
University of Science
and Technology of Hanoi

Group Project

Students–Supervisors Collaboration
Platform with Builtin Utilities

for Academic Management

Authors
Đoàn Bá Cường
Ngô Ngọc Đức Huy
Đào Dương Hoàng Long
Ngô Xuân Minh
Nguyễn Gia Phong

Supervisor
Đoàn Nhật Quang, PhD

February 4, 2021

Contents
Contents . i
1 Introduction . 1

1.1 Motivation . 1
1.2 Background . 1
1.3 Objectives . 2
1.4 Expected Outcomes 3
1.5 Report Structure . 3

2 System Requirements . 4
2.1 Types of Users . 4
2.2 Functional Decomposition 5
2.3 Use-Case Model . 7
2.4 Supplementary Specification 15

3 Methodology . 17
3.1 Technical Choices . 17
3.2 System Architecture 18
3.3 Use-Case Analysis and Design 20
3.4 Database Design . 36
3.5 User Interface and User Experience 43
3.6 Development Process 47

4 Results and Discussion . 49
4.1 Results . 49
4.2 Discussion . 49

5 Conclusion and Future Work 50
5.1 Conclusion . 50
5.2 Future Work . 51

A Acknowledgement . 51
B Glossary . 52
C References . 55

i

ii

1 Introduction

1.1 Motivation
Group project and internship are annual activities for master students and
last year bachelor students in University of Science and Technology of Hanoi
(USTH). With the university’s projected growth, managing them is becoming
a complicated yet important task. The management is required for both
students and the school staff. From students’ and supervisors’ perspective,
there should be a tool that helps manage numerous tasks in their projects.
From faculties’ academic assistants’ perspective, a system that helps collect
projects’ progress and evaluation is of great importance, since manual input
for students’ grade is an exhausting task and can lead to error.

Therefore, a collaborative platform that students and supervisors can
use in their project, which also support academic evaluation and report, is
needed. This tool should help students manage their projects seamlessly, and
academic assistants collect statistical reports quickly.

1.2 Background
Project management is a common problem, which is why it is unsurprising
that there have been a variety of project management systems. Students
and supervisors have already been using some of these systems to manage
their tasks. We studied these systems to see how projects are commonly and
effectively managed.

Trello, a popular web service for keeping track of tasks, uses Kanban
board. A Kanban board consists of several columns, each of which contains
some tasks in a certain stage, such as to-do, in progress, in review, and done.
User can move a task from a column to another. As this workflow is easy to
learn, it is also used by other popular collaborative platforms, such as Jira,
Asana, GitHub, or Tuleap.

Some other software, such as GanttProject, ProjectLibre, or Microsoft
Project is modeled after another tool: Gantt chart. Gantt chart is a way
of using bar chart to visualize the schedule for the project. This method
simplifies scheduling independent tasks to be worked on at the same time to
save wait time.

Although many of project management systems above are targeting soft-
ware development projects, The application of Kanban board and Gantt
chart as project management tools can benefit any other fields. In fact, us-
ing Kanban board in other fields is also known to improve productivity by

1

https://trello.com/
https://en.wikipedia.org/wiki/Kanban_board
https://en.wikipedia.org/wiki/Kanban_board
https://www.atlassian.com/software/jira
https://asana.com/
https://github.com/
https://www.tuleap.org/
https://www.ganttproject.biz/
https://www.projectlibre.com/
http://office.microsoft.com/project/
http://office.microsoft.com/project/
https://en.wikipedia.org/wiki/Gantt_chart

saving time and aid internal communication [1].
As effective and popular as existing project management systems are,

they do not support academic evaluation, which is one of our main moti-
vations. Extending existing free software could be an approach to achieve
our target. However, the complexity of those systems makes it impractical
to study within a short period. Therefore, we started this project to create
from scratch an academic-oriented project management system.

1.3 Objectives
In this project, the overall aim is to develop a collaboration platform for stu-
dents and mentors. The resulting system should be able to not only integrate
well into their workflows and academic management tasks but also effectively
perform on back-end servers often with limited resources and across a wide
variety of end-user machines.

1.3.1 Building a Collaboration Platform

At the lowest level, discussion would be facilitated through comment threads,
organized into logical tasks. The tasks would be categorized by stages such
as to-do, doing and done. These stages would then be visualized as columns
in a Kanban board to aid managing and prioritizing tasks.

1.3.2 Developing Utilities for Academic Management

In addition to discussion and job scheduling, the system-to-be would support
academic tasks. To mentors and committees, these are grading and giving
feedback. To academic assistants, these include (but not limited to) export-
ing transcripts and statistical reports, and tracking students’ overall progress
to provide help if necessary.

1.3.3 Constructing an Applicable Web Application

The system should be implemented as a web application for portability [2]. It
should be easy to be adopted by users on different devices network connection
quality, whilst being simple enough to be maintained by a few administrators
to run on modest hardware.

Last but not least, for long-term maintainability and ethical concerns,
such as protecting of digital freedom and promoting independence and co-
operation in educational institutions, the system should be made available
under a free software license [3].

2

https://en.wikipedia.org/wiki/Kanban_board

1.4 Expected Outcomes

From the beginning, it was foreseeable1 that a few students would not be
able to complete a medium-sized system from requirement engineering to
architecture, analysis and design as well as implementation, by working part-
time in three months. Rather, we anticipated to finish the following:

1. Requirements clarification
2. Concrete system architecture
3. Initial system design for both functional objectives (Building a Collab-

oration Platform and Developing Utilities for Academic Management)
4. Implementation of a subset of the use cases, focusing on Building a

Collaboration Platform, while satisfying non-functional requirements
to be ready for real-world usage

1.5 Report Structure
The report contains following chapters:

1. Introduction: Introduce the motivation and background of the prob-
lem and some related works, and afterwards, define the objective and
scope of the project.

2. Requirements: Specify use cases as well as non-functional require-
ments.

3. Methodology: Illustrate the development steps, from technical
choices to architecture and system analysis and design.

4. Results and Discussion: Show what we did in this project and what
we learned from it.

5. Conclusion and Future Work: Summarize the findings and suggest
the work that can be done to improve the system.

1 While we were overly ambitious and optimistic, our supervisor was more realistic and
taken Hofstadter’s Law into account:

It always takes longer than you expect, even when you take into account
Hofstadter’s Law [4].

3

2 System Requirements
In this section, from the objective and context, we examined user categories
and their behavior. After that, we analyzed the expected system to see
which features therewill be. From there, we derived a list of use cases for
the system. Finally, we add some supplementary specifications for describing
nonfunctional requirements.

2.1 Types of Users
Firstly, to understand which use cases that need to be implemented, we
analyzed which types of users there are and how they interact with our
system.

The primary users are students and their supervisors. They can inter-
act quite similarly with the system:

• Create a new project
• Edit public information about a project
• Invite new members to a project
• Create new tasks
• Evaluate the tasks
However, there are differences between what students and supervisors can

do. Unlike supervisors, students are not allowed to evaluate the project. On
the other hand, supervisors should not be able to do tasks nor to upload
project reports and slides while students can do those tasks.

After the students submit the reports, there will be judges whose re-
sponsibility is to assess these reports. They also evaluate the groups’ project
oral defense (also called presentation). They should therefore be allowed to
access and evaluate reports and slides of projects they are assigned.

During the process, academic assistants of each faculties should collect
statistical reports of each project and print the results of the subject.

The system’s user categories can be summarized in the table below

4

Type Responsibility Ability
Student progress the project manage projects, manage and

complete tasks, upload reports and
slides

Supervisor support the group
and evaluate the
project

create tasks, evaluate projects

Judge evaluate groups’
reports and
presentations

access and evaluate reports and
presentation

Assistant collect statistical
report and evaluation

aggregate and export projects’
evaluation

In the system, we assigned users of each group a role: student,
supervisor, assistant, judge.

2.2 Functional Decomposition
From the project objectives, we applied divide-and-conquer strategy: decom-
posed each expected functionality and thereby outlined the use cases we need
to implement.

The work breakdown structure (WBS) diagram in Figure 2.1 summarizes
the decomposition we made.

In the following two sections, we will justify this breakdown.

2.2.1 Building a Collaboration Platform

For the users to collaborate, they should be able to create projects and tasks.
They should be also able to edit them in case they make some mistakes or
they need to update.

Each task should be assigned to some members. After it is done, the
member should be able to complete it. As they do task, they may need to
discuss the problem.

5

Figure 2.1: The features the system was expected to have.

2.2.2 Academic Integration

Group projects are evaluated according to three criteria:
1. The project outcome
2. The written reports
3. The presentation, also called oral defense
The first one is evaluated by the supervisor; the latter two are evaluated

by the judge.
The system should therefore allow students to upload their reports, and

supervisors and judges to evaluate them.
After the evaluation is made, the result is aggregated by each faculty’s

academic assistants, who then export the results or make statistical reports.

6

2.3 Use-Case Model
This section includes the list of use cases we expected to have in the system.
Since the number of use cases is large, we divide the use cases to smaller
groups for clarity.

2.3.1 Project Collaboration

This section aims to describe basic activities relating to the project. For
Building a Collaboration Platform, we let users perform basic create-read-
update-delete on projects, along with the help of tasks and discussion.

7

8

Create Project

This use case allows Student or Supervisor to create a new project. Its
flow of events can be depicted as follows:

1. Student/Supervisor requests to create a project.
2. System receives the request and requests user to enter name and de-

scription.
3. The user provides necessary data.
4. System processes the data and create a new project.

Show Project Information

This use case allows a member to view the project’s basic information.
Its flow of events can be depicted as follows:

1. Participant requests to view a project.
2. System respond with the project’s basic information.

Edit Project Information

This use case allows a member to edit a project’s basic information. Its
flow of events can be depicted as follows:

1. Participant requests to view a project.
2. System respond with a form for editing basic information.
3. Participant gives disired changes to the project’s basic information.
4. System updates the project’s information accordingly.

Add Project Members

This use case allows the creator of a project to add members to it. Its
flow of events can be depicted as follows:

1. The creator selects other users to add to project.
2. The System adds the selected users as members of the project.

9

Create Tasks

This use case allows Student or Supervisor to generate tasks for the
project. Its flow of events can be depicted as follows:

1. Student/Supervisor requests to generate tasks the project.
2. System receives the request and requests user to provide name, as-

signees and deadline.
3. User provides necessary data.
4. System processes the data and updates tasks list.

Assign Tasks

This use case allows a participant to assign a task to someone. Its flow
of events can be depicted as follows:

1. Student selects the task and choose “Assign”.
2. Student chooses the participant to assign to.
3. System receives the request and register the participant as assigned for

that task.

Complete Tasks

This use case allows Student to complete task(s) in the project. Its flow
of events can be depicted as follows:

1. Student requests to complete task(s) in the task list.
2. System receives the request and requests Student to hand in evidences.
3. Student submits a file or a link as evidence.
4. System receives the evidence and marks task(s) as completed.

Create Discussion Thread

This use case allows Student or Supervisor to create a discussion thread.
Its flow of events can be depicted as follows:

1. User requests to create a new discussion thread.
2. System receives the request and requests user to enter title and con-

tent.
3. User provides necessary data.
4. System processes the data and create a new thread.

10

Add Comment

This use case allows Student or Supervisor to add a comment to a dis-
cussion thread. Its flow of events can be depicted as follows:

1. User requests to add a new comment to the discussion thread.
2. System receives the request and requests user to enter comment.
3. User enters a comment.
4. System processes the data and create a new comment in the thread.

2.3.2 Academic Evaluation

This section aims to describe basic activities relating to the evaluation. In
order to build the academic integration, we let supervisors do evaluation. In
addition, academic assistant could also track student progress. Overall, the
use cases defined here are the functional requirements for Developing Utilities
for Academic Management.

11

Evaluate

This use case allows Supervisor to evaluate the project. Its flow of events
can be depicted as follows:

1. Supervisor requests to evaluate the project.
2. System receives the request provide an evaluation and comment.
3. Supervisor provides evaluation with comments.
4. System receives the data and terminate the project.

Make Report

This use case allows Academic Assistant to make reports based on the
result of the project. Its flow of events can be depicted as follows:

1. Academic Assistant requests to make a report.
2. System receives the request and displays the result of the project.
3. Academic Assistant requests to make a hard copy.
4. System responds a document file format of the report.
5. Academic Assistant downloads the file for printing purpose later.

Export Transcript

This use case allows Academic Assistant to export transcript based on
the evaluation of Supervisor. Its flow of events can be depicted as follows:

1. Academic Assistant requests to export the transcript.
2. System receives the request and displays the evaluation of Supervisor.
3. Academic Assistant requests to make a hard copy.
4. System responses by a document file format of the transcript.
5. Academic Assistant downloads the file for printing purpose later.

2.3.3 Other Use-Cases

As for most web applications, this system is required to perform basic tasks
such as authentication and searching. In other words, those defined here
are the bridges between the non-functional requirements (of Constructing an
Applicable Web Application) and the use cases previously declared.

12

Register

This use case allows user to create his/her own account. Its flow of events
can be depicted as follows:

1. User requests sign up for the system.
2. System receives the request and requests user to enter username,

password, name, role, and email
3. User provides necessary information.
4. System requests user to verify by his/her provided email.
5. User verifies by his/her provided email.
6. System allows user to log in the system with newly created account.

13

Login

This use case allows user to log in the system.
1. User requests to log in the system.
2. System receives the request and requests user enter username and

password.
3. User provides username and password.
4. System validates the entered username and password and allows user

to log in the system.

Logout

This use case allows user to log out of the system. Its flow of events can
be depicted as follows:

1. User requests to log in to the system.
2. System receives the request and allows user to logout the system.

Search Student

This use case allows User to search for students. Its flow of events can be
depicted as follows:

1. User selects “Student” on search bar.
2. Sytem requests for the search query.
3. User enters the name of student that his/her wants to search.
4. System receives the search request including the name, and responds

with a list of students matched with the provided name.

Search Supervisor

This use case allows user to search in list of lecturers. Its flow of events
can be depicted as follows:

1. User selects “Supervisor” on search bar.
2. User enters name of lecturer that his/her wants to search.
3. System receives the search request including the name, and responds

with a list of supervisors matching the provided name.

14

Search Project

This use case allows user to search in list of projects. Its flow of events
can be depicted as follows:

1. User selects “Project” on search bar.
2. Sytem requests for the search query.
3. User enters name of project that his/her wants to search.
4. System receives the search request including the name, and responses

with a list of projects matched with the provided name.

2.4 Supplementary Specification
Besides the functionalities specified in the Use-Case model, following are
more specifications for non-functional requirements. Together, these are con-
crete realization of requisites for Constructing an Applicable Web Application.

2.4.1 Usability

The system should be intuitive to any users. Users should be able to use it
with little to no training.

In order to achieve this, we derived specific design contraints:
• The user interface should not contain superfluous and distracting fea-

tures.
• The user’s projects should be easily found as soon as the user sign in

(for students and supervisors).
• All bodies of text should be readable and legible. Text font should thus

be decided by the user since each user finds a different font easier to
read.

• Error messages should be informative

15

2.4.2 Reliability

The system must be available 99.99% of the time (that is, there must be no
more than a few seconds of outage a day).

2.4.3 Performance

The system should be able to support up to 1000 users simultaneously per-
forming different tasks at any given time.

2.4.4 Supportability

The user interface must be functional on both desktop or laptop computers,
tablet, and on smartphones.

The file system must support uploading various file formats that are used
for discussing and reporting project results:

• Document: docx, pdf, tex, md, rst, plain text, etc.
• Audiovisual: png, jpg/jpeg, tiff, ogg, mp3, mp4, etc.
• Presentation: pptx, tex, pdf

2.4.5 Security

The system must not allow internal information to be accessed and modified
by an unauthorized user. Passwords should be all stored as hash.

The systems should not be vulnerable to common security threat, such
as XSS, SQL injection, DDoS attack.

The connection to the server must use HTTPS protocol, that is, it must
be encrypted with TLS/SSL.

2.4.6 Legal Constraints

The resulted software should be released under a copyleft free license, namely
Affero General Public License version 3.0, in order to persist digital freedom
for education.

16

3 Methodology
This section concerns technologies chosen for this project, user interface de-
sign and implementation.

3.1 Technical Choices
Before starting to work on the project, we had to decide on the technology
we would use for constructing this system. In this section, we will introduce
the tools we used for development in this project and justify those choices.

3.1.1 Concurrency

Since most, if not all, of the system’s use cases are I/O intensive, it is natural
to employ an asynchronous input/output framework to solve concurrency
issues. Trio was picked for the ease of flow control offered by structured
concurrency.

3.1.2 Web Server and Framework

As asynchronous input/output was chosen, ASGI was needed to cooperate
the asynchronous routines in the application and the server. For server,
Hypercorn was picked for its first-class support for Trio. The application
was built on top of Quart, a microframework similar to Flask but for ASGI,
for its flexibility.

3.1.3 Templating Language

We use Jinja2 for templating, which is the default choice for Quart. It pro-
vides us with various tools that help secure the website easier. For example,
it allows HTML escaping [5], which helps avoid XSS injection.

3.1.4 Persistency

For persistency, there are two separate concerns: storing the system’s meta-
data, which is a collection of small chunks of plain text, and storing the files
uploaded by the users. In the former case, RethinkDB, a document-oriented
database, was chosen for recursive and less-structured data support. Such
database, however, is performance-wise unsuitable for larger files, so IPFS ,
which is a distributed file system that provides similar abstraction, is used
instead in the latter case.

17

https://trio.readthedocs.io
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://pgjones.gitlab.io/hypercorn
https://pgjones.gitlab.io/quart-trio
https://flask.palletsprojects.com
https://jinja.palletsprojects.com
https://rethinkdb.com
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database

By choosing RethinkDB instead of SQL, we do not have to worry about
SQL injection or similar database attack. This is because the query lan-
guage ReQL is not based on string parsing [6], but built as methods in the
implementing language.

3.2 System Architecture
As previously mentioned, Acanban implements an ASGI application. The
general architecture is illustrated in Figure 3.1.

Figure 3.1: Acanban’s role in the Asynchronous Server Gateway Interface

All the data and business logic handling is done on the server side in order
to reduce workload for the clients, and thus the details involving the clients
are not discussed in this section. Requests to and responses from the ASGI
application are transfered through the ASGI server2 Hypercorn. Typically,
these messages are encrypted via TLS/SSL3.

Persistency layers are provided by separate servers, which in our case are
deployed on the same machine as the ASGI server and application. This has
the following benefits:

• The network latency is significantly lower within a machine.
• We are spared from concerning with various security measures that

would have been necessary were these servers are exposed to the Inter-
net.

• It is more economic to maintain fewer physical (or virtual) machines.
While files uploaded by the users and generated by the system are stored

in IPFS , other data are managed by RethinkDB. With these components,
our test server, which is registered under the domain of acanban.ga, has the
top-level view described in Figure 3.2.

As both IPFS and RethinkDB are designed to be distributed and the
HTTP is distributed by nature, it is straightforward to scale the system.
A load balancer such as nginx can be added to distribute the requests to
multiple Acanban instances as is shown in Figure 3.3. IPFS and RethinkDB
can also be run as clusters.

2 Not to be confused with the physical machine that serves over HTTP that may run
the ASGI application and other software.

3 HTTP over TLS or SSL is often known as HTTPS.

18

https://rethinkdb.com
https://acanban.ga
https://nginx.org

Figure 3.2: Deployment architecture

Figure 3.3: Alternative architecture with load balancer

19

However, we do not implement this architecture within the scope of this
project, due to following reasons:

• We do not have several servers to implement.
• For intended use, the expected requests can go up to as many as 1000.

Load balancing for such few requests is overhead.

3.3 Use-Case Analysis and Design
In this section, we will address the previously stated requirements. Each
use case previously defined will be analyzed and from there we design the
logical flow for the implementation. Due to the time limitation, we could
only designed the system for some few use cases related to authentication
and project management.

3.3.1 Security

Some designs that address security concerns—authentication, authorization,
encryption, preventing attacks—are described in this part.

Authentication

In order to protect the data from unauthorized users, we must first verify
their identity, i.e., authenticate the users.

To register for an account, the user should fill a form with personal in-
formation:

• real name
• username
• password
• the user’s role, which can be student, supervisor, or assistant
When user submits a form to register for an account, the register con-

troller will check the database to see if the username exists. If the user-
name does not exist, the controller will continue to create an account in the
database. The password is stored in the database as a hash for security.

After the successful account creation, the user will be redirected to the
home page.

If the username or email is taken, the controller should inform so to the
user.

Another exceptional flow happens when the user request an invalid role.
This should not happen when the user submit the form via browser, but it
can happen if someone is submitting it via a nonstandard way.

20

Figure 3.4: Analysis sequence diagram for the basic flow of registration pro-
cess

Figure 3.5: Analysis sequence diagram for the alternative flow of the regis-
tration process where the mail is taken

21

Figure 3.6: Analysis sequence diagram for the alternative flow of the regis-
tration process where the username is taken

Figure 3.7: Analysis sequence diagram for the alternative flow of the regis-
tration process where the role is invalid

22

In order to prevent faking identity, we intended to require a token for
registration. This token is provided by the system administrator and each
person can only receive one token, so if they use it for faking identity, they
cannot create their account anymore and have to suffer th consequence.

Alternatively, the administrator can remove the register endpoint and
generate the accounts for each user.

However, we did not implement either of these schemes.
After that, the user can log in to the site in the login endpoint. After

submitting the form with their username and password, they should be logged
in.

Figure 3.8: Analysis sequence diagram for the basic flow of login

However, if the user tries to log in with a non-existent account, the con-
troller should raise an error and inform the user so.

If the user input wrong password, the user should also not be logged in
and be informed of wrong password.

Authorization

After authenticated, the users are authorized according to their role and
their identity. For example, a user with role “assistant” cannot participate
in a project, or student cannots edit a projects they do not participate in.

23

Figure 3.9: Analysis sequence diagram for the alternative flow of login where
there is no user with the username

Figure 3.10: Analysis sequence diagram for the alternative flow of login where
the

24

Encrypted Connection

To protect the data sent through HTTP, we upgraded it to HTTPS by
creating a TLS certificate on the server side. Furthermore, the server is
configured to use secure cookies, that is, cookies that can only be sent via
HTTPS.

Injection Attacks

XSS Attack

Jinja by default escapes all HTML tags. This means that if an attacker
tries to inject a script into the content, for example, setting project descrip-
tion as <script>sendSensitiveData()</script>, the script tags would ap-
pear as is and not parsed as a script element.

Moreover, the server is configured to use same-site and HTTP-only cook-
ies, which renders any cookie-stealing JavaScript useless.

3.3.2 Project Management

In this section, we present the system design for project management use
cases. Task management use cases, while indeed are part of project manage-
ment, are discussed in the next.

Create Project

The function allow creating projects.
The implementation involves two database tables:
• users database table, where role index is checked.
• projects database table, where new document is created.
When user requests to create project, the project controller checks with

quart_auth whether the person is authenticated. The controller then checks
in users database that if the current user is not assistant. When both
conditions are satisfied, controller returns a form for user to create project.
After user fills in the form, the controller requests updating project database
accordingly.

If user is not authenticated, controller should inform that user has not
logged in.

If user is an assistant, controller should inform that user are not allowed
to create projects.

25

Figure 3.11: Activity diagram illustrating the successful project creation

Figure 3.12: Analysis sequence diagram for create project by non-
authenticated user.

26

Figure 3.13: Analysis sequence diagram for create project by assistant.

Show Project Information

The function allow showing project information.
The implementation involves only project database table, where id,

students and supervisors indexes are visited
When user requests to create project, the project controller checks with

quart_auth whether the person is authenticated. The controller then checks
in project database that if the current user is a member of project, and if the
project id is existed in database table. When three conditions are satisfied,
controller show the project information.

If quart_auth returns user is not authenticated, controller should inform
accordingly.

If project id is not in the database, controller must show the error
If user is not in the project, controller must show the error

Edit Project Information

The function allow editing project information.
The implementation involves only project database table, where id,

students and supervisors indexes are visited
When user navigate to edit tab, the project controller checks whether or

not the person is authenticated. After that, it checks if the current user is a
member of project, and if the project id is existed in database table. If all
conditions are satisfied, controller shows the form for user to fill in. When

27

Figure 3.14: Analysis sequence diagram for successfully show project infor-
mation.

Figure 3.15: Analysis sequence diagram for showing project information when
user is not authenticated.

28

Figure 3.16: Analysis sequence diagram for showing project information when
project id does not exist.

Figure 3.17: Analysis sequence diagram for showing project information when
user is not a project’s member.

29

user fills the form, controller updates the project table with the extracted
data

Figure 3.18: Analysis sequence diagram for successfully edit project informa-
tion.

If user is not authenticated
If project not exists in projects database table
If user is not a member in the project

List member

The function allow listing the members in the projects.
The implementation involves only projects database table, in which we

get the member list of members. Two fields are being called is supervisors
and students.

When user navigate to member tab, the list of members in the project,
classified as supervisors and students is shown in a form.

30

Figure 3.19: Analysis sequence diagram for editing project with un-
authenticated user.

Figure 3.20: Analysis sequence diagram for editing projects when project id
does not exist.

31

Figure 3.21: Analysis sequence diagram for editing projects when user is not
a member of the project.

Figure 3.22: Analysis sequence diagram for the member listing process

32

Invite member

Since the project is initialized with only the creator, we need a function to
invite members. Only who is in the project could introduce a new member.

The design involves the projects database table, where the members
index is to be updated.

When user enters the invited member’s name, the project controller
checks the projects table in the database whether the person is already
in the project, or that user is an assistant, or that user has not registered. If
all three conditions is satisfied, two databases is updated accordingly.

Figure 3.23: Analysis sequence diagram for successfully invite member.

If added user is already in the project

Figure 3.24: Analysis sequence diagram for adding member when user is
existed in project.

If added user is an assistant
If the name is not in users database

33

Figure 3.25: Analysis sequence diagram for adding member when user is an
assistant.

Figure 3.26: Analysis sequence diagram for adding non-registered user.

34

3.3.3 Artifact Upload

File uploading is necessary for report submission and slides sharing. These
files are called “artifact”. Only students of a project can upload these arti-
facts.

The process involves three storages:
• projects database table
• files database table
• IPFS
Uploading artifacts starts with user submitting a file via browser. A file

controller receives it and add to the file system, IPFS. After adding the file,
a CID is generated by IPFS and returned to the controller. Consequently,
metadata about the file, including the CID, is added as a row in the table
files. The database management system, RethinkDB, generates a primary
key for this row, which is then added to project artifact revisions.

Figure 3.27: General message sequence for artifact uploading.

In case of uploading files for other purposes, such as including a picture
in a comment, is similar to the flow described above. However, the primary
key is not stored in the project, and the link to the stored file is returned

35

instead.

3.4 Database Design
This section is dedicated to designing the database for the system. Designing
a non-relational database can be tricky due to its flexibility, as opposed to
for traditional relational database. However, we followed a similar approach:
we first analyze which entities need to be represented and from there, we
derive tables for the database accordingly.

3.4.1 Entity Set

Since each user can have zero, one, or several projects and a group project
can have several participating users, we model the relation between them as
many-to-many.

In each project, there could be many tasks which participants would
complete to advance the progress of the project. There should be thus a one-
to-many relation between Project and Task, and between user and task.

For each task, we designed a comment thread, in which students can
discuss their problems, or ask their supervisors for help, to resolve them
faster. Since there can be many comments in a task, the relation between
Task and Comment should be one-to-many.

There can be comments replying to other comments, constructing a tree
data structure. This structure is described by a self-referential one-to-many
relation.

Additionally, there should be a Artifact entity for storing reports and
slides. Each project can have one report and one slide.

We allowed uploading multiple revisions of reports and slides, considering
that the group can continually update their reports and presentations. Each
Artifact entity thus can have multiple associated File as revisions.

However, a file does not necessarily tie to any project, since they can be
referred in comments or by academic assistants in their statistical reports.

Visually, the relations between entities described above can be represented
in Figure 3.28.

In each entity, there are other attributes and metadata which assists the
management. They are described in the following sections.

36

Figure 3.28: Relationship between entities in the database

37

User

A User object represents either a student, a supervisor, or an academic
assistant. Since all users of this system have similar basic information, such
as username and email, we represented them all as User object, and restrict
their behaviors according to a field role.

Each User object has following attributes:
username [string] A unique name with which the user can refer to one

another. It is also the primary key and allows the user to sign in.
name [string] The legal name of the user. This is required for group mem-

bers to recognize each other, and for the academic assistants to collect
their results.

email [string] The email address that is used to contact with the user.
password [string] The password for the user’s account, encrypted with a

hash function.
role [string] The role of the user in this system. It can be:

• student: Students who are participating in a group project or
internship.

• supervisor: The supervisor of project(s).
• assistant: The academic assistant of a department.

department [string, optional] The department of the user, such as ICT, SA,
or LS. Required for students and assistants.

student-id [string, optional] Only applicable for users with role student:
A unique identifier assigned to students to be used outside this system.

bio [object, optional] A markup text describing the user. This is not nec-
essary, but it can be helpful for a supervisor to have a biography to
show their credibility in their respective field.

Project

A Project object includes the project description as well as the links to
participants.
name [string] The name of the project.
description [string] The summary of a project, which gives outsiders a

brief idea of the objective or the scope of the project.
We separated the list of the members as supervisors and students so that

the view functions do not have to check for their roles all the time.
supervisors [array of string] Usernames of supervisors of the project.
students [array of string] Usernames of students participating in the

38

project.
As described above, a project should have several tasks, some revisions

for reports and slides:
tasks [array of Task] List of Tasks created for this project.
reports [Artifact] An object representing the reports of the project.
slides [Artifact] An object representing the presentation slides of the

project.
Each project must be evaluated by the supervisor(s); the evaluation

should therefore be stored as a property of the project.
evaluation [number] The evaluation of the work for the project that is

provided by the supervisor. It can be based on previous evaluation of
individual tasks.

Additionally, information about the timeframe of the project is also
needed. It can be used for sorting, filtering and reminding participants of
the deadline.
created_on [time] The date and time the project is created.
deadline [time] The date and time for the deadline of the project.

Task

To identify the tasks, the tasks’ names and descriptions are needed.
name [string] The name of the task
creator [User] The user who created the task
description [string] The summary of a task

Since tasks should be assigned to someone to perform the tasks, there
should be a field for linking to the assignee. Moreover, there should be a
status to track if the task is in progress or has been done. The user can
upload a report or add a link to show their work to address the task.
assigned_to [User] The assignee of the task. Must have role student.
status [integer] The status of the project in the Kanban board: to-do, in

progress, or done.
work [string (URL)] The URL to the work by the assignee that addresses

the task. It can be a link to a file hosted on the acanban server (if the
user uploads it to acanban) or an external link (e.g. to a GitHub pull
request, or to a document hosted by some other services)

To facilitate collaboration, there should be a discussion thread for partic-
ipants to discuss the problems of the tasks:
discussion [array of Comment] List of Comments created for this task

Like for projects, creation date and deadline are added so that partici-

39

pants can keep their progress. It can also help sort the tasks by timeline.
created_on [time] The date and time the task is created.
deadline [time] The date and time for the deadline of the task.

Even though individual tasks are not required to be evaluated and the
evaluation does not add to the final evaluation, an evaluation field was de-
signed for tasks so that the assignees can receive a measurable feedback on
their work.
evaluation [number] The evaluation of the task

Artifact

The Artifact object is used for storing artifacts with multiple revisions
and can be academically evaluated. The evaluation can come with a comment
so that the students can improve their skills in the future.
comment [string] Evaluation comment.
grade [float] Evaluated grade.
revisions [array of string] UUIDs of previously uploaded revisions.

Comment

Comment object represent a comment insides a task’s discussion. It should
contain the identifier for the commenter and its content.
creator [User] The user who created the comment.
content [string] The content of the comment.

Since the discussion follows a forest structure, each comment recursively
contains a list of replying comment.
comments [array of Comment] List of Comments replying to it.

To let the user know if the comment is new or old, creation time is also
added.
created_on [time] The date and time the comment is created.

File

The File object is needed to store the metadata about the files used
in a project. The object indicates the IPFS link to the file, besides other
metadata such as uploader, uploaded time, file name, . . .
id [string] UUID unique to the upload.
cid [string] Content identifier of the file in CID v1.
name [string] Name of the file.

40

https://github.com/multiformats/cid

size [integer] Size of the file, in bytes.
time [datetime] The time when the file was uploaded.
user [string] Username of the uploader.

3.4.2 Data Tables

From the relationship between data tables we analyzed above, we derive three
data tables: users, projects, files.

The User entity set is mapped to users table. Likewise, File is mapped
to files table.

t a b l e User

depa r tmen t ICT

emai l adaml@example.edu

name Adam Lahtinen

password (hashed password)

ro le s tudent

student- id BI9-xxx

username adaml

Figure 3.29: An example database row for student.1

t a b l e File

c id (IPFS CID)

i d (generated UUID)

name repor t -d ra f t -1 .pd f

size 34537

t i m e

user adaml

$reql_type$ TIME

epoch_t ime 1610878758.474

t imezone +00 :00

Figure 3.30: The structure of database table file.1

However, most other entities are stored within a single table projects,
forming a typical tree-like structure of document-oriented database. For
example, two entities Artifacts storing revisions for report and slides are
included within a table row. Tasks are stored in an array in the project.

3 The JSON structure is visualized by PlantUML. Source text used can be
found at https://github.com/Huy-Ngo/acanban/tree/main/docs/source/meth/database/
tables/images

41

https://github.com/Huy-Ngo/acanban/tree/main/docs/source/meth/database/tables/images
https://github.com/Huy-Ngo/acanban/tree/main/docs/source/meth/database/tables/images

The many-to-many relation between User and Project is realized using
foreign keys with secondary index in this table as well:

• Each row in projects has a supervisors and a students fields. We
model both of these fields as lists, since there can be occasions where
two or more supervisors co-supervise a project.

• A secondary index named members was created for these fields for the
ease of querying projects a certain user participates in.

t a b l e pro jec ts

created_on (t ime objec t)

deadline (t ime objec t)

descr ipt ion Lorem ipsum...

i d (project ID)

name (project name)

re p o r t

slides

students

supervisors

tasks

E n t i t y A r t i f a c t

c o m m e n t

grade - 1

revisions

E n t i t y A r t i f a c t

c o m m e n t

grade - 1

revisions

a r r a y

ophel iad

jamesm

arabellaf

evelynd

audreym

ronanf

a r r a y

E n t i t y Ta s k

assigned_to arabellaf

created_on (t ime objec t)

c reator jamesm

deadline (t ime objec t)

discussion (discussion forest)

name (task name)

descr ipt ion Lorem ipsum...

status 0

E n t i t y Ta s k

assigned_to ophel iad

created_on (t ime objec t)

c reator evelynd

deadline (t ime objec t)

discussion (discussion forest)

descr ipt ion Lorem ipsum...

name (task name)

status 2

E n t i t y Ta s k

assigned_to arabellaf

created_on (t ime objec t)

c reator jamesm

deadline (t ime objec t)

discussion (discussion forest)

name (task name)

descr ipt ion Lorem ipsum...

status 2

Figure 3.31: The structure of database table projects.1

Within each task is a discussion thread with a forest structure of Comment

42

entities. There are several root comments within the discussions. Each com-
ment can contain some child comments.

E n t i t y Ta s k

assigned_to arabellaf

discussion

.

E n t i t y C o m m e n t

creator arabellaf

c o n te n t How to do this task?

created_on (t ime objec t)

comments

E n t i t y C o m m e n t

creator jamesm

c o n te n t This may help:
ht tps: / /example.org

created_on (t ime objec t)

comments

E n t i t y C o m m e n t

creator arabellaf

c o n te n t Thanks but this
is irrelevant

created_on (t ime objec t)

comments
E n t i t y C o m m e n t

creator evelynd

c o n te n t I found this link:
h t tps: / /example.net

created_on (t ime objec t)

comments

E n t i t y C o m m e n t

creator arabellaf

c o n te n t Wow this is really
helpful, thanks.

created_on (t ime objec t)

comments

E n t i t y C o m m e n t

creator ophel iad

c o n te n t Task #14 depends
on this so can
you resolve this
faster? @arabellaf

created_on (t ime objec t)

comments

E n t i t y C o m m e n t

creator evelynd

c o n te n t You can do #17
in the meant ime

created_on (t ime objec t)

comments

E n t i t y C o m m e n t

creator arabellaf

c o n te n t Sure

created_on (t ime objec t)

comments

Figure 3.32: The forest structure of discussion field.1

3.5 User Interface and User Experience
This section is dedicated to the design of user interface and user experience,
in order to support the goal of achieving Constructing an Applicable Web
Application. Generally, the application should be portable across different
input/output devices, as well as being easy to adopt by the end-users.

3.5.1 Navigation

For the ease of navigation, the organization of web pages must be well-
structured. Furthermore, it is important to avoid having deadends, which
negatively impact the traversability. With these principles im mind, we then
designed the navigation graph. For every user, the following auxiliary end-
points are available, as illustrated in Figure 3.33.

• /register: Registration form
• /login: Login form
• /u/<username>: User information, including per project
• /u/<username>/edit: Form for updating user information
• /: User dashboard containing the list of projects perse participates in
• /p: List of public projects
• /p/create: Form for project creation
• /p/<uuid>: Project’s page

43

Figure 3.33: Auxiliary endpoints

44

Each project’s page is divided into several tabs, namely info, edit,
members, tasks, report and slides, as shown in Figure 3.34.

• /p/<uuid>/info (GET): Project’s basic information
• /p/<uuid>/edit (GET and POST): Form for updating project’s basic

information
• /p/<uuid>/members (GET): Project’s member listing
• /p/<uuid>/invite (POST): Form for adding a member
• /p/<uuid>/leave (POST): Form for leaving the project
• /p/<uuid>/tasks (GET): Tasks overview (Kanban board)
• /p/<uuid>/report (GET): Report revisions and evaluation
• /p/<uuid>/report/upload (POST): Form for uploading report revi-

sion
• /p/<uuid>/report/eval (POST): Form for evaluating report
• /p/<uuid>/slides (GET): Slides revisions and evaluation
• /p/<uuid>/slides/upload (POST): Form for uploading slides revision
• /p/<uuid>/slides/eval (POST): Form for evaluating report
• /ipfs/<cid> (GET): IPFS gateway proxy for file downloading

Figure 3.34: Project’s endpoints

Project’s tabs are mutually interlinked but for brevity they are not con-

45

nected in the figure. Additionally, POST-only endpoints redirects back to
referrer upon success.

Due to complexity, task-related endpoints are documented separately in
Figure 3.35, which consists of the ones listed below. Pages in /p/<uuid>/
tasks, including the Kanban board, exclusively serves Building a Collabora-
tion Platform.

• /p/<uuid>/tasks/<index> (GET): Task’s description and discussion
• /p/<uuid>/tasks/<index>/comment (POST): Form for posting a

comment
• /p/<uuid>/tasks/<index>/upload (POST): Form for uploading a file
• /p/<uuid>/tasks/eval (POST): Form for evaluating all tasks

Figure 3.35: Task endpoints

3.5.2 Graphical User Interface

At the higher level, we concentrated in making user interface that works well
for mobile devices. Mobile first design might not always make the best use of
screen estate on larger devices, however we were confident that such trade-off
is worth the high portability and compability that we can bring to the wide
range of users. That being said, we actively tried to compensate through
responsive design. One case in point is the Kanban board, which is rendered
as a single column of different colors on handheld devices, while expands to
multiple columns (as often seen traditionally) on a wider monitor.

We also strongly focused on accessibility. The colors of relatively high con-
trast and appropriate line length were chosen. We also made use of markup

46

elements in the standardized manner with the hope of providing compability
for less common web browsers and supporting software for visually impaired
people.

3.6 Development Process
From requirement, analysis and design documents to implementation were
version controlled through git. For achieving better productivity and qual-
ity, we attempted to define a rigorous yet flexible workflow, detailed in the
following subsections.

3.6.1 Collaboration Model

The development mostly took place on GitHub, except for realtime com-
munication which occured either on a Matrix chat room or in the physical
world.

At the high level, the works were split into multiple subprojects4, where
each project contained multiple self-contained tasks, which were to be re-
solved by patches separated by logical changes [7]. Projects are visually
presented as Kanban boards including at the minimum of three columns: To
do, In progress and Done.

In the time dimension, we divided the development period into multi-
ple short iterations, whose length varied based on our schedule5. At the
beginning of every iteration, we selected tasks from the To do column to
In progress. In addition to inital planning, tasks were also added to To do
as we discovered new issues during discussions or development, and were
democratically and appropriately assigned to the group members.

At a lower level, each task was resolved via a self-contained patch. This
means implementation patches must be accompanied by the tests coverring
the change. How patches were checked (including executing automated tests)
are detailed in the next subsection.

At the end of an iteration, we publish a (pre-)release to PyPI and deploy
it to a test deployment server6 kindly provided by USTH ICTLab.

4 https://github.com/Huy-Ngo/acanban/projects
5 Unfortunate for us, the group project took place during the examination season, and

thus our time pool shrunk on weeks with higher density of exams for other courses.
6 https://acanban.ga

47

https://git-scm.com
https://github.com/Huy-Ngo/acanban
https://matrix.org
https://pypi.org/project/acanban
https://ictlab.usth.edu.vn
https://github.com/Huy-Ngo/acanban/projects
https://acanban.ga

3.6.2 Quality Assurance

In order to ensure the correctness of the implementation, we tried to take
quality assurance as seriously as we can. To begin with, a git branch was
chosen to be the main one for patches to base on. It was protected from
being pushed directly onto without the reviewing process, which comprised
of automated checks and peer reviews.

From the beginning, continuous integration (CI) was set up for both the
implementation and this report itself7. For the paper, it simply tried to
compile the original source written in reStructuredText into PDF for the ease
of viewing for the peer reviewers. The software, however, were subjected to
the following assertions:

• Style checker (flake8 and isort), which statically analysed the Python
source files for errors and inconsistencies

• Type checker (mypy), which examined the Python AST for static typ-
ing issues to detect common bugs

• Testing and coverage, which automatically ran the tests and report the
test coverage

We actively worked to enforce 100% branch coverage, most of which are
covered by unit tests, which helped discover mistakes as well as regressions in
later modifications. Integration testing, however, could often be tedious [8],
and thus we chose to not imposing it. In compensation, we examined the
test deployment at the end of iterations for bugs not having been caught by
the test suite.

At the same time, patches were reviewed manually by at least one other
team member. This is not only for maintaining quality standards but also
to make the team more well aware of changes happening to the shared code
base. Once approval was granted and automated checks were passing, the
patch was rebase on top of the main branch. Continuous integration was
then run again, for continuous integration.

7 https://builds.sr.ht/~huyngo/acanban

48

https://www.iso.org/standard/75839.html
https://flake8.pycqa.org
https://pycqa.github.io/isort
https://mypy.readthedocs.io
https://docs.python.org/3/library/ast.html
https://builds.sr.ht/~huyngo/acanban

4 Results and Discussion

4.1 Results
In this project, we clarified the requirements for the software, defined the
system architecture, and drafted some analysis and design for the required
use cases, based on which we have successfully implemented:

• Authentication
• Create and edit group projects
• Invite new members to a project
• Upload reports and slides
• Supervisors can evaluate students’ work
All of these use cases have been implemented in a simplistic manner,

which satisfied our goal of accessibility from all devices. The web pages can
load with extremely low latency thanks to minimal assets: Our home page
is only 21.8KB, and it only takes less than 0.1 seconds to load.

The current implemented source code is published on GitHub8 under
Affero General Public License. It is deployed on USTH ICTLab’s server9.

4.2 Discussion
We have achieved almost all our goals, as proven by our results above. Un-
fortunately, due to some difficulties that will be explained below, we failed to
design and implement important some collaboration-related use cases as well
as academic integration use cases. We will discuss our flaws and difficulties
in this section.

4.2.1 System’s flaws

• Important features that have not been implemented:
– Notification
– Create, view, and complete tasks on a simple Kanban board
– Discussion

• Actors whose functionality have not been implemented: judges and
assistants

• Registration currently allows anyone to have as many accounts as they
want, which is not secure.

8 https://github.com/Huy-Ngo/acanban
9 https://acanban.ga

49

https://www.gnu.org/licenses/agpl-3.0.html
https://github.com/Huy-Ngo/acanban
https://acanban.ga

• There has not been checking for maximum grade and minimum grade
fraction.

• File types for reports and slides are not ensured yet.
• There has not been a graphical user interface for administration.
• The user interface is not very attractive.

4.2.2 Difficulties

During the project, we met several difficulties in different aspects.
The primary obstacle for us was the lack of time spent for the project.

This lack of time dedicated to the project was because of poor time manage-
ment. Moreover, there had been other time-consuming projects and labworks
in other courses, which make the management harder.

Another problem was the collaboration: There were several conflicts
among some members’ expectations of the project and workflows. People
tended to work at different time in day, which made code reviews take a
longer time than it should. Some members were not too keen on the project
and did not spend enough time for it.

There were also some technical struggles: Not everyone in the group was
familiar with web development in Python, let alone the framework. This
revealed another issue, which is communication – some members did not
reach out to others, which made it hard for the others to help.

As our project aimed to develop a project collaboration platform, we can
analyze these difficulties to add features that can mitigate them.

5 Conclusion and Future Work

5.1 Conclusion
We accomplished two out of our three main objectives: developing an acces-
sible website and create a collaborative platform. However, there are rooms
for improvement in the implementation.

Through rigorous Development Process, we were able to not only maintain
tight collaboration and desirable work quality, but also have better control
over regressions and gain confidence in rolling out new changes, and improve
productivity and performance throughout the three-month period. We wish
to continue ameliorating the process when working on the remaining tasks
of this project as well as in future software development.

The resulted system runs as a web service, allowing clients to run on any

50

platforms without installation.
Thanks to the simplistic user interface, it is accessible and easy to use.

5.2 Future Work
In the future, we will realize features that have not been implemented:

• Task management
• Jury’s role and evaluation
• Notification
• Task discussion
• Statistical reports for academic assistant
On top of that, we need to refine existing features:
• Implement a method that prevents user.
• Add configuration for maximum and minimum grade.
• Check file types for reports and slides.
• Improve user interface and user experience.

A Acknowledgement
We would like to express our gratitude to Dr. Đoàn Nhật Quang for providing
us instruction and feedback during his supervision. We would also like to
extend our sincere thanks to Dr. Trần Giang Sơn for his support with USTH
ICTLab’s server that we used for testing our deployment.

We would also like to thank Philip Jones, the author and maintainer
of the framework Quart, as well as the maintainers of RethinkDB for their
timely technical support and bug fixes. The following organizations are also
appreciated for providing their services free of charge:

• Matrix.org (instant messaging server)
• GitHub (code hosting and collaboration)
• SourceHut (automated CI/CD)
• PlantUML web server (diagrams generation)

51

B Glossary
Accessibility Accessibility means that the technology is developed so that

people with disabilities can use them. It also benefits people without
disabilities, such as people using devices with small screens or using
slow Internet connection.
In this document, accessibility usually refers to the latter sense.

Asynchronous Server Gateway Interface (ASGI) ASGI is a spiritual
successor to WSGI, the long-standing Python standard for compati-
bility between web servers, frameworks, and applications.
WSGI succeeded in allowing much more freedom and innovation in the
Python web space, and ASGI’s goal is to continue this onward into the
land of asynchronous Python.

Branch coverage A coverage criteria where each control structure’s branch
has been executed by the test suite.

Cluster A set of machines that are connected and work together to be
viewed as a single system.

Cross-site scripting (XSS) attack Cross-site scripting (XSS) is a code
injection attack where the attacker inserts client-side scripts into web
pages.

Distributed Denial of Service (DDoS) attack Denial of Service (DoS)
attack is an attack where the attacker overloads the system with re-
quests. DDoS is the distributed DoS attack, that is, the requests are
flooding from multiple sources.

Hypertext Transfer Protocol (HTTP) An application-level protocol
for distributed, collaborative, hypermedia information systems10.

InterPlanetary File System (IPFS) IPFS is a protocol and peer-to-peer
network for storing and sharing data in a distributed file system. It uses
content-addressing to uniquely identify each file in a global namespace
connecting all computing devices.

Metadata Data that describes the information rather than containing the
information itself. This can include primary key of a table, creation
date, etc.

Participant People who participate in a project.
Request A HTTP message from a client to a server including the protocol

version in use, the method to be applied to and the identifier of the
resource11.

10 RFC 2616#section-1
11 RFC 2616#section-5

52

https://www.w3.org/WAI/fundamentals/accessibility-intro/#what
https://asgi.readthedocs.io
https://www.python.org/dev/peps/pep-3333
https://ipfs.io
https://tools.ietf.org/html/rfc2616.html#section-1
https://tools.ietf.org/html/rfc2616.html#section-5

Response A HTTP messge a server responds with, after receiving and in-
terpreting a request message12.

SQL injection SQL injection is an attack where a malicious piece of code
is passed in an SQL query, which changes the query to the query the
attacker wants.
For example, the attacker may try to create a student with name John'
DROP TABLE Students; -- and delete the whole table in doing so, if
the vulnerability is not handled.

Supervisor A person, normally a lecturer, that supervises, supports, and
evaluate one or several project groups.

12 RFC 2616#section-6

53

https://tools.ietf.org/html/rfc2616.html#section-6

54

C References

[1] Marian H.H. Willeke, “Agile in Academics: Applying Agile to Instruc-
tional Design”. 2011 Agile Conference, p. 246–251, Salt Lake City, UT,
2011. doi: 10.1109/AGILE.2011.17.

[2] Tommi Mikkonen and Antero Taivalsaari. “Web Applica-
tions—Spaghetti Code for the 21st Century”. 2008 Sixth International
Conference on Software Engineering Research, Management and
Applications, p. 319–328, Prague, 2008. doi: 10.1109/SERA.2008.16.

[3] Richard Stallman. “Why Schools Should Exclusively Use Free Software”.
Free Software and Education. GNU Project. Retrieved 2021-02-01. https:
//www.gnu.org/education/edu-schools.html

[4] Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid.
20th anniversary ed., 1999, p. 152. ISBN 0-465-02656-7.

[5] The Pallets Project. “Template Designer Documentation”. Jinja Docu-
mentation (2.11.x). Retrieved 2021-01-18. https://jinja.palletsprojects.
com/en/2.11.x/templates/#html-escaping

[6] RethinkDB. “Introduction to ReQL”. Retrieved 2021-
01-18. https://rethinkdb.com/docs/introduction-to-reql/
#reql-embeds-into-your-programming-language

[7] The kernel development community. Submitting patches: the essential
guide to getting your code into the kernel. The Linux Kernel documen-
tation. Retrieved 2021-02-04. https://www.kernel.org/doc/html/latest/
process/submitting-patches.html#separate-your-changes

[8] Michael Steindl and Juergen Mottok. “Optimizing software integration
by considering integration test complexity and test effort”. Proceedings
of the 10th International Workshop on Intelligent Solutions in Embedded
Systems, Klagenfurt, 2012, p. 63-68.

55

https://doi.org/10.1109/AGILE.2011.17
https://doi.org/10.1109/SERA.2008.16
https://www.gnu.org/education/edu-schools.html
https://www.gnu.org/education/edu-schools.html
https://jinja.palletsprojects.com/en/2.11.x/templates/#html-escaping
https://jinja.palletsprojects.com/en/2.11.x/templates/#html-escaping
https://rethinkdb.com/docs/introduction-to-reql/#reql-embeds-into-your-programming-language
https://rethinkdb.com/docs/introduction-to-reql/#reql-embeds-into-your-programming-language
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#separate-your-changes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#separate-your-changes

	Contents
	Introduction
	Motivation
	Background
	Objectives
	Expected Outcomes
	Report Structure

	System Requirements
	Types of Users
	Functional Decomposition
	Use-Case Model
	Supplementary Specification

	Methodology
	Technical Choices
	System Architecture
	Use-Case Analysis and Design
	Database Design
	User Interface and User Experience
	Development Process

	Results and Discussion
	Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgement
	Glossary
	References

