SKIT

Karlsruhe Institute of Technology

Theorembeweiserpraktikum

Tactic Proofs
Jakob von Raumer, Sebastian Ullrich | SS 2021

THEOREM PROVER

KIT — The Research University in the Helmholtz Association WWW.kit.edu


https://www.kit.edu

Why Tactics A“(IT

Karlsruhe Institute of Technology
Term proofs can be very compact

example : (A x, pxAqgx) > @x,px) A3 x,qx):=
fun {x, hpx, hgx) => (x, hpx), {x, hgx))

2/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



Why Tactics

Term proofs can be very compact

example : (A x, pxAqgx) > @x,px) A3 x,qx):=

fun (x, hpx, hgx) => ({x, hpx), (x, hgx))

... but also be very tedious

example (d : Weekday) : next (previous d) = d :=
match d with
| monday => rfl
| tuesday => rfl
| wednesday => rfl

example : (p x = f x =y) — (if p x then f x else y) = y :=

fun hfxy =>

iteCongr rfl (fun hpx => hfxy hpx) (fun _ => rfl) » ite_self (p x) y

2/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

KIT

Karlsruhe Institute of Technology



KIT

Why Tactics

Tactics enable an imperative, step-by-step proof style

example : (A x, pxAqgx) = @ x,px)A @ x,qx):=hy
intro <x, hpx, hax) -+ @ x, px) A (3 x, g x)

apply And.intro -—-F3Ix,px, FIx, qx
focus —F3x, px

exact (x, hpx)
focus -~ F3Ix, qgx

exact (x, hgx)

3/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



Why Tactics A“(IT

Karlsruhe Institute of Technology

Tactics enable an imperative, step-by-step proof style

example : (A x, pxAqgx) = @ x,px)A @ x,qx):=hy
intro <x, hpx, hax) -+ @ x, px) A (3 x, g x)

apply And.intro -—-F3Ix,px, FIx, qx
focus —F3x, px

exact (x, hpx)
focus -~ F3Ix, qgx

exact (x, hgx)

. where a proof step can also automate away many term steps

example (d : Weekday) : next (previous d) = d := by
cases d <;> rfl

example : (p x = f x =y) = (if p x then f x else y) = y := by
simp_all

3/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Running Tactics

At any point, instead of specifying a term we can use by to execute one or more tactics, separated by ;
or line breaks

example : (A x, pxAqgx) > @x,px) A @ x,qx):=
fun (x, hpx, hgx) => by apply And.intro (x, hpx); exact {(x, hgx)

The expected type at the position of by becomes the proof goal, displayed after *

4/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



Basic Tactics

intro x
exact e

apply e
assumption
contradiction
cases e
byCases p
induction e
rfl

introduce variables/hypotheses, same syntax as fun

solve first goal with e

solve first goal with e, add missing arguments as new goals
solve first goal using any hypothesis of the same type

KIT

Karlsruhe Institute of Technology

solve first goal if “obviously” contradictory, e.g. with hypothesis x # x or none = some a

split first goal into one case for each constructor of type of e

split first goal into cases p and - p for a (decidable) proposition p
like cases , but also introduce induction hypotheses

abbreviation for exact rfl

5/15

have e :=/by
let x :=
show e

SS 2021

like in term mode

Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Basic Combinators
focus t run tactic(s) on first goal only, which must be closed by the last tactic
t <>t run t' on every goal (which must be closed) produced by t

allGoals t | run t on every goal

6/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Equational Reasoning

rw [e, ...] if e :e1=er, replace every e; in the first goal with e,
rw [e, ...] at h | do so at hypothesis h instead

rw [«e] invert equality before rewriting

7/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Equational Reasoning

rw [e, ...] if e :e1=er, replace every e; in the first goal with e,
rw [e, ...] at h | do so at hypothesis h instead

rw [«e] invert equality before rewriting

Arguments are inferred (once) where possible

example (nmk : Nat) : (n+m) *k = (m+n) * k := by rw [Nat.add_comm n]

7/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Equational Reasoning

rw [e, ...] if e :e1=er, replace every e; in the first goal with e,
rw [e, ...] at h | do so at hypothesis h instead
rw [«e] invert equality before rewriting

Arguments are inferred (once) where possible

example (nmk : Nat) : (n+m) *k = (m+n) * k := by rw [Nat.add_comm n]

For performance reasons, subterms must match the rewrite rule structurally

example (h : succn=m) : n+1=m:=hy
rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression

7/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

.
sim p Karlsruhe Institute of Technology

simp is a supercharged rw:

a exhaustively applies all given equations

example
(M :vx, f(fx)=7Ffx)
(h2 : vV x, f'x="Ffx):
(' (f' x)) = f' x := by
—-rw [h2, h2, h2, h1, hi]
simp [h1, h2]

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

.
sim p Karlsruhe Institute of Technology

simp is a supercharged rw:
a exhaustively applies all given equations

® __including all theorems marked with @[simp]

@[simp] theorem zero_add : @ + n = n :
@[simp] theorem zero_mul : 8 * n =8 := ...

example : 8 * n + (@ + n) = n := by simp

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Karlsruhe Institute of Technology

simp

simp is a supercharged rw:
a exhaustively applies all given equations
® __including all theorems marked with @[simp]

a ...unfolding given definitions

by ... -- ... Fadd n (succ m) = k
simp [add] -- ... F succ (add n m) = k

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

.
sim p Karlsruhe Institute of Technology

simp is a supercharged rw:
a exhaustively applies all given equations
® __including all theorems marked with @[simp]
a ...unfolding given definitions

a __recursively solving hypotheses

example (h1 : y =08 — x=8) (h2:p—8=y) (h3 :p) : x =0 := by simp [h1, h2, h3]

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

.
sim p Karlsruhe Institute of Technology

simp is a supercharged rw:
a exhaustively applies all given equations
® __including all theorems marked with @[simp]
a ...unfolding given definitions
a __recursively solving hypotheses
-

..preprocessing theorems not yet in equation form

by simp [
show p x from ..., -- interpreted as ‘p x = True®
show p x A - py from ..., -- interpreted as rules ‘p x = True' and ‘p y = False®
show pa e pb from ..., -- interpreted as '‘pa=p b’
ood

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



simp

simp is a supercharged rw:

8/15

exhaustively applies all given equations

.including all theorems marked with @[simp]

..unfolding given definitions

..recursively solving hypotheses

..preprocessing theorems not yet in equation form

..rewriting under binders

example (xs : List Nat) : xs.map (funn =>n + 1) = xs.map (fun n => 1 +n) :
SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

= by simp [Nat.add_comm]

KIT

Karlsruhe Institute of Technology



KIT

.
sim p Karlsruhe Institute of Technology

simp is a supercharged rw:
a exhaustively applies all given equations
® __including all theorems marked with @[simp]
..unfolding given definitions
..recursively solving hypotheses
..preprocessing theorems not yet in equation form

..rewriting under binders

..and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

.
simp_all

simp_all is a supercharged simp :

a jteratively simplifies all current hypotheses and the goal up to fixpoint

example (h1 :n+m=m) (h2 :m=n) :n+n=n:=hby simp_all

9/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

.
simp_all

simp_all is a supercharged simp :

a jteratively simplifies all current hypotheses and the goal up to fixpoint

example (h1 :n+m=m) (h2 :m=n) :n+n=n:=hby simp_all

® includes propositions it finds on the way

example : (p x = f x =y) — (if p x then f x else y) = y := by simp_all

9/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Proof Structuring

How not to write tactic proofs:

induction n
simp [foo]
rw [«bar]
simp [baz]

Which tactics belong to which case...?
Repairing tactic proofs is hard, repairing unstructured ones is harder!

10/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Proof Structuring

How to write maintainable tactic proofs:

induction n
focus

simp [foo]

rw [«bar]
focus

simp [baz]

Better: clearly separate each case

11/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Karlsruhe Institute of Technology

Proof Structuring

How to write maintainable tactic proofs:

induction n

case zero =>
simp [foo]
rw [«bar]

case succ n' ih =>
simp [baz]

Better: reference cases by name (see infoview for case names)
Also allows reordering cases, e.g. to eliminate trivial cases with a final allGoals

12/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Proof Structuring

How to write maintainable tactic proofs:

induction n with
zero =>

simp [foo]

rw [«bar]
succ n' ih =>
simp [baz]

Better: use special induction/cases syntax that also allows naming new variables

13/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Proof Structuring

How to write maintainable tactic proofs:

induction n with

zero =>

simp only [fool -- like ‘simp*, but ignores ‘@[simp]* theorems
rw [«bar]

succ n' ih => simp [baz]

Better: use extensible, fragile tactics like simp at the end of a branch only

Put it in a have side proof if necessary

14/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



KIT

Help, My Variables Are Dying?!

Lean marks inaccessible variable names with a 1 in the output

example : zero + n = n := hy case zero
induction n F zero + zero = zero

case succ

nt : Nat

n_iht : zero + nt = nt
+ zero + succ nt = succ nt
Variable names become inaccessible when
® shadowed, e.g. fun x => ... (fun x => ...) , or

m generated by a tactic, as above, to avoid fragile proof scripts
Give them explicit names as on the previous slide instead if you need to access them

15/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum



