{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparing Effect Estimators on Fast-food Employment Data\n", "\n", "We look at the famous Card and Krueger study[1] of the impact of a minimum wage change on employment levels in fast food restaurants near the border of New Jersey and Pennsylvania. The treatment in this case was whether the restaurant was in a state which enacted a minimum wage increase (in this case NJ), the outcome is the total number of employees per branch after the change of the law and many covariates were collected for controlling, as detailed below. \n", "\n", "The naive estimation would show that raising the minimum wage causes a decrease in number of employees hired per restaurant. However, once we correct for the covariates we find that in fact there was no such effect and that there may have been an increase in employment following the minimum wage increase.\n", "\n", "This notebook demonstrates how `causallib` enables causal effect estimation using different methods easily, by utilizing a consistent API.\n", "\n", "[1] : Card, D. & Krueger, A. Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania. w4509 http://www.nber.org/papers/w4509.pdf (1993) doi:10.3386/w4509." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data \n", "\n", "We begin by obtaining the data from Card's website." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import warnings\n", "\n", "\n", "def load_card_krueger(select_covariates=[\"EMPTOT\", \"WAGE_ST\", \"INCTIME\", \"BK\", \"KFC\", \"ROYS\", \"WENDYS\"], outcome=\"EMPTOT2\", dropna=True, include_managers=False):\n", " \"\"\"\n", " Load data on the effect of a change in minimum wage laws on fast food employment\n", "\n", " Loads data from the study by Card and Krueger [1]. Data downloads from Card's website.\n", "\n", " Args:\n", " select_covariates (list) : List of covariates to return. The default list is based on the analysis by Imbens and Rubin [2].\n", " To return all covariates pass an empty list: []\n", " outcome (str) : Name of column to use as outcome. Defaults to total employees after minimum wage change.\n", " dropna (bool) : Whether to remove columns with NaN in the select_covariates or outcome columns.\n", " include_managers (bool) : Whether to include managers in employee count. Card & Krueger include them, Imbens & Rubin\n", " do not include them. (default: False)\n", "\n", " Returns:\n", " databunch (Bunch) : Bunch with member `x`,`a`, `y` and descriptors corresponding to covariates, \n", " treatment (New Jersey vs Pennsylvania), outcome, and descriptors as parsed \n", " from the codebook file distributed by Card.\n", "\n", " [1] : Card, D. & Krueger, A. Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania. \n", " w4509 http://www.nber.org/papers/w4509.pdf (1993) doi:10.3386/w4509.\n", " [2] : Imbens, G.W. & Rubin D.B., Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction, Chapter 18, \n", " (Cambridge University Press, 2015)\n", "\n", "\n", " \"\"\"\n", " import requests\n", " import zipfile\n", " from io import BytesIO, TextIOWrapper\n", " from sklearn.utils import Bunch\n", "\n", " r = requests.get(\"https://davidcard.berkeley.edu/data_sets/njmin.zip\")\n", " z = zipfile.ZipFile(BytesIO(r.content))\n", " df = pd.read_csv(z.open(\"public.dat\"), engine=\"python\", sep=\"\\s+\",\n", " header=None).applymap(lambda x: pd.to_numeric(x, errors=\"coerce\"))\n", "\n", " # Load column names and descriptions from `codebook`\n", " codebook = [repr(line)\n", " for line in TextIOWrapper(z.open(\"codebook\"), \"cp437\")]\n", " # part of the codebook is not relevant\n", " codes = codebook[7:11] + codebook[13:19] + \\\n", " codebook[21:38] + codebook[40:59]\n", " cols = [i.strip(\"'\\\" \").split()[0] for i in codes]\n", " descriptions = [\" \".join(i.strip(\"'\\\" \").split()[\n", " 4:]).rstrip('\\\\n') for i in codes]\n", " column_descriptions = dict(zip(cols, descriptions))\n", " df.columns = cols\n", "\n", " # Calculate total employment following Card and Krueger's method\n", " if include_managers:\n", " df = df.assign(EMPTOT=df.EMPFT + 0.5 * df.EMPPT + df.NMGRS)\n", " column_descriptions[\"EMPTOT\"] = \"Initial total employment (full_time_employees + managers + 0.5*part_time_employees)\"\n", " df = df.assign(EMPTOT2=df.EMPFT2 + 0.5 * df.EMPPT2 + df.NMGRS2)\n", " column_descriptions[\"EMPTOT2\"] = \"Final total employment (full_time_employees + managers + 0.5*part_time_employees)\"\n", " else:\n", " # Calculate total employment following Imbens and Rubin's method\n", " df = df.assign(EMPTOT=df.EMPFT + 0.5 * df.EMPPT)\n", " column_descriptions[\"EMPTOT\"] = \"Initial total employment (full_time_employees + 0.5*part_time_employees)\"\n", " df = df.assign(EMPTOT2=df.EMPFT2 + 0.5 * df.EMPPT2)\n", " column_descriptions[\"EMPTOT2\"] = \"Final total employment (full_time_employees + 0.5*part_time_employees)\"\n", "\n", " #df = pd.get_dummies(df,prefix=\"name\",drop_first=True,columns=[\"CHAIN\"]).rename(columns=dict(name_1=\"KFC\",name_2=\"ROYS\",name_3=\"WENDYS\"))\n", " df = pd.get_dummies(df, prefix=\"name\", drop_first=False, columns=[\"CHAIN\"]).rename(\n", " columns=dict(name_1=\"BK\", name_2=\"KFC\", name_3=\"ROYS\", name_4=\"WENDYS\"))\n", " column_descriptions.update(dict(BK=\"is branch of Burger King\", KFC=\"is branch of KFC\",\n", " ROYS=\"is branch of Roy's\", WENDYS=\"is branch of Wendy's\"))\n", " select_covariates = [i for i in select_covariates if i in df.columns]\n", " if dropna:\n", " if select_covariates:\n", " df = df.dropna(subset=select_covariates + [\"STATE\", outcome])\n", " else:\n", " df = df.dropna()\n", "\n", " # Divide data into pre-intervention and post-intervention variables\n", " x = df[[c for c in df.columns if \"2\" not in c]]\n", "\n", " y = df[[c for c in df.columns if \"2\" in c]]\n", " y = df.pop(outcome)\n", "\n", " a = x.pop(\"STATE\")\n", "\n", " if select_covariates:\n", " x = x[select_covariates]\n", " return Bunch(X=x, a=a, y=y, descriptors=pd.Series(column_descriptions))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Card and Krueger studied the impact of an increase in the minimum wage in NJ on levels of employment in NJ and the adjacent area in PA. They included many covariates in the survey. Here we will use the subset used by Imbens and Rubin in their analysis of this data in \"Causal Inference for Statistics, Social, and Biomedical Sciences\"." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
EMPTOTWAGE_STINCTIMEBKKFCROYSWENDYSSTATEEMPTOT2
330.05.0026.00001018.0
419.05.5052.00001029.5
667.55.0026.01000024.0
718.55.0052.01000030.5
86.05.2513.0010009.0
\n", "
" ], "text/plain": [ " EMPTOT WAGE_ST INCTIME BK KFC ROYS WENDYS STATE EMPTOT2\n", "3 30.0 5.00 26.0 0 0 0 1 0 18.0\n", "4 19.0 5.50 52.0 0 0 0 1 0 29.5\n", "6 67.5 5.00 26.0 1 0 0 0 0 24.0\n", "7 18.5 5.00 52.0 1 0 0 0 0 30.5\n", "8 6.0 5.25 13.0 0 1 0 0 0 9.0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = load_card_krueger()\n", "X, a, y = data.X, data.a, data.y\n", "data.X.join(data.a).join(data.y).head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "EMPTOT Initial total employment (full_time_employees ...\n", "WAGE_ST starting wage ($/hr)\n", "INCTIME months to usual first raise\n", "BK is branch of Burger King\n", "KFC is branch of KFC\n", "ROYS is branch of Roy's\n", "WENDYS is branch of Wendy's\n", "STATE 1 if NJ; 0 if Pa \n", "EMPTOT2 Final total employment (full_time_employees + ...\n", "dtype: object" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.descriptors.loc[data.X.join(data.a).join(data.y).columns]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After loading the data, we begin by checking the association between treatment and outcome, without any causal inference." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "NJ fast food restaurants had a change of -0.21974 employees compared to PA fast food restaurants.\n" ] } ], "source": [ "naive_ate = data.y[data.a == 1].mean() - data.y[data.a == 0].mean()\n", "print(\n", " f\"NJ fast food restaurants had a change of {naive_ate:.5f} employees compared to PA fast food restaurants.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Based on this, we would conclude that the increase in minimum wage in fact decreased employment levels in fast food restaurants, because the level of employment in the treated group (NJ) was lower than the untreated group (PA). However, this inference would only be justified if the restaurants in NJ and PA were otherwise equivalent. Let us utilize the provided `calculate_covariate_balance` function to check that now:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "covariate\n", "ROYS 0.001462\n", "BK 0.015325\n", "WAGE_ST 0.038154\n", "INCTIME 0.080553\n", "WENDYS 0.127842\n", "KFC 0.142869\n", "EMPTOT 0.195605\n", "Name: unweighted, dtype: float64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from causallib.evaluation.weight_evaluator import calculate_covariate_balance\n", "\n", "calculate_covariate_balance(X, a, w=a*0+1)[\"unweighted\"].sort_values()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
EMPTOTWAGE_STINCTIMEBKKFCROYSWENDYS
STATE
020.1727944.62338219.0514710.4264710.1323530.2500000.191176
117.2732974.60480317.6917560.4157710.2078850.2508960.125448
\n", "
" ], "text/plain": [ " EMPTOT WAGE_ST INCTIME BK KFC ROYS WENDYS\n", "STATE \n", "0 20.172794 4.623382 19.051471 0.426471 0.132353 0.250000 0.191176\n", "1 17.273297 4.604803 17.691756 0.415771 0.207885 0.250896 0.125448" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X.groupby(a).mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we see that the untreated state (PA) had quite a bit higher employment levels `EMPTOT` than the treated state (NJ) prior to the intervention. Could it be that the measured decline in employment in NJ is in fact explained by the prior lower number of employees per branch? In order to answer this question we need to estimate the difference in counterfactual outcomes:\n", "$$ATE = E[Y^{a=1}] - E[Y^{a=0}]$$\n", "The fundamental problem of causal inference is that for each sample we need _both_ treated and untreated outcomes, but in reality no sample was both treated and untreated. Causal inference has many ways to estimate this quantity and `causallib` implements several of them, using a uniform API. To assess the effects, we will load many estimators and compare their results. Note how the same API calls can be used, even though the underlying estimation may be very different. Here we do not focus on the details of the implementation and how each method may be tweaked. To understand the details, you can reference the documentation for each method. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression, LinearRegression\n", "from matplotlib import pyplot as plt\n", "from causallib.estimation import (\n", " DoublyRobustIpFeature,\n", " DoublyRobustJoffe,\n", " DoublyRobustVanilla,\n", " IPW,\n", " MarginalOutcomeEstimator,\n", " Standardization,\n", " StratifiedStandardization,\n", " Matching,\n", " PropensityMatching,\n", ")\n", "from causallib.preprocessing.transformers import MatchingTransformer\n", "\n", "\n", "def learner(): return LogisticRegression(\n", " solver=\"liblinear\", class_weight=\"balanced\", max_iter=5000)\n", "\n", "\n", "def makeipw(): return IPW(learner=learner())\n", "def makestd(): return StratifiedStandardization(learner=LinearRegression())\n", "\n", "\n", "all_estimators = [\n", " MarginalOutcomeEstimator(learner=LinearRegression()),\n", " Matching(with_replacement=False),\n", " PropensityMatching(learner=learner(), caliper=0.1),\n", " IPW(learner=learner()),\n", " Standardization(learner=LinearRegression()),\n", " StratifiedStandardization(learner=LinearRegression()),\n", " DoublyRobustIpFeature(makestd(), makeipw()),\n", " DoublyRobustJoffe(makestd(), makeipw()),\n", " DoublyRobustVanilla(makestd(), makeipw()),\n", "]\n", "\n", "\n", "def get_all_estimates(X, a, y):\n", " estimates = {}\n", " for estimator in all_estimators:\n", " estimator.fit(X, a, y)\n", " estimator_name = estimator.__class__.__name__\n", " estimates[estimator_name] = estimator.estimate_population_outcome(\n", " X, a, y)\n", " estimates_df = pd.concat(estimates, axis=1).T\n", " return estimates_df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The estimators in `causallib` share a similar API, all of them implementing `fit` and `estimate_population_outcome`. This allows us to easily try them all to see whether they are in agreement as to the causal effect. There is also a dummy estimator `MarginalOutcomeEstimator` which simply implements the naive estimate shown above. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01ATE
MarginalOutcomeEstimator17.54411817.324373-0.219745
Matching17.54411818.6470591.102941
PropensityMatching17.42219017.7255040.303314
IPW16.96715718.1355471.168390
Standardization16.28550517.6311311.345626
StratifiedStandardization16.66451117.6720401.007530
DoublyRobustIpFeature16.68602817.6383210.952293
DoublyRobustJoffe16.62512317.6676171.042494
DoublyRobustVanilla16.65375917.6739681.020210
\n", "
" ], "text/plain": [ " 0 1 ATE\n", "MarginalOutcomeEstimator 17.544118 17.324373 -0.219745\n", "Matching 17.544118 18.647059 1.102941\n", "PropensityMatching 17.422190 17.725504 0.303314\n", "IPW 16.967157 18.135547 1.168390\n", "Standardization 16.285505 17.631131 1.345626\n", "StratifiedStandardization 16.664511 17.672040 1.007530\n", "DoublyRobustIpFeature 16.686028 17.638321 0.952293\n", "DoublyRobustJoffe 16.625123 17.667617 1.042494\n", "DoublyRobustVanilla 16.653759 17.673968 1.020210" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "warnings.filterwarnings('ignore')\n", "all_estimates = get_all_estimates(X, a, y)\n", "all_estimates.assign(ATE=all_estimates[1] - all_estimates[0])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFzCAYAAADSXxtkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACXyklEQVR4nOzdd3zV1f348dfnjuRm3mxIAoGwQkKAsPdGQIGIu07AVbVqW+uorVW02Fqrbb+O/qyr1FG1ThJEUfYWAzICCYRAgCSQnXsz7s1d5/fHJ1wSshhJbsZ5Ph48yF2fezLfn8857/N+K0IIJEmSJEnqWjSeHoAkSZIkSa1PBnhJkiRJ6oJkgJckSZKkLkgGeEmSJEnqgmSAlyRJkqQuSAZ4SZIkSeqCdJ4eQGsKCwsTffv29fQwJEmSJKld7N69u1gIEd7YY10qwPft25e0tDRPD0OSJEmS2oWiKCeaekxO0UuSJElSFyQDvCRJkiR1QTLAS5IkSVIX1KXW4Btjt9vJzc3FarV6eiiS1CyDwUCvXr3Q6/WeHookSV1Alw/wubm5BAQE0LdvXxRF8fRwJKlRQghKSkrIzc0lNjbW08ORJKkL6PJT9FarldDQUBncpQ5NURRCQ0PlTJMkSa2mywd4QAZ3qVOQP6eSJLWmbhHgPU1RFG677Tb3bYfDQXh4OAsWLGi197jqqqsoLy+/pNcuW7aMl156CVCnipcvX87AgQMZNGgQM2bM4ODBgy0e46uvvuLQoUOX9P6Xa8WKFYSHh5OUlOT+19xY/vSnP9W7PXHixFYZx8aNG9m+fXurHEuSJOlyyQDfDvz8/EhPT8disQDw/fffEx0dfVHHcDgczT6+evVqgoKCLnWIbq+//jrbt29n3759HDlyhCeffJLk5OQWp449GeABbrrpJvbu3ev+l5CQ0ORzzw/wrRWULyXAt/R9lSRJulQywLeTq666iq+//hqAjz76iJtvvtn92K5du5gwYQIjRoxg4sSJHD58GFCvTJOTk5k5cyazZs2iurqaG2+8kYSEBK655hrGjRvnrtzXt29fiouLycnJIT4+nnvuuYchQ4YwZ84c94nFW2+9xZgxYxg+fDjXXXcd1dXVDcb5l7/8hddeew1fX18A5syZw8SJE/nwww8B8Pf3dz/3s88+Y8mSJWzfvp2UlBQee+wxkpKSyM7O5ujRo8yePZvhw4czcuRIsrOzEULw2GOPkZiYyNChQ/nkk08ANTBOmzaNq6++mn79+vHb3/6WDz/8kLFjxzJ06FCys7MBKCoq4rrrrmPMmDGMGTOGbdu2Nfs1P336NFOnTiUpKYnExES2bNnCb3/7WywWC0lJSdx66631PqcLHUdqairjxo1jxIgRzJ49m4KCAnJycnjjjTf4+9//TlJSElu2bCEnJ4eZM2cybNgwZs2axcmTJwFYsmQJ9913H+PGjePxxx+/sB8gSZKki9Tls+jrejb1IIfyza16zISoQJ5ZOKTF5/3sZz/jueeeY8GCBezfv58777yTLVu2ADB48GC2bNmCTqdj7dq1/O53v+Pzzz8HYM+ePezfv5+QkBBeeuklgoODOXToEOnp6SQlJTX6XllZWXz00Ue89dZb3HjjjXz++efcdtttXHvttdxzzz0APPXUU7zzzjs89NBD7teZzWaqqqro169fveONHj262Wn6iRMnkpyczIIFC7j++usBGDduHL/97W+55pprsFqtuFwuvvjiC/bu3cu+ffsoLi5mzJgxTJ06FYB9+/aRkZFBSEgI/fr14+6772bXrl383//9H6+++ir/+Mc/+OUvf8mvf/1rJk+ezMmTJ5k7dy4ZGRkAfPLJJ2zdutU9ph07dvDf//6XuXPn8vvf/x6n00l1dTVTpkzhtddeY+/evY1+LhcyjsmTJ7Nz504UReHtt9/mxRdf5OWXX+a+++7D39+fRx99FICFCxeyePFiFi9ezLvvvsvDDz/MV199Bai7O7Zv345Wq23y6ypJknQ5ulWA96Rhw4aRk5PDRx99xFVXXVXvMZPJxOLFi8nKykJRFOx2u/uxK664gpCQEAC2bt3KL3/5SwASExMZNmxYo+8VGxvrDv6jRo0iJycHgPT0dJ566inKy8uprKxk7ty5rfxZqioqKsjLy+Oaa64B1P3dZ8d/8803o9Vq6dGjB9OmTePHH38kMDCQMWPGEBkZCUD//v2ZM2cOAEOHDmXDhg0ArF27tt4ygNlsprKyElCn6F977bV64xgzZgx33nkndrudRYsWNXlCdP5rWhpHbm4uN910E6dPn8ZmszW5rW3Hjh188cUXANx+++31rtZvuOEGGdwlqTtxOiBnM4QNAmOvdnnLbhXgL+RKuy0lJyfz6KOPsnHjRkpKStz3/+EPf2DGjBl8+eWX5OTkMH36dPdjfn5+F/0+3t7e7o+1Wq17in7JkiV89dVXDB8+nBUrVrBx48Z6rwsMDMTPz49jx47Vu4rfvXs306ZNA+pnerfmlq66Y9ZoNO7bGo3GvU7tcrnYuXOn+4ShJVOnTmXz5s18/fXXLFmyhEceeYQ77rjjssfx0EMP8cgjj5CcnMzGjRtZtmzZBX+eZ13K91WSpE7G5YSTOyD9Czi0EqqLYcZTMO2xdnl7uQbfju68806eeeYZhg4dWu9+k8nkTrpbsWJFk6+fNGkS//vf/wA4dOgQBw4cuKj3r6ioIDIyErvd7l5TP99jjz3Gww8/7D4pWLt2LVu3buWWW24BoEePHmRkZOByufjyyy/drwsICKCiosL9ca9evdzT0TU1Ne7p8U8++QSn00lRURGbN29m7NixFzz+OXPm8Oqrr7pvNzXNftaJEyfo0aMH99xzD3fffTd79uwBQK/X15sluVh1v1//+c9/3PfX/RqAunTx8ccfA/Dhhx8yZcqUS35PSZI6CSHg1C745rfwtwRYMR/2/hdip8CN78PEB9ttKN3qCt7TevXqxcMPP9zg/scff5zFixezfPly5s+f3+TrH3jgARYvXkxCQgKDBw9myJAhGI3GC37/P/7xj4wbN47w8HDGjRtXLxid9dBDD1FWVsbQoUPRarX07NmTlStX4uPjA8ALL7zAggULCA8PZ/To0e4p8p/97Gfcc889vPLKK3z22We8//77/PznP+fpp59Gr9fz6aefcs0117Bjxw6GDx+Ooii8+OKL9OzZk8zMzAsa/yuvvMIvfvELhg0bhsPhYOrUqbzxxhtAwzX4f/7zn2RlZfHXv/4VvV6Pv78/7733HgD33nsvw4YNY+TIkU2e6DRn2bJl3HDDDQQHBzNz5kyOHz8OqGvu119/PStXruTVV1/l1VdfZenSpfz1r38lPDycf//73xf9XpIkdQJCwOm96pX6wa/AdBK0XjBwDgy5BgbNA2//lo7S6hQhRLu/aVsZPXq0OL8ffEZGBvHx8R4aUetyOp3Y7XYMBgPZ2dnMnj2bw4cP4+Xl5emhSa2kK/28SlKXJgQUHqoN6l9A6THQ6KD/TBhyLQy+CgwXfgF2qRRF2S2EGN3YY/IKvhOprq5mxowZ2O12hBD885//lMFdkiSpPRVnnQvqRZmgaKDvFJj0K4hfCL4hnh6hmwzwnUhAQADnz1BIkiRJbaws51xQP3MAUCBmAlz1EiRcDf4Rnh5ho2SAlyRJkqTzmfLg4JdqUM/brd4XPRrm/hmGLILAKI8O70LIAC9JkiRJABUF6na2g1+o29sAeg6D2c+qyXLBfTw7voskA7wkSZLUfVWVQEaKGtRztoJwQXi8ul99yDUQNsDTI7xkMsBLkiRJ3YulHDK/VoP6sY3gckBIf5jyGzUDvkfTzao6Exng24GiKNx666188MEHgNpBLDIyknHjxrFq1aomX7d3717y8/MblLY9n7+/v3s/el1vvPEGvr6+LVZvkyRJ6vJqKuHwN2pQP7oWnDYwxsCEX0DidepUfJ1KnV2BDPDtoG67WB8fnwtuF7t3717S0tJaDPBNue+++y7pdZIkSV2C3QJZ30H653DkO3BYICASxtytBvXoUV0uqNclS9W2k4ttF2uz2Xj66af55JNPSEpK4pNPPqGyspKlS5cydOhQhg0b5u44B/D73/+e4cOHM378eAoKCgC14tpLL70EwPTp03niiScYO3YsgwYNcneya64FrSRJUqfjqFGv1D+/G/46AP53B5zYDiNuhaXfwK8Pwbw/Q6/RXTq4Q3e7gv/mt7V7GFtRz6Fw5QstPu1S2sU+99xzpKWlubukPfHEExiNRncN+rKyMgCqqqoYP348zz//PI8//jhvvfUWTz31VIMxOBwOdu3axerVq3n22WdZu3Yt//znPy+oBa0kSVKH5bTD8U3qXvWMVVBjAp9gSLxWvVLvMxm03SvcQXcL8B50qe1i61q7dq27eQlAcHAwAF5eXixYsABQ28N+//33jb7+2muvdT/nbAvZC21BK0mS1KG4nHBimzr9figFLKXgHQiD56uJcv2mg657V/psswCvKMq7wAKgUAiRWHtfEvAGYAAcwANCiF2NvNYJnL3UPimESG6VQV3AlXZbupR2sRdCr9e727hqtVp3W9PznW192txzJEmSOiyXC3J31Qb1lVBZAHpfiLtSDeoDZoP+wtpJdwdteQW/AngNeK/OfS8CzwohvlEU5ara29Mbea1FCJHUhmPziDvvvJOgoCCGDh1arxd7U+1iz28/esUVV/D666/zj3/8A1Cn6M9exV+qsy1oZ8yYcUktaCVJktqUEJC/p7ZU7JdgzgOtNwyaowb1QXPBy8/To+yQ2izJTgixGSg9/24gsPZjI5DfVu/fETXXLvbJJ59kxIgR9a6szwbds0l2Tz31FGVlZSQmJjJ8+HA2bNhw2WN64IEHKCoqIiEhgaeeeuqiW9BKkiS1OiHUfKm1z8IrSfDWTPjhX2rO0zVvwmNH4aYP1DV2Gdyb1KbtYhVF6QusqjNFHw+sARTUk4uJQogTjbzOAexFncZ/QQjx1YW8X1dvF9sWZAvajkX+vErdWtFh9Uo9/XMoyQJFC/2mqVfq8QvUxDmpno7ULvZ+4NdCiM8VRbkReAeY3cjz+ggh8hRF6QesVxTlgBAiu7EDKopyL3AvQExMTFuNu8uSLWglSfKo0mPnpt8L0gEF+k6G8ferndr8wjw9wk6rvQP8YuCXtR9/Crzd2JOEEHm1/x9TFGUjMAJoNMALId4E3gT1Cr6Vx9vlyRa0kiS1u/JTakBP/xxO71Xv6z0O5v1FDeqBkR4dXlfR3gE+H5gGbARmAlnnP0FRlGCgWghRoyhKGDAJNRlPkiRJ6qwqzsDBr9RSsad+UO+LGgFX/FFt6hLU26PD64racpvcR6gZ8mGKouQCzwD3AP+nKIoOsFI7ta4oymjgPiHE3UA88C9FUVyo6/QvCCEOtdU4JUmSpDZSVVzbfvVLtVMbAnokwsw/qEE9tL+nR9iltVmAF0Lc3MRDoxp5bhpwd+3H24GhbTUuSZIkqQ1ZytRqcge/gGObQDghdCBMe0LNeg+P8/QIuw1ZyU6SJEm6PFZznU5t68Blh6A+MOmXalDvkdjl6753RLLZTDvQarUkJSWRmJjIDTfcQHV1taeH5JaWlubem79x40a2b9/e4muWLFmCr69vvSI8v/rVr1AUheLi4mZf+6c//emCjv/ZZ581uD8/P5/rr7++xddLktQObNVq9vsnt6lNXb68V927Pu7ncM96+OU+mP2MunddBnePkAG+Hfj4+LB3717S09Px8vLijTfeqPe4J8vGjh49mldeeQW48AAPMGDAAFauXAmAy+Vi/fr1F9QC90ICfFOioqIaDfySJLUTu1Wdfv/sTjWof7YUTv4Ao5bAnWvgV+kw9/ku34a1s5ABvp1NmTKFo0ePsnHjRqZMmUJycjIJCQlYrVZ3K9gRI0a4q9StWLGCq6++munTpzNw4ECeffZZ97E++OADxo4dS1JSEj//+c9xOp0A+Pv7N9o+9tNPP3VXwZs6dSqgBvUFCxaQk5PDG2+8wd///neSkpLYsmULsbGx7sY3ZrO53u2f/exnfPLJJ+5jTJo0CZ3u3IrPokWLGDVqFEOGDOHNN98E4Le//S0Wi4WkpCRuvfVWAN577z2GDRvG8OHDuf32292v37x5MxMnTqRfv37uoJ6Tk0NiYqL763Lttdcyb948Bg4cyOOPP+5+7TvvvMOgQYMYO3Ys99xzDw8++GCrfO8kqVty2tVe6l/eBy8NhE9uhewNMOxGWJwKv8mEq16EmPGgkSGlI+lWa/B/2fUXMkszW/WYg0MG88TYJy7ouQ6Hg2+++YZ58+YBsGfPHtLT04mNjeXll19GURQOHDhAZmYmc+bM4ciRI4DaLz49PR1fX1/GjBnD/Pnz8fPz45NPPmHbtm3o9XoeeOABPvzwQ+64444m28c+99xzrFmzhujoaMrLy+uNrW/fvtx33334+/vz6KOPAmoP+a+//ppFixbx8ccfc+2116LX6wEYNGgQKSkplJWV8dFHH3HbbbfxzTffuI/37rvvEhISgsViYcyYMVx33XW88MILvPbaa+zduxeAgwcPsnz5crZv305YWBilpecqG58+fZqtW7eSmZlJcnJyo1Pze/fu5aeffsLb25u4uDgeeughtFotf/zjH9mzZw8BAQHMnDmT4cOHX9g3U5IkldMBJ7aq+9QzUtXEOW8jxC9U19Rjp4FW7+lRSi3oVgHeU85etYJ6BX/XXXexfft2xo4dS2xsLKC2bX3ooYcAtT98nz593AH+iiuuIDQ0FFBbvm7duhWdTsfu3bsZM2aM+z0iIiKAptvHTpo0iSVLlnDjjTe6W8c25+677+bFF19k0aJF/Pvf/+att96q9/i1117Lxx9/zA8//MC//vWveo+98sorfPnllwCcOnWKrKws9+dw1vr167nhhhsIC1MrVYWEhLgfW7RoERqNhoSEBPcMxPlmzZrlrpufkJDAiRMnKC4uZtq0ae5j3XDDDe6voyRJzXC54OQONVHu0EqoKgIvf7VTW+J10H8m6Lw9PUrpInSrAH+hV9qt7ewa/Pn8/C6sSYJy3lqWoigIIVi8eDF//vOfGzy/qfaxb7zxBj/88ANff/01o0aNYvfu3c2+76RJk8jJyWHjxo04nU739PhZN910E6NGjWLx4sVo6kzNbdy4kbVr17Jjxw58fX2ZPn06Vqv1gj7Xs862tgVoql9C3efIFriSdAmEgLzd6pX6wa+gIh90PmqntsTrYOAc0Pt4epTSJZILJh3ElClT+PDDDwE4cuQIJ0+eJC5O3S/6/fffU1paisVi4auvvmLSpEnMmjWLzz77jMLCQgBKS0s5caJB3556srOzGTduHM899xzh4eGcOnWq3uPnt6cFuOOOO7jllltYunRpg+P16dOH559/ngceeKDe/SaTieDgYHx9fcnMzGTnzp3ux/R6vXsdf+bMmXz66aeUlJS4P4fLNWbMGDZt2kRZWRkOh4PPP//8so8pSV2KEHB6H3z/NPzfMHh7Fvz4NkQlwXXvqJ3abnxPLRkrg3un1q2u4DuyBx54gPvvv5+hQ4ei0+lYsWKF+wp17NixXHfddeTm5nLbbbcxerTaOGj58uXMmTMHl8uFXq/n9ddfp0+fPk2+x2OPPUZWVhZCCGbNmsXw4cPZtGmT+/GFCxdy/fXXs3LlSl599VWmTJnCrbfeylNPPcXNNzdet+jnP/95g/vmzZvHG2+8QXx8PHFxcYwfP9792L333suwYcMYOXIkH374Ib///e+ZNm0aWq2WESNGsGLFikv58rlFR0fzu9/9jrFjxxISEsLgwYNl+1tJAijMUK/U07+A0mzQ6KDfdJj+JMRdBT5Bnh6h1MratF1se+uK7WJXrFhBWloar732mkfe/7PPPmPlypW8//77Hnn/S1FZWYm/vz8Oh4NrrrmGO++8k2uuucbTw7ognf3nVepgSrLPtV8tygBFo3ZqG3ItxCeDX2jLx5A6tI7ULlbqRB566CG++eYbVq9e7emhXJRly5axdu1arFYrc+bMYdGiRZ4ekiS1n7IT5zq1ndmv3hczAa78qzrtHtDDs+OT2o28gpekDkT+vEqXxJyvJsmlfw55tX8Do0epiXIJi8DYchEqqXOSV/CSJEldTWURHPpKnYI/uQMQalnYWc+ondpCYj09QsnDZICXJEnqLKpL1cIz6Z9DzhYQLgiLUxPlEq+FsIGeHqHUgcgAL0mS1JFZTZC5Wi1Ak70eXA4I6QeTH1GDekSCrPsuNUoGeEmSpI7GVlXbfvVLyPoenDVg7A3jH1CDemSSDOpSi2Shm3bg7+8PqM1SfHx8SEpKIiEhgfvuuw+Xy8U111zDV1995X5+XFwcy5cvd9++7rrr+OKLL9p72JIktSe7BQ6lwKdL4MX+8PldkJsGo++Eu9bCrw7AnD9C1AgZ3KULIq/g21n//v3Zu3cvDoeDmTNnuivTbd++nUWLFlFSUoKfnx87duxwv2bHjh28/vrrHhy1JEltwmFTp90PfgGZX4OtEnzDIOkW9Uo9ZgJotJ4epdRJyQDvITqdjokTJ3L06FEmT57sbne6fft2Fi5cyDfffIMQwn3V37NnTw+PWJKkVuF0wPFNalDPSFXX2A1GNfM98VroOxW08k+zdPm61U/RmT/9iZqM1m0X6x0/mJ6/+91Fv666upp169bx3HPPMWrUKNLT07HZbGzfvp1p06Zx7NgxMjIy+Omnn5g4cWKrjlmSpHbmcsKJ7bWd2lKguhi8AmDwfDWo95sBOi9Pj1LqYrpVgO8IsrOzSUpKQlEUrr76aq688koAhgwZwp49e9i5cyePP/44x44dY/v27fz0009MmjTJw6OWJOmiCQG5P57r1FZ5BvS+MGieGtQHXAF6g6dHKXVh3SrAX8qVdms7uwZ/vkmTJrF582YqKioIDg5m/PjxvPbaa/z000+NNnSRJKkDEgLyf1Kv1A9+BaZToPWGgVeoQX3QPPC6sDbRknS5ulWA78gmTpzIb37zG6ZPnw7AsGHD2LlzJwUFBQ36sEuS1IEIAQUH1aCe/gWUHVc7tfWfBTOfUju1GQI9PUqpG5IBvoOYOHEix44d48knnwTUJLyIiAh69+6NRiN3M0pSh1N05FxQLz6sdmqLnQpTHoHBC8A3xNMjlLo5GeDbQWVlJQB9+/YlPT290edERERwfuOfjRs3tvXQJEm6GKXHa4P6l1BwAFCgz0QYdy/EXw3+4Z4eoSS5yQAvSZLUHFPuuU5t+XvU+3qNgXkvqO1XA6M8OjxJaooM8JIkSeerKDjXqe3UTvW+yOFwxXPqfvWgGI8OT5IuhAzwkiRJAFUlkLFSDeontqmd2iIS1ES5IddCaH9Pj1CSLooM8JIkdV+WcrVEbPrncGwjCCeEDoApj9Z2aov39Agl6ZLJAC9JUvdSUwGHv1WDevY6cNrUKfeJD0HiddBzqGzmInUJMsBLktT12aoh6zs1A/7IGnBYISAKxt6rTr9Hj5RBXepyZIBvB88//zz//e9/0Wq1aDQa/vWvf7Fjxw7uvfdefH19W+U9+vbtS1paGmFhYZf0+hUrVpCWlsZrr73GG2+8ga+vL3fcccdFHWPjxo14eXm5a+df6nEkqVU4auDoutpObavBXgV+4TDidvVKvfc4kDUmpC5MBvg2tmPHDlatWsWePXvw9vamuLgYm83GTTfdxG233dZqAf5iOZ1OtNrG21Ded999l3TMjRs34u/v7w7wl3ocSbpkTjscO9upbRXUmMAnGIZerwb1vpNl+1Wp25ABvo2dPn2asLAwvL29AQgLC+OVV14hPz+fGTNmEBYWxoYNG7j//vv58ccfsVgsXH/99Tz77LOAemW+ePFiUlNTsdvtfPrppwwePJiSkhJuvvlm8vLymDBhQr0iOYsWLeLUqVNYrVZ++ctfcu+99wLg7+/Pz3/+c9auXcvrr79OVlYWf/7znwkKCmL48OHuMS5btgx/f39uueUWrrrqKvdxDxw4wLFjx9i/fz/Lly/HZrMRGhrKhx9+iMVi4Y033kCr1fLBBx/w6quvsm7dOvz9/Xn00UfZu3cv9913H9XV1fTv3593332X4OBgpk+fzrhx49iwYQPl5eW88847TJkypb2+PVJX4HJCztZzndospeAdqFaTS7wW+k0Hrd7To5SkdtetAvyW/x2h+FRlqx4zrLc/U24c1OTjc+bM4bnnnmPQoEHMnj2bm266iYcffpi//e1vbNiwwT2l/vzzzxMSEoLT6WTWrFns37+fYcOGqe8RFsaePXv45z//yUsvvcTbb7/Ns88+y+TJk3n66af5+uuveeedd9zv+e677xISEoLFYmHMmDFcd911hIaGUlVVxbhx43j55Zc5ffo0t9xyC7t378ZoNDJjxgxGjBhRb+xRUVHuxjivv/46mzZtok+fPgQGBrJz504UReHtt9/mxRdf5OWXX+a+++5zB3SAdevWuY91xx138OqrrzJt2jSefvppnn32Wf7xj38A4HA42LVrF6tXr+bZZ59l7dq1l/19kbo4lwtO/XCuqUtVIej9IO5KNaj3nyU7tUndXrcK8J7g7+/P7t272bJlCxs2bOCmm27ihRdeaPC8//3vf7z55ps4HA5Onz7NoUOH3AH+2muvBWDUqFF88cUXAGzevNn98fz58wkODnYf65VXXuHLL78E4NSpU2RlZREaGopWq+W6664D4IcffmD69OmEh6ulNW+66SaOHDnS6Oewbds23nrrLbZu3QpAbm4uN910E6dPn8ZmsxEbG9vs18BkMlFeXs60adMAWLx4MTfccIP78bqfX05OTrPHkroxISBvT21Q/xLMeaAzwMA56vT7wDng5ZklL0nqiLpVgG/uSrstabVapk+fzvTp0xk6dCj/+c9/6j1+/PhxXnrpJX788UeCg4NZsmQJVqvV/fjZqXOtVovD4Wj2vTZu3MjatWvZsWMHvr6+TJ8+3X0sg8HQ5Lp7U06fPs1dd91FSkoK/v7+ADz00EM88sgjJCcns3HjRpYtW3ZRxzzfxXx+UjcjBJw5cK6pS/kJ0OhhwGyYvUy9YvcO8PQoJalDkimkbezw4cNkZWW5b+/du5c+ffoQEBBARUUFAGazGT8/P4xGIwUFBXzzzTctHnfq1Kn897//BeCbb76hrKwMUK+Wg4OD8fX1JTMzk507dzb6+nHjxrFp0yZKSkrca/vns9vt3HDDDfzlL39h0KBzJ0cmk4no6GiAeicrdT+nuoxGI8HBwWzZsgWA999/3301L0mNKsyEDX+C18bAv6bAtlfUAjRXvw6PZcEtH8OwG2Vwl6RmdKsreE+orKzkoYceory8HJ1Ox4ABA3jzzTf56KOPmDdvHlFRUWzYsIERI0YwePBgevfuzaRJk1o87jPPPMPNN9/MkCFDmDhxIjExam3sefPm8cYbbxAfH09cXBzjx49v9PWRkZEsW7aMCRMmEBQURFJSUoPnbN++nbS0NJ555hmeeeYZAFavXs2yZcu44YYbCA4OZubMmRw/fhyAhQsXcv3117Ny5UpeffXVesf6z3/+406y69evH//+978v5ssodQcl2ec6tRUeBBQ1633CAxCfDH6XtgVUkror5fwWpZ3Z6NGjRVpaWr37MjIyiI+X5SalzqHb/byWn1TX09O/gNN71ft6j1cT5RKuhoCeHh2eJLUmZ3k5il6Pxs+v1Y6pKMpuIcToxh6TV/CSJLUv8+lzndpyd6n3RY2EOcvVTm3GXh4dniS1JpfNRuXGjZhSUqjctJmev3uS4Jtvbpf3lgFekqS2V1VcG9S/VDu1IaDHUJj1tBrUQ/p5eoSS1GqEy4Vlzx5MKamYv/0Wl9mMNiyMkFtuwXfMmHYbhwzwkiS1jepSyFylXqkf36x2agsbBNN/q9Z/D/fMrhZJais1x45jSlmJOXUV9rw8FB8fAq6YjXFhMn4TxqPo2jfkygAvSVLrsZrh8Go1qGevB5cdgvvC5F+pQb3HENnURepSHCUlmL9ejSklBWt6Omg0+E2YQPgvHyZg1qxWXW+/WDLAS5J0eWxVaoe29M8h63tw1kBgLxh/nxrUo0bIoC51KS6LhYr16zGlpFC1dRs4nXgnxBPxxBMEzr8KfUSEp4cIyAAvSdKlsFvh6Fo1qB/5FuzV4N8DRi9Vg3qvMbJTm9SlCKeT6l27MKWkUvHdd7iqqtBFRhJ6550YkxfiPXCgp4fYgPwNbAfPP/88Q4YMYdiwYSQlJfHDDz/wj3/8g+rq6os+1ooVK8jPz3ffvvvuuzl06BAAn376KfHx8cyYMYO0tDQefvjhizr29OnTObvN8N1332Xo0KEMGzaMxMREVq5c2ej7X66673kpNm7cyIIFCwBISUlptAxwS/bu3cvq1avdty/1OF2ewwZHvoMvfg4vDYRPboXjm2D4z2DxKngkA678C8TINqxS12E9fISCv/6VozNncXLpnVR8/z0B8+YSs2IFA9atJeI3j3TI4A7yCr7NXUq72OZaua5YsYLExESioqIAePvtt92PvfPOO7z11ltMnjwZgNGjG90a2aLc3Fyef/559uzZg9FopLKykqKiokbfv70197VJTk4mOTn5oo+5d+9e0tLS3J3zLvU4XZLTATlb1Cv1jFSwloPBqBaeSbwWYqeBVv4ZkboWe0EB5lVfY0pJoebwYdDp8J88GeNvn8B/xgw0hs7RyEj+ZraxC20Xe34r1/Xr15OamorFYmHixIn861//4vPPPyctLY1bb70VHx8fduzYwZVXXslLL73E6tWr2bp1K3fddRfJycnMnz+fl156iVWrVlFVVcVDDz1Eeno6drudZcuWcfXVV2OxWFi6dCn79u1j8ODBWCwWAAoLCwkICHDXnvf398ff35/PPvuswfv/9a9/bTBORVGabAPb1HsCzbbMvemmm/j+++95/PHHCQoK4le/+hW+vr7ukxlQTz7S0tJ47bXX6lXmO3z4MN9++y0+Pj788pe/xGq14uPjw7///W9iY2N5+umnsVgsbN26lSeffBKLxeI+Tk5ODnfeeSfFxcWEh4fz73//m5iYGJYsWUJgYCBpaWmcOXOGF198keuvv76tf5zah8sFJ3eoQf3QSqguBi9/GDxfnX7vPxN0Xp4epSS1KmdlFRVrv8eckkLVjp0gBIbhw+jx1FMEXnUlupAQTw/xonWrAL9hxZsUnjjWqseM6NOPGUvubfLxC20XW7eVK0BCQgJPP/00ALfffjurVq3i+uuv57XXXuOll15qcHX+9NNPs379evdjGzdudD/2/PPPM3PmTN59913Ky8sZO3Yss2fP5l//+he+vr5kZGSwf/9+Ro4cCcDw4cPp0aMHsbGxzJo1i2uvvdZdhvb893/wwQcbjHPhwoVA421g/9//+3+NvufZcTbVMjc0NJQ9e/ZgtVoZOHAg69evZ8CAAdx0002Nft3PtrlNTU3lxRdfZOLEiVgsFrZs2YJOp2Pt2rX87ne/4/PPP+e5555zB3RQTxTOeuihh1i8eDGLFy/m3Xff5eGHH+arr74C1JO3rVu3kpmZSXJycucO8EJAbtq5Tm0Vp0HnA3Hz1KA+8ArQ+3h6lJLUqoTDQdX27eq6+tq1CKsVfe/ehN1/P4ELF+DdQqfMjq5bBXhPuNB2sXVbuQJs2LCBF198kerqakpLSxkyZIg7cF6s7777jpSUFF566SUArFYrJ0+eZPPmze51+mHDhrmDqVar5dtvv+XHH39k3bp1/PrXv2b37t2Ndo1rbpyNtYFt6j2h+Za5ZwN5ZmYmsbGxDKxd87rtttt48803G/28s7KyeOyxx9iwYQN6vZ4zZ86wePFisrKyUBQFu93e4tdux44d7ra8t99+O48//rj7sUWLFqHRaEhISKCgoKDFY3U4QsDpfefqv5tOgtYLBlyhTr8Pmgfe/p4epSS1KiEE1oOH1P3qX6/GWVKCxmjEuOhqjMlX4zMiCaWL7ProVgG+uSvtttRSu1io38rVarXywAMPkJaWRu/evVm2bFm99rEXSwjB559/Tlxc3AW/RlEUxo4dy9ixY7niiitYunRpgwDf0jgvpg1sSy1z/S5yL2llZSU33ngjb731FpGRkQD84Q9/YMaMGXz55Zfk5OQwffr0izrm+c5+fqB+jTuNgkO1Qf1zKD0GGh30mwEzfgeDr1LX2CWpi7Hn5WFKXYUpNRVbdjaKXo//9OkYr07Gb+pUNF5db9lJprq2sQtpF3u+s4EtLCyMyspKPvvsM/djzb2uKXPnzuXVV191B6GffvoJqN9yNj09nf379wOQn5/Pnj17Goz5/PdvbpxNaeo9L7Rl7uDBg8nJySE7OxuAjz76qNHn3XnnnSxdupQpU6a476vb5rbuNHxzX9OJEyfy8ccfA/Dhhx/WO16nUnwUNr0Ir4+H/zcBtrwMxt6w8P/g0Sy47TNIulkGd6lLcZrNlP3vf5y47XaOzppN0T/+gTY4iJ7PPsvArVvo9eorBMye3SWDO3SzK3hPuNB2sXUFBQVxzz33kJiYSM+ePRlTp3bxkiVLuO+++9xJbhfiD3/4A7/61a8YNmwYLpeL2NhYVq1axf3338/SpUuJj48nPj6eUaNGAWof+EcffZT8/HwMBgPh4eG88cYbjb5/U+NsSlPvOXz48AtqmWswGHjzzTeZP38+vr6+TJkypUFwPnHiBJ999hlHjhzh3XffBdTdBo8//jiLFy9m+fLlzJ8/3/38GTNm8MILL5CUlMSTTz5Z71ivvvoqS5cu5a9//as7ya7TKMs516ntzH5AgZgJcNVLaqc2/45RjEOSWpOw2ajcsgVTSiqVGzYgbDa8YmMJ/9UvCVywAK9e3aeZUZu2i1UU5V1gAVAohEisvS8JeAMwAA7gASHErkZeuxh4qvbmciFEw3nt88h2sVJnd9k/r6a8c53a8mp/F6JHQ+J1MGQRBHpme6MktSUhBJa9ezGlpFCx+hucJhPakBAC58/HmJyMIXFIl1lXP58n28WuAF4D3qtz34vAs0KIbxRFuar29vS6L1IUJQR4BhgNCGC3oigpQoiyNh6vJHU+lYXqdrb0L+DkdvW+nsNg9jK1U1twX0+OTpLajO3ECUwpqZhSU7GfPIliMBAwaxbG5IX4TZyIotd7eoge1aYBXgixWVGUvuffDQTWfmwEGiuLNhf4XghRCqAoyvfAPKDxBVdJ6m6qSyEjRQ3qOVtAuCA8Hmb8Xt3WFjbA0yOUpDbhKCvDvHo15pRULPv2gaLgO34cYffdR8CcK9D6y50fZ3liDf5XwBpFUV5CTfKb2MhzooFTdW7n1t4nSd2X1QSZX6tB/dgGcDkgpD9M+U1tp7YET49QktqEq6aGyg0bMK1MoXLLFnA48B40iIjHHiVw/nz0PXt6eogdkicC/P3Ar4UQnyuKciPwDjD7Ug+mKMq9wL0AMTExrTNCSeooairVZi7pX8DR78FpA2MMTPiFGtQjh8tObVKXJFwuqtPS1HX1b9fgqqxEFxFByB13YLw6GcNFbPvtrjwR4BcDv6z9+FPg7Uaek0f9dflewMbGDiaEeBN4E9Qku9YapCR5jN0CWd+pQf3IGnBYICASxtytJstFj5JBXeqyao4eVdfVV6XiyD+NxteXgDlzMCYvxHfcOJQmelFIDXkiwOcD01AD9kwgq5HnrAH+pChKcO3tOcCTjTxPkroG4YKaCqgugb/OBlsl+IXDiFvVK/WYCbJDm9RlOYqKMH39NeaUVKyHDoFWi9+kiUQ88hsCZs5A00hTLqllbfoXQ1GUj4AdQJyiKLmKotwF3AO8rCjKPuBP1E6vK4oyWlGUtwFqk+v+CPxY+++5swl3nZFWqyUpKYkhQ4YwfPhwXn75ZVwu1yUfz7+JJJIlS5a0WGymb9++7jaw06ZN48SJE80+/0KOeSHObzN7IW1ilyxZQmxsLElJSSQlJfHKK69c9Pvm5OS4C+t0OEKA1QxlJ+BMulpVzm5Ry8Te/hU8kgnzX4a+k2Rwl7ocV3U1ptRUTt5zL1nTplP4wl9AUejxuycZuGkjMW++iXHBfBncL0NbZ9Hf3MRDoxp5bhpwd53b7wLvttHQ2pWPj4+7+UlhYSG33HILZrPZ3S2tvZ1tcvPMM8+wfPly3nrrrTZ/z0ttM/vXv/71spq4nA3wt9xyy0W9rrm2tJdFCPXq3FKmJs25HKBowBAEPkFQ7g3jX23995WkDkA4nVTt3Ik5JQXz92sR1dXooiIJvecejMkL8e7f39ND7FLkZUE7i4iI4M033+S1115Tmx5YrSxdupShQ4cyYsQId1W7FStW8OCDD7pft2DBgnod4n79618zZMgQZs2a5e7Vftb69etZtGiR+/b333/PNddc02AsEyZMIC8vD1AD4cyZMxk2bBizZs3i5MmT7uetXbuW0aNHM2jQIFatWtXs+JxOJ0uWLCExMZGhQ4fy97//vV6b2aSkpHotYkGdkWju86mrqqqKO++8k7FjxzJixAhWrlzpHv+UKVMYOXIkI0eOZPt2dT/4b3/7W7Zs2UJSUhJ///vfm/26+vv785vf/Ibhw4ezY8cOPvjgA8aOHUtSUhI///nPcTqdTY6rWUKoyXKmXChIh5KjaoD3CoDgWOgxFIL7qGVi5dq61MUIIbBmZFDwlxc5On0Gp+66m4r1GzDOv4o+77/HgLVrifj1r2RwbwPdqlRteWo2tvyqVj2mV5QfQQsv7gezX79+OJ1OCgsL+eCDD1AUhQMHDpCZmcmcOXM4cuRIs6+vqqpi9OjR/P3vf+e5557j2Wefdbc6BbX06gMPPEBRUZG7vOqdd97Z4Djffvut+0SgubaoOTk57Nq1i+zsbGbMmMHRo0ebHNvevXvJy8sjPT0dgPLycoKCgppsc9vS5/PYY4+xfPlyAN5//30++uijRlvfRkRE8P3332MwGMjKyuLmm28mLS2NF154gZdeeqneiUlzX9ezLXszMjL4y1/+wrZt29Dr9TzwwAN8+OGH3HHHHU1/Y+oSAuzVYClXg7nLDihgCASfYPAOBI1MFpK6LvuZM5hSUzGnpFKTlQV6Pf5Tp2JMTsZ/+jQ0dZo1SW2jWwX4jmjr1q089NBDgNpIpU+fPi0GeI1G426fetttt7nbsp6lKAq33347H3zwAUuXLmXHjh289965YoIzZsygtLQUf39//vjHPwLNt0W98cYb0Wg0DBw4kH79+pGZmdnk2Pr168exY8d46KGHmD9/PnPmzGnxa9Dc53P+FP3SpUsbbX0bFRXFgw8+yN69e9FqtS1+DRtTt2XvunXr2L17t7u+vsViISKihdrtQoDDqgZ0S5m6pQ0FvAPAJ0q9QpdBXerCnJWVVKz5DlNKCtW7doEQ+CQl0fOZpwmYNw9dcHDLB5FaTbcK8Bd7pd1Wjh07hlarbTZg6HS6eol4zbWLbazG8tKlS1m4cCEGg4EbbrgBne7ct3rDhg0EBQVx66238swzz/C3v/2t2fGef3xFUZocX3BwMPv27WPNmjW88cYb/O9//3M3fLlQzdWMbqr17bJly+jRowf79u3D5XJhMBgafX1zX9e6LXuFECxevJg///nPLQ/YbgVrbVB31Kj3eQeAf0/wMartWCWpixJ2O5XbtmFOSaFi3XpETQ36PjGE/eIXGJMX4iXrk3iMXINvZ0VFRdx33308+OCDKIrClClT+PDDDwE4cuQIJ0+eJC4ujr59+7J3715cLhenTp1i165z/XhcLpc7s/2///0vkydPbvA+UVFRREVFsXz5cpYuXdrgcZ1Oxz/+8Q/ee+89SktLm22L+umnn+JyucjOzubYsWPNjq+4uBiXy8V1113H8uXL3W1nm2vJeiGfz1lNtb41mUxERkai0Wh4//333evl579vc1/XumbNmsVnn31GYWEhAKWlpfV3HDhqoOIMFGZCUYb6sUYPxl7QIxFCB4BfqAzuUpckhMCyfz9nlj9P1rTp5N53P1XbdxB03XX0/fgj+n/7LeEP/kIGdw+Tf33agcViISkpCbvdjk6n4/bbb+eRRx4B4IEHHuD+++9n6NCh6HQ6VqxYgbe3N5MmTSI2NpaEhATi4+MZOXKk+3h+fn7s2rWL5cuXExERwSeffNLo+956660UFRU12Z0sMjKSm2++mddff73ZtqgxMTGMHTsWs9nMG2+8gcFgaHJ8eXl5LF261H2VfPYKuLk2txf6+UDTrW8feOABrrvuOt577z3mzZuHn58fAMOGDUOr1TJ8+HCWLFnCr371qya/rnUlJCSwfPly5syZg8vlQq/X8/r//YM+oQZ1Xd1erT5R7weB0WoGvLZr9pSWpLNsubmYUlIwp6Riy8lB8fLCf+ZMjMkL8Z88GaWL9lXvrNq0XWx7k+1i63vwwQcZMWIEd911l6eH0ix/f38qKys9PYzGOe3nEuXstQmaeh81Uc4QDLrW/YPWnX9epY7JWV6O+ds1mFJSsNTOyPmOHYsxeSEBc+agDQxs4QhSW/Jku1jJQ0aNGoWfnx8vv/yyp4fS+TgdYC1Xg7qt9sRDZ1DLxfoEqR9LUhfmstmo3LQJc0oKlRs3Iex2vPr3J/zXv8a4cAH6i6xnIXmGDPBd1O7duz09hAvWIa7eXQ618IylTC0ZC6D1rk2UCwa9DOpS1yaEwLJnD6aUVMzffovLZEIbFkbwLbcQmLwQQ0JCswmwUscjA7zUfbmc5wV1oa6j+/eovVL3kYVnpC6v5thxTKkpmFNXYc/NRfHxIWD2bIzJyfhNGI+ik2Gis5LfOal7cTmhxlxbKtYMCDX73S9cDep6XxnUpS7PUVKCefU3mFJSsB44ABoNfuPHE/7QgwTMno2mNklV6txkgJe6PuFSg7mlHGpM6m2NTt3GZggGLz8Z1KUuz2W1UrFuHeaUVCq3bgWnE+/4eCIef5zA+fPR92ihkJPU6cgAL3VNwqXWfz/b1EU4QdGq6+k+weDlL4O61OUJl4vqXbswpaRSsWYNrqoqdD17EnrnUgIXLsQwaJCnhyi1IVnoph3IdrGX1i72008/JT4+nhkzZgBw8803M2zYMP7+9783/gIh1LX08pO17Vez1eBuMEJIf+iZCEExapU5GdylLsx65AiFL73E0ZmzOLlkKRVr1hAwdy4xK1YwYP06In7zGxncuwF5Bd8OZLvYS2sX+8477/DWW28xefJkzpw5w48//tiw0Y0QYKuqvVIvr9N+1ahOvxsC1NuS1MXZCwsxr/oaU0oKNZmZoNPhP3kyxscfw3/mTDRNlG+Wui75l6+dyXaxDdvFfvTRRwwdOpTExESeeOIJAJ577jm2bt3KXXfdxWOPPcacOXPIy8sjKSmJLZs3k51xgHmzpzNq+BCmTJ1C5v40ddrd3X61r1oHXgZ3qQtzVVVR/tVXnLzzLo5On0Hhiy+ieHnR4/e/Z+DmTfR+4/8ReNVVMrh3U93qCv6bb77hzJkzrXrMnj17cuWVV17Ua2S72HPy8/N54okn2L17N8HBwcyZM4evvvqKp59+mvXr17tf84sHHmDBgvns3fw1WMqZdd1S3njh9wyMH8oP6Ud5YNmfWb9+w4V8+SWpUxMOB1U7dmBamULFunUIiwV9r16E3fdzAhcsxLtfrKeHKHUQ3SrAd0TdvV3sjz/+yPTp0wkPDwfU+vmbN28+NwPhsIL5NBQfVduvVhZSadewffcBbnjwaUBdS6+pqWn2fSSpMxNCYD10CHNKCqavV+MsLkZjNGJMTsZ4dTI+I0bIIjRSA90qwF/slXZbke1iW+ByqN3Z7NVQdgIq/UCrU/er9xiKq6qaoKAg9u7dd3HHlaROxp6Xh6l2Xd2WnY2i1+M/fTqByQvxnzYNjWzuIjVDLlC2M9kutr6xY8eyadMmis/k4SzP56P/vM204bFQcRpQwC9Cbb8aEgsaLWh1BAYGEhsby6effgqoVzf79slgL3UNTrOZ8s8+48Ttd3B01myK/v53tEFB9Hz2WQZu2UyvV18h8IorZHCXWtStruA9RbaLbdgu1uFw4K3TEBmg5YXfPcyMGdMRQjD/ihlcfcOtYAhSu7b5BoNW32DsH374Iffffz/Lly/Hbrfzs5/9jOHDh1/st0aSOgRhs1G5dSumlFQq169H2Gx49e1L+C8fJnDhQrx69fL0EKVOSLaL7cI6ZLtYp50aUwEDho4hfd0nGAMD1JrvPkFqARqdt6dH6FHd+ee1uxFCYN23T+2vvvobnOXlaENCCLzqKoxXJ2NITJTr6lKLZLvYbqhDtYt1t18tJ+3HH7j94ad4YMnPMEYPVPeqy05tUjdiO3ECU+oqTKkp2E+cRPH2JmDWLHVdfdIkFH3DGStJuhQywHdRHm8X22inNm9GT5pBxqFDak91eXUidROOsjLM33yDOSUVy969oCj4jhtH2M/vI2DOFWibqE4pSZdDBnip9TTWqU3rVdupLVhdU5dBXeomXDU1VG7YiCklhcotW8Bux3vgQCIe/Q2BCxag79nT00OUujgZ4KXL43KdC+o15tpObXrwC6sN6rL9qtR9CJcLy+7d6rr6t2twVVSgCw8n5LbbMF6djHdcnFxXl9qNDPDSxRMuddrdUq6urZ9tv+oToibLyU5tUjdTk52NKSUVc2oq9vx8FF9fAq+4gsDkhfiNH4+i1Xp6iFI3JAO8dGHOdmqrTZar137VECQ7tEndjqO4GPPXX2NKScV68CBoNPhNmkT4r39NwKyZaHx9PT1EqZuThW7aQadtFysES26/lc/+8wYU1LZftZTVtl/td679qiGwxeBet13ss88+y5NPPlnv8b17917S9rD8/Hyuv/56ADZu3MiCBQvc71e3GY4ktQZXdTWm1FWcvOdesqZNp+DPLwDQ48nfMnDTRmLeehPjwgUyuHdzDpeDouoiMkoy2JK7hS+zvuTtA2/zwq4X+PHMj+02DnkF3w46VbtYIdQSsZYy9Uq9pgJsleq0u08weAeC5uLPC+u2i7355puZN2+euwgOwMcff8zNN9980ceNiopqlX71ktQU4XRS/cMPanOX77/HVV2NLiqS0Lvuwpi8EO8BAzw9RKkdCCEw28yUWEoothSf+2ctbnBfmbUMQcMaM/56f/oZ+zGm55h2GbMM8O3sbLvYMWPGsGzZMmpqarj//vtJS0tDp9Pxt7/9jRkzZrBixQrS0tLcXeIWLFjAo48+yvTp0wG1Xex3331Hz549+fjjj93NWkBtF/vKK6+4u8F9//33/POf/+TLL7+sN5YJEybwyiuvgBDkZGVy5913U1xcRHhIEP/++7PE9I8Db3/WpmXxwr9uwGw287e//Y0FCxY0Ob4pU6Zw1113kZaWhqIo3HnnnfTu3dvdLvZsJbvg4GB++OEHxo0bB8D//vc/1qxZw1tvvcWbb76JzWZjwIABvP/++/j6+rJkyRICAwNJS0vjzJkzvPjii1x//fXk5OSwYMECd/e6xqSmprJ8+XJsNhuhoaF8+OGH9OjRo7W+pVIXZc3MVNfVV63CUViIJiCAwPlXEbhwIb6jR6Ncwomu1PFYHVZKrOcC9PnBusRSQpGliGJLMXaXvcHr9Ro9YT5hhPmEEeUfxbDwYeptg3pfqE+o+38fnU+7fm7dKsAfOfJHKiozWvWYAf7xDBr0h4t6TYdpF7t6FYvmTofCDB76xX0svnYui2+/lXf/t5qHl7/BVytXgtaLnBMnWr1d7M0338zHH3/MuHHj2LlzJyEhIQwcOJCQkBDuueceAJ566ineeecdd7e906dPs3XrVjIzM0lOTnZPzbdk8uTJ7Ny5E0VRePvtt3nxxRc7RgEgqcOxnzmDedUqTCmp1Bw5Ajod/lOnYkxOxn/GdDTe3bvSYmfhdDkpqymrf6XdRPCusDfskaGgEGwIdgfuvsa+aqCuDdpn/4X6hBLoFdhhd0Z0qwDfEbV/u1jBjGlT1Haxvj788ZsPQOvFjj0H+SJ1DRh8uP3u+3j8D+eWD9qiXexNN93ExIkTefnll+tNz6enp/PUU09RXl5OZWUlc+fOdb9m0aJFaDQaEhISKCgoaPZrVFdubi433XQTp0+fxmazERsr+2VL5zgrK6n47ntMKSlU//ADCIFPUhI9nv4DgVdeiS442NNDlFCnyCvsFY0G6vPvK6spwyUa5jn56/3dgTkuJO5coDaE1gvcwYZgdJrOHx47/2dwES72SruttHu72OuuRWcpVtfUnXY2fPI6QWGR3PqLJ3nmn5/xt3/8Q02S0zb+49AW7WJ79+5NbGwsmzZt4vPPP2fHjh2Amij41VdfMXz4cFasWMHGjRvdr/Guc/V0MT0UHnroIR555BGSk5PZuHEjy5Ytu+DXSl2TsNup3LYNc0oqFevXI6xW9DExhP3iFxgXLsCrTx9PD7HbqHHWtHiVffZjm8vW4PU6jc49JR7pF0liWCLhvuEdYorc07pVgO8ImmoXO3PmzHrtYs1mM//85z9xuVzk5eU12i72Zz/7WdPtYiPCiIoIZflzy1j78T/V9qt6X3W/evhgdD2i+Mdr/4+hQ4fy1NNPu9vF3n777Y22i128eDHHjx93t4utqKhodHzFxcV4eXlx3XXXERcXx2233QY03i725ptv5te//jX9+vWjV223rIqKCiIjI7Hb7Xz44YdER0df9tfcZDK5j/Of//znso8ndU5CCKzp6eq6+tdf4ywtRWs0EnTtNQQuXIhPUlKHnWrtbM5OkTd5pW0tpqi6qMUp8rPT4n0C+9QL1nX/deQp8vPV1BSi4IWXd1C7vJ8M8O2g3drFCpdaIrb4CNiquDV5JkVFBcSPnKwWoNF5g6JRy8fi2XaxPj4+3HDDDTz88MO8+uqr7vf64x//yLhx4wgPD2fcuHGN9pC/WMuWLeOGG24gODiYmTNncvz48cs+ptR52HLzMKemYEpJxXb8OIqXF/4zZmC8Ohn/yZNRZF/1CyKEoNJe2eSVdt1s8lJraaNT5H56P/eU+KDgQYRF1V/PrjtFrtd0jaY7VZXHOXb4QwoLv0N45eEjbmDS7Bfa5b1lu9jOzt2prUzdzgZqIxefYB58YhkjRo3pWO1ipWZ1+Z/XduI0mTB/uwZTSgqW2sZLvqNHE3h1MoFz56INDPTwCDuOGmdNs9PidQN3jbOmwevrTpE3dZUd6hNKqCEUX33Xrw8ghKC8bC/HMj+k1LQZjXcJABUVwZSUxBAeOIPk6x9qtfeT7WK7GpejTqe2Ss52asO/p3qlrvc51y727//n6dFKUrtw2WxUbtqEOSWVyo0bEXY7Xv36Ef6rX2FcuAB9Kyz3dBYXMkV+9naFrfFZsmDvYHewjomIaXClHe4T3ummyNuKy+WgqGArxw9/RIV1JxqvSoQAsyWCklOjMZti6ddvDFMmD6Vfv37tNi4Z4DsLd/vVcrWpy9lObf7htT3V63dq83i7WElqB0IILD/9hGllCuZvv8VlMqENCyP4lpsJXJiMYUhClwk+Qgiq7FXNFlg5u2e7qSlyX52vO1APCBrA+MjxDa60wwxhhPiEdJkp8rbidNaQd2I1J459itW5F42+BpdTQ5k5kpKSoVRX9iNu8Bhmzx5Cnz590HqgH4EM8B1Z3U5tVjMgO7VJEkDN8eOYU1MxpaRiz81FMRgImD0b49XJ+E2YgKLrPH/abE5bgynxprLJrc6Gu2l0is59VR3hG0FCaELDaXKDGry7wxR5W7LZTJzI+pS8U6nYNRlodE4cTh2lpb0oKYnBXjOQhCEjmTBhCNHR0WhqiyG5ahxYMoqxZJbiOyICQ/+gdhlv5/ktuAxCiM5zFu/u1FamXrGf7dTmG6IGdS8/GdS7qK6UD9MWHKWlmFd/gyklBev+/Wpzl/HjCXvwFwTMvgKtv5+nh+jmEi7KrGWNTomfH7zNNnOjxwjyDnIH6BERIxomo9WueQd6B6JRZFW9tmKxnCb70IcUFHyL8MpB0QhsLm9KivtTXNIbDXEMSUxi+vQEevbs6Y41jmILVZmlWA+XUnPMBE6BQ4FKvYYYGeBbh8FgoKSkhNDQ0I4b5IVLXUt3B/U6ndp8gmX71W5ACEFJSQkGg8HTQ+lQXFYrlRs2YFqZQuXWreBw4D14MBGPP07g/PnoezRdS6K1XegU+dkscqdwNjiGj87HHaj7B/VnbM+xTSak6bVyitxTzKbDHD34PqVlG1B8zgBgcfpRnBdPSXEMPoZ4EocOY+7ceHeZcOF0UXPMhDVDDeqOIgsADl8deS44VeGgxl/HxOiAdvs8mg3wiqIMBd4CooFvgCeEEGW1j+0SQoxt+yFenl69epGbm0tRUZGnh1KfEOCsAVs12C21QV2jrqXrfUGng/IqoMrTI5XaicFgcNcD6M6Ey0X1rh8xpaZQseY7XJWV6Hr0IHTJYnVdPW5Qq76f3WmvV4u8sYBdZClqdoo8xCdETTzzDSc+NL5BZbSz/+QUecckhKC48EeyD32AuXobWp9yAKrswRQXDKekOIbg4ASGDEkkPjme4Nrqhs5KG1W7C7BmlmI9UoaocYJWQYn0oyDCl/TjZirL7UTHBTHmhl70HR6GVtt+sy0tXcH/P2AZsBO4G9iqKEqyECIb6BSnl3q9vuOUJnW5IHcXpH8Oh1ZCZQHo/SDuSki8FvrPAr28gpO6p5qsLEwpKZhSV+E4cwaNnx8Bc+ZgvDoZ3zFjUC4iScklXJTXlLdcHc1ajKnG1Ogxzk6Rh/qEkhSR1OQ2MKO3UU6Rd0Iul4P8E2vJyfqYasdutIZqhIBKawTFeaMpLelNz8hEhiYmMHjwYAIDAxFCYM+vwrznJNbMUmy5FSBAE+CFITGUEo2G/ZllFKSXoTdoGTwpmsSp0YREeWb5qKUAHyCE+Lb245cURdkNfKsoyu3QSC88qSEhIH8PpH8BB78Ec566T33gHDWoD5wLXvKsXuqe7IWFmL9ejSklhZqMDNBq8Z88mcDHHiVg5kw0PudKiwohqHZUX1ADkRJrSaNT5AatwR2YY42xjO45ut6WLzlF3rU5HBZyDn9O7omvsGnS0XrZcSkaTJWRFJ8YTllZDH1iEhg9OoG4uDj8/Pxw1TipOVpOWWYWlsOluMw2UMCrVwCBs/tgD/cl43ApmTvOUFPtICTKj2m3xDFobA+8DJ5dBW+20I2iKPuAqUIIU537hgGfAyFCiNC2H+KFa6zQjUcIAQXptUH9CyjLUbPfB8xWg3rcleDdfuswktSRuKqqqFi7FlNKKlU7doDLhXbIYOxXTKR4YhxFBlujwbvEWoLFYWlwPK2iJdQQ2uDKurGCK746346biyO1iZqaMo4e+IAzZ77B5ZWFRufCYVcz34tLYqgw9ab/gCHEx8czaNAgDAYDjhIL1sxSLIfLqMkuB6dA8dZiGBSMYXAIXgODyD1uJn1THicPlaLRKPQbGc7Qab2IHGBs15+x5grdtBTgbwGOCSF2nnd/DPAHIcQ9rTrSy+TxAF90WA3q6Z9DSZaaKNdvuhrUB89XE+YkqRtwCRemGtO5K+vKAhy79uC/YQ89fsxBb3NSGqxn+1Ad3w+2cTq04R9Eo7exyWnxureDvIPkFLlUT6X5JEcO/IeS0nUoPrlq5rvVm5LSPhSX9MZS3ZtBg9Qy2wMGDECv1WE7YcaSWYo1sxRHoXoiqQv3wRAXgiE+BO8+gVgtDg5tyyd9cx6VpTX4BXkzZEoUCZOj8DN6ppXw5VSySxRC/Pf8O4UQJ4EOFdw9pvTYuen3gnRAgb6TYcIDEJ+s7lmXpC6i2t5wivzs1XXd26WWUhwuO30LYGq6i0mHBMFVUGWAtOH+ZI2Lxhrfl1C/MK5tJBktxBCCl1bWiJcuXEnhfo6mv4epcitafzWpugY/SvISKC7ujcPRm8GD4xk3LoHY2FiUGoH1cCkVn2WrCXJWNUHOO9aI39hIfAaHoAvzQQhBwXEzB97P4OjuQlwOQXRcMJNvGEjssDA07Zg0d7FaCvDzgN+1x0A6lfJTakA/+AXk/6Te13s8XPkiJFwNAT09Oz5Jughns8gbLWt6XuBuaoo8xBByLiHN1YuEgyX03paNz6lihE6LdvI4Qq5exKCZcxjt7ZkrHalrEUKQf2ITxw9/RJVtFzo/tZ6A1RVE0fEkSkp6o9X2YvDgeKZOTSAmJgZngQXr4VJKv0/Hdqo2Qc5fj09iGD6DQ/AeGITGWw2LdpuTQ9vyObAxl+JTlXgZtAyZUps0F9lxai40p6UAr1UUJRhodEFBCFHa+kPqoCrOwMGv1KB+6gf1vqgRMGc5JCyCoN6eHJ0k1dNgivy8zPG6t8tryhs9RqBXoPuKOjEssdHKaGenyKmqpmLNGkyfplK9ayMAPiNHYrzrQQLnzUUbFNRen7rUhTmddnIyV3Iq5wtq2IfOx4rQQrUtgqLTgygpicHHJ5qEhATmzIknKiISW7YJ695SCj9Ow2lS+8nre/kTOCsGw+AQ9FH+KJpzIa68oJr0zXlk7jhNTbWD0OiOkzR3sVpag68B8mg8wAshRPtVzb8Arb4GX1Wsbmc7+CXkbAUE9EhU19SHXAMhHerTl7qBant1i5XRiixF6hS5cDR4vbfWu9HCKnUro529r6UpcmGzUbl1G6aUFCrXr0fYbHj16UPg1ckYFy7Eq7c86ZUun62mkqwD/+VM3tc4vTLRejtwOTWYyqIoLImhtCSaoKBe7tbVYV5B1BwpU/emZ5vA4ULx0mIYGIRhcAiGwSFoA+r/bLtcgpz9xaRvzuPUoVI0WoX+I8JJnN6LyP7tmzR3sS5nDf6QEGJEG4ypY3M62PfXeSRad6PFRYFXDBmRd3Eych6u0AEE+XphLNRjrCzD6KN3/9N34LUYqeOyu+yUWkobrYx2fvCudlQ3eL1G0binyMN8whgYPLBB85Czt/30fpf1x0oIgXX/frW5y+rVOMvL0QYHE3TDDRivTsYwdGiH/mModQ5VlWc4su89ioq+R/HNUTPfvXWYyntTUNybstIoevSIIXFIPIMHDcZo8Vaz3j/Op6DgKAC6UAP+43piGByCd6wRRdfw73O12UbG9nNJc/7B3oxLjiV+kueS5lpT55pvaC9aHTWGcFJ1N/CdMpl9tmhM+Q4qj9uAQ02+zM9LS5CvF4E+eow+OoJ8vDD66Any1dfep35s9NG7HzP66Akw6NBo5B/FrkQIcW6KvInmIWfvK6spa/QYAV4B7sA8JHRIk322g72D0WratlOV7eRJTKmpmFNSsZ04geLtTcCsmQQuXIj/5MkoerlnXLo8ZYVHOHJgBeXmzWgDTqNowOnlTXnRQAqKemEy9aRXrz6MGhnPoD4D8S0Uatb7hmyKLA7QKHjHBuI3Oladeg9vvL6IEIIzx8ykb8rl6B41aa7X4GCm3DCIvsNCO3TS3MVqaYp+iRBiRe3H/gBCiMr2GdrFa+ttcnanC7PFjslip7z2f7PFTnl17X21/6v/bPXuq3E0bN14lqJAoOFc8K/7r+4JQYOTBF89PnqtvGJqRxcyRX42Oc3hajhF7qXxItw3vMGVdWPbwLy1nr2CcJSVUfHtt5hSUrH89BMoCr5jx2JMTiZgzhVoA2QtB+nynM7ZSXbGB1TW/IA+UE3pslb5U1bWl4KiXlRWhtO3b6y6nS20D7pTNqwZpdhOmt0Jcoa4EAyDgzEMDEbTzBq5vcbJkV1nSN+c506aGzwhksRp0QT37BxJc4255H3wtS9+APgt4Ie6Fl8B/EUI8c8WXvcusAAoFEIk1t73CRBX+5QgoFwIkdTIa3Nq38cJOJoa/Pk8vg++GVa70x38654IlFfb1JMEi73e43Xvc7qa/h7ptcp5JwReTZ4knD+b4K1r//7EHZHD5aDUWtpksD4bsIuqi1qcIj8/cJ8fvP31/h36hMxVU0Plxk3quvrmzWC34z1wAIHJyRgXLEAfGenpIUqdmMvp5ETmN2oPdddP6APUXhvV5mBKyvpSWNQLqzWY/v0HED9oMH28eqI5rhadcZbXAKCP9scwOASfwSHoo+snyDWmvKCaA5tyydxxBpvFQWi0P0OnRzNwTOdLmmvM5RS6+T0wCXhQCHGs9r5+wP8BPwghljfz2qlAJfDe2QB/3uMvAyYhxHONPJYDjBZCFDf3iZ2vIwf4SyWEoLLGcW5moLr+DEL9EwJbvfsqrA2vIOvy0WvrBf2gxk4Kak8Y6j4W6KNH28GXFIQQmG3m5sua1q55l1nLEI1UXg7QBzRZYOVsadP2miJvS8LlwrJ7N6aUVMxr1uAym9GFhxO4YAHG5IV4Dx7coU9KpI7NbreQte9/5J9KxaE/hN63BuGCKnMPikr7UlgUjXAFMWDAAOL6DKS3PQSRXUVNdjnC7kLx0uA9IBifweqVujaw5Zktl9NFzoES0jflciqjTE2aGxnB0GnR9OzgSXMX63IC/GFguBDCet79PsA+IUSzbZ0URekLrDo/wCvqV/ckMFMIkdXI63KQAf6yOV3CvaRQ76Sg2tZgNqG8drnh7H0We8M63nUFGHT1ZwZqlxDq33f2JOHcff7eusv65bI4LM2uZ9dd825qiry5aXH3x4ZQDLqu3fin5tgxTCkpmFNSsefno/j6EnjFbAIXJuM3YfxFNXeRpLqqK0s5/NN7FBWuQfhmo/N24nJqqCyPprCkD0XFUWi1gQwaNIiBYX2JqjTizDJjP6Ne0WtDDLUBPQTvfo0nyDX6vmYbh7bmc3BLHpVlatLckCnRJEyOwjewaxZOupwsenF+cK+906IoStOLyi2bAhQ0FtzPvgXwnaIoAviXEOLNpg6kKMq9wL0AMTExlzGkrkerUQj28yLY7+J/sGscTneOQb0TgXp5BueWGc6YzJgsDkwWG3Zn0yeNWo3iDv6B7hkBDT4GC3qvStBVIDQVOBUzNaKcalc5lfYyTDa1gUiVvWH7XAWlXhZ5v6B+TW4FC9AHdKmz94vlKCnB/PXXmFJSsaang0aD38SJhP/6VwTMmoXGVzY+ki5NeVEOh/f9h9LyDegCctHoBcJPR4WpLwXFvSkp6Ym3dyCDBwxiUmwvepT6Yj9oxlVdjVVTjXdfI8ar1AQ5XbjPBf+eCiE4k23iwKY8svcU4nLWJs3dNIi+Q7tW0tzFainA5ymKMksIsa7unYqizAROX8b73gx81Mzjk4UQeYqiRADfK4qSKYTY3NgTa4P/m6BewV/GmKQ6vHVaIgK0RARc3FWsEAKL3UlZlY38ilJOmQrJryyksKqIIksxZTUlmGylVDnKyHOVc1yYcNVUgq3ht044DbgcAQiHP8IRhMYVg7fGiJ82mAB9MEHeoYQawgjzCSHEz3Au78BX32BZQdeNf8ldFgsV69ZjSllJ1bbt4HRiSEgg4rdPYJw/H114uKeHKHVSp3P2kH3wA8zV2/EKKkLRguLrTXlpPPmFUZSX98Df30hcnwFMj+5J6BkvHLsrwWXF7udw13k3DAxG43Nx6+Fnk+YObMqjJLcSLx8didPUSnOdOWmuNbX0FX0YWKkoylZgd+19o1HX5a++lDdUFEUHXAuMauo5Qoi82v8LFUX5EhgLNBrgpfZldVibnBI/f+rc7rI3eL1eoyfMJ4xexjBCfQbUq4wWYgjFVxuEniA0rgAsNk3DPIO6CYrldk5a7JRX51Fla35Jwd9b12TiobGRrYtn8xICvDvnFkbhdFL9ww+YUlKp+O47XNXV6CIjCb3rLnVdfcAATw9R6oSEy0VOxnpyjn6CxZGGd7AZfACXP8WFSeQVRFJhDiUoKJhBPfvRNzycoJMaXGk2wIYSqSdgWm8M8SF49QpoMUGuMWVnqmorzdUmzfXyZ/qtcQwa2xO9t1xWqqvZAC+EOKgoSiJwCzCk9u7NwM8bm7q/QLOBTCFEbmMPKoriB2iEEBW1H88BGiTiSa3H4XJQZi1rtgb52cBdaW+4S1JBIdgQXK/PdlPZ5IFegW0yRX52C+O5PAN7I3kGNveSw9HCSnfuga2ZLYwahXPbE2uXFdSdCrr6JwW+DU8ePLGF0Xr4sFqEZtUqHIWFaPz9CbjqSozJyfiOHo2i6b4zGdKlsdtsHN33BXknVmLTHsDbaIEAEBUhFOSN5VR+TywWI2EhoQwJ70Mf/1ACTgk4I1D0LrwGBGKYoa6n6y6xeIzL6SJnfwkHNuWSm1knaW56L3r2a5u/KV1BS0l23wkh5lzSgRXlI2A6EAYUAM8IId5RFGUFsFMI8Uad50YBbwshrqrN0v+y9iEd8F8hxPMX8p4yye4cIQQV9go1QFcXN8gcrxu8m8oi99f7N56MZqh/O9gQjE7TebebWO3OBlsXG+YZNExGbGkLo5dWc67oUZ3dCI3VMzg3u6A+z+sCk4oA7AUFmFetwpSSSs3hw6DT4T9lCsark/GfPh2NoWsnC0qtz1JZzuE9H3HmzGrwyULvZ0e4wFIRSbm5P6fyI7DV+NEzNIJ+vtHEmILwL1R/ZrXB3u5tbN79glD0l35SqSbN5XFwS/65pLmp0SRM6rpJcxfrcrLof+pMpWq7Q4C3Oqz1rq4bFFipc9vmsjV4vU6jq1933Des3u2zwTzUJxQfnY8HPsPO4+wWxrPBv+4MQnNFj0yWlrcw+nppmy565OtFEHaiDuwkZNs69Pv3oAiBfugwgq9Oxjj/KnTBwe30VZC6ivKiXI789D7FpevQBp5EZ3DicmiwVMZQUh5LXn44Doc30SE9idVF0qvYH/9qL9CAV59Ad9a7LsL3ssshn842kV4naa53fDCJ03p1+6S5xlxOFr1RUZRrm3pQCPHFZY1MAsDpclJWU3+KvKngXWGvaPD6s1PkZ6fF+wT2afTKO8wnrM2myLsjRVEIMOgJMOi52LYqDqeLCqvjvHoGtoZ5BrX/nyipJv2kldicdCblpJFwOh2D006+XyjrB81mQ++R5PuHoxyEgKO7MPrWzyloLPHQWOeEweijx89LVkXsToQQFJxIJ+vAh5grt+AVUoBGL9AF67BU9qcwry+nT4cghBe9gyKZ6BdOdFEAfvneaHx1GAYFn0uQ8738UsU2q4MjuwpI35RHSZ6aNDd0Wi8Sp0UT1EPu7rgULQZ41Gp0jXaTA2SAb0LdKfKWGoiU1ZThEg3Xgf30fu4p8UHBgwiLanzPdrAhGL1G1gLvTHRazQVtYRRCYE0/qO5X/2Y1zpISNEYj+kWLcMyci7HfYGZaHYw8bwmh7jJDvsniPnFwNLOkoNMoDYJ//XoGXg1nE2qXHAx6mdzUGbhcTk5kbOP44Y+otv+IIbQMxQ90Wh8qzUM5U9SbwqIgNIqeGP+eTNGF0ttsxGDxQt/TF8PUUAyDg/GKCbykBLnGlJ2p4sCmPA7vOI3N6iSstz8zbhvMwDE9ZNLcZWopwJ8QQtzZLiPpJGqcNZRYSiiyFF32FHmkX2TDPtu1wTvUEIqvXp61dle23DzMq1IxpaRiO3YMRa/Hf8YMdV19yhQUr4tffxRCUG1znrdc0HTRo9IqG8eKqtTlB6ud5qpae+s0LfZNOFsFMcjn3MxBoEHXrbcwtge7rYaje1dz6vgX2JR9+IRVQRDoqgMxl40h70wUJSUB6LV6Ygw9SXAG0dsWipfNC8OAIAwz1QpyuqDWy+VwOV0c31/MgY155B0uQ6NTGFCbNNcjVs4ytpaWAny3/Sq/f+h98ivzGzQWqbA1nCIHCPYOdl9Vjwwc2SBoyylyqSVOkwnzmjWYUlKwpKm7Un1HjyZkyWIC581DGxh4WcdXFAU/bx1+3jqigi4uv8LlElRYHe7dCI0WPao+91heuYVD+SZMFnuLWxgDvHWNnhCc273gRYNkRF91C6P8XWpcdYWZI3s+5XTe17gMmRiCatCGg7YqjLKikZzMi8Bs9sVLq6ePtgcjbMH0coXirffFMPJcBTmNV+teQVeZamorzeVTVV6Df4g34xf1I36iTJprCy0l2Q0D+gEDgANCiDXtNbBL0ZpJdvM+n0eZtazJsqZ1G4uE+ITIKXLpkgibjcrNmzGlpFK5YQPCbserXz+MyckELliAV69oTw/xstkcLszWRvomVNsxWRzneiic32eh2o7N2fwWxnqJiI30TaiXe1BnhsGg13S5k4PyonwO7/6I4pLv0ATk4OXvQLjAVt2Lquo4jp8MpbraG4PWm76ucPrUhBIlQvCJCcIQr2a963pcXoJcY4QQnD5q4sCmXI7tKcLlEvROCGHotGj6DA3rlHUmOpLLyaL/J+r+9+3ALCBVCPHHNhllK2jNAF/jrPF4u06paxJCYPlpL6aUlVR88y1OkwltaCiB86/CmHw1hiEJXS74XAohBFa769ysQYM8g+b7LDSTboCXVtNEnkFjxZDqzyDoO8iSghCCwpxMjuz/L+XmzXiF5qMzuHA5NdirYzFXx3HseCA2mx4/jYE+9jD6OsOJ9ArDNy5U3cY2KBitX9tcnJxLmsulJK8Kb1+d2p51qkyaa02Xk0U/FbXZjFNRFF9gC9BhA3xrksFdam22nBxMKamYUlOxnzqFYjAQMHs2xuSF+E2ciKLrvLUE2oKiKPh4afHx0tLTeHHrvy6XoNLmqFfwqKmiR+XVds6YrWSeqcBssVNR0/IWxnNFjy6sVXOQjxcBhsuviuhyOjmZ8QPHMj6msuYHfMJL0AQIDAY9Nms8xaWDOHbcB6dTS4DiQ5w9nFhnBJHhPfGND8UwOERNkNO23Qlk6Wm10ly9pLnba5PmWnnKX2peS39RbEIIJ4AQolqRlxWSdFEcZWWYV6/GlJKCdd9+UBT8Jown7IEHCLjiCrT+smZ2W9BoFAINegIvcQuj+Wy+wflFj6rrt2o2VdvJKa52LzNY7U0vKSiKmm/gLnpUL8+gsWREL4y+evw0Lk5nbOBU9udY2YtvhBklFAw2X2zWkZTk9+P4SS+E0BAk/BjmDKcvPYjq1wuf+FAMcSHoQtq22JHL6eL4vmIObKqTNDcqgqHTZNKcJ7UU4AcrirK/9mMF6F97W0HtNDesTUcnSZ2Qy2qlcsMGdV19yxZwOPCOiyPisccIXDAffY8enh6i1AydVkOInxchfl7AxZ2AWe3OczMDjZ4Q2OotKeSVW9yzDHW3MBqcFkZq9zIufDd9o0/hH2FB2xNERQDZuSMxl8VSZfIBFEJdAYxyRhCt74muTw9EPyM+A4yIQAN6Xz06XdtdNZ+fNBcQYmD8on4kTIrCJ0AmzXlaSwE+vl1GIUmdnHC5qP4xTV1XX/MdrspKdBERhCy+A2NyMoa4OE8PUWoHBr0Wg15LRODFd2HMP3WKzN2fYSr9Hu/gHAxB6jbbqopwTuaPpqQgisoKLxDQQxgZ4gzH4QolTehYiYOjThscOaX+qzcmTaN9ExrPOzi3zNDUFkY1aa6cAxvzOPaTmjQXkxDCtFvi6JMYKpPmOpCWms2caK+BSFJnVHP0KKaVKZhWrcJx+jQaX18C5szBeHUyvmPHomjlmqPUOCEEBccOc2T//ygr34BXaD5eRgeBAQqumhgs5UM5fjyYkgpQhEKkK4jh2h7E9R9EaGI0hkHBaP29mO8SVFib75twdqmhvNrOqdJqDtY+Xn0BWxjPngCEeOmIqRCEF9jRVzpBr8E73kh4UighkX5U+ejJK7fILYwdSLMBXlGUCqjXhUSpvX12iv7yNuZKUidkLyx0r6vXHMoArRa/yZOI+M1vCJg1E42PrOEvNc7pcHAqYw/ZBz+hwrIdnx7F6Iwu/Py1CNtAqoqGkJXjR4VFoBEK0a4Qhvr1Ii4+jpChUXj1CUQ576paq1HU/gS+Fz8lbnO4GvRMqHeSUG3HUmzFcKKakCILOhcU6wU/+TlI1zlw5FVB3ukGx9VqFAINar5B83kG9WcOgnxlVcTW1NIU/TqgJ2pJ2o+FECfbfkiS1PG4qqupWLsWU0oqVdu3g8uFITGRHr/7HYFXXYkuLMzTQ5Q6KJvVQvbezZzM+gyLcw9+kSY0EQI/hxeKfTjm/DiycrypdrjQCQ29RBjjw/syeFg8xsSe6ELb7oTRS6chPMCb8ID6u4acThfH9xaTvj+XvCMmNDqFgWN6kjg9mh591es6q93VeNGjOjsVTBaHO/fgZEmVe1ah2S2MOk2DE4L6RY/OJSqev5Oho2xh7ChamqJfpCiKEbgWeEtRFAPwCWqwL22PAUqSpwink6odO9V19bXrENXV6KOiCL33HozJyXj36+fpIUodVLWpnCO715B74iuc+kP49axEFw1+dj80tomU5sWSlavF5nLhJXTEaCOI6zOAuJEJ+A8OR+OhGuxVphoObsnn0JY8qkw2AkIMTLimP/ETIxskzalbGH2INF58VcS6Wxjr1zOoX/TIZLGTX24l43QFJoudyha2MPqd7cLoW3sicF7ewfkVEc8+3hpbGDuiFjfeCiFMwL8VRfkP8DPgFcAA/K2NxyZJ7U4IQU1Ghrpf/etVOIuK0QQGYlywAGPyQnxGjkTRyKsEqaGyM/kcTltJwZlv0Phn4xthxacPCFsoStU4CvN7cbRA4ERgEHr6+0QxuH8cg8YNwdDbc1vJhBDkZ6lJc8f31ibNDQlh+q29iGmDpLnW2MJYXmc3QoOiR3X6LBwrrnTfV+NofgtjoKHhCUBTRY/q3ufbgbswthjgFUWZCNwMTAG2AtcIIba09cAkqT3ZT5/GtGoV5pQUarKOgl6P/7SpGBcm4z99GhpvWfhIqk8IwZmjh8na9yUlpevwCs3DEGzDvx8oNdGIsiTyTvUgp8yBSxH4Cj1DgnoTn5DAgAkJ6C8y07612awODu88Q/rmPErz1Upzw2aq7VmN4R2z0lz9LYwXx2p3Nl70qNpWf2tj7WN5ZRb3fc5m1hT0WqXJnIJAn4a5B33D/Ajzb5+/Jy2Vqs0ByoGPgfVAvfkRIcSeNhzbRWvNUrVS1+esqKDiu+8wpaRSvWsXCIHPiBEYr04mYO5cdMHBnh6i1ME4HXZOHtxLdvrnmKq24tuzqLbmu4LONgCHaSg5J4PJq7YhFAhUfBkYEUvCiERiRw9C04Z70i9USX4l6ZvyOLzzDPYaJ+ExAQydHs3A0T3QyUpzDQghqLI56xc9Or9vQoPcA/W22dpwSeEPCxK4a3Jsq43vckrV5qBmzc+t/VeXAGZe9ugkqR0Ju53KrVsxpaRQuX4DoqYGrz59CHvwFxiTk/HqfbGThlJXV1NdzbG928k58jkWRxp+0eXoIl0YnVq8aoZgzY3n2MkAzjhqAAjWeTOu3xCGjksiKi6mQ0zfupPmNuWSd6QcrU7DwNERJNZWmpOapigK/t46/L119LrIc35n7RbGuksIsWHtV72ypSS76e00DklqM0IIrPv3Y0pJxbx6Nc6yMrTBwQRdfz3G5IUYhg3rEH+EpY6jsqyUrLR15OasxK47SEB0BV4xAi+HAS/LWCpP9edovg8lqEE9wuDH1LgRJE5KIiKqp4dHf05VeQ0Ht+RxcGs+1SYbAaG1SXOTIvHxl5Xm2trlbGFsDS3tg39cCPFi7cc3CCE+rfPYn4QQv2vrAUrSpbKdOoUpJQVzSiq2EydQvLzwnzUTY3Iy/pMno+hli1/pnNL8XI6kfcvp/FUoftn4R1bj2x8UeyDeFdMozYvhaIk3JsUKQFSgkVnx8SSOSyI4pOMs5wghyD9SrrZn3VuMEIKYhFCG3hZNzBBZaa47aWkNfo8QYuT5Hzd2uyOQa/CSs7wc87ffYkpJxbJHTRHxHTtWXVefMwdtQICHRyh1FMLlIj/rMEf3rqK45Hu8QvPwDVeDt7amB/ryJApzo8iu1FKp1KCg0DssiiHDE0lISiSgg/0s2SwODv9whgOb8ig7XYW3n474iVEkTo3qsElz0uW7nDV4pYmPG7stSR7hstmo3LhRXVfftBnsdrwG9Cf8kUcwLpiPPirK00OUOgiH3c7J9L1kH/iK8oot+EYWYQi3ERQO+uq+KKeGUpDXk+waFxbFhlZx0Te6FzNHDmNwwmB8fTteoCzJq02a+0FNmovoE8DMO+IZODpCJs11cy0FeNHEx43dlqR2I1wuLHv2qOvq336Ly2xGGx5GyK23YkxeiHd8vFxXlwCoqa4ie89Ojmd+RbV9F/69yvHq5SDEpcFQNRhnVjx5BRHkOGuoUezoNA4GDOjPkKREBg4ciMHg2e1sjXE6XRz7qYj0TXnkZ9VJmpvey11pTpJaCvDDFUUxo16t+9R+TO3tjvdTL3V5NceOY0pZiTl1Ffa8PBQfHwKumI0x+Wr8xo9D0bVY2kHqBipKizn642ZOHluJXZNOQIwZQz8XBqceX/MwanIGcqo0nJOiEjtOvPU2BsXHkZA4hP79++Pl1TET0CrLaji4NY9DW/KpNtsIDDMw4dr+JEyMwuAvc0qk+lrKopfzO5LHOUpKMH+tNnexpqeDRoPfhAmE//JhAmbNQuPXfttOpI5JCEFp3imy0taRf2oV+B0loFcV/nECxeGLX8kEqk7346QpiFOKGScufAw2EuOHkZCQQGxsLLoOenIohCDvSDnpG3M5tk9NmuuTGEri1Gj6DAlFkUlzUhM65k+01O25LBYq1q/HlJJC1dZt4HTinRBPxBNPEDj/KvQREZ4eouRhLpeT00cOk/XTGgoL1+AVkod/ZDXGIaCtCcbn9EwqivpyvMKPfKUcF4KAACejEkYTHx9PTEwM2g7cztdmcZC58wzpm3IpO1ONt5+OpFm9GTI1GmO47FgotUwGeKnDEE4n1bt2YUpJpeK773BVVaGLjCT0zjvVdfWBAz09RMnDHDYbOft/4tiB1ZSZNuEbWYRvDyuhPUBfHYUhZxplxX04avPijKscgY3gYD/GJ0wgPj6e6OhoNB28l0BJXiUHapPmHDVOIvoGMmtxPANGyaQ56eLIAC95nPXwEXVdfdXXOAoK0Pj7EzBvLsbkq/EdM1o2d+nmrJWVZO/5geOHUqmq+YGAGBPefWoIAwym/uiPDKWkpDdHUCiwlwFVhIf7MiV+CgkJCfTo0aPDJ1w6HS6O7S3iwMZcTh81odWrSXNDp/cioo9MmpMujQzwkkfYCwowr/oaU0oKNYcPg06H/5QpGH/7BP4zZqDpgJnLUvsxFxeS9eM2Th5NxabsJ6hvFT6DbPi4NPiWxaPJSKTIHE0GdopryoFyIiMjmRk/k4SEBMLCwjz9KVyQyjKr2p5167mkuYnXDiB+YqRMmpMumwzwUrtxVlZRsfZ7zCkpVO3YCUJgGD6MHk89ReBVV6ILCfH0ECUPEUJQfOoEWT9uIu/E1yh+RzH2qSJwiAPF6YVf8TBEdjwFtl6kO82UWc1AEb1792ZuwjgGDx5McCdpDiSEIO9wGQc25XG8TtLc0Gm9iEkIkUlzUquRAV5qU8LhoGr7dnVdfe1ahNWKvndvwu6/n8CFC/CObb2uSlLn4nI6yT+cQdaedRScXoNPWAF+0RWEJDnR2PzxLxqPs2Qwp0UkP9UUU2GtRFHyiI2NZWL8FAYPHtzhqsk1p8bi4PDO06RvyqPsTDUGPz1Js3uTODWawDCZNCe1PhngpVYnhMB68JC6rv71apwlJWiMRoyLrsaYfDU+I5I6/Jqo1DbsNVZO7N/L0Z++p7R8A8ZoE96RJsKjBDpLKP55M7BVJZBPMGmVZ6iyVqPVnqJ///7MjI8nLi6uQ1aTa05JXiUHNuZyeFcBjhonPWIDmbWkNmlOL5PmpLYjA7zUaux5eZhSV2FKTcWWnY2i1+M/YwbG5IX4T52K0kGLh0hty1JhJnv3Lo6nf0OVNY3gPpXoB5TTA/CqjMbv+GRqnEPIFb7sLMvFUlOGXl/JwIEDiY+P77DV5JrjdKiV5g5sqpM0N6YHQ6dFy6Q5qd3IAC9dFqfZjPnbbzGnpFJd2+jHZ/Qoej73LIFz56I1Gj08QskTTIVnyPpxBycyV4PuCIF9zPgmmPEFDOUD8D02B6t2CCeccKzgJDZ7Pt7e3sTFxREfH9+hq8k1p6LUyqGt+Rzcmo/FbCMw3IeJ19UmzfnJpDmpfckAL100YbNRuWULppRUKjdsQNhseMXGEv6rXxK4YAFevXp5eohSOxNCUJhzjKwft5J/fA2GwHz8YkoIGlENLi2+pfH4nRpDpS6e4zXVHD9zAofjKL6+viQOTSQ+Pr5DV5NrjhCC3MNlpG/M4/h+NWmu79AwEqdFExMvk+Ykz+l8v02SRwghsOzdiyklhYrV3+A0mdCGhBB0000Yk5MxJA6R6+rdjMvpJDfjIFm7N1GSt4HAHmXoowsIHVOD4vDGr2QYfhUTMOn6k1VVQs6pE7hcBwgICGDkyJEkJCQQExPT4QvPNKWm2l5baS6P8oJqDP56RlwRw5ApUTJpTuoQZICXmmU7cQJTSiqm1FTsJ0+iGAwEzJqFMXkhfhMnoujltGN3Yrdaydm3h6O712Mx7SagVzmaqHxCezvQ2vzxLx+Pr2EixZpeHLKc5uSpkwiRRnBwMOPHjychIYGoqKhOG9QBinMrOLApjyM/nMFhc9EjNpDZS+LpL5PmpA5GBnipAUdZGeZvvsG8MgXLvn2gKPiOH0fY/fcTcMVstP7+nh6i1I6qTeVk79nF8b0bUByH8YspwSsuDy9FzXw3muZi8J9EgQjhp4oc8jJzgVzCw8OZOnUq8fHxnaKaXHOcDhfZPxWSvjGP09lq0tygMT0YOr0X4TGdZ6ue1L3IAC8B4KqpoXLDBnVdffNmcDjwHjSIiMceJXDBAvQ9enh6iFI7KjuTz9Efd3D64Bb0Pqfw6V2A3/DTAOgrexFUeQNeQRPJ8/Jlx8kjFKRnABAZGcmsWbOIj4/vNNXkmlNRauXgljwObc3HUmHHGO7DpOsHMHiCTJqTOj4Z4Lsx4XJRnZamrqt/uwZXZSW6iAhC7rgD49XJGOLiPD1EqZ0IISg4dpSsH7ZjOvYjPiFn0PY+hd/YYgD0lQPpab8HTdBYTjpdbMzMoOSn3QDExMQwd+5c4uPjCQoK8uBn0TqEEORmlnFgYy45+4sRQN+hYQydFk1vmTQndSIywHdDNUePquvqq1Jx5J9G4+tLwJw5GJMX4jtuHEoHbqEptR6nw86pQ+kc3/kD1sJ9+EYWISKz8ZloBpcWgyWRMN1iXMaRHLOVs+tQBibTZhRFITY2lvHjx3e6anLNqam2k7njDOmb6yTNzekjk+akTksG+G7CUVSE6euvMaekYj10CLRa/CZNJOKR3xAwcwaaTlYdTLo0Nks1x3/aTe7O3bhqDuMTXQB9juA1wILT6U2gYxRhgXOw+SVyJDuPrbsyqaz8Fq1WS//+/Zk+fXqnrCbXnOLcCg5szOPILjVprme/QGYvTWDAyAi0+s6bDChJMsB3Ya7qairWrcOUkkrVtm3gcmFITKTH754k8Kqr0HWBNVKpZVXlZWTv/IHiPfvR6I+j75WPMjQTjdaBwx5AsHYa4ZFzMdOXw4ePsW7dYSyWbPR6faeuJtccp11NmjuwMY8zx0zo9BoGje1B4jSZNCd1HTLAdzHC6aRq507MKSmYv1+LqK5GHxVF6L33YFy4EO/+/T09RKkdlObncnzzj1QcOYzeeBKijyPGZeFUBIo9jB4+1xAaM49icwiZmUdYvSsdm21PvWpyAwYMQN/FtkFWlFo5uDmPQ9tk0pzU9ckA3wUIIajJzMSUkop51SocRUVoAgIwzp+PMXkhPqNGoXTifcdSy4TLxekjR8jdvJea/Gy8euRjj8zAOfkETsDbEUOvoLsI6XUFead17M/IIHvjVhwOh1pNLjGRhIQE+vbt2ymryTVHuGqT5japSXMAfYepleZ6D5ZJc1LX1bV+k7sZ+5kzmFJTMaekUpOVBXo9/lOnYkxOxn/6NDTe3p4eotSGHHY7p3bvo3BbBq7qE+ijcrFG7cM+oBCbUPBlMP2iHiUgbBo5OdXsOpTB8a9X43K5ukw1ueZYq+wc3nmGA5tyMRVa8AnQM3JuHxKmRBEYKpPmpK5PBvhOxllZScWa7zClpFC9axcIgU9SEj2feZqAefPQBQd7eohSG7JWVXJy427K9+ag0ZyCqONYEn7C6W0CoSVQP4rYPg/i4zeeo0eL2Lgjg5MnP0UIQXBwMBMmTCA+Pr7TV5NrTtHJCtI35XJkVwEOu4ue/YyMmR8rk+akbkcG+E5A2O1UbtuGOSWFinXrETU16PvEEPbgLzAuXIhXTIynhyi1IfOZQnLX7aU6Kx+9fx41kYeoGr0Pl96C4vImJGAKPfrMR6sZzpEjp/j2uwzy8t4H6FLV5JrjtLs4uqeQ9E25nDlmlklzkoQM8B2WEALrgQPquvrq1ThLS9EGBRF03XVqEZphw7rsH+vuTghB8aFjFGzOwJFfjDb8JFU99lI96SBC60ArAogIv5KIyHk4HAM5fPgYO77MoKBgDwBRUVFdqppcc8wlFg5uySfjbNJchA+TbxjI4Ak98faVSXNS9yYDfAdjy83FlJKCOSUVW04OipcX/jNnquvqkyehdMIe2VLLnHY7p7cdojztBFSU4upxlMqIPVgGHQFFoFciiI66jfCIOVRXRZKZeYT1mw5RUrIF6HrV5JojXIJTmaUc2JjHiQPnkuaGTutFr8HBMmlOkmrJAN8BOMvLMX+7BlNKCpY96lWY79ixhN59FwFz56LtIpXCpPpsZVXkbzhA5cEC9KIcS88DVA5IoybwFAA++n7ERj9IaOhsysr8yczMZPXq7ZhMpi5bTa451io7mTtOk745r17S3JCp0QSEdJ09+pLUWmSA9xCXzUblpk2YU1Ko3LgJYbfj1b8/4b/+NcaFC9BHRXl6iFIrE0JQlV3Emc2HsB+rQOtXSGWPPVQkpeHwKwahEOA/nN6RtxEaMouCAheHDmWQkfENVVVVXbqaXHOKTlZwYFMuWbVJc5H9jYxdEEv/ETJpTpKaIwN8OxJCYNmzR11X//ZbXCYT2rAwgm+5hcDkhRgSEuS6ehfjsjkp++kEpTuPoRTYcAYfpyJiDxWT0nB5VwJagoMm0qPHXIKCppGbW8Ge3Yc4fPgTrFZrvWpygwYNwrubbH102J1k7yniwMZcCo6b0XlpGDS+J4lTownv3fVnKySpNcgA3w5qjh9X19VTV2HPzUXx8SFg9myMycn4TRiP0sUKi3R39lILJTuOUrH/DLpKB5awQ5gjfqRq8H7Q16DBh7DwGYRHzCHAfyI5OWfYvv0QWVkrsNls7mpyCQkJ9O/fv8tVk2uOuVhNmju0LR9rpZ2gHr4yaU6SLlGbRRZFUd4FFgCFQojE2vs+Ac72IA0CyoUQSY28dh7wf4AWeFsI8UJbjbOtOEpKMK/+BlNqKtb9+0GjwW/CBMIfepCA2bPR+Pl5eohSKxFOgTWnnJIdWdRkmdGKGirDf6K87w/UhB0GrROdNoioiKsJD5+Dj88IsrJy2LA+g+zs/9ctqsk1R7gEJzNKSd+UR86BYhQgdng4idOi1aQ5OaslSZekLf+KrABeA947e4cQ4qazHyuK8jJgOv9FiqJogdeBK4Bc4EdFUVKEEIfacKytwmW1UrFuHeaUVCq3bgWnE+/4eCKeeILAq65C3yPC00OUWomzyk7VoULKduUg8my4vMuoCE+jPHEnjpCToAi8vaLo3WMx4eFz0GkHcfhwFmlpGRw/vgWXy0VgYCCjRo0iPj6+y1aTa447aW5THqYiCz6BXoy+si8Jk6Nk0pwktYI2C/BCiM2KovRt7DFFPSW/EZjZyMNjgaNCiGO1z/0YuBrokAFeuFxU79qFKSWVijVrcFVVoevZk9A7lxK4cCGGQYM8PUSpFQghcBRUU7E3H/O+fDRlYPPPozx8B+YxaQhjIQC+voPoHfEQ4eFX4HRGkZmZybat6Zw8ubpbVZNrTuEJM+mb8jjyYwFOu4vIAUbGJtcmzem639dDktqKp+YBpwAFQoisRh6LBk7VuZ0LjGvqQIqi3AvcC+pe4PZiPXIEc0oKplVf4zhzBo2fHwFz52JMTsZ37BjZ3KULEHYn1mwT5p9ysWaWoqlRsAQdpTh0C5aEfeBnBhQCA0cQEXEX4WFXYLH4k5GRwbp128jLywMgIiKiW1STa47D7uTo7kLSN+W5k+bixvdk6LRownrJpDlJagueCvA3Ax+1xoGEEG8CbwKMHj1atMYxm2IvLMS86mtMKSnUZGaCTof/5MkYH38M/5kz0XShftndlaPciiWjFPNPuThPWQAnFcH7KY7Zgj3qMIq3BQU9oSETCQ+fQ1jYLMrLXWRkZLD669UUFBQA3auaXHPUpLk8Dm07fS5p7saBDJ4QibdP98kzkCRPaPffMEVRdMC1wKgmnpIH9K5zu1ftfR7hqqrC/P33mFNSqdq5E1wuDMOG0eOppwi86kp0ISGeGprUCoRLYDtpxnKohIr9p1HKXbi0FoqDd1A2eAciMgdFZ0ej8aFH2EzCw68gNGQahYUVZGRkkJHxMSUlJUD3qibXHOESnDxUSvqmXHLSS9SiPMPV9qy94mTSnCS1F0+cQs8GMoUQuU08/iMwUFGUWNTA/jPglvYaHKjr6lXbtmFamULFunUIiwV9r16E3fdzAhcuxDs2tj2HI7UyV7Ud65Eyqg8WYTlcimIDm76MM0EbqEzcg6ZnPorGhU4XTET4NYSHzyEoaDx5eYXs/SmDjIx3um01ueZYq+xkbDtN+uZczMVWd9LckClR+AfL2S1Jam9tuU3uI2A6EKYoSi7wjBDiHdSA/dF5z41C3Q53lRDCoSjKg8Aa1G1y7wohDrbVOJty+g9P47JYMCYnY7w6GZ8RI+SVRyclhMBRWI0lo5Tqg0XYcytRhEKl10nOhKyjJvIQ2rAiFAX8vHsREbGUsPArCPAfzokTp9ix4xCZma9162pyzSk8YebApjyy6iTNjb+6P/1GhMukOUnyIEWINl22blejR48WaWlprXKsmqNH0cfEoJHNXTolYXdhPVaONbOU6vQiRIUDgaDIey/FoVsRvY6iC1J3afr5xRERPpfw8Dl4e/fn+PHjHDp0iMOHD9erJpeQkMDAgQO7TTW55pxNmjuwMY/CHDM6by1x49RKc2G9/D09PEnqNhRF2S2EGN3YYzLLpQneAwZ4egjSRXKYarBmlqr/jpSCExzCRr7PVsp7/4CuTy5a3yq0KBiNo4gIn0N4+BVoND3Iysri22/Tycr6sttXk2uOudhC+uY8MradxlplJ7inL1NuGkTc+J4yaU6SOhj5Gyl1WsIlsJ2qwJpZiiWjBMeZagCqRCl5vhuo6rkXQ59CNF41GBQ9ISGTCA+7grDw2bicfhw+fJht27aRnZ2Nw+HAz8+PoUOHEh8f3+2qyTVHuAQnDpaQvjmPE7VJc/1qk+aiZdKcJHVY8i+Y1Km4LA6sR8rUoH64FFFdO/XuOkZBwCbs0Zn49i5D0doJ0PgRGjabiPA5hIZOw2pVyMzMZP36bzh+/LisJtcCa6WdQ9vzObg5TybNSVInJAO81KEJIXAUWWqv0kux5ZhAgEOxk2vfS0nIdpSYHHx7mvDSuPDThxIefi3h4XMICZ5ARYVV3aO++jNOnjzZoJpcdHS0vAI9T0GOmfRNuWSlFeK0u4gaGMT4Rf3plyST5iSpM5EBXupwhN1FzXGTGtQzS3GWWgGoxMRJ+04qItLwji3EJ9SEvwIGQy8iaoO60TiC0tLy2j3q78lqchfIYXOSlVZI+qZcCk9UoPPWEj8hksRp0YRGy6Q5SeqMZICXOgSnuQZrZhmWzFJqjpYhbC5ciotiZz65rq1Ye+4ncGAF+oAKggB//3jCw5cQHj4HP99BFBUVsXdvBocO/YvCQrUuvKwm1zJTUW3S3PZ8aqoc7qS5weN74iWT5iSpU5O/wZJHCJfAllvhznq351cBYNfZyK06zBn9dlzRWQQPtOBnqMIPhSDjaMLDryA8/AoMht7k5+fzw84MDh36jtLSUkBWk7sQLpfg5MES0jflceJgbdJcUhiJ03oRPShIzm5IUhchA7zUblxWB9asMqwZpViPlOGqtCMQVOkrOFG1j2K/nXj1Ok1wbDUheivK2cz38DmEh81Cpwvh1KlTbNx4kIyMzzCbze5qchMnTiQuLq7bV5NrjqXSRsa20xzcoibN+Rq9GHNVXxImR+MfLPf2S1JXIwO81KbsRdXqVXpGKTU5ZnAJXDpBKWc4Wv4DVaF7CexnJqB3BT01drRaP8JCZxMePofQ0Kkoii85OTmsWbODzMzMetXkZs6cyaBBg2Q1uRYUHDdzYFMuR9MKcTrqJM2NCEerlUlzktRVyQAvtSrhOJcgZ80sxVGiJsjZfeycFsfJLt2CM+oooYNsBPcoJ1hxoj8v893p1JCdnc327WvrVZMbNGgQ8fHxsprcBVCT5gpI35RH4YkK9N5a4idFkjhVJs1JUnchA7x02ZwVtnMV5LLKETYnaKHap4oT9oOcqNqGV8Bpwsc4iDKWgSIwGHoTEb7InflusznIyspiw/oUsrKysNlsGAwG4uLiiI+Pl9XkLpCpqJr0zfnnkuYi/Zj6s0HEjZNJc5LU3cjfeOmiCZfAnl+JJaMU6+FS7LmV6v0+UOZd/P/bu9fYuO77zOPf/3B4My8SL0OJd1ISJZIiZcmWHFsXU5ZsNU3TJnbSuI7dOGlQo9ddFAj6Zl+0WGCBLhZZbNF2gWTb9LKLtE2xmxZN28RxGpGWY0l2ZFmkOCRFUiTFGVK83zkXzvz3xRySkkw5sszhkMPnAwgaHh7O+VOA5sE588zvcGP8MqNcITdvmoLTYaqzpgDIzq7H4/kSHs9zZGcdIBAI0NnZidf7Hbq7u4lEIpom9xCiUctA2zitzT4G2sdxGUP1YQ+Np0spqVFpTmS70qunPJBocIngjamVUI/OhQGI5FluZ/Xj7X+Lxewu8vYukv/4IjvTZmGl+R6b+Z6ZWc7c3BwdHR14vf/nrmlyR48e1TS5j2i5NNfW4mN23CnN/UI1B0+WkLVTb2GIbHcKeLmvpbFFFp1L78Gb0xCxkO4ikBvgVrgDb18zqZHbFOwPUfqJWYx70Wm+n6TIc47CwjOkpRUyPT3N++978XrfoL+/H4D8/HxNk3sI1lpn0pxvpTRXun8nx1/YR/XhQpXmRGSFAl5W2KUowb6Z1YLc2CIAJs/NrGeG7uEr9PS+TU75DJ66CAdOTYIr5DTfzzrN9ybc7mzGx8e5fNlLe3s7fr8fiE2Ta2pq0jS5hxAORbjxTqw0NzoQK83VnyjmYFMpBSUqzYnIByngt7nIbIhA5ySBzthn020wAikGdqUwuvs23ptvMTrsZUfVLEWPR2l8bhxMhLS0QgoLX6DIc468vCcxJo2RkREuXHiX9vZ2TZNbJ1MjC7S1+Oj4yRDBhSXyS5zS3JO7ScvQf18RuT+9Qmwz1lrC/nkC3nEWOycJD86CBVdOKuESi3++h1bvjwmNDJG3Zx7PmQi7ssfAWDIzK/B4vhJrvuceBlz4/X5+9KMWvF7vXdPkPvnJT1JbW6tpcg8hGrX0t43Tdn6QgfYJXC7DniMeGppUmhORB6eA3waiwQjB7smVWe/R2RAYcBc/QmDfEr2j7+NtbyHVN0N+TYA9zwdxZcTCOif7IIWelynynCMraz/WWm7dusXbP3kdr9fLzMwMLpeLqqoqjh8/Tm1tLdnZumT8MBZnQ7S/5ed6i5/ZiQBZO9J44herqT+h0pyIfHQK+CS1NL64cje2YG+sIGfSU0ipzGSqeILOW5e4efGnPFI0j6c2xMGX5zGpM4CLnTud5nvhc2RmlhGJRLh58yZe7/fumia3b98+TZP7mKy1q5PmfjpCdMlSemAnJz6/j6pHVZoTkYengE8SNuIU5DpjY2GXRmMFObcnE1dDFkOLvbR3tjD6xg1ySucparA8emISXAu4TBr5+SfxrDTfCwiHw/T09OD1flfT5OJguTTXen6QsVtzpGakcPBkKQ1Pl5JfkpXo5YlIElDAb2GRuXsKcoFYQS69OpdwpaV/og3vtTeZuzpEbsU8u49AybkxMEFSUrIpLHSa7/lP43ZnEwwG6eq6gdf775omFydTt53S3NurpbmmLx5g/xO7VJoTkXWlV5QtxFpLeGh+5WNsoVurBbn0ujym0ybo8b3LjbcvshSZJG/vAhVnLe7c207z3YOnMDbzPS/vSVyuNBYXF2lr68Tr9WqaXJxEo5b+1jHamn2rpbnHPDQ2lVG8b4dKcyISF3rl3uSioQjB7qmVUI/MhABILcsm8+QuRsIDdHadp/+f38OVOUfB/iD7n1/C9chtwJKZWYnH82t4PM+xI/cIxriYm5vjypVreL1eTZOLo+XSXFuLj7mJIFk702OluZMlZO3Q2xsiEl8K+E1oaSJAoHOCRe8Ewd4pWIoV5DJqdhItSeHWlJeu97+H/0I7GfmLeOojNLyyAGljQKz57vH8Ch6n+W6MYXp6mkuXLtPe3s7AwACwOk2uvr6ekpISnUmug5XS3PlBuq8sl+byOPn5GpXmRGRDKeA3ARuxhPpnWFwuyI0sAOAuzCTrE8UEdgbo9b1H908vMva9m2TtXqD4kOHRk9OQMkWs+X4Mj+c3VprvAOPj41y9+taa0+Tq6+spKipSqK+TcCjCjcu3aW2OlebSMlI4eMopzRWrNCciG08BnyCR+TDBrtjn0gNdk9jFJXAZ0vfsIPNxD1PuMTo7L9Pzb5eYm7pNTtkiJUdclH9yFGvmcbnSyM+7u/lurWVkZIRLl85/YJrcs88+S21trabJrbOp2wu0NfvouBgrzRWUqjQnIpuDXoE2iLWW8PDCakFuYCZWkMtOJbO+APfebIbne7h29Qf0/vU7hMMz5FUHqDjrIi1vCMtazfcsrLX4/X7a23+oaXIbJBq19F0bo615kFveSVwuw97HPDSoNCcim4gCPo6ioQjB3mkC3nECHZNEpoMApJZmk3OmAsrc9Pva6PnpD+j/p6uY1AUKDyxx4LNRXNk+wGm+ez6Hp/C5leZ7NBplYGAAr7flrmly1dXVmiYXRwszzqS5N2Oluey8dD7xS9XUnVBpTkQ2HwX8OluaCjhn6ZMEuqdgKYpJc5Fek0fusxUE8oL0tr9Ld8u38d/oIC0nyK4GS+PLQUj3c2fzvchzjtzcwxjjIhKJ0Nt7E6/Xq2lyG8hay3BvrDTXc2WEaMRSVpvHqV/eT9WhAlwqzYnIJqWA/5hs1BIaWL3Fang4VpBLyc8g+4ndpB/IY5IRvFcu0fN3lxgf7CezMEDJ4VSOnJrGumPvk+fkHMRT+AWn+V6DMYZwOExnZxder1fT5DZYOBih6/IwbS2+ldJcw9OlNDSVkrdbpTkR2fwU8A8huhAm4BTkgl2TRBecglxVLjs+VU1aTS5Dt29w/d0f0POvF5mbGie7JEDpY6lUfmqMqJkEXOzYeQyP5zU8hefIzCwFIBgMcv36dbxeL11dXYTDYU2T20BTtxdobR6k4+1hQotLFJRmc/rlA9QcU2lORLYWvWI9AGstS7cXYo33jglC/U5BLstNRm0+GbX5mLIM+jveo/ud73PzW+8SDs2xsypE5Vk3aQVDWOZizff8U3gKl5vv+QAsLi5y9erVD0yTO3ToEHV1dVRXV5OSkpLgf4XkFY1E6Wsdp/X8IIMdk7hSDHsfK6KxqZTde1WaE5GtSQF/HzYcJdA7RcDrTJCbcgpyxVnkPFNORm0+oawwvVcu0/0v32ag9X1MSpCCA1Fqn4eUnFtYgrjdORQWnKXQ89xK8x1gbm6Oa9fepb29nb6+vrumydXX11NeXq5pcnG2MBOi/YJTmptcLs3toe5EsUpzIrLlKeDXYKOWof96mehcGJPqIn3fTnLOlJN5IJ+puRE63rlIzzcuMtTdifuRMMWNKRx6JQQZA8Sa70VO8/0ceXmfwOVKA2BqaoqOjouaJpdA1lqGe6ZpbfbdXZr7gkpzIpJcFPBrMC5D7rlK3DvSSavKZbj/Bu3vfJ/ub19kcshHWm6IssfTeKxpjqj7FgCZmVUUeb6Kx3OO3NxHMSYWFOPj47S3t+P1eu+aJnf69Gnq6uo0TW6DLJfmWpt9jA/OkZbppqEpNmlOpTkRSUYK+DXYaJTRVB/dzRfp/vpFFqYnySoKU3Ysgz2lk0TMMABZOQ14Cj9/V/N9eZrccqjfO02urq6OgoKCRP5628rk8Hxs0tzbQ4QCEQrKYqW5/U/sJjVdvQYRSV4K+LUYw+t//iekZN2m+mwaGZ4RIkwALnJ2HqPI8+t4POfIyCgBYpd9fT4fXq/3rmlylZWVmiaXANFIlL5r47Q231OaO13G7j25umIiItuCAn5NUepe7CK8NILLlU5e/ik8nucoLFhtvkejUfr6+lZCXdPkEi9WmvNx/U3/amnuM3uoP1HCI7lpiV6eiMiGUsCvwZgUqqpfIyO9mPz8UyvN90gkQnd3932nyR04cIDMzMwEr357sdYy1DNN2/lBet4bJRqxlNflcerF/VQ1qjQnItuXAv4+Ksq/AkA4HKajo+OuaXJpaWnU1NRomlwChQJLdF2+TVuzj3FfrDTX2FRGQ1MpO3dpZK+IiAJ+DdFodKUkd+80ufr6evbs2aNpcgkyOTxPa7OPTqc0V1iezTOv1FJzbJdKcyIid1DAr8EYwxtvvEE4HObQoUPU19dTVVWlaXIJEo1EuXltjNbzPnydk7jchn1OaW5XtUpzIiJrUcCvwRjDq6++yo4dOzRNLoHmp4POpDk/81NBsvPTefKze6g7rtKciMjPooC/j7y8vEQvYVuy1jLUPU1r8yC9V0aJRi3l9fk0vbSfysZCXC6drYuIPAgFvGwKq6W5QcZ986Q/4qbxmTIanlZpTkTkYSjgJaEmhpxJcxeHCC+X5n7VKc2lqfMgIvKwFPCy4SKRKH3vj9HaPIivcypWmnu8iMYmleZERNaLAl42zEpprsXH/HSInPwMleZEROJEAS9xFSvNTdF63kfve7HSXEV9Pk0vl1HZUKDSnIhInCjgJS5CgSW6LsVuzzrhd0pzZ5zSXJFKcyIi8aaAl3U14Z+nrXmQjkvDhAMRPBU5Ks2JiCSAAl4+tkgkys2rY7Q1D+LripXmah7fRUNTqUpzIiIJooCXhzY/FeT6BT/tb66W5p56fi91x4vJzFFpTkQkkRTw8pFYa/HfiJXmbl51SnMH8zn9chkVKs2JiGwacQt4Y8y3gE8DI9bahju2/y7w20AE+Bdr7e+v8bN9wKyzz5K19mi81ikPJhRYovPiMG0tq6W5Q2fKOKjSnIjIphTPM/i/Av4U+JvlDcaYZ4DPAI9aa4PGmKIP+flnrLVjcVyfPIBx/xxtzT46Lw4TDsZKc2e+VMu+oyrNiYhsZnELeGttizGm6p7Nvwn8kbU26OwzEq/jy8NbLs21nh/Ef2OKFLeLfUdjk+aKqnJUmhMR2QI2+j34/cApY8x/AQLA16y176yxnwVeN8ZY4BvW2m/e7wmNMa8BrwFUVFTEYcnbx9xkkPYLPq5f8LMwHSKnwCnNnSgmM1ulORGRrWSjA94N5ANPAseA7xhj9lhr7T37nbTW+pxL+D80xnRYa1vWekIn/L8JcPTo0XufR34Gay3+rqnY7VmvjmGtpaK+gMZXSqk4qNKciMhWtdEBPwj8PyfQLxtjokAhMHrnTtZan/P3iDHmu8ATwJoBLw8ntLhEpzNpbnJonvQsN4+eLafh6RJ2eFSaExHZ6jY64P8ReAb4sTFmP5AG3FWkM8ZkAS5r7azz+Bzwnzd4nUlr3OeU5i7FSnNFlTmc+VIdNUeLcKs0JyKSNOL5Mbm/BU4DhcaYQeAPgG8B3zLGtAEh4FVrrTXGlAB/bq39FLAL+K5T5HID37bWfj9e69wOIktReq+O0tbsWynN1RwtouF0GbuqchO9PBERiYN4tuhfus+3XlljXz/wKedxL/BovNa1ncxNBrl+wUf7m34WZkLkFmbw1AvOpDmV5kREkpom2SUZay2+zknamn30vh8rzVUeLKChSaU5EZHtRAGfJEKLS3RcHKateZDJ4QXSs9wcPlvOwadL2eHJTPTyRERkgyngt7hx3xytTmluySnNnX21jn2PqzQnIrKdKeC3oOXSXOv5QYa6p0lJdUpzTSrNiYhIjAJ+C5mbDHD9TT/tF1ZLc8df2Efd8WIyslMTvTwREdlEFPCbnLWWQac0d3O5NNdQQGNTGRX1+RiV5kREZA0K+E0quLhE58Uh2pp9TA4vkJGVyuFny2l4upTcQpXmRETkwyngN5mxwTnamgfpvHw7VpqryuXsl53SXKpKcyIi8mAU8JtAZClKz3sjtDX7Vktzx3bR2FRKUaVKcyIi8tEp4BNodiJA+wU/1y/4WZwJkevJ5Pjn9lH3lEpzIiLy8SjgN5i1lsGO5dLcKBaoaiig4XQZFXUqzYmIyPpQwG+Q4EKYjreHaWvxMXU7Vpo7cq6Cg6dUmhMRkfWngI+zscFZWpt9dF0aZikUZVd1Ls9+uY69Ks2JiEgcKeDjYKU0d97HUE+sNLf/2C4aVJoTEZENooBfR7MTAa6/6aP9gp/F2TA7PJmc+Pw+ap8qJiNLpTkREdk4CviPyUZjpbnW5kH6ro3FSnONhTQ2lVKu0pyIiCSIAv4hfaA0l53KkXOVHDxVotKciIgknAL+Ixq9NUtbs4+uy3eU5r5Sz97HPCrNiYjIpqGAfwCRcJTuK7FJc8O907hTXdQ8sYvGpjI8FTmJXp6IiMgHKOA/xOxEgLYWH963VJoTEZGtRQG/hkgkyg++2UbftTEAKhsLaTxdSnmtSnMiIrI1KODXkJLiwp2WwpGfc0pzBSrNiYjI1qKAv49zXz2Y6CWIiIg8NFeiFyAiIiLrTwEvIiKShBTwIiIiSUgBLyIikoQU8CIiIklIAS8iIpKEFPAiIiJJSAEvIiKShBTwIiIiSUgBLyIikoQU8CIiIklIAS8iIpKEFPAiIiJJyFhrE72GdWOMGQX61/EpC4GxdXw+ERHZ3tY7VyqttZ61vpFUAb/ejDHvWmuPJnodIiKSHDYyV3SJXkREJAkp4EVERJKQAv7DfTPRCxARkaSyYbmi9+BFRESSkM7gRUREkpAC3mGMiRhjrhpj2owx/2CMecTZ7jbGjBpj/ijRaxQRka3DGGONMV+/4+uvGWP+0Hn8h8aYr8Xz+Ar4VYvW2sPW2gYgBPyGs/05oAv4ZWOMSdjqRERkqwkCLxhjChNxcAX82t4E9jmPXwL+GBgAnkrYikREZKtZIlaq+71EHFwBfw9jjBv4eaDVGJMBPAv8M/C3xMJeRETkQf0Z8LIxZsdGH1gBvyrTGHMVeJfY2fpfAJ8GfmytXQT+L/BZY0xK4pYoIiJbibV2Bvgb4D9s9LHdG33ATWzRWnv4zg3GmJeAk8aYPmdTAXAG+OHGLk1ERLaw/wFcAf5yIw+qM/j7MMbkAqeACmttlbW2CvhtdJleREQ+AmvtBPAd4KsbeVwF/P09D/y7tTZ4x7Z/An7RGJOeoDWJiMjW9HVid5Jb5ibWso8bTbITERHZYMaY7wL/y1r7r/E6hs7gRURENpAxphWIAq/H9Tg6gxcREUk+OoMXERFJQgp4ERGRJKSAFxERSUIadCMiK4wx/wn4IhAhVgKaBPKAbMAD3HR2/S1r7U+c6Y8d1tpfMcZ8BfiPzvfrgU7neb4PdAD/DfDdcbgvWmvb4/sbiWxfKtmJCADGmKeA/w6cttYGnTtgpVlr/caY08DXrLWfvmP/OmLDO/KB/dba+Tu+1wcctdaOOV9/2fn6dzbo1xHZ9nSJXkSWFQNjy8OdrLVj1lr/h+z/EvC/iX3U5zMbsD4R+QgU8CKy7HWg3BjTZYz5n8aYpp+x/4vA3/Hgd1p80Rhz9Y4/mR93wSJyfwp4EQHAWjsHPA68BowCf+9cWv8AY8xRYmf7A8CPgCPGmPyfcYi/t9YevuPP4jouX0TuoYAXkRXW2oi19ry19g+A3wE+d59dXwJqnffae4DcD9lXRBJAAS8iABhjDhhjau7YdBjoX2M/F/AFoPGOOy1+Bt1pUWRT0cfkRGRZNvAnxpidwBLQTexy/b1OAb57CngtQL0xpthaO3Sf53/RGHPyjq9/y1r7k3VYt4isQR+TExERSUK6RC8iIpKEFPAiIiJJSAEvIiKShBTwIiIiSUgBLyIikoQU8CIiIklIAS8iIpKEFPAiIiJJ6P8DIQH0dExaPEoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(figsize=(8, 6))\n", "all_estimates.T.plot(ax=ax)\n", "ax.set_ylabel(y.name)\n", "ax.set_xlabel(a.name)\n", "plt.xticks([0, 1], [\"PA\", \"NJ\"]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The most striking thing that we see in this figure is that all of the estimators except one show an increase in total employment under the intervention. The only one which does not show an increase is `MarginalOutcomeEstimator`. As its name suggests, this is an estimator that assumes marginal exchangeability, ie it does not correct for any confounders.\n", "\n", "All of the causal inference methods work by estimating what would have happened if the same sample with the same covariates received a treatment other than the one it actually received. Each of the causal methods shifted the estimate of `EMPTOT2` down for PA and, to a lesser extent, up for NJ. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Reweighting with IPW\n", "Above we saw that the original sample was imbalanced in the sense that the distribution of covariates (especially `EMPTOT`) was highly unequal between the treated and control groups. Balancing the two groups is one of the central challenges of causal inference and it can be accomplished by either reweighting the samples or by restricting the analysis to a subset of the data which is balanced. The first method, reweighting is accomplished by the IPW estimator:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abs_smdweightedunweighted
covariate
EMPTOT0.0008160.195605
WAGE_ST0.0315750.038154
INCTIME0.0081600.080553
BK0.0066520.015325
KFC0.0065160.142869
ROYS0.0098770.001462
WENDYS0.0094380.127842
\n", "
" ], "text/plain": [ "abs_smd weighted unweighted\n", "covariate \n", "EMPTOT 0.000816 0.195605\n", "WAGE_ST 0.031575 0.038154\n", "INCTIME 0.008160 0.080553\n", "BK 0.006652 0.015325\n", "KFC 0.006516 0.142869\n", "ROYS 0.009877 0.001462\n", "WENDYS 0.009438 0.127842" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ipw = IPW(learner=LogisticRegression(solver=\"liblinear\", class_weight=\"balanced\"))\n", "ipw.fit(X, a)\n", "w = ipw.compute_weights(X, a)\n", "calculate_covariate_balance(X, a, w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that most of the variables are now balanced, especially `EMPTOT`. This gives us confidence that the estimated outcome is indeed an \"apples to apples\" comparison, after weighting." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Restricting the sample with Matching\n", "Another way to deal with imbalanced covariates is to only include comparisons between treated and control samples which are very similar. There are a variety of ways in which this can be accomplished. One of the most common is matching by propensity score. Here we will consider the case without replacement, where the data set is restricted to a sequence of pairs where each pair has exactly one treatment and one control, and each sample can appear at most once.\n", "\n", "We do not want to match on the covariates, but rather on the propensity score. To do this we use the `PropensityTransformer` object as a `propensity_transform` within the `MatchingTransformer`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from causallib.preprocessing.transformers import PropensityTransformer\n", "propensity_transform = PropensityTransformer(learner=learner(), include_covariates=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The propensity model will be autmatically fit when the `MatchingTransformer` is fit." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Transforming data from 347 samples to 136 samples by matching without replacement.\n" ] } ], "source": [ "mt = MatchingTransformer(with_replacement=False, propensity_transform=propensity_transform)\n", "Xm, am, ym = mt.fit_transform(X, a, y)\n", "print(f\"Transforming data from {X.shape[0]} samples to {Xm.shape[0]} samples by matching without replacement.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now check the covariate balance of the resulting data directly and also with propensity weights:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abs_smdweightedunweighted
covariate
EMPTOT0.0054560.039639
WAGE_ST0.0286190.030309
INCTIME0.0033090.047924
BK0.0017170.021077
KFC0.0012420.000000
ROYS0.0011370.000000
WENDYS0.0044140.026073
\n", "
" ], "text/plain": [ "abs_smd weighted unweighted\n", "covariate \n", "EMPTOT 0.005456 0.039639\n", "WAGE_ST 0.028619 0.030309\n", "INCTIME 0.003309 0.047924\n", "BK 0.001717 0.021077\n", "KFC 0.001242 0.000000\n", "ROYS 0.001137 0.000000\n", "WENDYS 0.004414 0.026073" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ipw_m = IPW(learner=learner())\n", "ipw_m.fit(Xm, am)\n", "wm = ipw_m.compute_weights(Xm, am)\n", "calculate_covariate_balance(Xm, am, wm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point we have substantially smaller covariate imbalance, but we are using only ~40% of the data. We can now check the estimates directly on the matched subset." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01ATE
MarginalOutcomeEstimator17.54411819.0845591.540441
Matching17.54411819.0845591.540441
PropensityMatching17.64522117.8566180.211397
IPW17.43896219.1578591.718897
Standardization17.43112019.1975571.766437
StratifiedStandardization17.43168419.1982451.766561
DoublyRobustIpFeature17.50016818.5020951.001927
DoublyRobustJoffe17.42964219.1926421.763000
DoublyRobustVanilla17.42909219.1933401.764248
\n", "
" ], "text/plain": [ " 0 1 ATE\n", "MarginalOutcomeEstimator 17.544118 19.084559 1.540441\n", "Matching 17.544118 19.084559 1.540441\n", "PropensityMatching 17.645221 17.856618 0.211397\n", "IPW 17.438962 19.157859 1.718897\n", "Standardization 17.431120 19.197557 1.766437\n", "StratifiedStandardization 17.431684 19.198245 1.766561\n", "DoublyRobustIpFeature 17.500168 18.502095 1.001927\n", "DoublyRobustJoffe 17.429642 19.192642 1.763000\n", "DoublyRobustVanilla 17.429092 19.193340 1.764248" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_estimates_matched = get_all_estimates(Xm, am, ym)\n", "all_estimates_matched.assign(ATE=all_estimates_matched[1] - all_estimates_matched[0])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAAFzCAYAAADfQWsjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACD1ElEQVR4nOzdd1yV5fvA8c/Nkr0EFVQU3IqACqi4R2ZqZpmZLbVpln1bjqYzc2allrlzZI7ShtowNTUn7r1xgROQPc/9+wM4P1QQUOCAXO/Xy5fnPPN+jsh1nnFdl9JaI4QQQoiywczUAxBCCCFE8ZHAL4QQQpQhEviFEEKIMkQCvxBCCFGGSOAXQgghyhAJ/EIIIUQZYmHqARQHNzc3Xb16dVMPQwghhCgWu3fvvq61ds9pXpkI/NWrVyc0NNTUwxBCCCGKhVLqXG7ziuxSv1JqrlLqqlLqULZp/kqpbUqpg0qp35RSjjmsV1UptUEpdUQpdVgp9b9s80YopS4ppfZl/ulSVOMXQgghHkRFeY9/PtD5tmmzgWFa64bASmBwDuulAe9presDzYA3lFL1s82forUOyPyzpgjGLYQQQjywiizwa603AZG3Ta4NbMp8/TfQM4f1IrTWezJfxwJHgcpFNU4hhBCiLCnue/yHgceAVUAvoOrdFlZKVQcaATuyTX5TKfUCEErGlYGoexlIamoqFy9eJCkp6V5WF6JYWVtbU6VKFSwtLU09FCFEKVfcgf9F4Gul1CfAr0BKbgsqpeyBn4C3tdYxmZO/BUYDOvPvyZnbzGn9V4FXAby8vO6Yf/HiRRwcHKhevTpKqXs+ICGKmtaaGzducPHiRby9vU09HCFEKVesefxa62Na605a6ybAEuB0TssppSzJCPqLtdY/Z1v/itY6XWttAGYBwXfZ10ytdaDWOtDd/c6MhqSkJMqXLy9BX5R4SinKly8vV6eEEIWiWAO/UqpC5t9mwMfAjByWUcAc4KjW+ovb5nlke/s4cIj7IEFflBbysyqEKCxFmc63BNgG1FFKXVRKvQT0UUqdAI4B4cC8zGU9lVJZT+i3AJ4H2ueQtjchMxXwANAOeKeoxl8clFI899xzxvdpaWm4u7vTrVu3QttHly5diI6Ovqd1R4wYwaRJk4CMy81jxoyhVq1a1K5dm3bt2nH48OE8t7Fq1SqOHDlyT/u/X/Pnz8fd3Z2AgADjn7uNZezYsbe8DwkJKZRxbNy4ka1btxbKtoQQ4n4V2T1+rXWfXGZ9lcOy4UCXzNdbgBxPb7TWzxfaAEsAOzs7Dh06RGJiIjY2Nvz9999UrlywBIa0tDQsLHL/Z1yzpnAyHqdPn87WrVvZv38/tra2/PXXX3Tv3p3Dhw9jbW2d63qrVq2iW7du1K9fP9dlilLv3r2ZNm1avpYdO3YsH374ofF9YQXrjRs3Ym9vX6AvEnn9uwohxL2SWv0m1qVLF1avXg3AkiVL6NPn/78v7dy5k+bNm9OoUSNCQkI4fvw4kHEm2717d9q3b0+HDh1ISEjgqaeeon79+jz++OM0bdrUWKmwevXqXL9+nbCwMOrVq8crr7xCgwYN6NSpE4mJiQDMmjWLoKAg/P396dmzJwkJCXeMc/z48UybNg1bW1sAOnXqREhICIsXLwbA3t7euOyKFSvo168fW7du5ddff2Xw4MEEBARw+vRpTp06RceOHfH396dx48acPn0arTWDBw/G19eXhg0bsnTpUiAjYLZp04bHHnsMHx8fhg0bxuLFiwkODqZhw4acPp3xiMi1a9fo2bMnQUFBBAUF8d9//931M4+IiKB169YEBATg6+vL5s2bGTZsGImJiQQEBPDss8/eckz5Hcdvv/1G06ZNadSoER07duTKlSuEhYUxY8YMpkyZQkBAAJs3byYsLIz27dvj5+dHhw4dOH/+PAD9+vVjwIABNG3alCFDhuTvB0gIIQpITimAkb8d5kh4TN4LFkB9T0eGP9ogz+WefvppRo0aRbdu3Thw4AAvvvgimzdvBqBu3bps3rwZCwsL1q1bx4cffshPP/0EwJ49ezhw4ACurq5MmjQJFxcXjhw5wqFDhwgICMhxXydPnmTJkiXMmjWLp556ip9++onnnnuOJ554gldeeQWAjz/+mDlz5jBo0CDjejExMcTHx+Pj43PL9gIDA+96uT8kJITu3bvTrVs3nnzySQCaNm3KsGHDePzxx0lKSsJgMPDzzz+zb98+9u/fz/Xr1wkKCqJ169YA7N+/n6NHj+Lq6oqPjw8vv/wyO3fu5KuvvmLq1Kl8+eWX/O9//+Odd96hZcuWnD9/nocffpijR48CsHTpUrZs2WIc07Zt2/jhhx94+OGH+eijj0hPTychIYFWrVoxbdo09u3bl+Ox5GccLVu2ZPv27SilmD17NhMmTGDy5MkMGDAAe3t73n//fQAeffRR+vbtS9++fZk7dy5vvfUWq1atAjKyTbZu3Yq5uXmun6sQQtwPCfwm5ufnR1hYGEuWLKFLl1srEN+8eZO+ffty8uRJlFKkpqYa5z300EO4uroCsGXLFv73v4zKxr6+vvj5+eW4L29vb+OXgiZNmhAWFgbAoUOH+Pjjj4mOjiYuLo6HH364kI8yQ2xsLJcuXeLxxx8HMN4i2LJlC3369MHc3JyKFSvSpk0bdu3ahaOjI0FBQXh4ZDzTWaNGDTp16gRAw4YN2bBhAwDr1q275d59TEwMcXFxQM6X+oOCgnjxxRdJTU2lR48euX5Run2dvMZx8eJFevfuTUREBCkpKbmm3m3bto2ff85IVnn++edvObvv1auXBH0hypir5y5x/Xw49VsFFcv+JPBDvs7Mi1L37t15//332bhxIzdu3DBO/+STT2jXrh0rV64kLCyMtm3bGufZ2dkVeD/lypUzvjY3Nzde6u/Xrx+rVq3C39+f+fPns3HjxlvWc3R0xM7OjjNnztxy1r97927atGkD3PrUeWGmnWUfs5mZmfG9mZkZaWlpABgMBrZv337XZw2ya926NZs2bWL16tX069ePd999lxdeeOG+xzFo0CDeffddunfvzsaNGxkxYkS+jzPLvfy7CiFKr+0r/2TvtqlYOStqN/sZi2Io0iX3+EuAF198keHDh9OwYcNbpt+8edP4sN/8+fNzXb9FixYsW7YMgCNHjnDw4MEC7T82NhYPDw9SU1ON9+xvN3jwYN566y3jl4V169axZcsWnnnmGQAqVqzI0aNHMRgMrFy50rieg4MDsbGxxtdVqlQxXtZOTk42XmZfunQp6enpXLt2jU2bNhEcnGuJhjt06tSJqVOnGt/ndrk+y7lz56hYsSKvvPIKL7/8Mnv27AHA0tLylqsqBZX93+v77783Ts/+GUDGLZAff/wRgMWLF9OqVat73qcQonRKTkxk0SejOXHxc2o9fJSKfldQxRSRJfCXAFWqVOGtt966Y/qQIUP44IMPaNSokfGsMicDBw7k2rVr1K9fn48//pgGDRrg5OSU7/2PHj2apk2b0qJFC+rWrZvjMoMGDSIoKIiGDRtSp04dRo8ezS+//IKNjQ0A48aNo1u3boSEhBgviUPGMwwTJ06kUaNGnD59moULF/L111/j5+dHSEgIly9f5vHHH8fPzw9/f3/at2/PhAkTqFSpUr7H//XXXxMaGoqfnx/169dnxoz/Lw+xdOnSW9L5tm7dysaNG/H396dRo0YsXbrUeJvk1Vdfxc/Pz/hwX0GNGDGCXr160aRJE9zc3IzTH330UVauXGl8uG/q1KnMmzcPPz8/Fi5cyFdf3ZHoIoR4gJ07dILZQ17Czv8XKje4QHycPy1b/oa5efGU5FZa62LZkSkFBgbqrKfcsxw9epR69eqZaESFKz09ndTUVKytrTl9+jQdO3bk+PHjWFlZmXpoohA9SD+zQpRFWmvWz1vG6bB5VGsRBgrKlXuR1q3ex8yscM/DlVK7tdaBOc2Te/wPgISEBNq1a0dqaipaa7755hsJ+kIIUYLERUWz9LPPsKm7nRptw4mPr4Bvgy/x8Wla7GORwP8AcHBw4PYrGkIIIUqGo/+FsmHZ51Rtfxpbh1gSE1rTscNX2No6mmQ8EviFEEKIIpCensbqr+dwPXk5NbudJz3dEgf7j2nfrt8tmVCxGzaQdvkyLn1yK3hbuCTwCyGEEIXsxqXLrBg/HNfgA1TzvEpcbDWCg7/Fw6OOcRlDYiJXJ04k6oclWDdsiHOvXqhiKNUtgV8IIYQoRKG/r2fnv1Oo3vksllbJpKU9TpcuY7G0/P9nr5KOHuXS+4NJOX0a1/79cX/n7WIJ+iCBXwghhCgUqUnJrBg3hRSXP6nd+QLJyQ5Uqvg5DRs+alxGGwxEzpvP1S+/xMLZGa+5c7ArpE6g+SV5/CZ0r2159+3bl6+ue9kb52Q3Y8YMFixYULDBCiGEyNXFY6eZ9f5LWDf4iSoNzxMf14CQ5mtuCfqpV65w/qWXuDpxIg5t2+D96y/FHvRBzvhN6l7b8u7bt4/Q0NA7avvn14ABA+5pPSGEELfSWrNp8UqOHZ+Fz6NhmJkZMDd7hUcfHXJLbn7Mn38R8emn6JQUPMaMxqlnz1se8CtOcsZvYgVty5uSksKnn35qrEi3dOlS4uLi6N+/Pw0bNsTPz8/YwQ/go48+wt/fn2bNmnHlyhUgo8LcpEmTAGjbti1Dhw4lODiY2rVrGzsD3q3VrxBCCEiIieX7oR9yKeFLarY7QWqKIzV85tO27TBj0DfExxP+0Udc+t//sPLywmflzzg/+aTJgj7IGX+GtcPgcsHq2+epUkN4ZFyei91LW95Ro0YRGhpq7Do3dOhQnJycjDX6o6KiAIiPj6dZs2Z89tlnDBkyhFmzZvHxxx/fMYa0tDR27tzJmjVrGDlyJOvWreObb77JV6tfIYQoi07s3M/fi8dQtd0p7BxjSExoSfv2X2Nn9//l0hMPHODS4MGknr9A+QGv4f7GG6hiaMKTFwn8JnavbXmzW7dunbHpC4CLiwsAVlZWxucFmjRpwt9//53j+k888YRxmaxWvflt9SuEEGWJNhhYM30el+N+pFa3c6SnW2Jv9yHt271oPIvX6encmDmTa9OmY1GxAtUWLsA2MMfquSYhgR/ydWZelO6lLW9+WFpaGn8Qzc3Nc230k9Vi9m7LCCFEWRd1+SrLPx+Fc5M9VG9whbg4L4ICv8HT8/97aKRcvET40KEk7t6NY9euVBr+KeaOpqnQlxu5x18CFLQt7+1tXh966CGmT59ufJ91qf9+3G+rXyGEeJDs+2szSya9QuVO/+LieZXU1Ed5pPMftwT9m7/9xtkePUg+fhzPiROoPHlSiQv6IIG/RChoW9527dpx5MgR48N9H3/8MVFRUfj6+uLv78+GDRvue0z32+pXCCEeBGmpKSwbPYn9R4ZT+5HDoMypWHEynR/+EiurjKul6bGxXHp/MOGDh1Cudm28V63E6dFH89iy6UhbXpEjafVb8sjPrBDFK+JUGCu/Gk6lVkdxcrtBXFx9WrWcgavr/6ddJ4SGEj5kKKlXruD2xkDcXn21wBX4rl++QGT4GWo3blNoY5e2vKLApNWvEKIs27L0Nw4f+BafrmcxM0/HTPWnW9cPMDc3B0CnpnJt+nRuzJyFZZUqVP9hMTb+/gXahzYYCF01ldoHxmOrHEn3O4S51OoXpiKtfoUQZVFiXBzLPhuPRfVN1OxwkYSE8tSr+QU1a7Y0LpMSFsalwUNIOngQp55PUPGDDzG3tyvQfi6cOkjMsjcIStnPEUtf7J6cXixBHyTwCyGEEACc3nOIP78fTeW2J7F3uklCfAjt20/Fzs4ZyKjSd/Onn7g89nOUpSWVv/wSx84PF2gfqSnJhC4ZSeMzM3FSluxo8ClBT7yNWeaVhOIggV8IIUSZprXmr+8WceH6Qmp2C8NgsMDOdijt271iTIlOi4ri8qfDif37b2ybNsVz/DgsK1Uq0H6Oh67Has07NDeEsce+NV7PTqOpZ7WiOKS7ksAvhBCizLp57QbLx47CIWAX3iFXiI+rQpMm06lc2de4TPy2bYQPHUZaVBQVBr+Pa//+KLP8J8XFxURxaOFggq+u4LpyYW/IdBp3ei7vFYuIBH4hhBBl0sEN29j8+3iqdThNOZtEUlK60rnzBKysrAEwpKRwbcqXRM6bh5WPD94zvsW6fv0C7WP/+h+puOkjgvUNdrk/Tv3nJ9PIybUoDiffJI/fhMzNzQkICMDX15devXqRkJBg6iEZhYaGGmsLbNy4ka1bt+a5Tr9+/bC1tb2luNDbb7+NUorr16/fdd2xY8fma/srVqy4Y3p4eDhPPvlknusLIQRAWmoqP4+byu59H1HrkUMoMzPc3SbwSOevjUE/+dQpwp7qTeS8eTj3eRrvn1YUKOhfv3yB3ZN74L/pNZLMbDjRdTlN35yHg4mDPkjgNykbGxv27dvHoUOHsLKyYsaMGbfMN2X53MDAQL7++msg/4EfoGbNmvzyyy8AGAwG1q9fn69Ww/kJ/Lnx9PTM8QuBEELc7mrYRWa/NwDtvZCq/udISKhN06ar8ffP6FmitSbyhx842/NJ0q5epco33+AxfDhmNjb52r42GNj181dYzmhKw5jNbKs2AM+hodQNfqgoD6tAJPCXEK1ateLUqVNs3LiRVq1a0b17d+rXr09SUpKx5W6jRo2MVfnmz5/PY489Rtu2balVqxYjR440bmvRokUEBwcTEBDAa6+9Rnp6OgD29vY5tuldvny5sepf69atgYxg361bN8LCwpgxYwZTpkwhICCAzZs34+3tbWwYFBMTc8v7p59+mqVLlxq30aJFCyyypaj06NGDJk2a0KBBA2bOnAnAsGHDSExMJCAggGeffRaABQsW4Ofnh7+/P88//7xx/U2bNhESEoKPj48x2IeFheHr62v8XJ544gk6d+5MrVq1GDJkiHHdOXPmULt2bYKDg3nllVd48803C+XfTghROmz/+Q9WznyNal224eAajeIFunX9jfLlqwCQduMGFwe8zpVRo7ENDsbnl1U4tG+X7+1fOHWQI+PaEHTgUy5ZehPxzD807z8eq3LWRXVI90Tu8QPjd47nWOSxQt1mXde6DA0emq9l09LSWLt2LZ07dwZgz549HDp0CG9vbyZPnoxSioMHD3Ls2DE6derEiRMnANi5cyeHDh3C1taWoKAgunbtip2dHUuXLuW///7D0tKSgQMHsnjxYl544YVc2/SOGjWKP//8k8qVKxMdHX3L2KpXr86AAQOwt7fn/fffB6Bt27asXr2aHj168OOPP/LEE09gmdlqsnbt2vz6669ERUWxZMkSnnvuOdauXWvc3ty5c3F1dSUxMZGgoCB69uzJuHHjmDZtGvv27QPg8OHDjBkzhq1bt+Lm5kZkZKRx/YiICLZs2cKxY8fo3r17jpf49+3bx969eylXrhx16tRh0KBBmJubM3r0aPbs2YODgwPt27fHv4DFNoQQpVNyQiLLx05AVVlPzY4XSUhwpWaNSdSq9f+V8uL+/ZfwDz/CEBtLxY8/xuXZZ4xP9OclNSWZ3T+MpNHZjBS9nb7DCXz8f8WaolcQEvhNKOssFzLO+F966SW2bt1KcHAw3t7eQEZ73EGDBgFQt25dqlWrZgz8Dz30EOXLlwcyWutu2bIFCwsLdu/eTVBQkHEfFSpUAHJv09uiRQv69evHU089ZWzRezcvv/wyEyZMoEePHsybN49Zs2bdMv+JJ57gxx9/ZMeOHXz33Xe3zPv6669ZuXIlABcuXODkyZPGY8iyfv16evXqhZubGwCurv9/T6xHjx6YmZlRv3594xWL23Xo0MHYV6B+/fqcO3eO69ev06ZNG+O2evXqZfwchRAPrnMHj7F61ggqtzuRmZsfTNt203Gwz/hdYEhK4uqEiUT98APl6tTBc95crGvXzvf2s1L0mhnC2OPQGq9nphFsghS9gijSwK+Umgt0A65qrX0zp/kDMwB7IAx4Vmsdk8O6nYGvAHNgttZ6XOZ0b+BHoDywG3hea51yP+PM75l5Ycu6x387O7v8VYC6/duoUgqtNX379uXzzz+/Y/nc2vTOmDGDHTt2sHr1apo0acLu3bvvut8WLVoQFhbGxo0bSU9PN15mz9K7d2+aNGlC3759McuW8rJx40bWrVvHtm3bsLW1pW3btiQlJeXrWLNktRCGjHtxeS0jrYaFKJu01vwzdylh4fMycvO1GTbW79G+3evG34NJx45x6f33STl1Gte+fXF/9x3Msv3+uJvbU/T2tfiWxg89U5SHVGiK+h7/fKDzbdNmA8O01g2BlcDg21dSSpkD04FHgPpAH6VU1uOU44EpWuuaQBTwUtEMvWRo1aoVixcvBuDEiROcP3+eOnXqAPD3338TGRlJYmIiq1atokWLFnTo0IEVK1Zw9epVACIjIzl37txd93H69GmaNm3KqFGjcHd358KFC7fMv70NMMALL7zAM888Q//+/e/YXrVq1fjss88YOHDgLdNv3ryJi4sLtra2HDt2jO3btxvnWVpaGp8TaN++PcuXL+fGjRvGY7hfQUFB/Pvvv0RFRZGWlsZPP/1039sUQpRMcVHRzH3/fa6bT8O7xSmSkirQoMFSQkIGZpwgGQzcmDefsF5PYbgZQ9XZs6n4wbB8B/19//xI3BeBBF9dwS73x7F5ZzcBpSToQxEHfq31JuD239q1gU2Zr/8GeuawajBwSmt9JvNs/kfgMZXxNa09kPUI9/dAj8Ied0kycOBADAYDDRs2pHfv3syfP994RhscHEzPnj3x8/OjZ8+eBAYGUr9+fcaMGUOnTp3w8/PjoYceIiIi4q77GDx4MA0bNsTX15eQkJA77n0/+uijrFy50vhwH8Czzz5LVFQUffr0yXGbr732GjVq1LhlWufOnUlLS6NevXoMGzaMZs2aGee9+uqr+Pn58eyzz9KgQQM++ugj2rRpg7+/P++++26BP7fbVa5cmQ8//JDg4GBatGhB9erVpc2wEA+gI1t2sWDMi1Rs9zduVS+TkvwwnTv/TdUqfgCkXrnChZdf5ur48di1aY33r79g37JFvrZ9/fJ5dk96jIDNr5FkZsuJbitKTIpegWiti/QPUB04lO39VqBH5ut3gdgc1nmSjMv7We+fB6YBbmR8IciaXjX7tnP706RJE327I0eO3DGtNJk3b55+4403TLb/5cuX6+eee85k+78XsbGxWmutU1NTdbdu3fTPP/9s4hEVTGn/mRWiKKWlpupVk77Rcye113/9XVOvXtNQ79277JZlbv71lz4e3FQfDWikI5cu1QaDIV/bNqSn6x0rpuibwz108qeueuvcITo5KbEoDqPQAKE6l5hoiof7XgS+Vkp9AvwK3Nf9+dwopV4FXgXw8vIqil2UWYMGDWLt2rWsWbPG1EMpkBEjRrBu3TqSkpLo1KkTPXr0MPWQhBCF4PrFCFZMHI578/14VbhOXGxtWrSYgZtbxkN2hvh4rowbR/TyFVg3aIDnpImUy3yAOi8ZXfQGEpxygCNWDbF/chrNawcU4dEUPaVzeUCq0HagVHXgd535cN9t82oDi7TWwbdNbw6M0Fo/nPn+g8xZ44BrQCWtddrty+UmMDBQ395i9ujRo9SrV+8ej0qI4ic/s0Lcaddv/7B76xSqtT6LhWUKZmZ9aNP6U2P9kMSDBwl/fzAp589T/pVXcH/zDZSVVZ7bTUlOYs+SUTQ6O5NkZckx38ElOkXvdkqp3VrrwJzmFfsZv1Kqgtb6qlLKDPiYjCf8b7cLqJX5BP8l4GngGa21VkptIONWwI9AX+CXYhq6EEKIEiIlKYkV4yaTXuFvaj10gcQEF3xqTKVO7fYA6PR0bsyazbVp07Bwd8fr+/nYBQfnsdUMGSl6b9PMcK7UpOgVRFGn8y0B2gJuSqmLwHDAXin1RuYiPwPzMpf1JOO+fpfMs/k3gT/JSOebq7U+nLnOUOBHpdQYYC8wpyiPQQghRMly4egpfp8xHI82x3BwjiY+PpB2bb/BwSGjJkjqpUtcGjqUxNDdOHZ5hErDh2Oej4d542KiOLzwfYKu/lTqUvQKokgDv9Y650e+M/Lzb182HOiS7f0a4I6byFrrM2Q89S+EEKIM0VqzceHPnAqbiU/XMNBmWFu/Tft2bxpz82/+vprLI0eCwYDn+HE4du+erwp8+/75kUqbPyJI32CX+xPUf34SAaXtaf18ksp9QgghSrz4mzEs+2wMNvW24tMygvg4Dxo1mkbVqgEApMfGcnn0aGJ+/Q2bRo3wnDgBqypV8tzu9cvnObdoEE3iNhJm5sWJR76jaVDHIj4a05ImPSZkb28PZDSZsbGxISAggPr16zNgwAAMBgOPP/44q1atMi5fp04dxowZY3zfs2dPfv755+IethBCFKvj2/fx/cgXcW/1J25eEaQkP8TDD/9lDPoJu3dz9rEexKxeg9ugN6m2cEGeQV8bDOz86UusZjSjYeyWzC56u6j7gAd9kDP+EqNGjRrs27ePtLQ02rdvb6zEt3XrVnr06MGNGzews7Nj27ZtxnW2bdvG9OnTTThqIYQoOtpgYM20uVxN+ZFaXc6RlmqNq+tnNG70dMb81FSuf/st12d8h2XlylRfvAibzP4nd3Ph5H5ilr9BcMrBByZFryDkjL+EsbCwICQkhFOnThESEsLWrVsB2Lp1K48++ijXrl1Da83Zs2exsbGhUqVKJh6xEEIUvsiIq8x67w0S3Wbj1fgsiQneBAX9agz6KefOEfbcc1z/5lucHnsM75Ur8wz6KclJbJs/jAqLOlA15TQ7fYdTd+i/eJWhoA9yxg/A5bFjST5auG15y9WrS6UPPyzwegkJCfzzzz+MGjWKJk2acOjQIVJSUti6dStt2rThzJkzHD16lL179xISElKoYxZCiJJg7x//sv3fyVTrdBpLyxS0oTdduozCwsICrTU3f17J5c8+Q1lYUHnKFzg+8kie28xK0WtuOMcehzZ4PTP1gUrRKwgJ/CXE6dOnCQgIQCnFY489xiOZP8gNGjRgz549bN++nSFDhnDmzBm2bt3K3r17adEif/WlhRCiNEhNTuHnCV+S4rqGWh0vkJTkTNUqX1G3bsZ99/ToaCKGjyD2zz+xDQ7Gc/w4LD087rrN7Cl615Qr+1rOoHHH3BLOygYJ/HBPZ+aFLese/+1atGjBpk2biI2NxcXFhWbNmjFt2jT27t3La6+9VvwDFUKIIhB+Ioxfpg/Ho/Vh3FyiiI9rRNu23+Lo6A5A/PbthA8dRlpkJBXefw/X/v1ReVTRK0spegUhgb+ECwkJ4b333qNt27YA+Pn5sX37dq5cuYKv7x1VkIUQotTZvORXjh7/Fp+uZwEoV24Q7dv9L6OFbkoKV7/6isi587CqXp3q06dj49vgrtu7fvk85xe9SeO4f8tMil5BSOAv4UJCQjhz5gwffJDRrsDCwoIKFSpQtWpVzMzk2UwhROmVGBfH8s8+x7LmJmq0Dic+viIB/tPw8moMQPLp01waPJjkI0dxfro3FYcMwczWNtftaYOBXSu/ou7BifjqZLZVH0CTZ0ZiVc66uA6pVJDAb0JxcXEAVK9enUOHDuW4TIUKFbi9kdLGjRuLemhCCFGkTu8+xJ+LR1K17Qls7OJITupAp4emYG1th9aa6KVLuTJuPGY2NlT5ZjoO7dvfdXvZU/QOWzXEoYyl6BWEBH4hhBDFRhsM/PHdQiJiF1HrkTDS0svh4jKKJo2fBSDtxg0iPv6EuA0bsGvZEs/Px2Lh7p7r9lKSk9i9ZASNz87GSVmxs+EIAnu8VWq66JmCBH4hhBDF4ua1Gyz9fAQuTUKpVucqcXHeNG82kwoVfACI27SJ8A8/whATQ8UPP8TluWdRd7mleSz0H8qteef/U/Sem0ZwJa/iOpxSSwK/EEKIIndg/Ta2/jUOr46nsbRKxmDoRdcuY7CwsMCQlMTVSZOJWrSIcrVq4TlnDtZ1aue6rbiYKA4veI+gaz9Lit49kMAvhBCiyKSlprJq0nQS7H+h5kPnSU5ypErlydSr9zAAScePE/7++ySfPIXLC89T4b33MCtXLtft7Vu3BI8tHxGkI9lVoScNnp9EgKNLcR3OA0ECvxBCiCJx9exFfv7qEyq2PEhl1yji4/xp2/Y7HB3d0QYDkQsWcG3yF5g5O1F11izsW7XMdVvZU/TOmlXjRJdZNA3sUIxH8+CQwC+EEKLQbftpDQcPTMP7kTOgwMryddo/+h5KKVKvXCXigw+I37oV+/bt8RgzGgvXnAvrZE/Ra6BT2Ob9Ok36jJAUvfsgieAm9tlnn9GgQQP8/PwICAhgx44dfPnllyQkJBTaPqpXr87169fvef358+fz5ptvAjBjxgwWLFhQ4G1s3LjR2HDofrYjhCjZkuMTWPjxcM5GjaNGm+OkpLhQt84iWrV6H6UUsevWcfaxx0jYs4dKI0ZQZfq0XIP++RP7ODKuNcEHR3DByoerz/1D837jJOjfJznjN6Ft27bx+++/s2fPHsqVK8f169dJSUmhd+/ePPfcc9jepVBFUUpPT8c8l1SYAQMG3NM2N27ciL29vbGx0L1uRwhRcp3df5S134+kSptj2DnEkpTYho4dv8LGxgFDQgJXxo0netkyrOvXx3PSRMr5+OS4nZTkJHb/MJzGYXNwlhS9QieB34QiIiJwc3OjXOaDLG5ubnz99deEh4fTrl073Nzc2LBhA6+//jq7du0iMTGRJ598kpEjRwIZZ/J9+/blt99+IzU1leXLl1O3bl1u3LhBnz59uHTpEs2bN7+lAFCPHj24cOECSUlJ/O9//+PVV18FwN7entdee41169Yxffp0Tp48yeeff46zszP+/v7GMY4YMQJ7e3ueeeYZunTpYtzuwYMHOXPmDAcOHGDMmDGkpKRQvnx5Fi9eTGJiIjNmzMDc3JxFixYxdepU/vnnH+zt7Xn//ffZt28fAwYMICEhgRo1ajB37lxcXFxo27YtTZs2ZcOGDURHRzNnzhxatWpVXP88Qoh80lqzbs4Szl+fT81HwkhPt8TJaTgd2r8AQOLBQ4QPHkzKuXOUf+Vl3AcNQllZ5bit7Cl6ux3aUu25qZKiV8gk8AObl53g+oW4Qt2mW1V7Wj2VezoKQKdOnRg1ahS1a9emY8eO9O7dm7feeosvvviCDRs24ObmBmTcDnB1dSU9PZ0OHTpw4MAB/Pz8Mvbj5saePXv45ptvmDRpErNnz2bkyJG0bNmSTz/9lNWrVzNnzhzjPufOnYurqyuJiYkEBQXRs2dPypcvT3x8PE2bNmXy5MlERETwzDPPsHv3bpycnGjXrh2NGjW6Zeyenp7GpkLTp0/n33//pVq1ajg6OrJ9+3aUUsyePZsJEyYwefJkBgwYYAz0AP/8849xWy+88AJTp06lTZs2fPrpp4wcOZIvv/wSgLS0NHbu3MmaNWsYOXIk69atu69/FyFE4Yq9EcWyz0fhELCD6sFXiI+rRtOm31GxYi10ejo3Zs/h2tSpWLi54TV/PnZNg3PcTk4pek0kRa9ISOA3IXt7e3bv3s3mzZvZsGEDvXv3Zty4cXcst2zZMmbOnElaWhoREREcOXLEGPifeOIJAJo0acLPP/8MwKZNm4yvu3btiovL/6e6fP3116xcuRKACxcucPLkScqXL4+5uTk9e/YEYMeOHbRt2xb3zGpZvXv35sSJEzkew3///cesWbPYsmULABcvXqR3795ERESQkpKCt7f3XT+DmzdvEh0dTZs2bQDo27cvvXr1Ms7PfnxhYWF33ZYQongd2bSLf1ePpVq7k1iWS8KQ/gRduozFwsKS1PBwwocMJSE0FIfOnfEYOQJzJ6cctyMpesVLAj/keWZelMzNzWnbti1t27alYcOGfP/997fMP3v2LJMmTWLXrl24uLjQr18/kpKSjPOzLsGbm5uTlpZ2131t3LiRdevWsW3bNmxtbWnbtq1xW9bW1rne189NREQEL730Er/++iv29vYADBo0iHfffZfu3buzceNGRowYUaBt3q4gxyeEKB7paWn8OmUGMeV+plan8yQnO1DZcwL162fc/otZs4aI4SMgPR2Pzz/HqcdjKKXu2M718HOc/2GQpOgVM3mq34SOHz/OyZMnje/37dtHtWrVcHBwIDY2FoCYmBjs7OxwcnLiypUrrF27Ns/ttm7dmh9++AGAtWvXEhUVBWScXbu4uGBra8uxY8fYvn17jus3bdqUf//9lxs3bhifHbhdamoqvXr1Yvz48dSu/f9fnG7evEnlypUBbvkSk/2YsnNycsLFxYXNmzcDsHDhQuPZvxCi5Ll+IZzZ7w+A6t9TxfccCfENaNFiLfXrdyE9Lo7wocO49O57lPPxwXvVSpwf73FH0Dekp7NzxRdYzWxGg9itbK/+BpWH7qSuBP1iIWf8JhQXF8egQYOIjo7GwsKCmjVrMnPmTJYsWULnzp3x9PRkw4YNNGrUiLp161K1alVatGiR53aHDx9Onz59aNCgASEhIXh5ZTwY07lzZ2bMmEG9evWoU6cOzZo1y3F9Dw8PRowYQfPmzXF2diYgIOCOZbZu3UpoaCjDhw9n+PDhAKxZs4YRI0bQq1cvXFxcaN++PWfPZvTXfvTRR3nyySf55ZdfmDp16i3b+v77740P9/n4+DBv3ryCfIxCiGKy67d17Nk1hWqPnMHMzICl5Wt07foe5ubmJOzZS/iQIaSGh+P2xhu4vT4AZXFniDl/Yh9xK97M7KLnh2OvaTSr5W+Coym71O0tXx9EgYGBOjQ09JZpR48epV69eiYakRAFJz+zwlRSkpJYMW4SuvLfVKpxkYQEN3x9v8K7ejN0WhrXv53B9W+/xdLTE88JE7Bt3OjObWRL0UtWVhxrOISgx9+6axMece+UUru11oE5zZMzfiGEELm6cOQkv88aTuW2R7FziCEpsSUdO0zDxsaBlAsXCH9/MIn79+P02GNU/ORjzDOf98nu2K51WK99h+aG85KiVwJI4BdCCHEHrTXrF6zgbMRsanQ5iyHdEkeHj+jQ/kW01kSvXMWV0aPB3JzKX0zGMVtdjyyxNyM5svA9gq6tzEjRa/UdTTo8bYKjEdlJ4BdCCHGL+OgYlo0djV3D//AOvkJ8nFdmbn5t0m/eJGL4CGL/+APboCA8x4/D0tPzjm3s+/sHPP/7iCAdxc4KT+L7/ERJ0SshJPALIYQwOr5tL+tXjsarzUnKWSeSnvYYjzwyDktLK+J37CR86FDSrl/H/d13Kf/Si6jb0oAzUvTepHHcJs6aVSeqyxyaBbY30dGInEjgF0IIQXp6GqunziGSZdR6+BwpyXZ4VJpCgwaPolNSuDp5Mjdmz8GqWjWqL1mCTUPfW9Y3pKcTuvIr6h6aSAOdynbvN2jyzHAsrcqZ6IhEbiTwCyFEGRcZfpXlkz7FvdkeqrrdID6uPq1bz8TZ2YPkM2cJf/99ko4cwfmpp6g4bChmtzUQkxS90kXyKEysMNvyzp8/n/DwcOP7l19+mSNHjgCwfPly6tWrR7t27QgNDeWtt94q0Lbbtm1LVkrk3LlzadiwIX5+fvj6+vLLL7/kuP/7lX2f92Ljxo1069YNgF9//TXHcsh52bdvH2vWrDG+v9ftCFFS7V67keXfvkS1Tv9i7xKNhflLdO26CienSkT9uJSzTzxBang4VaZPw2PUyFuCfkpyEtvmDaXS4g5USTnDzoYjqT/sX6pK0C/R5IzfhO6lLe/dWubOnz8fX19fPDMftJk9e7Zx3pw5c5g1axYtW7YEIDAwx/TOPF28eJHPPvuMPXv24OTkRFxcHNeuXctx/8Xtbp9N9+7d6d69e4G3uW/fPkJDQ42dCO91O0KUNKnJKfw0fgrpldZQs91FEhLK06D2l/j4hJAWGcnFjz8hbv167Fq0wGPsWCwrVrhl/VtS9BzbUe3ZryVFr5QosjN+pdRcpdRVpdShbNMClFLblVL7lFKhSqk72jQppdplzs/6k6SU6pE5b75S6my2eQFFNf7ikFNb3hUrVhjb8rZr1w7IaObz3nvv4e/vz7Zt2xg1ahRBQUH4+vry6quvorVmxYoVhIaG8uyzzxIQEEBiYqLxjHnUqFFs2bKFl156icGDB99yJhwfH8+LL75IcHAwjRo1Mp69JyYm8vTTT1OvXj0ef/xxEhMTAbh69SoODg7G2vz29vZ4e3vnuP+cxgkZZ/JDhw4lODiY2rVrG8v15rZPgNdff53AwEAaNGhgrBQIGa2Jhw4dSuPGjVm+fDl//PEHdevWpXHjxsZGRZDxpeTNN98EICAgwPjHxsaGf//9l507d9K8eXMaNWpESEgIx48fJyUlhU8//ZSlS5cSEBDA0qVLb9lOWFgY7du3x8/Pjw4dOnD+/HkA+vXrx1tvvUVISAg+Pj6sWLGiMH9shLhv4SfCmP3BS9j4LaVSzYskJjSnY4d1+PiEELd5C2cee4z4zZup+MEwqs6aeUvQj70ZyY5p/an9+5NYGxLY3/o7mry3CjcJ+qVGUZ7xzwemAQuyTZsAjNRar1VKdcl83zb7SlrrDUAAgFLKFTgF/JVtkcFa60L9Tbph/kyunjtTmJukQjUf2vV79a7L5Lctb/aWuQD169fn008/BeD555/n999/58knn2TatGlMmjTpjrP5Tz/9lPXr1xvnbdy40Tjvs88+o3379sydO5fo6GiCg4Pp2LEj3333Hba2thw9epQDBw7QuHFjAPz9/alYsSLe3t506NCBJ554wliO9/b9v/nmm3eM89FHHwVybrf77bff5rjPrHHm1pq4fPny7Nmzh6SkJGrVqsX69eupWbMmvXv3zvFzz2on/NtvvzFhwgRCQkJITExk8+bNWFhYsG7dOj788EN++uknRo0aRWhoKNOmTQMyvkBkGTRoEH379qVv377MnTuXt956i1WrVgEZX+q2bNnCsWPH6N69O08++eRdfxaEKA5aazYt+YWTYTOo8cgZDAYLHOyH0aH9KxiSk7k8dixRCxZSrlZNPGfPxrpOnVvWzylFr5Kk6JU6RXbGr7XeBETePhlwzHztBOR1Q/hJYK3WuuA3vEuBrLa8M2fOxN3dnd69e98SWLJkb5kLsGHDBpo2bUrDhg1Zv349hw8fvucx/PXXX4wbN46AgABjt77z58+zadMmnnvuOQD8/PyMQdbc3Jw//viDFStWULt2bd55551cO/DdbZw5tdvNbZ+Q0Zq4cePGNGrUiMOHDxufXQCMAf7YsWN4e3tTq1YtlFLGbeXk5MmTDB48mGXLlmFpacnNmzfp1asXvr6+vPPOO/n6TLdt28YzzzwDZHyxyWpNDNCjRw/MzMyoX78+V65cyXNbQhS1hNg4vv/wQy6nTcS72UmSEj3w9/+J4OBXSDp+grAnexG1YCEuzz9P9eXLbwn618PPsWfiowT89zrxZo6cfPRnmr0xG3sJ+qVScd/jfxv4Uyk1iYwvHSF5LP808MVt0z5TSn0K/AMM01on3++g8jozL0p5teWFW1vmJiUlMXDgQEJDQ6latSojRoy4pU1vQWmt+emnn6hz2zf7u1FKERwcTHBwMA899BD9+/e/I/jnNc6CtNvNqzWxnZ1dvscOGc2RnnrqKWbNmoWHhwcAn3zyCe3atWPlypWEhYXRtm3bAm3zdlnHB1AW+mGIku1U6EH+XjoSrzYnKGeTQFpqNx55ZAIW5pZELljA1UmTMXN0pOrM77Bv3dq4niE9nV0/f0m9w5MkRe8BUtxP9b8OvKO1rgq8A8zJbUGllAfQEPgz2+QPgLpAEOAKDL3L+q9mPkcQmvXwWUmTn7a8t8sKeG5ubsTFxd1y//hu6+Xm4YcfZurUqcbgtHfvXuDW1r6HDh3iwIEDAISHh7Nnz547xnz7/u82ztzkts/8tiauW7cuYWFhnD59GoAlS5bkuNyLL75I//79adWqlXFa9nbC2a+63O0zDQkJ4ccffwRg8eLFt2xPiJJAGwysmT6PzZvfoebD+1DmUKniJB5++CuIusmFV1/jytjPsWvRAp9fVt0S9M8d38exca1pengUF6xqcfX5DTTrN1aC/gOguM/4+wL/y3y9HJh9l2WfAlZqrVOzJmitIzJfJiul5gHv57ay1nomMBMyuvPdz6CLSn7b8mbn7OzMK6+8gq+vL5UqVSIoKMg4r1+/fgwYMAAbGxu2bduWrzF88sknvP322/j5+WEwGPD29ub333/n9ddfp3///tSrV4969erRpEkTAFJTU3n//fcJDw/H2toad3d3ZsyYkeP+cxtnbnLbp7+/f75aE1tbWzNz5ky6du2Kra0trVq1uiNonzt3jhUrVnDixAnmzp0LZGQ/DBkyhL59+zJmzBi6du1qXL5du3bGWyEffPDBLduaOnUq/fv3Z+LEibi7u0s7YVGi3Lx6g2UTPsE1aDde7teJj6tDq1azcHGpTOz69UR89DGGxEQqjRiOc+/eKKWA/++i1yRsNomqHLv8RhHYY5B00XuAFGlbXqVUdeB3rbVv5vujwOta641KqQ7ABK11k1zW3Q58kPmwX9Y0D611hMr4CZ0CJGmth+U1DmnLKx4E8jMr8mv/uv/YvmE8Xq1OYW6ehpXV87Rq+SEqOZkr4ycQvXQp5erXo/LEiZSrUcO4XlaKXnXDeXY7tKPas1Nxq1TVhEci7pVJ2vIqpZaQ8cS+m1LqIjAceAX4SillASQBr2YuGwgM0Fq/nPm+OlAV+Pe2zS5WSrkDCtgHDCiq8QshRGmTlprCyonTSHb9lZodLpCY4ErtWl9Qo0YrEg8dJnzwYFLCwij/8ku4v/UWysoKuLWL3lVVPiNFr7100XtQFVng11r3yWXWHWf4WutQ4OVs78OAyjksJ50ehBAiB5fPnmfVtE/waHkIV6doEuKb0r79N9haO3B91iyuffU1FuXL4zVvLnbNmhnX2/vXIipv/URS9MoQqdwnhBCl3Nblazh8fCreD59BazPs7QbTvt1rpF2+zPnX/0fCzp04PPwwHiNHYO7sDGR20Vv8Jo3jM7roRXebR7PGbU16HKJ4SOAXQohSKik+nmWfj8Oq5gZ8QiKIj/MkMPBbPD19ifnjDyI+HQ5paXiMHYvT4z1QSt2RorfN5w0C+0iKXlkigV8IIUqhs/uO8OfikVRpfRRr2wRSUx7hkUcmYZacTviwD7i5ahXW/n5UnjABq8yU23PH9xG/4g2aph7isJU/jk9Np3nNhiY+ElHcJPALIUQporXmr1kLCY9bSI2Hw0hNtaFChfH4NexJwt69hA8ZSuqlS7gNfB23119HWVpmpOgt/pQm5+aQqMqx0380QY+9KSl6ZZT8q5uQubk5AQEBNGjQAH9/fyZPnozBYLjn7WU1zrldv3798iygU716dWOr3TZt2nDu3Lm7Lp+fbebH7a1889OKt1+/fnh7exsb7Xz99dcF3m9YWJixWJAQpUXsjSjmDvsfsY7f4BVwhsSEGjRrtpqG9R7j2vTpnHvueTAYqLZoYcZT+5aWHNv5N+HjA2l+/jsOOrYmdcAOgh9/S4J+GSZn/CZkY2NjbBhz9epVnnnmGWJiYhg5cqRJxpPVGGj48OGMGTOGWbNmFfk+77WV78SJE++r8U1W4M+qtZ9fd2v9K0RROrRpB1v+/JxqbU9iYZmCmXqerl0/IT08nHMDXyBx714cuz9KpU8+wdzB4bYUPTdJ0RNG8pWvhKhQoQIzZ85k2rRpaK1JSkqif//+NGzYkEaNGhkr+GVvCwvQrVu3W7rtvfPOOzRo0IAOHTpwe6ni9evX06NHD+P7v//+m8cff/yOsTRv3pxLly4BubeeBVi3bh2BgYHUrl2b33///a7jS09Pp1+/fvj6+tKwYUOmTJmSYyvf7Ozt7e96PNnl1l44LCyMVq1a0bhxYxo3bszWrVsBGDZsGJs3byYgIIApU6bc9XO9vS3yokWLCA4OJiAggNdee4309PRcxyXE/UpPS+PniV+z9/AwanU4SLrBGu/qs2nbdjixv/3G2R6Pk3zqFJ6TJlF5wgTMHRzY+9ciEqc0IejaSnZW7IXDe6H4S9AXmeSMH4j+7TQp4fGFuk0rTzucH62R94LZ+Pj4kJ6eztWrV1m0aBFKKQ4ePMixY8fo1KkTJ06cuOv68fHxBAYGMmXKFEaNGsXIkSON7WQho/zswIEDuXbtmrHE7IsvvnjHdv744w/jF4S7tZ4NCwtj586dnD59mnbt2nHq1Klcx7Zv3z4uXbrEoUOHAIiOjsbZ2TnXVsJ5Hc/gwYMZM2YMAAsXLmTJkiU5theuUKECf//9N9bW1pw8eZI+ffoQGhrKuHHjmDRp0i1fWO72uWa1RT569Cjjx4/nv//+w9LSkoEDB7J48WJeeOGF3P9hhLhHV89dYuXXn1KxxT48naNJiA+kffsZWKeZEf7ee8SsWYtNYBMqjx+PZeXKXAsP48LiQTSO38QZSdETuZDAX0Jt2bKFQYMGARnNZ6pVq5Zn4DczMzO2qH3uueeMrW+zKKV4/vnnWbRoEf3792fbtm0sWLDAOL9du3ZERkZib2/P6NGjgYzWsz///DOQ0Xp2yJAhxuWfeuopzMzMqFWrFj4+Phw7dizXsfn4+HDmzBkGDRpE165d6dSpU56fwd2O5/ZL/f379+fXX39l0qRJAMb2wp6enrz55pvs27cPc3PzPD/DnGRvi/zPP/+we/duY++BxMREKlSoUOBtCpGXHav+4sDBr6j+8ClAYWf7Lu3bDSRh1y7ODB1G2rVruL/9NuVfeRkN7Fg+iXqHJ1Nfp7LN500C+3wqKXoiRxL4ocBn5kXlzJkzmJub3zWQWFhY3PIA4N1a8mY13ciuf//+PProo1hbW9OrVy8sLP7/R2DDhg04Ozvz7LPPMnz4cL744vaOyHffvlIq1/G5uLiwf/9+/vzzT2bMmMGyZcuMTXLyK6fjyZJbe+ERI0ZQsWJF9u/fj8FgwNraOsf17/a5Zm+LrLWmb9++fP755wUauxD5lZKUxPJx4zGrtg6fFuHEx3nQpMk3eLrX5dqUL7kxaxZWXl5UX/IDNg0bSoqeKDC5x19CXLt2jQEDBvDmm2+ilKJVq1YsXrwYgBMnTnD+/Hnq1KlD9erV2bdvHwaDgQsXLrBz507jNgwGg/FJ+x9++IGWLVvesR9PT088PT0ZM2YM/fv3v2O+hYUFX375JQsWLCAyMvKurWeXL1+OwWDg9OnTnDlz5q7ju379OgaDgZ49ezJmzBhja9+7tb3Nz/Fkya298M2bN/Hw8MDMzIyFCxca78ffvt+7fa7ZdejQgRUrVnD16lUAIiMj88yAECK/zh86yZxP+uPU5GfcvcJJTelE585/45bsQFifZ7gxcybOT/bE++efMK9di21zh+DxQwcqp55lp/9o6g/bSFUJ+iIPcsZvQomJiQQEBJCamoqFhQXPP/887777LgADBw7k9ddfp2HDhlhYWDB//nzKlStHixYt8Pb2pn79+tSrV4/GjRsbt2dnZ8fOnTsZM2YMFSpUYOnSpTnu99lnn+XatWu5dnrz8PCgT58+TJ8+/a6tZ728vAgODiYmJoYZM2ZgbW2d6/guXbpE//79jWfVWWfMd2slnN/jgdzbCw8cOJCePXuyYMECOnfujJ2dHQB+fn6Ym5vj7+9Pv379ePvtt3P9XLOrX78+Y8aMoVOnThgMBiwtLZk+fTrVMgukCHEvtNb8M28pFyLnUvPhs6SlWuPu/jl+DXsRvXw5Vz4fh5mVFZWnfo3jQw9xbOffWP/xDs0NF9jt2J5qz35NsHTRE/lUpG15Swppy3urN998k0aNGvHSSy+Zeih3ZW9vT1xcnKmHUWKU5Z/ZB1lc9E2WfT4Sx4CtuFS8RnxcDVq0mIWTmSMRn3xC3Lp/sAtpjsfn40gsZ87RRe8bU/SutB6Lf/unTH0IogQySVteUTI1adIEOzs7Jk+ebOqhCFHmHf1vN/+uHoNX2xNYWqageIauXUeQuG07Zz/4gPToaCoMHYpr3xfYt+4HKm/9hEAdxc6KT9Hw+QlUcnA29SGIUkgCfxmze/duUw8h3+RsXzyo0tPTWP31LKKtllOzwzmSkpyoXm0qNbxacG3CRCK//x6rmjWoOmsmsY7W7J3cncbxmzNT9ObTrHEbUx+CKMUk8AshRDGKDL/Cii8+xr35Xiq7RJEQ35h27WZgGRFJ2FO9ST5+HJdnn8Xt3XfYvfob6h+eTH3SJEVPFBoJ/EIIUUx2r97A7tDJVHvoFCiwsXmLdm0HEb34By5OnIiZgwNVv5vBjUpOnPzyIZqmHuaQdQDOvabTvKavqYcvHhAS+IUQooilJiWzYsJkdJU/qNHqEgnxFWnU+BsqWVXm4msDiN+8Gfs2bSg//GP2//EVTdbPlS56oshI4BdCiCJ06fgZfpv9KZVbHcLGLpaUpA506vQlKVt3cOajNzDEx1Px00+44lMew+zONDdcINSxA9Wf/UpS9ESRkK+RJiRtee+tLe/y5cupV68e7dq1A6BPnz74+fkxZcqU+x6PEIVFa82GRT/x5y+vU+PhHVhYpeFWfgwPt/uKyHETufj6QCwqVsR9/mxO3viTen88RTlDEvtbzyLwvZ9xk6Avioic8ZuQtOW9t7a8c+bMYdasWbRs2ZLLly+za9euuzYIEqK4JcTEsmzcGOx8N1Mt8Arxcd6EhMzC/moiZ3s+ScqZM7i++CKXGrhh/0svAnUU2yv2lhQ9USzkjL+EkLa8d7blXbJkCQ0bNsTX15ehQ4cCMGrUKLZs2cJLL73E4MGD6dSpE5cuXSIgIIDNmzdz+vRpOnfuTJMmTWjVqtVdGwcJURRO7jrAgnH9qNByNc4VroF+ii6PrEH9sp6zvZ/GEBeH48SxhKuNNN71NnFmjpx+7BeaDZyJnQR9UQzkjB9Yu3Ytly9fLtRtVqpUiUceeaRA60hb3v8XHh7O0KFD2b17Ny4uLnTq1IlVq1bx6aefsn79euM6b7zxBt26dTNeOenQoQMzZsygVq1a7Nixg4EDB7J+/fq8Pnoh7ps2GFg9fS43WELNDudITnKgmtcUvB0bcumV10jYvh37hx4iook7lUJfp7yk6AkTkTP+EmrLli0899xzwL235d2yZcst87O35Y2Ojmbbtm23fDlp164dlStXZu3atfTp0wfIaMv7zDPPABltebNv817b8v7xxx84Ojre9Vh27dpF27ZtcXd3x8LCgmeffZZNmzbddZ24uDi2bt1Kr169CAgI4LXXXiMiIuKu6whRGKIuX2P20IGkenxHlQZhJMb70abN31Q6Y+DMYz1IPHAAqzdfIa7iLoLDJnHOug7Xn99I876fSdAXxU7O+KHAZ+ZFRdry3h+DwYCzs7Px7F+I4rDv7y3s/G881TqeBKWxLvcGbYJe5erYz7n588+U823AtWbuNLr2WWaK3hiCHntDUvSEychPXgkhbXlvFRwczL///sv169dJT09nyZIltGlz9zKljo6OeHt7s3z5ciDjqer9+/ffdR0h7lVaagrLxk7kyLmPqNH6CCkpLtSv9wON7TsQ1rMnN1etgu6dMPM9StO4Hzjg2Ia013cS/PggCfrCpOSM34SkLe+dbXnT0tIoV64cHh4ejBs3jnbt2qG1pmvXrjz22GN5fqaLFy/m9ddfZ8yYMaSmpvL000/j7++fj38NIfLv8unzrPruIzxbHMLOIYbkpDY81P5LYr9fRNj0bzB3dyf+sToElpvPZdzZ32Y2ge16mXrYQgDSltdEIzKtktqWNzk5mZo1a3Lo0CGcnJxMPZwSpyz/zJYkm5f9xomz06na+Azp6ZZUqvgBDdzbEj5kKIl79pDWpAHu1XbjbhnFrswuevK0vihu0pZXGJXUtryhoaE8//zzDBw4UIK+KJGS4uNZ9vlnWNfdSPWgK8THVSMkZBaWWw9z9uUeaDQpbdzx9/ib0+bexHSVLnqiZJLAX8aU1La8gYGBHD161NTDECJHZ/Ye4a9lw6na6ihWVkloQ086txrGtTFjubZ6NWleFanidwIbuxS2+bxF4NMfy9P6osSSwC+EELnQWvPndwu4krKQmh3DSE62x6vqNKrGunGu55OkXb4CAdb41t7LYRvpoidKBwn8QgiRg5vXI1k+8RNcA3dRpfwNEuJ8adPqW5LmL+PcrFmkO1rj1f4aBjdLdkmKnihFJPALIcRtDm3cwX8bP6Na+5OYmRkoZzWAFr49iXj1bZIOHsS8hqJOwGn2uLbH+7mvCa5YxdRDFiLfijTwK6XmAt2Aq1pr38xpAcAMwBpIAwZqrXfmsG46cDDz7XmtdffM6d7Aj0B5YDfwvNY6pSiPQwhRNqSnpbHqi2kkuaykZuuLJMS74e8/Fced5wl7sycGnUqVFpHEV3XgYJtZkqInSqWivi41H+h827QJwEitdQDwaeb7nCRqrQMy/3TPNn08MEVrXROIAkpWTloBSFveW9vyjhw5kg8++OCW+fv27bunFLbw8HCefPJJADZu3Ei3bt2M+8veREiILFfPXWLWB69gWWcBlWpcJCmxFe2DfsJs4kIiPv4Ec8d4fDqFcySwB47vheIvQV+UUkUa+LXWm4DI2ycDWYXanYBw8kll1IhtD2RFnO+BHvc3StPJast7+PBh/v77b9auXWuylryQUbL3wIEDtG3bljFjxhTLPrMH/j59+txRdOjHH3809g0oCE9Pz0L5YiLKhm0r/+S3Ja/g0+k/rKyTcHb+hLYur3Kh59PE/LOOCgE3UR1tON9nJc1e/07y8kWhMSSkErv5EjHr7n6yVZhM8STK28BEpdQFYBLwQS7LWSulQpVS25VSPTKnlQeitdZpme8vApVzWlkp9Wrm+qG3t6ctiaQtbwBVq1bFxcWFHTt2GNdftmwZffr0YdasWQQFBeHv70/Pnj1JSEgAMq48vPXWW4SEhODj42MM9mFhYfj63v3p6t9++42mTZvSqFEjOnbsyJUrV+66vHjwJCcmsmjEcM7HjaJ68HGSEj1p1HAFlf+6zPkXX8I89SqVO0ZysstLVBu2k9qSly8KScrFWCKXnyB87E5urj5D8rkYiqugnike7nsdeEdr/ZNS6ilgDtAxh+Wqaa0vKaV8gPVKqYPAzfzuRGs9E5gJGZX77rbsiROjiY0r3BxyB/t61K79SYHWkba8GWf9P/74I02bNmX79u24urpSq1YtXF1deeWVVwD4+OOPmTNnDoMGDQIgIiKCLVu2cOzYMbp37268xJ+Xli1bsn37dpRSzJ49mwkTJpS4wkai6Jw7dJy1iz+lassjlLNOxJDWg461X+L8i++gw87jUjOe602rE/fsSpr5NDD1cMUDQKemk7D/OnHbw0m9GIeyMsOuSQXsmnpg5ZnzrdqiYIrA3xf4X+br5cDsnBbSWl/K/PuMUmoj0Aj4CXBWSllknvVXAS4V+YhNYMuWLcbAdq9teZ944olb5mdvy9u/f3+2bdvGggULjPPbtWtHZGQk9vb2jB49Gshoy/vzzz8DGW15hwwZYlz+Xtvydu3alU6dOuW4XO/evQkJCWHy5Mm3XOY/dOgQH3/8MdHR0cTFxfHwww8b1+nRowdmZmbUr1+/QGftFy9epHfv3kRERJCSkoK3t3e+1xWll9aaf+Yu4WLcPGp2PEtKsh2eHl/itvM6Ye/2wtw8DedWSVzoOoTA7gMlRU/ct7TricTtiCA+9Ao6MQ2LCjY4d6+BbeMKmFkXfxg2ReAPB9oAG8m4X3/y9gWUUi5AgtY6WSnlBrQAJmittVJqA/AkGU/29wV+ud8BFfTMvKhIW16oWrUq3t7e/Pvvv/z0009s27YNyLikv2rVKvz9/Zk/f/4ttzfKlfv/CmkFuVQ2aNAg3n33Xbp3787GjRsZMWJEvtcVpVNcVDRLx4/AufE2qnpfJyGuPi38xnNl6Cfc2H8Ee48krnbww+2V6QRJip64D9qgSToWSdz2CJJPRIGZwqZBeeyaeVDOxynH38/FpUi/yiqllgDbgDpKqYtKqZeAV4DJSqn9wFjg1cxlA5VSWWf/9YDQzGU2AOO01kcy5w0F3lVKnSLjnv+cojyG4iJtef9fnz59eOedd/Dx8aFKlYxfvrGxsXh4eJCammr8XO7XzZs3qVw54xGR77//vlC2KUquo/+FsvjLflRu+xcOLlFYWbxCkNnLRDzeG3XoMDaN04n6ZDyBH/9CeQn64h6lx6YQs+E8lyfs4saCI6Rejsexoxcew4Io/2w9rGs4mzToQxGf8Wutc3scu0kOy4YCL2e+3go0zGWbZ4DgwhqjKUlb3jvb8trY2NCrVy/eeustpk6datzX6NGjadq0Ke7u7jRt2vSOLwv3YsSIEfTq1QsXFxfat2/P2bNn73ubouRJT0/jt6++I85uOTXbXCAxoTy+NScTO34GUZu/x9oplRs9m+P19jSq20uDKFFwWmtSwmKI2x5B4qHrkK4pV9MZ524+WNcrjzI3baC/nbTlLYNKaltecXdl+Wf2Xt24dJmfvv6Iis33Yu94k6SEEOrb9ibhww8xi07FrK456sOvqB3cwdRDFaWQITmNhL1XidsWQdqVBJS1OXZNKmLXzANLd1uTjk3a8gqjktqWV4jCtmv1P+w/MJnqHU5j0OY42g/D9ZfNJP39PpZWBmL6tMX/g6nSRU8UWOrleOK2R5Cw5yo6JR1LTztcetbCxt8dMytzUw8vTxL4y5iS2pZXiMKSmpTMiokTMKv2J95NI4iPq4yXzSuUGzIBLqehvayxGf8ttRs1N/VQRSmi0wwkHr5B3PZwUs7GgIXC1s8du2YeWFV1MPl9+4KQwC+EeGBcPHaa3+d/QpWWh7C2SSAtpQsVt9zA5o8x6HRF4hPt8R89FTPzkn9WJkqGtOhk4ndGEL/zMoa4VMxdrXF6xBvbwIqY21maenj3pEwHfq11qfqWJsqusvAszv3QWrNh4QrORc6iRsczpKbYYh7/Il7fLST9NKS621LhyxlUaNLU1EMVpYA2aJJPRxO3LYKkozcAsK7jil1zD6xruaDMSnfcKLOB39ramhs3blC+fHkJ/qJE01pz48YNrK2tTT2UEikhJpal40bi6L8ZL7/rxMXUpvw+ayr9Po/UOHPSO7ehwcRpKMvSeXYmio8hIZX43VeJ3xFB2vVEzOwscGhTBbtgDyxcH5z/f3cN/EqphsAsMurhrwWGaq2jMuft1FqX2rS6KlWqcPHixTvq2QtREllbWxtrGoj/d2Lnftb/PpJqrY9hbp5G3LV2+K3YQNIhS5Lt7fCY+SWurduaepiihEu5GEvctggS9l+DNANW1Rxx7eCFTUM3lMWDV7kxrzP+b4ERwHYycuy3KKW6a61PA6X667OlpaWUaBWilNIGA79Pn0205Y/UanuOxAQXrPe5UXv1ehKvlUM1D6LuV9Mwd3TMe2OiTCopdfNNIa/A76C1/iPz9SSl1G7gD6XU82S01xVCiGIVdfkqy6d8TMVmu/F0iib6ah2C1h0lYUcsCcqOSmNH4vL443ILT+SopNXNN4U8j1Ip5aS1vgmgtd6glOpJRrMc16IenBBCZLf3r82E7hpPtQ4nQZuReqgazVYfJuacLeb16uAzdRpWcktE3KYk1803hbwC/3gy6uZvz5qgtT6glOoAlIzONkKIB15aago/T/wCg+dqfJqHE3fTHd+t10j/5xI3k+xwH/QGbq+9hrIoG2dsIn/SY1OI33WZ+J2XSY9OxszRCseOXtgFV8LcsewWbsrrf4mv1vqH2ydqrc+T0WxHCCGKVMSpc/wy50OqtDiEtU08CWGVCVp9lugj9lh4euI9eTI2AQGmHqYoIUpb3XxTyCvwdwY+LI6BCCHE7Tb9uIrT4d9So8MZUlPLUWFnOax/v8rNG/Y4P/EEFT/8EHN7O1MPU5QAOdXNt2/mUSLq5pc0eQV+c6WUC5DjVyStdWThD0kIUdYlxsWxbPxo7Br8i1fANeKuVSDgn8vEb7NF2zhR+cuROHbubOphihKgtNfNN4W8An9dYDc5B34N+BT6iIQQZdrpPYdYt3IEXiFHsbBMwexYeWqtvEnCBWvsmgbhOX4clpUqmXqYwoQepLr5ppBX4D+itW5ULCMRQpRpWmv+mDGf6yykRttzJCU4UGUzmP2dhko0p8Lgt3Ht3x9l9uAVVBH58yDWzTcFeQRWCGFyN6/dYPkXn+AWtBNP5ygSL1WkyppULPYmY+VdCc9JE7Fp0MDUwxQmoA2a5FPRxG1/MOvmm0Jegf+rrBdKKXsArXVckY5ICFGmHFy/je1bx+LV7iQA5nvcqL7aHPOIKJz7PE3FIUMws7Ex8ShFccuom3+F+O0RpN1IemDr5pvCXQO/1nq+UmogMAywA5RSKhYYr7X+pjgGKIR4MKWlprLqi6mkVliFT8glEm664LzJBbd/rmJuZ47HN9/g0L6dqYcpilmOdfM7Vntg6+abQl5Nej4CWgBttdZnMqf5AF8ppVy11mOKYYxCiAfM1XOXWPntB3i2OICzbSwJZytT7S8XLPefwK5VKzzHfoaFu7uphymKSVmum28KeV3qfwHw11onZU3QWp9RSj0F7Ack8AshCuS/FWs4fu5rfDqeJi21HKm7G1J71VV0XBgVPvoIl+eelaeyywipm28aeX2yOnvQzzYxUSllKKIxCSEeQMkJifwwZjj2DTdTrdFVYq9XxCu0ATa/bsGydm0858/HunZtUw9TFDGpm296eQX+S0qpDlrrf7JPVEq1ByKKblhCiAfJ2f1H+HPpJ3i1OoalZQoxZ/zxXZlE2uktuPbti/u772BWruzWTi8LpG5+yZFX4H8L+EUptYWMQj4AgWTc93+sKAcmhCj9tNasnPwVcTa/UbNDGEmJDjiceoSqM/9COztRdfZs7Fu2MPUwRRGRuvklU15P9R9WSvkCzwBZSbSbgNdyugUghBBZrodHsGLCMCq2OkJll0huXq2F7/qKpG9ajV2HDniMGY2Fi4uphymKgNTNL9nyeqr/L611J2BuMY1HCPEA+HveHM5eWIX3IydBgbrcDd+vdmBIuUqlUSNx7tVL7uU+gKRufumQ16V+yacRQuRb5LXL/DL6I8oFnKJGy4vEx7rhcygE84V/YNmgAZ4TJ1LOx9vUwxSFSOrmlz55BX4npdQTuc3UWv9cyOMRQpRC2mBgy9IZHN61gcodT2JrH0tSZDPqzL2B4eyflH/1VdzffANlZWXqoYpCInXzS688Az/Qjdy780ngF6KMu3LxNNu+/ITISpHU6HKatDQr7M72wHPKX5i5u1Pl+/nYBQebepiiEEjd/AdDXoH/nNb6xWIZiRCiVDGkp7P9x/Gc3roH6xbhVKt0hfiYatRYWwmzf9fg2OURKg0fjrmTk6mHKu6T1M1/sOQV+OXrmxDiDmeP7CJi0Ucc1HZU7XoSS6tk0q+2p9YX+zBLj6HS+HE4du8u93dLOamb/2DKK/D3VUr1AGoCB7XWfxb9kIQQJVVSYjx7Fn1Ewv7DXKqrqVHvIMlJDrjsDMFuwWZsAgLwnDgBq6pVTT1UcY+kbv6DL6/AP4CM/P2twGilVLDWenTRD0sIUdIc2bYW87XDOBZVG+e2N6nieoP4qPr4zEvC/OxW3N58E7cBr6EspMZ6aSR188uOvP41W5PRpCddKWULbAbyFfiVUnPJeDDwqtbaN3NaADADsAbSgIFa6523rRcAfAs4AunAZ1rrpZnz5gNtgJuZi/fTWu/Lz3iEEPfmZtR1ji98G6dzh/jXsRpe3Q6hlAGzM+2p9cVWLD098Vy0ENtGjUw9VFFAUje/bMor8KdordMBtNYJqmA/BfOBacCCbNMmACO11muVUl0y37e9bb0E4AWt9UmllCewWyn1p9Y6OnP+YK31igKMQwhxD7TBwN4/v6fq9hFEXPPjZGNnavgcJiHOjcp/VMFm/RacevSg4scfYW4vl4BLE6mbX7blFfjrKqUOZL5WQI3M94qMzn1+ua2otd6klKp++2QyzuQhI1UwPIf1TmR7Ha6UukpGIaHoPMYqhCgkly+cImLJIKpHH2RZYgieD5+kkkMMiVcb4zPlLBb6Ih5fTMaxSxdTD1Xkk9TNF1nyCvz1Cnl/bwN/KqUmAWZAyN0WVkoFA1bA6WyTP1NKfQr8AwzTWifnsu6rwKsAXl5e9z9yIcqA9LQ0QldMxPfol4RF12JlZT982u3DkG6J5c7meM7fjW1QEJ4TxmPp4WHq4Yp8kLr54nZKa110G8844/892z3+r4F/tdY/KaWeAl7VWnfMZV0PYCPQV2u9Pdu0y2R8GZgJnNZaj8prHIGBgTo0NLQQjkiIB9fZI7tI+flNfJJPsCiqK3bNz1Le4zLxN6vg9b055U5dw/1/b1H+xRdR5lJ3vaTLqW6+fXNPqZtfRiildmutA3Oal1eTnlgyLs8bJ2W+z7rU75jjirnrC/wv8/VyYHYu+3UEVgMfZQV9MnYYkfkyWSk1D3i/gPsXQtwmKTGevYs/psmF7zmbVIU5Zp2o+sh+rMolkhoWRI1J+7H2qo7njz9i49sg7w0Kk5G6+SI/8rrU/w9QiYzSvD9qrc/f5/7CyXgqfyPQHjh5+wJKKStgJbDg9of4lFIeWuuIzIcMewCH7nM8QpRph7euwfHv92iuw1ka15PE6heoWX83ycl22P3eAJc/9uPcuzcVhw7BzFYuC5dUUjdfFMRdA7/WuodSygl4ApillLIGlpLxJSDybusqpZaQ8cS+m1LqIjAceAX4SillASSReQ9eKRUIDNBavww8RUYaYXmlVL/MzWWl7S1WSrmTccVhHxl1BoQQBXQz8hrHF75NcNTvnE33ZFbys5Rvthu38teJu16Tal9fxzb9Gh7Tp+HQoYOphytyIHXzxb3K9z1+pZQZ8DTwNTBWa/1FUQ6sMMk9fiEyaIOBPX98T7WdI3DWMfxl9SwX08LxanYUM7N01AE/PGcdwqFFSzw+H4tlhQqmHrK4TU518+2CKkndfHGLe77Hn7lyCNAHaAVsAR7XWm8u3CEKIYra5QunuLzkTZokbOOkWQ3WmQ8gveJf1PA5T0JceSr8YIfTkZNU+PBDXJ57DmUmtdhLEqmbLwpLXg/3hZGRP/8jGZfl0zKnNwbQWu8p2uEJIe5X9hQ9JwxsrPwWJ8OuUiF4OfaON4m/WA/vSWewq1YJz+XfYV2ntqmHLDJJ3XxRFPI64w8j4yn+hzP/ZKfJeEBPCFFCZaXoNU07xgGbJkRWf4PT5+ZRrd0JDOkWmP1Vl1qrTuPywvNUeO89zMpJ1baSQOrmi6KU18N9bYtpHEKIQpSUGM/eRR8ReHEBccqOHf5jOXc8Dp06hepBEcRFe1BlWhIOqTF4zpqFfauWph5ymSd180VxyetS/xCt9YTM17201suzzRurtf6wqAcohCiY7Cl6u5wfxqXtB+z76QuqNN9POesEEo/Wo8b00zi1bY/HmNFYuLqaeshlmtTNF8Xtrk/1K6X2aK0b3/46p/clmTzVL8qC7Cl64aoiN9qNJ+aKJSfDp1LF9zQpybY4LHfBfW8MFYcNw7n3U3IWaSK51c23b+YhdfNFobifp/pVLq9zei+EMIHsKXqNdQzbPZ6lbs8RrJs+Bbv666na8DpxV6rhNeUaTlXKU/nneZTz8TH1sMskqZsvSoK8Ar/O5XVO74UQxezyhVNc/uENmiRu55R5DaK7/0AlVZ5l0wfi1ewIZuZppP5Xi5o/nMP9pZdwf+stlJWVqYdd5uRUN9+lZy2pmy9MIq/A76+UiiHj7N4m8zWZ76VShBAmkp6Wxq7lE2h47Csc0Wyv9Q5NnvqA9d//yDX9CTVanyMhzgW32Wa4xSTjOW8+ds2amnrYZYrUzRclVV5P9ctXUSFKmLOHd5CychDN0o5zwCYQt97TaeBYke9HvYt74HY8HKOJO+ODz9eXcGn/MB4jR2Du5GTqYZcZUjdflHSSECpEKXF7il5o4/E06fYqhzbtZM22wXi1OYHBYIb+xYu6myOpOHIsTj0ekzPLYiB180VpIoFfiFLg9hS9ms99RSMXd36e8iWp7ivxbhpOXFQFPKcm4l6xIp6rvsfKy8vUw37g3Vk33xKHNlWxC64kdfNFiSWBX4gSLCNF738ER63mkqrIwfbzCWr9ONfOhzPnq5fxbLYHJ5sEEvb7UGPOJSq+NhC31wegLOS/dlHKsW7+Q9Ww8ZW6+aLkk98OQpRAGSl686i2c5QxRc//+fFUtnNg+y9/cjRsCt5tT5GaYoPFPDfqRWg8FyzCtnGpKK1RKkndfPGgkMAvRAmTPUXvpHlNorv/QDP/FqQkJbF4zKeUq/UXXg2vEXu5MtW+iqJi2zZUnPEJ5vYSfIqC1M0XDxr5qRWihLgjRa/2uwQ+9QEWllZcOHyKtcs/pGqzQ5ibp5G80Ys6a+PwHDEOp65dTT30B47UzRcPMgn8QpQAOaXoNfOui9aadfN+ICJlDjVah5EY54TjLEUVpyp4/jIeS09PUw/9gSJ180VZIIFfCBPKSNH7kMCLC29J0VNmZsRHx7D0i49xbfQfnk7RxJ6uSo0ZkXi8NojyL72IMpcyG4Uht7r5zt18pG6+eCBJ4BfCRA7/txrHde9npuh1ptbzXxHoVgmAY9v2sGXjSKq2PAbajPSfKtHwlDWe83/ApqGviUf+YJC6+aKsksAvRDG7M0VvAUGtHwMgPT2N36Z9S6LzcrybXiI+0g2P6clUadmBiiuHYWYrAel+Sd18UdZJ4BeimNyeorfN8zkCnhtHZTsHACLDr/LTN8PwaLobd9s44vZUpfbPSVQZNQmHjh1NPPrSTermC/H/JPALUQwunz/J5SVv3pKi19y/hXH+rjXrOXh8ItXbniI1xRrzeW40sqqBx8rPsaxYwYQjL92kbr4Qd5LAL0QRykjRG0/DY1/fkaIHkJqcworJ47D0WUs1/6vERlSi+rcJVH35dVxfeAFlJlXgCkrq5gtxdxL4hSgit6boBeH29HSaVa9jnB9+IozffxhG1aYHsbBMIXGDJ777nKgyew7WdeuacOSlk9TNFyJ/JPALUciyp+jFKjtCm0ygSddXjGfvWms2/vATF2Jm4NPqLEnxjjjOsKZhUGcqLH8PM2sJUgUhdfOFKBgJ/EIUorul6AEkxMSxbPJwnP3/pbJHFLGnKlNzqab68M+wb93ahCMvXaRuvhD3TgK/EIXg5o0rHF/0To4pellOhR5gw1+f4tXiGGhIW1mJJqkN8Fg2Bovy5U008tJF6uYLcf/kf4oQ90EbDOxZO5fqu0bRWMeyzfMFAp4ba0zRy1pm9TeziLX7AZ9mF4mPcqXSLEWtvm/i/PTTkkqWB6mbL0ThksAvxD26fP4kV5a8QZPEHZy0qEV09x9p7hdyyzLRV66zfNowKgWH4m4bS9zeKtTf6orX9EmUq1HDRCMvHaRuvhBFQwK/EAV0Z4reewQ+NcyYopdl71+b2Xvoc6q3OUlaajnMFrjTzLcb7kv+h5mVVS5bL9ukbr4QRU8CvxAFcPbwDlJXvkmztBM5pugBpKWm8NMXkzHz+o1qAVeIjaiAz4/W1Pjoc+yaNTPRyEs2qZsvRPGRwC9EPiQlxGWk6F1alGOKXpbLZ8/z6/fDqNL0AJaWyST8W5nGUQFUXjgKc2dn0wy+BJO6+UIUPwn8QuTh0H+/4bxuMM11BLtcHqHWc1/ekqKXZdOyXwi7Pg2fVmdISnDAdr4jQU+9jdMTj8sDaNlI3XwhTKtIA79Sai7QDbiqtfbNnBYAzACsgTRgoNZ6Zw7r9gU+znw7Rmv9feb0JsB8wAZYA/xPa62L8jhE2XTzxhWOL3yb4Og1XFSVONRhAUGtHrtjueT4BH6cNAJH3w1UrhtJzGlP6m+shPeESVhVq2aCkZdMUjdfiJKhqM/45wPTgAXZpk0ARmqt1yqlumS+b5t9JaWUKzAcCAQ0sFsp9avWOgr4FngF2EFG4O8MrC3awxBlSW4pelWypehlObvvCOt+/4SqzQ6jlCb1Vw9a+vTCbf7rKEsJZlI3X4iSp0gDv9Z6k1Kq+u2TAcfM105AeA6rPgz8rbWOBFBK/Q10VkptBBy11tszpy8AeiCBXxSS/KToQcbT53/MnEuU5UJ8Qi4QH+1C5eXO1Ht/PLZNmphg5CWL1M0XouQyxT3+t4E/lVKTADPgzt+qUBm4kO39xcxplTNf3z79DkqpV4FXAby8vO570OLBlp6Wxq5l4/A7/jWOwPba7xHU+0PMLe78LxJzI4plX31AhcAdVLSPIXZ/ZRpHBFN55nDMHe68KlCWSN18IUo+UwT+14F3tNY/KaWeAuYAHQt7J1rrmcBMgMDAQHkGQOTqzKEdpK26e4pelgMbtrFrz2d4tTpBepolZkur0K7bYJze6VbMoy45pG6+EKWLKQJ/X+B/ma+XA7NzWOYSt973rwJszJxe5bbplwp9hKJMuCNFL3AiTbq8fEeKHmRcEVj51ZcYPFZSvdFlYi+7U2tjdWoPn4xl5RwvOj3wpG6+EKWTKf53hgNtyAjk7YGTOSzzJzBWKeWS+b4T8IHWOlIpFaOUakbGw30vAFOLfsjiQZPfFD2Aq+cusWruMKo03YulVTIJW6oQ4v407t++ijIvW7nmUjdfiNKvqNP5lpBx5u6mlLpIxpP6rwBfKaUsgCQy78MrpQKBAVrrlzMD/GhgV+amRmU96AcM5P/T+dYiD/aJAshvil6WrStXczL8K3xanyE50Q775T60fGMiNn5+xThq05O6+UI8OFRZSIEPDAzUoaGhph6GMCFtMLB77Ry8d43GSceyy/M5Gj3/Oda2Od+DTklKYtmkUdjWXYeT6w1iznoQcL4F1YZ8ipmdXTGP3jRyq5tv38xD6uYLUcIppXZrrQNzmic34sQDLyNFbyCBiTs5YVGb6MeW0bxh7jXzzx8+yR8rP8Ar6DBmykDaX9Xo0H4Yji91KsZRm47UzRfiwSaBXzyw7kjRq/M+QU99kGOKHmSc4f49bxHX9FxqhJwnPtqZqpvr4DtsCpYVKxbv4E1A6uYLUTZI4BcPpOwpevttgqjQZzrNquWcogcQF32TZVM+wq3xVio53CT2UBWa2T1Lxck5P+X/oJC6+UKUPRL4xQMlI0XvAwIvLc4zRS/LkS272LZ9FFVbHseQboH52jp0fnEy1vXqFePIi5fUzRei7JLALx4Yh7b8ivM/Q/KVogeQnp7GL1Onkeq+guqNI4i96k6Ds+2oMXo4ZtYPXllZqZsvhAAJ/OIBcEeKXseFBLXsftd1boRf4aeZQ6kctBuHcokk7KpOu6APcXq6QzGNuvhI3XwhRHYS+EWplT1Fr7GOZVvlF2j03OdUySVFL8uO39dx9OwkfFqdIjnRFseNTWn39ldYuLkV08iLh9TNF0LkRAK/KJUizh3n6o9v5jtFDyA1KZllX4zFptYfVG1wnZhzHjS17IvH6JcfmIfYpG6+ECIvEvhFqZKRovc5fsen4gRsrzOYoKeG5Zqil+XS8TOsXj4Mr8CDmJmnk7a1Lo/0/hLrWrWKZ+BFTOrmCyHyS34jiFLj9MHtpP8yKCNFzzaYCk9Pu2uKHmTk5q9ftJSI5JnUCDlHwk0nfM52ot6QUZhZWRXTyIuG1M0XQtwLCfyixMtK0Qu6tIibyoHQoEk0eeSlPPPrE2LiWDrlQ1wDtuDhcJPYY160bfgJzo+3L6aRFw2pmy+EuB8S+EWJlj1Fb6dLF+o8/yWB5fOuond8+z42bxqOV8hRDOkWWO1oRrcB07Bwcclz3ZIot7r5zt18pG6+EKJAJPCLEin6+mVOLHonM0XPg0MdFxKcR4oeZDzp/+s335DktBTvwHDirrkRYPYSXsNeKZWXvqVuvhCisEngFyWKNhjYvWY2PqGjaaTj2Va5L42eG5tnih5A1OVrrJgxFM+gUMpbJ5B4sDYPPzoVa5+axTDywiV184UQRUUCvygxIs4d5+qSNwhM2pWRotdjGs19m+Zr3d1/beTAsfFUb3mS1GQbXI73oPHAz1GWpaf8rNTNF0IUBwn8wuTuNUUPIC01heWTx2HlswYv32vEXvSkZa0RuHUtPRX4pG6+EKI4SeAXJnUvKXpZLp8+z6+Lh1A1+ADm5mkYDgXSre9MLJycinjU9y/Huvl1XbFv5kE5qZsvhChCEviFSdyeorc7aDKNH3kx3y1wN/74ExdjvqFGyzASYpyoYXiJ2m+9UcSjvn9SN18IkZiWSGRSJJGJkdxIukFkUiRW5lZ08+lWLPuXwC+K3aHNv+C8fgjN9WVjil6TfKToASTGx7N04se4BGzCo0I0cWe86dDhW+y9S3YFPqmbL8SDy6AN3Ey+mRHMkyK5kXjDGNBvJGb+nXSDyMSM+QlpCXdso6ZzTQn84sETff0yJxe9TVD02owUvYcWEdzi0Xyvf3rPYTb89RFeLY5iMJhhfaYL7ftNQeXjWQBTkLr5QpReyenJxkB9I+nGrQH8trP1qKQo0nX6HdswU2a4lHPB1cYVV2tX/Nz9cLV2pbxNecpbl8fV2tX43sW6+GqMlMzfmOKBog0Gdq+ehc/uMQQUMEUPMorXrP5uJnG2i/EOvkTcDTeCqgzH8+UuRTzyeyN184UoebTWxKTEGM+8jQE821l59tdxqXE5bsfGwiYjWFuXx9POk4ZuDW8J4FnzXG1ccbJywtys5KXfym8hUaTuJ0UP4Ob1SJZ9PRiP4FDcbOJJOt2QLr2/x9KxZD3AJ3XzhSh+qempOQbwWwJ5tkvsaTrtjm0oFC7WLsbg3aB8A+MZuvGs3Ob/X9talv7CWRL4RZFIT0tj19Kx+J2YVuAUvSz71//HnoOfUb31CVKTbXC/+Rr+rwwuukHfg9vr5ps7WuH4UDXsgiph7li6mwAJUdy01sSmxt5yif2W17fdM49Nic1xO+XMyxkDdQXbCtRzrXfnWXnm387lnLEwK1uhsGwdrSgWpw9ux/DLmzRLO1ngFD3I+NKwfNI4LLxX49XwKrGXK9O2+Tc4e/sW4ajzT+rmC5F/qYZUopKi7rgvnv2+efaAnmpIzXE7zuWcjcG7jmudHC+vZ11it7WwlatsdyGBXxSapIQ49i78gKDwe0vRA7h67hKr5r9P1ab7sTBPhfNt6f78TMzMTX+fTOrmC5HxxTchLeGWM+9cL7EnRXIz+WaO27E0szQGbVdrV2o517rlknpWEC9vXR5na2cszaSYVWGRwC8Kxf2k6GXZvGwVYVHTqNHqLIlxjtRxH4lPv15FNOL8k7r54kGXZkgjOjk6x9SznJ5iT05PznE7jlaOxkBe07nm/5+J25S/4wzd3tJezspNRAK/uC/R1y9zcuH/CLr5xz2l6AEkJyby47iPcArYhGetKOIv1qbTYwuwdnIvolHnTermi9IuITUhx6Cd01Ps0cnRaPQd27Aws7jlITcfZ587Anj2+ZbmclZeGkjgF/fkflP0spw9cIx/Vn9A1RZHQJthG/0MHV4YXUSjzltadBLxOy4Tv0vq5ouSJd2Qzs2Um3k+uZ4V4BPTEnPcjoOlg/Gp9eqO1WlcofEtl9izB3VHK0f5kvsAksAvCiw87DjXf7z3FD3IuE/4x7ffEW23BO+mF4mPcqep31dUrFWw7RQGqZsvTCUpLSnXJ9dvP0OPTo7GoA13bMNcmRsDtqu1K16OXjk/+JZZJKaceTkTHKkoSSTwi3xLS00hdNk4/E5MwxnYXncIQb2GFihFDyAuKpofJ79PpWa7cLeJIzk8iC5PL8DConjT36RuvihsBm0gJjkmxyfXc3qCPafSrQC2FrbGoF3Fvgr+7v53PPCWdYbuWM4RMyVln0X+SeAX+XL6wFYMvwyiWfop9ts2pWKf6TTzKnh9/IPr/2PX/rFUa3uCtJRyVLL4AN/nXi6CEedO6uaLgsitdGtOl9gLq3SrjYWNCY5UlBUS+MVdJcbHsm/RMILCf7jnFD2A9PQ0fho3FrMaf1DN/wpx16rQruMCHMtXK6KR30rq5osst5duze3J9YKUbvWw88DXzTfnh95KcOlWUTZJ4Be5OrjpF1w23F+KHsD18+GsnPMelZsdxNIyGaK68mivLzEr4JeHeyF188uG1PTUHKu75fg6OZI0g5RuFWVXkf3mU0rNBboBV7XWvpnTlgJZJdycgWitdcBt69UBlmab5AN8qrX+Uik1AngFuJY570Ot9ZqiOoayKnuK3gXleU8peln+++EnTsfMwLv1GZISHKnpNRnvjg8X8ohvpdOz6uaHk3wyWurml0Jaa+JS43IM4PdautXd1p26rnXvPCsvw6VbRdlUlD/l84FpwIKsCVrr3lmvlVKTgTtKOmmtjwMBmcuYA5eAldkWmaK1nlQkIy7j7kjRq9KPRs9+RtUCpugBpCYls2T0EByabKVypUjir9ajU4/FWFsXXXMdY938HZdJvyl180uaVEMq0UnRd3RHu+O9lG4VokgVWeDXWm9SSlXPaZ7K+J/4FNA+j810AE5rrc8V8vDEbQojRS/L+b2H+HPNJ3i1OQqAXfqrdHh6aGEO1yjXuvmPSt38ona30q055ZlL6VYhSgZTXddqBVzRWp/MY7mngSW3TXtTKfUCEAq8p7WOymlFpdSrwKsAXl5e9zncB1dGit7n+J2Yfl8pepARCP78aiqRzj/j0/wC8TfdaNZ0FhU8/Qp93FI3v2jcXro1r0Ix+SndWsO5BkHWQVK6VYgSQml9Z5nGQtt4xhn/71n3+LNN/xY4pbWefJd1rYBwoIHW+krmtIrAdUADowEPrfWLeY0jMDBQh4aG3vNxPKiyUvRqpZ9iv01Gil6le0jRA4iPjGbJxHepGLIHG9tYUqNCeKjHbCwsCrdYSE518+2be0rd/LtISE3Is8VpQUu35hTApXSrECWHUmq31jowp3nFfsavlLIAngCa5LHoI8CerKAPkP21UmoW8HuRDPIBlz1FL1o5sjv4Cxp37l/gFL0sh9b8w85jU6jW4ThpqVZUdB5Nww7PFNp4pW7+rW4v3ZrbU+xSulUIkRNTXOrvCBzTWl/MY7k+3HaZXynlobWOyHz7OHCoCMb3QDu46RdcNwymub7CTteu1Hn+K5q43lszHG0wsGLEp1BvA9UCLhMX6UW7TotwdKxcKGMtS3Xzk9KScrysfnsQj0yMJCo5Skq3CiHuWVGm8y0B2gJuSqmLwHCt9RxyuG+vlPIEZmutu2S+twMeAl67bbMTlFIBZFzqD8thvshFRoreWwTd/JMLypPDD/1AcIuu97y9G6fD+GneMKqEHMLSKhmV+DiPPjHhvnPzH5S6+VmlW40B/G4PviXeyLV0q52lnTF4V7WvKqVbhRD3rUjv8ZcUZfkevzYY2P37TGrs+Qx7HU9olRdo9NxnWNvY3fM2t876nlNpi/GsfZrkRAca1P+S6j5t72ucOdXNtwuqVKLq5qekp9zRQCW3YB6VFEWavrNIzO2lW7PfM5fSrUKIwlKi7vGL4pM9Re+4RR2iH59K8wb33v0uNT6eJSOG4NBsF5VdbpAQ2YBOjy6kXLl7z803Zd38rNKt+WlxeiPxRv5Kt9pL6VYhRMkmgf8BlD1FzwnF9rpDCeo15J5S9LKc27yNvzZOpGrHIyilsbN8kw5PvnNP2yrKuvm3l27N68G3/JRure9aX0q3CiEeGBL4HzCn9v+H/vUtmqWfYp9tMyo9M51mVWve8/a01vw5ehyRVf/Cp8V5EmLdaNp8LhUqNCjwtu6lbn5W6dacAriUbhVCiIKT324PiMT4WPYvHEpgxJJCSdEDiLsUzo9TPqRC6/1UtI8hJaYVj3SbgYVF/u+551Q3v1x9FwyN7YiumMSZpDBuXNqdY+nWrKfYUwwpOW5bSrcKIUTBSeB/AGSl6DXTV9jp2i2ji949puhlOfTDCnaEz8fr4ROkp1tSsfxYfNv3znHZrNKtWUH7RtINYqOisT+sqXrSCbtEa25axbOpyl7WOG0mLP0C7LpzO/kp3Wo8K5fSrUIIcU8k8JdiUdciOLXof4WWogeQnpzMyg8/wNBkJ9UbRxAbXQUXv/c5Z2bG3iMLc32KPSk9CTQ0SKxBt6jWtIhphCUWHLA/ydZah7jkEYmLrStNrUPoIqVbhRDCZCSdrxS61xS9u5VujUyMRB29hPfZFKq2OYaVVSKhlyqzRN9AZwvGOZVurWDuRv0IL6qfLI9NlDm6nMI8wAmX5tWwqeRY1B+HEEKI20g63wMk/Owxri99g8CkUI5Y1Cal2+e4V6vO/uhDRF7O4cn1xHyUbrWw59FtlfCsm0DlTqdJSrTjjFkvvJv6M+kupVtzrJvfXurmCyFESSaBv4TJKt16ewC/Hn+Nkyc2o+NPEelqzrVytYlTKRj2vwP7b91GQUq32t5M4ZfPR2HX9iBOrtdJuNmAjp2/x8bGJcfx6TQDCYevS918IYQopSTwF7GcSrfe8uT6bU+xx6fG57gdGwO4padSzsKBSp6NaORa9b5Lt5796Rd+PbQAr25HMFMGbK3eoH2Pd3IM3mWpbr4QQjzIJPDfA2Pp1jzqrxekdGtDt4Z3lG61w5ora76jdcQqknHgXPAIGnfue18pegCGpCT+/HA4kQ12UaPVORLiyhPcdDYVK/rdstyDUjdfCCHE/5PAX0BT905l5oGZOc4rzNKtBzetpPyGoQTqK+x0KZwUPYCb+w+wYu4E3NsfoZLDTZLjW/JIlxlYZKsJn1PdfIc2VUtU3XwhhBD3RgJ/AQVXCr6lClxhl269I0Wv0xKCQ7rc93a1wcD+L6YSaliHV7fjGNItcC8/Gr/2zxiXMWXdfCGEEMVDAn8BNfVoSlOPe290k5uMFL3vqLFnLAE6nm1VX6TRs2Ooeh9d9LKkXL7Cr59+Qnqbo3h7hBMfU5U27Rbg5ORVpHXzhRBClDwS+EuA7Cl6xy3qEv3ENJrXDyqUbV/+9Xd+3bKQyo8doZx1IqQ9Trfu4zFEphC9+kyB6uYLIYQo/eQ3vAmlpaYQunQsfie/wQnFjnrDCHxy8H110ctiSEjgvw9HcrrGfnwePkVKkh3eVb/FM7UxN+YdMdbNt2lQHrtmHpTzcZJUPCGEKAMk8JvIqf1b4Ne3aJZ+mn12zanUZxpN76OLXnZx+/azcvpkbDudoGr5ayTcrEdT+89J/ymRGzePYO5oheND1bALqoS5o1Wh7FMIIUTpIIG/mN3ZRe/LQknRA9Dp6Zz6cjobYv7Fq+dRzMzTsAx/loCjD5GSHk25ms44P+qDdb3yKHM5uxdCiLJIAn8xykrRa6avsLP8o9R5bkqhpOgBpIaHs27YcCJbn6VGo7MkxZWn8r5BuBpqYNesInbNPLB0v/+sAyGEEKWbBP5ikJGi9xZBN/8q1BS9LNd//ZU/1/2GY899VHKIJPVCMAE338L5EW+pmy+EEOIWEviLUFGm6AGk3Yzh2MhZnK52CvdHN6EN5jhcfgv/dv2lbr4QQogcSeAvIhkpegMJTNpd6Cl6adFJRP+yj8vHznM66B/sKx4n4WYVQprOprxnrULZhxBCiAeTBP5ClpGi9xn+J7/BCbNCS9Ez1s3fdonEo5Gcc9rDzZbzsLOOx5DyKF0fm4SZmfxzCiGEuDuJFIUoe4reXrsQPPpMve8Uvdvr5ienx7Lb+3tcau9Gpdji5TWV2rUeKaQjEEII8aCTwF8Ibk/R29P0Sxo9fH8perfXzTezT2XvzbWktNtCeberJMTUoX2n77GzLZysACGEEGWDBP77dPDfnym/cdgtKXqN7zFFL6e6+bYNnbn63zI2WR6m6mNHKGeeRjnzl2n/2DB5eE8IIUSBSeC/R1HXIji9cBCBMX/fd4pe2vVE4nZE3FE3n/TzbJo8ghtdo6lR4wyJ8S74NZxB5cqBhXw0QgghygoJ/AWkDQZCf5tBzb1j8dcJ95yip9M1ScciidsefkfdfKsqNlz+6mv+OLUb135n8XSMIimuGZ06z8TKqnBSAYUQQpRNEvgLaPusQTSPWMQxi3pEPzG1wCl66bEpxO+6TPyOy6TfTL6jbn7ymTPseeYj9gUmUvXJo2hthovjhzRu/1IRHZEQQoiyRAJ/AXm2fpEdB6oS9ORgzMzzVxFPa01KWAxx2yNIPHQd0vUddfO11kT9uJR1Py4lrecNvCtfJD7Wk5at5uHqWjjNe4QQQggJ/AVUrV4TqtVrkq9lDclpJOy9Sty2CNKuJKCszbFv5nFH3fy0yEjCPvyYDTbX8Xj5NNY28aQnd6Frty8wN7csqkMRQghRBkngLwKpl+OJ2x5Bwp6r6JR0LD3tcOlZK8e6+XGbN7NrzHjCHtFU9z1Baoo1VSt/RZ26XU00eiGEEA8yCfyFRKcZSDx8g7jt4aScjQELha2fe8bDejnUzTckJ3Nl0iT+ObQX6xcj8XK/QnxMLTo89D12dhVNdBRCCCEedEUW+JVSc4FuwFWttW/mtKVAncxFnIForXVADuuGAbFAOpCmtQ7MnO4KLAWqA2HAU1rrqKI6hvxIi04ifsdl4nddxhCXirmrNU6PeGMbWBFzu5wv0ycdP8HJwcPY1tCcqi8cxcIyBUvVl0cf+0Ry84UQQhSpojzjnw9MAxZkTdBa9856rZSaDNy8y/rttNbXb5s2DPhHaz1OKTUs8/3QQhtxPhnr5m+PIOnoDQCs67pi38yDcrVcUGY5B29tMBC1aBE7FvzI9V5p1Kh1msQEZxr6zqVK1abFeQhCCCHKqCIL/FrrTUqp6jnNUxmntU8B7Qu42ceAtpmvvwc2UsyBP2H/VWL+OkfajSTM7CxxaFMVu+BKWLha33W91KtXufjBh2xUsbi8cRVPpygSYwPp9MgcrKzsi2n0QgghyjpT3eNvBVzRWp/MZb4G/lJKaeA7rfXMzOkVtdYRma8vA7neDFdKvQq8CuDl5VU4owZ0sgEzeytcH6qGja8byiLvevyx//zDkVHjOPCwHV6BRwGFk/0QOrR/rdDGJYQQQuSHqQJ/H2DJXea31FpfUkpVAP5WSh3TWm/KvoDWWmd+MchR5peFmQCBgYG5LldQtkEVsQuulK9lDQkJXBk/ga2795DyYio+VQ8SH1uJlq3m4+paq7CGJIQQQuTbvbePu0dKKQvgCTIe0suR1vpS5t9XgZVAcOasK0opj8zteABXi3a0d8rvw3eJhw5zvGcvfo8+itVr53GvcoG0xIfp2m2jBH0hhBAmU+yBH+gIHNNaX8xpplLKTinlkPUa6AQcypz9K9A383Vf4JciHmuB6fR0rs+axfZX32BbJ0X1R/dgYZFG5UqTebjrN1KQRwghhEkVZTrfEjIexHNTSl0Ehmut5wBPc9tlfqWUJzBba92FjPv2KzPPrC2AH7TWf2QuOg5YppR6CThHxgOCJUZqRASXhgxla0o8lm+lUq3CUeJjatDhoYWSmy+EEKJEUFoX2u3vEiswMFCHhoYW6T5i1q7lzKjP2NnOkyqtjmBpmYyV6kPr9iMlN18IIUSxUkrtzqqBczup3Hef0uPiuDLmMw5sC+VqXzt8au0mKdGJOvW/w6taC1MPTwghhLiFBP77kLB3LxeGDGW7lwuO/4umsnMkiTGN6NRlHlZWDqYenhBCCHEHCfz3QKelcX3Gd5yZt4ADj1fGK3g/AA6279Gh/UATj04IIYTInQT+Akq5cIHwwUPYFxNHwiA7fLz2Ex9bgZCQebi51zX18IQQQoi7ksBfQNeWLOGfClDh2QtUsI0lNaEDXbtNw9zcytRDE0IIIfIkgb+A1tsewqt7KGmp5fCsOIH6vj1NPSQhhBAi3yTwF1At/xCu3ginXYcFODh4mno4QgghRIFI4C+gZq0GoPVrkpsvhBCiVDJFyd5ST4K+EEKI0koCvxBCCFGGSOAXQgghyhAJ/EIIIUQZIoFfCCGEKEMk8AshhBBliAR+IYQQogyRwC+EEEKUIRL4hRBCiDJEAr8QQghRhkjgF0IIIcoQCfxCCCFEGSKBXwghhChDlNba1GMockqpa8C5QtykG3C9ELcnhBCibCvsuFJNa+2e04wyEfgLm1IqVGsdaOpxCCGEeDAUZ1yRS/1CCCFEGSKBXwghhChDJPDfm5mmHoAQQogHSrHFFbnHL4QQQpQhcsYvhBBClCES+POglEpXSu1TSh1SSi1XStlmTrdQSl1TSo0z9RiFEEKULkoprZSanO39+0qpEZmvRyil3i+qfUvgz1ui1jpAa+0LpAADMqc/BJwAeimllMlGJ4QQojRKBp5QSrkV944l8BfMZqBm5us+wFfAeaC5yUYkhBCiNEoj44G+d4p7xxL480kpZQE8AhxUSlkDHYHfgCVkfAkQQgghCmI68KxSyqk4dyqBP282Sql9QCgZZ/dzgG7ABq11IvAT0EMpZW66IQohhChttNYxwALgreLcr0Vx7qyUStRaB2SfoJTqA7RUSoVlTioPtAf+Lt6hCSGEKOW+BPYA84prh3LGX0BKKUegFeClta6uta4OvIFc7hdCCFFAWutIYBnwUnHtUwJ/wT3+f+3dPWvWUBiH8esWUYQiWnDo4OhbQajYRVDsB1A6CNZ20sWhFFzcHPwAoovg4uhiJ3ERKSji0FkQpIriC7QOPuCiSMF6OySFUNs+AfvUyrl+kCHJTXIy/cnJyTnA08xcbBx7CJyNiJ3/qE2SpP/XTarV+ZZtpxr13xPO3CdJ0hYSEQ+Au5n5qBfX941fkqQtIiJeAr+AmZ7dwzd+SZLK4Ru/JEkFMfglSSqIwS9JUkGcwEdSKxFxDZgAlqgGH30F9gJ9wD7gfV06mZmz9YyXc5l5ISIuAVfq84PA6/o6j4E54AYw37jdRGa+6u0TSWVycJ+kriLiBHALGMnMxXpFsR2ZuRARI8DVzDzTqD9CNSlJP3AwM783zn0AhjOzU+9frPenNulxpKLZ1S+pjQGgszxxVWZ2MnNhnfpx4B7VL0mjm9A+SS0Z/JLamAH2R8SbiLgTEae71I8B92m/euVYRLxobLv+tsGSVmfwS+oqM78Bx4HLwBdguu6i/0NEDFP1DnwCngDHIqK/yy2mM3Oosf3YwOZLajD4JbWSmUuZ+SwzrwNTwLk1SseBw/W3/HfA7nVqJW0yg19SVxFxKCIONA4NAR9XqdsGnAeONlavHMXVK6Utw9/5JLXRB9yOiD3AT+AtVbf/SqeA+RUD/54DgxExkJmf17j+WEScbOxPZubsBrRb0gr+zidJUkHs6pckqSAGvyRJBTH4JUkqiMEvSVJBDH5Jkgpi8EuSVBCDX5Kkghj8kiQV5DfrF6UwaTlI8gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(figsize=(8, 6))\n", "all_estimates_matched.T.plot(ax=ax)\n", "plt.ylabel(y.name)\n", "plt.xlabel(a.name)\n", "plt.xticks([0, 1], [\"PA\", \"NJ\"]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this case `Matching` and `MarginalOutcomeEstimator` are in fact identical because the solution to the matching problem is the same on the matched data. Once again, we see that all of the methods find a slight positive effect." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }