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Abstract
This report covers the process of creating coinflip, a Python library

for randomness testing, which also includes a command-line interface.
After the introduction, the following sections detail various aspects

of implementing coinflip. A final evaluation is found at the end, with
references and appendix items following suit.

Note the code SP800-22 refers to the NIST paper [1] which was
referenced heavily when implementing coinflip. A copy is avail-
able at https://csrc.nist.gov/publications/detail/sp/800-22/
rev-1a/final.
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1 Introduction
Random number generators (RNGs) can be used for tasks which require
unpredictability, namely cryptographic applications. RNG algorithms can
incorporate phenomena that is currently understood to be random as en-
tropy sources, such as thermal fluctuations and atom decay. Further assur-
ances should be made on a RNGs’ unpredictability however, due to possible
erroneous observations of such phenomena or misapplication of observations
in the algorithm’s logic.

Statistical tests exist to test for randomness for such assurances. These
are hypothesis tests, identifying some property of a sample output from the
RNG represented in a test statistic, which is compared to a hypothetically
truly random sequence. A p-value results from these tests, suggesting the
probability that a truly random sequence would have the characteristics of
the RNG output—the lower the p-value, the less confident one can say the
RNG is truly random.

Some software suites exist that implement these statistical tests on user-
provided generator binary outputs. Two comprehensive and widely-used
suites are TestU01 [2] and National Institute of Standards and Technology’s
(NIST) Statistical Test Suite [1] (referred to as sts).

In my own use of these suites’ command-line interfaces, I have experi-
enced varying degrees of frustration when running randomness tests over
RNG output. In particular, there is exploration to be had on how the pro-
cess of translating one’s RNG output to a machine-readable format could
be made easier (3.1).

I also found results of running tests in these suites typically comprising
of just the test’s statistic and p-value, which makes the usefulness of these
suites tied to one’s own expertise of how the tests work. Beyond writing more
descriptive result messages, the use of graphical charts could be leveraged
to educate on the test-specific logic to general statistical theory (2.2.1).

Whilst these suites are open source projects, frustrations in the actual
code and architecture of these suites accumulate into significant maintenance
issues, preventing such extensions to be easily added. Sometimes the un-
questioning use of scientific material itself actively caused confusion (2.1.2),
but namely there were suite-specific gripes that led me to write my own.
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Python was employed, primarily due to my own familiarity with the
language and its ecosystem. Qualities such as its readable syntax and duck
typing (2.1.1) allows for code to better express high-level logic. Mature
packages bring this expressive quality to more bespoke tasks, such as pandas
[3] for many statistical tasks required by randomness tests, and Click [4] for
designing a command-line interface (3).

The rest of this report details the implementation of this suite, titled
coinflip. It is named in relation to the fact that truly random binary se-
quences would be equivalent to consecutive (fair) coin flips.

2 Randomness tests
The focus of coinflip was to implement the statistical tests recommended by
NIST’s own paper [1] that underlies their statistical test suite sts, as most
tests documented come with walked-through examples to make implement-
ing them easier. The paper will be referred to as it’s internal publication
code SP800-22.

All the tests are available in the coinflip.randtests subpackage
(structure described in section 2.3.4), where randtests stands for randomness
tests.

2.1 Generalising solutions

NIST’s specified randomness tests were detailed with taking binary se-
quences as input—where binary implies any 2 distinct values. However
practically they were implemented to only accept sequences with integer
values of 0 and 1.

This lead to the opportunity of implementing tests that accepted any
binary sequence. This would be particularly useful in eliminating frustrating
situations for users, where passed input that should work does not, and
remove the need for prior conversions.

2.1.1 Sequence representation

The Python package pandas [3] was employed for its Series data structure,
which represent one-dimensional arrays. Series objects contain numerous
useful methods for data science tasks, made performative due to internal
memory optimisations of the underlying data.
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As Series can hold basically any kind of continuous data, the main con-
sideration of tests accepting any binary sequences was that the sequence was
indeed binary (contained 2 and only 2 distinct values). This was achieved
by use of nunique() method, which returns the count of distinct values.

def example_randtest(series, ...):
if series.nunique() != 2:

raise NonBinarySequenceError()
...

Listing 1: If distinct values count of the sequence is not 2 (i.e. is not binary),
an error is raised.

To further reduce user friction, we can also make the tests accept any
data type that represents a binary sequence. In Python 3, this specifically
means the object passed as the sequence implements an Iterable protocol,
i.e. object can be iterated upon.

The pandas Series can be initialised with such objects, so we can convert
the passed sequence to a Series. Conversely, this lets the randomness tests
to internally work with a standard type (the Series), whilst accepting many
possible sequence representations (e.g.: lists, iterators, generators, ndarrays)
as long as they implement the idiomatic Iterable interface.

def example_randtest_public(sequence, ...):
if isinstance(sequence, pd.Series):

series = sequence
else:

series = pd.Series(sequence)
...

Listing 2: If a sequence is not a Series, we initialise the sequence as one.

2.1.2 Revising test logic

As mentioned previously, NIST created their own randomness test suite
sts to implement the SP800-22 randomness tests. In reviewing the code of
other SP800-22 implementations, many code idioms of sts persist. Infact,
the SP800-22 paper explicitly specifies how to actually implement their tests.
But in creating generalised randomness tests to binary sequences, many of
the implementation details need reworking.
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1. The zeros and ones of the input sequence (ε) are converted to values of
1 and +1 and are added together to produce Sn = X1+X2+ ...+Xn,
where Xi = 2εi − 1.
e.g. if ε = 1011010101, then n = 10 and Sn = 1+(−1)+1+1+(−1)+
1 + (−1) + 1 + (−1) + 1 = 2.

Figure 1: The first step SP800-22 provides in its walkthrough of how the
Monobits test works.

For example, in the Monobits test specification in SP800-22 (pp. 24-
25), there is a concept of proportion between the two values in the inputted
sequence (0 and 1). SP800-22 states that to find this proportion a variable
Sn needs to be calculated, where the 0 values should be replaced with the
value -1, and the new sequence of -1 and 1 values should all be summed
up together.

def monobits(bits):
prop = 0
for bit in bits:

if bit == 1:
prop += 1

else:
prop -= 1
...

Listing 3: An interpretation of the method specified in figure 1 to find the
proportion of 0 and 1 in a sequence.

However this method will not work with sequences that do not contain
0 and 1 values. But on inspection, the resulting value Sn is simply the
difference in the count of one value with the other value. This means the
test can find the counts of the values and then find the difference afterwards.

Idioms like in the Monobits test specification persist throughout SP800-
22. In writing generalised randomness tests, they have had to be replaced
with new processes that never relate to the values of the inputted sequence.
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def monobits(series):
counts = series.value_counts()
diff = abs(counts.iloc[0] - counts.iloc[1])
...

Listing 4: The general solution used to find the proportion of the two values
in a binary sequence. The value_counts() method in pandas Series tallies
the counts of every value into a new Series.

2.1.3 Candidates

SP800-22 describes and implements some randomness tests which specifi-
cally depend on the actual values of the sequence, where the values were
only assumed to be 0 and 1.

To meet the goal of implementing these tests to work with sequences that
do not contain 0 and 1, a new concept had to be created called candidates.
A candidate was a value present in the sequence, which took place of the 1
value referred to in SP800-22, and subsequently the non-candidate could be
represent SP800-22’s 0 value.

def discrete_fourier_transform(series, candidate):
peaks = candidate
trough = next(value for value in series.unique() if value != candidate)

oscillations = series.map({peaks: 1, trough: -1})
fourier = fft(oscillations)
...

Listing 5: The Discrete Fourier Transform test treats the candidate as
the peak of a wave and the other value as the trough, to represent the
oscillations of a sequence for a subsequent Fourier transformation.

To prevent confronting users with the necessary but confusing candidate
concept, the candidate argument to the implemented randomness tests was
made an optional keyword argument. If it wasn’t specified, a deterministic
method infer_candidate() was used to pick a value as a candidate. This
method is always used for inference in the tests, so the candidate value is
always consistent for a given sequence.

9



def infer_candidate(unique_values):
try:

candidate = max(unique_values)
except TypeError:

candidate = unique_values[0]

return candidate
...
def example_randtest(series, candidate=None ...):

if candidate is None:
unique_values = series.unique()
candidate = infer_candidate(unique_values)
...

Listing 6: The infer_candidate() method body, and an example of a
randomness test calling it when no candidate is passed. Using the unique()
method from pandas Series returns a list of distinct values.

2.2 Randomness test output

A user with no knowledge of the randomness tests will find the p-value itself
completely useless in understanding the properties of the RNG output being
tested; potentially they believe their output "passed" the tests in that its p-
value was over a threshold such as of 0.05 (NIST recommends 0.01), but be
none-the-wiser about issues with how they’ve used the tests.

In implementing a given randomness test, the specific task of finding the
correct p-value was only a first step. Care is given to explain to the user how
the test works, what input the test can accept, and what NIST recommends
on the test’s use.

2.2.1 Results

All implemented tests return an object that contains the test-related vari-
ables, including the statistic and p-value. This way, users can access inter-
esting variables at any time after running the test, as opposed to only seeing
them during the tests execution via logging.
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To create the classes of these objects, the code generator dataclass from
Python’s standard library is used. The @dataclass decorator offer many
conveniences to create classes which primarily are data containers, namely
in automating __init__ methods to initialise with the type-hinted variables
defined in the class variable namespace.

from dataclasses import dataclass

@dataclass
class TestResult:

statistic: Union[int, float]
p: float
...

...
def monobits(series):

n = len(series)
counts = series.value_counts()
diff = abs(counts.iloc[0] - counts.iloc[1])
normdiff = diff / sqrt(n)
p = erfc(normdiff / sqrt(2))

return MonobitsTestResult(normdiff, p, n, diff, counts)

@dataclass
class MonobitsTestResult(TestResult):

counts: pd.Series
n: int
diff: int
...

Listing 7: The parent TestResult class, and the Monobits test method
returning the MonobitsTestResult that hold its test constants.

As the returned result is of a class specific to the respective random-
ness test, a custom __str__ method can be defined, which is the idiomatic
Python method for string representation of objects. This allows the result
to be formatted in a human-readable and descriptive fashion when the result
object is printed.
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»> from coinflip.randtests import monobits
»> result = monobits([1, 0, 1, 1, 0, 1, 0, 1, 0, 1])
»> result
MonobitsTestResult(statistic=0.6324555320336759, p=0.5270892568655381,
counts={1: 6, 0: 4}, n=10, diff=2)
»> result.p
0.5270892568655381
»> print(result)
normalised diff 0.632
p-value 0.527

value count
~~~~~~~ ~~~~~~~
1 6
0 4

Listing 8: The monobits method returning a MonobitsTestResult, and
examples of how it could be interacted with.

For the MonobitsTestResult specifically, integration of the chart ren-
dering library matplotlib [5] was prototyped. The methods plot_counts()
and plot_reference_dist() generate chart objects in relation to the vari-
ables of the specific test run, and users of notebooks with matplotlib support
(such as Jupyter Notebook [6]) will have the charts automatically render on
screen when the respective plot methods are called.

A report generating method was also prototyped in report(), which
generates HTML markup that explains to the user how the test worked,
relating to the variables of the specific test run. The charts are also included
in the markup as embedded SVG images. An example of the output can be
found in appendix A.
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Figure 2: Example output of the plot_counts() method in
MonobitsTestResult.
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from base64 import b64encode
from io import BytesIO
from matplotlib.figure import Figure
...
@dataclass
class TestResult:

...
@classmethod
def _markup(cls, item):

...
elif isinstance(item, Figure):

base64 = fig2base64(item)

return f"<img src='data:image/svg+xml;charset=utf-8;base64, {base64}' />"

def fig2base64(fig):
binary = BytesIO()
fig.savefig(binary, format="svg")

binary.seek(0)
base64_bstr = b64encode(binary.read())
base64_str = base64_bstr.decode("utf-8")

return base64_str

Listing 9: The class method _markup(), which returns the appropriate
HTML markup of atomic items, depending on the item’s type. For mat-
plotlib Figure chart objects, the fig2base64() method converts the item
to a binary representation of the SVG-equivalent markup of the chart, and
then encodes it in a base64 string. This string can be directly embedded in
HTML documents and will render appropriately.

A vision for coinflip would be to have these respective chart and report
methods for every randomness tests’ result object. The report markups
could be combined into a singular report on the same RNG output, being a
learning opportunity to those not familiar with how all the randomness tests
work—and even aid those not familiar with hypothesis testing in statistics
generally.
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Exception TestError

TestNotImplementedError

TestInputError

MinimumInputError

CandidateNotInSequenceError

NonBinarySequenceError

TruncatedNonBinarySequenceError

Figure 3: Exception tree for the coinflip.randtests subpackage.

2.2.2 Exceptions

The SP800-22 randomness tests can often accept input but fail to process it,
so exceptions are raised to halt the test and communicate to the user what
went wrong.

Custom exceptions were made for specific scenarios, to allow for con-
trol over the messaging and allow other programs only catch the particular
scenarios they want to (via the except clause). A base error TestError
parents all errors in the randomness tests, allowing for except clauses to
cover all test-related errors.

All exceptions implement a __str__ method. As exceptions are objects,
they are initialised, and so can be passed values via the __init__ too, which
allows error messages can specify the parameters involved.
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class MinimumInputError(TestInputError):
def __init__(self, n, min_input):

self.n = n
self.min_input = min_input

def __str__(self):
return (

f"Sequence length {self.n} is below "
f"required minimum of {self.min_input}"

)
...
def example_randtest(series, ...):

min_input = 128
n = len(series)
if n < min_input:

raise MinimumInputError(n, min_input)

Listing 10: As the MinimumInputError error relates to n and min_input,
the error can be initialised with these values to give a specific message to
the user.

2.2.3 Warnings

SP800-22 recommends a minimum input size for all tests, which presented
an opportunity to programactically warn users when their sequence is below
the recommended input rec_input.

rec_input = 1024

def example_randtest(series, ...):
n = len(series)
if n < rec_input:

warn(
f"Sequence length {n} below NIST "
"recommended minimum of {rec_input}"

)

Listing 11: Warn user when sequence length n is below recommended input
rec_input.
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SP800-22 suggests more complex recommendations too, where parame-
ters of tests should fit certain criteria, relative to the parameters themselves.

The method check_recommendations() was created to be passed a dic-
tionary of string representations of the recommendations (the keys), and
whether the recommendations passed or not (the values). After the tests
decided set their parameters, tests can call this method with a dictionary
that is evaluated on-the-fly, and the appropriate warnings are made.

def check_recommendations(recommendations):
failures = [expr for expr, success in recommendations.items() if not success]

msg = "NIST recommendations not met:\n"
msg += "\n".join([f"\t {expr}" for expr in failures])
warn(msg)

...
def frequency_within_block(series, ..., blocksize=8):

n = len(series)
nblocks = n // blocksize

check_recommendations({
"blocksize 20": blocksize >= 20,
"blocksize > 0.01 * n": blocksize > 0.01 * n,
"nblocks < 100": nblocks < 100,

})
...

Listing 12: Simplified check_recommendations() method, and an example
of the Frequency within Block test using it.

2.3 Code health

Great care was taken to abstract the mechanisms of the randomness tests,
making the literal code of the tests’ methods to only be concerned with the
top-level logic of the test, and not clunky implementation details.

This separation of concerns kept navigation of the code repository sensi-
ble as features were added. This was especially helpful when bugs appeared,
as particular aspects of coinflip were isolated for easier review and fixing.
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2.3.1 Refactoring test methods

Common patterns in all the randomness tests emerged whilst developing the
test suite:

1. Iterable-to-Series conversion logic (listing 2)

2. Checking the passed sequence contains 2 distinct values (listing 1)

3. Checking the passed sequence is above test-specific absolute minimum
input (listing 10)

4. Warning the passed sequence is below test-specific recommended input
(listing 11)

A decorator factory @randtest() was created to refactor all of these
processes. Patterns 1 and 2 are independent of user input, but 3 and 4 de-
pend on the specific test, and so @randtest() can be called with min_input
and rec_input arguments to specify the corresponding behaviour.

Another common process was the inferring of candidate values if not
specified (listing 6), which could also be refactored via a decorator, and so
@elected was made.
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def randtest(min_input=2, rec_input=2):
def decorator(func):

def wrapper(sequence, *args, **kwargs):
if isinstance(sequence, pd.Series):

series = sequence
else:

series = pd.Series(sequence)

if series.nunique() != 2:
raise NonBinarySequenceError()

n = len(series)
if n < min_input:

raise MinimumInputError(n, min_input)
if n < rec_input:

warn(
f"Sequence length {n} below NIST "
"recommended minimum of {rec_input}"

)

result = func(series, *args, **kwargs)

return result

return wrapper

return decorator
...
@randtest(min_input=4, rec_input=387840)
def maurers_universal(series, ...):

...

Listing 13: The decorator factory @randtest(), and an example of its usage
in the Maurer’s Universal test.
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def elected(func):
def wrapper(series, *args, candidate=None, **kwargs):

values = series.unique()
if candidate is None:

candidate = infer_candidate(values)
else:

if candidate not in values:
raise CandidateNotInSequenceError()

result = func(series, *args, candidate=candidate, **kwargs)

return result

return wrapper
...
@randtest(min_input=8, rec_input=100)
@elected
def frequency_within_block(series, candidate, ...):

...

Listing 14: The @elected decorator, and an example of its usage in the
Frequency within Block test.

2.3.2 Custom containers

SP800-22 specified default parameters for some randomness tests, given the
sequence length n was in a given range. NIST’s implementations and others
would create if-else blocks to capture the correct n and specify the default
parameters.

Given the number of n ranges, if and else statements, and variable
assignments (i.e. blocksize = 8), the code involved was confusing to read
and detracted from implementing and maintaining the actual test logic.

As defaults were essentially a dictionary of minimum n range (the keys)
to default parameters (the values), the defaults could be declared as a
Python dict. By subclassing dict to make passed keys round down to the
nearest minimum to create a FloorDict, the defaults dictionary n_defaults
could be accessed with any n value, and return the appropriate default pa-
rameters.
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class FloorDict(dict):
def __missing__(self, key):

prevkey = None
for realkey, value in self.items():

if key < realkey:
if prevkey is None:

raise KeyError()
return super().__getitem__(prevkey)

prevkey = realkey
else:

return super().__getitem__(prevkey)
...
class Params(NamedTuple):

blocksize: int
init_nblocks: int

n_defaults = FloorDict({
387840: Params(6, 640),
904960: Params(7, 1280),
...
1059061760: Params(16, 655360),

})

def maurers_universal(series, ...):
n = len(series)
blocksize, init_nblocks = n_defaults[n]
...

Listing 15: The FloorDict floors non-existent keys to the nearest real key.
Use of FloorDict in the Maurer’s Universal test. Declaring n_defaults in
such a way allows an idiomatic approach to defaulting parameters.
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In implementing the Longest Run within Block test, a similar problem
occurred.

SP800-22 describes bins for maxlen, the length of the longest run (un-
interrupted sequence of the same value) within a block. When maxlen was
below the smallest bin interval, the count for the smallest interval bin was
incremented (maxlen is rounded up). Subsequently, when maxlen above the
largest bin interval, the count for the largest bin was incremented (maxlen
is rounded down).

Like with implementing default parameters, using functional methods
(i.e. if and else statements) made implementing the test confusing and
would lead to less maintainable code. Conversely, the problem of increment-
ing the correct bin count could be defined in terms of a dict of intervals
(the keys) with initial counts of 0 (the values).

Incrementing the correct bin count when the passed key was out of range
was handled by a RoundingDict, which wrapped the dict getter and setter
methods to round these keys. A custom constructor can pass the desired
range of intervals and initialise them with values of 0, which was imple-
mented in the Bins container that subclasses RoundingDict.
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class RoundingDict(dict):
def _roundkey(self, key):

realkeys = list(self.keys())
minkey = realkeys[0]
midkeys = realkeys[1:-1]
maxkey = realkeys[-1]

if key <= minkey:
return minkey

elif key in midkeys:
return key

elif key >= maxkey:
return maxkey

else:
raise KeyError()

def __setitem__(self, key, value):
realkey = self._roundkey(key)
super().__setitem__(realkey, value)

def __getitem__(self, key):
realkey = self._roundkey(key)
return super().__getitem__(realkey)

class Bins(RoundingDict):
def __init__(self, intervals):

empty_bins = {interval: 0 for interval in intervals}
super().__init__(empty_bins)

Listing 16: The RoundingDict and Bins implementations.
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from coinflip.randtests._collections import Bins
...
def longest_runs(series, ...):

..., intervals = n_defaults[n] # intervals = [1, 2, 3, 4]
maxlen_bins = Bins(intervals) # maxlen_bins = {1:0, 2:0, 3:0, 4:0}
...
for block in blocks(series, ...):

maxlen = ... # maxlen = 6
maxlen_bins[maxlen] += 1 # maxlen_bins[6] += 1
... # maxlen_bins = {1:0, 2:0, 3:0, 4:1}

Listing 17: Use of Bins to in the Longest Runs within Block test to succinctly
increment the correct bin count with any maxlen value.

2.3.3 Removing magic numbers

Whilst SP800-22 does explain test-logic, it sometimes only elicits the gen-
eral idea of the test and not demonstrate the mathematical theories that
underly constants used in calculating test variables. This is not a problem
for simply implementing the tests, but is insufficient when meeting the goal
of explaining results (section 2.2.1), where the theories should be expressed
programactically themselves, and respective formulas should be used to cal-
culate the respective test variables.

SP800-22 does always provide references for where constants were taken
from, which means further investigation should lead to any formulas used.
However, these references are not necessarily freely accessible online, mean-
ing further exploration has to be done.

For example, in the Longest Run within Block test, SP800-22 specifies
probabilities of the longest consecutive run in a block to be of a certain
length maxlen, given the size of a block blocksize (further explanation in
section 2.3.2).

The citation given for these values was Random Walk in Random and
Non-Random Environments [7], which was practically inaccessible, and so
reproducing the values of table 1 was a goal set in the spirit of exploring
how the test works.

This eventually lead to reproducing the distributions of the maxlen in
every permutation of a binary sequence in a notebook session (see appendix
B). The number of each maxlen occurrences could be divided by the total
number of permutations to calculate the same probabilities in table 1.
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Table 1: Probabilities provided by SP800-22 for the Longest Run within
Block test when maxlen of a block is in a certain interval, given a blocksize
of 8.

maxlen Probability
≤1 0.2148
2 0.3672
3 0.2305
≥4 0.1875

Figure 4: Distribution of maxlen in every permutation of a binary sequence
with a blocksize of 8.
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A correct understanding of how these probabilities were calculated al-
lowed the specificity in searching the web, leading to a particular explana-
tion [8] which provided the necessary theory and a formula to calculate such
probabilities.

Note this has yet to be implemented, due to the further exploration
needed in SP800-22 specifications for certain maxlen intervals per blocksize
(e.g. find out why they use the ≤1, 2, 3, and ≥4 maxlen bins when
blocksize is 8).

2.3.4 Package structure

The randomness tests are all defined in the coinflip.randtests sub-
package. Conversely all related code is in the src/coinflip/randtests/
folder—a full directory tree is available in appendix C.

Randomness tests of a similar nature, such as the Runs and Longest Run
within Block tests, had their methods stored in the same submodule (e.g.
runs.py). This was generally useful for organisation, but also some specific
helper methods and classes could be encapsulated in these modules (e.g. the
asruns() method in runs.py).

All other helpers are in the submodules that start with an underscore
_, where related modules were kept in the same submodule. These files
represent the common library for the randomness tests.

The coinflip.randtests subpackage imports all the randomness tests
to it’s top-level namespace, which means importing it will not expose any
submodules, only the test methods. This definitive assortment of random-
ness tests is utilised in the coinflip CLI (section 3.2), and also establishes a
public API to access the tests for notebook users and developers.
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from coinflip.randtests.fourier import discrete_fourier_transform
from coinflip.randtests.frequency import frequency_within_block
from coinflip.randtests.frequency import monobits
from coinflip.randtests.matrix import binary_matrix_rank
from coinflip.randtests.runs import longest_runs
from coinflip.randtests.runs import runs
from coinflip.randtests.template import non_overlapping_template_matching
from coinflip.randtests.template import overlapping_template_matching
from coinflip.randtests.universal import maurers_universal

__all__ = [
"monobits",
"frequency_within_block",
"runs",
"longest_runs",
"binary_matrix_rank",
"discrete_fourier_transform",
"non_overlapping_template_matching",
"overlapping_template_matching",
"maurers_universal",

]

Listing 18: The contents of __init__.py in the coinflip.randtests sub-
package.
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Table 2: Responsibilities of submodules in src/coinflip/randtests/.

File Responsibilities
fourier.py Discrete Fourier Transform test
frequency.py Monobits and Frequency within Block test
matrix.py Binary Matrix Rank test
runs.py Runs and Longest Run within Block tests
template.py (Non-)Overlapping Template Matching tests
universal.py Maurer’s Universal test
_collections.py Custom contains (2.3.2)
_decorators.py Test method refactoring (2.3.1)
_exceptions.py Base and common exceptions (2.2.2)
_pprint.py Pretty printing sequences
_result.py TestResult (2.2.1)
_tabulate.py Table string formatting
_testutils.py Common methods for test logic
__init__.py Import hacking of test methods
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3 Command-line interface
The Python package Click [4] is used to define the commands of coinflip.
Methods represent commands, with decorators defining the arguments and
options of the command, and docstrings defining help text.

from click import group, argument, option
...
@group()
def main():

pass
...
@main.command()
@argument("store", ...)
@option("-t", "––test", ...)
def run(store, test):

"""Run randomness tests on data in STORE.

Results of the tests run are saved in STORE, which can be compiled into
a rich document via the report command.
"""
...

Listing 19: Simplified main() method which groups other commands to-
gether in the CLI, and simplified run() method which represents the
coinflip run command.

All command methods are kept in the cli.py module, but the store
(section 3.1) and test running (section 3.2) functionality is assigned to the
store.py and tests_runner.py submodules respectively—a full directory
tree is available in appendix C. Even though this functionality is for the
exclusive use of cli.py, it was found easier to maintain the store and test
running logic when they were isolated into their own files.

Beyond declaring the CLI commands themselves, cli.py is simply re-
sponsible for all subsequent communication to the user. This includes han-
dling the warnings and errors of the storing and test running methods, so
that human-readable messages are printed—not the verbose and noisy trace-
backs of the Python interpreter.
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$ coinflip -h
Usage: coinflip [OPTIONS] COMMAND [ARGS]...

Randomness tests for RNG output.

Output of random number generators can be parsed and serialised into a
test-ready format via the load command. The data is saved in a folder,
which coinflip refers to as a "store". This store is located in the local
data directory, but can be easily accessed via the store's name in coinflip
commands.

Randomness tests can then be ran over the store's data via the run
command. Rich documents explaining the test results can be produced via
the report command.

Options:
-h, ––help Show this message and exit.

Commands:
cat Print contents of data in STORE.
example-run Run randomness tests on example data.
load Loads DATA into a store.
local-run Run randomness tests on DATA directly.
ls List all stores.
report Generate html report from test results in STORE.
rm Delete STORE.
rm-all Delete all stores.
run Run randomness tests on data in STORE.

Listing 20: Automatically generated description of the coinflip command-
line interface.
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$ coinflip run -h
Usage: coinflip run [OPTIONS] STORE

Run randomness tests on data in STORE.

Results of the tests run are saved in STORE, which can be compiled into a
rich document via the report command.

Options:
-t, ––test <test> Specify single test to run on data.
-h, ––help Show this message and exit.

Listing 21: Description of the coinflip run command.

import warnings
from colorama import Fore, Style
...
warn_txt = Fore.YELLOW + "WARN" + Fore.RESET

def formatwarning(msg, *args, **kwargs):
return Style.DIM + f"{warn_txt} {msg}\n" + Style.RESET_ALL

warnings.formatwarning = formatwarning

Listing 22: Monkey patching of Python’s warning module to use a custom
formatwarning() method, which pretty prints warnings.

from click import echo
...
err_txt = Fore.RED + "ERR!" + Fore.RESET

def echo_err(e: Exception):
line = f"{err_txt} {e}"
echo(line, err=True)

Listing 23: The echo_err() method, which pretty prints exceptions.

31



Figure 5: Example terminal use of the coinflip CLI.

3.1 Stores

A store is simply an abstraction of the concept that pairs of binary sequences
and their test results should be kept together and made distinct from other
such pairs.

Operating systems in the Windows, Mac and Linux ecosystems all have
directories meant for the use of user data in third-party applications. In the
CLI, stores represent folders in these user data directories.

The Python package appdirs [9] provides a cross-platform abstraction to
operating system directories, including the user data directory. Internally
the user data directory is referred to as data_dir, which is a Python Path
object that represents to app folder’s location in the filesystem.

One reason for this store abstraction is to enforce a tidy filesystem for
the user.
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$ coinflip ls
$ coinflip load binary_sequence.txt
Store name to be encoded as store_20200721T093641Z
Data stored successfully!
...
$ coinflip ls
store_20200721T093641Z

Listing 24: Using the coinflip ls command, there are initially no stores.
Loading RNG output via the coinflip load command, the subsequent call
of coinflip ls shows that there is now a store of the aforementioned RNG
output.

$ ls $HOME/.local/share/coinflip
$ coinflip load binary_sequence.txt
Store name to be encoded as store_20200721T093641Z
Data stored successfully!
...
$ ls $HOME/.local/share/coinflip
store_20200721T093641Z

Listing 25: Using GNU’s ls command on coinflip’s user data directory on
Ubuntu, there are initially no folders representing stores. Loading RNG
output via the coinflip load command, the subsequent call of ls shows
that there is now a folder representing a store.

from appdirs import AppDirs
...
dirs = AppDirs(appname="coinflip", appauthor="MatthewBarber")
data_dir = Path(dirs.user_data_dir)

try:
Path.mkdir(data_dir, parents=True)

except FileExistsError:
pass

Listing 26: The appdirs package being used to identify the user data direc-
tory, and create a folder for the coinflip app if it does not already exist.
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The results being stored somewhere is very helpful, because whilst the
CLI may output all the necessary info, it can be tedious for users to store
such output if they’re not familiar with workflows to store standard output
(e.g. coinflip run my_store > results.txt in bash).

In the other suites, randomness tests are run directly on a file containing
RNG output, which became confusing when multiple invocations of the tests
are run—the suites can only guess where to place the results are (e.g. a
log.txt file).

An abstraction to access the results enforces an app-specific user data
directory as the canonical location of results, which can also be conveniently
accessible via the coinflip CLI itself.

Another important reason for store abstractions is the step-by-step pro-
cess of running tests it allows. Often a source of frustration is ensuring
the actual RNG output is being correctly handled by the suite. Having the
command coinflip load isolates this process, so new users can get to grips
with how their RNG output should be formatted—if their first attempt fails,
the only error messages given are specific to the process of loading the RNG
output.

$ coinflip load -h
Usage: coinflip load [OPTIONS] DATA

Loads DATA into a store.

DATA is a newline-delimited text file which contains output of a random
number generator. The contents are parsed, serialised and saved in local
data.

The stored data can then be applied the randomness tests via the run
command, where the results of which are also saved.

Options:
-n, ––name TEXT Specify name of the store.
-d, ––dtype <dtype> Specify data type of the data.
-o, ––overwrite Overwrite existing store with same name.
-h, ––help Show this message and exit.

Listing 27: Description of the coinflip load command.
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Someone familiar with a tool such as coinflip can come to prefer a sin-
gle step to run a test on RNG output and output the results, and so the
coinflip local-run command was made to combine steps.

$ coinflip local-run -h
Usage: coinflip local-run [OPTIONS] DATA

Run randomness tests on DATA directly.

Options:
-d, ––dtype <dtype> Specify data type of the data.
-t, ––test <test> Specify single test to run on data.
-h, ––help Show this message and exit.

Listing 28: Description of the coinflip local-run command.

The store abstraction would also useful if the HTML report concept
(section 2.2.1) came to fruition. A command such as coinflip report
could generate the final report file (i.e. report.html) and automatically
open it in the users preferred browser (Python’s webbrowser module in its
standard library can handle this in all platforms).

3.1.1 Loading in RNG output

A user "loading" their RNG output is infact initialising store with that RNG
output serialised as a pandas Series.

The RNG output is first parsed. pandas provides a read_csv() method
that can smartly assess the contents and load it into a pandas DataFrame.
The method assumes columnar data, but as the RNG output should be a
single continuous sequence, an error is raised if multiple columns are parsed.
Like in listing 1, the resulting Series is checked to be a binary sequence.

If the data is successfully parsed, a store is then initialised. If a name
is provided by the --name option for the coinflip load command, that is
sanitised and used as the store’s name; otherwise a name is generated that
includes a ISO-8601 [10] formatted timestamp. A check is made if a store of
the same name already exists, in which case an error is raised. If however
the --overwrite flag is used, the old store is overwritten with the new RNG
output.
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def parse_data(data_file):
df = pd.read_csv(data_file, header=None)

ncols = len(df.columns)
if ncols > 1:

raise MultipleColumnsError(ncols)
series = df.iloc[:, 0]

if series.nunique() != 2:
raise NonBinarySequenceError()

return series

Listing 29: Simplified parse_data() method, which reads from file contain-
ing RNG output and produces a representative pandas Series. Checks are
made to ensure the RNG output is a single continuous binary sequence, so
as to be run on the randomness tests.

Once the store is initialised—by way of a folder being created in the
user data directory—the parsed data is serialised via the pickle module in
Python. The module conveniently saves the Series representation of the
RNG output as the actual bytecode, meaning you can later directly load
it as the original Series. This is saved as the series.pickle file in the
store’s folder.
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def init_store(name=None, overwrite=False):
if name:

store_name = slugify(name)

else:
timestamp = datetime.now()
iso8601 = timestamp.strftime("%Y%m%dT%H%M%SZ")
store_name = f"store_{iso8601}"

store_path = data_dir / store_name
try:

Path.mkdir(store_path, parents=True)
except FileExistsError:

if overwrite:
rm_tree(store_path)
Path.mkdir(store_path)

else:
raise StoreExistsError(store_name)

return store_name, store_path

Listing 30: Simplified init_store() method which initialises a store. A
store name can be supplied via the name argument, or generated. If a name
conflicts with an existing store, the overwrite argument decides whether
to overwrite it.

import pickle
...
def store_data(data_file, name=None, overwrite=False):

series = parse_data(data_file, dtype_str)

store_name, store_path = init_store(name=name, overwrite=overwrite)

data_path = store_path / "series.pickle"
pickle.dump(series, open(data_path, "wb"))

Listing 31: Simplified store_data() method which makes use of
parse_data() and init_store() to streamline the process of loading user
data in a store in the coinflip load command.
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from coinflip.randtests._exceptions import NonBinarySequenceError
from coinflip.store import store_data, DataParsingError, StoreError
...
@main.command()
@argument("data", ...)
@option("-n", "––name", ...)
@option("-o", "––overwrite", ...)
def load(data, name, overwrite):

try:
store_data(data, name=name, overwrite=overwrite)

except (DataParsingError, NonBinarySequenceError, StoreError) as e:
echo_err(e)
exit(1)

Listing 32: Simplified load() method that represents the coinflip load
command, calling store_data() (listing 31).

3.1.2 Discoverability

Click allows for dynamic autocompletion when enabled by the users shell
configuration, meaning beyond hinting fixed inputs such as --test <test>
(where the possible <test> values are always the same), the CLI can also
hint at the stores available in the current moment.

Additionally, the CLI will assume the STORE argument for commands
such as coinflip run to be the most recently initialised store. This can
smooth the CLI’s learning experience for users, and generally be a convenient
shortcut.

This functionality achieved by use of a text file latest_store.txt, lo-
cated in the root of the app’s user data directory. When store_data()
(listing 31) succeeds in initialising a store, it will finish by saving the stores
name; the store_name can then accessed in find_latest_store().

In cli.py, command methods can then find the latest store name, and
if successful prompt the user whether they wish to use it.
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def list_stores():
try:

for entry in scandir(data_dir):
if entry.is_dir():

yield entry.name

except FileNotFoundError:
pass

...
def get_stores(ctx, args, incomplete):

stores = list(list_stores())
if incomplete is None:

return stores
else:

for name in stores:
if incomplete in name:

yield name
...
@main.command()
@argument("store", autocompletion=get_stores, ...)
@option("-t", "––test", ...)
def run(store, test):

...

Listing 33: The get_stores() completion method, which uses the
list_stores() method to match all possible stores the user’s typed STORE
argument could lead to. An example of its use is in the run() method,
which represents the coinflip run command.

$ coinflip load DATA
Store name to be encoded as store_<timestamp>
Data stored successfully!
$ coinflip run
No STORE argument provided

The most recent STORE to be initialised is 'store_<timestamp>'
Pass it as the STORE argument? [y/N]:

Listing 34: Workflow of loading data into a new store, and calling coinflip
run without the STORE argument.
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def store_data(data_file, ...):
...
store_name, ... = init_store(...)
...
latest_store_path = data_dir / "latest_store.txt"
with open(latest_store_path, "w") as f:

f.write(store_name)

def find_latest_store() -> str:
latest_store_path = data_dir / "latest_store.txt"
try:

with open(latest_store_path) as f:
store_name = f.readlines()[0]
if store_name in list_stores():

return store_name
except FileNotFoundError:

pass

raise NoLatestStoreRecordedError()

Listing 35: The final step in store_data(), where latest_store.txt is
overwritten the initialised store’s name. The find_latest_store() method
then attempts to find the store’s name and checks that it is valid, otherwise
it raises an error to except.
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from coinflip.store import find_latest_store, NoLatestStoreRecordedError
...
def infer_store():

try:
store = find_latest_store()

except NoLatestStoreRecordedError:
ctx = get_current_context()
ctx.fail("Missing argument 'STORE'.")

msg = (
"No STORE argument provided\n"
f"\tThe most recent STORE to be initialised is '{store}'\n"
"\tPass it as the STORE argument?"

)
if confirm(msg):

return store
else:

exit(0)
...
@main.command()
@argument("store", ...)
@option("-t", "––test", ...)
def run(store, test):

if not store:
store = infer_store()
...

Listing 36: The infer_store() method, which is responsible for the STORE
inference functionality for commands such as coinflip run.
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3.1.3 Interacting with the store

Tests can be run on stored RNG output via coinflip run STORE, where
STORE is the name of the store to access. Internally, that name is the folder’s
name, referred to as store_name.

The store_name can be appended the the data_dir to access the store’s
respective folder. In coinflip run, the RNG output is needed to be run
on the randomness tests, which is achieved via the get_data() method.

def get_data(store_name):
store_path = data_dir / store_name
if not store_path.exists():

raise StoreNotFoundError(store_name)

data_path = store_path / DATA_FNAME
try:

with open(data_path, "rb") as f:
series = pickle.load(f)

return series

except FileNotFoundError as e:
raise DataNotFoundError(store_name)

Listing 37: The get_data() method which allows access data of a store’s
RNG output.

Results of the randomness tests are stored in a pickled dict via the
sibling Python module to pickle, shelve. These dictionaries are saved in
the results.dbm file adjacent to the corresponding series.pickle.
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import shelve
...
@contextmanager
def open_results(store_name):

store_path = data_dir / store_name

if not store_path.exists():
raise StoreNotFoundError

results_path = store_path / "series.pickle"

with shelve.open(results_path) as results:
yield results

def store_results(store_name, results_dict):
with open_results(store_name) as results:

for randtest_name, result in results_dict.items():
results[randtest_name] = result

Listing 38: The open_results() helper context manager, and the
store_results() method which uses it. Note that @contextmanager makes
the open_results() function into a Python context manager by exposing
results through a yield statement.

Exception

DataParsingError
TypeNotRecognizedError

MultipleColumnsError

StoreError

StoreExistsError

NameConflictError

StoreNotFoundError

DataNotFoundError

NoLatestStoreRecordedError

Figure 6: Exception tree of the coinflip.store submodule.
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3.2 Tests runner

The tests_runner.py submodule is responsible running user’s data with
the randomness tests in the randtests subpackage, as well as managing the
test-specific CLI messages.

The run, example-run and local-run commands all have two modes of
operations—running RNG output on either a single randomness test, or all
of them. These cases are handled by the run_test() and run_all_tests()
methods respectively.

In run_test(), the randtests subpackage is iterated upon it’s top-
level methods, which solely consist of the randomness tests. These methods
are stored in the __all__ property, and so can be inspected to create a
definitive list of all randomness test methods available. Subsequently this
list is searched of the str names of the tests, to find the corresponding
function object of the randomness test that can be executed.

from coinflip import randtests
...
def list_tests():

for randtest_name in randtests.__all__:
randtest_func = getattr(randtests, randtest_name)

yield randtest_name, randtest_func
...
def run_test(series, randtest_name, **kwargs):

for name, func in list_tests():
if randtest_name == name:

...
result = func(series, **kwargs)
...

else:
raise TestNotFoundError()

Listing 39: The list_tests() and run_test() methods, which enable users
to run randomness tests via a string.
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In run_all_tests(), all the randomness tests are iterated upon. Instead
of halting on test-related errors, they are captured using the TestError base
exception for randomness tests (section 2.2.2). For every randomness test
run, the test’s name, result and exception is yielded, to make the method a
generator—the result may be None if an exception was raised, and conversely
the exception may be None if there were no exceptions raised.

def run_all_tests(series):
...
for name, func in list_tests():

echo_randtest_name(name)

try:
result = func(series)
echo(result)

yield name, result, None

except TestError as e:
yield name, None, e

echo()
...

Listing 40: The run_all_tests() method, which handles running all the
randomness tests on a series and pretty printing the results.

The exposure of exceptions is used in cli.py to pretty print error mes-
sages. In the coinflip run command particularly, the exposure of the
name and result allows the subsequent saving of results into the appropriate
store.
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from coinflip.store import get_data, store_results
from coinflip.tests_runner import run_all_tests
...
@main.command()
@argument("store", ...)
def run(store):

series = get_data(store)

results = {}
for name, result, e in run_all_tests(series):

if e:
echo_err(e)

else:
results[name] = result

store_results(store, results)
echo("Results stored!")

Listing 41: Simplified run() method that represents the coinflip run com-
mand. The run_all_tests() method (listing 40) handles logging whilst
exposing the result, which is saved in the STORE specified by the user.

4 Testing
When implementing the randomness tests (2) and command-line interface
(3), writing suitable tests to "describe" the intended behaviour of function-
ality was prioritised first to verify new features would work as intended i.e.
test-driven development.

The Python package pytest [11] was employed for the ability to write
simple tests; any method denoted with test_ is automatically run by the
pytest CLI. pytest can also manage more advanced testing needs, such as the
paramtrisation and test-generation hooks discussed in section 4.1.1. Another
Python testing package Hypothesis [12] features heavily in testing coinflip,
and is detailed in the subsequent sub-sections.

The Python testing wrapper tox [13] allows the specification of various
testing profiles. In local development, this is useful to run all tests for
a quick check that changes haven’t broken coinflip. For example, tox -e
py37 provides a quick way to execute a long command on a freshly installed
version of coinflip on Python version 3.7.
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$ pytest -vv tests \
> ––cov ––cov-report=term-missing \
> ––hypothesis-profile=quick \
> ––ignore tests/randtests/implementations/

Listing 42: Command that tox -e py37 wraps.

coinflip also uses continuous integration, employing the Travis CI [14]
and AppVeyor [15] services. tox allows specifying all tests and checks that
are desired, including the Python versions one wishes to execute them in.

AppVeyor in particular builds and tests coinflip in a Windows environ-
ment. As coinflip was developed on Ubuntu, this is helpful in automatically
checking that there were no breaking changes in Windows.

One example this was useful was in recognising a problem
with the creation of the user data directory (listing 26). Ini-
tially Path.mkdir(data_dir) was used, which will work fine on
popular Unix-based operating systems where user data directories
followed a $HOME/<user_data_dir>/<app_name>/ pattern. How-
ever, because Windows has app user data directories specified
in $HOME/<user_data_dir>/<author_name>/<app_name>/, Path.mkdir()
could not find a parent <author_name> folder and so failed. Sub-
sequently the parents keyword argument was added to result in
Path.mkdir(data_dir, parents=True).

4.1 Randomness tests

4.1.1 Known test cases

SP800-22 includes worked examples for their recommend randomness tests
(for the most part), which was used to help verify the implemented tests.
The results of these examples are asserted to the results of compared imple-
mentations (which are passed the same parameters).

Additionally, the working out provided in SP800-22 helped in debuging
the tests, as the processes of the implemented could be reviewed step-by-step
by use of a debugger (i.e. the Python debugger pdb) to see where exactly
miscalculation occurred.

As the number of pytest tests such as in listing 43 grew, the code be-
came confusing to navigate which frustrated debuging. As all the examples
followed a similar pattern, a container Example was made to specify the
parameters of the test programactically.
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1. The zeros and ones of the input sequence (ε) are converted to values of
1 and +1 and are added together to produce Sn = X1+X2+ ...+Xn,
where Xi = 2εi − 1.
e.g. if ε = 1011010101, then n = 10 and Sn = 1+(−1)+1+1+(−1)+
1 + (−1) + 1 + (−1) + 1 = 2.

2. Compute the test statistic Sobs = |Sn| /
√
n

e.g. in this section, Sobs = |2| /
√
10 = 0.632455532.

3. Compute p = erfc(Sobs/
√
2), where erfc is the complementary error

function.
e.g. p = erfc(0.6324555/

√
2) = 0.527089.

Figure 7: Walkthrough of how the Monobits test works with examples,
provided by SP800-22.

from coinflip.randtests import monobits
...
def test_monobits():

bits = [1, 0, 1, 1, 0, 1, 0, 1, 0, 1]

result = monobits(bits)

assert isclose(result.statistic, 0.632455532)
assert isclose(result.p, 0.527089)

Listing 43: Original pytest method to test the Monobits randomness test.
bits is passed as the sequence argument to the monobits method, and a
result is captured and compared to the expected statistic and p-value.
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class Example(NamedTuple):
randtest: str
bits: List[int]
statistic: Union[int, float]
p: float
kwargs: Dict[str, Any] = {}

Listing 44: The named tuple Example, which contains specification for
SP800-22 test examples.

pytest enables parametrisation of test methods by way of the
@pytest.mark.parametrize() decorator, which enables a list of examples
to passed to a general runner of the implemented randomness tests. This
meant one definite list examples could hold the SP800-22 example spec-
ifications, which were more easily navigatable than example-specific test
methods.

When working on a test and a specific example was failing, I would want
to only test on that example. pytest offers a -k option in its command-line
tool, which could filter out examples for a specific randomness test, but not
a specific example in the case of multiple examples for one randomness test.

Therefore examples was declared as a heterogeneous dict, where the
key(s) would form a specific test name. This can be achieved as pytest can
parameterise methods such as test_randtest_on_example() dynamically
via configuration in conftest.py files.
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from coinflip import randtests
...
examples = [

Example(
randtest="monobits",

bits=[1, 0, 1, 1, 0, 1, 0, 1, 0, 1],

statistic=.632455532,
p=0.527089,

),
...
Example(

randtest="maurers_universal",

bits=[
0, 1, 0, 1, 1, 0, 1, 0,
0, 1, 1, 1, 0, 1, 0, 1,
0, 1, 1, 1,

],
kwargs={

"blocksize": 2,
"init_nblocks": 4,

},

statistic=1.1949875,
p=0.767189,

)
]

@pytest.mark.parametrize("randtest, bits, statistic, p, kwargs", examples)
def test_randtest_on_example(randtest, bits, statistic, p, kwargs):

randtest_method = getattr(randtests, randtest)

result = randtest_method(bits, **kwargs)

assert isclose(result.statistic, statistic, rel_tol=0.05)
assert isclose(result.p, p, abs_tol=0.005)

Listing 45: Intermediate solution of testing SP800-22 examples, by way of a
Example list in examples, and direct parametrisation on a general method
test_randtest_on_example. 50



examples = {
...
"binary_matrix_rank": {

"small": Example( # "binary_matrix_rank.small"
...

),
"large": Example( # "binary_matrix_rank.large"

...
)

},
...

}
...
def examples_iter(regex = ".*"):

regexc = re.compile(regex)
for example_title, example in flatten_examples(examples):

if regexc.match(example_title):
yield example

Listing 46: How examples is declared, and the examples_iter()
method which interfaces with examples given a regex expression. The
flatten_examples() method generates the concatenated example titles
along with the respective Example.
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from .examples import examples_iter
...
def pytest_addoption(parser):

parser.addoption("–example", default=".*",)

def pytest_generate_tests(metafunc):
if metafunc.function.__name__ == "test_randtest_on_example":

title_substr = metafunc.config.getoption("example")
metafunc.parametrize(

"randtest, bits, statistic, p, kwargs",
examples_iter(title_substr)

)

Listing 47: Code in conftest.py, which allows use of the –example
<regex> option to only test the desired examples. pytest_adoption()
allows customisation of the pytest command-line tool, and
pytest_generate_tests() allows custom setup hooks for test gener-
ation.
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4.1.2 Generating test cases

Property-based testing is employed to specify all possible input for the ran-
domness tests. This means generating data that meets the input specifica-
tion at various extremes, which the Hypothesis [12] library provides for.

Possible input for all randomness tests will always include a binary se-
quences (the RNG output being tested), which can be declared as a Hy-
pothesis strategy. Strategies are data generators for property-based testing,
and can be combined and manipulated to create new strategies.

mixedbits() is such a strategy, devised to generate binary sequences.
It wraps a lists() strategy, which was specified to generate lists of output
from the integers() strategy, subsequently specified to return only 0 and
1 numbers (i.e. binary). The resulting strategy is then filtered so only lists
with both 0 and 1 values are outputted, i.e. mixed bits.

from hypothesis import given
from hypothesis import strategies as st
...
def mixedbits():

binary = st.integers(min_value=0, max_value=1) # 0 or 1
bits = st.lists(binary, min_size=2)
mixedbits = bits.filter(contains_multiple_values)

return mixedbits
...
@given(mixedbits())
def test_monobits(bits):

result = randtests.monobits(bits)
...

Listing 48: Declaration of the mixedbits() strategy and an example of it’s
use on the Monobits randomness test. contains_multiple_values() is a
filter for whether the sequence is multi-valued or not.

This alone can reveal failures in just running supposedly valid data on
the implemented randomness tests i.e. smoke testing.
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For example, a bug was discovered in Discrete Fourier Transform test
via the mixedbits() strategy. The test only uses an even-lengthed sequence
and will truncate any odd bits—this means it can be passed a valid binary
sequence, but after truncation the sequence becomes single-valued, and so
unexpectedly breaks the fourier transform involved in the test. This unique
scenario was only discovered through the generated input data, and now
means users are raised a specific NonBinaryTruncatedSequenceError which
explains the circumstance why the randomness test cannot accept their in-
put.

»> from coinflip.randtests import discrete_fourier_transform
»> discrete_fourier_transform([0, 0, 0, 0, 0, 0])
Traceback...
...NonBinarySequenceError: \
Sequence does not contain only 2 distinct values (i.e. binary)
»> discrete_fourier_transform([0, 0, 0, 0, 0, 1])
Traceback...
...NonBinaryTruncatedSequenceError: \
When truncated into an even-length, sequence contains only 1 distinct value
i.e. the sequence was originally binary, but now isn't

Listing 49: The NonBinarySequenceError and derivative
NonBinaryTruncatedSequenceError being raised when using the Discrete
Fourier Transform randomness test.

4.1.3 Comparing other implementations

The results of the randomness tests using generated input can be compared
to other implementations. Currently two open source Python programs are
used, one by David Johnston [16], and the other by Stuart Gordon Reid
[17].

These programs are adapted to interface the same way as my randomness
tests, assuming the binary sequences are Python list objects of 0 and 1
integers (e.g. [0,1,0,0,1]). Adaptors also give the opportunity to make
the implementations be more idiomatic to use.
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from .sp800_22_tests.sp800_22_monobit_test import monobit_test
...
class DJResult(NamedTuple):

success: bool
p: float
unknown: None

def named(randtest):
def wrapper(bits, *args, **kwargs):

result = randtest(bits, *args, **kwargs)

return DJResult(*result)

return wrapper

@named
def monobits(bits):

return monobit_test(bits)

Listing 50: Decorator @named used for the adapted tests of Johnston’s
program, with an example of its use on the Monobits test. It wraps the
non-descriptive results of the implementated methods in the named tuple
DJResult.

The adapted method have non-deterministic or fixed test variables
(kwargs) in some of the randomness tests, and so an Implementation named
tuple describe the adapted methods as such. Each randomness test can be
mapped to an Implementation, to communicate the restrictions in their
use.

Additionally, the original methods can accept values but then fail to
process them. When the circumstances of these failures are identified, the
adapted method can raise an ImplementationError when passed parame-
ters lead to such failures. These errors describe when to skip over comparing
the adapted method to my randomness tests; programactically allowing for
these scenarios to be identified via a except ImplmenetationError clause.
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from .r4nd0m.SourceCode.RandomnessTests import RandomnessTester
...
def bits_str(randtest):

def wrapper(bits, *args, **kwargs):
bits_str = "".join(str(bit) for bit in bits)

result = randtest(bits_str, *args, **kwargs)

return result

return wrapper

@bits_str
def monobits(bits):

tester = RandomnessTester(None)
return tester.monobit(bits)

Listing 51: Decorator @bits_str used for the adapted tests of Reid’s pro-
gram, with an example of its use on the Monobits test. It converts the
inputted binary sequence into a string of bits, as necessitated by Reid’s
tests.

The information provided by the Implementation wrapper and the rais-
ing of ImplementationError is sufficient to programactically describe the
runtime errors of the implemented tests. This enables running the SP800-22
examples (as described in 4.1.1) on the adapted programs themselves. This
is useful for gauging the accuracy of the examples themselves, if both my
randomness tests and another implementation fails to have a similar result.

For example, a SP800-22 example for the Discrete Fourier Transform
test was failing in my own randomness test, however the Johnston and Reid
implementations both got nearly the same result as myself. This first sug-
gested an error in the example as opposed to my randomness test, but
ultimately led to the insight that we were using the same fourier transform
algorithm—fast fourier transform fft as part of the SciPy [18] library—
which was different to NISTs own fast fourier transform algorithm. Due
to time constraints this was not investigated further; it seems likely that
with larger sequences the differences will become insignificant however, but
it should still necessitate comparing the two algorithms.
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class Implementation(NamedTuple):
randtest: Callable
missingkwargs: List[str] = []
fixedkwargs: Dict[str, Any] = {}

...
from .sp800_22_tests.sp800_22_non_overlapping_template_matching_test import \

non_overlapping_template_matching_test as _non_overlapping_template_matching
...
@named
def non_overlapping_template_matching(bits):

return _non_overlapping_template_matching(bits)
...
dj_testmap = {

...
"non_overlapping_template_matching": Implementation(

non_overlapping_template_matching,
missingkwargs=["template"],
fixedkwargs={"nblocks": 8},

),
...

}

Listing 52: The Implementation named tuple and an example of its usage
for declaring Johnston’s Non-overlapping Template Matching test.

Table 3: The p-values of the Discrete Fourier Transform test for the same
input sequence of 1001010011.

Implementation p-value
SP800-22 0.029523
coinflip 0.468159
Johnston 0.468159
Reid 0.468159
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@named
def binary_matrix_rank(bits, matrix_dimen):

nrows, ncols = matrix_dimen
nblocks = len(bits) // (nrows * ncols)
if nblocks < 38:

raise ImplementationError()

try:
return _binary_matrix_rank(bits, M=nrows, Q=ncols)

except (ZeroDivisionError, IndexError) as e:
raise ImplementationError() from e

Listing 53: Adaptor method of Johnston’s Binary Matrix Rank test. The
original method cannot handle nblocks below 38, so the passed parame-
ters are checked for that and raise an ImplementationError. The original
method also sometimes unintentionally raises errors due to non-robust code,
so an ImplementationError also wraps them.

from pytest import skip
...
def test_randtest_on_example(randtest, bits, statistic, p, kwargs):

implementation = dj_testmap[randtest]

if implementation.missingkwargs or implementation.fixedkwargs:
skip()

try:
result = implementation.randtest(bits, **kwargs)

except ImplementationError:
skip()

assert isclose(result.p, p)

Listing 54: A general test method of Johnston’s SP800-22 program, which
is parameterised the examples by the pytest configuration (listing 47).
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Subsequently, we can compare the results of my randomness tests to the
implementations from the same Hypothesis-generated inputs as described in
section 4.1.2.

A simple Hypothesis test method is for the Monobits test, which has no
keyword arguments and so should be determined by just the inputted se-
quence. This means a test method comparing different implementations only
needs to be passed the sequences generated from the mixedbits() strategy
shown in listing 48, and then assert the results of the implementations are
similar enough to my randomness tests.

from .implementations import sgr
from .implementations import dj
...
@given(mixedbits())
def test_monobits(bits):

result = randtests.monobits(pd.Series(bits))

dj_result = dj.monobits(bits)
assert isclose(result.p, dj_result.p)

sgr_p = sgr.monobits(bits)
assert isclose(result.p, sgr_p)

Listing 55: Simple comparison of Johnston’s and Reid’s implementation
of the Monobits test to my own, using generated sequences from the
mixedbits() strategy.

Other randomness tests have keyword arguments, so to compare imple-
mentations beyond the Monobits test, these arguments have to be gener-
ated too. Special consideration needs to be taken in bounding the length
of the inputted sequence to keyword arguments relating to its size, such as
blocksize not exceeding the sequence length n.

Hypothesis allows such bounded strategies to be devised through its
@composite decorator, which exposes a draw() method that can extract
output of a singular strategy and use it to determine subsequent strategies.

A common pattern was to draw the generated bits from mixedbits(),
determine it’s length n, and determine a blocksize strategy to only generate
integers between 1 and n i.e. never exceeding the length of the sequence.
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@st.composite
def blocks_strategy(draw, min_size=2):

bits = draw(mixedbits(min_size=min_size))
n = len(bits)
blocksize = draw(st.integers(min_value=1, max_value=n))

return bits, blocksize
...
@given(blocks_strategy(min_size=100))
def test_sgr_frequency_within_block(args):

bits, blocksize = args

result = randtests.frequency_within_block(bits, blocksize=blocksize)

sgr_p = sgr.frequency_within_block(bits, blocksize=blocksize)

assert isclose(result.p, sgr_p)

Listing 56: Comparing Reid’s implementation of the Frequency within Block
test to my own, using a composite strategy that returns both a sequence bits
and a blocksize keyword argument. The blocksize strategy is bounded
to the length of bits generated via the draw() method.

Comparing results of different implementations gives further confidence
on the accuracy and robustness of my randomness tests. The inbuilt Hy-
pothesis strategies are built for smaller data types however, so future mod-
ification could allow for insights into the larger sequences.

The specification of the adapted test suites could also lead to complete
automation of the comparison testing. Instead of writing test methods for
each randomness test and implementation(s) to compare to, all the ran-
domness tests could be iterated over along with their respective composite
strategy, and the Implementation and ImplementationError could wholly
inform whether to skip a certain test suite given a specific generated test
case (like in listing 54).
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In the future, all open source test suites available should be adapted,
but particularly those with more use (such as NIST’s sts). Most are made
in C, which could have their randomness tests called in Python by writing
bindings. A possible metric for accuracy for a specific randomness test in
coinflip could be if it gets roughly the same p-values as the majority of the
other test suites.

4.2 Command-line interface

Click offers a mockable command-line interface via its CliRunner, which
conveniently runs Click methods that represent commands. A simple smoke
test is to execute commands and assert that their exit code is 0 i.e. the com-
mand executed successfully without any errors. The coinflip example-
run command is especially useful, in that it runs all the randomness tests
and so covers more functionality.

from click.testing import CliRunner
from coinflip import cli
...
def test_main():

runner = CliRunner()
result = runner.invoke(cli.main, [])

assert result.exit_code == 0

def test_example_run():
runner = CliRunner()
result = runner.invoke(cli.example_run, [])

assert result.exit_code == 0

Listing 57: Simple smoke tests for the coinflip and coinflip example-
run commands.

To test the actual workflow of the CLI, model-based testing was em-
ployed. Hypothesis has mechanisms that can allow specification of a rules-
based state machine via a class subclassing the RuleBasedStateMachine.
The code for the final machine CliRoutes can be found in appendix D.
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A rules-based state machine contains bundles, which can model certain
states of the machine. A bundle called stores is used to model the stores
(section 3.1) that should exist in the user data directory—or more precisely
be recognised by the CLI—by holding the respective store names in a list.

from hypothesis.stateful import RuleBasedStateMachine
from hypothesis.stateful import Bundle
...
class CliRoutes(RuleBasedStateMachine):

stores = Bundle("stores")

def __init__(self):
super(CliRoutes, self).__init__()

self.runner = CliRunner()
...

Listing 58: The CliRoutes constructor, and stores bundle as a class vari-
able. Upon initialisation a mock CLI is instantiated via Click’s CliRunner.

The rules in a rules-based state machine refer to reading and writing
bundles. In Hypothesis, a decorator @rule specifies the interaction with the
bundles. Hypothesis will execute upon these rules in randomised sequences,
so as to model the unpredictable nature of the CLI commands a user will
use.

A rule method for initialising a store with random data via the coinflip
load command was made. Binary sequences can be generated by the
mixedbits() strategy (listing 48), and written to temporary files, which
are then passed as the STORE argument to coinflip load. Once the store
is initialised the CLI should output the store’s name, which can be pushed
to the stores bundle.

One rule is defined to see if an initialised store shows up in the coinflip
ls command—the CLI should output the store’s name, which is asserted for.
Another rule removes a store via the coinflip rm command, and asserts
that it does not output in the coinflip ls command.

Even though the rules-based state machine only contained three rules, it
helped identify a great many bugs that relate to the particular consecutive
sequence of command execution, as well as the speed at which they execute.
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from tempfile import NamedTemporaryFile
from hypothesis.stateful import rule
from .randtests.strategies import mixedbits
...
r_storename = re.compile(r"Store name to be encoded "

r"as ([a-z\_0-9]+)\n")
...
class CliRoutes(RuleBasedStateMachine):

...
@rule(target=stores, sequence=mixedbits())
def add_store(self, sequence):

datafile = NamedTemporaryFile()
with datafile as f:

for x in sequence:
f.write(f"{x}\n")

result = self.runner.invoke(cli.load, [datafile])
assert result.exit_code == 0

store_msg = r_storename.search(result.stdout)
store = store_msg.group(1)

return store
...

Listing 59: Simplified add_store() rule method in CliRoutes. RNG output
files are mocked by use of the mixedbits() strategy to generate binary
sequences, written to a temporary file which is loaded into an initialised
store via the coinflip load command. The generated store_name is found
by search the command’s output stdout with a regular expression, saved
into the stores bundle by being returned by the method.
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@rule(store=stores)
def find_store_listed(self, store):

result = self.runner.invoke(cli.ls)
assert re.search(store, result.stdout)

Listing 60: The find_store_list() rule method in CliRoutes. Using the
stores bundle, supposedly initialised stores have their name searched in the
output of the coinflip ls command, to assert the coinflip CLI recognises
the store.

from hypothesis.stateful import consumes
...
@rule(store=consumes(stores))
def remove_store(self, store):

rm_result = self.runner.invoke(cli.rm, [store])
assert rm_result.exit_code == 0

ls_result = self.runner.invoke(cli.ls)
assert not re.search(store, ls_result.stdout)

Listing 61: The remove_store() rule method in CliRoutes. Using the
stores bundle, existing stores are removed via the coinflip rm command.
The removed store’s name is then searched in the output of the coinflip
ls command, to assert the coinflip CLI does not recognise the store.

For example, Hypothesis generated a sequence in which add_store()
was executed multiple times in succession and fail, because if the store names
were initialised in the same second—and so have the same timestamped
name—the latter would fail to initialise as a store of the same name (as it
already existed). This condition was handled in the code that handles name
generation init_store() (listing 30), and then CliRoutes was run again
so as to not fail with the same rules sequence, to check the changes worked.

Due to time restrictions, rules to cover the other commands—and all
their option combinations—were not implemented. The fact that the general
use of Hypothesis uncovered many bugs does however suggest that doing so
would be extremely useful.
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for _ in range(3):
timestamp = datetime.now()
iso8601 = timestamp.strftime("%Y%m%dT%H%M%SZ")
store_name = f"store_{iso8601}"

if store_name not in list_stores():
break

else:
sleep(1.5)

Listing 62: The current code in init_store() that handles name genera-
tion.

5 Evaluation
coinflip currently implements 9 randomness tests from SP800-22, and 5 more
tests still need to be implemented. The tests are relatively simple to write,
but a lot of effort was spent making the tests user-friendly, with features
not present in other suites such as warnings (2.2.3) and descriptive results
(2.2.1).

I personally enjoy using the command-line interface, but the unique ap-
proach of stores (3.1) needs to be tested with real end-users to see if the
workflow is easier to grasp in comparison to the other suites.

The use of Hypothesis gives me confidence in the practical accuracy
of coinflip’s randomness tests (4.1.2). The potential of wholly comparing
coinflip’s randomness tests to popular suites can establish coinflip as battle-
tested, even if I myself have no real background in statistics or cryptography.

So coinflip does require more work to meet my aspirations, however the
groundwork laid out in this report should make further work fairly straight-
forward. There are many opportunities presented in randomness testing
which coinflip has sought to explore, and I believe in time this project’s
innovative features will be invaluable for various use cases: hobbyists com-
pletely new to randomness testing; professionals testing RNGs used in cryp-
tographic applications; and companies that desire randomness testing in
their machine learning pipelines.
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A Monobits report
RNG output sample used as the Monobits test input:

10000111 10001001 00100111 00010011
11110111 00101011 00000100 10010010
10100111 11100000 11101010 01001111
10001111 111

The number of occurrences for the 0 and 1 values are found and the
difference is calculated.

We can compare this to the hypothetical output of a truly random RNG.
A question is asked—how likely would such a RNG produce a sequence with
at least a difference of 11 between the occurrences of binary values?

The likelihood would decrease with higher differences, assuming that
random outputs tends towards uniformity. Such a distribution would follow
a half-normal distribution (i.e. a bell-curve shape, but with it’s left side
flipped and added to the right).

To compare the difference of 11 with this reference distribution, we first
normalise it by dividing it by the square root of the sequences length, 107.
This results in a reference statistic of 1.06.
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Finding the cumulative likelihood a true RNG would have such a differ-
ence or greater comes to a p-value of 0.288. The lower the p-value, the less
confident we can say that this data is random.
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B Longest Run within Block probabilities explo-
ration
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C coinflip package files tree

src/

coinflip/

cli.py

store.py

tests_runner.py

generators.py

randtests/
frequency.py

runs.py

matrix.py

fourier.py

template.py

universal.py

_collections.py

_decorators.py

_exceptions.py

_pprint.py

_result.py

_tabulate.py

_testutils.py
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D Command-line interface state machine

class CliRoutes(RuleBasedStateMachine):
"""State machine for routes taken via the CLI

Specifies a state machine representation of the CLI to be used in
model-based testing.

Notes
––-
Read the `hypothesis stateful guide
<https://hypothesis.readthedocs.io/en/latest/stateful.html>`_ for help on
understanding and modifying this state machine.
"""

def __init__(self):
super(CliRoutes, self).__init__()

self.runner = CliRunner()

stores = Bundle("stores")

@rule(target=stores, sequence=mixedbits())
def add_store(self, sequence):

"""Mock data files and load them into initialised stores"""
datafile = NamedTemporaryFile()
with datafile as f:

for x in sequence:
x_bin = str(x).encode("utf-8")
line = x_bin + b"\n"
f.write(line)

f.seek(0)
result = self.runner.invoke(cli.load, [f.name])

store_msg = r_storename.search(result.stdout)
store = store_msg.group(1)

return store
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@rule(store=stores)
def find_store_listed(self, store):

"""Check if initialised stores are listed"""
result = self.runner.invoke(cli.ls)
assert re.search(store, result.stdout)

@rule(store=consumes(stores))
def remove_store(self, store):

"""Remove stores and check they're not listed"""
rm_result = self.runner.invoke(cli.rm, [store])
assert rm_result.exit_code == 0

ls_result = self.runner.invoke(cli.ls)
assert not re.search(store, ls_result.stdout)
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