ResnetDilated ( (conv1): Conv2d (3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False), weights=((64L, 3L, 3L, 3L),), parameters=1728 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True), weights=((64L,), (64L,)), parameters=128 (relu1): ReLU(inplace), weights=(), parameters=0 (conv2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), weights=((64L, 64L, 3L, 3L),), parameters=36864 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True), weights=((64L,), (64L,)), parameters=128 (relu2): ReLU(inplace), weights=(), parameters=0 (conv3): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), weights=((64L, 64L, 3L, 3L),), parameters=36864 (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True), weights=((64L,), (64L,)), parameters=128 (relu3): ReLU(inplace), weights=(), parameters=0 (maxpool): MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1)), weights=(), parameters=0 (layer1): Sequential ( (0): BasicBlock( (conv1): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) ), weights=((64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,)), parameters=73984 (1): BasicBlock( (conv1): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) ), weights=((64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,)), parameters=73984 (2): BasicBlock( (conv1): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) ), weights=((64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,)), parameters=73984 ), weights=((64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,), (64L, 64L, 3L, 3L), (64L,), (64L,)), parameters=221952 (layer2): Sequential ( (0): BasicBlock( (conv1): Conv2d (64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (downsample): Sequential( (0): Conv2d (64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) ) ), weights=((128L, 64L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 64L, 1L, 1L), (128L,), (128L,)), parameters=230144 (1): BasicBlock( (conv1): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) ), weights=((128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,)), parameters=295424 (2): BasicBlock( (conv1): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) ), weights=((128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,)), parameters=295424 (3): BasicBlock( (conv1): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) ), weights=((128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,)), parameters=295424 ), weights=((128L, 64L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 64L, 1L, 1L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,), (128L, 128L, 3L, 3L), (128L,), (128L,)), parameters=1116416 (layer3): Sequential ( (0): BasicBlock( (conv1): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (downsample): Sequential( (0): Conv2d (128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ) ), weights=((256L, 128L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 128L, 1L, 1L), (256L,), (256L,)), parameters=919040 (1): BasicBlock( (conv1): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ), weights=((256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,)), parameters=1180672 (2): BasicBlock( (conv1): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ), weights=((256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,)), parameters=1180672 (3): BasicBlock( (conv1): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ), weights=((256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,)), parameters=1180672 (4): BasicBlock( (conv1): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ), weights=((256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,)), parameters=1180672 (5): BasicBlock( (conv1): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ), weights=((256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,)), parameters=1180672 ), weights=((256L, 128L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 128L, 1L, 1L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,), (256L, 256L, 3L, 3L), (256L,), (256L,)), parameters=6822400 (layer4): Sequential ( (0): BasicBlock( (conv1): Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (downsample): Sequential( (0): Conv2d (256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) ) ), weights=((512L, 256L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 256L, 1L, 1L), (512L,), (512L,)), parameters=3673088 (1): BasicBlock( (conv1): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) ), weights=((512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,)), parameters=4720640 (2): BasicBlock( (conv1): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU(inplace) (conv2): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) ), weights=((512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,)), parameters=4720640 ), weights=((512L, 256L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 256L, 1L, 1L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,), (512L, 512L, 3L, 3L), (512L,), (512L,)), parameters=13114368 ) PSPBilinear ( (psp): ModuleList( (0): Sequential( (0): AdaptiveAvgPool2d(output_size=1) (1): Conv2d (512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (3): ReLU(inplace) ) (1): Sequential( (0): AdaptiveAvgPool2d(output_size=2) (1): Conv2d (512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (3): ReLU(inplace) ) (2): Sequential( (0): AdaptiveAvgPool2d(output_size=3) (1): Conv2d (512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (3): ReLU(inplace) ) (3): Sequential( (0): AdaptiveAvgPool2d(output_size=6) (1): Conv2d (512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (3): ReLU(inplace) ) ), weights=((512L, 512L, 1L, 1L), (512L,), (512L,), (512L, 512L, 1L, 1L), (512L,), (512L,), (512L, 512L, 1L, 1L), (512L,), (512L,), (512L, 512L, 1L, 1L), (512L,), (512L,)), parameters=1052672 (conv_last): Sequential ( (0): Conv2d (2560, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), weights=((512L, 2560L, 3L, 3L),), parameters=11796480 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True), weights=((512L,), (512L,)), parameters=1024 (2): ReLU(inplace), weights=(), parameters=0 (3): Dropout(p=0.1), weights=(), parameters=0 (4): Conv2d (512, 150, kernel_size=(1, 1), stride=(1, 1)), weights=((150L, 512L, 1L, 1L), (150L,)), parameters=76950 ), weights=((512L, 2560L, 3L, 3L), (512L,), (512L,), (150L, 512L, 1L, 1L), (150L,)), parameters=11874454 )