
Kubernetes Networking

Networking Models

IBM Client Developer / © 2020 IBM Corporation 2

TCP/IP Model (Internet Protocol Suit)
• Link Layer, corresponds to L2 in OSI model.
• Internet Layer (IP), networking interface or internetworking, addressing and routing for TCP/IP
• Transport Layer (UDP/TCP)
• Application Layer (HTTP, FTP, etc) corresponds to L5/L6/L7 in OSI model.

Open Systems Interconnection (OSI) Model
• L1 – Physical
• L2 – Data Link (Ethernet, PPP, VLAN, etc)
• L3 – Network (NAT, IP, IPSEC etc)
• L4 – Protocol Suites (NetBIOS, SCTP, TCP, UDP, etc)
• L5 – Session (RPC, SDP, SMB, SOCKS, etc)
• L6 – Presentation (TLS, SSL, FTP, IMAP, SSH, etc)
• L7 – Application (SOAP, DHCP, DNS, HTTP, HTTPS, NFS, POP3, SMTP, FTP, IRC, SSH, etc)

OSI Model for Kubernetes

IBM Client Developer / © 2020 IBM Corporation 3

source: https://coreos.com/blog/cluster-osi-model.html

L1: bare metal, VMs, cloud (CPU, RAM, disk, network)

L2: OS, Machine Application Binary Interface (ABI) (system calls, device
drivers, etc), kernel + [system, cgroups/namespaces, jails, zones) (RHEL,
CoreOS)

L3Cluster Consensus (etcd (consensus db built with Raft consensus
algorithm), Apache ZooKeeper, consul)

Etcd uses Raft, a consensus algorithm for distributing configuration, state and metadata information within a cluster and monitoring for any changes
to the data stack

L4: Cluster Resources (CNI, CSI)

L5: Container Orchestration (CO) (Kubernetes, OpenShift, CloudFoundry)

L6: Containers (Rocket, Docker, Podman, CRIO, containerd)

Etcd: The etcd project’s focus is safely storing critical data of a distributed system and it demonstrated its quality early on. etcd was created by the
CoreOS team in 2013, inspired by Chubby, a key-value store created for Google’s internal cluster infrastructure. Etcd was contributed to the CNCF
by Red Hat and CoreOS in December 2018. source: https://coreos.com/blog/history-etcd

https://coreos.com/blog/cluster-osi-model.html
https://coreos.com/blog/history-etcd

Software Defined Networking (SDN)

IBM Client Developer / © 2020 IBM Corporation 4

Software Defined Networking (SDN) uses software-based controllers or APIs to create and control a virtual network or traditional hardware.

Network virtualization segments different virtual networks within a single physical network or connect devices on different physical networks to create a
single virtual network.

SDN is a software defined way to control the traffic or routing of data packets through a server.
• Using an open standard software-based controller, using a single protocol to communicate with different hardware devices.
• Configure network services and allocate virtual resources to change network infrastructure in real time, to optimize data flow.
• Visibility into the entire network and creation of separate zones for devices with different security levels.

Parts of SDN architecture:
• Applications,
• Controllers,
• Networking devices.

Network Functions Virtualization (NFV) abstracts network functions from hardware and supports SDN by providing the infrastructure on which SDN
software runs.
Network Service Chaining, also known as Service Function Chaining (SFC) uses SDN to create a chain of connected network services, such as L4-7
services like firewalls, network address translation (NAT), and intrusion protection.

Network Functions Virtualization (NFV)

IBM Client Developer / © 2020 IBM Corporation 5

Network Functions Virtualization (NFV) is a way to virtualize network services such as routers, firewalls, and load balancers.

The NFV architecture is proposed by the European Telecommunications Standards Institute (ETSI), NFV consists of
• Virtualized Network Functions (VNF),
• Network Functions Virtualization infrastructure (NFVi), such as Hypervisors, and
• Management, Automation and Network Orchestration (MANO).

Container Networking

IBM Client Developer / © 2020 IBM Corporation 6

Container Networking is based for a large part on Linux networking. Containers use Linux partitioning features as Cgroups and
Namespaces that allow container processes to map to network, storage and other namespaces. Container networking uses
network namespaces of the Linux kernel.

Network namespaces:
• A container isolated network uses its own virtual interfaces like routing tables, L2 isolation, sockets and IPTABLE rules.
• Containers use iproute2 to interact with network namespaces.
• Network namespaces are stored in /var/run/netns
• Two types of network namespaces:

– Root namespace (ip link)
– Non-root namespace (ip netns, ip link)

A container network interface belongs to only one network namespace. Multiple containers require multiple interfaces or using
pseudo-interfaces like:

• Virtual bridge, using Virtual Ethernet device (veth) pairs as a tunnel between container and root namespace, and a Linux
bridge or OpenvSwitch (OVS) for connectivity between containers and external (real) interfaces.
• Multiplexing, using a network device with multiple virtual interfaces and packet forwarding rules (MACVLAN, IPVLAN),
• Hardware networks like SR-IOV (supported by most Network Interface Controllers (NIC)).

Container Networking

IBM Client Developer / © 2020 IBM Corporation 7

Docker networking uses pluggable drivers. Several drivers exist by default and provide core networking functionality.

Bridge networks
Default Docker networking mode, a Link Layer device which forwards traffic between network segments, using a software bridge, which
allows containers on the same bridge network on the same host to communicate. The Docker bridge driver automatically installs rules in
the host machines.
Docker0: a Linux bridge created by docker daemon
• 1 interface to host namespace
• All containers on the host are attached to docker0 via veth-pair
• Container gets private IP address assignment, with random MAC generation to avoid MAC collissions and ARP problems.

docker run –d –P –net=bridge training/webapp python app.py
docker ps
docker exec <containerid> ip a

Host networks
Use host’s network and share the host’s networking namespace. Container does not get its own IP-address.
Basic port mapping on host network to reach services

ifconfig | grep –A 2 eth0
docker run –d –net=host training/webapp python app.py
docker ps
docker exec <containerid> ip a | grep –A 2 eth0

Container Networking

IBM Client Developer / © 2020 IBM Corporation 8

Overlay
Creates a distributed network across multiple hosts to connect multiple containers. When you initialize a container host, two
new networks are created:
• An overlay network called ingress
• A bridge network called docker_gwbridge
All pods on the host are attached to docker0 via veth-pair

Macvlan
Connect directly to physical network, assigning a MAC address to a container’s virtual network interface, making it appear as a
physical device on the network. You can also use ipvlan, which uses L3 and L2 mode, and use an L2 bridge.

No Networking
Disable all networking, usually in conjunction with a custom network driver.

Container Network Interface (CNI)

IBM Client Developer / © 2020 IBM Corporation 9

CNI is a vendor-neutral interface between container runtimes and networks, independent of the Container Orchestration (CO) platform, e.g. Kubernetes,
OpenShift, Docker, rkt, Mesos, CloudFoundry, podman, CRI-O, Kurma, Amazon ECS. CNI (Container Network Interface) originates at CoreOS as part of
rkt. Now a CNCF project.

CNI is responsible for network connectivity of containers and removing allocated resources when the container is deleted. It consists of a specification
and libraries for writing plugins to configure network interfaces. CNI defines a basic execution flow and JSON-based configuration format for network
operations. Plugins are executables in the host, and Kubelet is the runtime on the node.

The container runtime creates the Network Namespace, identifies the network to attach containers, and invokes the plugin.
The CNI plugin or bridge program implements:
1. Create veth Pairs
2. Create Bridge Network/Interface
3. Attach vEth to Namespace
4. Attach other vEth to Bridge
5. Assign IP address
6. Bring up interfaces
7. Enable NAT

Basic plugin commands:
• ADD
• DEL
• CHECK
• VERSION

E.g. the container runtime invokes `bridge add <cid> <namespace>` to add a container to a network.

Container Network Interface (CNI)

IBM Client Developer / © 2020 IBM Corporation 10

Container Networking is based for a large part on Linux networking.

Multi-networking
CNI supports multi-networking, but Kubernetes by default does not: a Kubernetes pod is exposed only to 1 interface (and
loopback). Multus by Intel supports multi-networking using CRD-based network objects.

Reference plugins: bridge, loopback, vlan, macvlan, ipvlan, host-device, ptp (point-to-point), Windows bridge, Windows
overlay.
IPAM (IP Address Management): host-local, DHCP, static
Meta (chained) plugins: bandwidth, firewall, flannel, portmap, source-based routing, tuning
3rd Party plugins: Calico, Weave, Cilium, Multus, Romana, SR-IOV (Single Root I/O Virtualization), Nuage, Amazon ECS, Linen,
Silk (CF)

* IBM Cloud Kubernetes implements Calico
* OpenShift supports using SR-IOV hardware on nodes

https://www.redhat.com/en/blog/multus-takes-leading-role-container-networking

Container Network Model (CNM)

IBM Client Developer / © 2020 IBM Corporation 11

Aka Libnetwork supported by Docker
https://github.com/docker/libnetwork

Kubernetes Architecture

IBM Client Developer / © 2020 IBM Corporation 12

• At its core, Kubernetes is a database (etcd) with "watchers" and "controllers" that react to changes in etcd, etcd is a consensus database using Raft
• The kube-api-server is an API server that exposes the Kubernetes API, all traffic goes through the API Server
• The kube-scheduler watches for new Pods not assigned to a node and selects a node to run the Pod on,
• The kube-controller-manager runs the controller loops that make Kubernetes,
• The cloud-controller-manager interacts with the underlying cloud provider,
• The etcd key-value store represents the user defined desired state of the objects,
• The kubelet makes sure that containers are running in a Pod,
• The kube-proxy is a network proxy that maintains network rules on nodes,

https://etcd.io/docs/

API Server

IBM Client Developer / © 2020 IBM Corporation 13

The control plane on the master node(s) consists of the API
Server, the Controller Manager and Schedulers. The API Server
is the only component that talks directly to etcd and is a
gateway to etcd, which is the consensus database for the state
of your application cluster.

The API Server:

• Serves the Kubernetes API,
• Proxies cluster components such as the Kubernetes UI,
• Allows manipulation of the state of objects,
• Persists the state of objects in etcd.

https://www.openshift.com/blog/kubernetes-deep-dive-api-server-part-1

https://www.openshift.com/blog/kubernetes-deep-dive-api-server-part-1

API Server

IBM Client Developer / © 2020 IBM Corporation 14

Workflow:

1. Transport security: API Server is accessed via port 443 protected by TLS and it presents a certificate.
2. Authentication: running 1 or more authentication modules (client certificates, password, plain tokens, bootstrap tokens,
JSON web tokens)
3. Authorization: request must include username, action and target object, and is verified against a policy. Multiple
authorization modules are supported: ABAC, RBAC, Webhook.

4. Admission Controller: modify or reject requests, does not effect reads.

source: https://kubernetes.io/docs/concepts/security/controlling-access/

https://kubernetes.io/docs/concepts/security/controlling-access/

Request Flow

IBM Client Developer / © 2020 IBM Corporation 15

The API Server handles requests from within and to outside the
cluster. When an HTTP request hits the Kubernetes API:

• HTTP request is processed by a chain of Filters registered
in DefaultBuildHandlerChain(). Either the filter passes and
attaches respective info to ctx.RequestInfo, such as
authenticated user or returns an appropriate HTTP response
code.

• Next, the Multiplexer or MUX routes the HTTP request to
the respective handler, depending on the HTTP path.

• The Routes (as defined in routes/*) connect handlers with
HTTP paths.

• The handler takes the HTTP Request and Context (like user,
rights, etc.) and delivers the requested object from storage.

https://www.openshift.com/blog/kubernetes-deep-dive-api-server-part-1

https://www.openshift.com/blog/kubernetes-deep-dive-api-server-part-1

Admission Controller

IBM Client Developer / © 2020 IBM Corporation 16

An admission controller is a piece of code that intercepts requests to the Kubernetes API server prior to persistence of the object, but after the request
is authenticated and authorized. The admission control process has two phases: a mutating phase and validating phase. The controllers are compiled
into the kube-apiserver binary.

Examples of default admission controllers: AlwaysAdmit, AlwaysPullImages, AlwaysDeny, CertificateApproval, CertificateSigning, DefaultStorageClass,
EventRateLimit, NameSpaceLifecycle, NodeRestriction, PodNodeSelector, PersistentVolumeClaimResize, PodSecurityPolicy, ResourceQuota,
ServiceAccount among more than 30, and 2 webhooks with a special role: MutatingAdmissionWebhook and ValidatingAdmissionWebhook.

The webhooks do not implement any policy logic themselves, but is obtained from a REST endpoint. This approach decouples the admission controller
logic from the Kubernetes API server, allowing custom logic to be executed whenever resources are created, updated, or deleted in a Kubernetes
cluster. The webhook handles an AdmissionReview request sent by the API Server and sends back a decision in the same AdmissionReview it received.

OpenShift Container Platform (OCP) has a default set of admission plug-ins enabled for each resource type.

Kubernetes Networking

IBM Client Developer / © 2020 IBM Corporation 17

• All pods can communicate with all pods without NAT
• All nodes can communicate with all pods without NAT
• The IP of the pod is the same for itself as it is for others

4 networking problems remain:
• Container to container
• Pod to pod
• Pod to service
• Internet to service

VM
Typically, network communication on a VM interacts with an Ethernet device. In Linux,
that network communication runs within a network namespace with its own logical
networking stack with its own routes, firewall rules, and network devices.

Container to container
A pod is a group of containers that share a network namespace, they all have the same IP
address and port space assigned and can find each other via localhost. Containers join
the network namespace with the --net=container: function. Containers within a pod also
can access shared volumes, which are part of the pod and available to be mounted into
the applications filesystem. A pod exists in its own Ethernet namespace.

VM

root network
namespace

eth0

VM

root network
namespace

eth0

Pod 1 ns Pod 2 ns

ctr1 ctr2 ctr1 ctr2

Kubernetes Networking

IBM Client Developer / © 2020 IBM Corporation 18

Pod to pod
A pod exists in its own Ethernet namespace that needs to communicate with other network namespaces
on the same node. Pods or Namespaces can be connected using a Linux Virtual Ethernet Device or veth
pair, consisting of two virtual interfaces across multiple namespaces. One side of the veth pair is
connected to the root network namespace, and the other side to the Pod’s network namespace. This setup
can be replicated for all pods on the VM. The veth connects a pod namespace to the root namespace.

A bridge connects pod namespaces. A Linux Ethernet bridge is a virtual Layer 2 (L2) networking device to
connect two networks by maintaining a forwarding table between sources and destinations by examining
the destination of the data packets and looking at the MAC-address of each Ethernet device in the network.

Bridges implement the ARP protocol to discover the link-layer MAC address associated with an IP address.
The bridge broadcasts the data frame out to connected devices except the sender and the device that
responds to the frame is stored in a lookup table. But the Kubernetes networking model dictates that pods
can reach pods by their IP address across nodes.

Generally, every Node in your cluster is assigned a CIDR block specifying the IP addresses available to
Pods running on that Node. Once traffic destined for the CIDR block reaches the Node it is the Node’s
responsibility to forward traffic to the correct Pod. On failure to find the correct MAC address, the bridge
sends the packet out the default route — the root namespace’s eth0 device. At this point the route leaves
the Node and enters the network. The network routes the packet to the correct Node based on the CIDR
block assigned to the Node. How this is done is network specific.

The Container Networking Interface (CNI) provides a common API for connecting containers to the
outside network.

VM

root netns

eth0

Pod 1 ns Pod 2 ns

veth0 veth1

eth0 eth0

VM

eth0

Pod 1 ns Pod 2 ns

veth0 veth1

eth0 eth0

root netns

cbr0

Service

IBM Client Developer / © 2020 IBM Corporation 19

The connection for Pod to service and Internet to service is handled by Kubernetes Service types.

The Service object is an abstraction of a logical set of Pods exposed through Endpoints that are updated whenever the set of
Pods in a Service change. Every Service defined in the cluster is assigned a DNS name that maps to the ClusterIP of the
Service. Kubelets on nodes in the cluster are configured to use the IP of the DNS Service to resolve DNS names for Service
Discovery. The Endpoints for a set of pods are determined using a Selector. Labels are key/value pairs that are attached to
objects can be used to organize and select subsets of objects. The label selector is the core grouping primitive in Kubernetes.

Service types:

• ClusterIP, default Service type that exposes the service on a cluster-internal IP only.
• NodePort, exposes the service on each Node’s IP at a static port (the NodePort). A ClusterIP service, to which the NodePort

service will route, is automatically created.
• LoadBalancer, on top of a NodePort and ClusterIP, exposes the service externally using a cloud provider’s load balancer.
• ExternalName, maps the service to the externalName field (e.g. foo.bar.example.com) by returning a CNAME record with its

value.
• Ingress
• Route

Ingress

IBM Client Developer / © 2020 IBM Corporation 20

An Ingress resource manages external access to the services in a cluster, typically HTTP/HTTPS. Ingress can also provide load balancing,
TLS termination and name-based virtual hosting. Ingress consists of an Ingress API object and the Ingress Controller. The Ingress
Controller implements the Ingress API. The Ingress Controller is usually a load balancer for routing external traffic to your Kubernetes
cluster and is responsible for L4-L7 Network Services.

Ingress consists of three components:
• Ingress resources,
• L7 Application Load Balancer (ALB),
• An external L4 load balancer to handle incoming requests across zones, depending on the provider.

To expose an app by using Ingress, you must create a Kubernetes service for your app and register this service with Ingress by defining an
Ingress resource. The Ingress resource is a Kubernetes resource that defines the rules for how to route incoming requests for apps.

source: https://cloud.ibm.com/docs/containers?topic=containers-ingress-about

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
spec:
backend:
serviceName: helloworld
servicePort: 8080

https://cloud.ibm.com/docs/containers?topic=containers-ingress-about

Service

IBM Client Developer / © 2020 IBM Corporation 21

Ingress Application Load Balancer (ALB)

IBM Client Developer / © 2020 IBM Corporation 22

The Ingress Application Load Balancer (ALB) is a layer 7 (L7) load balancer which implements the NGINX Ingress controller. A layer 4 (L4)
LoadBalancer service exposes the ALB so that the ALB can receive external requests that come into your cluster.

The Application Load Balancer (ALB) is an external load balancer that listens for incoming HTTP, HTTPS, or TCP service requests. The ALB
then forwards requests to the appropriate app according to the rules defined in the Ingress resource.

When you create a standard cluster, IBM Cloud Kubernetes Service automatically creates a highly available ALB in each zone where you
have worker nodes. In classic clusters, the Ingress subdomain for your cluster is linked to the public ALB IP addresses. For classic clusters,
the ALB is a Multi-Zone Load Balancer (MZLB) that IBM Cloud Kubernetes Service creates for you.

In a VPC cluster, one public VPC load balancer is automatically created outside of your cluster in your VPC. The public VPC load balancer
puts the public IP addresses of your public ALBs behind one hostname. In VPC clusters, a hostname is assigned to the ALBs because the
ALB IP addresses are not static. This ALB hostname is different than the Ingress subdomain. The services that expose your ALBs on public
or private IP addresses are formatted as public-abc12 in the kube-system namespace.

The Kubernetes Ingress image is built on the community Kubernetes project's implementation of the NGINX Ingress controller. The
Kubernetes Ingress controller image is now supported for Ingress ALBs, and all new ALBs run the Kubernetes Ingress image by default.

source: https://cloud.ibm.com/docs/containers?topic=containers-ingress-about

https://cloud.ibm.com/docs/containers?topic=containers-ingress-about

Ingress Application Load Balancer (ALB)

IBM Client Developer / © 2020 IBM Corporation 23

ibmcloud ks ingress secret create --cluster <cluster_name> --cert-crn <CRN> --name <secret_name> --
namespace <namespace>

apiVersion: networking.k8s.io/v1beta1 # For Kubernetes version 1.19, use networking.k8s.io/v1 instead
kind: Ingress
metadata:

name: community-ingress-resource
annotations:

kubernetes.io/ingress.class: "<public|private>-iks-k8s-nginx"
spec:

tls:
- hosts:

- <domain>
secretName: <tls_secret_name>

rules:
- host: <domain>

http:
paths:
- path: /<app1_path>

backend:
serviceName: <app1_service>
servicePort: 80

- path: /<app2_path>
backend:

serviceName: <app2_service>
servicePort: 80

kubectl apply -f ingress-resource.yaml -n <namespace>

Route

IBM Client Developer / © 2020 IBM Corporation 24

The Route is an OpenShift resource that was created before
the Ingress was added to Kubernetes. Route also enables
external access to services with additional capabilities like
splitting traffic between multiple backends, sticky sessions.
Route principles heavily influenced the Ingress design.

When a Route object is created on OpenShift the built-in
HAProxy load balancer exposes the requested service and
makes it externally available.

Routes are assigned a hostname from the router subdomain
that external clients can use to send requests to your app.

OpenShift offers 4 types of routes:
• Simple, to handle non-encrypted HTTP traffic,
• Passthrough, to pass TLS connections without

interruption to the pod, no TLS termination,
• Edge, to handle encrypted HTTPS traffic for non-

encrypted HTTP endpoints,
• Re-encrypt, uses TLS termination and new TLS

connection between router and pod.

source: https://cloud.ibm.com/docs/openshift?topic=openshift-openshift_routes

https://cloud.ibm.com/docs/openshift?topic=openshift-openshift_routes

DNS Server

IBM Client Developer / © 2020 IBM Corporation 25

The Kubernetes DNS server watches the Kubernetes API for new Services and changes. It creates a set of DNS records for
each service. Kubernetes DNS schedules a DNS Pod and Service on the cluster, and configures the kubelets to tell individual
containers to use the DNS Service's IP to resolve DNS names. Pods can resolve Services by their DNS name.

In Kubernetes version 1.11 and later, CoreDNS is recommended and installed by default with kubeadm. CoreDNS is a DNS
server written in Go. There are currently about 30 plugins included in the default CoreDNS install, as well as external plugins.

When a query is processed by CoreDNS, the following steps are performed with the request:
- Route request to the closest zone and port,
- Route request through the static plugin chain,
- Each plugin inspects the request and determines if it should process the request, processing means responding to client.

Kubernetes also supports DNS SRV (DNS Service) records for named ports. If the `my-service.my-ns` Service has a port named
"http" with the protocol set to TCP, you can do a DNS SRV query for `_http._tcp.my-service.my-ns` to discover the port number
for `http` as well as the IP address.

The Kubernetes DNS server is the only way to access ExternalName Services.

DNS policies can be set per pod via the `dnsPolicy` field: Default (inherit from node), ClusterFirst (default, forward to
upstream nameserver), ClusterFirstWithHostNet, None. The `dnsConfig` field on a Pod, allows you control on DNS settings for
a Pod: nameservers, searches, options.

https://coredns.io/

Network Policy

IBM Client Developer / © 2020 IBM Corporation 26

By default, pods are non-isolated and accept traffic from any source. Network isolation and traffic control at the IP address or
port level, OSI layer 3 or 4 (L3 or L4), in a cluster is implemented by using a Container Network Interface (CNI) plug-in that
supports Kubernetes network policy. A NetworkPolicy is a set of rules applied to a collection of endpoints that match a label
selector within a namespace. For non-namespaced network policies, use a GlobalNetworkPolicy.

There are four kinds of selectors in an ingress from section or egress to section:

• podSelector,
• namespaceSelector,
• podSelector and namespaceSelector,
• ipBlock for IP CIDR ranges.

Every IBM Cloud Kubernetes Service cluster is set up with a network plug-in called Calico. When a Kubernetes network policy
is applied, it is automatically converted into a Calico network policy.

Network Policy

IBM Client Developer / © 2020 IBM Corporation 27

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: helloworld-deny-all
spec:

podSelector: {}
policyTypes:

- Ingress
- Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-helloworld
spec:

policyTypes:
- Ingress

podSelector:
matchLabels:

app: helloworld
ingress:

- {}

Security Context

IBM Client Developer / © 2020 IBM Corporation 28

A security context defines privilege and access control settings for a Pod or Container. Security context settings include, but
are not limited to:

• Discretionary Access Control (DAC),

• Security Enhanced Linux (SELinux),

• Linux Capabilities,

• Seccomp,

• SecurityContextConstraint (SCC), ServiceAccount (SA), and Role Based Access Control (RBAC),

Pod Security Policy

IBM Client Developer / © 2020 IBM Corporation 29

Pod Security Policies enable fine-grained authorization of pod creation and updates. A Pod Security Policy is a cluster-level
resource that controls security of the pod specification. The PodSecurityPolicy object defines a set of conditions that a pod
must run. PodSecurityPolicies are implemented as an admission controller.

Group Name / DOC ID / Month XX, 2018 / © 2018 IBM Corporation 30

