Theorembeweiserpraktikum

Tactic Proofs
Jakob von Raumer, Sebastian Ullrich | SS 2021

Why Tactics

Term proofs can be very compact
example : $(\exists \mathrm{x}, \mathrm{p} x \wedge q \mathrm{q}) \rightarrow(\exists \mathrm{x}, \mathrm{p} \mathrm{x}) \wedge(\exists \mathrm{x}, \mathrm{qx}):=$ fun $\langle x, h p x, h q x\rangle=>\langle\langle x, h p x\rangle,\langle x, h q x\rangle\rangle$

Why Tactics

Term proofs can be very compact

```
example : (\exists x, p x ^q x) }->(\exists\textrm{x},\textrm{p}x)\wedge(\exists\textrm{x},\textrm{q}x):
    fun \langlex, hpx, hqx\rangle => \langle\langlex, hpx\rangle, \langlex, hqx\rangle\rangle
```

... but also be very tedious

```
example (d : Weekday) : next (previous d) = d :=
    match d with
    | monday => rfl
    | tuesday => rfl
    | wednesday => rfl
```

```
example : \((p x \rightarrow f x=y) \rightarrow\) (if \(p x\) then \(f x\) else \(y)=y:=\)
    fun hfxy =>
        iteCongr rfl (fun hpx => hfxy hpx) (fun _ => rfl) Dite_self (p x) y
```


Why Tactics

Tactics enable an imperative，step－by－step proof style

```
example : (\exists x, p x ^ q x) }->(\exists\textrm{x},\textrm{p x})\wedge(\exists\textrm{x},\textrm{q}x):= b
    intro \langlex, hpx, hqx\rangle -- 卜 (\exists x, p x) ^ (\exists x, q x)
    apply And.intro -- \vdash\existsx, px, \vdash\exists x, qx
    focus
    -- +\existsx, px
        exact <x, hpx>
    focus -- トヨ x,q x
        exact <x, hqx>
```


Why Tactics

Tactics enable an imperative, step-by-step proof style

```
example : (\exists x, p x ^ q x) }->(\exists\textrm{x},\textrm{p x})\wedge(\exists\textrm{x},\textrm{q}x):= b
    intro \langlex, hpx, hqx\rangle -- 卜 (\existsx, p x) ^(\exists x, q x)
    apply And.intro -- \vdash \exists x, p x, \vdash\existsx, q x
    focus -- + \existsx, px
        exact <x, hpx>
    focus -- +ヨx,qx
        exact <x, hqx>
```

... where a proof step can also automate away many term steps
example (d : Weekday) : next (previous d) = d := by
cases d <;> rfl
example : $(p x \rightarrow f x=y) \rightarrow$ (if $p x$ then $f x$ else $y)=y:=$ by
simp_all

Running Tactics

At any point, instead of specifying a term we can use by to execute one or more tactics, separated by ; or line breaks

```
example : (\exists x, p x ^ q x) }->(\exists\textrm{x},\textrm{p x})\wedge(\exists\textrm{x},\textrm{q}x):
    fun \langlex, hpx, hqx\rangle => by apply And.intro \langlex, hpx\rangle; exact \langlex, hqx\rangle
```

The expected type at the position of by becomes the proof goal, displayed after +

Basic Tactics

intro x exact e apply e assumption contradiction cases e byCases p induction e rfl	```introduce variables/hypotheses, same syntax as fun solve first goal with e solve first goal with e, add missing arguments as new goals solve first goal using any hypothesis of the same type solve first goal if "obviously" contradictory, e.g. with hypothesis x\not= x or none = some a split first goal into one case for each constructor of type of e split first goal into cases p and \negp for a (decidable) proposition p like cases, but also introduce induction hypotheses abbreviation for exact rfl```
```have e :=/by let x := show e```	like in term mode

## Basic Combinators

```
focus \(t\)
t <; > t'
allGoals t
run tactic(s) on first goal only, which must be closed by the last tactic
run t ' on every goal (which must be closed) produced by t
run t on every goal
```


## Equational Reasoning

$r w[e, \ldots]$	
$r w[e, \ldots]$ at $h$	if $e: e_{1}=e_{r}$, replace every $e_{1}$ in the first goal with $e_{r}$
$r w[\leftarrow e]$	do so at hypothesis $h$ instead
invert equality before rewriting	

## Equational Reasoning

$r w[e, \ldots]$	if $e: e_{1}=e_{r}$, replace every $e_{1}$ in the first goal with $e_{r}$
$r w[e, \ldots]$ at $h$	do so at hypothesis $h$ instead   invert equality before rewriting

Arguments are inferred (once) where possible
example ( $\mathrm{n} m \mathrm{k}: \mathrm{Nat}):(\mathrm{n}+\mathrm{m})$ * $\mathrm{k}=(\mathrm{m}+\mathrm{n})$ * $\mathrm{k}:=$ by rw [Nat.add_comm n ]

## Equational Reasoning

$r w[e, \ldots]$	
$r w[e, \ldots]$ at $h$	if $e: e_{1}=e_{r}$, replace every $e_{1}$ in the first goal with $e_{r}$   $r w[\leftarrow e]$
do so at hypothesis $h$ instead   invert equality before rewriting	

Arguments are inferred (once) where possible

```
example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]
```

For performance reasons, subterms must match the rewrite rule structurally

```
example (h : succ n = m) : n + 1 = m := by
 rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression
```


## simp

simp is a supercharged rw :

- exhaustively applies all given equations

```
example
 (h1 : \forallx, f (f x) = f x)
 (h2 : \forallx, f' x = f x) :
 f' (f' (f'x)) = f' x := by
 --rw [h2, h2, h2, h1, h1]
 simp [h1, h2]
```


## simp

simp is a supercharged rw :

- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
@[simp] theorem zero_add : $\boldsymbol{0}+\mathrm{n}=\mathrm{n}:=\ldots$
@[simp] theorem zero_mul : 0 * $\mathrm{n}=0:=\ldots$
example : 0 * $\mathrm{n}+(\mathbf{0}+\mathrm{n})=\mathrm{n}:=$ by simp


## simp

simp is a supercharged rw :

- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions

```
by ... -- ... 卜 add n (succ m) = k
 simp [add] -- ... & succ (add n m) = k
```


## simp

simp is a supercharged rw:

- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
example (h1 : y = $\boldsymbol{0} \rightarrow \mathrm{x}=\mathrm{0}$ ) (h2 : $\mathrm{p} \rightarrow \boldsymbol{0}=\mathrm{y}$ ) (h3:p): $\mathrm{x}=\mathbf{0}:=$ by simp [h1, h2, h3]


## simp

simp is a supercharged rw:

- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
- ...preprocessing theorems not yet in equation form

```
by simp [
 show p x from ..., -- interpreted as `p x = True`
 show p x ^\neg p y from ..., -- interpreted as rules `p x = True` and `p y = False`
 show p a ↔ p b from ..., -- interpreted as `p a=p b`
 ...]
```


## simp

simp is a supercharged rw:

- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
- ...preprocessing theorems not yet in equation form
- ...rewriting under binders

```
example (xs : List Nat) : xs.map (fun n => n + 1) = xs.map (fun n => 1 + n) := by simp [Nat.add_comm]
```


## simp

simp is a supercharged rw:

- exhaustively applies all given equations
- ...including all theorems marked with @[simp]
- ...unfolding given definitions
- ...recursively solving hypotheses
- ...preprocessing theorems not yet in equation form
- ...rewriting under binders
- ...and finally tries to close goals with True.intro


## simp_all

simp_all is a supercharged simp :

- iteratively simplifies all current hypotheses and the goal up to fixpoint

```
example (h1 : n + m = m) (h2 : m = n) : n + n = n := by simp_all
```


## simp_all

simp_all is a supercharged simp :

- iteratively simplifies all current hypotheses and the goal up to fixpoint

```
example (h1 : n + m = m) (h2 : m = n) : n + n = n := by simp_all
```

- includes propositions it finds on the way

```
example : (p x }->\textrm{f}x=y)->(\mathrm{ if p x then f x else y) = y := by simp_all
```


## Proof Structuring

How not to write tactic proofs:
induction $n$
simp [foo]
rw [ $\leftarrow \mathrm{bar}]$
simp [baz]
Which tactics belong to which case...?
Repairing tactic proofs is hard, repairing unstructured ones is harder!

## Proof Structuring

How to write maintainable tactic proofs:
induction $n$
focus
simp [foo]
rw [↔bar]
focus
simp [baz]
Better: clearly separate each case

## Proof Structuring

How to write maintainable tactic proofs:

```
induction n
case zero =>
 simp [foo]
 rw [\leftarrowbar]
case succ n' ih =>
 simp [baz]
```

Better: reference cases by name (see infoview for case names)
Also allows reordering cases, e.g. to eliminate trivial cases with a final allGoals

## Proof Structuring

How to write maintainable tactic proofs:
induction n with
| zero =>
simp [foo]
rw [ $\leftarrow \mathrm{bar}]$
| succ $n^{\prime}$ ih =>
simp [baz]

Better: use special induction/cases syntax that also allows naming new variables

## Proof Structuring

How to write maintainable tactic proofs:

```
induction n with
| zero =>
 simp only [foo] -- like `simp`, but ignores `@[simp]` theorems
 rw [\leftarrowbar]
| succ n' ih => simp [baz]
```

Better: use extensible, fragile tactics like simp at the end of a branch only Put it in a have side proof if necessary

## Help, My Variables Are Dying?!

Lean marks inaccessible variable names with a $\dagger$ in the output
example : zero $+\mathrm{n}=\mathrm{n}:=$ by
induction $n$

```
case zero
\vdash zero + zero = zero
case succ
n\dagger : Nat
n_ih† : zero + n\dagger = n\dagger
\vdash zero + succ n† = succ n\dagger
```

Variable names become inaccessible when

- shadowed, e.g. fun $x=>$... (fun $x=>\ldots$ ), or
- generated by a tactic, as above, to avoid fragile proof scripts Give them explicit names as on the previous slide instead if you need to access them

