CMPT 155: Computer Applications for Life Sciences

Lecture 12: Importing, Sorting and Parsing Data; Matrix Operations

Ivan E. Perez

April 26, 2022

Presentation Outline

- Homework & Administrative
- 2 Importing, Sorting and Parsing Data
 - Importing Data
 - Parsing Data
 - Sorting Data
 - Example 1: NY Data
 - Exercise 1: Jordan Sales
- Matrices
 - Matrix Operations
 - Solving Linear Equations
 - Example 2
- Further Reading

Homework & Administrative Schedule

- Homeworks:
 - ▶ #7 Due: Friday, April 29rd at 6pm
 - ▶ #8 Due: Friday, May 6th at 6pm
- Final Exam Review: Tuesday, May 3rd at 6pm
- Mock Final Exam: Wednesday, May 4th
- Final Exams:
 - Section 01 (8am) Final Exam: May 9th 11am 1pm
 - ► Section 02 (9am) Final Exam: May 10th 11 am 1pm

Importing Data

Data can be imported from:

- text files (e.g., .txt, .csv)
- database connections (e.g., MySQL, MSAccess)

Importing from Text Files

Importing Data From Text

- right (Ctrl) -click a text file and try opening it with Excel
- In the Data Tab go to (Get Data) followed by From Text
- The Text to Columns wizard should start up.

Parsing Data

Data can be parsed using the Text to Columns wizard.

Figure: Step 1: Specify the way you wanted to delimit (i.e., separate/find breaks) in your data.

Figure: Step 2: Apply the delimiter that makes sense for your raw data. In this case 'Commas', ',' is our delimiter

Figure: Step 3: Verify that data has been parsed correctly, and add final touches and/or Advanced options.

Concatenating Data

Cells can be concatenaed by using the '&' operator or using CONCAT().

1	A	В	C	D	E	F	G	Н
1	sneaker_name	sales	retail_price	average_sale_price	highest_price	lowest_price	release_date	condition
2	Jordan 4 Retro Bred (2019)	28140	200	254	520	138	5/4/19	New
3	Jordan 1 Retro High Travis Scott	17269	175	1013	3000	578	5/11/19	New
4								
5	Concatedated using							
6	CONCAT	=CONCAT(A2:H2)	Jordan 4 Retro Bred (2019)2814020025452013843589New					
		=A2&B2&C2&D2						
7	&	&E2&F2&G2&H2	Jordan 4 Retro Bred (2019)2814020025452013843589New					

Sorting Data

Data can be sorted in the Home \rightarrow Sort & Filter Menu:

- manually by using 'Custom Sort' wizard.
- by A-Z by using 'Sort A to Z' or 'Sort Z to A'.
- automatically selecting Filter icon and using the Filter submenus.

Filtering Data

Data can be filtered and sorted using the Autofilter button in the Data Tab.

Example 1: NY data

Restated from p.45

- Open: NYC Open Data Search 311 Service Requests 2010 to Present.
- ullet Click Export o CSV. A very long download should start.
 - If you want to get a feel for the data try using a snippet of this dataset called NYCOpenData311Sample.csv
- Try importing this data using the Data import wizard.
- Try answering the following questions:
 - How Many 311 requests were filed under the Department of Transportation (DOT), and how many were filed under the NYPD?
 - How many complaints did each Borough(Communitys) have?
 - What Type of complaint was the most common?
 - What were the Unique Keys, and Descriptors of the complaints **not** associated with Noise?

Example 1: Solution

Question No.	
а	DOT = 2; $NYPD = 12$
b	Manhattan = 5; $Bronx = 3$;
	Brooklyn =4; Queens =2
С	DOT = 2; $NYPD = 12Manhattan = 5$; $Bronx = 3$; Brooklyn = 4; $Queens = 2Noise Complaint$

d.

Unique Key	Descriptor
997177	Pothole
53995389	With License Plate
53994527	Blocked Hydrant
53999207	Plate Condition - Noisy
54000934	Blocked Hydrant

Exercise 1: Jordan Sales

- Import the file 'JordanSales.csv'.
- Use Autofiler to Create Filter Criteria.
- Answer the following Questions about the data set.
 - What is the average sneaker sales price for release years 2014 through 2019?
 - How many options does a customer have if they want a sneaker from 2019 with an average retail price between \$175-\$250?
 - Based on your taste, what release year would you buy from and how much would you be willing to pay for Jordans?

Matrices

Matrices are arrays of numbers *m*-rows and *n*-columns. Similar to how we performed operations on cells with single values, certain operations and be applied to matrices. Matrices can be labled using capital letters.

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 7 & 9 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 4 & 5 & 8 \\ 10 & 11 & 12 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \quad \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrix Operations

Addition: +

- Matrices must be the same size
- Size: $(m \times n) (m \times n)$
- Output Size: $m \times n$
- Example: **A**+**A**= 2**A**

Subtraction: -

- Matrices must be the same size
- Size: $(m \times n) (m \times n)$
- Output Size: $m \times n$
- Example: ${\bf A} {\bf A} = 0$

Matrix Operations: Continued

Multiplication: MMULT()

- Number of rows in first matrix MUST equal number of columns in the second matrix.
- Size: $(m \times n) \cdot (n \times r)$
- Output Size: $m \times r$
- Example: $\mathbf{A} \cdot \mathbf{B} = \mathbf{A}\mathbf{B}$

Determinant: MDETERM()

- Square matrices only
- Size: *n* × *n*
- Output Size: Single Value
- Example: $det(\mathbf{C}) = -2$

Matrix Operations: Continued

Inverse: MINVERSE()

Square nonsingular matrices only.

• Size: $n \times n$

• Output Size: $n \times n$

• Example: \mathbf{C}^{-1}

Transpose: TRANSPOSE()

All Matrices

• Size: $m \times n$

• Output Size: $n \times m$

Example: A^T

Solving Linear Equations with Matrices

Linear equations with three unknowns can take the form:

$$10x + 12y + 15z = 40$$
$$11x + 12y + 14z = 80$$
$$3x + 4y + 4z = 24$$

Expressing this equation using matrices we get,

$$AX = b$$

Where

$$\mathbf{A} = \begin{bmatrix} 10 & 12 & 15 \\ 11 & 12 & 14 \\ 3 & 4 & 4 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 40 \\ 80 \\ 24 \end{bmatrix}$$

Example 2: Solution

The solution to this equation is

$$\mathbf{AXA}^{-1} = \mathbf{bA}^{-1}$$

 $\mathbf{AXA}^{-1} = \mathbf{bA}^{-1}$
 $\mathbf{X} = \mathbf{bA}^{-1}$

We can express this solution in Excel by:

- Writing out arrays for A and b.
- **②** Using MINVERSE() on the selection for **A** to derive A^{-1} .
- Using MMULT() to multiply b by A⁻¹.

Example 2: Solution

Α	В	С	D	E	
Matrix A				Matrix b	
10	12	15		40	
11	12	14		80	
3	4	4		24	
Matrix A INV				Matrix b(A^-1)	
-0.5	0.75	-0.75		22	
-0.125	-0.3125	1.5625		7.5	
0.5	-0.25	-0.75		-18	
	Matrix A 10 11 3 Matrix A INV -0.5 -0.125	Matrix A 10 12 11 12 3 4 Matrix A INV -0.5 0.75 -0.125	Matrix A 10 12 15 11 12 14 3 4 4 Matrix A INV -0.5 0.75 -0.125 -0.3125	Matrix A 10 12 15 11 12 14 3 4 4 Matrix A INV -0.5 0.75 -0.125 -0.3125 1.5625	

Further Reading

The topics covered in the lecture can be found in *Compter Applications for Life Sciences* p.39-46 and p. 85-90