CMPT 155: Computer Applications for Life Sciences

Lecture 11: Continuous Probability - The Normal Distribtuion

Ivan E. Perez

April 19, 2022

Presentation Outline

(1) Homework \& Administrative
(2) Introduction to Continuous Random Variables and the Normal Distribution
(3) Defining the Normal Distribution

- Parameters of a Normal Distribution
- Equations of the Normal Distribution

4 The NORMDIST function

- Example 1a: Plotting the Normal Distribution
- Example 1b: Heights
(5) Facts and Special Cases of the Normal Distribution

6 Further Reading

Homework \& Administrative Schedule

- Homeworks:
- \#6 Due: Friday April $22^{\text {th }}$ at 6 pm
- \#7 Due: Friday, April $29{ }^{\text {rd }}$ at 6 pm
- \#8 Due: Friday, May $6^{\text {th }}$ at 6 pm
- Final Exam Review: Tuesday, May $3^{\text {rd }}$ at $6 p m$
- Mock Final Exam: Wednesday, May $4^{\text {th }}$
- Final Exams:
- Section 01 (8am) Final Exam: May 9th 11am - 1pm
- Section 02 (9am) Final Exam: May 10 th 11 am - 1pm

Differences Between Discrete and Continuous

Random Variables

- Discrete probability is computed by counting the subset of outcomes that satisfy restrictions against the broader set of outcomes.
- Coninuous probability is about measuring the range of outcomes that satisfy restrictions against the broader range of outcomes.
Example:
- In the Binomial Model for Probability we were interested in the direcete number of k-success in n-trials.
- In the Poisson Model for Probability we were interested in the discrete number of x-arrivals in a period of length t.
- In the Guassian(Normal) Model for Probability we are interested in ranges of values.

Why Should I care about the Normal Distribution?

While few random variables are normally distributed on their own. The Central Limit Theorem states that the sum of non-normally distributed random variables tends to turn into a normal distribution as more random variables are added to the sum.
Example: Adding Die to a dice roll

Examples/Descriptions of the Normal Distribution

Common Examples of Normal Distributions include:

- Distribution of Heights at different ages
- Distribution of food weights at a deli.
- Distribution of Test scores.

The Normal Distribution has the following characterstics:

- Symmetric about the Mean.
- The Mode, Mean, and Median are all equivalent values.
- 50% of values lie below the Mean, and 50% of values lie above the mean.
- long tails that stretch infinitely.

Features/Parameters of the Normal Distribution

Normally distributed random variables can be described using the parameters for location, μ, and dispersion σ^{2}.

- Mean - μ
- Measure of central tendency/location
- Can be estimated using AVERAGE(),
- Variance - σ^{2}
- Measure of dispersion/scale
- Can be estimated using VAR() or VAR.S()
- its cousin Standard Deviation, σ
\star Can be estimated using $\operatorname{STDEV}()$
\star is just $\sqrt{\sigma^{2}}$

Equations of the Normal Distribution

Probability density functions(pdf's) can be used to describe distributions. For a given μ, σ, the normal distribution's probability density function is

$$
\begin{equation*}
f(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \tag{1}
\end{equation*}
$$

Where x is the input variable whose probability density is being computed using $f(x, \mu, \sigma)$.
The probability of a range of values is the area under the curve(AUC) between two computed probability densities.
The probability of a random variable, \mathbf{X}, being within the range of x_{1}, and x_{2}, (i.e., $\left[x_{1}, x_{2}\right]$), for a given μ, σ is:

$$
\begin{equation*}
P\left(x_{1} \leq \mathbf{X} \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(\mathbf{X}, \mu, \sigma) d x \tag{2}
\end{equation*}
$$

Equations of the Normal Distribution

Unfortunately, NORMDIST() only computes probabilities from $-\infty$ to x in the form:

$$
\begin{equation*}
P(\mathbf{X} \leq x)=\int_{-\infty}^{x} f(x, \mu, \sigma) d x \tag{3}
\end{equation*}
$$

We can express (Eq. 2) as a difference of probabilities,

$$
\begin{equation*}
P\left(x_{1} \leq \mathbf{X} \leq x_{2}\right)=P\left(\mathbf{X} \leq x_{2}\right)-P\left(\mathbf{X} \leq x_{1}\right) \tag{4}
\end{equation*}
$$

To express probabilities where the random variable, \mathbf{X}, is at least x_{1}; we take the complement of $P\left(\mathbf{X} \leq x_{1}\right)$:

$$
\begin{equation*}
P\left(\mathbf{X} \geq x_{1}\right)=\left(P\left(\mathbf{X} \leq x_{1}\right)\right)^{c}=1-P\left(\mathbf{X} \leq x_{1}\right) \tag{5}
\end{equation*}
$$

The NORMDIST() function

NORMDIST() computes the output of the pdf, $f(x, \mu, \sigma)$, if cumulative is set to FALSE, or the probability $P(\mathbf{X} \leq x)$ if cumulative is set to TRUE.
The arguments are:

- x : numeric
- The input, x, for computing either $f(x, \mu, \sigma)$ or $P(\mathbf{X} \leq x)$.
- mean : numeric
- μ the population mean of the normal distribution.
- standard_dev : numeric
- σ the population standard deviation.
- Must be 0 or more.
- cumulative: TRUE or FALSE
- TRUE : Computes $P(\mathbf{X} \leq x)$.
- FALSE: Computes $f(x, \mu, \sigma)$.

Example 1a: Plotting the Normal Distribution

Use NORMDIST() to plot heights of men aged 60-69 years, given that their height is on average $5^{\prime} 9^{\prime \prime}$ with a standard deviation of 3 inches. Heights are assumed to be normally distributed about the mean.
(1. Label columns A, B, and C as 'Height', 'Density', and 'Cumulative' respectively.
(2) In cells A2:A20 List the heights increasing in 1in increments from the mean minus 3 standard deviations, (i.e., 60 in) to the mean plus 3 standard deviations (i.e., 78 in).

- In cell B2 compute the probability density that of male at this height.
- In cell B2 type $=$ NORMDIST(A2, 69, 3, FALSE)
(0) Use Autofill to compute densities in cells B3:B20.

Example 1a: Solution

(1) In cell C2 compute the probability that a male will be this height or shorter.

- In cell C2 type =NORMDIST (A2, 69, 3, TRUE)
(2) Use Autofill to compute the probabilities in cells C3:C20.
(3) Plot the probability density function and cumulative probabilities using separate 2D-Column charts.
- Make sure that the column labels reference A2:A20.
- Remember to only plot these values as a single series.

Example 1a: Solution

Example 1b: Heights

According to US Census Data in 2007/2008 Men aged 60-69 years, are on average 5 ' 9 " with a standard deviation of 3 inches. Heights are assumed to be normally distributed about the mean.

What is the proportion of men who are:
(1) Less than and including to 65 inches tall?
(2) Less than and including to 69 inches tall?

- Greater than 71 inches tall?
- Greater than 68 inches tall?
(0) Between 67 and 70 inches (inclusive)tall?

Example 1b: Solution

For Probabilities that include:

- fewer then compute $P(\mathbf{X} \leq x)$.
- Example 1b Q1:

$$
P(\mathbf{X} \leq 65) \text { type: }=\operatorname{NORMDIST}(65,69,3, \text { TRUE })
$$

- greater then compute $P(\mathbf{X} \geq x)$.
- Use (Eq. 5) to express $P(\mathbf{X} \geq x)$ as a complement of $P(\mathbf{X} \leq x)$.
- Example 1b Q3:

$$
P(\mathbf{X} \geq 71)=(P(\mathbf{X} \leq x))^{c}=1-P(\mathbf{X} \leq x) \text { type: }
$$

$=1-$ NORMDIST $(71,69,3$, TRUE).

- lower, x_{1} and upper, x_{2} bounds then compute $P\left(x_{1} \leq \mathbf{X} \leq x_{2}\right)$.
- Use (Eq. 4) to express the probability as a difference.
- Example 1b Q5:

$$
\begin{aligned}
& P\left(x_{1} \leq \mathbf{X} \leq x_{2}\right)=P\left(\mathbf{X} \leq x_{2}\right)-P\left(\mathbf{X} \leq x_{1}\right) \text { type: } \\
& =\operatorname{NORMDIST}(70,69,3, \operatorname{TRUE})-\operatorname{NORMDIST}(67,69,3, \text { TRUE })
\end{aligned}
$$

Example 1b: Solution

Range	Expression	Computation	Result
($-\infty, 65$]	$P(X \leq 65)$	=NORMDIST (65, 69, 3, TRUE)	0.0912
$(-\infty, 69]$	$P(X \leq 65)$	$=$ NORMDIST (69, 69, 3, TRUE)	0.5000
$[71, \infty)$	$P(X \geq \mathbf{7 1})$	=1-NORMDIST ($71,69,3$, TRUE)	0.2523
$[68, \infty)$	$P(X \geq 68)$	$=1-\operatorname{NORMDIST}(68,69,3$, TRUE)	0.6306
[67, 70]	$P(67 \leq X \leq 70)$	$\begin{aligned} & =\operatorname{NORMDIST}(70,69,3, \text { TRUE })- \\ & \\ & \operatorname{NORMDIST}(67,69,3, \text { TRUE }) \end{aligned}$	0.3781

Facts to Remember about the Normal Distribution

(1) $\sim 68 \%$ of the area under the curve is enclosed within ± 1 standard deviation, 1σ, from the mean, μ.
(2) $\sim 95 \%$ of the area under the curve is enclosed within ± 2 standard deviations, 2σ, from the mean, μ.
(3) $\sim 99 \%$ of the area under the curve is enclosed within ± 3 standard deviations 3σ, from the mean, μ.

The Standard Normal Distribution

The Standard Normal Distribution is a special case of the Normal Distribution. where

- The mean, $\mu=0$
- The standard deviation, $\sigma=1$.

Figure: The Standard Normal Distribution

Further Reading

The topics covered in the lecture can be found in Compter Applications for Life Sciences p. 76-84.

