Modelling Protein Sequences To Predict Positive

Linear B-Cell Epitopes

Matthew Barber & Dhillon Patel

April 17, 2020

Contents
1 Abstract
2 Introduction

3 Exploratory Data Analysis
3.1 Numeric distributions
3.2 Missing values
3.3 Duplicaterecords
3.4 Numeric outliers,

4 Data Preprocessing
4.1 Remove missing records oL
4.2 Duplicate reductiono Lo
4.3 Removeoutliers
4.4 Class balance
4.5 Remove attributeso
4.6 Feature extraction

5 Classification Modelling
5.1 Evaluation process,
5.2 Modelling: equal-costs classification
5.3 Modelling: cost-sensitive classification
5.4 Evaluating results. o oL
5.5 Final performance

6 Conclusions

10
12
12
12
13
13

13

1 Abstract

This report details a linear B-Cell classification approach by using an assort-
ment of data mining techniques. We made models using the following tech-
niques: Naive Bayes, k-Nearest Neighbour, Logistic Regression, and Random
Forests.

We pick our kNN models for both classification tasks, where the test
set evaluated to 77.3% and 68.7% correct classifications for equal-cost and
cost-sensitive tasks respectively.

2 Introduction

We were tasked in modelling for protein sequences to see whether they are
positive epitopes or not. Specific models were needed for the scenarios where
misclassifications were of equal cost, and when misclassifications of positive
epitopes as negative were 4 times more than negatives as positive. A training
set was provided, with a test set to be used for final evaluation.

3 Exploratory Data Analysis

The original training set consisted of 30,000 instances with 68 attributes.

An ID string attribute was provided, uniquely identify the protein se-
quence. A nominal Class attribute determined whether the protein sequence
was a positive epitope ("Positive") or not ("Negative"). The other 66 at-
tributes were numeric properties of the protein sequence.

3.1 Numeric distributions

The values of all the properties can visually be seen to follow a Gaussian
distribution, only varying in skewness.

Both the Shapiro-Wilk [1] and D’Agostino’s K? [2] normality tests iden-
tify attribute F5.1 to least fail in rejecting the null hypothesis of Gaussian
distribution, but a histogram plot can visually suggest that F5.1 values are
normally distributed.

3.2 Missing values

6 instances had missing values for all attributes except for ID and Class.

-— -_—

I T 1
-0.26 0EZ 2.1z

Figure 1: Histogram of F5.1. Colours represent the Class (the epitope sign)
divide in each bin, where red is Positive and blue is Negative.

Ignoring those instances, the only missing values for instances occured
in the KF9.1 and BLOSUM2.1 attributes. For both attributes, values were
missing more often than present.

Table 1: Count of how many instances had missing values in the attributes

KF9.1 and BLOSUM2.1.
Attribute Missing occruences

KF9.1 22,513 (75%)
BLOSUM2.1 27,010 (90%)

3.3 Duplicate records

6323 ID values were identified to be present in more than 1 instance in the
training set.

All sets of instances with the same ID had the same values for most
other attributes. The exceptions were KF9.1 and BLOSSUM2. 1 where some in-
stances would have missing values instead, and Class where instances could
differ in being a positive epitope or not.

As well as instances in these sets being near-identical, we can determine
these instances as duplicates because the ID represents a unique protein
sequence.

Table 2: For example, every instance where ID was QFPGFKEVRLVPGRH
in training set’s file. The only differences in the instances were in KF9.1 and

Class attribute value, with the first four instances being exactly the same.
Line no. KF9.1 Class

7T o7 Negative
2175 7 Negative
2330 7 Negative
6681 7 Negative

25417 0.12 Positive
29518 0.12 Negative

3.4 Numeric outliers

We determined attribute values as outliers accordining to whether they were
outside the range Q1 —3 X IQR to Q3+ 3 X IQR, where Q1 and Q)3 are the
lower and upper quartiles, and IQR is the interquartile range. The range
variables are calculated using the respective attribute’s distribution of all
values.

For example, value x would be considered an outlier if it met either of
the following conditions:

z<Ql-3xIQR (1)
z>Q3+3xIQR (2)

Analysing outliers with the duplicate instances reduced would give in-
sights less skewed by repeated values, so we cleaned our training set before-
hand (as described in section 4.2). 19,500 unique instances were present in
this dataset.

53 attributes contained no outliers. Attribute F5.1 had the highest out-
lier count of 187, with the count sharply declining to 90 for BLOSUM6. 1.

The class distribution of the records with outliers was 242 Negative/192
Positive (a ~1.3:1 ratio). For comparison, the total class balance was 13,100
Negative/6400 Positive (a ~2:1 ratio).

4 Data Preprocessing

The steps outlined in 4.1 and 4.2 were achieved by an in-house Python script
we made.

Everything else was done in Weka, where the attribute preprocessing in
4.5 and 4.6 was done via the FilteredClassifier meta classifier. This

Outliers

B Negative
175 + Il Positive

IR

5.1 BLOSUM6.1 KF10.1 VHSES8.1 ST8.1

150 -

~
w1
1

50 A

25

o
L

Figure 2: The 5 attributes with the largest amount of outliers.

allowed for non-transformed test sets to still work with models that were
made with transformed data.

weka.classifiers.meta.FilteredClassifier
-F "weka.filters.MultiFilter
-F \"weka.filters.unsupervised.attribute.Remove ...\"
-F \"weka.filters.unsupervised.attribute.PrincipalComponents
-S 1
-W <classifier>

Listing 1: Weka’s FilteredClassifier used, using a MultiFiter to chain
the attribute removal (4.5) and PCA (4.6) steps together.

4.1 Remove missing records

The 6 instances with missing values as described in section 3.2 were removed.

def all_attrs_missing(record):
return all(value == '?' for value in record[1:-1])

. ”\lln

data = (record for record in data if not all_attrs_missing(record))

Listing 2: Every record in the training set was filtered against a method that
checks if all values except the ID (first index) and Class (last index) were
missing.

4.2 Duplicate reduction

A strategy was devised and implemented to reconstruct the duplicate records
described in 3.3 into a single instance. This single instance contained the
shared values of all duplicate records, plus the best-known information for
the following attributes:

e KF9.1, if present in any of the duplicate records.
e BLOSUM2.1, if present in any of the duplicate records.

e Class, determined by the majority value in the duplicate records.

As shown in listing 4, a check was done to see if non-missing values oc-
curring in duplicate sets were different. The check never passed, establishing
all present values were the same in every instance for each duplicate record
set, so that we knew only the Class attribute differed between duplicate
instances.

If there was an equal frequency of Positive and Negative values in a dupli-
cate set, we instead opted to not reconstruct a single instance at all, and thus
removed all instances completely. We determined that without a good indica-
tion of what class a protein sequence belonged to, the instances were useless
for classification purposes. This is represented by the id_keep_strategy
method in listing 5.

Table 3: The tally for how many duplicate sets were reconstructed with a
Positive or Negative class, or removed entirely.

Reconstruction strategy Duplicate sets
Single instance with Positive class 992
Single instance with Negative class 4554
All instances removed T

4.3 Remove outliers

Whilst the class distribution of outlier values skewed ~50% Positive when
compared to the total class distribution, we determined our models would
perform better by focusing on general trends rather than be potentially made
biased due to the skew of outliers.

We opted to keep the outliers for our Random Forests modelling, as we
determined most of the decision tree algorithms used are robust to extreme
values due to the use of inequalities expressions when branching decisions.
The added training data of these outlier records with mostly non-outlier
values would, therefore be utilised without detriment.

4.4 Class balance

As mentioned in section 3.4, the distribution of classes is imbalanced in the
training set with 13,100 Negative records and 6400 Positive records, to make
for a 2:1 ratio. Such an imbalance can be problematic for some classification
models as they can overfit the majority class, leading to poorer performance
when classifying new observations.

@dataclass

class ValueOccurences:
missing: int = 0
present: int = 0
value: str = '7'

@dataclass
class Analysis:

I
o

total_freq: int
pos_freq: int = 0

neg_freq: int = 0

KF9_1: ValueOccurences = new ValueOccurences()
BLOSUM2_1: ValueOccurences = new ValueOccurences()

analysis_results = defaultdict(Analysis)
for record in data:
analysis = analysis_results[record.ID]
analysis.total_freq += 1

Listing 3: A table to store analysis results is represented as a dictionary
of ID strings, mapped to Analysis objects that hold gathered information
pertaining to our duplicate reduction requirements.

if record.Class == "Positive":
analysis.pos_freq += 1
elif record.Class == "Negative":

analysis.neg_freq += 1

for attr in ['KF9_1', 'BLOSUM2_1']:
value = getattr(record, attr)
occurences = getattr(analysis, attr)
if value !'= '7':
if value != occurences.value:
print(£"{record.ID} instances have different {attr} values")
occurences.value = value

Listing 4: A tally of the Positive and Negative occurences in the Class field
was made for every instance in a duplicate set. Any non-missing occurence
of the KF9.1 and BLOSUM2. 1 values were also recorded.

def id_keep_strategy(pos_freq, neg_freq):
if pos_freq == neg_freq:

return None

elif pos_freq > neg_freq:

return 'Positive'

elif neg_freq > pos_freq:

return 'Negative'

majority_class = \
id_keep_strategy(analysis.pos_freq, analysis.neg_freq)
if majority_class is not None:

Listing 5: The Class to be used in reconstruction (listing 6) is determined by
which one is most frequent in the duplicate set. A balance between Positive
and Negative class frequency results in no record being reconstructed at all.

reduced_record = \
record.replace(

)

Class = majority_class,
KF9_1 = analysis.KF9_1.value,
BLOSUM2_1 = analysis.BLOSUM2_1.value

preprocessed_data.writerow(reduced_record)

Listing 6: Using the results of our analysis, duplicate instances are reduced to
one record with the KF9.1 and BLOSUM2. 1 values (if known) and the majority
Class value.

weka.

filters.MultiFilter
"weka.filters.unsupervised.attribute.InterquartileRange

-R 2-12,14-55,57-66 -0 3.0 -E 6.0 -do-not-check-capabilities"
"weka.filters.unsupervised.instance.RemoveWithValues

-S 0.0 -C 69 -L last"
"weka.filters.unsupervised.attribute.Remove -R 69-70"

Listing 7: The MultiFilter used to remove outliers, which involved first
identifying the outliers with InterquartileRange and then removing in-
stances which were classified as outliers in the generated outlier table.

We decided to balance the training set by use of the SMOTE technique
[3], which creates new synthetic records of the minority class by guessing the
possible dimensions of records for said class. This estimation is essentially
done by looking at existing points of the minority class which are neighbours,
and fitting new points inbetween their features.

weka.filters.supervised.instance.SMOTE -C O -K 5 -P 100.0 -S 1

Listing 8: The SMOTE filter used in Weka. We had no inclination of how to
appropiately pick a number of neighbours to be used (the -K parameter), so
we used the default of 5 neighbours.

We didn’t balance the classes for our Logistic Regression modelling, as it
can be sensitive to mismatches in the class balance of training and test data.
We inferred that more Negative records are observed than Positive from the
way our training set was distributed, so our model would be disadvantaged
if it wasn’t trained accordingly.

4.5 Remove attributes

Our duplicate reduction saw only a slight improvement in the proportion of
non-missing values in KF9.1 and BLOSUM2. 1 attributes seen in table 1, so we
decided to remove these attributes. We determined that with a majority of
both attribute’s values missing, models would make false inferences of what
class values of these features could suggest.

Table 4: Count of how many instances in the duplicate reduced set had
missing values in the attributes KF9.1 and BLOSUM2. 1.

Attribute Missing occruences

KF9.1 13,250 (68%)

BLOSUM2.1 16,843 (86%)

Our classification methods did not involve the ID attribute and would
fail to work regardless with string values, so it was removed as well.

weka.filters.unsupervised.attribute.Remove -R 1,13,56

Listing 9: Weka’s Remove filter deletes these attributes via their column
index.

10

4.6 Feature extraction

We reduced features to our training data by way of Principal Component
Analysis. This was to prevent models from biasing towards sets of features
that strongly correlated with each-other—which is problematic as we assume
these features represent similar information—Dby essentially merging them.

The assumption of correlating features representing similar information
was bolstered by the fact a portion of these numeric attributes were the
results of calculations from epitope properties.

weka.filters.unsupervised.attribute.PrincipalComponents
-R 0.95 -A -1 -M -1

Listing 10: Weka’s PrincipalComponents filter creates Principle Compo-
nents that represent 95 percent of all the features’ variation. Data is auto-
matically standardised beforehand.

Table 5: The variance covered by the 13 principal components generated

from the 66 numeric features.
PC Variance Cumulative

PC1 0.26% 0.26%
PC2 0.15% 0.41%
PC3 0.12% 0.53%
PC4 0.11% 0.64%
PC5 0.08% 0.72%
PC6 0.07% 0.79%
PC7 0.04% 0.83%
PC8 0.03% 0.86%
PC9 0.03% 0.89%
PC10 0.02% 0.91%
PC11 0.02% 0.93%
PC12 0.02% 0.95%
PC13 0.01% 0.96%

We opted to not use PCA for our Random Forests modelling, as similar
features do not seem to disadvantage decision trees, meaning the additional
explainability of all features can be used to create more accurate predictions.

11

5 Classification Modelling

We created all our models in Weka. Every model was wrapped in a FilteredClassifier
(listing 1). For our cost-sensitive models, we wrapped the classifers in Weka’s
CostSensitiveClassifer.

weka.classifiers.meta.CostSensitiveClassifier --
-cost-matrix "[0.0 1.0;
4.0 0.0]"
-S -2020666324
-W <classifier>

Listing 11: Weka’s CostSensitiveClassifier used, where it is the clas-
sifier inside the FilteredClassifier that wraps the respective modelling
classifier.

We selected the k value for our Naive Bayes models via Weka’s provided
cross-validation option, where values between 1 and 10 are all tested to see
which one provided the best accuracy. In both instances, using only one
neighbour was determined as the most appropriate strategy.

Naive Bayes (NB)
weka.classifiers.bayes.NaiveBayes

Instance Based Learner (kNN)
weka.classifiers.lazy.IBk
-K 10 -W 0 -X
-A "weka.core.neighboursearch.LinearNNSearch
-A \"weka.core.EuclideanDistance -R first-last\""

Logistic Regression (LR)
weka.classifiers.functions.Logistic

-R 1.0E-8 -M -1 -num-decimal-places 4
Random Forests (RF)

weka.classifiers.trees.RandomForest
-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1

Listing 12: The Weka configurations used for the modelling.

For all our models, 10-fold cross-validation was used to mitigate overfit-

12

ting and fine-tune the models’ parameters.

Table 6: The preprocessing steps used for each model
NB kNN LR RF

Instance Remove missing v v v v
Reduce duplicates v v v v
Remove outliers v v v
Balance classes v v v

Attribute Remove attributes v v v v
Feature extraction v v v

5.1 Evaluation process

All models” were re-evaluated on the "cleaned" training data (see below).
This was in an attempt to make model performance metrics more consistent,
so as to make better comparisons.

Our cleaned training data is made by just removing missing records (4.1)
and reducing duplicates (4.2) from the original training set. We determine
it better represents the actual observations compared to the unprocessed
training set.

We recorded some summary statistics for every model. Hits referred to
the percentage of correctly classified instances. ROC is specifically the area
under the models’ ROC curve. Cost is the total cost of the cost-sensitive
models’ misclassifications.

5.2 Modelling: equal-costs classification

Hits ROC
NB Naive Bayes 57.5% 0.57
kNN Instance Based Learner 98.8% 0.99
LR Logistic Regression 66.8% 0.58
RF Random Forests 99.5% 1.00

5.3 Modelling: cost-sensitive classification

Hits ROC Cost

NB Naive Bayes 32.9% 0.57 13,077
kNN Instance Based Learner 81.6% 0.99 3710
LR Logistic Regression 33.4% 0.58 13,076
RF Random Forests 71.3% 0.99 5593

13

5.4 Evaluating results

The k-Nearest Neighbour and Random Forest equal-cost models evidently
are shown to be overfitted to the training data, seeing as they achieve near-
perfect classification.

We presumed that class balancing via SMOTE was the primary reason for
overfitting in our models, where the process is not too dissimilar from crude
duplication of existing Positive records. This makes our models, trained
on class-balanced data, be readied to perform well for the respective pre-
balanced data.

We determined however that we were still modelling for the signal points
that represented the underlying pattern to a high degree, where the natural
bias of models to the data that trained them was exacerbated by the synthetic
creation of new points that reflect already-existing observations. This is
unlike overfitting noise points, which would entail the underlying pattern
being misrepresented.

Ultimately we decided the respective k-Nearest Neighbour models for
equal-cost and cost-sensitive scenarios were our best models.

The performance was compared to Random Forests, with the poor results
of the other two models indicating they were not worth considering.

We determined it performed clearly worse than kNN in the cost-sensitive
scenario, due to the ~50% total cost. For our equal-costs pick, we looked
at the ~11% higher correct classifications made in kNN in the cost-sensitive
scenario to determine Random Forests as a weaker modelling technique, as
the marginal 0.7% advantage in Random Forests for the equal-costs scenario
could be attributed to statistical noise and/or greater overfitting.

5.5 Final performance

Model Hits ROC Cost
Equal-costs kNN 77.3% 0.73 1133
Cost-sensitive kNN 68.7% 0.79 1567

6 Conclusions

We believe our overall approach to this classification problem was war-
ranted. This leads us to determine that our k-Nearest Neighbour and Ran-
dom Forests models were performative models, at least relative to how the
given problem seemed to be.

14

The stark contrast in accuracy when compared with our Naive Bayes and
Logistical Regression models is a cause for concern. Further experimenta-
tion with preprocessing steps and model parameter-tuning could have seen a
big difference, although we also imagine kNN and Random Forest methods
simply better model for the classifying pattern at hand.

We missed an opportunity to experiment with our particular used tech-
nique of class balancing. We believe the selectiveness of preprocessing steps
depending on classifier was well-reasoned, but our hypothesises could have
been subject to experiments as well.

Ideally we would have randomly split the cleaned training set for a new
training/test set pair, and train models on differently preprocessed training
sets, to then be evaluated using the test set which was completely unseen to
the models.

For example, training models on unbalanced and class-balanced training
sets would have been useful. Accuracy statistics from evaluation on the
test set would provide insight into whether the inherent overfitting of class
balancing techniques that up-sample is more beneficial, compared to down-
sampling the majority class or not balancing at all.

Ultimately we believe the most important process was cleaning the data
by reducing the duplicates. 6323 duplicate sets were identified, which if not
reduced would have made our models train on misrepresentative data.

15

References

[1] S.S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591-611, 1965.

[2] R. B. D’agostino, A. Belanger, and R. B. D’Agostino Jr, “A suggestion
for using powerful and informative tests of normality,” The American
Statistician, vol. 44, no. 4, pp. 316-321, 1990.

[3] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intelli-
gence research, vol. 16, pp. 321-357, 2002.

16

	Abstract
	Introduction
	Exploratory Data Analysis
	Numeric distributions
	Missing values
	Duplicate records
	Numeric outliers

	Data Preprocessing
	Remove missing records
	Duplicate reduction
	Remove outliers
	Class balance
	Remove attributes
	Feature extraction

	Classification Modelling
	Evaluation process
	Modelling: equal-costs classification
	Modelling: cost-sensitive classification
	Evaluating results
	Final performance

	Conclusions

