CMPT 155: Computer Applications for Life Sciences

Lecture 11: Continuous Probability - The Normal Distribution

Ivan E. Perez

April 19, 2022

Ivan E. Perez

CMPT 155: Computer Applications for Life S

April 19, 2022 1 / 19

Presentation Outline

- Homework & Administrative
- Introduction to Continuous Random Variables and the Normal Distribution
- 3 Defining the Normal Distribution
 - Parameters of a Normal Distribution
 - Equations of the Normal Distribution

The NORMDIST function

- Example 1a: Plotting the Normal Distribution
- Example 1b: Heights
- 5 Facts and Special Cases of the Normal Distribution
- 6 Further Reading

Homework & Administrative Schedule

• Homeworks:

- ▶ #6 Due: Friday April 22th at 6pm
- #7 Due: Friday, April 29 rd at 6pm
- ▶ #8 Due: Friday, May 6th at 6pm
- Final Exam Review: Tuesday, May 3rd at 6pm
- Mock Final Exam: Wednesday, May 4th

• Final Exams:

- Section 01 (8am) Final Exam: May 9th 11am 1pm
- Section 02 (9am) Final Exam: May 10th 11 am 1pm

Differences Between Discrete and Continuous Random Variables

- Discrete probability is computed by *counting* the subset of outcomes that satisfy restrictions against the broader set of outcomes.
- Coninuous probability is about *measuring* the range of outcomes that satisfy restrictions against the broader range of outcomes.

Example:

- In the Binomial Model for Probability we were interested in the **direcete** number of *k*-success in *n*-trials.
- In the Poisson Model for Probability we were interested in the **discrete** number of *x*-arrivals in a period of length *t*.
- In the Guassian(Normal) Model for Probability we are interested in **ranges** of values.

Why Should I care about the Normal Distribution?

While few random variables are normally distributed on their own. The Central Limit Theorem states that the sum of non-normally distributed random variables tends to turn into a normal distribution as more random variables are added to the sum.

Example: Adding Die to a dice roll

Examples/Descriptions of the Normal Distribution

Common Examples of Normal Distributions include:

- Distribution of Heights at different ages
- Distribution of food weights at a deli.
- Distribution of Test scores.

The Normal Distribution has the following characterstics:

- Symmetric about the Mean.
- The Mode, Mean, and Median are all equivalent values.
- $\bullet~50~\%$ of values lie below the Mean, and 50 % of values lie above the mean.
- long tails that stretch infinitely.

Features/Parameters of the Normal Distribution

Normally distributed random variables can be described using the parameters for location, μ , and dispersion σ^2 .

- Mean μ
 - Measure of central tendency/location
 - Can be estimated using AVERAGE(),
- Variance σ^2
 - Measure of dispersion/scale
 - Can be estimated using VAR() or VAR.S()
 - its cousin Standard Deviation, σ
 - ★ Can be estimated using STDEV()
 - \star is just $\sqrt{\sigma^2}$

Equations of the Normal Distribution

Probability density functions(pdf's) can be used to describe distributions. For a given μ, σ , the normal distribution's probability density function is

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$
 (1)

Where x is the input variable whose probability density is being computed using $f(x, \mu, \sigma)$.

The probability of a range of values is the area under the curve(AUC) between two computed probability densities.

The probability of a random variable, **X**, being within the range of x_1 , and x_2 , (i.e., $[x_1, x_2]$), for a given μ, σ is:

$$P(x_1 \leq \mathbf{X} \leq x_2) = \int_{x_1}^{x_2} f(\mathbf{X}, \mu, \sigma) dx$$
(2)

Equations of the Normal Distribution

Unfortunately, NORMDIST() only computes probabilities from $-\infty$ to x in the form:

$$P(\mathbf{X} \le x) = \int_{-\infty}^{x} f(x, \mu, \sigma) dx.$$
(3)

We can express (Eq. 2) as a difference of probabilities,

$$P(x_1 \leq \mathbf{X} \leq x_2) = P(\mathbf{X} \leq x_2) - P(\mathbf{X} \leq x_1)$$
(4)

To express probabilities where the random variable, **X**, is at least x_1 ; we take the complement of $P(\mathbf{X} \leq x_1)$:

$$P(\mathbf{X} \ge x_1) = (P(\mathbf{X} \le x_1))^c = 1 - P(\mathbf{X} \le x_1)$$
(5)

The NORMDIST() function

NORMDIST() computes the output of the pdf, $f(x, \mu, \sigma)$, if cumulative is set to FALSE, or the probability $P(\mathbf{X} \leq x)$ if cumulative is set to TRUE.

The arguments are:

• x : numeric

• The input, x, for computing either $f(x, \mu, \sigma)$ or $P(\mathbf{X} \leq x)$.

- mean : numeric
 - μ the population mean of the normal distribution.
- standard_dev : numeric
 - σ the population standard deviation.
 - Must be 0 or more.
- cumulative : TRUE or FALSE
 - TRUE : Computes $P(\mathbf{X} \leq x)$.
 - FALSE: Computes $f(x, \mu, \sigma)$.

Example 1a: Plotting the Normal Distribution

Use NORMDIST() to plot heights of men aged 60-69 years, given that their height is on average 5'9" with a standard deviation of 3 inches. Heights are assumed to be normally distributed about the mean.

- Label columns A, B, and C as 'Height', 'Density', and 'Cumulative' respectively.
- In cells A2:A20 List the heights increasing in 1in increments from the mean minus 3 standard deviations, (i.e., 60 in) to the mean plus 3 standard deviations (i.e., 78 in).
- In cell B2 compute the probability *density* that of male at this height.
 - In cell B2 type =NORMDIST(A2, 69, 3, FALSE)
- **9** Use Autofill to compute *densities* in cells B3:B20.

Example 1a: Solution

- In cell C2 compute the probability that a male will be this height or shorter.
 - In cell C2 type =NORMDIST(A2, 69, 3, TRUE)
- **2** Use Autofill to compute the probabilities in cells C3:C20.
- Plot the probability density function and cumulative probabilities using separate 2D-Column charts.
 - Make sure that the column labels reference A2:A20.
 - Remember to only plot these values as a single series.

Example 1a: Solution

	A	В	С	D		E			1	-		G				Н				Т	
1	Height	Density	Cumulative																		
2	60	0.0014773	0.0013499						Die	a state											
3	61	0.0037987	0.0038304		Distribution of Heights																
4	62	0.0087406	0.0098153		0.14																
5	63	0.017997	0.0227501		0.12								H								
6	64	0.033159	0.0477904	sity	0.1								H	÷							
7	65	0.05467	0.0912112	Den	0.08																
8	66	0.0806569	0.1586553	lity	0.06																
9	67	0.1064827		lec										T		T.					
10	68	0.1257944		Pro	0.04					H				t	T.	t					
11	69	0.1329808			0.02			÷	÷	H				÷	÷	t	÷	÷.			
12	70	0.1257944			0																-
13	71	0.1064827	0.7475075			60 61	62	63	64	65 6				71	72	73	74	75	76	77	78
14	72	0.0806569									ŀ	leight	(inche	s)							
15	73	0.05467																			
16	74	0.033159																			
17	75	0.017997	0.9772499				Cu	mu	lati	ve D	Distr	ibuti	ion d	of⊦	lei	ght	s				
18	76	0.0087406			1.2 -																
19	77	0.0037987	0.9961696																		
20	78	0.0014773	0.9986501	lity.	1 -													T.	Т		E -
21				bab	0.8 -										1	Ł	÷	÷	ł	÷	
22				Pro	0.6 -											L		L			
23				tivee																	
24				Cumulativee Probability	0.4 -										t	t	t	t			
25				- Jo	0.2 -						1	1				L	L			1	L -
26										1											
27					0	60 61	62	63	6 4 6	5 66	67	68 69	70	71	72	73	74	75	76	77	78
28						01						eight (-
29																					
30																					

April 19, 2022 13 / 19

< □ > < 同 > < 回 > < 回 > < 回 >

э

Example 1b: Heights

According to US Census Data in 2007/2008 Men aged 60-69 years, are on average 5'9" with a standard deviation of 3 inches. Heights are assumed to be normally distributed about the mean.

What is the proportion of men who are:

- Less than and including to 65 inches tall?
- 2 Less than and including to 69 inches tall?
- Greater than 71 inches tall?
- Greater than 68 inches tall?
- Setween 67 and 70 inches (inclusive)tall?

Example 1b: Solution

For Probabilities that include:

- *fewer* then compute $P(\mathbf{X} \leq x)$.
 - ► Example 1b Q1: P(X ≤ 65) type: =NORMDIST(65, 69, 3, TRUE).
- greater then compute $P(\mathbf{X} \ge x)$.
 - Use (Eq. 5) to express $P(\mathbf{X} \ge x)$ as a complement of $P(\mathbf{X} \le x)$.
 - Example 1b Q3: $P(\mathbf{X} \ge 71) = (P(\mathbf{X} \le x))^c = 1 - P(\mathbf{X} \le x)$ type: =1-NORMDIST(71, 69, 3, TRUE).

• *lower*, x_1 and *upper*, x_2 bounds then compute $P(x_1 \le \mathbf{X} \le x_2)$.

- Use (Eq. 4) to express the probability as a difference.
- Example 1b Q5:

 $P(x_1 \le X \le x_2) = P(X \le x_2) - P(X \le x_1)$ type: =NORMDIST(70, 69, 3, TRUE) - NORMDIST(67, 69, 3, TRUE)

Example 1b: Solution

Range	Expression	Computation	Result
(−∞, 65]	<i>P</i> (<i>X</i> ≤ 65)	=NORMDIST(65, 69, 3, TRUE)	0.0912
$(-\infty, 69]$	<i>P</i> (<i>X</i> ≤ 65)	=NORMDIST(69, 69, 3, TRUE)	0.5000
$[71,\infty)$	$P(X \ge 71)$	=1-NORMDIST(71, 69, 3, TRUE)	0.2523
$[68,\infty)$	<i>P</i> (<i>X</i> ≥ 68)	=1-NORMDIST(68, 69, 3, TRUE)	0.6306
[67, 70]	$P(67 \le X \le 70)$	=NORMDIST(70, 69,3,TRUE) -	0.3781
		NORMDIST(67, 69,3, TRUE)	

э

A D N A B N A B N A B N

Facts to Remember about the Normal Distribution

- ~ 68% of the area under the curve is enclosed within ± 1 standard deviation, 1σ , from the mean, μ .
- 2 ~ 95% of the area under the curve is enclosed within ± 2 standard deviations, 2σ , from the mean, μ .
- ~ 99% of the area under the curve is enclosed within ± 3 standard deviations 3σ , from the mean, μ .

The Standard Normal Distribution

The Standard Normal Distribution is a special case of the Normal Distribution. where

- $\bullet\,$ The mean, $\mu=0$
- The standard deviation, $\sigma = 1$.

Figure: The Standard Normal Distribution

Ivan E. Perez

CMPT 155: Computer Applications for Life S

The topics covered in the lecture can be found in *Compter Applications for Life Sciences* p. 76-84.