
Theorembeweiserpraktikum
Tactic Proofs
Jakob von Raumer, Sebastian Ullrich | SS 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Term proofs can be very compact
example : (∃ x, p x ∧ q x) → (∃ x, p x) ∧ (∃ x, q x) :=
fun ⟨x, hpx, hqx⟩ => ⟨⟨x, hpx⟩, ⟨x, hqx⟩⟩

... but also be very tedious
example (d : Weekday) : next (previous d) = d :=
match d with
| monday => rfl
| tuesday => rfl
| wednesday => rfl
...

example : (p x → f x = y) → (if p x then f x else y) = y :=
fun hfxy =>
iteCongr rfl (fun hpx => hfxy hpx) (fun _ => rfl) ▸ ite_self (p x) y

2/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Why Tactics



Term proofs can be very compact
example : (∃ x, p x ∧ q x) → (∃ x, p x) ∧ (∃ x, q x) :=
fun ⟨x, hpx, hqx⟩ => ⟨⟨x, hpx⟩, ⟨x, hqx⟩⟩

... but also be very tedious
example (d : Weekday) : next (previous d) = d :=
match d with
| monday => rfl
| tuesday => rfl
| wednesday => rfl
...

example : (p x → f x = y) → (if p x then f x else y) = y :=
fun hfxy =>
iteCongr rfl (fun hpx => hfxy hpx) (fun _ => rfl) ▸ ite_self (p x) y

2/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Why Tactics



Tactics enable an imperative, step-by-step proof style
example : (∃ x, p x ∧ q x) → (∃ x, p x) ∧ (∃ x, q x) := by
intro ⟨x, hpx, hqx⟩ -- ⊢ (∃ x, p x) ∧ (∃ x, q x)
apply And.intro -- ⊢ ∃ x, p x, ⊢ ∃ x, q x
focus -- ⊢ ∃ x, p x
exact ⟨x, hpx⟩

focus -- ⊢ ∃ x, q x
exact ⟨x, hqx⟩

... where a proof step can also automate away many term steps
example (d : Weekday) : next (previous d) = d := by
cases d <;> rfl

example : (p x → f x = y) → (if p x then f x else y) = y := by
simp_all

3/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Why Tactics



Tactics enable an imperative, step-by-step proof style
example : (∃ x, p x ∧ q x) → (∃ x, p x) ∧ (∃ x, q x) := by
intro ⟨x, hpx, hqx⟩ -- ⊢ (∃ x, p x) ∧ (∃ x, q x)
apply And.intro -- ⊢ ∃ x, p x, ⊢ ∃ x, q x
focus -- ⊢ ∃ x, p x
exact ⟨x, hpx⟩

focus -- ⊢ ∃ x, q x
exact ⟨x, hqx⟩

... where a proof step can also automate away many term steps
example (d : Weekday) : next (previous d) = d := by
cases d <;> rfl

example : (p x → f x = y) → (if p x then f x else y) = y := by
simp_all

3/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Why Tactics



At any point, instead of specifying a term we can use by to execute one or more tactics, separated by ;
or line breaks

example : (∃ x, p x ∧ q x) → (∃ x, p x) ∧ (∃ x, q x) :=
fun ⟨x, hpx, hqx⟩ => by apply And.intro ⟨x, hpx⟩; exact ⟨x, hqx⟩

The expected type at the position of by becomes the proof goal, displayed after ⊢

4/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Running Tactics



intro x introduce variables/hypotheses, same syntax as fun
exact e solve first goal with e
apply e solve first goal with e , add missing arguments as new goals
assumption solve first goal using any hypothesis of the same type
contradiction solve first goal if “obviously” contradictory, e.g. with hypothesis x ≠ x or none = some a
cases e split first goal into one case for each constructor of type of e
byCases p split first goal into cases p and ¬ p for a (decidable) proposition p
induction e like cases , but also introduce induction hypotheses
rfl abbreviation for exact rfl
have e :=/by
let x := like in term mode
show e

5/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Basic Tactics



focus t run tactic(s) on first goal only, which must be closed by the last tactic
t <;> t' run t' on every goal (which must be closed) produced by t
allGoals t run t on every goal

6/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Basic Combinators



rw [e, ...] if e : eₗ = eᵣ , replace every eₗ in the first goal with eᵣ
rw [e, ...] at h do so at hypothesis h instead
rw [←e] invert equality before rewriting

Arguments are inferred (once) where possible

example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]

For performance reasons, subterms must match the rewrite rule structurally

example (h : succ n = m) : n + 1 = m := by
rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression

7/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Equational Reasoning



rw [e, ...] if e : eₗ = eᵣ , replace every eₗ in the first goal with eᵣ
rw [e, ...] at h do so at hypothesis h instead
rw [←e] invert equality before rewriting

Arguments are inferred (once) where possible

example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]

For performance reasons, subterms must match the rewrite rule structurally

example (h : succ n = m) : n + 1 = m := by
rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression

7/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Equational Reasoning



rw [e, ...] if e : eₗ = eᵣ , replace every eₗ in the first goal with eᵣ
rw [e, ...] at h do so at hypothesis h instead
rw [←e] invert equality before rewriting

Arguments are inferred (once) where possible

example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]

For performance reasons, subterms must match the rewrite rule structurally

example (h : succ n = m) : n + 1 = m := by
rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression

7/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Equational Reasoning



simp is a supercharged rw :
exhaustively applies all given equations

example
(h1 : ∀ x, f (f x) = f x)
(h2 : ∀ x, f' x = f x) :
f' (f' (f' x)) = f' x := by

--rw [h2, h2, h2, h1, h1]
simp [h1, h2]

...including all theorems marked with @[simp]

...unfolding given definitions

...recursively solving hypotheses

...preprocessing theorems not yet in equation form

...rewriting under binders

...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp is a supercharged rw :
exhaustively applies all given equations
...including all theorems marked with @[simp]

@[simp] theorem zero_add : 0 + n = n := ...
@[simp] theorem zero_mul : 0 * n = 0 := ...

example : 0 * n + (0 + n) = n := by simp

...unfolding given definitions

...recursively solving hypotheses

...preprocessing theorems not yet in equation form

...rewriting under binders

...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp is a supercharged rw :
exhaustively applies all given equations
...including all theorems marked with @[simp]
...unfolding given definitions

by ... -- ... ⊢ add n (succ m) = k
simp [add] -- ... ⊢ succ (add n m) = k
...

...recursively solving hypotheses

...preprocessing theorems not yet in equation form

...rewriting under binders

...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp is a supercharged rw :
exhaustively applies all given equations
...including all theorems marked with @[simp]
...unfolding given definitions
...recursively solving hypotheses

example (h1 : y = 0 → x = 0) (h2 : p → 0 = y) (h3 : p) : x = 0 := by simp [h1, h2, h3]

...preprocessing theorems not yet in equation form

...rewriting under binders

...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp is a supercharged rw :
exhaustively applies all given equations
...including all theorems marked with @[simp]
...unfolding given definitions
...recursively solving hypotheses
...preprocessing theorems not yet in equation form

by simp [
show p x from ..., -- interpreted as `p x = True`
show p x ∧ ¬ p y from ..., -- interpreted as rules `p x = True` and `p y = False`
show p a ↔ p b from ..., -- interpreted as `p a = p b`
...]

...rewriting under binders

...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp is a supercharged rw :
exhaustively applies all given equations
...including all theorems marked with @[simp]
...unfolding given definitions
...recursively solving hypotheses
...preprocessing theorems not yet in equation form
...rewriting under binders

example (xs : List Nat) : xs.map (fun n => n + 1) = xs.map (fun n => 1 + n) := by simp [Nat.add_comm]

...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp is a supercharged rw :
exhaustively applies all given equations
...including all theorems marked with @[simp]
...unfolding given definitions
...recursively solving hypotheses
...preprocessing theorems not yet in equation form
...rewriting under binders
...and finally tries to close goals with True.intro

8/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp



simp_all is a supercharged simp :
iteratively simplifies all current hypotheses and the goal up to fixpoint

example (h1 : n + m = m) (h2 : m = n) : n + n = n := by simp_all

includes propositions it finds on the way

example : (p x → f x = y) → (if p x then f x else y) = y := by simp_all

9/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp_all



simp_all is a supercharged simp :
iteratively simplifies all current hypotheses and the goal up to fixpoint

example (h1 : n + m = m) (h2 : m = n) : n + n = n := by simp_all

includes propositions it finds on the way

example : (p x → f x = y) → (if p x then f x else y) = y := by simp_all

9/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

simp_all



How not to write tactic proofs:

induction n
simp [foo]
rw [←bar]
simp [baz]

Which tactics belong to which case...?
Repairing tactic proofs is hard, repairing unstructured ones is harder!

10/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Proof Structuring



How to write maintainable tactic proofs:

induction n
focus
simp [foo]
rw [←bar]

focus
simp [baz]

Better: clearly separate each case

11/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Proof Structuring



How to write maintainable tactic proofs:

induction n
case zero =>
simp [foo]
rw [←bar]

case succ n' ih =>
simp [baz]

Better: reference cases by name (see infoview for case names)
Also allows reordering cases, e.g. to eliminate trivial cases with a final allGoals

12/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Proof Structuring



How to write maintainable tactic proofs:

induction n with
| zero =>
simp [foo]
rw [←bar]

| succ n' ih =>
simp [baz]

Better: use special induction/cases syntax that also allows naming new variables

13/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Proof Structuring



How to write maintainable tactic proofs:

induction n with
| zero =>
simp only [foo] -- like `simp`, but ignores `@[simp]` theorems
rw [←bar]

| succ n' ih => simp [baz]

Better: use extensible, fragile tactics like simp at the end of a branch only
Put it in a have side proof if necessary

14/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Proof Structuring



Lean marks inaccessible variable names with a ✝ in the output

example : zero + n = n := by
induction n

case zero
⊢ zero + zero = zero

case succ
n✝ : Nat
n_ih✝ : zero + n✝ = n✝
⊢ zero + succ n✝ = succ n✝

Variable names become inaccessible when
shadowed, e.g. fun x => ... (fun x => ...) , or
generated by a tactic, as above, to avoid fragile proof scripts
Give them explicit names as on the previous slide instead if you need to access them

15/15 SS 2021 Jakob von Raumer, Sebastian Ullrich: Theorembeweiserpraktikum

Help, My Variables Are Dying?!


