYM, the output has the tag represented by the SYM

numeric node and the payload of the other operand. For example,

OP([+], 10) = [+10]
OP(-1, [*]) = [*0xffffff]

• If one of the tags is an operation, and the other is a type, a native opera-
tion is performed, according to the following table:

|   | U24 | I24 | F24   |
|---|-----|-----|-------|
|ADD| +   | +   | +     |
|SUB| -   | -   | -     |
|MUL| *   | *   | *     |
|DIV| /   | /   | /     |
|REM| %   | %   | %     |
|EQ | ==  | ==  | ==    |
|NEQ| !=  | !=  | !=    |
|LT | <   | <   | <     |
|GT | >   | >   | >     |
|AND| &   | &   | atan2 |
|OR | |   | |   | log   |
|XOR| ^   | ^   | pow   |
|SHR| >>  |     |       |
|SHL| <<  |     |       |

Where empty cells are intentionally left unspecified.
The resulting number type is the same as the input type, except for comparison

operators (EQ, NEQ, LT, GT) which always return U24 0 or 1.
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The number tagged with the operation is the left operand of the native operation,
and the number tagged with the type is the right operand. For example,

op([/1.2], 3.0) = op(3.0, [/1.2]) = 1.2 / 3.0

Note that this means that the number type used in an operation is always deter-
mined by the right operand; if the left operand is of a different type, its bits will
be reinterpreted.

Finally, flipped operations (such as FP_SUB) interpret their operands in the op-
posite order (e.g. SUB represents a - b whereas FP_SUB represents b - a). This allows
representing e.g. both 1 - x and x - 1 with partially-applied operations ([-1] and
[:-1] respectively).

OP([-2], +1) = +1
OP([:-2], 1) = -1

Note that op is a symmetric function (since the order of the operands is determined
by their tags). That is, op(N, M) = op(M, N). This makes the “swap” interaction
in operate 2 valid.
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7. The 32-bit Architecture
The initial version of HVM2, as implemented in this paper, is based on a 32-bit

architecture. In this section, we’ll use snippets of the Rust reference implementa-
tion of the interpreter, available at the HVM2 repo, to document this architecture.

7.1. Memory Layout.
Ports are 32-bit values that represent a wire connected to a main port. The low

3-bits are reserved to identify the type of the node (VAR, REF, ERA, etc) whose main
port the wire is connected to. This is a port’s tag. The upper 29-bits hold a port’s
value. The interpretation of the value is dependent on the tag. The value is either
an address (for binary CON, DUP, OPR, and SWI nodes), a virtual function address (for
REF nodes), an unboxed 29-bit number (for NUM nodes), a variable name (for VAR
nodes), or 0 (for ERA nodes). Binary nodes are represented in memory as a pair of
two ports. Notice that ports store the kind of node they are connecting to, nodes
don’t store their own type.

pub type Tag = u8;  // 3 bits  (rounded up to u8)
pub type Val = u32; // 29 bits (rounded up to u32)

pub struct Port(pub Val); //  Tag + Val  (32 bits)
pub struct Pair(pub u64); // Port + Port (64 bits)

The Global Net structure includes three shared memory buffers, node: a node buffer
where nodes are allocated, vars: a buffer representing the current substitution map
(with the 29-bit key being the variable name, and the value being the current
substitution), and rbag: a collection of active redexes. APair and APort are atomic
variants of Pair and Port, respectively,

pub struct GNet<'a> {
  pub node: &'a mut [APair],
  pub vars: &'a mut [APort],
  pub rbag: &'a mut [APair],
}

Since this 32-bit architecture has 29-bit values, that means we can address a total
of 229 nodes and variables, making the node buffer at most 4 GB long, and the
vars buffer at most 2 GB long. A 64-bit architecture would increase this limit to
match the overwhelming majority of use cases, and will be incorporated in a future
revision of the HVM2 runtime.

Since top-level definitions are just static nets, they are stored in a similar struc-
ture, with the key difference that they include an explicit root port, which, is used
to connect the expanded definition its target port in the graph. We also include
a safe flag, which indicates whether this definition has duplicator nodes or not.
This affects the DUP-REF interaction, which will just copy the REF port, rather than
expanding the definition, when it is safe.

pub struct Def {
  pub safe: bool,      // has no dups
  pub root: Port,      // root port
  pub rbag: Vec<Pair>, // def redex bag
  pub node: Vec<Pair>, // def node buffer
}

https://github.com/HigherOrderCO/hvm2
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Finally, the global Book is just a map of names to Defs:
pub struct Book {
  pub defs: Vec<Def>,
}

Notice that, like variables, names are simply indexes into the global Book.
This concludes HVM2′s memory layout. For more details, check the reference

Rust implementation in the HVM2 repo.

7.2. Example Interaction Net Layout.
Consider, again, the following net:

(a b)
& (b a) ~ (x (y *))
& {y x} ~ @foo

In HVM2′s memory, it would be represented as:
RBAG | FST-TREE | SND-TREE
---- | -------- | --------
0800 | CON 0001 | CON 0002 // '& (b a) ~ (x (y *))'
1800 | DUP 0005 | REF 0000 // '& {x y} ~ @foo'
---- | -------- | --------
NODE | PORT-1   | PORT-2
---- | -------- | --------
0001 | VAR 0000 | VAR 0001 // '(a b)' node (root)
0002 | VAR 0001 | VAR 0000 // '(b a)' node
0003 | VAR 0002 | CON 0004 // '(x (y *))' node
0004 | VAR 0003 | DUP 0000 // '(y *)' node
0005 | VAR 0003 | VAR 0002 // '{y x}' node
---- | -------- | --------
VARS | VALUE    |
---- | -------- |
FFFF | CON 0001 | // points to root node

Note that the VARS buffers has only one entry, because there are no substitutions,
but we always use the last variable to represent the root port, serving as an entry
point to the graph.

7.3. Example Interaction.
Interactions can be implemented in five steps:

1. Allocate the needed resources.

2. Loads nodes from global memory to registers.

3. Initialize fresh variables on the substitution map.

4. Stores fresh nodes on the node buffer.

5. Atomically links outgoing wires.

For example, the commute interaction is implemented in Rust as:
pub fn interact_comm(&mut self, net: &GNet, a: Port, b: Port) -> bool {
  // Allocates needed resources.
  if !self.get_resources(net, 4, 4, 4) {
    return false;

https://github.com/HigherOrderCO/hvm2
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  }

  // Loads nodes from global memory.
  let a_ = net.node_take(a.get_val() as usize);
  let a1 = a_.get_fst();
  let a2 = a_.get_snd();
  let b_ = net.node_take(b.get_val() as usize);
  let b1 = b_.get_fst();
  let b2 = b_.get_snd();

  // Stores new vars.
  net.vars_create(self.v0, NONE);
  net.vars_create(self.v1, NONE);
  net.vars_create(self.v2, NONE);
  net.vars_create(self.v3, NONE);

  // Stores new nodes.
  net.node_create(self.n0, pair(port(VAR, self.v0), port(VAR, self.v1)));
  net.node_create(self.n1, pair(port(VAR, self.v2), port(VAR, self.v3)));
  net.node_create(self.n2, pair(port(VAR, self.v0), port(VAR, self.v2)));
  net.node_create(self.n3, pair(port(VAR, self.v1), port(VAR, self.v3)));

  // Links.
  self.link_pair(net, pair(port(b.get_tag(), self.n0), a1));
  self.link_pair(net, pair(port(b.get_tag(), self.n1), a2));
  self.link_pair(net, pair(port(a.get_tag(), self.n2), b1));
  self.link_pair(net, pair(port(a.get_tag(), self.n3), b2));

  return true;
}

Note that, other than the linking, all operations here are local. Taking nodes from
global memory is safe, because the thread that holds a redex implicitly owns both
trees it contains, and storing vars and nodes is safe, because these spaces have been
allocated by the thread. A fast concurrent allocator for small values is assumed.
In HVM2, we just use a simple linear bump allocator, which is fast and fragmen-
tation-free in a context where all allocations are at most 64-bit values (the size of
a single node).

8. Massively Parallel Evaluation
Provided the architecture we just constructed, evaluating an HVM2 program in

parallel is surprisingly easy: just compute global redexes concurrently, until
there is no more work to do.

HVM2′s local interactions exposes the original program’s full degree of paral-
lelism, ensuring that every work that can be done in parallel will be done in
parallel. In other words, it maximizes the theoretical speedup, per Amdahl’s law.
The atomic linking procedure ensures that points of synchronization that emerge
from the original program are solved safely and efficiently, without no room for
race conditions. Finally, the strong confluence property ensures that the total work
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done is independent of the order that redexes are computed, giving us freedom to
evaluate in parallel without generating extra work.

8.1. Redex Sharing.
An additional question, is, how do we actually distribute that workload through

all cores of a modern processor? The act of sharing a redex is, itself, a point of
synchronization. If this is done without enough caution, it can result in contention,
and slowing up execution. HVM2 solves this by two different approaches:

On CPUs, a simple task-stealing queue is used, where each thread pushes and
pops from its own local redex bag, while a starving neighbor thread actively at-
tempt to steal a redex from it. Since a redex is just a 64-bit value, stealing can
be done with a single atomic_exchange operation, making it very lightweight. To
reduce contention, and to force threads to steal “old redexes”, which are more likely
to produce long independent workloads, this stealing is done from the other end
of the bag. In our experiences, this works extremely well in practice, achieving full
CPU occupancy in all cases tested, with minimal overhead, and low impact on non-
parallelizable programs.

On GPUs, this matter is more complex in many ways. First, there are two scales
on which we want sharing to occur:

1. Within a running block, where stealing between local threads can be ac-
complished by fast shared-memory operations and warp-sync primitives.

2. Across global blocks, where sharing requires either a global synchronization
(i.e., calling the kernel again) or direct communication via global memory.

Unfortunately, the cost of global synchronization (i.e., across blocks) is very high,
so, having a globally shared redex bag, as in the C version, and accessing it within
the context of a kernel, would greatly impact performance. To improve this, we,
initially, attempted to implement a fast block-wise scheduler, which simply lets
local threads pass redexes to starving ones with warp syncs:
__device__ void share_redexes(TM* tm) {
  __shared__ Pair pool[TPB];
  Pair send, recv;
  u32*  ini = &tm->rbag.lo_ini;
  u32*  end = &tm->rbag.lo_end;
  Pair* bag = tm->rbag.lo_buf;
  for (u32 off = 1; off < 32; off *= 2) {
    send = (*end - *ini) > 1 ? bag[*ini%RLEN] : 0;
    recv = __shfl_xor_sync(__activemask(), send, off);
    if (!send &&  recv) bag[((*end)++)%RLEN] = recv;
    if ( send && !recv) ++(*ini);
  }
  for (u32 off = 32; off < TPB; off *= 2) {
    u32 a = TID();
    u32 b = a ^ off;
    send = (*end - *ini) > 1 ? bag[*ini%RLEN] : 0;
    pool[a] = send;
    __syncthreads();
    recv = pool[b];
    if (!send &&  recv) bag[((*end)++)%RLEN] = recv;
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    if ( send && !recv) ++(*ini);
  }
}

Such procedure is efficient enough to be called between every few interactions, al-
lowing redexes to quickly fill the whole block. With that, all we had to do is let the
kernel perform a constant number of local interactions (usually in the range of 29

to 213), and, once it completes, i.e., across kernel invocations, the global redex bag
was transposed (rows become columns), letting the entire GPU to fill naturally by
just the block-wise sharing function above, and nothing else. This approach worked
very well in practice, and let us achieve a peak of 74,000 MIPS in a shader-like
functional program (i.e., a “tree-map” operation).

Unfortunately, it didn’t work so well in cases where the implied communication
was more involved. For example, consider the following implementation of a purely
functional Bitonic Sort:
data Tree = (Leaf val) | (Node fst snd)

// Swaps distant values in parallel; corresponds to a Red Box
(warp s (Leaf a)   (Leaf b))   = (U60.swap (^ (> a b) s) (Leaf a) (Leaf b))
(warp s (Node a b) (Node c d)) = (join (warp s a c) (warp s b d))

// Rebuilds the warped tree in the original order
(join (Node a b) (Node c d)) = (Node (Node a c) (Node b d))

// Recursively warps each sub-tree; corresponds to a Blue/Green Box
(flow s (Leaf a))   = (Leaf a)
(flow s (Node a b)) = (down s (warp s a b))

// Propagates Flow downwards
(down s (Leaf a))   = (Leaf a)
(down s (Node a b)) = (Node (flow s a) (flow s b))

// Bitonic Sort
(sort s (Leaf a))   = (Leaf a)
(sort s (Node a b)) = (flow s (Node (sort 0 a) (sort 1 b)))

Since this is an 𝑂(𝑛 ∗ log(𝑛)) algorithm, its recursive structure unfolds in such a
manner that is much less regular than a tree-map. As such, the naive task sharing
approach had a consequence that greatly impacted performance on GPUs: threads
would give and receive “misaligned” redexes, causing warp-local threads to com-
pute different calls at any given point. For example, a given warp thread might be
processing (flow 5 (Node _ _)), while another might be processing (down 0 (Leaf
_)) instead. This divergence has the consequence of producing sequentialism in the
GPU architecture, where warp-local threads are in lockstep.

To improve this, a different task-sharing mechanism has been implemented,
which requires a minimal annotation: redexes corresponding to branching recursive
calls are flagged with a ! on the global Book. With this annotation, the GPU eval-
uator will then only share redexes from functions that recurse in a parallelizable
fashion. This is extremely effective, as it allows threads to always get “equivalent”
redexes in a regular recursive algorithm. For example, if given thread is processing
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(flow 5 (Node _ _)), it is very likely that another warp local thread is too. This
minimizes warp divergence, and has a profound impact in performance across many
cases. On the bitonic_sort example, this new policy alone resulted in a jump from
1,300 MIPS to 12,000 MIPS (9x).

8.2. Optimization: Shared Memory Interactions.
GPUs also have another particularity that, if exploited properly, can result in

significant speedups: shared memory. The NVIDIA RTX 4090, for example, in-
cludes A L1 Cache memory space of about 128KB, and GPU languages like CUDA
usually allow a programmer to manually read and write from that cache, in a shared
memory buffer that is accessible by all threads of a block. Reading and writing
from shared memory can be up to 2 orders of magnitude faster than doing so from
global memory, so, using that space properly is essential to fully harness a GPU’s
computing power.

On HVM32, we use that space to store a local node buffer, and a local subst
map, with 8192 nodes and variables. This occupies exactly 96KB, just enough to
fit most modern processors. When a thread allocates a fresh node or variable, that
allocation occurs in the shared memory, rather than the global memory. With a
configuration of 128 threads per block, each thread has a “scratchpad” of 64 nodes
and vars to work locally, with no global memory access. This is often enough to
compute long-running tail-loops, which is what makes HVM2 so efficient on shader-
like programs.

There is one problem, though: what happens when an interaction links a locally
allocated node to a global variable? This would cause a pointer to a local node to
“leak” to another block, which would then be unable to retrieve its information,
causing a runtime error. To handle this situation, we extend the LINK interaction
with a “LEAK” sub-interaction, which is specific to GPUs only. That interaction
essentially allocates a “global view” of the local node, filled with two placeholder
variables, such that one copy is local, and the other copy is global (remember:
variables are always paired). That way, we can continue the local reduction without
interruptions. If another block does get this “leaked” node, it will be filled with two
variables, which, in this case, act as “future” values which will be resolved when
the local thread links it.
^A ~ (b1 b2)
------------- LEAK
^X ~ b1
^Y ~ b2
^A ~ ^(^X ^Y)

The LEAK interaction allows us to safely work locally for as long as desired, which
has great impact on performance. On the stress test benchmark, the throughput
jumps from about 13,000 MIPS to 54,000 MIPS by this change alone.

9. Garbage Collection
Since HVM2 is based on Interaction Combinators, which are fully linear, there

is no global “garbage collection” pass required. By IC evaluation semantics alone,
data is granularly allocated as needed, and freed as soon as they become unreach-
able. This is specifically accomplished by the ERAS and VOID interactions, which
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consume sub-nets that go out of scope in parallel, clearing them from memory.
When HVM2 completes evaluation (i.e., after all redexes have been processed), the
memory should be left with just the final result of the program, and no remaining
garbage or byproduct. No further work is needed.

10. IO
TODO: explain how we do IO

11. Benchmarks
TODO: include some benchmarks

12. Translations
TODO: include example translations from high-level languages to HVM2

13. Limitations
The HVM2 architecture, as currently presented, is capable of evaluating mod-

ern, high-level programs in massively parallel hardware with near-ideal speedup,
which is a remarkable feat. That said, it has severe impactful limitations that must
be understood. Below is a list of many of these limitations, and how they can be
addressed in the future.

13.1. Only one Duplicator Node.
Since HVM2 is affine, duplicator nodes are often used to copy non-linear vari-

ables. For example, when translating the 𝜆-term λx.x+x, which is not linear (be-
cause x occurs twice), one might use a DUP node to clone x. Due to Interaction Net
semantics, though, DUP nodes don’t always match the behavior of cloning a variable
on traditional languages. This, if not handled properly, can lead to unsound re-
ductions. For example, the 𝜆-term:
C4 = (λf.λx.(f (f x)) λf.λx.(f (f x)))

Which computes the Church-encoded exponentiation 2^2, can not be soundly re-
duced by HVM2. To handle this, a source language must use either a type system
or similar mechanism to verify that the following invariant holds:

A higher-order lambda that clones its variable can not be cloned.

While restrictive, it is important to stress that this limitation only applies to cloning
higher-order functions. A language that targets the HVM can still clone data types
with no restrictions, and it is still able to perform loops, recursion and pattern-
matches with no limitations. In other words, HVM is Turing Complete, and can
evaluate procedural languages with no restrictions, and functional languages with
some restrictions. That said, this can be amended by:

1. Adding more duplicator nodes. This would allow “nested copies” of higher-
order functions. With a proper type system (such as EAL inference), this
can greatly reduce the set of practical programs that are affected by this
restriction.
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2. Adding bookkeeping nodes. These nodes, originally proposed by Lamping
(1990), allow interaction systems to evaluate the full λ-calculus with no
restrictions. Adding bookkeeping to HVM should be easy. Sadly, this has
the consequence of bringing a constant-time overhead, decreasing perfor-
mance by about 10x. Because of that, it wasn’t included in this model.

Ideally, a combination of both approaches should be used: a type-checker that flags
safe programs, which can be evaluated safely on HVM2, and a fallback bookkeeper,
which ensures sound reductions of programs that do not. Implementing such sys-
tem is outside the scope of this work, and should be done as a future extension.
[cite: the optimizing optimal evaluation paper]

13.2. Ultra-Eager Evaluation Only.
In our first implementation, HVM1, we used a lazy evaluation model. This not

only ensured that no unnecessary work was done, but also allowed one to compute
with infinite structures, like lists. Since the implementation presented here reduces
all available redexes eagerly, that means neither of these hold. For example, if you
allocate a big structure, but only read one branch, HVM2 will allocate the entire
structure, while HVM1 wouldn’t. And if you do have an infinite structure, HVM2
will never halt (because the redex bag will never be empty). This applies even to
code that doesn’t look like it is an infinite structure. For example, consider the
JavaScript function below:
foo = x => x == 0 ? 0 : 1 + foo(x-1);

In JavaScript, this is a perfectly valid function. In HVM2, if called as-is, this would
hang, because foo(x-1) would unroll infinitely, as we do not “detect” that it is in
a branch. To make recursive functions computable, the usual approach is to split
it into multiple definitions, as in:
foo   = x => x == 0 ? fooZ : foo_S(x - 1);
foo_Z = 0;
foo_S = x => 1 + foo(x-1);

Since REFs unfold lazily, the program above will properly erase the foo_S branch
when it reaches the base case, avoiding the infinite recursion.

Extending HVM2 with a full lazy mode would requires us to store uplinks, al-
lowing threads to navigate through the graph and only reduce redexes that are
reachable from the root port. While not technically hard to do, doing so would
make the task scheduler way more complex to implement efficiently, specially in
the GPU version. We reserve this for a future extension.

13.3. Single Core Inefficiency.
While HVM2 achieves near-linear speedup, allowing it to make programs run

arbitrarily faster by just using more cores (as long as there is sufficient degree
of parallelism), its compiler is still extremely immature, and not nearly as fast
as state-of-art alternatives like GCC of GHC. In single-thread CPU evaluation,
HVM2, is, baseline, still about 5x slower than GHC, and this number can grow
to 100x on programs that involve loops and mutable arrays, since HVM2 doesn’t
feature these yet.
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For example, a single-core C program that adds numbers from 0 to a few billions
will easily outperform an HVM2 one that uses thousands of threads, given the C
version is doing no allocation, while C is allocating a tree-like recursive stack. That
said, not every program can be implemented as an allocation-free, register-mutat-
ing loop. For real programs that allocate tons of short memory objects, HVM2 is
expected to perform extremely well.

Moreover, and unlike some might think, HVM2 is not incompatible with loops
or mutable types, because it isn’t a functional runtime, but one based on interac-
tion combinators, which are fully linear. Extending HVM2 with arrays is as easy
as creating nodes for it, and implementing the interactions, and can be done in a
timely fashion as a fork of this repository. Similarly, loops can be implemented by
optimizing tail-calls. We plan to add such optimization soon.

Finally, there are many other low-hanging fruits that could improve HVM2′s
performance considerably. For example, currently, we do not have native construc-
tors, which means that algebraic datatypes have to be λ-encoded, which brings a
2x-5x memory overhead. Adding proper constructors and eliminating this overhead
would likely bring a proportional speedup. Similarly, adding more numeric types
like vectors would allow using more of the available GPU instructions, and adding
read-only types like immutable strings and textures with 1-interaction reads would
allow one to implement many algorithms that, currently, wouldn’t be practical,
specially for graphics rendering.

13.4. 32-bit Architecture Limitations.
Since this architecture is 32-bit, and since 3 bits are reserved for a tag, that leaves

us with a 29-bit addressable space. That amounts for a total of about 500 million
nodes, or about 4 GB. Modern GPUs come with as much as 256 GB integrated
memory, so, HVM2 isn’t able to fully use the available space, due to addressing
constraints. Moreover, its 29-bit unboxed numbers only allow for 24-bit machine
ints and floats, which may not be enough for many applications.

All these problems should be solved by extending ports to 64-bit and nodes
to 128-bits, but this requires some additional considerations, since modern GPUs
don’t come with 128-bit atomic operations. We’ll do this in a future extension.

13.5. More.
Work In Progress

14. Conclusion
By starting from a solid, inherently concurrent model of computation, Interac-

tion Combinators, carefully designing an efficient memory format, implementing
lock-free concurrent interactions via lightweight atomic primitives, and granularly
distributing workload across all cores, we were able to design a parallel compiler and
evaluator for high-level programming languages that achieves near-linear speedup
as a function of core count. While the resulting system still has many limitations,
we proposed sensible plans to address them in the future.

This work creates a solid foundation for parallel programming languages that
are able to harness the massively parallel capabilities of modern hardware, with-
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out demanding explicit low-level management of threads, locks, mutexes and other
complex synchronization primitives by the programmer.
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