CMPT 155: Computer Applications for Life Sciences

Lecture 12: Importing, Sorting and Parsing Data; Matrix Operations

Ivan E. Perez

April 26, 2022

Presentation Outline

(1) Homework \& Administrative
(2) Importing, Sorting and Parsing Data

- Importing Data
- Parsing Data
- Sorting Data
- Example 1: NY Data
- Exercise 1: Jordan Sales
(3) Matrices
- Matrix Operations
- Solving Linear Equations
- Example 2

4 Further Reading

Homework \& Administrative Schedule

- Homeworks:
- \#7 Due: Friday, April $29^{\text {rd }}$ at 6 pm
- \#8 Due: Friday, May $6^{\text {th }}$ at 6 pm
- Final Exam Review: Tuesday, May $3^{\text {rd }}$ at $6 p m$
- Mock Final Exam: Wednesday, May $4^{\text {th }}$
- Final Exams:
- Section 01 (8am) Final Exam: May 9 th 11 am - 1 pm
- Section 02 (9am) Final Exam: May 10 th 11 am - 1pm

Importing Data

Data can be imported from:

- text files (e.g., .txt, .csv)
- database connections (e.g., MySQL, MSAccess)

Importing from Text Files

Importing Data From Text

- right (Ctrl) -click a text file and try opening it with Excel
- In the Data Tab go to (Get Data) followed by From Text
- The Text to Columns wizard should start up.

Parsing Data

Data can be parsed using the Text to Columns wizard.

Figure: Step 1:
Specify the way you wanted to delimit (i.e., separate/find breaks) in your data.

Figure: Step 2: Apply the delimiter that makes sense for your raw data. In this case 'Commas', ',' is our delimiter.

Figure: Step 3: Verify that data has been parsed correctly, and add final touches and/or Advanced options.

Concatenating Data

Cells can be concatenaed by using the ' $\&$ ' operator or using CONCAT().

	A	B	C	D	E	F	G	H
1	sneaker_name	sales	retail_price	average_sale_price	highest_price	lowest_price	release_date	condition
2	Jordan 4 Retro Bred (2019)	28140	200	254	520	138	5/4/19	New
3	Jordan 1 Retro High Travis Scott	17269	175	1013	3000	578	5/11/19	New
4								
5	Concatedated using							
6	CONCAT	=CONCAT(A2:H2)	Jordan 4 Retro Bred (2019)2814020025452013843589New					
7	\&	$\begin{aligned} & =A 2 \& B 2 \& C 2 \& D 2 \\ & \& E 2 \& F 2 \& G 2 \& H 2 \end{aligned}$	Jordan 4 Retro Bred (2019)2814020025452013843589New					

Sorting Data

Data can be sorted in the Home \rightarrow Sort \& Filter Menu:

- manually by using 'Custom Sort' wizard.
- by A-Z by using 'Sort A to Z' or 'Sort Z to A'.
- automatically selecting Filter icon and using the Filter submenus.

Filtering Data

Data can be filtered and sorted using the Autofilter button in the Data Tab.

Example 1: NY data

Restated from p. 45
(1) Open: NYC Open Data Search 311 Service Requests 2010 to Present.
(2) Click Export \rightarrow CSV. A very long download should start.

- If you want to get a feel for the data try using a snippet of this dataset called NYCOpenData311Sample.csv
(3) Try importing this data using the Data import wizard.
(4) Try answering the following questions:
© How Many 311 requests were filed under the Department of Transportation (DOT), and how many were filed under the NYPD?
(3) How many complaints did each Borough(Communitys) have?
(- What Type of complaint was the most common?
(.) What were the Unique Keys, and Descriptors of the complaints not associated with Noise?

Example 1: Solution

Question No.	Answer
a	DOT $=2 ;$ NYPD $=12$
b	Manhattan $=5 ;$ Bronx $=3 ;$ Brooklyn $=4 ;$ Queens $=2$ c
Noise Complaint	

d.

Unique Key	Descriptor
997177	Pothole
53995389	With License Plate
53994527	Blocked Hydrant
53999207	Plate Condition - Noisy
54000934	Blocked Hydrant

Exercise 1: Jordan Sales

(1) Import the file 'JordanSales.csv'.
(3) Use Autofiler to Create Filter Criteria.
(0) Answer the following Questions about the data set.

- What is the average sneaker sales price for release years 2014 through 2019?
- How many options does a customer have if they want a sneaker from 2019 with an average retail price between $\$ 175-\$ 250$?
- Based on your taste, what release year would you buy from and how much would you be willing to pay for Jordans?

Matrices

Matrices are arrays of numbers m-rows and n-columns. Similar to how we performed operations on cells with single values, certain operations and be applied to matrices. Matrices can be labled using capital letters.

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 3 \\
2 & 6 \\
7 & 9
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}
4 & 5 & 8 \\
10 & 11 & 12
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \quad \mathbf{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Matrix Operations

Addition: +

- Matrices must be the same size
- Size: $(m \times n)-(m \times n)$
- Output Size: $m \times n$
- Example: $\mathbf{A}+\mathbf{A}=2 \mathbf{A}$

Subtraction: -

- Matrices must be the same size
- Size: $(m \times n)-(m \times n)$
- Output Size: $m \times n$
- Example: $\mathbf{A}-\mathbf{A}=0$

Matrix Operations: Continued

Multiplication: MMULT()

- Number of rows in first matrix MUST equal number of columns in the second matrix.
- Size: $(m \times n) \cdot(n \times r)$
- Output Size: $m \times r$
- Example: $\mathbf{A} \cdot \mathbf{B}=\mathbf{A B}$

Determinant: MDETERM()

- Square matrices only
- Size: $n \times n$
- Output Size: Single Value
- Example: $\operatorname{det}(\mathbf{C})=-2$

Matrix Operations: Continued

Inverse: MINVERSE()

- Square nonsingular matrices only.
- Size: $n \times n$
- Output Size: $n \times n$
- Example: \mathbf{C}^{-1}

Transpose: TRANSPOSE()

- All Matrices
- Size: $m \times n$
- Output Size: $n \times m$
- Example: \mathbf{A}^{\top}

Solving Linear Equations with Matrices

Linear equations with three unknowns can take the form:

$$
\begin{array}{r}
10 x+12 y+15 z=40 \\
11 x+12 y+14 z=80 \\
3 x+4 y+4 z=24
\end{array}
$$

Expressing this equation using matrices we get,

$$
\mathbf{A X}=\mathbf{b}
$$

Where

$$
\mathbf{A}=\left[\begin{array}{ccc}
10 & 12 & 15 \\
11 & 12 & 14 \\
3 & 4 & 4
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
40 \\
80 \\
24
\end{array}\right]
$$

Example 2: Solution

The solution to this equation is

$$
\begin{aligned}
\mathbf{A X A}^{-1} & =\mathbf{b} \mathbf{A}^{-1} \\
\mathbf{A X A}^{-1} & =\mathbf{b} \mathbf{A}^{-1} \\
\mathbf{X} & =\mathbf{b} \mathbf{A}^{-1}
\end{aligned}
$$

We can express this solution in Excel by:
(1) Writing out arrays for \mathbf{A} and \mathbf{b}.
(2) Using MINVERSE() on the selection for \mathbf{A} to derive \mathbf{A}^{-1}.
(3) Using MMULT() to multiply \mathbf{b} by \mathbf{A}^{-1}.

Example 2: Solution

	A	B	C	D	E
1	Matrix A				Matrix b
2	10	12	15		40
3	11	12	14		80
4	3	4	4		24
5					
6	Matrix A INV				Matrix b(A^-1)
7	-0.5	0.75	-0.75		22
8	-0.125	-0.3125	1.5625		7.5
9	0.5	-0.25	-0.75		-18

Further Reading

The topics covered in the lecture can be found in Compter Applications for Life Sciences p.39-46 and p. 85-90

